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ABSTRACT

An Engineering Approach Towards Personalized Cancer Therapy. (August 2009)

Golnaz Vahedi, B.S., Sharif University of Technology;

M.S., University of Alberta

Co–Chairs of Advisory Committee: Dr. Edward R. Dougherty
Dr. Jean-Francois Chamberland-Tremblay

Cells behave as complex systems with regulatory processes that make use of many ele-

ments such as switches based on thresholds, memory, feedback, error-checking, and other

components commonly encountered in electrical engineering. It is therefore not surprising

that these complex systems are amenable to study by engineering methods. A great deal

of effort has been spent on observing how cells store, modify, and use information. Still,

an understanding of how one uses this knowledge to exert control over cells within a living

organism is unavailable. Our prime objective is “Personalized Cancer Therapy” which is

based on characterizing the treatment for every individualcancer patient. Knowing how

one can systematically alter the behavior of an abnormal cancerous cell will lead towards

personalized cancer therapy. Towards this objective, it isrequired to construct a model for

the regulation of the cell and utilize this model to devise effective treatment strategies. The

proposed treatments will have to be validated experimentally, but selecting good treatment

candidates is a monumental task by itself. It is also a process where an analytic approach

to systems biology can provide significant breakthrough. Inthis dissertation, theoretical

frameworks towards effective treatment strategies in the context of probabilistic Boolean

networks, a class of gene regulatory networks, are addressed. These proposed analytical

tools provide insight into the design of effective therapeutic interventions.
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CHAPTER I

INTRODUCTION

Cells form complex systems and can be approached by engineering methods. Their behav-

ior can be abstracted using many elements such as switches based on thresholds, memory,

feedback, and other elements common in engineering systems. Nevertheless, studying

cells can be challenging for an engineer. The primary problem is that cells are much more

complex than man-made systems in terms of the numbers of inputs involved in any given

decision. This situation is further exacerbated by the paucity of information that is avail-

able on the configuration of the regulatory networks and the dynamics of reconfiguration

of these same networks as a cell responds. Although high-throughput technologies such as

microarrays provide powerful tools to characterize genomeor proteome, each only supplies

a snap-shot of the state of cells. With these technologies, we are beginning to characterize

information and its means of transmission within a biological system. Still, what we are still

lacking is how to use this knowledge to exert control over biological systems. Our prime

objective of our research is “Personalized Cancer Therapy”which is based on characteriz-

ing the treatment for every individual cancer patient. Knowing how one can systematically

alter the behavior of an abnormal cancerous cell will bring us closer to personalized cancer

therapy. Towards this objective, we are required to construct a model for the regulation of

the cell and utilize this model to devise effective treatment strategies. The proposed treat-

ments will have to be validated experimentally, but selecting good treatment candidates is

a monumental task by itself. It is also a process where an analytic approach to systems

biology can provide significant breakthrough.

This dissertation follows the style ofIEEE Transactions on Biomedical Engineering.
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In this dissertation, we address theoretical frameworks towards effective treatment strate-

gies in the context of a given model of gene regulatory networks.

Most cellular processes involve many different molecules.The metabolism of a cell

consists of many interlinked reactions. Products of one reaction will influence the next,

thus forming the metabolic network [1]. Similarly, signaling molecules are interlinked and

cross-talk between the different signalling cascades forms the signaling network. The same

is true for regulatory relationships between genes and their products. All these networks

are closely related, e.g. the regulatory network is influenced by extracellular signals. Our

main interest is in transcription regulation networks and we will refer to them as “gene

regulatory networks”.

There have been numerous attempts to model the dynamical behavior of gene reg-

ulatory networks, ranging from deterministic to stochastic, using either discrete-time or

continuous-time descriptions of gene interactions. Paradigms that have been considered

in this context include Bayesian networks [2], Boolean networks [3], and, recently, proba-

bilistic Boolean networks [4].

A deterministic model of a gene regulatory network can involve a number of different

mechanisms that capture the collective behavior of the elements constituting the network.

What deterministic models have in common is that there is no inherent notion of random-

ness or stochasticity in the model once it is specified [4]. A model system that has received

much attention, not only from the biology community, but also in physics, is the Boolean

network model, originally introduced by Kauffman [3]. In this model, gene expression is

quantized to only two levels: ON and OFF. The expression level (state) of each gene is

functionally related to the expression states of some othergenes, using logical rules [5].

In a Boolean network, each (target) gene is “predicted” by several other genes by means

of a Boolean function (predictor). Thus, after having inferred such a function from gene

expression data, it could be concluded that if we observe thevalues of the predictive genes,
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we know, with full certainty, the value of the target gene.

Conceptually, such an inherent determinism seems problematic as it assumes an en-

vironment with no uncertainty. However, the data used for the inference exhibits uncer-

tainty on several levels. First, there is biological uncertainty: gene expression is inherently

stochastic, not in the sense that it is totally random, but that it has a stochastic nature on

account of intrinsic biological variability. Second, there is experimental noise due to the

complex measurement process, ranging from hybridization conditions to microarray image

processing techniques. Third, there may be interacting latent variables, such as proteins,

various environmental conditions, or other genes that we simply do not measure, that fur-

ther add to the variability of the measurements. Thus, we arein a position of having to

infer a (deterministic) predictor under uncertainty. Probabilistic Boolean networks (PBNs)

have been introduced to address such uncertainty. A number of additional justifications for

introducing PBNs are contained in [5]. In this dissertation, we model the gene regulatory

network dynamics as a probabilistic Boolean networks.

PBNs allow the incorporation of uncertainty into the inter-gene relationships [6]. This

class of models offers a more flexible and powerful mathematical abstraction. PBN is

capable of incorporating the effect of latent variables, not directly captured in a Boolean

network. The dynamics of a PBN can be represented via a discrete-time Markov chain. A

logical state of the corresponding Markov chain is a gene activity profile.

Our ultimate objective in modeling genetic regulatory networks is the identification of

potential targets for therapeutic intervention [6]. For instance, in cancer, one can consider

correlation between metastasis and the abundances of mRNA for certain genes. In this re-

spect, the abundance of mRNA for the gene WNT5A has been foundto be highly discrim-

inating between cells with properties typically associated with high versus low metastatic

competence [7]. Appropriate alteration in the expression of WNT5A can be perceived ther-

apeutically, and it can therefore be used to search for an optimal intervention strategy [8].
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In [9] and [4], several methods to design therapeutic interventions are discussed in the

context of probabilistic Boolean networks. Some of these methods are intended to reduce

the likelihood of the gene-expression profiles associated with aberrant cellular functions

via manipulation of a control gene. In a nutshell, whenever changing the expression level

of a control gene is perceived as a therapeutic option, thesesystem-based therapies search

for the most effective sequence of such changes to beneficially alter cell dynamics. The

resulting intervention strategy specifies the appropriateexpression of the control gene in

order to reduce the likelihood of pathological cellular functions.

Major efforts have initially focused on manipulating external (control) variables to

desirably affect dynamical evolution over a finite time horizon [10]. These short-term poli-

cies have been shown to change the dynamical performance of regulatory networks over a

small number of stages; however, they are not necessarily effective in changing long-run

network behavior. To address this issue, stochastic control has been employed via dynamic

programming algorithms to find stationary control policiesthat affect the steady-state dis-

tributions of PBNs [11].

In this dissertation, we first address one practical issue inthe inference of PBNs from

biological data [4]. A significant effort has been put forth to infer PBNs. The inference

problem depends on the kinds of data available. Data are often assumed to come from the

steady-state distribution of the underlying biological network. This is typically the case for

cancer patient data. We show how and why using the coefficientof determination (CoD) in

the inference of PBNs can lead to artifacts in the structure of the network. We also propose

an inference algorithm to avoid such artifacts.

Formulating the problem of intervention in a regulatory network as a classical infinite-

horizon decision making process introduces an elegant analytical framework that may be

instrumental to enhance our understanding of treatment discovery. Despite its conceptual

benefits, the classical intervention fails to address many practical and technical issues. In
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the past few years, the classical framework has been extended in several directions to im-

prove system-based intervention schemes. To this end, we consider three control theoretic

problems in the context of PBNs. These proposed analytical tools provide insight into

the design of effective therapeutic interventions. These methods strive to address some of

the practical concerns that are brought up by medical practitioners. In the following, we

explain them in more details.

A. Boolean Networks and Bidirectional Gene Relationships

The coefficient of determination (CoD) has been used to inferBoolean networks from

steady-state biological data, in particular, to estimate the constituent Boolean networks for

a probabilistic Boolean network. The advantage of the CoD method over design methods

that emphasize graph topology or attractor structure is that the CoD produces a network

based on strong predictive relationships between target genes and their predictor (parent)

genes. The disadvantage is that spurious attractor cycles appear in the inferred network, so

that there is poor inference relative to the attractor structure, that is, relative to the steady-

state behavior of the network. An attractor is a set of statesto which a Boolean network

evolves after a long enough time. Given steady-state data, there should not be a significant

amount of steady-state probability mass in the inferred network lying outside the mass of

the data distribution; however, the existence of spurious attractor cycles creates a significant

amount of steady-state probability mass not accounted for by the data.

Using steady-state data hampers design because the absenceof temporal data causes

the CoD method to suffer from a lack of directionality with regard to prediction. This may

result in spurious bidirectional relationships among genes in which two genes are among

the predictors for each other, when actually only one of themshould be a predictor of the

other, thereby creating a spurious attractor cycle. Chapter III characterizes the manner in
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which bidirectional relationships affect the attractor structure of a Boolean network. Given

this characterization, we propose a constrained CoD inference algorithm that outperforms

unconstrained CoD inference in avoiding the creation of spurious non-singleton attractor.

Algorithm performances are compared using a melanoma-based probabilistic Boolean net-

work [12].

B. Timing in Probabilistic Boolean Networks

Implementation of an intervention policy derived for probabilistic Boolean networks re-

quires nearly continuous observation of the underlying biological system since precise ap-

plication requires the observation of all transitions. In medical applications, as in many

engineering problems, the process is sampled at discrete time intervals and a decision to

intervene or not must be made at each sample point.

In this work, we construct a framework for gene interactionssuch that the model

class: (i) incorporates rule-based dependencies among genes, (ii) allows the systematic

study of global network dynamics, (iii) is able to cope with uncertainty, (iv) accounts for

the sampling rate of temporal profiles, (v) remains robust tolarge estimation errors due to

small samples. To this end, in Chapter IV, we extend the current definition of PBN and

propose a discrete-time discrete-space model called sampling-rate-dependent PBN (SRD-

PBN) [13].

C. Optimal Cyclic Control Policy

We are able to exploit the biochemical differences between bacteria and human cells so as

to achieve toxic drug concentrations in the former while sparing the latter. This selectiv-

ity largely contributes to the success in treating bacterial infections. Unfortunately, such

high selectivity is at present elusive in the treatment of human cancers. Hence, great ef-
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forts are required to determine dose schedules that maximize the benefit-to-toxicity ratio

in cancer therapy [14]. Dose intensity is a measure of treatment delivery that looks at the

amount of drug delivered per unit of time. To mitigate the detrimental side effects of a

treatment in general, we should account for dose intensity in a system-based intervention

method. Therapeutic intervention should avoid undesirable gene-expression profiles while

accounting for the quantity or frequency of applied drugs. Ahigher drug dose intensity can

be delivered by increasing the dose per cycle (dose escalation) or by reducing the interval

between cycles (dose density).

To reduce the side-effects, certain types of cancer therapies, such as chemotherapy,

are given in cycles with each treatment being followed by a recovery period. During the

recovery period, the side effects tend to gradually subside. In Chapter V, we show how

an optimal cyclic intervention strategy can be devised for aPBN. The effectiveness of

optimal cyclic therapies is demonstrated through numerical studies for random networks.

Furthermore, an optimal cyclic policy is derived to controlthe behavior of a regulatory

model of the mammalian cell-cycle network [15].

D. Mean-First-Passage-Time Control Policy

In general, dynamical programming algorithms can be problematic owing to their high

computational complexity. Two additional computationally burdensome issues that arise in

cancer therapy are the potential for controlling the network and identifying the best gene

for intervention. Chapter VI proposes an algorithm based onmean first-passage time that

assigns a stationary control policy for each gene candidate. It serves as an approximation

to an optimal control policy and, because of its reduced computational complexity, can be

used to predict the best control gene. Once the best control gene is identified, one can

derive an optimal policy or simply utilize the approximate policy for this gene when the
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network size precludes a direct application of dynamic programming algorithms. A salient

point is that the proposed algorithm can be model-free. It can be directly designed from

time-course data without having to infer the transition probability matrix of the network

[16].

To set the stage, in Chapter II, we first introduce the background of this research in

more details. Chapter III considers the bidirectional relationships in Boolean networks. In

Chapter IV, we introduce how sampling-rate can be incorporated in probabilistic Boolean

networks. We develop a novel framework to model cyclic cancer treatments such as chemother-

apy in Chapter V. We propose a heuristic control design method based on mean-first-

passage-times in Markov chains in Chapter VI.
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CHAPTER II

BACKGROUND

A. Boolean Networks

A Boolean network (BN)G(V, F ), [17], is defined by a sequenceV = {xi}
n
i=1 of n nodes

and a set of Boolean functionsf = {f 1, ..., fn}wherexi ∈ {0, · · · , d − 1} andd denotes

the quantization level. In gene regulatory modeling,xi represents the expression level of

genei, which can be either active (1) or inactive (0). As is commonly done, we will mix

terminology by referring to the nodes as genes. The set of Boolean functionsf represents

the regulatory rules between genes. At time stept+1, the expression of genexi, called the

target gene, is predicted by the expression of a set,W i, of genes at time stept, based on the

regulatory functionfi. The sequence of genesW i = {xi1 , ..., xiki
} is called thepredictor

setof xi. The functionf i is called thepredictor functionof xi. We assume that there are no

nonessential genes in a predictor set, meaning that the predictor function requires the full

set as input. The cardinality ofWi, |Wi|, is called theconnectivityof xi and the maximum

connectivity in the network is called the connectivity of the network.

A state of the BN at timet is a vector(x1(t), ..., xn(t)) of gene values which also

referred to asgene activity profile. The possible states of the BN form itsstate space.

Given an initial state, the network will eventually enter a set of states through which it will

repeatedly cycle forever. Each such set is called anattractor cycle, and asingleton attractor

is an attractor cycle of length1. The attractor cycles are mutually disjoint. The set of all

states that transition into an attractor cycle is called thebasinof that cycle. The family of

basins partitions the state space.
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B. Probabilistic Boolean Networks

Probabilistic Boolean network (PBN) [6] consists of a sequenceV = {xi}
n
i=1 of n nodes

with xi ∈ {0, · · · , d − 1}, together with a sequence{fc}kc=1 of vector-valuednetwork

functions. In the framework of gene regulation, each elementxi represents the expression

level of a gene. It is common to mix the terminology by referring toxi as theith gene. The

state vectorx(t) = (x1(t), . . . , xn(t)) is called thegene-activity profile(GAP) at timet.

Each network functionfc = (fc1, . . . , fcn) determines a constituent network (context) of the

regulatory network. The functionfci : {0, . . . , d−1}n → {0, . . . , d−1} is the predictor of

genei, whenever networkc is selected. At each updating epoch a decision is made whether

to switch the constituent network. This decision is based ona binary random variableξ

with P (ξ = 1) = q. If ξ = 0, then the network is not switched, the model behaves like

a fixed network and the values of all genes are synchronously updated according to the

current constituent network. Ifξ = 1, then a constituent network is randomly selected

from among all constituent networks, including the currentone, according to the selection

probability distribution{pc}
k
c=1 and, after selectingfc, the values of all genes are updated

accordingly. Ifq = 1, so that a switch is permitted at every time point, the network is said

to beinstantaneously random; if q < 1, then the PBN will remain in a constituent network

so long asξ remains equal to0, and the PBN is said to becontext-sensitive.

Two quantization levels have thus far been used in practice.If d = 2 (binary), then

the constituent networks are Boolean networks with0 or 1 meaning OFF or ON, respec-

tively. The cased = 3 (ternary) arises when we consider a gene to be0 (down-regulated),

2 (up-regulated), and1 (invariant). This latter situation commonly occurs with cDNA mi-

croarrays, where a ratio is taken between the expression values on the test channel (red)

and the base channel (green). In this work, we will develop the methodology ford = 2,

so that gene values are either0 or 1; however, the methodology is applicable to any finite



11

number of levels. For binary PBNs, there is a natural bijection between the GAPx(t) and

its integer representation,x(t), which takes values inW = {0, 1, . . . , 2n−1}. We consider a

PBN with perturbation, meaning that there is a binary randomvectorγ = (γ1, γ2, . . . , γn),

independent ofξ, such thatP (γi = 1) = p, andγ1, γ2, . . . , γn are independent. Ifγ = 0

the network transitions according to the network function,and ifγ 6= 0 the valuexi flips if

and and only ifγi = 1.

The dynamic behavior of an instantaneous PBN can be modeled by a Markov chain

with state space ofW. Similarly, the dynamic behavior of a context-sensitive PBN can be

modeled by a Markov chain whose states consist of (context, GAP) ordered pairs taking

values in

{
(c, x) : c ∈ {1, . . . , k} , x ∈ W

}
.

In either frameworks, letP denote the transition probability matrix of the correspond-

ing Markov chain where the state space is denoted asS. The evolution of the network can

be modeled by a stationary discrete-time equation

z(t + 1) = f(z(t), w(t)) for t = 0, 1, . . .,

where statez(t) ∈ S. The disturbancew(t) is the manifestation of uncertainties, due to

either network switching or a change in gene-activity profile resulting from a random gene

perturbation. Gene perturbation insures that all states inthe Markov chain communicate

with one another. Hence, the finite-state Markov chain is ergodic and has a unique steady-

state distribution.
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C. Optimal Control in Probabilistic Boolean Networks

In the following, we describe how to devise an optimal control policy for a PBN. Let

P = (pij; i, j ∈ S) denote the transition probability matrix of the Markov chain corre-

sponding to the context-sensitive or instantaneous PBN. Inthe presence of external con-

trol, we suppose that there exists a binary control input,u(t) ∈ C = {0, 1}. A control

u(t), which can take values0 or 1 at each updating epocht, specifies the action on the

control gene. Treatment alters the status of the control gene, which can be selected among

all genes in the network. If the control at updating epocht is on,u(t) = 1, then the state

of the control gene is toggled; ifu(t) = 0, then the state of the control gene remains

unchanged. In the presence of external control, the system evolution is represented by a

stationary discrete-time equation

z(t + 1) = f(z(t), u(t), w(t)) for t = 0, 1, . . .

where statez(t) is an element of the state-spaceS; andw(t) is the manifestation of uncer-

tainties in the model. The probability of transitioning from statei to statej under control

u is denoted bypij(u), wherei, j ∈ S.

The problem of optimal intervention for a PBN is formulated as an optimal stochastic

control problem. A cost-per-stage,g(i, u, j), is associated to each intervention in the sys-

tem. In general, a cost-per-stage may depend on the origin statei, the successor statej, and

the control inputu. We assume that the cost-per-stage is stationary and bounded for all i, j

in S, andu in C = {0, 1}. We define the expected immediate cost in statei, when control

u is selected, by

g(i, u) =
∑

j∈S

pij(u) g(i, u, j).

We consider the discounted formulation of the expected total cost. The discounting

factor,α ∈ (0, 1), ensures convergence of the expected total cost over the long-run [18].
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In the case of cancer therapy, the discounting factor emphasizes that obtaining treatment

at an earlier stage is favored over later stages. The expected total discounted cost, given a

policy π and an initial statei, is denoted by

Jπ(i) = lim
N→∞

E

{
N−1∑

t=0

αt r(z(t), µt(z(t)), z(t + 1))

∣∣∣∣z(0) = i

}
, (2.1)

wherez(t), i ∈ S. A policy π = {µ0, µ1, . . .} is a sequence of decision rulesµt : S → C,

for each time stept. The vectorJπ of the expected total costs is called the value function. In

a stochastic control problem, we seek an intervention strategyπ∗ among all the admissible

intervention strategiesΠ that minimizes the value function for each statei, i.e.,

π∗(i) = arg min
π∈ Πg

Jπ(i), ∀ i ∈ S. (2.2)

For a finite time horizon, the dynamic programming algorithmdescribes how the op-

timal costJk+1 propagates backward in time to the optimal costJk

Jk(i) = min
u∈C

[
g(i, u) + λ

N−1∑

j=0

pi,j(u)Jk+1(j)

]
. (2.3)

The above equation motivates the introduction of the mapping T : S 7→ ℜ defined by

TJ(i) = min
u∈C

[
g(i, u) + λ

N−1∑

j=0

pi,j(u)J(j)

]
, ∀i ∈ S, (2.4)

for any value functionJ : S 7→ ℜ. Given the mapping of (2.4), the following propositions

summarize how one can devise an optimal one-transition policy. Proofs of these statements

can be found in [18].

Proposition 1 (Convergence of the discounted cost algorithm): For anyx ∈ S and any

bounded functionJ : S 7→ ℜ, the optimal cost function satisfies

J∗(x) = lim
M−→∞

(
TMJ

)
(x), ∀x ∈ S.
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Proposition 2 (Bellman’s optimality equation): The optimal cost function J∗ satisfies

J∗ = TJ∗. (2.5)

Furthermore,J∗ is the unique solution of this equation within the class of bounded func-

tions.

Proposition 3 (Necessary and sufficient condition for optimality): A stationary policyµ is

optimal if and only if it attains the minimum in Bellman’s optimality equation of(2.5).

The three aforementioned propositions provide the basis for a method for determining

an optimal one-transition policy. Proposition 2 asserts that the optimal cost function satis-

fies Bellman’s optimality equation while Proposition 1 states that the optimal cost function

can be iteratively determined by running the recursion equation

Jk+1 = TJk, k = 0, 1, 2, . . . (2.6)

for any bounded initial cost functionJ0 : S 7→ ℜ. Since this iteration is guaranteed to

converge toJ∗, one can continue the iteration until some stopping criterion is reached.

By Proposition 3, the resulting optimal policy is also stationary. The procedure described

in (2.6) is referred to as the value iteration algorithm since, at every stage, we are iterating

on the value function. The optimal one-transition policy isobtained as the argument of the

minimization step once the iterative procedure has converged.

D. Continuous-time Markov Chain

Consider a continuous-time discrete-space stochastic process{Z(t), t ≥ 0} taking on val-

ues in the set of nonnegative integersS. In analogy with a discrete-time Markov chain,

we say that the process{Z(t), t ≥ 0} is a continuous-time Markov chain if∀s, t ≥ 0, and

nonnegative integersi, j, z(ν) ∈ S, 0 ≤ ν < s,
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Pr{Z(t + s) = j|Z(s) = i, Z(ν) = z(ν), 0 ≤ ν < s} =

Pr{Z(t + s) = j|Z(s) = i}.

In other words, a continuous-time Markov chain is a stochastic process with the Markovian

property. This means that the conditional distribution of the future state at timet+ s, given

the present state at times and all the preceding states, depends only on the present state

and is conditionally independent of the states prior to the current state. The past given the

present does not provide more information about the future.

If we let τi denote the amount of time that the process stays in statei before making a

transition into a different state, then the Markov propertyimplies

Pr{τi > s + t|τi > s} = Pr{τi > t}, ∀ s, t ≥ 0.

The random variableτi is memoryless and must therefore be exponentially distributed. In

general, a continuous-time Markov chain is defined by aQ-matrix. A Q-matrix onS is a

matrixQ = (qij; i, j ∈ S) satisfying the following conditions [19]:

(i) 0 ≤ −qii <∞, ∀i;

(ii) qij ≥ 0, ∀ i 6= j;

(iii)
∑

j∈I qij = 0, ∀i.

(2.7)

In the above,qij is the rate of transitioning fromi to j andqi =
∑

i6=j qij is the rate of

leaving statei. It is known that a matrix Q is aQ-matrix onS if and only if P(t) = eQt is

a stochastic matrix,∀t ≥ 0 [19]. In particular, the transition probability fromi to j after t

unit of time, the(i, j) element ofP(t), is given by

Pr(Xt = j|X0 = i) = pt
ij =

[
eQt
]
ij

.
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E. Influence in Probabilistic Boolean Networks

Influence is a method for quantifying the relative impact of genes on other genes within the

context of PBNs [5]. The influenceIj(f) of genexj on the functionf , with respect to the

probability distributionD(x), x ∈ {0, 1}n, is defined as

Ij(f) = ED

[
∂f(x)

∂xj

]
, (2.8)

whereED[·] is the expectation operator with respect to the distributionD, ∂f(x)
∂xj

= f(x(j,0))⊕

f(x(j,1)) is the partial derivative of the Boolean functionf , the symbol⊕ is addition modulo

2 (exclusive OR), andx(j,k) = (x1, ..., xj−1, k, xj+1, ..., xn) for k ∈ {0, 1}. In other words,

(2.8) gives the influence as the probability (under the distribution D(x)) that a toggle of

the jth variable changes the value of the function. In the contextof PBNs, the influence

of genexk on genexi is given byIk(xi) =
∑l(i)

j=1 Ik(f
(i)
j ) · p

(i)
j where{p(i)

j }
l(i)
j=1 are the

selection probabilities of the predictor functions of genei andl(i) represents the number of

predictor functions of genei [5]. To quantify the long-run influence,D(x) is the stationary

distribution of the PBN.

F. Biological Data

In the theoretical frameworks we developed, we consider twogene regulatory networks that

have been derived from biological data. In the following, these two networks are introduced

in more details.

1. Melanoma Gene Regulatory Network

The steady-state data was collected in a profiling study of metastatic melanoma in which

the abundance of messenger RNA for the gene WNT5A was found tobe highly discrimi-

nating between cells with properties typically associatedwith high metastatic competence
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versus those with low metastatic competence [7]. These findings were validated and ex-

panded in a second study, in which experimentally increasing the levels of the WNT5A

protein secreted by a melanoma cell line via genetic engineering methods directly altered

the metastatic competence of that cell as measured by the standard in vitro assays for metas-

tasis [20]. A further finding of interest in this study was that an intervention that blocked the

WNT5A protein from activating its receptor, the use of an antibody that binds the WNT5A

protein, can substantially reduce WNT5A’s ability to induce a metastatic phenotype. This

suggests control based on intervention that alters the contribution of the WNT5A gene to

biological regulation. Disruption of this influence can potentially reduce the chance of a

melanoma metastasizing, a desirable outcome. Ten genes, including the WNT5A gene,

were selected in [21] based on the predictive relationshipsamong 587 genes: WNT5A,

pirin, S100P, RET1, MMP3, PHOC, MART1, HADHB, Synuclein, and STC3. We apply

the design procedure proposed in [22] to generate a PBN possessing four constituent BNs.

The method of [22] generates BNs with given attractor structures and the overall PBN is

designed so that the data points, which are assumed to come from the steady-state dis-

tribution of the network, are attractors in the designed PBN. This approach is reasonable

because our interest is in controlling the long-run behavior of the network. The control

objective for this 10-gene network is to down-regulate the WNT5A gene, because WNT5A

ceasing to be down-regulated is strongly predictive of the onset of metastasis. A number

of other control studies based on the same data have aimed to down-regulate the WNT5A

gene. This model has been used because the relation of WNT5A to metastasis is well es-

tablished and the binary nature of the up or down regulation suits a binary model. A state

is desirable if WNT5A = 0 and undesirable if WNT5A = 1. In this example, the use of

the state WNT5A has resulted from biological knowledge relating the state of WNT5A to

metastasis in melanoma tumors.
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2. Mammalian Cell-Cycle Network

In this section, we construct a PBN that is a probabilistic version of the Boolean model for

the mammalian cell cycle regulation proposed in [23]. This PBN postulates the mammalian

cell cycle with a mutated phenotype.

During the late 1970s and early 1980s, yeast geneticists identified the cell-cycle genes

encoding for new classes of molecules, including the cyclins (so-called because of their

cyclic pattern of activation) and their cyclin dependent kinases (cdk) partners [23]. Our

model is rooted in the work of Faure et al., who have recently derived and analyzed the

Boolean functions of the mammalian cell cycle [23]. The authors have been able to quan-

titatively reproduce the main known features of the wild-type biological system, as well as

the consequences of several types of mutations.

Mammalian cell division is tightly controlled. In a growingmammal, the cell division

should coordinate with the overall growth of the organism. This coordination is controlled

via extra-cellular signals. These signals indicate whether a cell should divide or remain in

a resting state. The positive signals, or growth factors, instigate the activation of Cyclin D

(CycD) in the cell.

The key genes in this model are CycD, retinoblastoma (Rb), and p27. Rb is a tumor-

suppressor gene. This gene is expressed in the absence of thecyclins, which inhibits the Rb

by phosphorylation. Whenever p27 is present, Rb can be expressed even in the presence of

CycE or CycA. Gene p27 is active in the absence of the cyclins.Whenever p27 is present,

it blocks the action of CycE or CycA. Hence, it stops the cell cycle. Table I summarizes

the Boolean functions of the wild-type cell cycle network.

The preceding explanation represents the wild-type cell-cycle model. Following one

of the proposed mutations in [23], we assume p27 is mutated and its logical rule is always

zero (OFF). In this cancerous scenario, p27 can never be activated. As we mentioned
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earlier, whenever p27 is present, Rb can be expressed even inthe presence of CycE or

CycA. For the mutated cell cycle network, p27 is always zero and Rb cannot be expressed

in a case where CycD is not present but CycE or CycA are active [23]. This mutation

introduces a situation where both CycD and Rb might be inactive. As a result, in this

mutated phenotype, the cell cycles in the absence of any growth factor. In other words, we

consider the logical states in which both Rb and CycD are down-regulated as ‘undesirable

states’, when p27 is mutated. Table II summarizes the mutated Boolean functions.

The Boolean functions in Table II are used to construct the PBN model for the cell

cycle. To this end, we assume that the extra-cellular signalto the cell-cycle model is a

latent variable. The growth factor is not part of the cell andits value is determined by the

surrounding cells. The expression of CycD changes independently of the cell’s content

and reflects the state of the growth factor. Depending on the expression status of CycD,

we obtain two constituent Boolean networks for the PBN. The first constituent Boolean

network is determined from Table II when the value of CycD is equal to zero. Similarly,

the second constituent Boolean network is determined by setting the variable of CycD to

one. Here, we set the perturbation probabilities equal to10−3.

According to Table II, the cell-cycle PBN consists of nine genes: CycD, Rb, E2F,

CycE, CycA, Cdc20, Cdh1, UbcH10, and CycB. The above order of genes is used in the

binary representation of the logical states, with CycD as the most significant bit and CycB

as the least significant bit. This order of genes in the logical states facilitates the presenta-

tion of our results and does not affect the computed control policies.

Having CycD and Rb as the most significant genes, we assume that the down regula-

tions of the CycD and Rb, i.e. the cell growth in the absence ofgrowth factors, is unde-

sirable. Consequently, the state-space is partitioned into undesirable states and desirable

states. Application of methods developed for control of gene regulatory networks requires

the designation of desirable and undesirable states, and this depends upon the existence of
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Table I. Boolean functions of normal mammalian cell cycle.
Product Predictors

CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ CycD ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB) ∨ (p27 ∧Rb ∧ CycB)

CycE (E2F ∧ Rb)

CycA (E2F ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10)) ∨ (CycA ∧Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))

p27 (CycD ∧ CycE ∧ CycA ∧ CycB) ∨ (p27 ∧ (CycE ∧ CycA) ∧ CycB ∧ CycD)

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

UbcH10 (Cdh1) ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)

relevant biological knowledge. In the cell-cycle example when p27 is mutated, we consider

the logical states in which both Rb and CycD are down-regulated as undesirable states. We

assume that the cost of the logical states with down-regulated Rb and CycD is higher than

that for the states in which these two genes are not simultaneously down-regulated.

Table II. Mutated Boolean functions of mammalian cell cycle.
Product Predictors

CycD Input

Rb (CycD ∧ CycE ∧ CycA ∧ CycB)

E2F (Rb ∧ CycA ∧ CycB)

CycE (E2F ∧Rb)

CycA (E2F ∧Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10)) ∨ (CycA ∧ Rb ∧ Cdc20 ∧ (Cdh1 ∧ UbcH10))

Cdc20 CycB

Cdh1 (CycA ∧ CycB) ∨ (Cdc20)

UbcH10 (Cdh1) ∨ (Cdh1 ∧ UbcH10 ∧ (Cdc20 ∨ CycA ∨ CycB))

CycB (Cdc20 ∧ Cdh1)
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CHAPTER III

BOOLEAN NETWORKS AND BIDIRECTIONAL GENE RELATIONSHIPS∗

Various models have been proposed for gene regulatory networks [24] and great efforts

have been made on the inference of these networks from gene expression data. Perhaps the

key issue concerning network inference is the large space ofnetworks from which a model

must be selected in relation to the amount of data typically available. This dimension-

ality problem drives inference in two directions: (1) towards coarse-grained models that

require less data for inference [25], and (2) application ofbiological constraints [26]. This

Chapter concerns the inference of Boolean networks. For these networks, several inference

methods have been proposed [27, 28, 5, 29]. These methods generally assume time-course

data; however, here we are concerned with inference from time-independent data, the kind

of data one typically obtains from microarray studies involving human subjects. In this

context, it is generally assumed that the data come from the steady state of the network.

The long-run behavior of a Boolean network is characterizedby its attractor cycles.

The attractor cycles in Boolean networks modeling biological systems are typically as-

sociated with phenotypes and tend to be short [17, 30, 3], with biological state stability

contributing to singleton attractors [31]. Singleton attractors have been associated with

phenotypes such as cell proliferation and apoptosis [32]. For this reason, in the absence of

time-course data to indicate the contrary, it is sometimes assumed that the data states rep-

resent singleton attractors. This assumption is enhanced when a Hamming-distance filter is

applied to the data states to act as a noise filter, because thefilter results in a small number

of data states, each differing significantly among the components of the states [33].

∗ Reprinted with permission from “Inference of Boolean Networks under Constraint
on Bidirectional Gene Relationships” by G. Vahedi, I. Ivanov, E. R. Dougherty, 2009,IET
Systems Biology, 3, 191-202, Copyright 2009 by IET Systems Biology.
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One method proposed for inference from steady-state data involves the coefficient

of determination (CoD) [34]. Given a set of predictor variables and a target variable to

be predicted, the CoD measures the relative decrease in prediction error when using the

predictor variables in comparison to using the best estimate of the target in the absence

of knowledge concerning other variables. The CoD was the first method used to infer

probabilistic Boolean networks (PBNs) [5].

A fundamental issue is that, without time-course data, the CoD cannot provide infor-

mation on the direction of prediction. This problem manifests itself in the situation where,

if genea is a high CoD predictor of geneb, then geneb is typically a high CoD predictor

of genea. We refer to this situation as abidirectional relationshipbetween genesa and

b. The presence of bidirectional relationships affects the attractor structure of a Boolean

network, and this impacts the inference process with the result being that the inferred net-

work possesses spurious attractor cycles. The problem is sufficiently troublesome that it

has suppressed the use of CoD inference methods. The inference methods that have taken

its place are primarily based on the attractor structure, with either secondary or no concern

for the predictive relations between individual genes in the network [22, 33]. This kind of

approach is natural when attractor structure is of primary interest.

In this chapter, we will accomplish both goals in network design: preservation of at-

tractor structure and connectivity based on strong gene prediction. To accomplish this aim,

we investigate the bidirectional effects for Boolean networks with connectivityK = 1

or K = 2, the connectivity of a Boolean network being the maximum number of vari-

ables allowed for a Boolean function. As a consequence of ouranalysis, we propose a

novel constrained CoD-based inference algorithm that performs significantly better than

unconstrained CoD inference relative to the attractor structure. We note that the number of

attractor cycles and their average lengths in random Boolean networks has recently been

addressed for the case of connectivityK = 1, and it is clear that even this seemingly simple
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structure presents challenge for both analytical and computational approaches [35].

We will begin by defining the bidirectional relationship among two genes of a net-

work. We then investigate the effect of such relationships on the attractor structure on

specific classes of Boolean networks. After discovering howthe bidirectional relation-

ships influence the attractor structure of a Boolean network, and providing estimates of

encountering such relationships and particular attractorstructures, we discuss CoD-based

inference. We then propose a novel algorithm that mitigatesbidirectional relationships and

we provide simulation results that support our analysis. Lastly, we present an application

of the proposed algorithm to melanoma gene expression data and compare its performance

to unconstrained CoD inference procedures.

A. Bidirectional Relationships

Our particular interest is with how genes that are predictors of each other affect the attractor

structure. As noted in the Introduction of this Chapter, when such pairs arise on account

of network inference, they can lead to the existence of certain attractor structures. This

motivates the following definition.

Definition 1 The genesxi andxj in a BN are said to have abidirectional relationship iff

xi ∈Wj andxj ∈Wi. The relationship is said to be ofconnectivity n if |Wi| = |Wj| = n.

To say thatxi andxj have a bidirectional relationship of connectivityn is to say that

they have a bidirectional relationship and each has connectivity n. Alternatively, one might

have defined the relationship to be of connectivityn if max{|Wi|, |Wj|} = n, or to be of

connectivity(m, n) if |Wi| = m and |Wj | = n, the rationale behind the first alternative

being to bound the complexity of the predictor relations andthe second being to specify

directly the predictor-set cardinalities. We have defined order n as we have because it
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characterizes the most complex case when one of the predictor sets has cardinalityn. It is

this maximum complexity that interests us.

We will investigate the effect of bidirectionality on the attractor structure, provide es-

timates of how often such bidirectional relationships happen, and derive a lower bound es-

timate for the probability of a BN with such relationships having at least one non-singleton

attractor cycle. We first consider connectivity1 and show that there is at least one non-

singleton attractor cycle in the BN. Next we consider connectivity 2. There we will see

that even such a minimal increase of the cardinality of the predictor sets complicates the

analysis of the attractor structure.

1. Connectivity-1 Didirectionality

Proposition 4 If there are two genes in a BN having a bidirectional relationship of con-

nectivity 1, then the BN has at least one non-singleton attractor cycle.

Proof

Without loss of generality assume the two genes arex1 andx2. There are four possible

transition pairs of predictor functions for these genes: (1) f1 ≡ x2 andf2 ≡ x1; (2) f1 ≡ x2

andf2 ≡ x1; (3) f1 ≡ x2 andf2 ≡ x1; and (4)f1 ≡ x2 andf2 ≡ x1, where the overbar

denotes negation.

Consider the first possible pair:f1 ≡ x2 andf2 ≡ x1. If the transitions start from

the point01y, then after finitely many transitions, the BN will enter an attractor01x0 or

10y0, wherey, y0 andx0 denote vectors of the remaining gene values. Assume that thefirst

visited attractor state is01x0 (the other possibility10y0 can be considered in the same way).

Becausex1 andx2 depend only on each other and01x0 is an attractor state, from this point

on the network must follow a transition sequence of the form01x0,10x1,01x2,..., 01xk,

wherexk = x0 andxr 6= x0 for 1 ≤ r < k. Thus, the sequence forms an attractor cycle
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of lengthk = 2m > 1. It is straightforward to show that similar cycles are formed when

f1 ≡ x2 andf2 ≡ x1.

Next, we consider the predictor functions pair:f1 ≡ x2 andf2 ≡ x1. If the transitions

start from any point of the formx1x2y, then after finitely many transitions the BN will enter

an attractor state that is of one of the following forms:00x0, 01y0, 10z0 or 11u0. Here

we consider the case when the first visited attractor state is00x0 (the other possibilities

can be considered similarly). Becausex1 andx2 depend only on each other and00x0 is

an attractor state, from this point on the network must follow a transition sequence of the

form, 00x0,01x1,11x2,10x3, . . . , 00xk, wherexk= x0 andxr 6= x0 for 1 ≤ r < k. Thus,

the sequence forms an attractor cycle of lengthk = 4m > 1. It is straightforward to show

that similar cycles are formed whenf1 ≡ x2 andf2 ≡ x1. �

2. Connectivity-2 Bidirectionality

Supposex1 andx2 have a bidirectional relationship of order2 with W1 = {x2, x4} and

W2 = {x1, x3}. Because all predictor variables are essential, the following conditions

cannot occur (refer to the truth tables forf1 andf2):

1. (a1 = c1 andb1 = d1) or (a2 = c2 andb2 = d2)

2. (a1 = b1 andc1 = d1) or (a2 = b2 andc2 = d2)

Table III. Truth tables forf1 andf2.
x2 x3 f1

0 0 a1

0 1 b1

1 0 c1

1 1 d1

x1 x4 f2

0 0 a2

0 1 b2

1 0 c2

1 1 d2

Moreover, any combination off1 andf2 belongs to at least one of the following (not

mutually exclusive) classes:
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F1: a1 = c1 anda2 = c2

F2: a1 = c1 andb2 = d2

F3: b1 = d1 anda2 = c2

F4: b1 = d1 andb2 = d2

Proposition 5 If a BN possesses a pair of genes that have a bidirectional relastionship of

connectivity2, then at least1
8

of the states in its state space cannot be singleton attractors

of the network.

Proof

Without loss of generality, supposex1 andx2 have a bidirectional relationship of order

2 with W1 = {x2, x4} andW2 = {x1, x3}. To prove the proposition, we consider the

following four cases: (a)(f1, f2) ∈ F1 andx3x4 = 00; (b) (f1, f2) ∈ F2 andx3x4 = 01;

(c) (f1, f2) ∈ F3 andx3x4 = 10; and (d)(f1, f2) ∈ F4 and the states of the BN were

x3x4 = 11.

For case (a), first consider(f1, f2) ∈ F1 such thata1 = c1 = 0 anda2 = c2 = 0.

Examination of the truth tables off1 andf2, Table III, wherea1 = c1 = 0 anda2 = c2 = 0,

together with the assumed constant values ofx3 andx4, shows that any state withx3x4 = 00

andx1 = x2 cannot be a singleton attractor. A simple counting argumentshows that the

states wherex3x4 = 00 andx1 = x2 account for exactly1/8 of all of the states in state

space. Reasoning in the same way, one can check that when(f1, f2) ∈ F1 with a1 = c1 = 1

anda2 = c2 = 1, the states withx3x4 = 00 andx1 = x2 cannot be singleton attractors,

and that there are exactly1/8 such states in the state space. To complete the analysis of

case (a), consider the situation where(f1, f2) ∈ F1 with a1 = c1, a2 = c2, anda1 = a2. In

this case, examination of the the truth tables off1 andf2 shows that all of the states where
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x3x4 = 00 cannot be singleton attractors. It is straightforward to count that exactly1/4 of

the states in the state space are of this type.

Using similar arguments and symmetry considerations, one can show that the propo-

sition holds for cases (b), (c) and (d).�

B. Algorithm

1. CoD-based Inference of BNs

Thecoefficient of determination(CoD) is a general non-linear statistical method to select a

set of predictors for a given gene. It measures the degree to which the transcriptional levels

of an observed (predictor) gene set can be used to improve theprediction of the transcrip-

tional level of a target gene relative to the best predictionin the absence of observations. If

xi, Wi, andfi are the target gene, the predictor set, and the predictor function for the target

gene, respectively, then the CoD for the target genexi is given by

θi =
ε0 − ε(xi, fi(Wi))

ε0

whereε0 is the error of the best estimate ofxi in the absence of any conditional variables

andε(xi, fi(Wi)) is the prediction error of the target gene according to the observations of

the predictor setWi [34]. For minimum mean-square error estimation,ε0 is the error of the

prediction ofxi with its mean.

The previous propositions explain why very often the CoD-inferred BNs possess spu-

rious non-singleton attractors. We propose an algorithm tocorrect this undesirable behav-

ior. We make the typical assumption that the data come from the steady state, and we apply

the constraint that each data point is a singleton attractor.

Since the predictor function of each target gene is estimated from the steady-state data,

not time-series data, each gene is a perfect estimator of itself (CoD equal to 1). To eliminate
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this trivial case, no gene can be a member of its own predictorset. Therefore, forn genes,

for each target gene, there are
∑ki

m=1 Cn−1
m possible combinations forWi, whereki is the

maximum cardinality ofWi.

We employ a method calledfull-logic to estimate the predictor function and conse-

quently the CoD for all possible combinations of predictor sets of each target gene. The

CoD estimates a predictor function from the highest occurrence frequency of the target

gene based on the values of all of the possible sets of predictor genes in the data set. More

details regarding the full-logic method can be found in [36]. Note that there may be more

than one high CoD predictor set for a target gene.

2. Singleton Attractor CoD Inference Algorithm

Based upon our analysis of bidirectional relationships, inparticular, their effect on the

attractor structure of a BN, we have formulated an algorithmthat limits the number of such

bidirectional relationships when predictor sets are chosen using the CoD method.

The algorithm’s input is the binary gene expression data. The outcome of the algo-

rithm is a BN with no non-singleton attractors. The following parameters are set in advance:

(1) a threshold,TCoD, for the CoD (TCoD = 0.7 in our study); (2) the maximum number,

MBR, of bidirectional relationships allowed (keeping in mind that, as we have shown, there

is a substantial probability of there being at least two genes with bidirectional relationships

in an arbitrary BN,MBR = 3 in our study); and (3) the minimum number,mA, of points

in the sample that appear as singleton attractors in the inferred BN (mA = 3 in our study).

Any predictor function that exceedsTCoD is called ahigh CoD predictor function. We now

describe the Singleton Attractor CoD (SA-CoD) algorithm.

Singleton Attractor CoD (SA-CoD) Inference Algorithm

1. Estimate the CoD andfi for all the combinations of predictor setsWi, for i =
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1, 2, . . . , n.

2. Save allWi andfi with CoD exceedingTCoD. For each target gene, save the high

CoD predictor sets and their associated predictor functions into two columns. The

length,Ci, i = 1, . . . , n, of both columns, depends onTCoD.

3. Form a BN fromWi andfi in step 2 such that the bidirectional relationships does not

exceedMBR. The algorithm never allows bidirectional relationships for connectivity

1 since this case guarantees the formation of non-singletonattractor cycles.

4. If there is a non-singleton attractor in the BN, then go to step 3; otherwise, continue.

5. If the number of data points appearing as singleton attractors in the BN is less than

mA, then go to step 3; otherwise, STOP.

The steps of the algorithm accomplish certain goals: step 3 limits bidirectional rela-

tionships, thereby limiting spurious attractor cycles resulting from bidirectional relation-

ships; step 4 checks to see if any non-singleton attractor cycles have “slipped through”

step 2; and step 5 insures that some minimal number of data points appears as singleton

attractors in the inferred BN. The algorithm does not guarantee that the inferred BN will

not contain singleton attractors that are not data points, but it does guarantee that there will

be no non-singleton attractors. It is spurious non-singleton attractors that are ubiquitous in

unconstrained CoD design. The algorithm does not guaranteethat all data points will be

singleton attractors, although it guarantees a minimum number,mA, of these.

The algorithm can be run a number of times to produce a number of BNs, with each

data point appearing in one or more BNs as a singleton attractor. This is somewhat similar

to the design of PBNs under the requirement of contextual data consistency [33], where

every data point must appear as a singleton attractor in at least one constituent BN of the

PBN. There are, however, two key differences. First the method of [33] does not involve
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the CoD, but instead involves a constrained optimization relative to the data distribution in

the sample, and second, the number of BNs is determined by thedata and it is theoretically

certain that each data point will appear in at least one of theBNs as a singleton attractor.

Nonetheless, the analogy is useful because the PBN design method first proposed in [5] ap-

plied CoD inference without constraint and then took combinations of high CoD predictor

functions to construct the BNs forming the PBN, with the threshold ultimately determining

the number of constituent BNs.

Regarding algorithm complexity, the total number of BNs that can be generated from

high CoD predictor functions isN =
∏n

i=1 Ci, wheren is the total number of genes andCi

is the number of high CoD predictor functions. Thus, the search space hasN members. In

worst-case scenario, step 3 will be repeatedN times.

C. Results and Discussion

1. Comparison of SA-CoD Algorithm with Unconstrained CoD Design

We have applied the preceding BN design procedure using gene-expression profiles from

a study of 31 malignant melanoma samples explained in Chapter 1. The7 genes used for

the model are pirin, WNT5A, S100P, RET1, MART1, HADHB and STC2 (this being their

order in the state space) and they were chosen from a set of587 genes from the data-set

that have been subjected to an analysis of their ability to cross predict each other’s state in

a multivariate setting [21]. Table IV gives the 7-gene profiles for the 18 distinct data points

and their corresponding frequencies. The assumption is that the data points correspond to

the steady state of the underlying gene regulatory system.

The SA-CoD algorithm is applied 500 times to the gene expression data to generate

500 BNs. Based on the specifications of the algorithm, the BNspossess no non-singleton

attractors and there are at least three data points as singleton attractors in each of them. We
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Fig. 1. Light histogram shows the proportion of the steady-state mass outside the data states

in 1000 PBNs when the SA-CoD algorithm is used. Dark histogram shows the pro-

portion of the steady-state mass outside the data states in 1000 PBNs when the un-

constrained CoD method is used.

randomly choose 10 BNs from the pool of 500 BNs. Setting the perturbation probability

equal to0.01, we generate a PBN from these 10 BNs. The PBN is run sufficiently long

so that its steady-state distribution can be estimated, andthe proportion of the steady-state

mass lying outside the data states is computed. This procedure is repeated 1000 times to

generate 1000 PBNs, in each case the proportion of the steady-state mass outside the data

states being computed. These 1000 proportions are used to form the light histogram in

Figure 1. The mass of this histogram is concentrated very close to 0.

To compare the performance of the SA-CoD algorithm with the unconstrained CoD

method, we repeat the same experiment with the predictor sets and predictor functions with

high CoD chosen without the constraint of the SA-CoD algorithm. Proceeding without

constraint, 500 BNs are generated and 1000 PBNs composed of 10 BNs randomly chosen

from the 500 are generated and run into their steady states. The dark histogram in Figure 1

is formed from the proportions of mass of the 1000 steady-state distributions lying outside
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the data states. These are well dispersed between 0 and 0.35.By eliminating spurious

attractors, the SA-CoD algorithm puts a much higher concentration of the steady-state mass

on the data points.

A key issue for PBN design is to compose a PBN with enough BNs sothat each data

state appears as an attractor in the PBN (that is, appears as aan attractor in one of the

constituent BNs) but not to include so many BNs that there is alarge number of spurious

attractors. To compare the SA-CoD algorithm with unconstrained design in this regard,

in the next experiment we compare the number of data points appearing as attractors with

the number of attractors that are not data points in a collection of n BNs generated by the

either the SA-CoD algorithm or unconstrained CoD design. Let D be the number of distinct

points in the data,N be the number of data points appearing as attractors in the generated

BNs, andM be the number of non-data-point attractors appearing in thegenerated BNs. A

reasonable measure of performance for the desired comparison is:

R = a(D −N) + (1− a)M

where0 ≤ a ≤ 1, a being chosen depending on what we want to emphasize. SmallerR

means better performance.

SinceN andM are functions of the numbern of BNs, R is a function ofn. We

computeR(a, n) for n = 1, 2, ..., 80 and0 ≤ a ≤ 1 by takingR(a, n) to be the average

of 1000 trials of computation ofR, each trial involving randomly choosingn BNs from

a pool of500 designed BNs. Figure 2(a) shows the surface graph ofR(a, n) when using

the SA-CoD algorithm. The dots on the surface indicate the minimum value ofR(a, n)

for a given value ofa, the value ofn for the minimum being the optimal number of BNs

relative to the measureR. For smalla, the emphasis is on avoiding spurious attractors and

hence the optimumn is smaller. For largea, the emphasis is on recovering data points as
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attractors and hence the optimumn is larger.

The differences between Figure 2(a) and Figure 2(b) demonstrate the benefits of the

SA-CoD algorithm. First, we should point out the different scales of the graphs. The values

of R for unconstrained CoD design tend to greatly exceed those for the SA-CoD algorithm.

Second, in Figure 2(b), the optimal number of BNs is 1 for all but very large values of

a. This observation validates the point that, if we are concerned about spurious attractors,

then unconstrained CoD design performs poorly.



34

Table IV. Expression profiles for melanoma.

Profile# Gene Count

pirin WNT5A S100P RET1 MART1 HADHB STC2

1 1 0 0 1 1 1 1 2

2 1 1 0 1 0 0 0 1

3 1 0 1 0 1 1 1 1

4 1 0 0 1 1 1 0 2

5 0 1 0 1 0 0 1 1

6 1 0 1 1 1 1 1 1

7 0 1 0 1 1 1 1 1

8 0 1 0 0 0 0 1 4

9 0 0 0 1 0 0 1 1

10 0 1 1 0 0 0 1 1

11 1 0 1 0 1 0 0 1

12 1 0 1 1 1 1 0 2

13 1 0 1 0 1 1 0 8

14 0 0 1 0 0 0 0 1

15 0 0 1 0 1 1 0 1

16 0 1 0 1 0 0 0 1

17 0 0 1 1 1 0 0 1

18 0 0 1 0 1 0 0 1
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(a)

(b)

Fig. 2. Value ofR(a,n) for a from 0 to 1 andn from 1 to 80 (a) SA-CoD algorithm, (b)

unconstrained CoD method.
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CHAPTER IV

TIMING IN PROBABILISTIC BOOLEAN NETWORKS

A major concern of translational genomics is to use the knowledge of gene regulation to

design therapeutic strategies. Gene network modeling facilitates this effort by producing

dynamical systems to serve as the mathematical basis for thederivation of optimal interven-

tion strategies over time. To date, intervention has mainlyfocused on the external control

of probabilistic Boolean networks (PBNs) via the associated discrete-time discrete-space

Markov processes [11]. Given the accuracy of the model, there are two practical impedi-

ments to PBN-based intervention, both related to temporal issues. One of these concerns

the lack of information regarding the sojourn time in any given state and the other concerns

the practical problem of sampling. The first issue, the effect of sojourn time on the control,

has been studied in [37]. In this work, we focus on the effect of discrete sampling.

While the physical evolution of the biological gene networkoccurs over continuous

time, the PBN records only state transitions and contains noinformation on the time be-

tween transitions. The PBN model inherits this property from the original Boolean model,

from which it was generalized [3]. Hence, the problem can be explained in the frame-

work of the Boolean model. Fig. 3 shows the directed graph of a3-gene Boolean net-

work, where each 3-gene state corresponds to a gene-activity profile (GAP). Fig. 4 shows

two continuous-time realizations that are equivalent fromthe perspective of the model of

Fig. 3. In both Fig. 4(a) and (b), the initial state is “100”. We observe the evolution

“100”→“010”→“001”, at which point there are no other changes because “001” is an at-

tractor of the network. While equivalent from the perspective of the Boolean model, from

the perspective of continuous time, the realizations of Fig. 4 (a) and (b) are not the same.

For instance, in the second realization, the sojourn time instate “010” is much longer than

in the first realization. If we are only interested in tracking the transitions, this may be of
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no concern. On the other hand, suppose we are considering intervention and penalizing

undesirable states. Then, if “010” is an undesirable state,the penalty should be greater in

the second realization; that is, the penalty needs to consider the sojourn time in a state. This

problem has been addressed in the framework of asynchronousPBNs by considering the

process to be defined over continuous time and treating it as asemi-Markov process [37].

000

010101

111

011 001

100

110

Fig. 3. Presentation of a directed graph for an arbitrary 3-gene Boolean network.

Whether one considers the original synchronous PBNs or asynchronous PBNs, imple-

mentation of the intervention policy requires nearly continuous observation because pre-

cise application requires the observation of all transitions. However, this is not generally

the case in medical applications; rather, as with many engineering problems, the process is

sampled at discrete time intervals and a decision to intervene or not must be made at each

sample point. Since the process is not observed outside the sample points, it is impossible

to know if, or how many, transitions have taken place betweenconsecutive sample points.

In Fig. 4, the discrete-time process{Yn, n ≥ 0} given byYn = Ztn is called the jump

chain of the continuous-time process{Zt, t ≥ 0}. Both synchronous and asynchronous

PBNs deal with the jump chain under the assumption that the jumps (i.e. t0, t1, . . . ) are

observed. The jump chains corresponding to realizations ofFigs. 4(a) and (b) are equiv-

alent. Fig. 4 also shows the sampled processes corresponding to each realization. The

sampled process corresponding to Fig. 4(a) is “100”→“100”→“001”→“001”→“001”; for

Fig. 4(b), it is “010”→“010” →“001”→“001”→“001”. On account of sampling, “010” is
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Fig. 4. Two examples of temporal gene activity profiles (GAP)for Fig. 3. The dash-dot

vertical lines represent the sampling times.

missed in Fig. 4(a) and “100” is missed in Fig. 4(b). Whereas in a standard Boolean

network self-transitions only occur for singleton attractors, the sampled process has self-

transitions. Moreover, sojourn time is implicitly contained in the sampled process on ac-

count of these self-transitions. As with any sampling procedure, the sampling rate is cru-

cial. The faster the rate, the less transitions will be missed and the more accurate will be the

sojourn time estimates; the slower the rate, the more transitions will be missed and the less

accurate will be the sojourn time estimates. In any event, inthe presence of sampling, nei-

ther the synchronous or asynchronous PBN models will adequately reflect the dynamics of

the network from the perspective of the decision process required for intervention. In this

chapter, we propose a framework for gene regulatory networks, a sampling-rate-dependent

PBN (SRD-PBN), that is capable of incorporating the sampling rate of temporal profile.

Below, we mathematically define SRD-PBNs and expose a methodology to obtain optimal

intervention strategies for such systems. We introduce SRD-PBNs in Section A. In Sec-

tion B, we derive an optimal policy for SRD-PBNs with variousproperties for synthetic

networks. We also consider a network obtained from melanomagene-expression data.



39

A. Sampling-Rate-Dependent Probabilistic Boolean Networks

A context-sensitive PBN disregards the information about the sojourn time in states present

in temporal data. From another point of view, a context-sensitive PBN models the jump

chain corresponding to the continuous-time process of interest. This means that in an ar-

bitrary temporal profile such as Fig. 5, the observer can onlyapply intervention at instants

t0, t1, . . . However, in medical applications, it is not known in advancewhen a transition

(i.e. a jump) will occur. As such, a model based on applying treatment when a transition

occurs may not conform with the reality and limitations of patient treatment. Time samples

and state changes are unlikely to coincide perfectly and an intervention strategy must focus

on the former not the latter.

Fig. 5. An example of temporal gene activity profiles

Our objective in this work is to propose a discrete-time discrete-space model based

on context-sensitive PBNs such that (i) it can embody the sojourn time of states into the

network dynamics, (ii) it allows us to incorporate the sampling rate into the network’s dy-

namics. A transition probability matrix must be derived forthe state-space of a SRD-PBN

under specific assumptions. Similar to other Markovian models, the transition probability
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matrix derived for an SRD-PBN is sufficient to describe its dynamics. The task of find-

ing the most effective intervention strategy can then be formulated as a sequential decision

making problem via the associated transition probability matrix.

Let us first briefly introduce the underlying structure of an SRD-PBN. The states of the

SRD-PBN take values inS, as we defined for a context-sensitive PBN in Chapter II. Logi-

cal rules of different contexts determine the probability of jumps among GAPs. To coarsely

capture the rate of change in the underlying biological system, the proposed framework re-

quires two parameters, which are either known a priori or canbe estimated from temporal

data. These two parameters are the maximum rate of change among GAPs and the maxi-

mum rate of change among contexts. The rate of change betweenany two states, i.e. the

average number of transitions between these two states in every unit of time, depends on

the probability of jumps between these two states, the sampling period, the maximum rate

of change among GAPs, and the maximum rate of change among contexts. Employing

these parameters, we construct aQ-matrix on the state-spaceS of the SRD-PBN. This ma-

trix is the generator of a continuous-time Markov chain. We are interested in the state of

the continuous process only at discrete observation instants. The memoryless property of

the continuous-time Markov chain allows us to model the dynamics of the sampled process

as a discrete-time Markov chain. The transition probability matrix of this Markov chain is

the transition probability matrix of the SRD-PBN. Below, wedefine the SRD-PBN in more

details.

Given Boolean functions of contextc, the probability of jumping from state(c, x) to

state(c, x′) is

P(c,x),(c,x′) = pD(x,x′)(1− p)n−D(x,x′) + (1− p)n111 (fcfcfc(x) = x′) , (4.1)

wherep is the perturbation probability in the Boolean network. TheHamming distance be-
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tween GAPsx andx′ is denoted byD(x, x′). We use111(·) to denote the indicator function.

The successor state of GAPx according to the Boolean functions of contextc is denoted

by fcfcfc(x). The first part of (4.1) corresponds to the transition probability due to gene per-

turbation. The probability of transitioning between GAPsx andx′ based on the selected

contextfcfcfc is presented as the second part of (4.1).

To include timing in our proposed model, given (4.1), we introduce matrixQ which

shows the rate of transitions among states inS. We denote the maximum rate of change

among GAPs byλ and the maximum rate of change among contexts byγ. In practice,λ

can be estimated from temporal data. Knowledge of the ratioλ
γ
, provided by experiments,

would determine the value ofγ. Matrix Q is the generator of a continuous-time Markov

chain. LetQ = (q(c,x),(c′,x′); c, c
′ ∈ {1, . . . , k}, x, x′ ∈ W) denote theQ-matrix of the

continuous-time Markov chain{Z(t), t ≥ 0} whose state-space isS. Elements of theQ-

matrix show the rate of change among states and can be computed in the following manner.

At any updating epoch, there are two independent processes:(i) a process that updates

the GAP in the current context, (ii) a process that updates the context. There is null proba-

bilities for both processes to occur at the same time. For thefirst process, we can compute

the rate of change among GAPsx andx′ in contextc as the product ofλ, the maximum rate

of change between GAPs, times the probability to jump from GAPx to x′, i.e. P(c,x),(c,x′).

For the second process, we can compute the rate of change between contextsc andc′ as the

product ofγ, the maximum rate of change between contexts, times the selection probability

of contextc′. Furthermore, in order to have a validQ-matrix (2.7), all diagonal elements

of Q should be defined such that the sum of elements in each row is zero. Thus, the rate of

change between any two states(c, x) and(c′, x′) in S is defined as
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q(c,x),(c′,x′) =





λP(c,x),(c,x′) if c = c′ andx 6= x′,

γpc′ if c 6= c′ andx = x′,

0 if c 6= c′ andx 6= x′,

−
∑

X 6=x

∑
C 6=c q(c,x),(C,X) if c = c′ andx = x′,

(4.2)

wherepc′ is the selection probability of contextc′.

We definept
ij to be the probability that the continuous-time process{Zt, t ≥ 0} asso-

ciated to the SRD-PBN makes a transition from current statei to successor statej after t

units of time. Using this notation,pt
ij corresponds to(i, j) entry in matrixP(t), where

P(t) = eQt.

From the intervention perspective, we are interested in thedynamical behavior of the

SRD-PBN at discrete observation instants, i.e. everyT units of time. Such a discrete-time

model yields more information for the decision making process. Employing the memo-

ryless property of the continuous-time Markov chain, we obtain a discrete-time Markov

chain by taking samples from the continuous-time Markov chain at everyT units of time.

This discrete-time model describes the dynamics of the SRD-PBN. For a given sampling

periodT , the transition probability matrix that expresses the dynamics of the SRD-PBN is

computed as

P(T ) = eQT , (4.3)

where elements ofQ are defined in (4.2). We note that the transition probabilitymatrix

associated to the SRD-PBN is a function of the sampling period T . Optimal intervention

strategies can then be derived for this SRD-PBN using the corresponding transition proba-

bility matrix.
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Example: To illustrate the details of an SRD-PBN, we produce a simple 3-gene, 2-

context example. Given the logical rules of each constituent Boolean network, one can

draw the directed graphs corresponding to each Boolean network. Fig. 6 shows the di-

rected graphs of the constituent Boolean networks in our simple example. The transition

probability matrix corresponding to the context-sensitive PBN constructed based on these

Boolean networks is shown in Table V. This transition probability matrix is computed fol-

lowing the methodology described in [37]. The switching probability q is chosen to be 0.01

and there exists a gene perturbation probability of 0.01. Itis clear that most of the states

have zero self-transition probabilities. To construct thetransition probability matrix of the

SRD-PBN model, we first selectλ andγ to be 0.1 and 0.05, respectively. The rate matrix

Q is computed based on (4.2). The transition probability matrix of the SRD-PBN corre-

sponding to this matrix Q for sampling period ofT = 2 is computed based on (4.3) and

is shown in Table VI. A similar procedure is repeated forT = 4 and the transition prob-

ability matrix of the SRD-PBN is shown in Table VII. It is evident that the self-transition

probabilities in Tables VI and VII are not zero. These valuesare different forT = 2 and

T = 4. Intuitively, we expect a higher self-transition probability for a smaller sampling

period and a lower self-transition probability for a largersampling period. It can be seen

that self-transition probabilities are larger in Table VI for T = 2 compared to Table VII for

T = 4.

B. Results and Discussion

Our prime goal of modeling gene regulatory networks from temporal gene expression data

is to derive effective intervention strategies and beneficially alter the long-run behavior of

the inferred model. From a practical point of view, at every observation point, this strategy

decides which action should be applied to the underlying biological system. Provided that
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(a) (b)

Fig. 6. Directed graphs of Boolean networks corresponding to the toy example

the model framework captures the dynamics of gene regulatory networks accurately, the

derived intervention strategy would favorably alter the behavior of aberrant cells.

In this section, through numerical studies, we provide supporting evidence for the need

to extend the original PBN framework. In the following simulations, the target gene, the

gene responsible for aberrant behavior of the cell, is chosen to be the most significant gene

in the GAP. We assume the up-regulation of the target gene is undesirable. Consequently,

the state-space is partitioned into desirable states,D, and undesirable states,U . Since our

objective is to down-regulate the target gene, a higher costis assigned to destination states

having an up-regulated target gene. Moreover, for a given status of the target gene for a

destination state, a higher cost is assigned when the control is applied, versus when it is

not. In practice, the cost values will have to mathematically capture the benefits and costs

of intervention and the relative preference of states. These cost values will eventually be

set with the help of physicians in accordance with their clinical judgement. Although this

is not feasible within current medical practice, we do believe that such an approach will



45

Table V. Transition probability matrix of the context-sensitive PBN
0 0.73507 0.0073508 7.425e-005 0.0073508 7.425e-005 7.425e-005 7.5e-007 0 0.24502 0.0024503 2.475e-005 0.0024503 2.475e-005 2.475e-005 2.5e-007

0.0073508 0.72772 7.425e-005 0.0073508 7.425e-005 0.0073508 7.5e-007 7.425e-005 0.0024503 0 2.475e-005 0.0024503 2.475e-005 0.0024503 2.5e-007 0.2426

0.0073508 7.425e-005 0 0.0073508 7.425e-005 0.72773 0.0073508 7.425e-005 0.0024503 0.2426 0 0.0024503 2.475e-005 2.5e-007 0.0024503 2.475e-005

7.425e-005 0.73507 0.0073508 0 7.5e-007 7.425e-005 7.425e-005 0.0073508 2.475e-005 0.0024503 0.0024503 0.24257 2.5e-007 2.475e-005 2.475e-005 0.0024503

0.73507 7.425e-005 7.425e-005 7.5e-007 0 0.0073508 0.0073508 7.425e-005 0.24502 2.475e-005 2.475e-005 2.5e-007 0 0.0024503 0.0024503 2.475e-005

0.7278 0.0073508 7.5e-007 7.425e-005 0.0073508 0 7.425e-005 0.0073508 2.475e-005 0.0024503 2.5e-007 2.475e-005 0.0024503 0 0.2426 0.0024503

7.425e-005 7.5e-007 0.0073508 7.425e-005 0.73507 7.425e-005 0 0.0073508 0.2426 2.5e-007 0.0024503 2.475e-005 0.0024503 2.475e-005 0 0.0024503

0.72773 7.425e-005 7.425e-005 0.0073508 7.425e-005 0.0073508 0.0073508 0 2.5e-007 2.475e-005 0.2426 0.0024503 2.475e-005 0.0024503 0.0024503 0

0 0.24502 0.0024503 2.475e-005 0.0024503 2.475e-005 2.475e-005 2.5e-007 0 0.73507 0.0073508 7.425e-005 0.0073508 7.425e-005 7.425e-005 7.5e-007

0.0024503 0.24257 2.475e-005 0.0024503 2.475e-005 0.0024503 2.5e-007 2.475e-005 0.0073508 0 7.425e-005 0.0073508 7.425e-005 0.0073508 7.5e-007 0.7278

0.0024503 2.475e-005 0 0.0024503 2.475e-005 0.24258 0.0024503 2.475e-005 0.0073508 0.7278 0 0.0073508 7.425e-005 7.5e-007 0.0073508 7.425e-005

2.475e-005 0.24502 0.0024503 0 2.5e-007 2.475e-005 2.475e-005 0.0024503 7.425e-005 0.0073508 0.0073508 0.72772 7.5e-007 7.425e-005 7.425e-005 0.0073508

0.24502 2.475e-005 2.475e-005 2.5e-007 0 0.0024503 0.0024503 2.475e-005 0.73507 7.425e-005 7.425e-005 7.5e-007 0 0.0073508 0.0073508 7.425e-005

0.2426 0.0024503 2.5e-007 2.475e-005 0.0024503 0 2.475e-005 0.0024503 7.425e-005 0.0073508 7.5e-007 7.425e-005 0.0073508 0 0.7278 0.0073508

2.475e-005 2.5e-007 0.0024503 2.475e-005 0.24502 2.475e-005 0 0.0024503 0.7278 7.5e-007 0.0073508 7.425e-005 0.0073508 7.425e-005 0 0.0073508

0.24258 2.475e-005 2.475e-005 0.0024503 2.475e-005 0.0024503 0.0024503 0 7.5e-007 7.425e-005 0.7278 0.0073508 7.425e-005 0.0073508 0.0073508 0

Table VI. Transition probability matrix of SRD-PBN for sampling period T = 2
0.37738 0.29685 0.0025193 0.0008308 0.0022317 0.0014735 4.8756e-005 0.0026109 0.17417 0.11432 0.0040765 0.00044188 0.0010277 0.00048008 0.0001188 0.021425

0.0051341 0.66138 0.0014114 0.0030301 5.637e-005 0.0031601 6.0717e-005 0.0097065 0.0015781 0.23749 0.011406 0.0016716 2.2949e-005 0.0013831 0.0003802 0.062127

0.062988 0.025801 0.37564 0.002299 0.0015365 0.21034 0.003429 0.0019038 0.01262 0.054741 0.17501 0.0013961 0.00037188 0.050619 0.010816 0.010485

0.0018478 0.28873 0.002432 0.38578 2.3813e-005 0.00143934.4532e-005 0.0036407 0.00040847 0.063794 0.00299 0.2356 6.0167e-006 0.00036679 8.8608e-005 0.012803

0.22187 0.079318 0.00072494 0.00015764 0.37664 0.00249820.002244 0.00048444 0.10249 0.031863 0.00084154 8.1732e-005 0.17387 0.0011084 0.0012378 0.0045695

0.21324 0.079173 0.00070957 0.00018836 0.0040734 0.375650.0083255 0.002574 0.060811 0.024153 0.00092305 8.5038e-005 0.0014544 0.17354 0.050526 0.0045683

0.071732 0.017277 0.0024065 6.3607e-005 0.21273 0.0013257 0.376 0.0024078 0.070736 0.014919 0.0015871 4.9862e-0050.051673 0.00034222 0.17372 0.0030368

0.21154 0.077929 0.0089785 0.002416 0.0012851 0.0036983 0.0022689 0.37582 0.051094 0.031437 0.051227 0.0014448 0.00031749 0.001226 0.0013476 0.17797

0.17565 0.12565 0.0024739 0.00039997 0.0010368 0.00074174 6.7046e-005 0.010044 0.37689 0.22611 0.014053 0.00099915 0.0022213 0.00084704 0.00032511 0.062497

0.011417 0.23929 0.0098272 0.001504 8.64e-005 0.0027633 0.00034266 0.050829 0.0039058 0.39764 0.060426 0.003911 5.5836e-005 0.0030169 0.001496 0.21348

0.012655 0.064714 0.17491 0.0014051 0.00035111 0.050907 0.0011899 0.0099297 0.0050204 0.21462 0.38697 0.0038826 0.00010197 0.009037 0.003685 0.060622

0.0004758 0.076766 0.0013999 0.23545 6.5807e-006 0.00040455 2.2788e-005 0.0015328 0.00012971 0.015123 0.0040482 0.65904 1.9695e-006 0.00011107 6.8701e-005 0.0054156

0.10266 0.035066 0.000488 7.4731e-005 0.17398 0.001155 0.0011304 0.0015062 0.22178 0.065926 0.0024392 0.00018174 0.37605 0.0023679 0.002877 0.012319

0.062368 0.016439 0.00047643 4.6578e-005 0.011113 0.17357 0.050527 0.0015158 0.069453 0.017142 0.0018487 8.9707e-005 0.0041756 0.37542 0.2103 0.0055079

0.061308 0.02493 0.0015044 7.6473e-005 0.051743 0.00043038 0.17358 0.0024897 0.21367 0.063818 0.0051748 0.00022306 0.011114 0.00023948 0.37546 0.014239

0.052715 0.023646 0.050781 0.0014047 0.00037883 0.0108660.0013362 0.17493 0.010096 0.063371 0.21202 0.0038826 0.00010502 0.0035566 0.0036239 0.38728

become feasible when engineering approaches are integrated into translational medicine.

We postulate the following cost-per-stage in statej under controlu:

g(u, j) =





0 if u = 0 andj ∈ D,

5 if u = 0 andj ∈ U ,

c if u = 1 andj ∈ D,

5+c if u = 1 andj ∈ U ,

(4.4)

wherec denotes the cost of control. We study the effect ofc in our simulations. A cost

minimization framework is used to effectively trade-off the number of interventions and

the likelihood of the network being in an undesirable state.An optimal control policy with

regard to the cost values can be found via dynamic programming.
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Table VII. Transition probability matrix of SRD-PBN for sampling period T = 4
0.17868 0.35925 0.0057011 0.0019278 0.0021134 0.0035642 0.00021701 0.016212 0.1333 0.20118 0.020986 0.0018779 0.0015748 0.0017692 0.00074308 0.070901

0.014692 0.50027 0.0090648 0.0040594 0.00019922 0.0057762 0.00043069 0.033177 0.0050446 0.25957 0.040292 0.0041558 8.4702e-005 0.0031117 0.0015077 0.11857

0.10288 0.090581 0.17324 0.0026056 0.0041568 0.1762 0.0090185 0.0089919 0.040905 0.10373 0.14019 0.003032 0.0014774 0.076391 0.030785 0.035828

0.0057851 0.33727 0.004429 0.20531 8.54e-005 0.0031632 0.00016202 0.011467 0.0018686 0.12417 0.013755 0.24697 3.2803e-005 0.0013484 0.00053547 0.043661

0.20516 0.17535 0.0022614 0.00067721 0.17329 0.0032648 0.0022213 0.0054509 0.15542 0.10424 0.0073772 0.00063446 0.13147 0.0021403 0.002346 0.028711

0.18835 0.1639 0.0021694 0.00066995 0.010183 0.17221 0.02385 0.0063215 0.10749 0.082778 0.0066183 0.00056804 0.003877 0.13076 0.076045 0.024191

0.13102 0.075247 0.003231 0.00029166 0.17834 0.0026047 0.17213 0.0048031 0.13651 0.061893 0.0059905 0.00034666 0.078014 0.0012002 0.1312 0.017175

0.1811 0.16663 0.025842 0.0030037 0.0022348 0.010116 0.0023946 0.17635 0.078679 0.10179 0.082779 0.0033655 0.00096658 0.0034649 0.0029033 0.15838

0.14216 0.24037 0.010431 0.001545 0.0016752 0.0039442 0.00038594 0.031819 0.17574 0.23275 0.04076 0.0026171 0.0020726 0.0021998 0.0012051 0.11032

0.035076 0.27152 0.029857 0.0033663 0.00049728 0.011092 0.0012222 0.079698 0.011315 0.24615 0.099865 0.0060475 0.00018346 0.0050184 0.0032555 0.19583

0.041474 0.13533 0.13886 0.003053 0.0013976 0.078705 0.0032107 0.030301 0.014961 0.20188 0.20765 0.0058504 0.00046527 0.025556 0.0099638 0.10134

0.0023676 0.17371 0.0032769 0.24628 3.8474e-005 0.0016271 8.52e-005 0.0049515 0.00071434 0.05067 0.0082044 0.49004 1.2965e-005 0.00055224 0.00024337 0.017234

0.15752 0.12513 0.0030728 0.00053267 0.13185 0.0026918 0.0019382 0.0096008 0.20416 0.12842 0.012724 0.00086452 0.17237 0.0027507 0.0033873 0.042997

0.11652 0.069673 0.0020666 0.00028091 0.03164 0.13106 0.075975 0.0051168 0.12448 0.05981 0.0065406 0.00039252 0.010492 0.17138 0.17558 0.01899

0.11116 0.094641 0.0045875 0.00047552 0.078157 0.001985 0.13066 0.010669 0.19213 0.11775 0.015097 0.00087665 0.026864 0.0010117 0.17157 0.042379

0.088771 0.087311 0.078238 0.0030548 0.0013755 0.031372 0.0027699 0.13944 0.029664 0.11819 0.18652 0.0058631 0.00046275 0.0095599 0.005974 0.21143

In our simulation studies, our objective is to show that an optimal policy derived for

the current definition of context-sensitive PBN will no longer be optimal if we include

the timing information of temporal data into the dynamics ofgene regulatory networks. To

this end, we generate synthetic SRD-PBNs and correspondingcontext- sensitive PBNs. We

compute the cost induced by the optimal policy derived for the context-sensitive PBN and

the cost induced by the optimal policy derived for the SRD-PBN, when both are applied

to a sequence of data generated from the SRD-PBN. These two cost values are compared

in our simulation studies. An SRD-PBN accommodates the sampling rate, which is in

this simulation identical to the intervention rate. The goal of this study is to measure how

costly it is to apply an optimal policy derived for a context-sensitive PBN to a sequence

of data generated based on an SRD-PBN. In the following, we first consider synthetically

generated SRD-PBNs. Furthermore, we study the gene regulatory network inferred from

metastatic melanoma gene expression data.

1. Synthetic Networks

We generate SRD-PBNs in the following manner. Each SRD-PBN consists of2 constituent

Boolean networks. Each Boolean function of a Boolean network is randomly generated

with a random bias. Given a set of Boolean networks, we generate various SRD-PBNs.
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We let γ = 0.01. We vary the value ofλ from 0.05 to 4 with step-size0.2. We choose

the gene perturbation probability of0.01. The constituent Boolean networks are selected

with equal probabilities. Furthermore, for the given set ofBoolean networks, we generate

the corresponding context sensitive PBNs for switching probability q = 0.01. We let the

observation period to be every1 unit of time, i.e.T = 1.

Using dynamic programming, given the cost-per-stage defined in (4.4), we derive an

optimal intervention policyµ∗
srd for an SRD-PBN. Our goal is to estimate the average total

discounted cost induced byµ∗
srd for a sequence of data generated from the SRD-PBN. To

this end, we generate synthetic time-course data for 1000 time-steps from the SRD-PBN

model whileµ∗
srd is applied. We estimate the discounted cost by accumulatingthe dis-

counted cost of each state given the action at that state. This procedure is repeated10, 000

times for random initial states and the average of the induced discounted cost is computed.

Likewise, an optimal policyµ∗
cs for a context-sensitive PBN is derived. Following a similar

procedure,µ∗
cs is applied to the SRD-PBN, which we already described, and the average

discounted cost is computed. Moreover, we compute the average discounted cost of a se-

quence of time-course data for an SRD-PBN in the absence of intervention.

In summary, for each set of Boolean networks, we have the following: (C̄srd) av-

erage total discounted cost induced byµ∗
srd on the SRD-PBN; (̄Ccs) average total dis-

counted cost induced byµ∗
cs on the SRD-PBN; (̄Cwoc) average total discounted cost in-

duced in the absence of any intervention on SRD-PBN. The preceding procedure is re-

peated for1000 random Boolean networks, thereby yielding 1000 values for each statistic:

C̄srd
1 , . . . , C̄srd

1000; C̄
cs
1 , . . . , C̄cs

1000; C̄
woc
1 , . . . , C̄woc

1000.

Using these, we compare the effect ofµ∗
srd and µ∗

cs on an SRD-PBN by the em-

pirical averagesM[Csrd] of C̄srd
1 , . . . , C̄srd

1000; M[Ccs] of C̄cs
1 , . . . , C̄cs

1000; and M[Cwoc] of

C̄woc
1 , . . . , C̄woc

1000. We define the gain obtained by each intervention policy as the differ-

ence between the average discounted cost before and after intervention.Gsrd, the gain of
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policy µ∗
srd, is M[Cwoc]−M[Csrd] andGcs, the gain of policyµ∗

cs applied to an SRD-PBN,

is M[Cwoc]−M[Ccs]. We are interested inM[Ccs]−M[Csrd], which we refer to as∆G.

Figs. 7, 8, and 9 demonstrate the outcome of the above experiment for various values

of cost of controlc. It is evident that the intervention gainsGsrd andGcs are larger for

smaller cost of intervention. The structure of a context-sensitive PBN is such that there is a

transition to a new state after each unit of time, which corresponds to one change at every

unit of time on average. Whenλ is substantially smaller or larger than 1,∆G is larger

compare to the case whereλ is closer to 1, as is shown in Figs. 7, 8, 9. We should point

out that the value ofλ for which ∆G attains its minimum depends on many factors, such

asγ, the switching probabilityq in context-sensitive PBN, and the cost of control. It is also

observed that∆G increases for larger cost of control.

We emphasize that this simulation study compares the gains obtained by two policies,

the policy optimal for the SRD-PBN and the policy optimal forthe context-sensitive PBN,

when each is applied to SRD-PBN. Our objective is to show how poor the effect of an in-

tervention policy derived for a context-sensitive PBN might be if the rate of change among

observations is substantially different from 1.

2. Melanoma Gene Expression

In this section, we consider the gene network correspondingto metastatic melanoma ex-

plained in Chapter II. We postulate the cost-per-stage in (4.4) with the cost of controlc

being0.1. Since our objective is to down-regulate the WNT5A gene, a higher penalty is

assigned for destination states having WNT5A up-regulated. Also, for a given WNT5A sta-

tus for the destination state, a higher penalty is assigned when the control is active versus

when it is not.

We generate the SRD-PBN corresponding to the melanoma-based data. Similar to the

procedure explained in the previous section, we computeµ∗
cs andµ∗

srd. Both policies are
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Fig. 7. (a)Gsrd, gain obtained by the policy optimal for SRD-PBN, andGcs, the gain ob-

tained by the policy optimal for context-sensitive PBN, when both are applied to

SRD-PBN for variousλ. (b) Difference between the gains,∆G, for variousλ. The

cost of control is 0.1.
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Fig. 8. (a)Gsrd, gain obtained by the policy optimal for SRD-PBN, andGcs, the gain ob-

tained by the policy optimal for context-sensitive PBN, when both are applied to

SRD-PBN for variousλ. (b) Difference between the gains,∆G, for variousλ. The

cost of control is 1.0.
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Fig. 9. (a)Gsrd, gain obtained by the policy optimal for SRD-PBN, andGcs, the gain ob-

tained by the policy optimal for context-sensitive PBN, when both are applied to

SRD-PBN for variousλ. (b) Difference between the gains,∆G, for variousλ. The

cost of control is 3.

applied to a sequence of data generated from the SRD-PBN and the cost corresponding to

the policy is estimated. Fig. 10 shows the outcome of this experiment. Similar results

are observed asλ varies. We should emphasize that Fig. 10 corresponds to one network

representing the melanoma gene expression data while Figs.7, 8, and 9 consider average

behavior of 1000 synthetically generated networks.
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Fig. 10. Simulation results corresponding to Melanoma study (a)Gsrd, gain obtained by the

policy optimal for SRD-PBN, andGcs, the gain obtained by the policy optimal

for context-sensitive PBN, when both are applied to SRD-PBNfor variousλ. (b)

Difference between the gains,∆G, for variousλ. The cost of control is 0.1.
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CHAPTER V

OPTIMAL CYCLIC CONTROL POLICY∗

Successful treatment of bacterial infections is largely a result of our ability to exploit the

biochemical differences between bacteria and human cells so as to achieve toxic drug con-

centrations in the former while sparing the latter. Unfortunately, such high selectivity is at

present elusive in the chemotherapy of human cancers. Hence, great efforts are required

to determine dose schedules that maximize the benefit to toxicity ratio in cancer treatment

[14]. To this end, chemotherapy is generally given incycles: each treatment is followed by

arecovery phase. During a recovery period, the side effects tend to gradually subside. Dose

intensity is a measure of chemotherapy delivery that looks at the amount of drug delivered

per unit of time. A higher drug dose intensity can be delivered by increasing the dose per

cycle (dose escalation) or by reducing the interval betweencycles (dose density).

For a given integrated drug effect, the chance of eradicating the tumor is maximized

by delivering the most effective dose level of drug over as short a time as possible. Tumors

given less time to grow between treatments are more likely tobe eradicated. Administering

high quantities of drugs at the beginning of a chemotherapy cycle might fail for two reasons.

First, levels higher than a certain concentration may not increase the killing rate of cancer

cells. Second, even if they did, the toxicity could be intolerable to the patient. In practice,

optimizing the schedule means determining a way to give the maximum integrated effect

over as short a time as possible, consistent with reasonablequality of life [14].

A prime objective of modeling genetic regulatory networks is to develop therapies

based on gene regulation, in particular, the disruption or mitigation of aberrant gene func-

∗ Reprinted with permission from “Optimal Intervention Strategies for Cyclic Ther-
apeutic Methods” by G. Vahedi, B. Faryabi, J.-F. Chamberland, A. Datta, and E. R.
Dougherty, 2009,IEEE Transactions on Biomedical Engineering, 56, 281-291, Copyright
2009 by IEEE.
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tion contributing to the pathology of a disease. Engineering therapeutic tools involve syn-

thesizing nonlinear dynamical networks, analyzing these networks to characterize gene

regulation, and developing intervention strategies to modify dynamical behaviors [38]. In

this chapter, we derive an optimal cyclic intervention strategy for gene regulation in the

context of probabilistic Boolean networks.

For intervention strategies proposed earlier [10, 11, 39, 16], at every state transition

of the system, the intervention strategy dictates whether to apply treatment or not. In this

chapter, our objective is to devise an effective intervention strategy under the constraint that

intervention is permitted only everyW transitions, whereW ∈ N denotes the length of the

recovery period. An intervention strategy that is optimal for the case where intervention is

permitted at every transition is not necessarily optimal (i.e. may not minimize the expected

total discounted cost) if one is only permitted to apply treatment everyW transitions. We

will refer to a policy that is optimal when intervention is permitted every transition as

an optimal one-transition policy. Similarly, we refer to the policy that is optimal when

intervention is permitted everyW transitions as anoptimal W-transition policy.

We define atreatment windowto be everyW transitions of the system. Intervention

is permitted at the beginning of a treatment window. Thereafter, the system transitions

W − 1 steps without intervention. To incorporate the cyclic constraint on interventions,

we construct a Markov chain with an augmented state space based on the original Markov

chain. An optimal cyclic intervention policy, i.e. optimalW-transition policy, can be found

by solving the stochastic control problem for the Markov chain with the augmented state

space via dynamic programming algorithms. However, this procedure maybe prohibitive

due to the size of the augmented state space. We show that the augmented state space

can be collapsed resulting in a compressed space of size equal to the original state space.

We accomplish this reduction in the size of the state space byaccumulating the expected

cost of the system progressing during a period. The new cost function is used to select the
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proper action when intervention is permitted. We establishthe convergence of the dynamic

programming algorithm and show how the optimal W-transition intervention strategy can

be found. Furthermore, we compare the performance of an optimal W-transition policy to

that of an optimal one-transition policy when interventionis applied everyW transitions.

We show that although this may not be true in general, in our intervention framework,

optimal one-transition policy can be used as an approximation of optimal W-transition

policy.

A. Optimal Control Strategy for Cyclic Therapeutic Methods

Our objective is to find an effective intervention policy when we are allowed to apply treat-

ment only everyW transitions, in other words at timest = 0, W, 2W, . . . To incorporate

this cyclic constraint in our mathematical framework, we construct a Markov chain with

an augmented state space based on the original Markov chain.The new (augmented) state

space is defined as

S̃ = {(i, j)|i ∈ {0, . . . , N − 1}, j ∈ {0, . . . , W − 1}},

whereN is the size of the original state spaceS. There are two types of states in the

augmented state space: state(i, j) with j = 0, represented as(i, 0), where intervention is

permitted, and state(i, j) with j 6= 0, where intervention is not permitted. In the augmented

state space, the controlu is constrained to take values inU(i, j), a given nonempty subset

of C. For the first type of states,(i, 0), we haveU(i, 0) = {0, 1}, while for the second type

of states,(i, j) wherej 6= 0, we haveU(i, j) = {0}.

The transition probabilities in the augmented state space are defined as a function of

controlu. For state(i, 0), we define the probability of transitioning to state(i′, j′) given
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controlu as

p(i,0)(i′,j′)(u) =





pi,i′(u) if j′ = 1,

0 otherwise,

wherepi,i′(u) denotes the probability of transitioning from statei to statei′ under controlu.

On the other hand, for states(i, j) wherej 6= 0, controlu only admits one value,u ∈ {0}.

For these states, the transition probability is defined as

p(i,j)(i′,j′)(u = 0) =





pi,i′(u = 0) if j′ = (j + 1) mod W

0 otherwise,

wherepi,i′(u = 0) = pi,i′ denotes the uncontrolled probability of transitioning from state

i to statei′. It should be noted that(j′ = (j + 1) mod W ) is true if either(j′ = j + 1)

or (j = W − 1 andj′ = 0) is true. Considering thatu ∈ U(i, j), the probability of

transitioning from state(i, j) to state(i′, j′) can be compactly defined as

p(i,j)(i′,j′)(u) =





pi,i′(u) if j′ = (j + 1) mod W,

0 otherwise.
(5.1)

Let us now consider an example to explain how the above definition simulates the

cyclic intervention scenario. Assume that at timet = 0 we observe statei. At this time,

we are allowed to apply controlu ∈ {0, 1}. The augmented state corresponding to statei

at timet = 0 is (i, 0). From augmented state(i, 0), under controlu, the system transitions

to the augmented state(i′, 1) with probabilitypi,i′(u), whereu ∈ {0, 1}. The probability

of transitioning to any other state(i′, j), wherej 6= 1, is zero. At timet = 1 and from

augmented state(i′, 1), the system transitions to state(i′′, 2) with probabilitypi′,i′′(0) since

u ∈ {0}. Likewise, one can consider transitions fort = 2, . . . , W − 2. Similarly, assume

that we observe statek at timet = W−1. The probability of transitioning to the augmented

state(k′, 0) is pk,k′(0). The probability of transitioning to any other state(k′, j), where
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j 6= 0, is zero.

The cost-per-stage for transitioning from augmented state(i, j) to augmented state

(i′, j′), given controlu, is defined as

g(i, j, i′, j′, u) =




C + c i′ ∈ U and{j = 0 andj′ = 1} andu = 1,

C i′ ∈ U and{j′ = (j + 1) mod W} and u = 0,

c i′ ∈ D and{j = 0 andj′ = 1} andu = 1,

0 i′ ∈ D and{j′ = (j + 1) mod W} and u = 0,

0 otherwise,

(5.2)

whereC andc represent the cost of undesirable states and the cost of treatment (control),

respectively. Givenu = 1, we assign a cost to a transition from state(i, j) to state(i′, j′)

only whenj = 0 andj′ = 1. In this case, ifi′ is an undesirable state, the corresponding

cost isC + c; if i′ is a desirable state, the only cost incurred isc. Whenu = 0, it is possible

to transition to(i′, j′) if j′ = (j + 1) mod W is true. In this case, ifi′ is an undesirable

state, the corresponding cost isC; if i′ is a desirable state, no cost is incurred. For all the

other cases, no cost is assigned.

Based on (5.2), we define the expected immediate cost at state(i, j) when controlu is

selected by

g(i, j, u) =
N−1∑

i′=0

W−1∑

j′=0

p(i,j)(i′,j′)(u)g(i, j, i′, j′, u)

=
N−1∑

i′=0

[p(i,j)(i′,0)(u)g(i, j, i′, 0, u)+

· · ·+ p(i,j)(i′,W−1)(u)g(i, j, i′, W − 1, u)].

In this equation, for each value ofi′, only one term inside the brackets is non-zero (based
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on the definition of the transition probabilities in (5.1)).Hence,

g(i, j, u) =
N−1∑

i′=0

p(i,i′)(u)g(i, j, i′, j′, u),

wherej′ = (j + 1) mod W is true. Using the definition ofg(i, j, i′, j′, u) in (5.2), we have

g(i, j, u) =





C
∑

i′∈U pi,i′(u = 1) + c if u = 1,

C
∑

i′∈U pi,i′(u = 0) if u = 0.
(5.3)

From (5.3), it is clear thatg(i, j, u) does not depend onj, i.e. g(i, j, u) = g(i, u).

As we explained in Chapter II, the dynamic programming algorithm captures how the

optimal cost atJk+1 propagates backward in time to the optimal costJk. For the augmented

state space, we have

Jk(i, j) = min
u∈ U(i,j)

[
g(i, j, u) + λ

N−1∑

i′=0

W−1∑

j′=0

p(i,j)(i′,j′)(u) Jk+1(i
′, j′)

]

∀(i, j) ∈ S̃.

(5.4)

Sinceg(i, j, u) = g(i, u), we can rewrite (5.4) as

Jk(i, j) = min
u∈ U(i,j)

[
g(i, u) + λ

N−1∑

i′=0

W−1∑

j′=0

p(i,j)(i′,j′)(u) Jk+1(i
′, j′)

]
,

∀(i, j) ∈ S̃.

(5.5)

Our goal is to derive the value functions for the original state space, i.e.S, based

on (5.5). To this end, for every treatment window starting with i ∈ S, we accumulate the

total discounted cost of all states in the window where no control can be applied and add

it to the average cost of statei. We then show how the accumulated cost at the beginning

of the (s + 1)th window affects the accumulated cost at the beginning of the sth window,

wheres = 0, 1, 2, . . . This approach is in accord with the dynamic programming technique

that ranks decisions based on the sum of the present cost and the expected future cost,
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assuming optimal decision making for subsequent stages. This manipulation of the value

function lets us collapse the augmented state spaceS̃ to the much smaller spaceS. We

prove the convergence of the discounted cost algorithm in this framework and show how

an optimal W-transition control policy can be found using standard dynamic programming

algorithms.

AssumeP is the transition probability matrix of the uncontrolled Markov chain. For

i, j ∈ S, let p(r)
i,j be the probability of going from statei to statej in r steps, i.e. the(i, j)th

entry of the matrixP(r). The objective is to compute the recursive relation of the value

function starting at timet = sW , given the cost value at timet = (s + 1)W .

Without loss of generality, we assumes = 0. In the augmented state spaceS̃, we are

not allowed to apply any control at state(i, W − 1), hence from (5.1) and (5.5)

JW−1(i, W − 1) = min
u∈U(i,W−1)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)JW (j, 0)

}

= g(i, 0) + λ
N−1∑

j=0

pi,jJW (j, 0).

(5.6)

GivenJW−1, one can computeJW−2 as

JW−2(i, W − 2) = min
u∈U(i,W−2)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)JW−1(j, W − 1)

}

= g(i, 0) + λ

N−1∑

j=0

pi,jJW−1(j, W − 1).

ReplacingJW−1 from (5.6), we haveJW−2(i, W − 2) as a function ofJW (k, 0) for all

k ∈ S,
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JW−2(i, W − 2) = g(i, 0) + λ

N−1∑

j=0

pi,j

(
g(j, 0) + λ

N−1∑

k=0

pj,kJW (k, 0)

)

= g(i, 0) + λ

N−1∑

j=0

pi,jg(j, 0) + λ2

N−1∑

k=0

p
(2)
i,kJW (k, 0).

Similarly we can computeJW−3 as

JW−3(i, W − 3) =

N−1∑

j=0

(
p

(0)
i,j + λp

(1)
i,j + λ2p

(2)
i,j

)
g(j, 0) + λ3

N−1∑

k=0

p
(3)
i,k JW (k, 0).

One can recursively evaluate the value function for the laststate in a treatment window

where no control is allowed, i.e.J1(i, 1), as follow:

J1(i, 1) =

N−1∑

j=0

(
W−2∑

r=0

λrp
(r)
i,j

)
g(j, 0) + λW−1

N−1∑

k=0

p
(W−1)
i,k JW (k, 0). (5.7)

Finally, at time0, intervention is allowed and the following minimization problem leads to

J0(i, 0) = min
u∈U(i,0)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)J1(j, 1)

}
. (5.8)

Using (5.7) and (5.8), we obtain

J0(i, 0) = min
u∈U(i,0)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

(
W−2∑

r=0

λrp
(r)
j,k

)
g(k, 0)

+λW−1

N−1∑

k=0

p
(W−1)
j,k JW (k, 0)

)}
.

(5.9)

We can rewrite (5.9) as

JsW (i, 0) = min
u∈U(i,0)

{g(i, u) +λ

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

(
W−2∑

r=0

λrp
(r)
j,k

)
g(k, 0)

+λW−1
N−1∑

k=0

p
(W−1)
j,k J(s+1)W (k, 0)

)}
,

(5.10)
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for s = 0, 1, 2, . . . This equation reveals how the cost at the beginning of the(s + 1)th

window affects the cost at the beginning of thesth window. This equation ranks decisions

based on the sum of the present cost and the expected future cost considering the cost of

all the states where no control is allowed between two treatment times. This manipulation

of the value function lets us collapse the state space fromS̃ to S and leads to

Js(i) = min
u∈U(i)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

(
W−2∑

r=0

λrp
(r)
j,k

)
g(k, 0)

+λW−1
N−1∑

k=0

p
(W−1)
j,k J(s+1)(k)

)}
,

(5.11)

for s = 0, 1, 2, . . . It should be noted that the above backward propagation of costs applies

to everyW transitions of the Markov chain in which we are permitted to apply intervention

andU(i) = {0, 1}.

Similar to Chapter II, the following proposition discusseshow an optimal W-transition

stationary control policy can be devised. In Proposition 6,we prove the convergence of the

discounted cost algorithm as it is defined in this work. Propositions 2 and 3 can be restated

for the following operatorT .

Proposition 6 (Convergence of the discounted cost algorithm): For anyi ∈ S, bounded

functionJ : S 7→ ℜ, andT : S 7→ ℜ, where

TJ(i) = min
u∈U(i)

{
g(i, u) + λ

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

(
W−2∑

r=0

λrp
(r)
j,k

)
g(k, 0)

+λW−1
N−1∑

k=0

p
(W−1)
j,k J(k)

)}
,

(5.12)

the optimal cost function satisfies

J∗(x) = lim
j′−→∞

(
TMJ

)
(x), ∀x ∈ S.

Proof
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We definẽg(i, u) as

g̃(i, u) = g(i, u) + λ

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

(
W−2∑

r=0

λrp
(r)
j,k

)
g(k, 0)

)
. (5.13)

The functiong̃(i, u) collects the average cost of statei with controlu and the accumulated

cost ofW transitions from statei. For every positive integerK, initial statex0 ∈ S, and

policy π = {µ0, µ1, . . . }, we break down the costJπ(x0) into the portions incurred over

the firstK stages and over the remaining stages

Jπ(x0) = lim
M−→∞

E

{
M−1∑

k=0

λkW g̃(xk, µk(xk))

}

= E

{
K−1∑

k=0

λkW g̃(xk, µk(xk))

}

+ lim
M−→∞

E

{
M−1∑

k=K

λkW g̃(xk, µk(xk))

}
.

Since the cost-per-stage is bounded, it is straightforwardto see that̃g(i, u) in (5.13) is

bounded. Let us assume|g̃(i, u)| < L. We also obtain

∣∣∣∣∣ lim
M−→∞

E

{
M−1∑

k=K

λkW g̃(xk, µk(xk))

}∣∣∣∣∣ ≤ L
∞∑

k=K

λkW =
λWK

1− λW
L.

It follows that

Jπ(x0) ≤ E

{
K−1∑

k=0

λkW g̃(xk, µk(xk))

}
+

λWK

1− λW
L.

From the inequalities above, one can conclude that
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E

{
K−1∑

k=0

λkW g̃(xk, µk(xk)) + λWKJ(xK)

}

≥ E

{∣∣∣∣∣
K−1∑

k=0

λkW g̃(xk, µk(xk))

∣∣∣∣∣−
∣∣λWKJ(xK)

∣∣
}

≥ Jπ(x0)−
λWK

1− λW
L− λWK max

x∈S
|J(x)|.

Similarly,

E

{
K−1∑

k=0

λkW g̃(xk, µk(xk)) + λWKJ(xK)

}

≤ E

{∣∣∣∣∣
K−1∑

k=0

λkW g̃(xk, µk(xk))

∣∣∣∣∣+
∣∣λWKJ(xK)

∣∣
}

≤ Jπ(x0) +
λWK

1− λW
L + λWK max

x∈S
|J(x)|.

Hence,

Jπ(x0)−
λWK

1− λW
L− λWK max

x∈S
|J(x)|

≤ E

{
K−1∑

k=0

λkW g̃(xk, µk(xk)) + λWKJ(xK)

}

≤ Jπ(x0) +
λWK

1− λW
L + λWK max

x∈S
|J(x)|.

We need to show thatE
{∑K−1

k=0 λkW g̃(xk, µk(xk)) + λWKJ(xK)
}

is equal to(TKJ)(x0).

From the definition of̃g(i, u) in (5.13) and (5.12), we have
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TJ(i) = min
u∈U(i)

{
g̃(i, u) + λW

N−1∑

j=0

pi,j(u)

(
N−1∑

k=0

p
(W−1)
j,k J(k)

)}

= min
u∈U(i)

{
g̃(i, u) + λW

N−1∑

k=0

(
N−1∑

j=0

pi,j(u)p
(W−1)
j,k J(k)

)}
.

We denote
∑N−1

k=0

∑N−1
j=0 pi,j(µ)p

(W−1)
j,k by

∑N−1
k=0 p

(W )
i,k (µ). When optimal policyµk(xk) is

applied, the above equation changes to

Tµk
J(xk) = g̃(xk, µk(xk)) + λW

N−1∑

xk+1=0

p(W )
xk,xk+1

(µk(xk))J(xk+1).

Further application ofTµk+1
leads us to

Tµk+1
Tµk

J(xk) = g̃(xk, µk(xk)) + λW

N−1∑

xk+1=0

p(W )
xk,xk+1

(µk(xk))g̃(xk+1, µk+1(xk+1))

+ λ2W

N−1∑

xk+1=0

p(W )
xk,xk+1

(µk(xk))

N−1∑

xk+2=0

p(W )
xk+1,xk+2

(µk+1(xk+1))J(xk+2).

By induction, one can show that

TµK
TµK−1

. . . J(x0) = E

{
K−1∑

k=0

λkW g̃(xk, µk(xk)) + λWKJ(xK)

}
.

By taking the minimization overπ, we obtain

J∗(x0)−
λWK

1− λW
L− λWK max

x∈S
|J(x)|

≤ (TKJ)(x0)

≤ J∗(x0) +
λWK

1− λW
L + λWK max

x∈S
|J(x)|,

for all x0 andK. By taking the limit asK →∞, the result follows.�
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Propositions 2, 3 (in Chapter II), and 6 provide the basis forcomputational algorithms

to determine an optimal W-transition policy. Proposition 2asserts that the optimal cost

function satisfies Bellman’s optimality equation, while Proposition 6 states that the optimal

cost function can be iteratively determined by running the recursion

Js+1 = TJs, s = 0, 1, 2, . . . (5.14)

for any bounded initial cost functionJ0 : S 7→ ℜ. An optimal W-transition policy is found

when the iteration converges to the optimal value of the costfunction.

B. Results and Discussion

An optimal one-transition policy is no longer optimal, i.e.does not necessarily minimize

the expected total discounted cost, if one is restricted to apply treatment only everyW tran-

sitions. Nevertheless, we can apply an optimal one-transition policy everyW transitions

and compare the effect and cost of such a policy to the ones of an optimal W-transition

policy, which truly minimizes the expected total discounted cost.

We anticipate an effective control policy to reduce the likelihood of visiting undesir-

able states compared to a network without intervention by modifying the long-run behavior

of the network. The effectiveness of a control policy can be measured by the amount of

change (shift) in the aggregated probability of undesirable states before and after interven-

tion. We should emphasize that an optimal policy does not necessarily result in a max-

imum shift in the steady-state distribution, as explained above, since we are minimizing

the expected total discounted cost. The amount of shift in the aggregated probability of

undesirable states before and after intervention can be computed as

∆P W =

∑
i∈U πi −

∑
i∈U π̃W

i∑
i∈U πi

. (5.15)
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In (5.15),π̃W
i is the probability of being in undesirable statei in the long run using a

policy that is applied everyW transitions. In this equation,πi is the probability of being

in undesirable statei in the long run when there is no intervention. In other words,given a

Markovian gene regulatory network, one can shift the aggregated probability of undesirable

states to desirable ones through appropriately altering the expression of the control gene

everyW time instants.

Formulation of∆P W requires the computation of̃πW , i.e. the steady-state distribu-

tion of the Markov chain under a W-transition policyµW , a policy that is applied everyW

transitions. To this end, we derive the transition probability matrix of the system when a

W-transition policyµW is applied. In general,W possible cases can happen for the tran-

sition of statei to statej in W steps under a cyclic policy depending on the instants in

which statesi andj are observed with respect to the treatment times. Let us denote the

transition probability matrix under the W-transition policy µW by PµW
. In the first case,

there areW − 1 uncontrolled transitions and the corresponding transition probability ma-

trix is PW−1. Afterward, inW th transition, policyµW decides whether to apply control

or not. The system transitions to statej and the corresponding transition probability ma-

trix is PµW
. Consequently, the transition probability matrix corresponding to the first case

is P(W−1)PµW
. In the second case, starting from statei, there areW − 2 uncontrolled

transitions and the corresponding transition probabilitymatrix isPW−2. At next transition,

policy µW decides whether to apply control or not and the system transitions according

to the transition probability matrixPµW
. Thereafter, the system transitions to statej ac-

cording to the original transition probability matrixP. The transition probability matrix

corresponding to the second case isP(W−2)PµW
P. Likewise, the transition probability

matrix forW − 2 other cases can be derived. Fig. 11 demonstrates an example for W = 4.

As this figure suggests, 4 possible cases can happen depending on when statei is observed

with respect to treatment times.
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(a) (b)

(c) (d)

Fig. 11. An example of cyclic intervention strategy forW = 4. Arrows represent treatment

times. Subfigures a to d show the four possible cases that can happen depending on

the instants in which statesi andj are observed with respect to treatment times.

To find the transition probability matrix of the Markov chainunder optimal W-transition

policy, one should consider the possibility of these cases.Since each of these cases are

equally probable, the following transition probability matrix represents the probabilities of

transitions among states when the W-transition intervention policyµW is applied

P̂µW
=

1

W

W∑

w=1

P(W−w)PµW
P(w−1). (5.16)

The steady-state distributioñπW is the invariant distribution of̂PµW
.

In the following sections, we first derive optimal one-transition and W-transition poli-

cies for synthetic networks. We generate random PBNs with various properties. We vary

the values of bias and connectivity of the PBNs. The bias of a PBN is the probability that

each constituent Boolean function takes on the value 1 and the connectivity corresponds

to the maximum number of predictors for each Boolean function. Since the bias and con-
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nectivity affect the dynamical properties of randomly generated BNs [4], we take them as

parameters in our simulations. Whenever not specified, the connectivity of the PBN is 3.

Furthermore, we investigate the effect of the cost of control on each type of policy. We

provide some of these in the sequel. We then present a similarinvestigation for the network

obtained from the mammalian cell-cycle network explained in Chapter II.

1. Synthetic Networks

We generate random PBNs with 7 genes. Each PBN consists of4 constituent BNs. For each

PBN, the probability transition matrix of the corresponding Markov chain is computed [5].

Without loss of generality, the target gene is chosen to be the most significant gene in the

states. We assume that the up-regulation of the target gene is undesirable. Consequently,

the state space is partitioned into desirable states,D = {0, . . . , N/2− 1}, and undesirable

states,U = {N/2, . . . , N − 1}, whereN represents the total number of states. Since our

objective is to down-regulate the target gene, a higher costis assigned to destination states

having an up-regulated target gene. We postulate the following cost-per-stage:

g(u, j) =





0 if u = 0 andj ∈ D,

5 if u = 0 andj ∈ U ,

c if u = 1 andj ∈ D,

5 + c if u = 1 andj ∈ U ,

(5.17)

wherec represents the cost of control. Whenever it is not specified,the cost of control is

selected to be zero.

For each PBN, we vary the value ofW from 1 to 10. For eachW , the optimal W-

transition policy is derived and the corresponding∆P W is computed from (5.16). Given

the optimal W-transition policy, we estimate the average total discounted cost induced by

this policy. To this end, we generate synthetic time-coursedata for1000 time-steps from
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each PBN model while the optimal W-transition policy is applied. Using this synthetic

time-course data, we estimate the discounted cost by accumulating the discounted cost of

each state given the policy at that state. This procedure is repeated10, 000 times for random

initial states and the average of the induced discounted cost is computed. Furthermore, the

optimal one-transition policy is applied everyW transitions and the corresponding∆P W

is computed from (5.16). To compute the average discounted cost of the optimal one-

transition policy when it is applied everyW transitions, we generate synthetic time-course

data as explained above and the average total discounted cost of the optimal one-transition

policy is similarly computed. In summary, for each PBN model, we have the following:

(C̄W ) average total discounted cost resulting from the optimal W-transition policy; (∆P W )

the value of∆P W resulting from the optimal W-transition policy; (C̄W,1) the average total

discounted cost of the optimal one-transition policy when it is applied everyW transitions;

and (∆P W,1) the value of∆P W resulting from the optimal one-transition policy applied

everyW transitions. The preceding procedure is repeated for1000 random PBNs, thereby

yielding 1000 values for each statistic:C̄W
1 , . . . , C̄W

1000;∆P W
1 , . . . , ∆P W

1000;C̄
W,1
1 , . . . , C̄W,1

1000;

∆P W,1
1 , . . . , ∆P W,1

1000. Using these, we compare the optimal W-transition and one-transition

polices via the empirical averagesM[CW ] of C̄W
1 , . . . , C̄W

1000; M[CW,1] of C̄W,1
1 , . . . , C̄W,1

1000;

M[∆P W ] of ∆P W
1 , . . . , ∆P W

1000; andM[∆P W,1] of ∆P W,1
1 , . . . , ∆P W,1

1000. In addition, for

each value ofW , the histograms of the differences̄CW,1
i − C̄W

i and ∆P W
i − ∆P W,1

i ,

i = 1, . . . , 1000, are also found. We will see that the means tend to be close,M[CW ] ≈

M[CW,1] andM[∆P W ] ≈M[∆P W,1], but that the histograms of the differences have long

tails to the right, indicating that there are cases for whichusing the optimal one-transition

policy can have strongly detrimental effects.

In the first set of experiments, each constituent BN is randomly generated with a bias,

the bias being the probability that a Boolean function takeson the value 1. We randomly

select the biasb of a BN from a beta distribution. The mean of the beta distribution is
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Fig. 12. Comparison of optimal W-transition and one-transition policies based on the av-

erage values of∆P W and average total discounted cost forW ∈ {1, . . . , 10} for

random PBNs with bias mean = 0.3. (a) Average of discounted cost, (b) Average of

∆P W

chosen to be 0.3, 0.5, or 0.7. The variance of the beta distribution,σ2, is set to a constant

value0.0001. The average values of∆P W and the average total discounted costs for both

one-transition and W-transition policies are shown in Figs. 12 and 13 for bias values of 0.3

and 0.5, respectively. Similarly, the histograms of the differences of the two policies in

terms of∆P W and the average total discounted costs are shown in Figs. 14 and 15.



70

W

A
ve

ra
ge

 D
is

co
un

te
d 

C
os

t w
he

n 
bi

as
 is

 0
.5

 

 

2 3 4 5 6 7 8 9 10
23

23.2

23.4

23.6

23.8

24

24.2

24.4

24.6
One−transition Optimal Policy
W−transition Optimal Policy

W

A
ve

ra
ge

 S
hi

ft 
∆ 

P
W

 w
he

n 
bi

as
 is

 0
.5

 

 

2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16 W−transition Optimal Policy
One−transition Optimal Policy

(a) (b)

Fig. 13. Comparison of optimal W-transition and one-transition policies based on the av-

erage values of∆P W and average total discounted cost forW ∈ {1, . . . , 10} for

random PBNs with bias mean = 0.5. (a) Average of discounted cost, (b) Average of

∆P W

We observe that the average of∆P W for both policies decreases asW increases. This

behavior is in accordance with the intuition that treatments which are further apart in time

are less effective. As we stated in the Introduction, tumorsgiven less time to grow between

treatments are more likely to be eradicated [14]. In the longrun, less treatment is applied

for a largerW and consequently more cost is induced. Hence, for a fixed bias, the average

discounted costs of both one-transition and W-transition policies increase asW increases.

On average, the optimal W-transition policy results in lower discounted cost and higher

∆P W compared to the optimal one-transition policy. The histograms of the differences of

the two policies in terms of∆P W and average discounted show how often they generate

similar outcomes and how often the effect of the two policiesdiffer. Note that the dif-

ferences are not positive for all PBNs. This is because the optimal policies minimize the

‘expected’ total discounted cost. Hence, the W-transitioncontrol policy can induce a larger

average discounted cost compared to the one-transition control policy, but rarely.
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In the second set of experiments, we generate constituent BNs with connectivities2,

3, and4. For each connectivity, predictors and Boolean functions are randomly generated

with a biasb, randomly selected from a beta distribution with mean0.5. Similar to the

previous experiment, we observe that the optimal W-transition policy results in lower aver-

age discounted cost and higher∆P W compared to the optimal one-transition policy. In the

third set of experiments, we repeat the simulations for the cost of control being 0, 0.1, and

0.5. Results of this experiment for control cost of 0.1 are shown in Figs. 16 and 17.

2. Mammalian Cell-Cycle Network

The value of∆P W and the average total discounted cost for both optimal one-transition and

W-transition policies derived for the cell-cycle network are shown in Fig. 18. In the long

run, less treatment is applied for a largerW and consequently more cost is induced. Hence,

the average discounted costs of both optimal one-transition and W-transition policies in-

crease asW increases. It should be noted that the previous experimentsshow the average

behavior of 1000 random PBNs while this experiment considers the behavior of one net-

work, i.e. the mammalian cell-cycle network. In this instance, the optimal one-transition

and W-transition policies are close to parity for the cell-cycle network.
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Fig. 14. Comparison of optimal W-transition and one-transition policies based on the his-

togram of difference of W-transition and optimal one-transition policies forW = 5

on random PBNs with bias mean = 0.3. (a) Histogram of∆P W associated to op-

timal W-transition policy minus∆P W associated to optimal one-transition policy,

(b) Histogram of the average discounted cost associated to optimal one-transition

policy minus the average discounted cost associated to optimal W-transition policy,

(c) enlarged view of (a), (d) enlarged view of (b)
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Fig. 15. Comparison of optimal W-transition and one-transition policies based on the his-

togram of difference of W-transition and optimal one-transition policies forW = 5

on random PBNs with bias mean = 0.5. (a) Histogram of∆P W associated to op-

timal W-transition policy minus∆P W associated to optimal one-transition policy,

(b) Histogram of the average discounted cost associated to optimal one-transition

policy minus the average discounted cost associated to optimal W-transition policy,

(c) enlarged view of (a), (d) enlarged view of (b)
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Fig. 16. Comparison of optimal W-transition and one-transition policies based on the av-

erage values of∆P W and average total discounted cost forW ∈ {1, . . . , 10} for

random PBNs with control cost = 0.1. (a) Average of∆P W , (b) Average of dis-

counted cost.
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Fig. 17. Comparison of optimal W-transition and one-transition policies based on the his-

togram of difference of optimal W-transition and one-transition policies forW = 5

on random PBNs when cost of control is 0.1. (a) Histogram of∆P W associated to

optimal W-transition policy minus∆P W associated to optimal one-transition pol-

icy, (b) Histogram of the average discounted cost associated to optimal one-tran-

sition policy minus the average discounted cost associatedto optimal W-transition

policy, (c) enlarged view of (a), (d) enlarged view of (b)
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Fig. 18. Comparison of optimal W-transition and one-transition policies based on the values

of ∆P W and average total discounted cost forW ∈ {1, . . . , 10} for the mammalian

cell-cycle network. (a) Average of total discounted cost, (b) ∆P W
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CHAPTER VI

MEAN-FIRST-PASSAGE-TIME CONTROL POLICY∗

The study of infinite-horizon intervention strategies poses two fundamental questions. First,

is it possible to beneficially affect a network by applying the optimal stationary control pol-

icy? This translates into assessing thecontrollability of the network. In practice, a physi-

cian would like to predict the effectiveness of a certain treatment at different stages of a

disease and on different patients. Investigating the effect of a certain type of control on

various networks is equivalent to questioning the controllability of the network. To date,

there has been no investigation on this important topic in the context of gene regulatory net-

works. Second, can we identify the best intervening gene? Inother words, which gene is

the best potential “lever point,” to borrow the terminologyfrom [32], in the sense of having

the greatest possible impact on the desired network behavior? In principle, solving an opti-

mal control problem for each candidate gene and comparing the performance of the system

for these various controls would answer these questions; however, this process is a compu-

tationally demanding procedure. The complexity of dynamicprogramming algorithms can

be vast and increases exponentially with the number of genes[40].

In their early papers, Shmulevich et al. employ two methods for selecting a candidate

gene for intervention:mean first-passage timeandinfluence[5, 6]. The following biolog-

ical example, borrowed from [4], explains the intuition behind using mean first-passage

times for selecting the best control gene. In biology, thereare numerous cases where the

(in)activation of a certain gene or protein can lead more quickly (or with higher probability)

to a particular cellular functional state or phenotype thanthe (in)activation of another gene

∗ Reprinted with permission from “ Intervention in Gene Regulatory Networks via a
Stationary Mean-First-Passage-Time Control Policy” by G.Vahedi, B. Faryabi, J.-F. Cham-
berland, A. Datta, and E. R. Dougherty, 2008,IEEE Transactions on Biomedical Engineer-
ing, 55, 2319-2331, Copyright 2008 by IEEE.
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or protein. For instance, in a stable cancer cell line, in theabsence of intervention, the cells

will keep proliferating. This behavior can be reversed by controlling the expression of cer-

tain genes. Assume that the goal of the intervention is to push the cell into programmed cell

death (apoptosis). Further assume that we can achieve this intervention with two candidate

genes: p53 and telomerase. The p53 gene is the most well-known tumor suppressor gene

[41][42][43]. The telomerase gene encodes telomerase, which maintains the integrity of the

end of chromosomes (telomeres) in germ cells. Germ cells areresponsible for propagating

the complete genetic material to the following generation.Telomerase also maintains the

integrity of the end of chromosomes in progenitor cells. Progenitor cells are responsible

for replenishing cells during the normal cell turnover (homeostasis). In somatic cells, the

telomerase gene is turned off, resulting in telomere shortening each time the cell divides –

a key reason for the limited life-span of normal cells [44]. In the majority of tumor cells,

telomerase is activated, which is believed to contribute tothe prolonged life-span of the

tumor cells [45]. This worsens prognosis for cancer patients [46][47]. Extensive experi-

mental results indicate that when p53 is activated in the cells, for example in response to

radiation, the cells undergo rapid growth inhibition and apoptosis in as short as a few hours

[48]. In contrast, inhibition of the telomerase gene also leads to cell growth inhibition,

differentiation, and cell death, but only after cells go through a number of cell divisions

(allowing telomere shortening). Cell death takes a longer time through this latter process

than via p53 activation. The use of mean first-passage times for finding the best control

gene is intuitive; however, it focuses on a one-step controlscenario.

The influence method distinguishes genes that have a major impact on a predictor

function from those that have only a minor impact. This method was introduced to reflect

the extent to which a set of genes is capable of determining the value of a target gene [5].

It has been used as a criterion to select a control gene with the suggestion that the gene

with the largest influence on the target gene is likely to be a good control gene in the finite
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and infinite-horizon control of PBNs [49][11]; however, no research has been done on the

overall performance of this heuristic measure.

Capitalizing on the biological intuition behind mean first-passage time, we propose an

algorithm based on mean first-passage times that assigns a stationary control policy for each

candidate gene. We call this algorithm theMean First-Passage Time (MFPT)algorithm

and refer to the corresponding stationary control policy asthe Mean First-Passage Time

(MFPT) control policy. The proposed algorithm selects the MFPT control policy based

on two heuristics: (1) it is preferable toreachdesirable states as early as possible; (2) it

is preferable toleaveundesirable states as early as possible. The MFPT algorithmcan be

employed in four main applications.

First, the MFPT algorithm can be used for predicting the bestcontrol gene. The MFPT

algorithm enables the computation of the MFPT control policies for all the genes in the net-

work with a manageable complexity. The control gene with thehighest desirable effect on

the long-run behavior of the network upon the application ofthe corresponding MFPT con-

trol policy is likely the most effective gene for controlling the biological system. Second, to

reduce the complexity of the optimal stochastic control problem, the MFPT control policy

can be used as an approximate solution. Contrary to optimal algorithms, the MFPT algo-

rithm finds policies with constant complexity. Third, the MFPT algorithm can be used to

measure the controllability of a network. Since the MFPT control policy is an approxima-

tion for the optimal control policy, one can define a network to be controllable if the effect

of the MFPT control policy is greater than a desired threshold.

Finally, the MFPT algorithm can be used to design a control policy without requiring

network inference. The optimal stochastic control policesproposed thus far require perfect

knowledge of the probability transition matrix governing the network, which must be de-

rived from the PBN or inferred directly. These procedures are prone to modeling errors and

suffer from problems of computational complexity for both network inference and finding
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the optimal control solutions. To achieve model-free intervention, the MFPT control policy

can be designed based on estimates of the mean first-passage times. The model-free inter-

vention method has low complexity, is robust to modeling errors, and adapts to changes in

the underlying biological system.

A. Mean-First-Passage-Time Algorithm

In this section, we first elaborate on how the MFPT algorithm is designed based on the

mean first-passage time. We then summarize the MFPT algorithm. Application of the

MFPT algorithm requires the designation of desirable and undesirable states, and this de-

pends upon the existence of relevant biological knowledge.Intervention is performed by

flipping (toggling) the expression status of a particular gene from ON to OFF or vice-versa,

the intent being to externally guide the time evolution of the network towards more de-

sirable states. Ifg is the control gene, then applying the control (intervention) in statex

translates into flipping the value ofg in that state (the control geneg changes to0 if its value

is 1 and vice-versa). Consequently, the network resumes its transition from the new state

x̃, which we call theflipped-state. In the context of therapy, the state-space of a PBN can

be partitioned into desirable and undesirable states. Given a control gene, when a desirable

state reaches the set of undesirable states on average faster than its flipped-state, it is rea-

sonable to intervene and transition into the flipped-state.Similarly, if an undesirable state

reaches the set of desirable states on average faster than its flipped-state, it is reasonable

not to intervene. These insights motivate the use of mean first-passage times for designing

intervention strategies.

Without loss of generality we can assume that the transitionprobability matrixP of

the Markov chain (representing a PBN) is partitioned according to
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P =

(
PD,D PD,U

PU ,D PU ,U

)
,

whereD andU are the subsets of desirable and undesirable states, respectively. The mean

first-passage times are computed by solving the following systems of linear equations [19]:

KU = e + PD,D ·KU , (6.1)

KD = e + PU ,U ·KD, (6.2)

wheree is a column vector of1’s with appropriate length,KU is a vector containing the

mean first-passage times from each state in the subset of desirable statesD to undesirable

states in setU , andKD is a vector containing the mean first-passage times from eachstate

in the subset of undesirable statesU to the desirable states in setD.

A control policyµg corresponding to control geneg is a vector of size2n, the number

of states in the network. The decision ruleµg : S → C specifies the control action for

each statex in S. Havingµg(x) = 0 for statex means that, whenever the network reaches

statex, no control is applied and the system continues its transition based on the transition

probabilities of statex. On the other hand, havingµg(x) = 1 implies that, whenever the

network reaches statex, the control is applied and the system continues its evolution based

on the transition probabilities of statẽx, the flipped-state ofx.

The goal of the MFPT algorithm is to design the MFPT control policies {µ̂g}
n
g=1.

The objective is to choose a control valueu for every state inS such that the network

evolves towards more desirable states. The MFPT algorithm selects the control policy

for control geneg in the following manner. Assume statex is an undesirable state. We

compare the mean first-passage times from statex toD and from the flipped-statẽx toD.

In other words, we would like to know on average which one of these two states,x and

x̃, hits the set of desirable states for the first time faster than the other one. The algorithm
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chooseŝµg(x) = 1 if the difference between the mean first-passage times of statex and the

flipped-statẽx to the set of desirable states, i.e.KD(x) −KD(x̃), is greater than a tuning

parameterγ (to be discussed). Otherwise,µ̂g(x) = 0. Analogously, if statex is desirable,

then µ̂g(x) = 1 if the difference between the mean first-passage times of state x and the

flipped-statẽx to undesirable states, i.e.KU(x̃) − KU(x), is greater thanγ. Otherwise,

µ̂g(x) = 0. These comparisons are repeated for all states. Algorithm 1summarizes the

proposed procedure.

The thresholdγ in the MFPT algorithm is a tuning parameter chosen based on the ratio

of the cost of control to the cost of undesirable states. Whenthe cost of applying treatment

in a state is high compared to the cost of undesirable states,an optimal control policy is

less likely to apply the control frequently. Thus,γ is set to a larger value when this ratio

is higher, the intent being to apply control less frequently. We explain after the following

definitions how one can set this parameter.

An effective control policy reduces the likelihood of visiting undesirable states com-

pared to a network without intervention by modifying the long-run behavior of the network.

The effectiveness of a control policy can be measured by the amount of change (shift) in

the aggregated probability of undesirable states before and after intervention. As a perfor-

mance measure we define

∆Pg =

∑
i∈U πi −

∑
i∈U πg

i∑
i∈U πi

,

whereπg
i is the probability of being in undesirable statei in the long-run after intervening

with control geneg, andπi is the probability of being in undesirable statei in the long-run

when there is no intervention. The ratio∆Pg measures the proportion of reduction in the

total probability of undesirable states in the steady statewhen the control geneg is selected.

We denote this proportion by∆P opt
g when an optimal control policyµ∗

g is applied. In other

words, in the optimal case one can shift the aggregated probability of undesirable states to
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Algorithm 1 MFPT algorithm

Partition the state-space into undesirableU and desirableD subsets.

ComputeKU andKD.

g ← 1.

repeat

for All statesx in U do

x̃← flip control geneg in x.

if KD(x)−KD(x̃) > γ then

µg(x) = 1;

else

µg(x) = 0;

end if

end for

for All statesx in D do

x̃← flip control geneg in x.

if KU(x̃)−KU(x) > γ then

µg(x) = 1;

else

µg(x) = 0;

end if

end for

g ← g + 1.

until g > number of genes
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desirable states by∆P opt
g through appropriately altering the expression of the control gene

g. Similarly, the shift obtained by the MFPT control policŷµγ
g is denoted by∆P

MFPT(γ)
g ,

whereγ is the tuning parameter.

We definethe probability of the execution of controlas

Γg =

2n−1∑

j=0

πj · 111(µg(j) = 1), (6.3)

wheren is the number of genes,πj is the steady-state probability of statej ∈ S, µg(j) is

the value of the control policy in statej, and111(·) is the indicator function. The purpose

of introducing this probability is to have a fair evaluationof the performance of the MFPT

control policy in terms of the number of control executions,which for the optimal policy

is related to the cost of control. For each control geneg, one can defineΓopt
g as the prob-

ability of the execution of control when the optimal controlpolicy is applied. Similarly,

Γ
MFPT(γ)
g is the probability of the execution of control when the MFPT control policy with

the parameterγ is applied.

We numerically find the value of the parameterγ for each control cost. We generate

random intervention problems and calculate the averages ofΓopt
g andΓ

MFPT(γ)
g . These av-

erages are taken over random intervention problems with fixed control cost. Starting from

γ = 0, we increase the value ofγ. For each control cost, the desired value ofγ is the mini-

mal one for which, on average,Γopt
g > Γ

MFPT(γ)
g . This condition guarantees that on average

the MFPT control policy applies no more control than the optimal control policy. Since the

values of the parameterγ are found from random intervention problems, in practice one can

have a conservative approach and choose the parameterγ to be greater than the proposed

value. The conservative approach can assure a high probability that Γopt
g > Γ

MFPT(γ)
g . On

the other hand, the deviation of∆P
MFPT(γ)
g from ∆P opt

g becomes larger.
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B. Applications of the MFPT Algorithm

We devise solutions according to the MFPT algorithm for fourintervention applications.

1. Identification of the Best Control Gene

Recalling the example of p53 and telomerase in the introduction, it is important to select

the most effective control gene in a therapeutical intervention. The best control geneg∗ can

be found by directly solving a dynamic programming algorithm and computing{∆P opt
g }

n
g=1

for all the genesg in the network. In short,g∗ is given by

g∗ = arg max
g=1...n

∆P opt
g ; (6.4)

however, this optimal method to find the best control gene is computationally prohibitive.

On the other hand, the MFPT algorithm enables the computation of the MFPT control

policies{µ̂γ
g}

n
g=1 for all the genes in the network with an acceptable complexity. Taking

this approach, the MFPT algorithm predicts the best controlgene to be

ĝ = arg max
g=1...n

∆P MFPT(γ)
g . (6.5)

We will show thatĝ = g∗ with high probability, and that∆P opt
g∗ − ∆P opt

ĝ is small

whenever̂g 6= g∗. In this context, we are using the MFPT algorithm to find the control gene.

Once the best gene candidate is identified, an optimal control policy can be obtained using

dynamic programming algorithms. We will also show that the MFPT-based prediction of

the best control gene significantly outperforms the influence method.



86

2. Approximation of the Optimal Control Policy

The MFPT algorithm can devise an intervention strategy as anapproximation of the optimal

intervention strategy. To this end, we numerically find the value of the parameterγ for each

control cost so that, on average,Γopt
g∗ > ΓMFPT

g∗ . To assess the accuracy of the approximation,

we show that the average of∆P opt
g∗ − ∆P

MFPT(γ)
g∗ over random intervention problems with

fixed control cost is small. Note that, so as not to confound approximation accuracy with

the MFPT algorithm’s ability to find a control gene, we apply both the optimal and MFPT

methods using the optimal control geneg∗.

3. Controllability

An important aspect of prognosis is quantifying the possibility of recovery. In our frame-

work, this amounts to quantifying thecontrollability of a gene regulatory network, a con-

cept borrowed from traditional control theory. Can the network be sufficiently controlled

to provide meaningful recovery? We desire a controllability measure where the objective

of the control is to reduce the likelihood of observing the undesirable states in the long-run.

An optimal control strategy takes into account the cost of control, but here we want only

to focus on the possibility of sufficient control, absent concerns with costs, either medical

or financial. To this end, we choose the cost of control to be zero. The zero control-cost

strategy admits any number of states with active control. Our point (one that is certainly

debatable) is that we desire a measure of controllability with no restrictions on the num-

ber of times the control might be applied. Thus, a possible approach is to set the cost

of control to zero and compute∆P opt
g∗ . To reduce the computational burden, we propose

∆P
MFPT(0)
g∗ (γ = 0) as a controllability measure. Our simulations show that the ∆P

MFPT(0)
g∗

is a highly accurate approximation of∆P opt
g∗ when the cost of control is zero. Therefore,

the MFPT algorithm can be employed to determine the controllability of a network. For
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example if∆P
MFPT(0)
g∗ is very small, we conclude that the network is not controllable. If

∆P
MFPT(0)
g∗ = 0.5, then we conclude that it is possible to shift50% of the probability mass

of the undesirable states to desirable ones in the long-run,given the application of the

control has zero cost.

4. Model-free Intervention

To date, the proposed intervention methods for PBNs are model dependent, requiring

knowledge of the transition probability matrix. This can bederived from the PBN if the

latter is known. Since in practice PBNs are not known except via system identification

from observed data, one is faced with a difficult inference problem [50]. This problem

can be avoided by directly inferring the transition probability matrix; however, this is still

a formidable task because the complexity of estimating the transition probabilities of a

Markov chain increases exponentially with the number of genes in the model. When time-

course data are available, the MFPT algorithm can be implemented by directly estimating

the mean first-passage times. The estimated mean first-passage times are used to construct

the matrices of the mean first-passage times,KU andKD. The MFPT algorithm can then be

applied to the estimated matricesKU andKD to devise amodel-freeMFPT control policy.

In the following, we propose a procedure for estimating the mean first-passage times

from time-course measurements. Assumex is a desirable state and it is observed at timet0.

Further assume that, starting from timet0, the first undesirable state occurs at timet0 + k0.

In other words, it takesk0 time points for the desirable statex to transition (reach) to an

undesirable state. Similarly, assume the next observationof statex is at timet1 and since

time t1 the first undesirable state occurs at timet1 + k1. In this example, the average first

passage time from statex to the subset of undesirable states is(k0 + k1)/2. Likewise, one

can define an example for an undesirable statey reaching the subset of desirable states. It

is evident that for larger numbers of observations, this estimation becomes more accurate.



88

The above procedure needs to be implemented with low complexity. At each time point,

we update the number of steps for each state to reach the opposite subset of states and store

the frequency of the occurrence of each state. One needs to update the average first passage

times for a new observation. The complexity of estimating the mean first-passage times

following our procedure is constant with respect to the number of genes for each iteration.

An advantage of the model-free approach is that the estimated matricesKU andKD

can be updated whenever new time-course data become available. The possibility of updat-

ing the estimated mean first-passage times enables the MFPT algorithm to adapt its control

policy to the status of gene interactions. In other words, the model-free MFPT control

method is adaptive to changes in the network model. In contrary, the control policy de-

vised by the existing intervention methods cannot adapt to the changes in the status of gene

interactions. Once the PBN is inferred form data, the model-dependent control policy is

fixed.

Through numerical studies, we will exhibit the effectiveness of the model-free MFPT

control policy obtained by estimating the mean first-passage times. On one hand, we will

estimate the matricesKU andKD based on synthetic time-course data and use the MFPT al-

gorithm to find the control policy; on the other hand, we will use the same time-course data

to build a Markov chain representing the dynamics of the model and then find the control

policy based on the estimated transition probability matrix using dynamic programming.

We will observe that the MFPT control policy based on the estimated mean first-passage

times outperforms the control policy devised from the estimated transition probabilities of

the Markov chain, given the same set of time-course data, forfeasible size data sets.
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C. Complexity Analysis of the MFPT Algorithm

The main objective of an effective intervention strategy isto reduce the likelihood of visit-

ing undesirable states compared to a network without intervention by modifying the long-

run behavior of the network. Given a time-course data set, there are two possible ap-

proaches for designing a strategy for any model such that itsdynamic behavior can be

represented as a Markov chain (such as PBN or Dynamic Bayesian Network).

In the first approach, one can estimate the transition probabilities of the states from

time-course measurements. Let us call this approach model-dependent. We require all the

details about the model, i.e. the transition probabilitiesof the Markov chain. Various meth-

ods can be employed to design an effective intervention strategy based on the estimated

model. The optimal control policy can be designed via dynamic programming techniques

[11]. In favor of lower computational complexity, an approximation of the optimal control

policy can be achieved using the MFPT algorithm.

In the second approach, an effective intervention strategycan be designed directly

from time-course measurements. We call this approach model-free. In contrary to the

model-dependent approach where the transition probabilities of the Markov chain are needed,

we do not require the details of the model. To this end, a model-free algorithm based on

reinforcement learning has recently been introduced [39].This method bypasses the im-

pediment of model estimation and an effective control policy can be designed with a low

complexity. We propose that the MFPT algorithm can also be considered as a model-free

method. In this section, we analyze the complexity of the model-based and the model-free

MFPT algorithms.
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1. Model-dependent Approach

In the previous section, we introduced the four major applications of the MFPT algorithm:

identification of the best control gene, approximation of anoptimal control policy, con-

trollability, and model-free intervention. Employment ofthe MFPT algorithm in the first

three applications is considered as a model-dependent approach since it is assumed that the

transition probability matrix of the Markov chain is known.Given the model is known, let

us compare the computational complexities of the dynamic programming and the MFPT

algorithms.

To find an optimal control policy using value or policy iteration, one should iteratively

find the value (cost) function until the algorithm reaches the fixed point of the Bellman

optimality equation. Once the optimal cost functions are computed, one must check which

control value attains the minimum in the right-hand side of the Bellman optimality equa-

tion and this procedure should be iterated for all the states. To the best of our knowledge,

there does not exist a tight upper bound on the number of iterations required to find an

optimal policy using either value or policy iteration, despite recent research initiatives [51].

Given the control gene, the policy iteration algorithm has complexityO(23n) per iteration,

whereas the complete complexity of the MFPT algorithm, which consists of two matrix

inversions, isO(23n). In general, it is known that the policy iteration algorithmconverges,

but it is not known whether “the number of iterations in policy iteration can be bounded by

a polynomial in the instance size” [51]. Even assuming that the number of iterations can be

bounded by a polynomial in the number of states, the complexity of the MFPT algorithm

is lower than the policy iteration algorithm because it is computed once and does not re-

quire iteration. Regarding the value iteration algorithm,the asymptotic upper bound on the

number of iterations required to find an optimal policy usingthe value iteration algorithm

is polynomial in the number of states [51]. The degree of the polynomial is determined
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to be greater than two in special cases [52, 53]. Given the complexity of each iteration in

the value iteration algorithm isO(22n), the complexity of the value iteration algorithm to

find an optimal control policy isO(2(2+α)n), whereα > 1. Hence, the complexity of the

MFPT algorithm is also lower than the complexity of the valueiteration algorithm. To find

the optimal cost functions forn control genes, the complexity of a dynamic programming

algorithm isn times the complexity of this algorithm for one control gene.In contrary,

once the mean first-passage time vectors are computed, they can be used to devise MFPT

control policies for all control genes.

It is important to point out that for any control gene, in addition to the above complex-

ities, the dynamic programming and the MFPT algorithms mustloop over all the states to

find their corresponding control policies. In dynamic programming algorithms, to obtain

the optimal control policy, one must check which control value attains the minimum in the

right-hand side of the Bellman optimality equation and thisprocedure must be iterated for

all the states. In the MFPT algorithm, one must investigate which control value leads to

a more favorable mean first-passage time and this procedure must be repeated for all the

states.

It is evident from the above analysis that the application ofour proposed method is

restricted to small number of genes since the complexity of the MFPT algorithm increases

exponentially with the number of genes. We should point out that in our application of

interest, intervention in gene regulatory networks, the goal is not to model fine-grained

molecular interactions among a host of genes, but rather to model a limited number of

genes, typically with very coarse quantization, whose regulatory activities are significantly

related to a particular aspect of a specific disease, such as metastasis in melanoma [8].

Hence, while the asymptotic results on the complexities of optimal algorithms are encour-

aging, they are not our main interest; rather our problem deals with networks with small

numbers of states. Fig. 19 shows the average execution time of the value and policy iter-
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ation algorithms over1000 randomly generated intervention problems as a function of the

number of genesn, along with the execution times of the MFPT algorithm. Per this figure,

the execution time of the MFPT algorithm is much smaller thanthe execution time of the

two optimal algorithms. The direct comparison has been limited to 10-gene networks on

account of the high complexity of the modeling and optimal intervention algorithms. The

maximum size of the intervention problem which can be solvedby our MFPT method is

hardware-dependent. For instance, our current hardware configuration (single Xeon pro-

cessor and 1-GB memory) can obtain MFPT intervention policyfor a synthetic 15-gene

regulatory network, which, given the data limits of currentexpression measuring technol-

ogy, is sufficient for the applications in which we are now engaged. Given more memory

and processing power, intervention strategies can be designed for larger networks. Should

the need arise for larger networks, we will consider implementation on our Beowulf cluster

at the Translational Genomics Research Institute.
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Fig. 19. The average execution time of the value and policy iteration algorithms over1000

randomly generated intervention problems as functions of the number of genes,

along with the execution times of the MFPT algorithm.
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2. Model-free Approach

The model-dependent approaches yield effective solutionsfor large numbers of observa-

tions. However, these approaches have major drawbacks in practice. For lower numbers of

observations, which correspond better to feasible experimental conditions, estimating the

Markov chain yields poor results. Estimation errors may have a huge impact on finding

an effective intervention strategy, which is often quite sensitive to changes in the transition

probabilities [54]. Furthermore, the complexity of estimating the transition probabilities of

a Markov chain increases exponentially with the number of genes in the model,O(22n).

This is in addition to the complexity of designing an effective intervention strategy. Hence,

a procedure that can find an effective intervention strategywithout having to know the

transition probabilities is very attractive.

The model-free based MFPT algorithm (fourth application) estimates the mean first-

passage times from time-course measurements. The complexity of estimating these vectors

following the proposed procedure in the previous section isconstant with respect ton for

each iteration, wheren denotes the number of genes. In other words, we devise an effective

intervention strategy by learning about the mean first-passage times directly from the data.

The highlight of this paper is the possibility of employing the MFPT algorithm in a

model-free approach. To this end, we summarize the two main benefits of our proposed

model-free method: 1) The complexity of the modeling and intervention is significantly

less than that of the model-dependent methods; 2) In contrary to the optimal control prob-

lem approach, which is sensitive to changes in the system, the MFPT algorithm needs the

average behavior of the system and is expected to be more appealing for smaller numbers of

observations. We corroborate this claim in the result section by comparing the model-free

MFPT method with the model-dependent optimal control method.
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D. Results and Discussion

In this section, we first study the performance of the MFPT algorithm for each of the afore-

mentioned applications through extensive simulations of random PBNs. We then compare

the performance of the MFPT algorithm and the influence method for the network obtained

from a melanoma gene-expression data set.

1. Synthetic Networks

We postulate the following cost-per-stage:

g(u, j) =





0 if u = 0 andj ∈ D,

10 if u = 0 andj ∈ U ,

c if u = 1 andj ∈ D,

10 + c if u = 1 andj ∈ U ,

wherec is the cost of control. The target gene is chosen to be the mostsignificant gene

in the GAP. We assume the up-regulation of the target gene is undesirable. Consequently,

the state-space is partitioned into desirable states,D = {0, . . . , 2n−1 − 1}, and undesirable

states,U = {2n−1, . . . , 2n − 1}, wheren is the number of genes. The cost values have

been chosen in accord with an earlier study [11]. Since our objective is to down-regulate

the target gene, a higher cost is assigned to destination states having an up-regulated target

gene. Moreover, for a given status of the target gene for a destination state, a higher cost is

assigned when the control is applied, versus when it is not. In order to investigate the effect

of the cost of control in our algorithm, we vary its value from0 to 10, which is the cost of

the undesirable states.

We generate random PBNs in the following manner. Each PBN consists of10 con-

stituent BNs. Each BN is randomly generated with a specific bias b, the bias being the

probability that a randomly generated Boolean function takes on the value 1. Since the bias



95

affects the dynamical properties of randomly generated BNs[4], we take it as a parameter

in our simulations. We randomly select the biasb of a BN from a beta distribution. We vary

the mean of the beta distribution from0.3 to 0.7 with step-size0.1. The varianceσ2 of the

beta distribution is set to a constant value0.0001. This provides random biases from low

(0.3) to high (0.7). We generate1000 random PBNs for each bias mean. For each PBN,

the transition probabilities of the corresponding Markov chain are estimated. The above

procedure is repeated for networks of5 to 10 genes. Due to the computational complexity

of the optimal stochastic control problem and the estimation of the transition probabilities

of the corresponding Markov chain, the study of a large number of networks beyond10

genes is outside our current computational capacity.

a. Identification of the Best Control Gene

We first show the performance of the MFPT algorithm and the influence method when they

are employed to predict the best control gene. It is assumed that the cost of controlc is equal

to 1. In Tables VIII, X, IX, and XI, we compare the performances ofthe MFPT algorithm

and the influence method for predicting the best control gene. First the optimal control

policy for each control gene is obtained by a dynamic programming algorithm. The best

control geneg∗ is found based on (6.4). Similarly, the MFPT control policy for each control

gene is computed and the predicted control geneĝ is found based on (6.5). The influence

method is also employed to predict the best control gene. Thepredicted best control gene

by the influence method is denotedğ. We define the probability of the correct prediction

of each method to be the number of PBNs for which the method correctly predicts the best

control gene divided by the total number of PBNs in the experiment. The probabilities of

correctly predicting the best control gene by the MFPT algorithm and the influence method

are shown in Tables VIII and X. The average differences between proportions of reduction

in the total probability of undesirable states corresponding to the gene predicted by each
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method and the best control gene, i.e. (∆P opt
g∗ −∆P opt

ĝ ) and (∆P opt
g∗ −∆P opt

ğ ), are shown in

Tables IX and XI. In our experiments, the probability of the correct prediction by the MFPT

algorithm is always greater than0.94. Table. IX shows that∆P opt
g∗ − ∆P opt

ĝ on average is

less than0.0002.

Table VIII. The probability of finding the best control gene with the MFPT algorithm when

c = 1 for networks with different number of genes.
Bias 0.3 0.4 0.5 0.6 0.7

(A) 5 genes 0.9850 0.9640 0.9570 0.9600 0.9720

(B) 6 genes 0.9430 0.9700 0.9760 0.9580 0.9870

(C) 7 genes 0.9440 0.9680 0.9670 0.9700 0.9570

(D) 8 genes 0.9660 0.9740 0.9860 0.9790 0.9710

(E) 9 genes 0.9132 0.9233 0.9741 0.9812 0.9812

(F) 10 genes 0.9470 0.9570 0.9860 0.9690 0.9610

Table IX. The average difference between the proportions ofreduction in the total proba-

bility of undesirable states obtained by the best control geneg∗ and the predicted

control gene obtained by the MFPT algorithmĝ for networks with various number

of genes.
Bias 0.3 0.4 0.5 0.6 0.7

(A) 5 genes 0.0000 0.0000 0.0001 0.0001 0.0001

(B) 6 genes 0.00016 0.00010 0.00003 0.00006 0.00006

(C) 7 genes 0.00013 0.00013 0.00006 0.00005 0.00005

(D) 8 genes 0.0001 0.00008 0.00005 0.00002 0.00003

(E) 9 genes 0.0002 0.00001 0.00001 0.00004 0.00001

(F) 10 genes 0.0001 0.00008 0.00003 0.00002 0.00005

Table X. The probability of finding the best control gene withthe influence method when c

= 1 for networks with different number of genes.
Bias 0.3 0.4 0.5 0.6 0.7

(A) 5 genes 0.6660 0.6240 0.5480 0.5670 0.5740

(B) 6 genes 0.5630 0.5320 0.4790 0.5070 0.5340

(C) 7 genes 0.5470 0.5550 0.5320 0.5460 0.5060

(D) 8 genes 0.5190 0.5290 0.5290 0.5780 0.5600

(E) 9 genes 0.5086 0.5186 0.5186 0.5676 0.5496

(F) 10 genes 0.5480 0.5230 0.5030 0.4010 0.4610

The performance of the influence method is also shown in Tables X and XI. These

tables suggest that approximately0.60 of the time the influence method’s prediction is

correct. In general,∆P opt
g∗ − ∆P opt

ğ is greater than0.001. Tables XII, XIII, XIV, and XV
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Table XI. The average difference between the proportions ofreduction in the total proba-

bility of undesirable states obtained by the best control geneg∗ and the predicted

control gene obtained by the influence methodğ for networks with various num-

ber of genes.
Bias 0.3 0.4 0.5 0.6 0.7

(A) 5 genes 0.0079 0.0109 0.0102 0.0133 0.0134

(B) 6 genes 0.0081 0.0107 0.0140 0.0207 0.0158

(C) 7 genes 0.0086 0.0108 0.0104 0.0115 0.0130

(D) 8 genes 0.0100 0.0137 0.0151 0.0180 0.0131

(E) 9 genes 0.0016 0.0228 0.0134 0.0415 0.0130

(F) 10 genes 0.0104 0.0097 0.0152 0.0178 0.0211

Table XII. The probability of finding the best control gene with the MFPT algorithm.
Bias 0.3 0.4 0.5 0.6 0.7

(A) c=2 0.9034 0.9121 0.8983 0.8848 0.9085

(B) c=4 0.8614 0.8897 0.8839 0.8701 0.8035

Table XIII. The average difference between the proportionsof reduction in the total proba-

bility of undesirable states obtained by the best control geneg∗ and the predicted

control gene obtained by the MFPT algorithm̂g with various cost values.
Bias 0.3 0.4 0.5 0.6 0.7

(A) c=2 0.0004 0.0005 0.0006 0.0008 0.0005

(B) c=4 0.0020 0.0013 0.0014 0.0020 0.0022

Table XIV. The probability of finding the best control gene with the influence method.
Bias 0.3 0.4 0.5 0.6 0.7

(A) c=2 0.6432 0.6670 0.5950 0.5755 0.6050

(B) c=4 0.6151 0.6247 0.6616 0.6321 0.6533

Table XV. The average difference between the proportions ofreduction in the total proba-

bility of undesirable states obtained by the best control geneg∗ and the predicted

control gene obtained by the influence methodğ with various cost values.
Bias 0.3 0.4 0.5 0.6 0.7

(A) c=2 0.0098 0.0102 0.0120 0.0133 0.0144

(B) c=4 0.0103 0.0190 0.0151 0.0190 0.0115
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show the performance of the MFPT algorithm for higher valuesof c. Although the correct

prediction of the MFPT algorithm slightly degrades for higher values of the control costc,

it still outperforms the influence method.

b. Approximation of the Optimal Control Policy

Once the best control geneg∗ is known, the corresponding MFPT control policyµ̂γ
g∗ can be

used as an approximate solution to the optimal stochastic control problem. As previously

explained, the parameterγ depends on the ratio of the cost of control to the cost of unde-

sirable states. We numerically find the minimal value of the parameterγ for each control

cost so that on averageΓopt
g∗ > Γ

MFPT(γ)
g∗ . It is shown that the average of∆P opt

g∗ −∆P
MFPT(γ)
g∗

over random intervention problems with fixed control cost issmall. We generate random

PBNs following the procedure explained earlier. The cost ofundesirable states is fixed. For

the PBNs with identical bias mean, we formulate the intervention problems with various

costs of control, which are varied such that the ratio of the cost of control to the cost of

undesirable states changes from0 to 1. For PBNs with each bias mean and cost of control,

we compute the averages of∆P opt
g∗ andΓopt

g∗ . The averages are taken over1000 intervention

problems with PBNs whose bias means are fixed. Similarly, theaverages of∆P
MFPT(γ)
g∗ and

Γ
MFPT(γ)
g∗ are found. Furthermore, we compute the average of these averages over all bias

means. The parameterγ is determined such thatΓMFPT(γ)
g∗ < Γopt

g∗ . For each given control

cost, we show the behavior of∆P opt
g∗ andΓopt

g∗ (∆P MFPT
g∗ andΓ

MFPT(γ)
g∗ ). As seen in Fig. 20a,

both∆P
MFPT(γ)
g∗ and∆P opt

g∗ decrease when the ratio of the cost of control to the cost of un-

desirable states increases. We observe that on average the difference between∆P opt
g∗ and

∆P
MFPT(γ)
g∗ is less than0.02. As Fig. 20b shows, the probability of the execution of control

for both policies decreases as the cost of control increases. Table XVI shows the relation of

the parameterγ with the ratio of the cost of control to the cost of undesirable states found

in the above experiment.
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Fig. 20. a) Average of∆P
MFPT(γ)
g∗ and∆P opt

g∗ b) Average ofΓMFPT(γ)
g∗ andΓopt

g∗ . Horizontal axis

shows the ratio of the cost of control to the cost of undesirable states. Values ofγ

are chosen from Table XVI.
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Table XVI. Value of the parameterγ as a function of the ratio of the cost of control to the

cost of undesirable states

Ratio of costs 0 0.2 0.4 0.6 0.8 1

γ 0 0.29 0.61 0.91 1.5 1.94

Table XVII. Conservative value of the parameterγ as a function of the ratio of the cost of

control to the cost of undesirable states

Ratio of costs 0 0.2 0.4 0.6 0.8 1

γ 0.05 0.5 0.9 1.1 1.9 2.3

Since the values in Table XVI are found from random PBNs, one can have a conser-

vative approach and choose the parameterγ to be greater than the proposed values. To this

end,ΓMFPT(γ)
g∗ is smaller thanΓopt

g∗ in each intervention problem. Fig. 21 and Table XVII

show the outcomes of the same experiment explained earlier when the parameterγ is cho-

sen conservatively. In all the intervention problems of this experiment,ΓMFPT(γ)
g∗ < Γopt

g∗ and

the deviation of∆P
MFPT(γ)
g∗ from ∆P opt

g∗ is smaller than0.04.

c. Controllability

To corroborate that the MFPT algorithm can be employed to determine the controllability

of a network, we consider the results in Fig. 20. In this figure, when the cost of control

is zero (γ = 0), ∆P
MFPT(0)
g∗ is an accurate approximation of the∆P opt

g∗ . The average of the

difference∆P
MFPT(0)
g∗ −∆P opt

g∗ has a negligible value equal to0.0007.

d. Model-free Intervention

To compare the performance of the model-free MFPT control algorithm with an optimal

control algorithm, where the latter includes estimation ofthe transition probability matrix,

we generate synthetic time-course data for100, 000 time-steps from an existing model. Us-

ing the synthetic time-course data, we estimate the mean first-passage times after each10k
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Fig. 21. a) Average of∆P
MFPT(γ)
g∗ and∆P opt

g∗ b) Average ofΓMFPT(γ)
g∗ andΓopt

g∗ . Horizontal axis

shows the ratio of the cost of control to the cost of undesirable states. Values ofγ

are chosen conservatively from Table XVII.
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time-steps, fork = 2, . . . , 5, and fix the cost of control to have the value1. As the duration

of estimating the mean first-passage times increases,∆P
MFPT(γ)
g∗ approaches∆P opt

g∗ . Fig. 22

shows the average of|∆P opt
g∗ − ∆P

MFPT(γ)
g∗ |, where∆P opt

g∗ is obtained from the original

transition probabilities, with various estimating durations over1000 trials. For an optimal

control policy based on the Markov chain estimated from the data, we denote the shift in

the steady-state distribution bŷ∆P opt
g∗ . Fig. 22 shows the average of|∆P opt

g∗ − ∆̂P opt
g∗ | with

various estimating durations over1000 trials. The graphs clearly demonstrate the superior

performance of the model-free approach using the MFPT algorithm. In particular, for lower

numbers of observations, which correspond better to feasible experimental conditions, es-

timating the Markov chain yields poor results, whereas the MFPT approximation performs

quite well.

Fig. 22. Average of|∆P opt-∆̂P opt| (solid) and|∆P opt -∆P MFPT(γ)| (dash) over 1000 trials as

a function of the logarithm of estimation duration.
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2. Melanoma Gene Expression

In this section, we compare the performances of optimal and MFPT control polices in the

context of a gene network developed from steady-state data.Based on our objective, the

cost of control is assumed to be 1 and the states are assigned penalties according to the

following scheme:

r(u, j) =





0 if u = 0 andj ∈ D,

5 if u = 0 andj ∈ U ,

1 if u = 1 andj ∈ D,

6 if u = 1 andj ∈ U ,

which is the same cost structure as assumed in [11]. Since ourobjective is to down-regulate

the WNT5A gene, a higher penalty is assigned for destinationstates having WNT5A up-

regulated. Also, for a given WNT5A status for the destination state, a higher penalty is

assigned when the control is active versus when it is not. Note that the cost scheme reflects

our objective; in practice, the actual values would have to be assigned by a physician ac-

cording to his or her understanding of the disease. Optimal and MFPT control policies are

found for the melanoma-related PBN. Table XVIII summarizesthe amount of the shift in

the total probability mass of the undesirable states obtained by each of these two methods.

We apply the influence method to predict the best control gene. We then compare the pre-

diction of the influence method with the prediction of the MFPT algorithm and the optimal

gene determined directly by the solution of a dynamic programming algorithm. Table XIX

shows the ranking of the genes based on: direct solution of the optimal control policy, the

MFPT algorithm, and the influence method. The MFPT method notonly predicts the best

control gene, but it also exactly predicts the ranking of thecontrol genes. As Table XIX

shows, the influence method does a poor job on predicting the best control gene.
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Table XVIII. ∆P opt
g and∆P

MFPT(γ)
g for all control genesg in the melanoma case-study

Gene (g) STC2 Synuclein HADHB MART1 PHOC MMP3 RET1 S100P pirin

∆P opt
g 0.0733 0.0892 0.1453 0.1104 0.2325 0.1121 0.0529 0.1032 0.1305

∆P
MFPT(γ)
g 0.0721 0.0824 0.1437 0.1071 0.2312 0.1120 0.0507 0.1021 0.1272

Table XIX. Comparison of the control gene ranking based on∆P opt
g∗ , ∆P opt

ĝ , and∆P opt
ğ

Rank 1 2 3 4 5 6 7 8 9

Optimal PHOC HADHB pirin MMP3 MART1 S100P Synuclein STC2 RET1

MFPT PHOC HADHB pirin MMP3 MART1 S100P Synuclein STC2 RET1

Influence MMP3 HADHB MART1 S100P STC2 pirin PHOC RET1 Synuclein
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CHAPTER VII

CONCLUSION

In this work, we discussed several approaches that have beenrecently developed for ad-

dressing the issue of inference and intervention in gene regulatory networks. The results

reported indicate that significant progress has been made inthis area. Our current collab-

orations with the Translational Genomics Research Institute (TGen) aims at validating the

efficacy of mathematically derived intervention strategies for controlling the pathological

behavior of cancerous cells. This research has the potential to dramatically impact future

medical practice. Engineering-based interventions that achieve cellular behavior alteration

will enhance current cancer treatment and lead to the development of personalized cancer

therapies. In the following, I outline some promising research directions for the future.

The feasibility of the proposed project critically dependson a genuine collaboration be-

tween biologists, physicians, and engineers

Effective Intervention in Heterogeneous Metastatic Cells

Metastasis, the spread of cancerous cells from the primary tumor to distant organs, and

their relentless growth, is the most fearsome aspect of cancer. Despite significant improve-

ments in diagnosis, surgical techniques, and general patient care, most deaths from cancer

are due to metastases that are resistant to conventional therapies. The main barrier to the

treatment of metastases is the biological heterogeneity ofcancer cells in the primary tumor

and in metastases. Continual empiricism in the treatment ofcancer metastasis is unlikely to

produce significant improvements in cancer therapy. Therefore, understanding the patho-

genesis of metastasis at the systemic level is an important goal of cancer research.

By the time of initial diagnosis, malignant tumors already contain multiple cell sub-

populations with diverse biological heterogeneity. The heterogeneous nature of the re-
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sponse of malignant tumor cell sub-populations to cytotoxic drugs makes it unlikely that a

single treatment regimen will be able to kill all the cells ina tumor. The goal of this research

project is to devise therapeutic methods to maximally eradicate heterogenous metastatic

cells. To achieve this goal, we envision a number of objectives for which both models and

experiments must be advanced.

• Detect major cell subpopulations in a tumor.

• Estimate the growth rate of each cell subpopulation.

• Devise effective therapeutic methods to halt uncontrolledcell-growth in cell subpop-

ulations.

• Devise adaptive strategy to eradicate various cell subpopulations.

The current approach to cancer therapy is to experiment withone drug after the other

until one drug works for a particular patient or all available options get exhausted. If this

proposed research is successful, it should be possible to study a cancer patient’s tumor in

vitro and predict apriori which treatment or set of treatments is most likely to work for

that patient. This should enhance the current trial and error approach to cancer therapy and

thereby considerably improve the quality of life and therapy outcome for cancer patients.
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