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ABSTRACT

An Engineering Approach Towards Personalized Cancer pge(August 2009)
Golnaz Vahedi, B.S., Sharif University of Technology;
M.S., University of Alberta

Co—Chairs of Advisory Committee: Dr. Edward R. Dougherty
Dr. Jean-Francois Chamberland-Tremblay

Cells behave as complex systems with regulatory procebs¢sriake use of many ele-
ments such as switches based on thresholds, memory, féedaar-checking, and other
components commonly encountered in electrical engingelins therefore not surprising
that these complex systems are amenable to study by engipeeethods. A great deal
of effort has been spent on observing how cells store, modifg use information. Still,
an understanding of how one uses this knowledge to exentataver cells within a living
organism is unavailable. Our prime objective is “PersaaaiCancer Therapy” which is
based on characterizing the treatment for every individaakcer patient. Knowing how
one can systematically alter the behavior of an abnormalerans cell will lead towards
personalized cancer therapy. Towards this objective régsiired to construct a model for
the regulation of the cell and utilize this model to devidedive treatment strategies. The
proposed treatments will have to be validated experimigntalt selecting good treatment
candidates is a monumental task by itself. It is also a pgoeéd®re an analytic approach
to systems biology can provide significant breakthroughthla dissertation, theoretical
frameworks towards effective treatment strategies in threext of probabilistic Boolean
networks, a class of gene regulatory networks, are addateSdeese proposed analytical

tools provide insight into the design of effective therapeunterventions.
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CHAPTER |

INTRODUCTION

Cells form complex systems and can be approached by engigereethods. Their behav-
ior can be abstracted using many elements such as switched ba thresholds, memory,
feedback, and other elements common in engineering syst&asertheless, studying
cells can be challenging for an engineer. The primary prabtethat cells are much more
complex than man-made systems in terms of the numbers ofsimpeolved in any given
decision. This situation is further exacerbated by the it information that is avail-
able on the configuration of the regulatory networks and gheachics of reconfiguration
of these same networks as a cell responds. Although highugiwput technologies such as
microarrays provide powerful tools to characterize genonpgroteome, each only supplies
a snap-shot of the state of cells. With these technologiegre beginning to characterize
information and its means of transmission within a biolaggystem. Still, what we are still
lacking is how to use this knowledge to exert control ovetdgaal systems. Our prime
objective of our research is “Personalized Cancer Therayyth is based on characteriz-
ing the treatment for every individual cancer patient. Kimgshow one can systematically
alter the behavior of an abnormal cancerous cell will bringloser to personalized cancer
therapy. Towards this objective, we are required to consttunodel for the regulation of
the cell and utilize this model to devise effective treattragrategies. The proposed treat-
ments will have to be validated experimentally, but setectiood treatment candidates is
a monumental task by itself. It is also a process where ary@malpproach to systems

biology can provide significant breakthrough.

This dissertation follows the style tEEE Transactions on Biomedical Engineering.



In this dissertation, we address theoretical frameworkgtds effective treatment strate-
gies in the context of a given model of gene regulatory netsior

Most cellular processes involve many different moleculBse metabolism of a cell
consists of many interlinked reactions. Products of oneti@a will influence the next,
thus forming the metabolic network [1]. Similarly, sigmajimolecules are interlinked and
cross-talk between the different signalling cascadesgdahma signaling network. The same
is true for regulatory relationships between genes and gireducts. All these networks
are closely related, e.g. the regulatory network is infleeinoy extracellular signals. Our
main interest is in transcription regulation networks arel will refer to them as “gene
regulatory networks”.

There have been numerous attempts to model the dynamicavibelof gene reg-
ulatory networks, ranging from deterministic to stochgstising either discrete-time or
continuous-time descriptions of gene interactions. Rgnasl that have been considered
in this context include Bayesian networks [2], Boolean et [3], and, recently, proba-
bilistic Boolean networks [4].

A deterministic model of a gene regulatory network can imea number of different
mechanisms that capture the collective behavior of the ehsnconstituting the network.
What deterministic models have in common is that there isrherent notion of random-
ness or stochasticity in the model once it is specified [4]. #dei system that has received
much attention, not only from the biology community, butaais physics, is the Boolean
network model, originally introduced by Kauffman [3]. Inishmodel, gene expression is
quantized to only two levels: ON and OFF. The expressionl lgstate) of each gene is
functionally related to the expression states of some ajkaes, using logical rules [5].
In a Boolean network, each (target) gene is “predicted” byesd other genes by means
of a Boolean function (predictor). Thus, after having inéer such a function from gene

expression data, it could be concluded that if we observeahes of the predictive genes,



we know, with full certainty, the value of the target gene.

Conceptually, such an inherent determinism seems prolieemsit assumes an en-
vironment with no uncertainty. However, the data used feritlfference exhibits uncer-
tainty on several levels. First, there is biological una®tty: gene expression is inherently
stochastic, not in the sense that it is totally random, bat ithhas a stochastic nature on
account of intrinsic biological variability. Second, teds experimental noise due to the
complex measurement process, ranging from hybridizatbowitions to microarray image
processing techniques. Third, there may be interactirentatariables, such as proteins,
various environmental conditions, or other genes that weplsi do not measure, that fur-
ther add to the variability of the measurements. Thus, wearaeeposition of having to
infer a (deterministic) predictor under uncertainty. Raoiistic Boolean networks (PBNS)
have been introduced to address such uncertainty. A nunilaelddgional justifications for
introducing PBNs are contained in [5]. In this dissertatime model the gene regulatory
network dynamics as a probabilistic Boolean networks.

PBNs allow the incorporation of uncertainty into the ingeme relationships [6]. This
class of models offers a more flexible and powerful matherabfibstraction. PBN is
capable of incorporating the effect of latent variabled, dicectly captured in a Boolean
network. The dynamics of a PBN can be represented via a tisttnee Markov chain. A
logical state of the corresponding Markov chain is a geniicprofile.

Our ultimate objective in modeling genetic regulatory nativs is the identification of
potential targets for therapeutic intervention [6]. Fatance, in cancer, one can consider
correlation between metastasis and the abundances of m&\&iftain genes. In this re-
spect, the abundance of mMRNA for the gene WNT5A has been fuulpel highly discrim-
inating between cells with properties typically assodatéth high versus low metastatic
competence [7]. Appropriate alteration in the expressiadNT5A can be perceived ther-

apeutically, and it can therefore be used to search for amapintervention strategy [8].



In [9] and [4], several methods to design therapeutic irgetions are discussed in the
context of probabilistic Boolean networks. Some of thes¢hos are intended to reduce
the likelihood of the gene-expression profiles associatil aberrant cellular functions
via manipulation of a control gene. In a nutshell, whenevamnging the expression level
of a control gene is perceived as a therapeutic option, thetem-based therapies search
for the most effective sequence of such changes to bengfiel#r cell dynamics. The
resulting intervention strategy specifies the appropeajgession of the control gene in
order to reduce the likelihood of pathological cellulardtions.

Major efforts have initially focused on manipulating extar (control) variables to
desirably affect dynamical evolution over a finite time kon [10]. These short-term poli-
cies have been shown to change the dynamical performaneguaftory networks over a
small number of stages; however, they are not necessafdgtioe in changing long-run
network behavior. To address this issue, stochastic ddmsobeen employed via dynamic
programming algorithms to find stationary control polidieat affect the steady-state dis-
tributions of PBNs [11].

In this dissertation, we first address one practical isstledannference of PBNs from
biological data [4]. A significant effort has been put forthibfer PBNs. The inference
problem depends on the kinds of data available. Data ara aisumed to come from the
steady-state distribution of the underlying biologicalnark. This is typically the case for
cancer patient data. We show how and why using the coeffiofedgtermination (CoD) in
the inference of PBNs can lead to artifacts in the structéitkeonetwork. We also propose
an inference algorithm to avoid such artifacts.

Formulating the problem of intervention in a regulatoryw@tk as a classical infinite-
horizon decision making process introduces an eleganytcellframework that may be
instrumental to enhance our understanding of treatmenbdesy. Despite its conceptual

benefits, the classical intervention fails to address maagtigal and technical issues. In



the past few years, the classical framework has been extandeveral directions to im-
prove system-based intervention schemes. To this end, mgd=y three control theoretic
problems in the context of PBNs. These proposed analytords tprovide insight into
the design of effective therapeutic interventions. Theséwods strive to address some of
the practical concerns that are brought up by medical pi@uogrs. In the following, we

explain them in more details.

A. Boolean Networks and Bidirectional Gene Relationships

The coefficient of determination (CoD) has been used to iBmolean networks from
steady-state biological data, in particular, to estimiageconstituent Boolean networks for
a probabilistic Boolean network. The advantage of the CoEhotwover design methods
that emphasize graph topology or attractor structure isttteaCoD produces a network
based on strong predictive relationships between targetggand their predictor (parent)
genes. The disadvantage is that spurious attractor cygpesaain the inferred network, so
that there is poor inference relative to the attractor stmeg that is, relative to the steady-
state behavior of the network. An attractor is a set of stiteghich a Boolean network
evolves after a long enough time. Given steady-state datee should not be a significant
amount of steady-state probability mass in the inferredvoit lying outside the mass of
the data distribution; however, the existence of spuridma@or cycles creates a significant
amount of steady-state probability mass not accountedyftindodata.

Using steady-state data hampers design because the ab$¢acworal data causes
the CoD method to suffer from a lack of directionality witlyeed to prediction. This may
result in spurious bidirectional relationships among genewhich two genes are among
the predictors for each other, when actually only one of tsbould be a predictor of the

other, thereby creating a spurious attractor cycle. Chdpteharacterizes the manner in



which bidirectional relationships affect the attractousture of a Boolean network. Given
this characterization, we propose a constrained CoD inéeralgorithm that outperforms
unconstrained CoD inference in avoiding the creation ofispis non-singleton attractor.
Algorithm performances are compared using a melanomadi@aséabilistic Boolean net-

work [12].

B. Timing in Probabilistic Boolean Networks

Implementation of an intervention policy derived for prbbetic Boolean networks re-
quires nearly continuous observation of the underlyinddgjizal system since precise ap-
plication requires the observation of all transitions. ladical applications, as in many
engineering problems, the process is sampled at discreteititervals and a decision to
intervene or not must be made at each sample point.

In this work, we construct a framework for gene interactisnsh that the model
class: (i) incorporates rule-based dependencies amorgsgéi) allows the systematic
study of global network dynamics, (iii) is able to cope withcertainty, (iv) accounts for
the sampling rate of temporal profiles, (v) remains robustiige estimation errors due to
small samples. To this end, in Chapter IV, we extend the ntidefinition of PBN and
propose a discrete-time discrete-space model called sagite-dependent PBN (SRD-
PBN) [13].

C. Optimal Cyclic Control Policy

We are able to exploit the biochemical differences betwesntdria and human cells so as
to achieve toxic drug concentrations in the former whilerggathe latter. This selectiv-
ity largely contributes to the success in treating badténfactions. Unfortunately, such

high selectivity is at present elusive in the treatment ahho cancers. Hence, great ef-



forts are required to determine dose schedules that maaith& benefit-to-toxicity ratio
in cancer therapy [14]. Dose intensity is a measure of treatrdelivery that looks at the
amount of drug delivered per unit of time. To mitigate theride¢ntal side effects of a
treatment in general, we should account for dose intensitysystem-based intervention
method. Therapeutic intervention should avoid undesergbhe-expression profiles while
accounting for the quantity or frequency of applied drug$igher drug dose intensity can
be delivered by increasing the dose per cycle (dose esmajati by reducing the interval
between cycles (dose density).

To reduce the side-effects, certain types of cancer thesaguch as chemotherapy,
are given in cycles with each treatment being followed byavery period. During the
recovery period, the side effects tend to gradually subsideChapter V, we show how
an optimal cyclic intervention strategy can be devised fé&?BN. The effectiveness of
optimal cyclic therapies is demonstrated through numksitalies for random networks.
Furthermore, an optimal cyclic policy is derived to conttioé behavior of a regulatory

model of the mammalian cell-cycle network [15].

D. Mean-First-Passage-Time Control Policy

In general, dynamical programming algorithms can be probte owing to their high
computational complexity. Two additional computatiogdllrdensome issues that arise in
cancer therapy are the potential for controlling the nekward identifying the best gene
for intervention. Chapter VI proposes an algorithm basedhean first-passage time that
assigns a stationary control policy for each gene candidagerves as an approximation
to an optimal control policy and, because of its reduced adgatpnal complexity, can be
used to predict the best control gene. Once the best corgr@ ¢ identified, one can

derive an optimal policy or simply utilize the approximatalipy for this gene when the



network size precludes a direct application of dynamic mogning algorithms. A salient
point is that the proposed algorithm can be model-free. rtlwa directly designed from
time-course data without having to infer the transitionhadoility matrix of the network
[16].

To set the stage, in Chapter Il, we first introduce the baakuggloof this research in
more details. Chapter Ill considers the bidirectionaltiefeships in Boolean networks. In
Chapter IV, we introduce how sampling-rate can be incotjeoran probabilistic Boolean
networks. We develop a novel framework to model cyclic catreatments such as chemother-
apy in Chapter V. We propose a heuristic control design nmiethessed on mean-first-

passage-times in Markov chains in Chapter VI.



CHAPTER I

BACKGROUND

A. Boolean Networks

A Boolean network (BNY7(V, F'), [17], is defined by a sequenté= {z;}?_, of n nodes
and a set of Boolean functiofis= {f1, ..., f,}wherez; € {0,--- ,d — 1} andd denotes
the quantization level. In gene regulatory modelingrepresents the expression level of
genei, which can be either active (1) or inactive (0). As is commaione, we will mix
terminology by referring to the nodes as genes. The set ofeAaodunctiond represents
the regulatory rules between genes. At time gted, the expression of gene, called the
target gene, is predicted by the expression of al&gtof genes at time steppbased on the
regulatory functionf;. The sequence of genés; = {z;,, "'7xiki} is called thepredictor
setof x;. The functionf; is called thegpredictor functiorof ;. We assume that there are no
nonessential genes in a predictor set, meaning that thécppetlinction requires the full
set as input. The cardinality &, |IW;|, is called theconnectivityof z; and the maximum
connectivity in the network is called the connectivity oéthetwork.

A state of the BN at time is a vector(z(t), ..., z,(t)) of gene values which also
referred to agyene activity profile The possible states of the BN form #ate space
Given an initial state, the network will eventually enterea af states through which it will
repeatedly cycle forever. Each such set is calledtaactor cycle and asingleton attractor
is an attractor cycle of length The attractor cycles are mutually disjoint. The set of all
states that transition into an attractor cycle is calleddhsnof that cycle. The family of

basins partitions the state space.
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B. Probabilistic Boolean Networks

Probabilistic Boolean network (PBN) [6] consists of a seged” = {x;}!, of n nodes
with z; € {0,---,d — 1}, together with a sequendd.}*_, of vector-valuednetwork
functions In the framework of gene regulation, each elemermnepresents the expression
level of a gene. Itis common to mix the terminology by refegrtox; as theith gene. The
state vectok(t) = (z(t),...,x,(t)) is called thegene-activity profil§GAP) at timet.
Each network functioffi. = (f.1, .. ., f.,) determines a constituent netwodoftexj of the
regulatory network. The functiofy; : {0,...,d—1}" — {0,...,d—1}isthe predictor of
genei, whenever network is selected. At each updating epoch a decision is made whethe
to switch the constituent network. This decision is base@ dinary random variablé
with P(§ = 1) = ¢. If £ = 0, then the network is not switched, the model behaves like
a fixed network and the values of all genes are synchronoyslated according to the
current constituent network. K = 1, then a constituent network is randomly selected
from among all constituent networks, including the curreme, according to the selection
probability distribution{p.}*_, and, after selecting., the values of all genes are updated
accordingly. Ifg = 1, so that a switch is permitted at every time point, the neltvi®said
to beinstantaneously randonif ¢ < 1, then the PBN will remain in a constituent network
so long ag remains equal t0, and the PBN is said to lmntext-sensitive

Two quantization levels have thus far been used in practicé.= 2 (binary), then
the constituent networks are Boolean networks withr 1 meaning OFF or ON, respec-
tively. The casel = 3 (ternary) arises when we consider a gene t0 f@own-regulated),
2 (up-regulated), and (invariant). This latter situation commonly occurs withiR mi-
croarrays, where a ratio is taken between the expressioewyain the test channel (red)
and the base channel (green). In this work, we will devel@pnttethodology forl = 2,

so that gene values are eittieor 1; however, the methodology is applicable to any finite
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number of levels. For binary PBNs, there is a natural biggcbetween the GAR(¢) and
its integer representation(t), which takes values iny = {0, 1, ...,2"—1}. We consider a
PBN with perturbation, meaning that there is a binary randeotory = (1,72, .- -, Ya)s
independent of, such thatP(y; = 1) = p, andyy, s, . .., 7, are independent. = 0
the network transitions according to the network functammd ifv # 0 the valuer; flips if
and and only ify; = 1.

The dynamic behavior of an instantaneous PBN can be modgledtarkov chain
with state space ofV. Similarly, the dynamic behavior of a context-sensitive\P&n be
modeled by a Markov chain whose states consist of (conteXE)®rdered pairs taking

values in

{(c,;x): ce {1,....k},xz € W}.

In either frameworks, IeP denote the transition probability matrix of the correspond
ing Markov chain where the state space is denote$l. ahe evolution of the network can

be modeled by a stationary discrete-time equation
2(t+1) = f(z(t),w(t)) fort=0,1,...,

where state:(t) € S. The disturbancev(t) is the manifestation of uncertainties, due to
either network switching or a change in gene-activity peafédsulting from a random gene
perturbation. Gene perturbation insures that all statésarMarkov chain communicate
with one another. Hence, the finite-state Markov chain isdigand has a unique steady-

state distribution.
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C. Optimal Control in Probabilistic Boolean Networks

In the following, we describe how to devise an optimal congolicy for a PBN. Let

P = (pi;i,7 € S) denote the transition probability matrix of the Markov ahabrre-
sponding to the context-sensitive or instantaneous PBRhdrpresence of external con-
trol, we suppose that there exists a binary control input) € C = {0,1}. A control
u(t), which can take value8 or 1 at each updating epoch specifies the action on the
control gene. Treatment alters the status of the contra gehich can be selected among
all genes in the network. If the control at updating epoéhon,«(t) = 1, then the state
of the control gene is toggled; if(t) = 0, then the state of the control gene remains
unchanged. In the presence of external control, the systeit®n is represented by a

stationary discrete-time equation
2(t+1) = f(2(t),u(t),w(t)) fort=0,1,...

where state(t) is an element of the state-spageandw(t) is the manifestation of uncer-
tainties in the model. The probability of transitioningrincstate; to statej under control
u is denoted by;;(u), wherei, j € S.

The problem of optimal intervention for a PBN is formulatesdaa optimal stochastic
control problem. A cost-per-stage(i, u, j), is associated to each intervention in the sys-
tem. In general, a cost-per-stage may depend on the oraji sthe successor stajeand
the control input:. We assume that the cost-per-stage is stationary and badodail i, ;
in S, andu in C = {0, 1}. We define the expected immediate cost in statehen control

u is selected, by

§<Zv u) = Zplj(u) 9(7'7 u?])

We consider the discounted formulation of the expected tamtsi. The discounting

factor,a € (0,1), ensures convergence of the expected total cost over tigerion[18].
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In the case of cancer therapy, the discounting factor enipdeghat obtaining treatment
at an earlier stage is favored over later stages. The exptat discounted cost, given a

policy = and an initial state, is denoted by

N—oo

Jx( —hmE{Zar 2(t)), 2(t + 1)) (0):¢}, (2.1)

wherez(t),i € S. A policy 7 = {uo, 111, - - .} IS a sequence of decision rulgs: S — C,
for each time step. The vectod ; of the expected total costs is called the value function. In
a stochastic control problem, we seek an interventionegyat* among all the admissible

intervention strategied that minimizes the value function for each statee.,

(i) = arg min J.(7), VieS. (2.2)

we Iy

For a finite time horizon, the dynamic programming algorittiescribes how the op-

timal costJ, ., propagates backward in time to the optimal cst

Je(i) = mln[ i, u) + A pr VJer1(d ] (2.3)

ueCl

The above equation motivates the introduction of the mappinS — R defined by

TJ(i) = Iuneln[ i,u —i—)\pr j], Vi e S, (2.4)
for any value functiorn/ : § — R. Given the mapping of (2.4), the following propositions
summarize how one can devise an optimal one-transitiooydhroofs of these statements

can be found in [18].

Proposition 1 (Convergence of the discounted cost algorithm): For ang S and any

bounded functioy : S — R, the optimal cost function satisfies

JHz) = lim (T"J) (2), Vzes.

M—o0
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Proposition 2 (Bellman’s optimality equation): The optimal cost funatid* satisfies
J=TJ". (2.5)

Furthermore,J* is the unique solution of this equation within the class afrmbed func-

tions.

Proposition 3 (Necessary and sufficient condition for optimality): A staary policyu is

optimal if and only if it attains the minimum in Bellman'’s opality equation of(2.5).

The three aforementioned propositions provide the bas fieethod for determining
an optimal one-transition policy. Proposition 2 asser# the optimal cost function satis-
fies Bellman’s optimality equation while Proposition 1 stathat the optimal cost function

can be iteratively determined by running the recursion gqaa

Jor=TJ,, k=0,1,2,... (2.6)

for any bounded initial cost functior, : S — *R. Since this iteration is guaranteed to
converge toJ*, one can continue the iteration until some stopping coteis reached.

By Proposition 3, the resulting optimal policy is also siatiry. The procedure described
in (2.6) is referred to as the value iteration algorithm sirat every stage, we are iterating
on the value function. The optimal one-transition policpigained as the argument of the

minimization step once the iterative procedure has comeerg

D. Continuous-time Markov Chain

Consider a continuous-time discrete-space stochastoepspZ(t),¢ > 0} taking on val-
ues in the set of nonnegative intege&ts In analogy with a discrete-time Markov chain,
we say that the proceg</ (¢),t > 0} is a continuous-time Markov chain¥fs, ¢ > 0, and

nonnegative integerisj, z(v) € S,0 < v < s,
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Pr{Z(t+s)=j|Z(s)=1i,Z(v) =2(v),0 <v <s}=

Pr{Z(t+s) = j|Z(s) = i}.
In other words, a continuous-time Markov chain is a stodgb@socess with the Markovian
property. This means that the conditional distributionhaf tuture state at time+ s, given
the present state at timeand all the preceding states, depends only on the preseat sta
and is conditionally independent of the states prior to timeent state. The past given the
present does not provide more information about the future.

If we let 7; denote the amount of time that the process stays in stsfore making a

transition into a different state, then the Markov propantplies

Pr{r, > s+t|, >s} = Pr{m >t}, Vs, t>0.

The random variable; is memoryless and must therefore be exponentially didedun
general, a continuous-time Markov chain is defined I§y-matrix. A Q-matrix onS is a

matrix ) = (¢;;; 1,7 € S) satisfying the following conditions [19]:

(i) 0 < —qi < 00, Vi;

(i) q; >0, Vi#j; (2.7)

(ii1) > ;er i =0, Vi.
In the abovegy;; is the rate of transitioning fromto j andg; = Ei# ¢ is the rate of
leaving state. It is known that a matrix Q is ®-matrix onS if and only if P(¢) = 9 is
a stochastic matrixyt > 0 [19]. In particular, the transition probability fromto ; after¢

unit of time, the(i, j) element ofP (), is given by

Pr(X, = j|Xo = i) = pl,; = [e?], .

v]
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E. Influence in Probabilistic Boolean Networks

Influence is a method for quantifying the relative impact ehgs on other genes within the
context of PBNs [5]. The influenck(f) of genex; on the functionf, with respect to the

probability distributionD(z), € {0,1}", is defined as

Li(f) = Ep [agg)] , (2.8)

whereEp -] is the expectation operator with respect to the distribuﬂo%f—:f? = f(2VN)

f (2@ is the partial derivative of the Boolean functignthe symbols is addition modulo
2 (exclusive OR), andV"*) = (zy, ..., x; 1, k, 11, ..., x,) for k € {0,1}. In other words,
(2.8) gives the influence as the probability (under the ithistion D(x)) that a toggle of
the jth variable changes the value of the function. In the comt&RBNS, the influence
of genex;, on genex; is given by (z;) = S\ I(f1”) - pi” where {p\”}'", are the
selection probabilities of the predictor functions of geaedi(:) represents the number of

predictor functions of geng[5]. To quantify the long-run influencé) () is the stationary

distribution of the PBN.

F. Biological Data

In the theoretical frameworks we developed, we consideig@vee regulatory networks that
have been derived from biological data. In the followinggé two networks are introduced

in more details.

1. Melanoma Gene Regulatory Network

The steady-state data was collected in a profiling study aéastatic melanoma in which
the abundance of messenger RNA for the gene WNT5A was fouhd taghly discrimi-

nating between cells with properties typically associatétl high metastatic competence
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versus those with low metastatic competence [7]. Thesenfgsdivere validated and ex-
panded in a second study, in which experimentally increptiie levels of the WNT5A
protein secreted by a melanoma cell line via genetic engimgpenethods directly altered
the metastatic competence of that cell as measured by tidesthin vitro assays for metas-
tasis [20]. A further finding of interest in this study wasttha intervention that blocked the
WNTS5A protein from activating its receptor, the use of anlaody that binds the WNT5A
protein, can substantially reduce WNT5A's ability to inéue metastatic phenotype. This
suggests control based on intervention that alters theibatibn of the WNT5A gene to
biological regulation. Disruption of this influence can gatially reduce the chance of a
melanoma metastasizing, a desirable outcome. Ten gerohgdimy the WNT5A gene,
were selected in [21] based on the predictive relationshipeng 587 genes: WNT5A,
pirin, S100P, RET1, MMP3, PHOC, MART1, HADHB, Synuclein,da8TC3. We apply
the design procedure proposed in [22] to generate a PBN sgiagdour constituent BNs.
The method of [22] generates BNs with given attractor stngs and the overall PBN is
designed so that the data points, which are assumed to cometlfre steady-state dis-
tribution of the network, are attractors in the designed PBNs approach is reasonable
because our interest is in controlling the long-run behasfahe network. The control
objective for this 10-gene network is to down-regulate thd VBA gene, because WNT5A
ceasing to be down-regulated is strongly predictive of theeb of metastasis. A number
of other control studies based on the same data have aimexvioi@gulate the WNT5A
gene. This model has been used because the relation of WNY B®tiastasis is well es-
tablished and the binary nature of the up or down regulatimts & binary model. A state
is desirable if WNT5A = 0 and undesirable if WNT5A = 1. In thisaenple, the use of
the state WNT5A has resulted from biological knowledgetne¢pthe state of WNT5A to

metastasis in melanoma tumors.
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2. Mammalian Cell-Cycle Network

In this section, we construct a PBN that is a probabilistisi of the Boolean model for
the mammalian cell cycle regulation proposed in [23]. THB&Rostulates the mammalian
cell cycle with a mutated phenotype.

During the late 1970s and early 1980s, yeast geneticist$ife the cell-cycle genes
encoding for new classes of molecules, including the cgdlso-called because of their
cyclic pattern of activation) and their cyclin dependentddges (cdk) partners [23]. Our
model is rooted in the work of Faure et al., who have recentiyvéd and analyzed the
Boolean functions of the mammalian cell cycle [23]. The auwtave been able to quan-
titatively reproduce the main known features of the wilgeybiological system, as well as
the consequences of several types of mutations.

Mammalian cell division is tightly controlled. In a growimgammal, the cell division
should coordinate with the overall growth of the organistisicoordination is controlled
via extra-cellular signals. These signals indicate wiredheell should divide or remain in
a resting state. The positive signals, or growth factortjgate the activation of Cyclin D
(CycD) in the cell.

The key genes in this model are CycD, retinoblastoma (Rlg) p&7. Rb is a tumor-
suppressor gene. This gene is expressed in the absencegtling, which inhibits the Rb
by phosphorylation. Whenever p27 is present, Rb can be sxgdeeven in the presence of
CycE or CycA. Gene p27 is active in the absence of the cycWisenever p27 is present,
it blocks the action of CycE or CycA. Hence, it stops the cgtlle. Table | summarizes
the Boolean functions of the wild-type cell cycle network.

The preceding explanation represents the wild-type gellecmodel. Following one
of the proposed mutations in [23], we assume p27 is mutatddtaitogical rule is always

zero (OFF). In this cancerous scenario, p27 can never beatedli As we mentioned
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earlier, whenever p27 is present, Rb can be expressed eube presence of CycE or
CycA. For the mutated cell cycle network, p27 is always zerd Bb cannot be expressed
in a case where CycD is not present but Cyck or CycA are ac#8g [This mutation
introduces a situation where both CycD and Rb might be imactiAs a result, in this
mutated phenotype, the cell cycles in the absence of anytfaestor. In other words, we
consider the logical states in which both Rb and CycD are deegnlated as ‘undesirable
states’, when §7 is mutated. Table Il summarizes the mutated Boolean funstio

The Boolean functions in Table Il are used to construct thal Pidel for the cell
cycle. To this end, we assume that the extra-cellular sigméhe cell-cycle model is a
latent variable. The growth factor is not part of the cell #sdalue is determined by the
surrounding cells. The expression of CycD changes indegehdof the cell’'s content
and reflects the state of the growth factor. Depending on xpeession status of CycD,
we obtain two constituent Boolean networks for the PBN. That ionstituent Boolean
network is determined from Table Il when the value of CycDgsi@ to zero. Similarly,
the second constituent Boolean network is determined lingdahe variable of CycD to
one. Here, we set the perturbation probabilities equaltd.

According to Table Il, the cell-cycle PBN consists of ninengse: CycD, Rb, BEF,
CycE, CycA, Cdeo, Cdht, UbcH10, and CycB. The above order of genes is used in the
binary representation of the logical states, with CycD asniost significant bit and CycB
as the least significant bit. This order of genes in the ldgitzdes facilitates the presenta-
tion of our results and does not affect the computed contlities.

Having CycD and Rb as the most significant genes, we assurnthéhdown regula-
tions of the CycD and RD, i.e. the cell growth in the absencgrowth factors, is unde-
sirable. Consequently, the state-space is partitioneduntesirable states and desirable
states. Application of methods developed for control ofegeagulatory networks requires

the designation of desirable and undesirable states, @ddépends upon the existence of
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Table I. Boolean functions of normal mammalian cell cycle.

Product | Predictors

CycD Input

Rb CycD N CycE N CycA A CycB) V (p27 A CyeD A CycB)

E2F Rb A CycA A CycB) V (p27 A Rb A CycB)

CycA E2F A Rb A Cde20 A (Cdhl A UbcH10)) V (CycA A Rb A Cdc20 A (Cdhl A UbcH10))

(
(
CycE | (E2F A Rb)
(
p27 (CyeD A CycE A CycA N CyeB) V (p27 A (CycE A CycA) A CyeB A CyeD)
Cdc20 | CycB
Cdhl (CycA A CycB) V (Cdc20)
UbcH10 | (Cdh1) V (Cdhl A UbcH10 A (Cdc20 V CycA V CycB))

CycB (Cde20 A Cdhl)

relevant biological knowledge. In the cell-cycle exampleaw p27 is mutated, we consider
the logical states in which both Rb and CycD are down-regdlat undesirable states. We
assume that the cost of the logical states with down-regdil&b and CycD is higher than

that for the states in which these two genes are not simuteshe down-regulated.

Table Il. Mutated Boolean functions of mammalian cell cycle

Product | Predictors

CycD Input

Rb CycD N CycE N CycA A CycB)

E2F Rb A CycA A CycB)

(

(
CycE (E2F ARD)
CycA | (E2F A Rb A Cdc20 A (Cdhl A UbcH10)) V (CyeA A Rb A Cdc20 A (Cdhl A UbcH 10))
Cdc20 CycB
Cdhl (CycA A CyeB) V (Cde20)

UbcH10 | (Cdhl) V (Cdhl AUbcH10 A (Cdc20 Vv CycAV CycB))

CycB (Cdc20 A Cdh1)
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CHAPTER III

BOOLEAN NETWORKS AND BIDIRECTIONAL GENE RELATIONSHIPS
Various models have been proposed for gene regulatory netwd4] and great efforts
have been made on the inference of these networks from genession data. Perhaps the
key issue concerning network inference is the large spanetaforks from which a model
must be selected in relation to the amount of data typicalgilable. This dimension-
ality problem drives inference in two directions: (1) todsrcoarse-grained models that
require less data for inference [25], and (2) applicatiohiofogical constraints [26]. This
Chapter concerns the inference of Boolean networks. Feethetworks, several inference
methods have been proposed [27, 28, 5, 29]. These methodsaggmssume time-course
data; however, here we are concerned with inference from-thdependent data, the kind
of data one typically obtains from microarray studies inuay human subjects. In this
context, it is generally assumed that the data come fromtézelg state of the network.

The long-run behavior of a Boolean network is characterizgdts attractor cycles.
The attractor cycles in Boolean networks modeling biolabgystems are typically as-
sociated with phenotypes and tend to be short [17, 30, 3h hitlogical state stability
contributing to singleton attractors [31]. Singleton attors have been associated with
phenotypes such as cell proliferation and apoptosis [32]ilks reason, in the absence of
time-course data to indicate the contrary, it is sometinsssimed that the data states rep-
resent singleton attractors. This assumption is enhanbed & Hamming-distance filter is
applied to the data states to act as a noise filter, becau$i#teheesults in a small number
of data states, each differing significantly among the camepts of the states [33].

* Reprinted with permission from “Inference of Boolean Netkgounder Constraint

on Bidirectional Gene Relationships” by G. Vahedi, I. lvang. R. Dougherty, 2009ET
Systems Biology, 191-202, Copyright 2009 by IET Systems Biology.
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One method proposed for inference from steady-state datdves the coefficient
of determination (CoD) [34]. Given a set of predictor valeaband a target variable to
be predicted, the CoD measures the relative decrease ircioederror when using the
predictor variables in comparison to using the best eséméthe target in the absence
of knowledge concerning other variables. The CoD was thé rivethod used to infer
probabilistic Boolean networks (PBNS) [5].

A fundamental issue is that, without time-course data, thB €annot provide infor-
mation on the direction of prediction. This problem maniatself in the situation where,
if genea is a high CoD predictor of gene then gene is typically a high CoD predictor
of genea. We refer to this situation asladirectional relationshipbetween genes and
b. The presence of bidirectional relationships affects tiraetor structure of a Boolean
network, and this impacts the inference process with th@trbeing that the inferred net-
work possesses spurious attractor cycles. The problentffisisntly troublesome that it
has suppressed the use of CoD inference methods. The ioéeneethods that have taken
its place are primarily based on the attractor structurth either secondary or no concern
for the predictive relations between individual genes mnletwork [22, 33]. This kind of
approach is natural when attractor structure is of primatgrest.

In this chapter, we will accomplish both goals in networkiges preservation of at-
tractor structure and connectivity based on strong gergigiren. To accomplish this aim,
we investigate the bidirectional effects for Boolean ne&sowith connectivityKX' = 1
or K = 2, the connectivity of a Boolean network being the maximum bemof vari-
ables allowed for a Boolean function. As a consequence ofanalysis, we propose a
novel constrained CoD-based inference algorithm thatoped significantly better than
unconstrained CoD inference relative to the attractorctiire. We note that the number of
attractor cycles and their average lengths in random Baabetworks has recently been

addressed for the case of connectivify= 1, and it is clear that even this seemingly simple
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structure presents challenge for both analytical and coatipmal approaches [35].

We will begin by defining the bidirectional relationship angotwo genes of a net-
work. We then investigate the effect of such relationshipghe attractor structure on
specific classes of Boolean networks. After discovering hiogvbidirectional relation-
ships influence the attractor structure of a Boolean netwamnkl providing estimates of
encountering such relationships and particular attresttoictures, we discuss CoD-based
inference. We then propose a novel algorithm that mitigaigisectional relationships and
we provide simulation results that support our analysisstlyawe present an application
of the proposed algorithm to melanoma gene expression ddtecanpare its performance

to unconstrained CoD inference procedures.

A. Bidirectional Relationships

Our particular interest is with how genes that are predsoddeach other affect the attractor
structure. As noted in the Introduction of this Chapter, wkach pairs arise on account
of network inference, they can lead to the existence of icegtractor structures. This

motivates the following definition.

Definition 1 The genes; andz; in a BN are said to have bidirectional relationship iff

x; € W; andz; € W;. The relationship is said to be obnnectivity n if |W;| = |W,| = n.

To say thatr; andz; have a bidirectional relationship of connectivitys to say that
they have a bidirectional relationship and each has coivitgct. Alternatively, one might
have defined the relationship to be of connectivity max{|W;|, |W;|} = n, or to be of
connectivity(m, n) if |W;| = m and|W;| = n, the rationale behind the first alternative
being to bound the complexity of the predictor relations #r&lsecond being to specify

directly the predictor-set cardinalities. We have definedeon as we have because it
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characterizes the most complex case when one of the predat®has cardinality. It is
this maximum complexity that interests us.

We will investigate the effect of bidirectionality on theratctor structure, provide es-
timates of how often such bidirectional relationships Feap@and derive a lower bound es-
timate for the probability of a BN with such relationshipvimag at least one non-singleton
attractor cycle. We first consider connectivityand show that there is at least one non-
singleton attractor cycle in the BN. Next we consider cotingg 2. There we will see
that even such a minimal increase of the cardinality of theglijgtor sets complicates the

analysis of the attractor structure.

1. Connectivity-1 Didirectionality

Proposition 4 If there are two genes in a BN having a bidirectional relasbip of con-

nectivity 1, then the BN has at least one non-singleton etitrecycle.

Proof

Without loss of generality assume the two genescat@ndz,. There are four possible
transition pairs of predictor functions for these gene¥;f(l= x, andf; = xz1; (2) f1 = 2»
andf, = 77; (3) fi = 7z and f, = z1; and (4) f1 = 73 and f, = 771, where the overbar
denotes negation.

Consider the first possible pai; = =5 and f, = z,. If the transitions start from
the pointOly, then after finitely many transitions, the BN will enter atrattor01xo or
10yq, Wherey, yo andx, denote vectors of the remaining gene values. Assume thatshe
visited attractor state ¥l xq (the other possibility 0y, can be considered in the same way).
Becauser; andx, depend only on each other afitiky is an attractor state, from this point
on the network must follow a transition sequence of the f0img,10x4,01x,,..., 01xy,

wherex; = x¢ andx, # xo for 1 < r < k. Thus, the sequence forms an attractor cycle
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of lengthk = 2m > 1. Itis straightforward to show that similar cycles are fochvehen
fi =T andf, = 7.

Next, we consider the predictor functions paif:= =, and f; = 7;. If the transitions
start from any point of the form, z,y, then after finitely many transitions the BN will enter
an attractor state that is of one of the following forn@®xg, 01yg, 10z Or 11uy. Here
we consider the case when the first visited attractor staiéxg (the other possibilities
can be considered similarly). Becauseandx, depend only on each other aftkx, is
an attractor state, from this point on the network must feliotransition sequence of the
form, 00x¢,01x1,11x5,10x3, . . ., 00x, Wherex,= xo andx,# xo for 1 < r < k. Thus,
the sequence forms an attractor cycle of lenigth 4m > 1. It is straightforward to show

that similar cycles are formed wheih = 73 and f, = ;. O

2. Connectivity-2 Bidirectionality

Supposer; andx, have a bidirectional relationship of ordemwith W; = {z,, z,} and
W, = {x1,23}. Because all predictor variables are essential, the faigwonditions

cannot occur (refer to the truth tables fgrand f5):
1. (a1 =C andb1 = dl) or (ag = Cy andb2 = dg)

2. (a1 =b and01 = dl) or (CLQ = by and02 = dg)

Table Ill. Truth tables forf; and fs.

2 | 23 | f1 1| T4 | fo
0 0 aj 0 0 as
0 1| b 0 1 | by
1 0 C1 1 0 (&)
1 1 | dy 1 1 | dy

Moreover, any combination gf; and f; belongs to at least one of the following (not

mutually exclusive) classes:
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Fi: ay =¢andas = ¢
Fy: ay =7¢; andby = dy
Fy: by =d, andas = ¢
Fy: by = dy andby = ds

Proposition 5 If a BN possesses a pair of genes that have a bidirectionastieinship of
connectivity2, then at Ieas% of the states in its state space cannot be singleton attracto

of the network.

Proof

Without loss of generality, suppose andz, have a bidirectional relationship of order
2 with Wy = {zy, 24} andW, = {z1,z3}. To prove the proposition, we consider the
following four cases: (a}fi, f2) € Fy andzzzy = 00; (b) (f1, f2) € F» andxzszy = 01;

(©) (f1, f2) € F3 andzzxy = 10; and (d)(f1, f) € F, and the states of the BN were
r3xy = 11.

For case (a), first considé¢rf;, fo) € F; such thats; = & = 0 anday = & = 0.
Examination of the truth tables ¢gf and f,, Table Ill, wherea; = ¢ = 0 anda, = & = 0,
together with the assumed constant values;@ndz,, shows that any state withz, = 00
andz; = T3 cannot be a singleton attractor. A simple counting argursbatvs that the
states where;z, = 00 andx; = 7 account for exactlyl /8 of all of the states in state
space. Reasoning in the same way, one can check that(Wheh) € F; witha; =77 =1
anda, = ¢ = 1, the states with:sz, = 00 andz; = 2, cannot be singleton attractors,
and that there are exactly'8 such states in the state space. To complete the analysis of
case (a), consider the situation whéfe, f>) € F; with a; = ¢, as = ¢, anda; = as. In

this case, examination of the the truth tablegcnd f; shows that all of the states where
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zsxy = 00 cannot be singleton attractors. It is straightforward torcddhat exactlyl /4 of
the states in the state space are of this type.
Using similar arguments and symmetry considerations, anesbow that the propo-

sition holds for cases (b), (c) and (d).

B. Algorithm

1. CoD-based Inference of BNs

Thecoefficient of determinatiofCoD) is a general non-linear statistical method to select a
set of predictors for a given gene. It measures the degrehbithvhe transcriptional levels

of an observed (predictor) gene set can be used to improyadaéction of the transcrip-
tional level of a target gene relative to the best predidiaine absence of observations. If
x;, W;, andf; are the target gene, the predictor set, and the predictotitumfor the target

gene, respectively, then the CoD for the target geris given by

g — g0 — &, fi(W3))
= -

whereeg is the error of the best estimate ofin the absence of any conditional variables
ande(z;, f;(W;)) is the prediction error of the target gene according to theeplations of
the predictor sell’; [34]. For minimum mean-square error estimatignis the error of the
prediction ofz; with its mean.

The previous propositions explain why very often the Cofiired BNs possess spu-
rious non-singleton attractors. We propose an algorithooteect this undesirable behav-
ior. We make the typical assumption that the data come frenstisady state, and we apply
the constraint that each data point is a singleton attractor

Since the predictor function of each target gene is estidfaben the steady-state data,

not time-series data, each gene is a perfect estimatoetff(&oD equal to 1). To eliminate
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this trivial case, no gene can be a member of its own predsetorTherefore, fon genes,
for each target gene, there aE’f,;i:l C™=! possible combinations fdi¥;, wherek; is the
maximum cardinality o#V/;.

We employ a method calleflll-logic to estimate the predictor function and conse-
quently the CoD for all possible combinations of predictetssof each target gene. The
CoD estimates a predictor function from the highest ocoueefrequency of the target
gene based on the values of all of the possible sets of peedjehes in the data set. More
details regarding the full-logic method can be found in [38bte that there may be more

than one high CoD predictor set for a target gene.

2. Singleton Attractor CoD Inference Algorithm

Based upon our analysis of bidirectional relationshipspanticular, their effect on the
attractor structure of a BN, we have formulated an algorithat limits the number of such
bidirectional relationships when predictor sets are chaseng the CoD method.

The algorithm’s input is the binary gene expression datae ditcome of the algo-
rithm is a BN with no non-singleton attractors. The follogiparameters are set in advance:
(1) a threshold?¢,p, for the CoD (¢,p = 0.7 in our study); (2) the maximum number,
Mpgr, of bidirectional relationships allowed (keeping in mihat, as we have shown, there
is a substantial probability of there being at least two gemi¢h bidirectional relationships
in an arbitrary BN,Mgr = 3 in our study); and (3) the minimum number,,, of points
in the sample that appear as singleton attractors in ther@df®N ¢4 = 3 in our study).
Any predictor function that exceed3,p is called ahigh CoD predictor functionWe now
describe the Singleton Attractor CoD (SA-CoD) algorithm.

Singleton Attractor CoD (SA-CoD) Inference Algorithm

1. Estimate the CoD ang; for all the combinations of predictor sel®;, for i =
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1,2,...,n.

2. Save alllV; and f; with CoD exceedind,p. For each target gene, save the high
CoD predictor sets and their associated predictor funstinto two columns. The

length,C;, i =1, ..., n, of both columns, depends @i, p.

3. Form a BN fromiV; andf; in step 2 such that the bidirectional relationships does not
exceedV zr. The algorithm never allows bidirectional relationships¢onnectivity

1 since this case guarantees the formation of non-singédtoactor cycles.
4. If there is a non-singleton attractor in the BN, then gotép 8; otherwise, continue.

5. If the number of data points appearing as singleton atiradn the BN is less than

m 4, then go to step 3; otherwise, STOP.

The steps of the algorithm accomplish certain goals: stemissl bidirectional rela-
tionships, thereby limiting spurious attractor cyclesuiesg from bidirectional relation-
ships; step 4 checks to see if any non-singleton attractcesyhave “slipped through”
step 2; and step 5 insures that some minimal number of dataspappears as singleton
attractors in the inferred BN. The algorithm does not gu@@nthat the inferred BN will
not contain singleton attractors that are not data poinitsi boes guarantee that there will
be no non-singleton attractors. It is spurious non-siogletitractors that are ubiquitous in
unconstrained CoD design. The algorithm does not guardhéteall data points will be
singleton attractors, although it guarantees a minimumberm 4, of these.

The algorithm can be run a number of times to produce a nunfli@Nse, with each
data point appearing in one or more BNs as a singleton atdtralis is somewhat similar
to the design of PBNs under the requirement of contextua dansistency [33], where
every data point must appear as a singleton attractor iraat tme constituent BN of the

PBN. There are, however, two key differences. First the oektif [33] does not involve
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the CoD, but instead involves a constrained optimizatidatixe to the data distribution in
the sample, and second, the number of BNs is determined lmiatheand it is theoretically
certain that each data point will appear in at least one oBike as a singleton attractor.
Nonetheless, the analogy is useful because the PBN desitpodiirst proposed in [5] ap-
plied CoD inference without constraint and then took corabans of high CoD predictor
functions to construct the BNs forming the PBN, with the sin@ld ultimately determining
the number of constituent BNs.

Regarding algorithm complexity, the total number of BN tten be generated from
high CoD predictor functions i& = [[:", C;, wheren is the total number of genes a6t
is the number of high CoD predictor functions. Thus, thed®apace had’ members. In

worst-case scenario, step 3 will be repeatetimes.

C. Results and Discussion

1. Comparison of SA-CoD Algorithm with Unconstrained CoDsim

We have applied the preceding BN design procedure usinggegpression profiles from
a study of 31 malignant melanoma samples explained in Chapféhe7 genes used for
the model are pirin, WNT5A, S100P, RET1, MART1, HADHB and SI(his being their
order in the state space) and they were chosen from a $&7ajenes from the data-set
that have been subjected to an analysis of their abilityasspredict each other’s state in
a multivariate setting [21]. Table IV gives the 7-gene pesifor the 18 distinct data points
and their corresponding frequencies. The assumption ighbkalata points correspond to
the steady state of the underlying gene regulatory system.

The SA-CoD algorithm is applied 500 times to the gene exprastata to generate
500 BNs. Based on the specifications of the algorithm, the Bdésess no non-singleton

attractors and there are at least three data points astsingiéractors in each of them. We
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The ratio of the steady-state mass outside the data points

Fig. 1. Light histogram shows the proportion of the steaidyesmass outside the data states
in 1000 PBNs when the SA-CoD algorithm is used. Dark histagsaows the pro-

portion of the steady-state mass outside the data stat€)MRBNs when the un-
constrained CoD method is used.

randomly choose 10 BNs from the pool of 500 BNs. Setting thréupeation probability
equal to0.01, we generate a PBN from these 10 BNs. The PBN is run suffigiéoiig
so that its steady-state distribution can be estimatedttagdroportion of the steady-state
mass lying outside the data states is computed. This progesluepeated 1000 times to
generate 1000 PBNs, in each case the proportion of the sstatiymass outside the data
states being computed. These 1000 proportions are usedntotiie light histogram in
Figure 1. The mass of this histogram is concentrated vesedo O.

To compare the performance of the SA-CoD algorithm with theamstrained CoD
method, we repeat the same experiment with the predictoasetpredictor functions with
high CoD chosen without the constraint of the SA-CoD aldponit Proceeding without
constraint, 500 BNs are generated and 1000 PBNs composé&diifi4 randomly chosen
from the 500 are generated and run into their steady stakesdadrk histogram in Figure 1

is formed from the proportions of mass of the 1000 steadie sligtributions lying outside
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the data states. These are well dispersed between 0 and By3&liminating spurious
attractors, the SA-CoD algorithm puts a much higher comaéion of the steady-state mass
on the data points.

A key issue for PBN design is to compose a PBN with enough BNbha&oeach data
state appears as an attractor in the PBN (that is, appearamstiractor in one of the
constituent BNs) but not to include so many BNs that therel@ge number of spurious
attractors. To compare the SA-CoD algorithm with uncomsé@ design in this regard,
in the next experiment we compare the number of data poimsaang as attractors with
the number of attractors that are not data points in a cadlectf » BNs generated by the
either the SA-CoD algorithm or unconstrained CoD design./Lbe the number of distinct
points in the data)V be the number of data points appearing as attractors in tergied
BNs, andM be the number of non-data-point attractors appearing ige¢nerated BNs. A

reasonable measure of performance for the desired corapasis

R=a(D-N)+(1—a)M

where0 < a < 1, a being chosen depending on what we want to emphasize. Snialler
means better performance.

Since N and M are functions of the number of BNs, R is a function ofn. We
computeR(a,n) forn = 1,2,...,80 and0 < a < 1 by taking R(a, n) to be the average
of 1000 trials of computation ofk, each trial involving randomly choosing BNs from
a pool of500 designed BNs. Figure 2(a) shows the surface grapR(efn) when using
the SA-CoD algorithm. The dots on the surface indicate theimmim value ofR(a, n)
for a given value ofi, the value ofn for the minimum being the optimal number of BNs
relative to the measurRB. For smalla, the emphasis is on avoiding spurious attractors and

hence the optimum is smaller. For large, the emphasis is on recovering data points as
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attractors and hence the optimunis larger.

The differences between Figure 2(a) and Figure 2(b) demairshe benefits of the
SA-CoD algorithm. First, we should point out the differecakes of the graphs. The values
of R for unconstrained CoD design tend to greatly exceed thasadédSA-CoD algorithm.
Second, in Figure 2(b), the optimal number of BNs is 1 for all bery large values of
a. This observation validates the point that, if we are comegrabout spurious attractors,

then unconstrained CoD design performs poorly.
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Table IV. Expression profiles for melanoma.

Count

Gene

pirin | WNT5A | S100P| RET1 | MART1 | HADHB | STC2

Profile#

10

11

12

13

14

15

16

17

18
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Fig. 2. Value ofR(a,n)for a from 0 to 1 andn from 1 to 80 (a) SA-CoD algorithm, (b)
unconstrained CoD method.
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CHAPTER IV

TIMING IN PROBABILISTIC BOOLEAN NETWORKS
A major concern of translational genomics is to use the kedgé of gene regulation to
design therapeutic strategies. Gene network modelingtédes this effort by producing
dynamical systems to serve as the mathematical basis fdethation of optimal interven-
tion strategies over time. To date, intervention has mdmtysed on the external control
of probabilistic Boolean networks (PBNSs) via the assodatiscrete-time discrete-space
Markov processes [11]. Given the accuracy of the modelgthes two practical impedi-
ments to PBN-based intervention, both related to tempesailds. One of these concerns
the lack of information regarding the sojourn time in anyegiwtate and the other concerns
the practical problem of sampling. The first issue, the ¢idésojourn time on the control,
has been studied in [37]. In this work, we focus on the effédiscrete sampling.

While the physical evolution of the biological gene netwodcurs over continuous
time, the PBN records only state transitions and containgmfoomation on the time be-
tween transitions. The PBN model inherits this propertyrfithe original Boolean model,
from which it was generalized [3]. Hence, the problem can Xy@agned in the frame-
work of the Boolean model. Fig. 3 shows the directed graph 8fgene Boolean net-
work, where each 3-gene state corresponds to a gene-agtioiile (GAP). Fig. 4 shows
two continuous-time realizations that are equivalent ftbe perspective of the model of
Fig. 3. In both Fig. 4(a) and (b), the initial state is “100”". eWdbserve the evolution
“100"—"010"—"001", at which point there are no other changes because”Bn at-
tractor of the network. While equivalent from the perspexdf the Boolean model, from
the perspective of continuous time, the realizations of &i(p) and (b) are not the same.
For instance, in the second realization, the sojourn tingdte “010” is much longer than

in the first realization. If we are only interested in tragkite transitions, this may be of
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no concern. On the other hand, suppose we are considergryention and penalizing
undesirable states. Then, if “010” is an undesirable sthgepenalty should be greater in
the second realization; that is, the penalty needs to centhd sojourn time in a state. This
problem has been addressed in the framework of asynchrd?i®Ns by considering the
process to be defined over continuous time and treating isas@Markov process [37].
(-9
@1)-10)-~019-Gor)
(09 @og

Fig. 3. Presentation of a directed graph for an arbitrargB8egBoolean network.

Whether one considers the original synchronous PBNs orcasgnous PBNs, imple-
mentation of the intervention policy requires nearly contius observation because pre-
cise application requires the observation of all transgioHowever, this is not generally
the case in medical applications; rather, as with many e®ging problems, the process is
sampled at discrete time intervals and a decision to inteneg not must be made at each
sample point. Since the process is not observed outsidathpls points, it is impossible
to know if, or how many, transitions have taken place betwamstsecutive sample points.

In Fig. 4, the discrete-time proce§s,,, n > 0} given byY,, = Z; is called the jump
chain of the continuous-time proce§s,;,t > 0}. Both synchronous and asynchronous
PBNs deal with the jump chain under the assumption that thpgu(i.e. to,t;,...) are
observed. The jump chains corresponding to realizatiorisgd. 4(a) and (b) are equiv-
alent. Fig. 4 also shows the sampled processes corresgptalgach realization. The
sampled process corresponding to Fig. 4(a) is “18Qr00”"—"001"—"001" —"“001"; for
Fig. 4(b), itis “010—"010" —“001"—"001"—"“001". On account of sampling, “010” is
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Fig. 4. Two examples of temporal gene activity profiles (GA®#) Fig. 3. The dash-dot
vertical lines represent the sampling times.

missed in Fig. 4(a) and “100” is missed in Fig. 4(b). Whereaa istandard Boolean
network self-transitions only occur for singleton attast the sampled process has self-
transitions. Moreover, sojourn time is implicitly contathin the sampled process on ac-
count of these self-transitions. As with any sampling pdare, the sampling rate is cru-
cial. The faster the rate, the less transitions will be ndssel the more accurate will be the
sojourn time estimates; the slower the rate, the more transiwill be missed and the less
accurate will be the sojourn time estimates. In any everntherpresence of sampling, nei-
ther the synchronous or asynchronous PBN models will adetyuflect the dynamics of
the network from the perspective of the decision processired, for intervention. In this
chapter, we propose a framework for gene regulatory nesyarkampling-rate-dependent
PBN (SRD-PBN), that is capable of incorporating the sangptate of temporal profile.
Below, we mathematically define SRD-PBNs and expose a meltbgglto obtain optimal
intervention strategies for such systems. We introduce-8BNs in Section A. In Sec-
tion B, we derive an optimal policy for SRD-PBNs with variopoperties for synthetic

networks. We also consider a network obtained from melargpena-expression data.
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A. Sampling-Rate-Dependent Probabilistic Boolean Nek&or

A context-sensitive PBN disregards the information abbetstojourn time in states present
in temporal data. From another point of view, a context-geesPBN models the jump
chain corresponding to the continuous-time process ofaste This means that in an ar-
bitrary temporal profile such as Fig. 5, the observer can apply intervention at instants
to, 11, ... However, in medical applications, it is not known in advamdeen a transition
(i.e. a jump) will occur. As such, a model based on applyiegtiment when a transition
occurs may not conform with the reality and limitations ofipat treatment. Time samples
and state changes are unlikely to coincide perfectly andtemiention strategy must focus

on the former not the latter.

GAP 1
to t1 12 ts 14 Time

Fig. 5. An example of temporal gene activity profiles

Our objective in this work is to propose a discrete-time ihisespace model based
on context-sensitive PBNs such that (i) it can embody thewajtime of states into the
network dynamics, (ii) it allows us to incorporate the samgplate into the network’s dy-
namics. A transition probability matrix must be derived tioe state-space of a SRD-PBN

under specific assumptions. Similar to other Markovian ngdke transition probability
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matrix derived for an SRD-PBN is sufficient to describe itsamwics. The task of find-
ing the most effective intervention strategy can then betdated as a sequential decision
making problem via the associated transition probabiligtnn.

Let us first briefly introduce the underlying structure of &®C5PBN. The states of the
SRD-PBN take values i§, as we defined for a context-sensitive PBN in Chapter Il. Logi
cal rules of different contexts determine the probabilitjuonps among GAPs. To coarsely
capture the rate of change in the underlying biologicalesysthe proposed framework re-
quires two parameters, which are either known a priori orlm&aestimated from temporal
data. These two parameters are the maximum rate of changegaB®Ps and the maxi-
mum rate of change among contexts. The rate of change betavsetwo states, i.e. the
average number of transitions between these two stateemy emit of time, depends on
the probability of jumps between these two states, the sagperiod, the maximum rate
of change among GAPs, and the maximum rate of change amonextan Employing
these parameters, we constru€-anatrix on the state-spaceof the SRD-PBN. This ma-
trix is the generator of a continuous-time Markov chain. e iaterested in the state of
the continuous process only at discrete observation itsstdihe memoryless property of
the continuous-time Markov chain allows us to model the dyica of the sampled process
as a discrete-time Markov chain. The transition probahitiaitrix of this Markov chain is
the transition probability matrix of the SRD-PBN. Below, define the SRD-PBN in more
details.

Given Boolean functions of context the probability of jumping from staté:, z) to

state(c, 2’) is

P(c,;c),(c,z’) _ pD(lE,;p’)(l _ p)n—D(;p,x/) + (1 - p)nl (fc(l’) _ .TJ/) : (4'1)

wherep is the perturbation probability in the Boolean network. Hamming distance be-
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tween GAPs: andz’ is denoted byD(z, z'). We usel(-) to denote the indicator function.
The successor state of GAPaccording to the Boolean functions of contexs denoted
by f.(x). The first part of (4.1) corresponds to the transition prdiglue to gene per-
turbation. The probability of transitioning between GAPandx’ based on the selected
contextf, is presented as the second part of (4.1).

To include timing in our proposed model, given (4.1), weaodtice matrix) which
shows the rate of transitions among state$§ inWe denote the maximum rate of change
among GAPs by\ and the maximum rate of change among contexts.bin practice,\
can be estimated from temporal data. Knowledge of the Ey‘atprovided by experiments,
would determine the value of. Matrix () is the generator of a continuous-time Markov
chain. LetQ = (qea) (ce);6 ¢ € {1,...,k},z,2" € W) denote theQ-matrix of the
continuous-time Markov chaifiZ(t),t > 0} whose state-spaced& Elements of th&)-
matrix show the rate of change among states and can be catripuke following manner.

At any updating epoch, there are two independent proce@sagprocess that updates
the GAP in the current context, (ii) a process that updatesdimtext. There is null proba-
bilities for both processes to occur at the same time. Fofitsteprocess, we can compute
the rate of change among GAPandz’ in contextc as the product ok, the maximum rate
of change between GAPs, times the probability to jump fronPGAo 2/, i.e. P 1), (c,e")-
For the second process, we can compute the rate of changedrmetentexts andc’ as the
product ofy, the maximum rate of change between contexts, times thetegigrobability
of contextc’. Furthermore, in order to have a valigimatrix (2.7), all diagonal elements
of () should be defined such that the sum of elements in each rowaseus, the rate of

change between any two statesz) and(c’, z’) in S is defined as
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)\P(c,x),(c,x’) if c = ¢ andx 7& ,ZL'/,
VPe! if ¢c £ ¢ andx = 2/,
Aem) () = (4.2)
0 if ¢ # ¢ andx # o/,
- ZX;&J: ZC;&C q(c,x),(C,X) if c=c andx = Jj‘,,

\

wherep, is the selection probability of context
We definep;; to be the probability that the continuous-time procggs ¢t > 0} asso-
ciated to the SRD-PBN makes a transition from current st&tesuccessor stateaftert

units of time. Using this notatiom;; corresponds t¢i, j) entry in matrixP(t), where

P(t) = 9.

From the intervention perspective, we are interested iyimamical behavior of the
SRD-PBN at discrete observation instants, i.e. e¥égnits of time. Such a discrete-time
model yields more information for the decision making pssxeEmploying the memo-
ryless property of the continuous-time Markov chain, weaobt discrete-time Markov
chain by taking samples from the continuous-time MarkovirtlhaeveryT units of time.
This discrete-time model describes the dynamics of the BD- For a given sampling
periodT’, the transition probability matrix that expresses the dyica of the SRD-PBN is

computed as

P(T) = 7, (4.3)

where elements of) are defined in (4.2). We note that the transition probabitigtrix
associated to the SRD-PBN is a function of the sampling gefioOptimal intervention
strategies can then be derived for this SRD-PBN using thesponding transition proba-

bility matrix.
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Example: To illustrate the details of an SRD-PBN, we produce a simpieie, 2-
context example. Given the logical rules of each constitiBzolean network, one can
draw the directed graphs corresponding to each BooleanonketwFig. 6 shows the di-
rected graphs of the constituent Boolean networks in ouplgiraxample. The transition
probability matrix corresponding to the context-sensifRBN constructed based on these
Boolean networks is shown in Table V. This transition praliglmatrix is computed fol-
lowing the methodology described in [37]. The switchinghability ¢ is chosen to be 0.01
and there exists a gene perturbation probability of 0.01s ¢tear that most of the states
have zero self-transition probabilities. To constructtilaasition probability matrix of the
SRD-PBN model, we first selegtand~ to be 0.1 and 0.05, respectively. The rate matrix
@ is computed based on (4.2). The transition probability matf the SRD-PBN corre-
sponding to this matrix Q for sampling period B6f= 2 is computed based on (4.3) and
is shown in Table VI. A similar procedure is repeated o= 4 and the transition prob-
ability matrix of the SRD-PBN is shown in Table VII. It is e\adt that the self-transition
probabilities in Tables VI and VII are not zero. These valaesdifferent forl” = 2 and
T = 4. Intuitively, we expect a higher self-transition probéfgifor a smaller sampling
period and a lower self-transition probability for a largampling period. It can be seen
that self-transition probabilities are larger in Table Wi ' = 2 compared to Table VII for

T =4.

B. Results and Discussion

Our prime goal of modeling gene regulatory networks fromgeral gene expression data
is to derive effective intervention strategies and beraficalter the long-run behavior of
the inferred model. From a practical point of view, at evdbgervation point, this strategy

decides which action should be applied to the underlyintpbioal system. Provided that
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Fig. 6. Directed graphs of Boolean networks correspondirthe toy example

the model framework captures the dynamics of gene regylatevorks accurately, the
derived intervention strategy would favorably alter thadgor of aberrant cells.

In this section, through numerical studies, we provide sujpg evidence for the need
to extend the original PBN framework. In the following siratibns, the target gene, the
gene responsible for aberrant behavior of the cell, is ahtsbe the most significant gene
in the GAP. We assume the up-regulation of the target genedsgirable. Consequently,
the state-space is partitioned into desirable stddesnd undesirable statdg, Since our
objective is to down-regulate the target gene, a higheris@ssigned to destination states
having an up-regulated target gene. Moreover, for a givatustof the target gene for a
destination state, a higher cost is assigned when the ¢ositapplied, versus when it is
not. In practice, the cost values will have to mathematyozdipture the benefits and costs
of intervention and the relative preference of states. &loest values will eventually be
set with the help of physicians in accordance with theirickhjudgement. Although this

is not feasible within current medical practice, we do hali¢hat such an approach will
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Table V. Transition probability matrix of the context-sdive PBN

0 0.73507 0.0073508 7.425e-005 0.0073508 7.425e-005 €-@@5 7.5e-007 0
0.0073508 0.72772 7.425e-005 0.0073508 7.425e-005 (50873 7.5e-007 7.425e-005 0.0024503
0.0073508 7.425e-005 O 0.0073508  7.425e-005 0.72773 6087 7.425e-005 0.0024503
7.425e-005 0.73507 0.0073508 0 7.5e-007 7.425e-005 7QA@5e 0.0073508 2.475e-005
0.73507 7.425e-005 7.425e-005 7.5e-007 0 0.0073508 (60873 7.425e-005 0.24502
0.7278 0.0073508 7.5e-007 7.425e-005 0.0073508 O 7.425e-0.0073508 2.475e-005
7.425e-005 7.5e-007 0.0073508 7.425e-005 0.73507 7@25e-0 0.0073508 0.2426
0.72773 7.425e-005 7.425e-005 0.0073508 7.425e-005 6087 0.0073508 O 2.5e-007

0 0.24502 0.0024503  2.475e-005 0.0024503 2.475e-005 €@05 2.5e-007 0
0.0024503  0.24257 2.475e-005 0.0024503 2.475e-005 (60824 2.5e-007 2.475e-005 0.0073508
0.0024503 2.475e-005 O 0.0024503 2.475e-005 0.24258 45032 2.475e-005 0.0073508
2.475e-005 0.24502 0.0024503 0 2.5e-007 2.475e-005 2Q0%e 0.0024503  7.425e-005
0.24502 2.475e-005 2.475e-005 2.5e-007 0 0.0024503  (B0G24 2.475e-005 0.73507
0.2426 0.0024503  2.5e-007 2.475e-005 0.0024503 0 2.405e-0.0024503  7.425e-005
2.475e-005 2.5e-007 0.0024503  2.475e-005 0.24502 2005e-0 0.0024503  0.7278
0.24258 2.475e-005 2.475e-005 0.0024503 2.475e-005 45062 0.0024503 0 7.5e-007

0.24502 0.0024503  2.475e-005 0.002450875€005 2.475e-005 2.5e-007
0 2.475e-005 0.002450875&005 0.0024503 2.5e-007 0.2426
0.2426 0 0.0024503  2.475e-0Ce-0R7 0.0024503 2.475e-005

0.0024503  0.0024503 0.24257 e-00B 2.475e-005 2.475e-005 0.0024503

2.475e-005 2.475e-005 2.5e-007 0 0024503 0.0024503  2.475e-005
0.0024503  2.5e-007 2.475e-00924603 0 0.2426 0.0024503
2.5e-007 0.0024503 2.475e-005 4B0G2 2.475e-005 O 0.0024503

2.475e-005 0.2426 0.0024503 5&@05 0.0024503 0.0024503 0O

0.73507 0.0073508 7.425e-005 0.007350825¢-005 7.425e-005 7.5e-007
0 7.425e-005 0.007350825¢-005 0.0073508 7.5e-007 0.7278
0.7278 0 0.0073508  7.425e-0@e-0D7 0.0073508  7.425e-005

0.0073508 0.0073508 0.72772 e-00B 7.425€-005 7.425e-005 0.0073508

7.425e-005 7.425e-005 7.5e-007 0 00786508 0.0073508 7.425e-005
0.0073508 7.5e-007 7.425e-00978608 0 0.7278 0.0073508
7.5e-007 0.0073508 7.425e-005 E6087 7.425e-005 O 0.0073508

7.425e-005 0.7278 0.0073508 56-@@5 0.0073508 0.0073508 O

Table VI. Transition probability matrix of SRD-PBN for safimg period T = 2

0.37738
0.0051341
0.062988
0.0018478
0.22187
0.21324
0.071732
0.21154
0.17565
0.011417
0.012655
0.0004758
0.10266
0.062368
0.061308
0.052715

0.29685
0.66138
0.025801
0.28873
0.079318
0.079173
0.017277
0.077929
0.12565
0.23929
0.064714
0.076766
0.035066
0.016439
0.02493
0.023646

0.0025193  0.0008308  0.0022317  0.001473B756e-005 0.0026109 0.17417 0.11432  0.0040765  0.00844180010277  0.00048008 0.0001188  0.021425
0.0014114 0.0030301  5.637e-005 0.003166.0717e-005 0.0097065 0.0015781 0.23749 0.011406 @061 2.2949e-005 0.0013831 0.0003802  0.062127
0.37564 0.002299 0.0015365 0.21034 34280 0.0019038  0.01262 0.054741 0.17501 0.0013961 0.08837 0.050619 0.010816 0.010485
0.002432 0.38578 2.3813e-005 0.0014393532e-005 0.0036407 0.00040847 0.063794 0.00299 0.2356 6.0167e-006 0.00036679 8.8608e-005 0.012803
0.00072494 0.00015764 0.37664 0.002498D02244 0.00048444 0.10249 0.031863 0.00084154 8.1032e-0.17387 0.0011084  0.0012378  0.0045695
0.00070957 0.00018836 0.0040734  0.37568.0083255  0.002574 0.060811 0.024153 0.00092305 8.503Be-0.0014544  0.17354 0.050526 0.0045683
0.0024065 6.3607e-005 0.21273 0.001326.376 0.0024078  0.070736 0.014919 0.0015871  4.9862e-051673 0.00034222 0.17372 0.0030368
0.0089785  0.002416 0.0012851  0.003698D022689  0.37582 0.051094 0.031437 0.051227 0.0014448 0081949 0.001226 0.0013476  0.17797
0.0024739  0.00039997 0.0010368  0.00874677046e-005 0.010044 0.37689 0.22611  0.014053 0.008999110022213  0.00084704 0.00032511 0.062497
0.0098272  0.001504 8.64e-005 0.002763®0084266 0.050829 0.0039058 0.39764  0.060426 0.003911 5836e-005 0.0030169 0.001496 0.21348
0.17491 0.0014051  0.00035111 0.050907.0011899  0.0099297 0.0050204 0.21462 0.38697 0.003882600000197  0.009037 0.003685 0.060622
0.0013999  0.23545 6.5807e-006 0.488402.2788e-005 0.0015328  0.00012971 0.015123 0.004048B59@*% 1.9695e-006 0.00011107 6.8701e-005 0.0054156
0.000488 7.4731e-005 0.17398 0.001155001D304  0.0015062  0.22178 0.065926 0.0024392  0.0001817376@5 0.0023679  0.002877 0.012319
0.00047643 4.6578e-005 0.011113 071735 0.050527 0.0015158  0.069453 0.017142 0.0018487  8.9006e-0.0041756 0.37542 0.2103 0.0055079
0.0015044  7.6473e-005 0.051743 0.088430.17358 0.0024897  0.21367 0.063818 0.0051748  0.0062230011114 0.00023948 0.37546 0.014239
0.050781 0.0014047  0.00037883 0.010866.0013362  0.17493 0.010096 0.063371 0.21202 0.0038826 0000302 0.0035566 0.0036239  0.38728

become feasible when engineering approaches are intdgnédetranslational medicine.

We postulate the following cost-per-stage in stateder controk::

if u

‘ if u
g(u, )

c if

\ 54+c ifu

0andj € D,
Oandj € U,

(4.4)
landj € D,

landj € U,

wherec denotes the cost of control. We study the effect @i our simulations. A cost

minimization framework is used to effectively trade-ofethumber of interventions and

the likelihood of the network being in an undesirable stAteoptimal control policy with

regard to the cost values can be found via dynamic progragimin
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Table VII. Transition probability matrix of SRD-PBN for squing period T =4

0.17868 0.35925 0.0057011 0.0019278 0.0021134  0.003564M021701 0.016212 0.1333 0.20118 0.020986 0.0018779 1§7@@ 0.0017692 0.00074308 0.070901
0.014692  0.50027  0.0090648 0.0040594 0.00019922 0.0@57@H0043069 0.033177 0.0050446 0.25957 0.040292 0.084158.4702e-005 0.0031117 0.0015077 0.11857
0.10288 0.090581 0.17324 0.0026056  0.0041568 0.1762 01839 0.0089919 0.040905 0.10373  0.14019 0.003032 0.08147D.076391 0.030785 0.035828
0.0057851 0.33727  0.004429  0.20531 8.54e-005 0.0031630006202 0.011467 0.0018686 0.12417 0.013755 0.24697 032805 0.0013484 0.00053547 0.043661
0.20516 0.17535 0.0022614 0.00067721 0.17329 0.003264022213  0.0054509 0.15542 0.10424  0.0073772 0.0006344€3147 0.0021403  0.002346 0.028711
0.18835 0.1639 0.0021694 0.00066995 0.010183 0.17221 38602 0.0063215 0.10749 0.082778 0.0066183 0.00056804 &G03 0.13076 0.076045 0.024191
0.13102 0.075247 0.003231 0.00029166 0.17834 0.0026047218 0.0048031 0.13651 0.061893 0.0059905 0.0003466&78@a@ 0.0012002 0.1312 0.017175
0.1811 0.16663 0.025842  0.0030037  0.0022348  0.010116 289@G 0.17635 0.078679 0.10179  0.082779 0.0033655 0.88896 0.0034649  0.0029033  0.15838
0.14216 0.24037  0.010431  0.001545 0.0016752  0.0039440088394 0.031819 0.17574 0.23275  0.04076 0.0026171  07@620 0.0021998 0.0012051 0.11032
0.035076 0.27152 0.029857 0.0033663 0.00049728 0.011092012222 0.079698 0.011315 0.24615 0.099865 0.006047500D8346 0.0050184 0.0032555 0.19583
0.041474 0.13533 0.13886 0.003053 0.0013976  0.078705 32100 0.030301 0.014961 0.20188  0.20765 0.0058504  0.8QG46 0.025556 0.0099638  0.10134
0.0023676 0.17371 0.0032769 0.24628 3.8474e-005 0.0016852e-005  0.0049515 0.00071434 0.05067 0.0082044 (44900 1.2965e-005 0.00055224 0.00024337 0.017234
0.15752 0.12513  0.0030728 0.00053267 0.13185 0.002691019382  0.0096008 0.20416 0.12842  0.012724  0.0008645Z 2371 0.0027507  0.0033873  0.042997
0.11652 0.069673 0.0020666 0.00028091 0.03164 0.13106 75976 0.0051168 0.12448 0.05981  0.0065406 0.00039252 04021 0.17138 0.17558 0.01899
0.11116 0.094641 0.0045875 0.00047552 0.078157 0.001983.3086 0.010669  0.19213 0.11775 0.015097  0.00087665 ®6@26 0.0010117 0.17157 0.042379
0.088771  0.087311 0.078238 0.0030548 0.0013755  0.03137D02T699  0.13944 0.029664 0.11819  0.18652 0.0058631 46208 0.0095599  0.005974 0.21143

In our simulation studies, our objective is to show that atnogl policy derived for
the current definition of context-sensitive PBN will no langbe optimal if we include
the timing information of temporal data into the dynamicgehe regulatory networks. To
this end, we generate synthetic SRD-PBNs and correspondintgxt- sensitive PBNs. We
compute the cost induced by the optimal policy derived ferdbntext-sensitive PBN and
the cost induced by the optimal policy derived for the SRONPB/hen both are applied
to a sequence of data generated from the SRD-PBN. These svealoes are compared
in our simulation studies. An SRD-PBN accommodates the 8agpate, which is in
this simulation identical to the intervention rate. The Igufathis study is to measure how
costly it is to apply an optimal policy derived for a contesdnsitive PBN to a sequence
of data generated based on an SRD-PBN. In the following, wedansider synthetically
generated SRD-PBNs. Furthermore, we study the gene regula¢twork inferred from

metastatic melanoma gene expression data.

1. Synthetic Networks

We generate SRD-PBNs in the following manner. Each SRD-P@isists oR constituent
Boolean networks. Each Boolean function of a Boolean ndtwsrandomly generated

with a random bias. Given a set of Boolean networks, we gémeaious SRD-PBNSs.
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We lety = 0.01. We vary the value of\ from 0.05 to 4 with step-sized.2. We choose
the gene perturbation probability 6f01. The constituent Boolean networks are selected
with equal probabilities. Furthermore, for the given seBoblean networks, we generate
the corresponding context sensitive PBNs for switchingphility ¢ = 0.01. We let the
observation period to be evetyunit of time, i.e.T = 1.

Using dynamic programming, given the cost-per-stage defimé4.4), we derive an
optimal intervention policy:;,, for an SRD-PBN. Our goal is to estimate the average total
discounted cost induced ¥, for a sequence of data generated from the SRD-PBN. To
this end, we generate synthetic time-course data for 1006-steps from the SRD-PBN
model while il is applied. We estimate the discounted cost by accumulatiaglis-
counted cost of each state given the action at that state.pfbcedure is repeatéd, 000
times for random initial states and the average of the indldtscounted cost is computed.
Likewise, an optimal policy:’ for a context-sensitive PBN is derived. Following a similar
procedureu, is applied to the SRD-PBN, which we already described, ardatierage
discounted cost is computed. Moreover, we compute the geatscounted cost of a se-
guence of time-course data for an SRD-PBN in the absencéeasf/antion.

In summary, for each set of Boolean networks, we have thevialig: (C°%) av-
erage total discounted cost induced fay, on the SRD-PBN; () average total dis-
counted cost induced by, on the SRD-PBN; ("°°) average total discounted cost in-
duced in the absence of any intervention on SRD-PBN. Theegieg procedure is re-
peated forl 000 random Boolean networks, thereby yielding 1000 valuesdchestatistic:
O3 O O, Ol O, O

Using these, we compare the effect @f, and i on an SRD-PBN by the em-
pirical averageM[Cs of C$™ ... OS54 - M[C®] of C,..., C%y,; and M[C"°°] of
cyee .., CYWee - We define the gain obtained by each intervention policy asdiffer-

ence between the average discounted cost before and aétereintion. G4, the gain of
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policy % is M[CY°Y] — M[C®'Y] and G, the gain of policyu applied to an SRD-PBN,
is M[C"°] — M[C®]. We are interested iM[C®] — M[CS'), which we refer to a’d\G.

Figs. 7, 8, and 9 demonstrate the outcome of the above expatriior various values
of cost of controle. It is evident that the intervention gairig,y and G.s are larger for
smaller cost of intervention. The structure of a contextsg@/e PBN is such that there is a
transition to a new state after each unit of time, which gpomds to one change at every
unit of time on average. Wheh is substantially smaller or larger than AG is larger
compare to the case whekes closer to 1, as is shown in Figs. 7, 8, 9. We should point
out that the value oA for which AG attains its minimum depends on many factors, such
as~, the switching probability in context-sensitive PBN, and the cost of control. Itis also
observed thaf\G increases for larger cost of control.

We emphasize that this simulation study compares the gatasned by two policies,
the policy optimal for the SRD-PBN and the policy optimal tbe context-sensitive PBN,
when each is applied to SRD-PBN. Our objective is to show houer phe effect of an in-
tervention policy derived for a context-sensitive PBN ntigé if the rate of change among

observations is substantially different from 1.

2. Melanoma Gene Expression

In this section, we consider the gene network corresponiingetastatic melanoma ex-
plained in Chapter Il. We postulate the cost-per-stage i) (With the cost of controt
being0.1. Since our objective is to down-regulate the WNT5A gene,ghéi penalty is
assigned for destination states having WNT5A up-regulaiésb, for a given WNT5A sta-
tus for the destination state, a higher penalty is assigrteghwhe control is active versus
when it is not.

We generate the SRD-PBN corresponding to the melanomatbasa. Similar to the

procedure explained in the previous section, we compiit@nd u:%, Both policies are
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Fig. 7. (a)G«q, gain obtained by the policy optimal for SRD-PBN, afig;, the gain ob-
tained by the policy optimal for context-sensitive PBN, wHeoth are applied to
SRD-PBN for various\. (b) Difference between the gainA(, for various). The

cost of control is 0.1.
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Fig. 8. (a)G«q, gain obtained by the policy optimal for SRD-PBN, afig;, the gain ob-
tained by the policy optimal for context-sensitive PBN, wHaoth are applied to
SRD-PBN for various\. (b) Difference between the gainA(, for various). The

cost of control is 1.0.
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Fig. 9. (a)G«q, gain obtained by the policy optimal for SRD-PBN, afig;, the gain ob-
tained by the policy optimal for context-sensitive PBN, wHeoth are applied to
SRD-PBN for various\. (b) Difference between the gainA(, for various). The
cost of control is 3.

applied to a sequence of data generated from the SRD-PBNarabst corresponding to
the policy is estimated. Fig. 10 shows the outcome of thiearpent. Similar results
are observed as varies. We should emphasize that Fig. 10 corresponds to emerk
representing the melanoma gene expression data while Fig8, and 9 consider average

behavior of 1000 synthetically generated networks.
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Fig. 10. Simulation results corresponding to Melanomaysta)lGq, gain obtained by the
policy optimal for SRD-PBN, and-.s, the gain obtained by the policy optimal
for context-sensitive PBN, when both are applied to SRD-R&NariousA. (b)
Difference between the gainAG, for various\. The cost of control is 0.1.
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CHAPTER V

OPTIMAL CYCLIC CONTROL POLICY

Successful treatment of bacterial infections is largelgsult of our ability to exploit the
biochemical differences between bacteria and human aels $o achieve toxic drug con-
centrations in the former while sparing the latter. Unfagtely, such high selectivity is at
present elusive in the chemotherapy of human cancers. Hgreat efforts are required
to determine dose schedules that maximize the benefit toitpxatio in cancer treatment
[14]. To this end, chemotherapy is generally giveryales each treatment is followed by
arecovery phaseDuring a recovery period, the side effects tend to gragisalbside. Dose
intensity is a measure of chemotherapy delivery that lobkiseaamount of drug delivered
per unit of time. A higher drug dose intensity can be deliddrg increasing the dose per
cycle (dose escalation) or by reducing the interval betvosetes (dose density).

For a given integrated drug effect, the chance of eradigdtie tumor is maximized
by delivering the most effective dose level of drug over agtsatime as possible. Tumors
given less time to grow between treatments are more likaheteradicated. Administering
high quantities of drugs at the beginning of a chemothergpleanight fail for two reasons.
First, levels higher than a certain concentration may natiase the killing rate of cancer
cells. Second, even if they did, the toxicity could be intal#e to the patient. In practice,
optimizing the schedule means determining a way to give tarimmum integrated effect
over as short a time as possible, consistent with reasoqahbléy of life [14].

A prime objective of modeling genetic regulatory networkso develop therapies
based on gene regulation, in particular, the disruptionitigation of aberrant gene func-

* Reprinted with permission from “Optimal Intervention Ségies for Cyclic Ther-
apeutic Methods” by G. Vahedi, B. Faryabi, J.-F. Chambeflaf. Datta, and E. R.

Dougherty, 2009lEEE Transactions on Biomedical Engineerjriig, 281-291, Copyright
2009 by IEEE.
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tion contributing to the pathology of a disease. Enginegtiterapeutic tools involve syn-
thesizing nonlinear dynamical networks, analyzing thesevarks to characterize gene
regulation, and developing intervention strategies toifgatynamical behaviors [38]. In
this chapter, we derive an optimal cyclic intervention tetgg for gene regulation in the
context of probabilistic Boolean networks.

For intervention strategies proposed earlier [10, 11, 89, dt every state transition
of the system, the intervention strategy dictates whethapply treatment or not. In this
chapter, our objective is to devise an effective intenansitrategy under the constraint that
intervention is permitted only evely’ transitions, wherél” € N denotes the length of the
recovery period. An intervention strategy that is optinmalthe case where intervention is
permitted at every transition is not necessarily optimal (may not minimize the expected
total discounted cost) if one is only permitted to apply tmeent everyiV transitions. We
will refer to a policy that is optimal when intervention isrpd@tted every transition as
an optimal one-transition policy Similarly, we refer to the policy that is optimal when
intervention is permitted every’ transitions as anptimal W-transition policy

We define d@reatment windowo be evenyiV transitions of the system. Intervention
is permitted at the beginning of a treatment window. Theesathe system transitions
W — 1 steps without intervention. To incorporate the cyclic d¢aaist on interventions,
we construct a Markov chain with an augmented state spaeel lmasthe original Markov
chain. An optimal cyclic intervention policy, i.e. optim@l-transition policy, can be found
by solving the stochastic control problem for the Markoviohaith the augmented state
space via dynamic programming algorithms. However, thic@dure maybe prohibitive
due to the size of the augmented state space. We show thatigheeated state space
can be collapsed resulting in a compressed space of sizétegha original state space.
We accomplish this reduction in the size of the state spacacbymulating the expected

cost of the system progressing during a period. The new aastibn is used to select the
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proper action when intervention is permitted. We estalthelconvergence of the dynamic
programming algorithm and show how the optimal W-tranaiiiatervention strategy can
be found. Furthermore, we compare the performance of amapW-transition policy to
that of an optimal one-transition policy when interventisrapplied everyl transitions.
We show that although this may not be true in general, in otariention framework,

optimal one-transition policy can be used as an approxonadf optimal W-transition

policy.

A. Optimal Control Strategy for Cyclic Therapeutic Methods

Our objective is to find an effective intervention policy whse are allowed to apply treat-
ment only everyl/ transitions, in other words at times= 0, W, 2WW, ... To incorporate
this cyclic constraint in our mathematical framework, westouct a Markov chain with
an augmented state space based on the original Markov chiaémew (augmented) state

space is defined as

S={(,Nlie{0,...,N-1},j€{0,...., W —1}},

where N is the size of the original state spaSe There are two types of states in the
augmented state space: state) with j = 0, represented &3, 0), where intervention is
permitted, and statg, j) with j # 0, where intervention is not permitted. In the augmented
state space, the controlis constrained to take valuesif(i, j), a given nonempty subset
of C. For the first type of states;, 0), we havel/(i,0) = {0, 1}, while for the second type
of states(i, j) wherej # 0, we havel (i, j) = {0}.

The transition probabilities in the augmented state speeeefined as a function of

controlu. For state(i,0), we define the probability of transitioning to stdté ;') given
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controlu as
pm’/ (U) |f j/ = 1,
PGy g (1) = .
0 otherwise
wherep; »(u) denotes the probability of transitioning from state state/’ under controk.
On the other hand, for statés j) wherej # 0, controlu only admits one value; € {0}.
For these states, the transition probability is defined as
pis(u=0) if j/=(j+1) mod W

Pl (w=0) = _
0 otherwise

wherep; »(u = 0) = p; » denotes the uncontrolled probability of transitioningnfretate
i to statei’. It should be noted thatj’ = (j + 1) mod W) is true if either(j’ = j + 1)
or (j = W —1landj’ = 0) is true. Considering that € U(i, ), the probability of

transitioning from statéi, ;) to state(i’, ;') can be compactly defined as

P (1) = piwr(u) 1if 7= (j+1) mod W, 5.1)
0 otherwise
Let us now consider an example to explain how the above defingimulates the
cyclic intervention scenario. Assume that at time: 0 we observe staté At this time,
we are allowed to apply contral € {0,1}. The augmented state corresponding to state
attimet = 0is (¢,0). From augmented state 0), under controk, the system transitions
to the augmented staté, 1) with probabilityp; » (u), whereu € {0,1}. The probability
of transitioning to any other state, j), wherej # 1, is zero. At timet = 1 and from
augmented statg’, 1), the system transitions to stgté, 2) with probabilityp, ;»(0) since
u € {0}. Likewise, one can consider transitions foe 2,..., W — 2. Similarly, assume

that we observe stateat timet = W — 1. The probability of transitioning to the augmented

state(k’,0) is prx(0). The probability of transitioning to any other stdte, j), where
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j # 0, is zero.
The cost-per-stage for transitioning from augmented dtatg to augmented state

(7, 7"), given controlu, is defined as

9(i, 3,1, 5' u) =
( C+c 7elUand{j=0and; =1} andu =1,

C i eUdand{;’=(j+ 1) mod W} and u =0, (5.2)
c i € Dand{j =0andj;’ =1} andu =1,

0 i’ e Dand{j’ = (j+1) mod W} and u =0,

0 otherwise

whereC andc represent the cost of undesirable states and the cost gheet(control),
respectively. Given. = 1, we assign a cost to a transition from stétey) to state(s’, ;)
only whenj = 0 and;j’ = 1. In this case, ifi' is an undesirable state, the corresponding
costisC + ¢; if i’ is a desirable state, the only cost incurred i8Vhenu = 0, it is possible
to transition to(¢’, j') if 5/ = (j + 1) mod W is true. In this case, if is an undesirable
state, the corresponding costds if ’ is a desirable state, no cost is incurred. For all the
other cases, no cost is assigned.

Based on (5.2), we define the expected immediate cost at(statevhen controk: is

selected by

o gy w—y(w)g (i, g, 7 W — 1, u)].

In this equation, for each value &f only one term inside the brackets is non-zero (based
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on the definition of the transition probabilities in (5.1)ence,

Z ]7 Zp(u 'l jailaj/au)a

=0
wherej’ = (j + 1) mod W is true. Using the definition af(s, j, 7', 7/, u) in (5.2), we have

4 o) = CY veyubiw(u=1)+c ifu=1, 5.3)
CY ey pii(u=0) if u=0.
From (5.3), itis clear thaj(i, j, u) does not depend ofi.e.g(i, j,u) = g(i, u).
As we explained in Chapter II, the dynamic programming atpor captures how the
optimal cost at/, . ; propagates backward in time to the optimal cfstFor the augmented

state space, we have

N-1W-1
Jk(l,]): 1’I111'l [ Z]u +)‘Z Zp(lj Jk+1(7f j)]
ue U) #1=0 /=0 (5.4)
V(i,j) € S.
Sinceg(i, j, u) = g(i, u), we can rewrite (5.4) as
N-1W-1
Jk('Lv]): H[l]in [ iU +)‘Z Zp(l_] Jk:-i—l(l ])]
ue Ulid) =0 j'=0 (5.5)

V(i,j) € S.
Our goal is to derive the value functions for the originaltetspace, i.e.S, based
on (5.5). To this end, for every treatment window startinghwic S, we accumulate the
total discounted cost of all states in the window where ndrobean be applied and add
it to the average cost of state We then show how the accumulated cost at the beginning
of the (s 4+ 1)th window affects the accumulated cost at the beginning @&th window,
wheres = 0, 1,2, ... This approach is in accord with the dynamic programmingriegpe

that ranks decisions based on the sum of the present cosharekpected future cost,
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assuming optimal decision making for subsequent stages. niénipulation of the value
function lets us collapse the augmented state sgat®the much smaller spac® We
prove the convergence of the discounted cost algorithmigftamework and show how
an optimal W-transition control policy can be found usingnstard dynamic programming
algorithms.

AssumeP is the transition probability matrix of the uncontrolled Mav chain. For
1,j €S, |etpz(-j;-) be the probability of going from stateo state; in r steps, i.e. théi, j)th
entry of the matrixP("). The objective is to compute the recursive relation of thieea
function starting at time = s/, given the cost value at time= (s + 1)WV.

Without loss of generality, we assume= 0. In the augmented state spagewe are

not allowed to apply any control at state ¥ — 1), hence from (5.1) and (5.5)

Jw_1(i, W —1) = min {zu +)\Zp” ) Jw (4,0 }

weU (i,W—-1)
N (5.6)
= 9,00+ A > pijJw(5,0).
j=0

Given Jy,_1, One can computdy,_, as

Jw_2(i,W —2) = min {zu +)\Zp” JWl],W—l)}

el (i,W —2)
N-1
=9(i,0) + A Z pijJw-1(j, W = 1).
=0

ReplacingJy _; from (5.6), we have/y,_»(i, W — 2) as a function of/y (%, 0) for all

kesS,
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N-—1 N-—1
JW 2(2 W — 2)_g(l 0 +)‘Zp23< ]7 +)\ijk<]Wk 0))

]O k=0

(i, 0) +)\Zp”gj, +)\2Zp Jw (k,0).

Similarly we can computdy,_3 as

=z

JW—3(i7W_3) = <p7,j _'_)\ng +)\2p7,j> j7 +)\32p ']W k O

J

i
o

One can recursively evaluate the value function for the déate in a treatment window

where no control is allowed, i.€/; (7, 1), as follow:

N-—1
(i,1) :Z (Z p”> + AV 12 D T (k, 0). (5.7)

Finally, at time0, intervention is allowed and the following minimizatioroptem leads to

Jo(7,0) = min { (1, u) +)\Zp” )J1(7,1) } (5.8)

uelU(4,0)

Using (5.7) and (5.8), we obtain

- N-1 [W-2
Jo(,0) = uergi(?o { (i,u) + A Zp” ( (Z )\’"pg-tz) g(k,0)

7=0 k=

o

Nl (5.9)
AV Y T (k, 0))}
k=0
We can rewrite (5.9) as
- N-1
Jsw(1,0) = ugl]l(?o {g(i,u) +A Zp” (k_o (Z )?(k,())
= (5.10)

+A ZPE'Y/Z_I)J(&H)W(]{? 0)) } ;

k=0
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for s = 0,1,2,... This equation reveals how the cost at the beginning of(the 1)th
window affects the cost at the beginning of ttte window. This equation ranks decisions
based on the sum of the present cost and the expected futstreatsidering the cost of
all the states where no control is allowed between two treatrtfimes. This manipulation
of the value function lets us collapse the state space mS and leads to

N-1 N-1 /W-2
Jo(i) = min {E(i, W)+ A pis(u) (Z (Z Afpg.j”;) 7(k.0)

k=0 r=0

N—-1
ATy P§,VZ_1)J<5+1>(’€)> } ,

k=0

(5.11)

fors =0,1,2,... It should be noted that the above backward propagation ¢$ eqplies
to everylV transitions of the Markov chain in which we are permittedgpls intervention
andU (i) = {0, 1}.

Similar to Chapter Il, the following proposition discus$é@sv an optimal W-transition
stationary control policy can be devised. In Propositiowé prove the convergence of the
discounted cost algorithm as it is defined in this work. Peijpans 2 and 3 can be restated

for the following operatof .

Proposition 6 (Convergence of the discounted cost algorithm): For ary S, bounded

function/J : S — R, andT : S — R, where
N-1 N-1 /W-=2
TJ(i) = Jin {g(i, W)+ A p(u) ( (Z xpg.j‘,3> G(k,0)
§=0
N1 (5.12)
HAWIY p%‘”J(k))
k=0
the optimal cost function satisfies
J*(x) = lim (T™J) (2), Vzeds.
7'—00

Proof
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We defineg(i, u) as
N-1 1
gi,u) = gli,u) + XY piylu (Z (Z Al k) g ) . (5.13)
=0 k=0
The functiong(i, u) collects the average cost of stateith controlu and the accumulated
cost of W transitions from staté. For every positive integek, initial statex, € S, and

policy 7 = {po, p1, - - - }, we break down the cost, (x) into the portions incurred over

the first K stages and over the remaining stages
M—-1
(o) = MlinooE { Z MW G (2, e xk))}

- E {Z AW g(xk,uk(xk))}

k=0
M—1
] kW ~
t+ jim B { Z A g(, Mk(l"k))} .
k=K
Since the cost-per-stage is bounded, it is straightforwarsee thatj(i, «) in (5.13) is

bounded. Let us assumgi, u)| < L. We also obtain

M—1 — W WK
MlinmE{gA o } <LZA SE
It follows that
K-1 )\WK
Jx(xo) < E {;O AP @(xkdik@k))} Tz )\WL'

From the inequalities above, one can conclude that
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{Z NG (e, () + AWKJ@K)}

0
K-1

Z AR fl(ifk»ltk(l"k))‘ - MWKJ(ZEK)}}

k=0

>

&

)\WK

> _
- 1—- AW

=
8
o

S~—

L — M"%max|J(z)|.
z€S

Similarly,

{Z NGy, () + AWKJ(l"K)}

)\kW 9z, p ()

IA
&
/—’H

)\WK

IN

L+ \"Emax |J(2)|.

JW(xO * 1-— )\W zeS

Hence,

)\WK

WK
MESUSEE S

< E {Z_ NW Gz, p () + )‘WKJ(IK)}

k=0

I () —

WK

< JW(ZL'Q) +

WK
< 1_)\WL+)\ I£2§(|J($)|

We need to show that {foz_ol NW G (2, pr(r)) + )\WKJ(mK)} is equal ta 75 J)(z).
From the definition ofj(i, ») in (5.13) and (5.12), we have
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j=0 k=0
N—-1 /N-1

L {a@u DERADY ( pﬂf@)pﬁ%‘”&’(“) } |
k=0 \j=0

We denoted ", ' S (e )p% Y by S, pZVkV (1). When optimal policyuy, () is

applied, the above equation changes to

N-—1
T (i) = Gl (i) + AV > pM (u(an)) (s

zp41=0

Further application of},, ,, leads us to

k+1

N-1
TMk+1T J(rr) = gz, pr(zr)) + A" Z pxk xkﬂ(uk(%))f](%ﬂ,,Uk+1(93k+1))

Tr+1= =0
N-1

A Z pxk ka (px () Z pxk+l Tpt2 (1 (@r41)) J (Thr2)-

ZTg+1=0 Tg4+2=0

By induction, one can show that

T,

HKTHKfl .. {Z )\k xkaﬂk Z’k)) + )\WKJ(.TK)} .

By taking the minimization over, we obtain

WK
J* (o) — WL —AE I?gg”( z)|
< (T*J)(x0)

WK
1— AW

for all z; and K. By taking the limit asik’ — oo, the result follows[]

S J*(ZL'Q) +

L+ M % max |J(z)],
€S
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Propositions 2, 3 (in Chapter Il), and 6 provide the basistonputational algorithms
to determine an optimal W-transition policy. Propositiomsserts that the optimal cost
function satisfies Bellman’s optimality equation, whil@position 6 states that the optimal

cost function can be iteratively determined by running gursion

Jor =TJ,, s=0,1,2,... (5.14)

for any bounded initial cost functias, : S — R. An optimal W-transition policy is found

when the iteration converges to the optimal value of the frsttion.

B. Results and Discussion

An optimal one-transition policy is no longer optimal, i@oes not necessarily minimize
the expected total discounted cost, if one is restrictegpdyareatment only everiy’ tran-
sitions. Nevertheless, we can apply an optimal one-transgolicy everylV transitions
and compare the effect and cost of such a policy to the ones optimal W-transition
policy, which truly minimizes the expected total discouhtest.

We anticipate an effective control policy to reduce thellik®od of visiting undesir-
able states compared to a network without intervention bglifgimg the long-run behavior
of the network. The effectiveness of a control policy can Easured by the amount of
change ghift) in the aggregated probability of undesirable states leedod after interven-
tion. We should emphasize that an optimal policy does noéssarily result in a max-
imum shift in the steady-state distribution, as explainbdve, since we are minimizing
the expected total discounted cost. The amount of shiftenaigregated probability of
undesirable states before and after intervention can beetad as

~W

APW — Zz‘eu T — Ez’eu T _
Zieu b

(5.15)
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In (5.15),7}" is the probability of being in undesirable stati the long run using a
policy that is applied everyl’ transitions. In this equation; is the probability of being
in undesirable statein the long run when there is no intervention. In other wogigen a
Markovian gene regulatory network, one can shift the agagezfprobability of undesirable
states to desirable ones through appropriately alteriageitpression of the control gene
everylV time instants.

Formulation of AP" requires the computation af", i.e. the steady-state distribu-
tion of the Markov chain under a W-transition poligy,, a policy that is applied every/
transitions. To this end, we derive the transition probgbrhatrix of the system when a
W-transition policyuy is applied. In generaly possible cases can happen for the tran-
sition of state; to statej in W steps under a cyclic policy depending on the instants in
which states andj are observed with respect to the treatment times. Let usteehe
transition probability matrix under the W-transition i,y by P,,.. In the first case,
there ard? — 1 uncontrolled transitions and the corresponding transimbability ma-
trix is PV, Afterward, inWth transition, policyu;, decides whether to apply control
or not. The system transitions to statand the corresponding transition probability ma-
trix is P,,,,. Consequently, the transition probability matrix cor@sging to the first case
is PW-UP, . In the second case, starting from statéhere arel’’ — 2 uncontrolled
transitions and the corresponding transition probahifigtrix isP"—2. At next transition,
policy iy, decides whether to apply control or not and the system transiaccording
to the transition probability matri¥ . Thereafter, the system transitions to stat-
cording to the original transition probability matrRR. The transition probability matrix
corresponding to the second casePi¢" 2P, P. Likewise, the transition probability
matrix for W — 2 other cases can be derived. Fig. 11 demonstrates an example#£ 4.

As this figure suggests, 4 possible cases can happen deg@mivhen stateis observed

with respect to treatment times.
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Fig. 11. An example of cyclic intervention strategy 16t = 4. Arrows represent treatment
times. Subfigures a to d show the four possible cases thataggeh depending on
the instants in which statésand; are observed with respect to treatment times.

To find the transition probability matrix of the Markov chainder optimal W-transition
policy, one should consider the possibility of these castiace each of these cases are
equally probable, the following transition probability tria represents the probabilities of
transitions among states when the W-transition intereantiolicy .y is applied

P,

w

w
1
= > pWwp, P, (5.16)
w=1

The steady-state distributigil” is the invariant distribution oP ., .

In the following sections, we first derive optimal one-triéios and W-transition poli-
cies for synthetic networks. We generate random PBNs witlowa properties. We vary
the values of bias and connectivity of the PBNs. The bias dBid BB the probability that
each constituent Boolean function takes on the value 1 amddhnectivity corresponds

to the maximum number of predictors for each Boolean functi®ince the bias and con-
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nectivity affect the dynamical properties of randomly gated BNs [4], we take them as
parameters in our simulations. Whenever not specified, dheectivity of the PBN is 3.
Furthermore, we investigate the effect of the cost of cdrmtroeach type of policy. We
provide some of these in the sequel. We then present a simikstigation for the network

obtained from the mammalian cell-cycle network explaime@hapter Il.

1. Synthetic Networks

We generate random PBNs with 7 genes. Each PBN consi$tooistituent BNs. For each
PBN, the probability transition matrix of the corresporgiMarkov chain is computed [5].
Without loss of generality, the target gene is chosen to bartbst significant gene in the
states. We assume that the up-regulation of the target gamedesirable. Consequently,
the state space is partitioned into desirable stdes, {0, ..., N/2 — 1}, and undesirable
statesi/ = {N/2,..., N — 1}, whereN represents the total number of states. Since our
objective is to down-regulate the target gene, a higheris@ssigned to destination states

having an up-regulated target gene. We postulate the foilpeost-per-stage:

(

0 ifu=0andj € D,

4 5 ifu=0andj e,
g(u,j) = (5.17)
c if u=1andj € D,

\ 5+c ifu=1andjel,

wherec represents the cost of control. Whenever it is not specitfezlcost of control is
selected to be zero.

For each PBN, we vary the value of from 1 to 10. For eachV, the optimal W-
transition policy is derived and the corresponditng" is computed from (5.16). Given
the optimal W-transition policy, we estimate the averadaltdiscounted cost induced by

this policy. To this end, we generate synthetic time-coualata for1000 time-steps from



68

each PBN model while the optimal W-transition policy is apg! Using this synthetic
time-course data, we estimate the discounted cost by adatinguthe discounted cost of
each state given the policy at that state. This proceduspesated 0, 000 times for random
initial states and the average of the induced discountedsoemputed. Furthermore, the
optimal one-transition policy is applied every transitions and the corresponding®"”

is computed from (5.16). To compute the average discountstl af the optimal one-
transition policy when it is applied eve#ly transitions, we generate synthetic time-course
data as explained above and the average total discountedfd¢be optimal one-transition
policy is similarly computed. In summary, for each PBN modet have the following:
(C™) average total discounted cost resulting from the optimdaiatsition policy; A P™)
the value ofAP" resulting from the optimal W-transition policyC{"!) the average total
discounted cost of the optimal one-transition policy wheg applied everylV transitions;
and AP"'Y) the value ofAP" resulting from the optimal one-transition policy applied

everyWW transitions. The preceding procedure is repeated® random PBNs, thereby

yielding 1000 values for each statisti€”, ..., Cll,;APY ..., AP .C" . Clvts
APM . AP Using these, we compare the optimal W-transition and camesttion
polices via the empirical averaghd§[C""] of C1V, ..., CW.,; M[C™ of O, ... Coow;

M[APY] of APV, ... AP : and M[APY] of AP/"', ... AP}, In addition, for
each value ofiV, the histograms of the differenceg”' — CV and APY — AP,
i = 1,...,1000, are also found. We will see that the means tend to be clgé&;"V| ~
M[C"1] andM[APY] ~ M[AP™!], but that the histograms of the differences have long
tails to the right, indicating that there are cases for whisimg the optimal one-transition
policy can have strongly detrimental effects.

In the first set of experiments, each constituent BN is rarigdgenerated with a bias,
the bias being the probability that a Boolean function takeshe value 1. We randomly

select the bia$ of a BN from a beta distribution. The mean of the beta distidiuis



69

N
o
>

W One-transition Optimal Policy ' ' i 0.14f ' " [CIW-transition Optimal Policy
& 16.{[JW-transition Optimal Policy . | « M One-transition Optimal Policy
2m 1 S 0.12F
o H 2
£ 16 o
F 1 £ o1}
[ = —
£ 15.8 o
3 5 0.08
S156 %
g <0.06
5 15.4 E
8 7
g 5 0.04
0152 2
s %
>
§ 15 2002 ’_I ’_I
E
h )
2

(@) (b)

Fig. 12. Comparison of optimal W-transition and one-traasipolicies based on the av-
erage values oAP" and average total discounted cost for ¢ {1,...,10} for
random PBNs with bias mean = 0.3. (a) Average of discountst] (lm) Average of
APY

chosen to be 0.3, 0.5, or 0.7. The variance of the beta disiily o2, is set to a constant

value0.0001. The average values &fP" and the average total discounted costs for both

one-transition and W-transition policies are shown in Figsand 13 for bias values of 0.3

and 0.5, respectively. Similarly, the histograms of thdetdénces of the two policies in

terms of AP" and the average total discounted costs are shown in Figndldsa
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Fig. 13. Comparison of optimal W-transition and one-traasipolicies based on the av-

erage values oAP" and average total discounted cost for ¢ {1,...,10} for
random PBNs with bias mean = 0.5. (a) Average of discountst] (lm) Average of
APY

We observe that the average&P" for both policies decreases HS increases. This
behavior is in accordance with the intuition that treatreemtiich are further apart in time
are less effective. As we stated in the Introduction, tungorsn less time to grow between
treatments are more likely to be eradicated [14]. In the lamg less treatment is applied
for a largerl? and consequently more cost is induced. Hence, for a fixed thiesverage
discounted costs of both one-transition and W-transitiolicies increase ad/ increases.
On average, the optimal W-transition policy results in lowescounted cost and higher
APY compared to the optimal one-transition policy. The hisangs of the differences of
the two policies in terms oAP" and average discounted show how often they generate
similar outcomes and how often the effect of the two polidéger. Note that the dif-
ferences are not positive for all PBNs. This is because thienappolicies minimize the
‘expected’ total discounted cost. Hence, the W-transitiomtrol policy can induce a larger

average discounted cost compared to the one-transitidanot@olicy, but rarely.
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In the second set of experiments, we generate constituestvdtd connectivitie2,
3, and4. For each connectivity, predictors and Boolean functiaesrandomly generated
with a biasb, randomly selected from a beta distribution with mé&ah Similar to the
previous experiment, we observe that the optimal W-traorsfiolicy results in lower aver-
age discounted cost and high®" compared to the optimal one-transition policy. In the
third set of experiments, we repeat the simulations for t& of control being 0, 0.1, and

0.5. Results of this experiment for control cost of 0.1 ashin Figs. 16 and 17.

2. Mammalian Cell-Cycle Network

The value ofAP" and the average total discounted cost for both optimal caresition and
W-transition policies derived for the cell-cycle netwonke ahown in Fig. 18. In the long
run, less treatment is applied for a largE€rand consequently more cost is induced. Hence,
the average discounted costs of both optimal one-transati@ W-transition policies in-
crease a$V increases. It should be noted that the previous experinséiots the average
behavior of 1000 random PBNSs while this experiment considlee behavior of one net-
work, i.e. the mammalian cell-cycle network. In this instanthe optimal one-transition

and W-transition policies are close to parity for the cgitle network.
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Fig. 14. Comparison of optimal W-transition and one-traasipolicies based on the his-
togram of difference of W-transition and optimal one-titios policies foriV =5
on random PBNs with bias mean = 0.3. (a) Histogram\6f"" associated to op-
timal W-transition policy minus\P" associated to optimal one-transition policy,
(b) Histogram of the average discounted cost associatefdtimal one-transition
policy minus the average discounted cost associated tmap@/-transition policy,
(c) enlarged view of (a), (d) enlarged view of (b)
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Fig. 15. Comparison of optimal W-transition and one-traasipolicies based on the his-
togram of difference of W-transition and optimal one-titios policies foriV =5
on random PBNs with bias mean = 0.5. (a) Histogram\6f"" associated to op-
timal W-transition policy minus\P" associated to optimal one-transition policy,
(b) Histogram of the average discounted cost associatefdtimal one-transition
policy minus the average discounted cost associated tmap@/-transition policy,
(c) enlarged view of (a), (d) enlarged view of (b)
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erage values oAP" and average total discounted cost for ¢ {1,...,10} for
random PBNs with control cost = 0.1. (a) Average/?®", (b) Average of dis-
counted cost.
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Fig. 17. Comparison of optimal W-transition and one-traasipolicies based on the his-
togram of difference of optimal W-transition and one-ti&ios policies foriV = 5
on random PBNs when cost of control is 0.1. (a) Histogram\Bf" associated to
optimal W-transition policy minug\P" associated to optimal one-transition pol-
icy, (b) Histogram of the average discounted cost assatiat®ptimal one-tran-
sition policy minus the average discounted cost assoctategtimal W-transition
policy, (c) enlarged view of (a), (d) enlarged view of (b)
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cell-cycle network. (a) Average of total discounted casfAP"
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CHAPTER VI

MEAN-FIRST-PASSAGE-TIME CONTROL POLICY

The study of infinite-horizon intervention strategies mis® fundamental questions. First,
Is it possible to beneficially affect a network by applying thptimal stationary control pol-
icy? This translates into assessing toatrollability of the network. In practice, a physi-
cian would like to predict the effectiveness of a certairatingent at different stages of a
disease and on different patients. Investigating the etita certain type of control on
various networks is equivalent to questioning the cordfmlity of the network. To date,
there has been no investigation on this important topicerctintext of gene regulatory net-
works. Second, can we identify the best intervening genesther words, which gene is
the best potential “lever point,” to borrow the terminoldgym [32], in the sense of having
the greatest possible impact on the desired network betvalngrinciple, solving an opti-
mal control problem for each candidate gene and comparggediformance of the system
for these various controls would answer these questiongeWer, this process is a compu-
tationally demanding procedure. The complexity of dynapmagramming algorithms can
be vast and increases exponentially with the number of Jdés

In their early papers, Shmulevich et al. employ two methodsélecting a candidate
gene for interventionmean first-passage tinrendinfluencel5, 6]. The following biolog-
ical example, borrowed from [4], explains the intuition behusing mean first-passage
times for selecting the best control gene. In biology, ttEenumerous cases where the
(in)activation of a certain gene or protein can lead morekjuyi(or with higher probability)
to a particular cellular functional state or phenotype ttien(in)activation of another gene

* Reprinted with permission from “ Intervention in Gene Regaty Networks via a
Stationary Mean-First-Passage-Time Control Policy” by&hedi, B. Faryabi, J.-F. Cham-

berland, A. Datta, and E. R. Dougherty, 200BE:E Transactions on Biomedical Engineer-
ing, 55, 2319-2331, Copyright 2008 by IEEE.
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or protein. For instance, in a stable cancer cell line, iretence of intervention, the cells
will keep proliferating. This behavior can be reversed bgtoalling the expression of cer-
tain genes. Assume that the goal of the intervention is tb thescell into programmed cell
death (apoptosis). Further assume that we can achievetaigention with two candidate
genes: p53 and telomerase. The p53 gene is the most wellrkknomor suppressor gene
[41][42][43]. The telomerase gene encodes telomerasehwhaintains the integrity of the
end of chromosomes (telomeres) in germ cells. Germ celleeaponsible for propagating
the complete genetic material to the following generatibelomerase also maintains the
integrity of the end of chromosomes in progenitor cells. gerotor cells are responsible
for replenishing cells during the normal cell turnover (hemstasis). In somatic cells, the
telomerase gene is turned off, resulting in telomere shorgeeach time the cell divides —
a key reason for the limited life-span of normal cells [44].the majority of tumor cells,
telomerase is activated, which is believed to contributthtoprolonged life-span of the
tumor cells [45]. This worsens prognosis for cancer pasi¢h®][47]. Extensive experi-
mental results indicate that when p53 is activated in this,clelr example in response to
radiation, the cells undergo rapid growth inhibition andgipsis in as short as a few hours
[48]. In contrast, inhibition of the telomerase gene alsadieto cell growth inhibition,
differentiation, and cell death, but only after cells gootingh a number of cell divisions
(allowing telomere shortening). Cell death takes a longee through this latter process
than via p53 activation. The use of mean first-passage tiorefniding the best control
gene is intuitive; however, it focuses on a one-step costrehario.

The influence method distinguishes genes that have a majacimon a predictor
function from those that have only a minor impact. This mdthas introduced to reflect
the extent to which a set of genes is capable of determiniagdlue of a target gene [5].
It has been used as a criterion to select a control gene watlsuggestion that the gene

with the largest influence on the target gene is likely to be@dgcontrol gene in the finite
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and infinite-horizon control of PBNs [49][11]; however, research has been done on the
overall performance of this heuristic measure.

Capitalizing on the biological intuition behind mean fipgissage time, we propose an
algorithm based on mean first-passage times that assigatsoaaty control policy for each
candidate gene. We call this algorithm thiean First-Passage Time (MFPB)gorithm
and refer to the corresponding stationary control policyh@sMean First-Passage Time
(MFPT) control policy. The proposed algorithm selects the MFPTti@drpolicy based
on two heuristics: (1) it is preferable teachdesirable states as early as possible; (2) it
is preferable tdeaveundesirable states as early as possible. The MFPT algoddmbe
employed in four main applications.

First, the MFPT algorithm can be used for predicting the bestrol gene. The MFPT
algorithm enables the computation of the MFPT control pedi¢or all the genes in the net-
work with a manageable complexity. The control gene withhiggest desirable effect on
the long-run behavior of the network upon the applicatiothefcorresponding MFPT con-
trol policy is likely the most effective gene for controljithe biological system. Second, to
reduce the complexity of the optimal stochastic controbpem, the MFPT control policy
can be used as an approximate solution. Contrary to optilgatithms, the MFPT algo-
rithm finds policies with constant complexity. Third, the BIF algorithm can be used to
measure the controllability of a network. Since the MFPTtodrpolicy is an approxima-
tion for the optimal control policy, one can define a netwarlbé controllable if the effect
of the MFPT control policy is greater than a desired threghol

Finally, the MFPT algorithm can be used to design a contrbtpavithout requiring
network inference. The optimal stochastic control poligegosed thus far require perfect
knowledge of the probability transition matrix governirge tnetwork, which must be de-
rived from the PBN or inferred directly. These proceduresmone to modeling errors and

suffer from problems of computational complexity for bo#twork inference and finding
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the optimal control solutions. To achieve model-free weation, the MFPT control policy
can be designed based on estimates of the mean first-passage The model-free inter-
vention method has low complexity, is robust to modelingesrand adapts to changes in

the underlying biological system.

A. Mean-First-Passage-Time Algorithm

In this section, we first elaborate on how the MFPT algoritsndesigned based on the
mean first-passage time. We then summarize the MFPT alguritApplication of the
MFPT algorithm requires the designation of desirable ardksimable states, and this de-
pends upon the existence of relevant biological knowledgervention is performed by
flipping (toggling) the expression status of a particulargggom ON to OFF or vice-versa,
the intent being to externally guide the time evolution of tietwork towards more de-
sirable states. If is the control gene, then applying the control (intervemtim statex
translates into flipping the value gin that state (the control gegechanges to if its value
is 1 and vice-versa). Consequently, the network resumes itsitran from the new state
x, which we call theflipped-state In the context of therapy, the state-space of a PBN can
be partitioned into desirable and undesirable states.n@\wntrol gene, when a desirable
state reaches the set of undesirable states on averagetif@stets flipped-state, it is rea-
sonable to intervene and transition into the flipped-st&tmilarly, if an undesirable state
reaches the set of desirable states on average faster shifipped-state, it is reasonable
not to intervene. These insights motivate the use of mearpfrssage times for designing
intervention strategies.

Without loss of generality we can assume that the transpraability matrixP of

the Markov chain (representing a PBN) is partitioned adogytb
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pP— Ppp Ppy
Pup Puu )’
whereD andl{ are the subsets of desirable and undesirable states, tigsped’ he mean

first-passage times are computed by solving the followirsgesyis of linear equations [19]:

Kz,{ :6+PD,’D'KZ/{7 (61)
KD =e+ PMJ,{ . KD, (62)

wheree is a column vector oi’s with appropriate lengthk;, is a vector containing the
mean first-passage times from each state in the subset ohblesstate® to undesirable
states in sel/, and Kp is a vector containing the mean first-passage times from gat

in the subset of undesirable statéso the desirable states in $Bt

A control policy ., corresponding to control genes a vector of size”, the number
of states in the network. The decision rylg : S — C specifies the control action for
each state in S. Havingy,(x) = 0 for statex means that, whenever the network reaches
statex, no control is applied and the system continues its tramshiased on the transition
probabilities of statex. On the other hand, having,(x) = 1 implies that, whenever the
network reaches statg the control is applied and the system continues its evaiuiased
on the transition probabilities of stake the flipped-state at.

The goal of the MFPT algorithm is to design the MFPT controliges {/i,},_; .
The objective is to choose a control valudor every state inS such that the network
evolves towards more desirable states. The MFPT algoritsliects the control policy
for control genegy in the following manner. Assume stateis an undesirable state. We
compare the mean first-passage times from stateD and from the flipped-state to D.

In other words, we would like to know on average which one esthtwo statesx and

x, hitsthe set of desirable states for the first time faster than tiher@ne. The algorithm
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choosegi,(x) = 1 if the difference between the mean first-passage times tefsstand the
flipped-statex to the set of desirable states, iEp(x) — Kp(X), is greater than a tuning
parametery (to be discussed). Otherwisg,(x) = 0. Analogously, if state is desirable,
then,(x) = 1 if the difference between the mean first-passage times t# stand the
flipped-statex to undesirable states, i.€;,(x) — Ky(x), is greater than. Otherwise,
fis(x) = 0. These comparisons are repeated for all states. Algoritisemimarizes the
proposed procedure.

The thresholdy in the MFPT algorithm is a tuning parameter chosen basedeoratto
of the cost of control to the cost of undesirable states. Whemrost of applying treatment
in a state is high compared to the cost of undesirable statesptimal control policy is
less likely to apply the control frequently. Thusjs set to a larger value when this ratio
is higher, the intent being to apply control less frequenilie explain after the following
definitions how one can set this parameter.

An effective control policy reduces the likelihood of vial undesirable states com-
pared to a network without intervention by modifying thederun behavior of the network.
The effectiveness of a control policy can be measured by rtiheuat of changedhift) in
the aggregated probability of undesirable states befaleafier intervention. As a perfor-

mance measure we define
g

AP — Ez‘eu T — Zz‘eu T
g E T )
icu Ti

wherer? is the probability of being in undesirable state the long-run after intervening

with control gengy, andr; is the probability of being in undesirable state the long-run
when there is no intervention. The ratld®, measures the proportion of reduction in the
total probability of undesirable states in the steady stéien the control gengis selected.
We denote this proportion PP when an optimal control policy is applied. In other

words, in the optimal case one can shift the aggregated pildipaf undesirable states to



Algorithm 1 MFPT algorithm

Partition the state-space into undesirdiland desirabl® subsets.
Computek;; and Kp.
g« 1.
repeat
for All statesx in ¢/ do
x < flip control gengy in x.

if KD(X) — Kp(f() >y then

pg(x) = 1;
else
pg(x) = 0;
end if
end for

for All statesx in D do
x < flip control gengy in x.
if Ky (x)— Ky(x) >~ then
pg(x) = 1;
else
pg(x) = 0;
end if
end for
g—g-+1

until ¢ > number of genes
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desirable states b&sP;'f’t through appropriately altering the expression of the aimgjene
g. Similarly, the shift obtained by the MFPT control poligy is denoted b)APgMFPT(V),
where~ is the tuning parameter.

We definethe probability of the execution of contra$

2" —1

Iy = Z w5 L () = 1), (6.3)

wheren is the number of genes; is the steady-state probability of stgte= S, 1,(7) is
the value of the control policy in stagg and1(-) is the indicator function. The purpose
of introducing this probability is to have a fair evaluatioithe performance of the MFPT
control policy in terms of the number of control executiowhich for the optimal policy
is related to the cost of control. For each control ggnene can defin@;pt as the prob-
ability of the execution of control when the optimal contpallicy is applied. Similarly,
I'MT0) s the probability of the execution of control when the MFRSRtrol policy with
the parameter is applied.

We numerically find the value of the parametefor each control cost. We generate
random intervention problems and calculate the averag§’oand T’y . These av-
erages are taken over random intervention problems witk fixatrol cost. Starting from
~v = 0, we increase the value of For each control cost, the desired value o the mini-
mal one for which, on averagg?” > I'y™ ). This condition guarantees that on average
the MFPT control policy applies no more control than themjadicontrol policy. Since the
values of the parameterare found from random intervention problems, in practice cen
have a conservative approach and choose the paramaidre greater than the proposed

value. The conservative approach can assure a high pritpabét % > Iy, On

the other hand, the deviation &' ™" from AP becomes larger.
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B. Applications of the MFPT Algorithm

We devise solutions according to the MFPT algorithm for fiotiervention applications.

1. Identification of the Best Control Gene

Recalling the example of p53 and telomerase in the intraolucit is important to select
the most effective control gene in a therapeutical intetiean The best control geng can
be found by directly solving a dynamic programming algarithnd computing{APgOpt}g:1

for all the geneg in the network. In shorty* is given by

g* = arg grilﬁ.%(n AP;pt; (6.4)

however, this optimal method to find the best control gene@mputationally prohibitive.
On the other hand, the MFPT algorithm enables the computatiche MFPT control
policies{/] };_, for all the genes in the network with an acceptable comptexiaking

this approach, the MFPT algorithm predicts the best cogiak to be

§ = arg max APMFPTO), (6.5)

We will show thatj = g* with high probability, and that\P* — AP is small
whenevey # ¢*. In this context, we are using the MFPT algorithm to find thetoal gene.
Once the best gene candidate is identified, an optimal dgudficy can be obtained using
dynamic programming algorithms. We will also show that thERV-based prediction of

the best control gene significantly outperforms the infleemethod.
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2. Approximation of the Optimal Control Policy

The MFPT algorithm can devise an intervention strategy apanoximation of the optimal
intervention strategy. To this end, we numerically find thkie of the parameterfor each
control cost so that, on averagI@,EJt > Fg"fPT. To assess the accuracy of the approximation,
we show that the average dﬂD;ft — APgTFPT(V) over random intervention problems with
fixed control cost is small. Note that, so as not to confourgt@amation accuracy with
the MFPT algorithm’s ability to find a control gene, we appbttbthe optimal and MFPT

methods using the optimal control gegie

3. Controllability

An important aspect of prognosis is quantifying the pos$isjtof recovery. In our frame-
work, this amounts to quantifying trentrollability of a gene regulatory network, a con-
cept borrowed from traditional control theory. Can the retnbe sufficiently controlled
to provide meaningful recovery? We desire a controllapititeasure where the objective
of the control is to reduce the likelihood of observing theesirable states in the long-run.
An optimal control strategy takes into account the cost aiticd, but here we want only
to focus on the possibility of sufficient control, absent ems with costs, either medical
or financial. To this end, we choose the cost of control to lve.z€he zero control-cost
strategy admits any number of states with active controlt @int (one that is certainly
debatable) is that we desire a measure of controllabilith wo restrictions on the num-
ber of times the control might be applied. Thus, a possiblgagech is to set the cost
of control to zero and computAP;ft. To reduce the computational burden, we propose
APYMFPTO) (4 = 0) as a controllability measure. Our simulations show thatx#)"™

is a highly accurate approximation mP;Pt when the cost of control is zero. Therefore,

the MFPT algorithm can be employed to determine the comtodity of a network. For
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example ifAPg“fFPT(O) is very small, we conclude that the network is not contraéabif
APYFPTO) = 0.5, then we conclude that it is possible to shift of the probability mass
of the undesirable states to desirable ones in the longgiven the application of the

control has zero cost.

4. Model-free Intervention

To date, the proposed intervention methods for PBNs are huefgendent, requiring
knowledge of the transition probability matrix. This canderived from the PBN if the
latter is known. Since in practice PBNs are not known excégptsystem identification
from observed data, one is faced with a difficult inferencebpgm [50]. This problem
can be avoided by directly inferring the transition proligbmatrix; however, this is still
a formidable task because the complexity of estimating thesition probabilities of a
Markov chain increases exponentially with the number ofegan the model. When time-
course data are available, the MFPT algorithm can be impiéedeby directly estimating
the mean first-passage times. The estimated mean firstgestssees are used to construct
the matrices of the mean first-passage tinlgsand K. The MFPT algorithm can then be
applied to the estimated matric&%, and Kp to devise anodel-freeMFPT control policy.

In the following, we propose a procedure for estimating tleamfirst-passage times
from time-course measurements. Assumea desirable state and it is observed at tigne
Further assume that, starting from timethe first undesirable state occurs at titne- k.

In other words, it takeg, time points for the desirable stateto transition (reach) to an
undesirable state. Similarly, assume the next observafigiater is at timet; and since
timet; the first undesirable state occurs at titne- k;. In this example, the average first
passage time from stateto the subset of undesirable stateskis+ k1)/2. Likewise, one
can define an example for an undesirable sjataching the subset of desirable states. It

is evident that for larger numbers of observations, thisregton becomes more accurate.
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The above procedure needs to be implemented with low corntylet each time point,
we update the number of steps for each state to reach theitgpuaisset of states and store
the frequency of the occurrence of each state. One needdg&bauine average first passage
times for a new observation. The complexity of estimating tiean first-passage times
following our procedure is constant with respect to the nends genes for each iteration.

An advantage of the model-free approach is that the estdmatdricesk;, and Kp
can be updated whenever new time-course data become &vailale possibility of updat-
ing the estimated mean first-passage times enables the Mg@Tttam to adapt its control
policy to the status of gene interactions. In other words, iodel-free MFPT control
method is adaptive to changes in the network model. In conptthe control policy de-
vised by the existing intervention methods cannot adagte@hanges in the status of gene
interactions. Once the PBN is inferred form data, the maldglendent control policy is
fixed.

Through numerical studies, we will exhibit the effectivea®f the model-free MFPT
control policy obtained by estimating the mean first-paggages. On one hand, we will
estimate the matrices;, and K based on synthetic time-course data and use the MFPT al-
gorithm to find the control policy; on the other hand, we wikuthe same time-course data
to build a Markov chain representing the dynamics of the rhadd then find the control
policy based on the estimated transition probability maising dynamic programming.
We will observe that the MFPT control policy based on thenested mean first-passage
times outperforms the control policy devised from the eated transition probabilities of

the Markov chain, given the same set of time-course datdeémible size data sets.
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C. Complexity Analysis of the MFPT Algorithm

The main objective of an effective intervention strateggoiseduce the likelihood of visit-
ing undesirable states compared to a network without ietégren by modifying the long-
run behavior of the network. Given a time-course data sefetlare two possible ap-
proaches for designing a strategy for any model such thatymsmic behavior can be
represented as a Markov chain (such as PBN or Dynamic BayBisiavork).

In the first approach, one can estimate the transition pibtied of the states from
time-course measurements. Let us call this approach nusgendent. We require all the
details about the model, i.e. the transition probabilitiethe Markov chain. Various meth-
ods can be employed to design an effective interventionegfyabased on the estimated
model. The optimal control policy can be designed via dyrgonogramming techniques
[11]. In favor of lower computational complexity, an appimation of the optimal control
policy can be achieved using the MFPT algorithm.

In the second approach, an effective intervention strategybe designed directly
from time-course measurements. We call this approach rfoekel In contrary to the
model-dependent approach where the transition probabibf the Markov chain are needed,
we do not require the details of the model. To this end, a mrdelalgorithm based on
reinforcement learning has recently been introduced [39js method bypasses the im-
pediment of model estimation and an effective control pyotian be designed with a low
complexity. We propose that the MFPT algorithm can also besicered as a model-free
method. In this section, we analyze the complexity of the ehdsed and the model-free

MFPT algorithms.
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1. Model-dependent Approach

In the previous section, we introduced the four major ajpilons of the MFPT algorithm:
identification of the best control gene, approximation ofogmimal control policy, con-
trollability, and model-free intervention. Employmenttbe MFPT algorithm in the first
three applications is considered as a model-dependerdagipsince it is assumed that the
transition probability matrix of the Markov chain is know@iven the model is known, let
us compare the computational complexities of the dynanogmamming and the MFPT
algorithms.

To find an optimal control policy using value or policy iteat, one should iteratively
find the value (cost) function until the algorithm reaches fixed point of the Bellman
optimality equation. Once the optimal cost functions amapoted, one must check which
control value attains the minimum in the right-hand sidehaf Bellman optimality equa-
tion and this procedure should be iterated for all the stafeshe best of our knowledge,
there does not exist a tight upper bound on the number ofibasarequired to find an
optimal policy using either value or policy iteration, déspecent research initiatives [51].
Given the control gene, the policy iteration algorithm hasplexity O(23") per iteration,
whereas the complete complexity of the MFPT algorithm, Wrdonsists of two matrix
inversions, i90(23"). In general, it is known that the policy iteration algoritlwonverges,
but it is not known whether “the number of iterations in pgliteration can be bounded by
a polynomial in the instance size” [51]. Even assuming thattumber of iterations can be
bounded by a polynomial in the number of states, the completithe MFPT algorithm
is lower than the policy iteration algorithm because it ismpated once and does not re-
quire iteration. Regarding the value iteration algorithine, asymptotic upper bound on the
number of iterations required to find an optimal policy usihg value iteration algorithm

is polynomial in the number of states [51]. The degree of thigrpmial is determined
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to be greater than two in special cases [52, 53]. Given theptaty of each iteration in
the value iteration algorithm i©(22"), the complexity of the value iteration algorithm to
find an optimal control policy i€ (2**)"), wherea > 1. Hence, the complexity of the
MFPT algorithm is also lower than the complexity of the valaeation algorithm. To find
the optimal cost functions fat control genes, the complexity of a dynamic programming
algorithm isn times the complexity of this algorithm for one control gera.contrary,
once the mean first-passage time vectors are computed, dhdyecused to devise MFPT
control policies for all control genes.

It is important to point out that for any control gene, in daai to the above complex-
ities, the dynamic programming and the MFPT algorithms nacg over all the states to
find their corresponding control policies. In dynamic p@gming algorithms, to obtain
the optimal control policy, one must check which controlaittains the minimum in the
right-hand side of the Bellman optimality equation and finecedure must be iterated for
all the states. In the MFPT algorithm, one must investigateckvcontrol value leads to
a more favorable mean first-passage time and this proceduseba repeated for all the
states.

It is evident from the above analysis that the applicatioomwf proposed method is
restricted to small number of genes since the complexith@MFPT algorithm increases
exponentially with the number of genes. We should point bat tn our application of
interest, intervention in gene regulatory networks, thal@e not to model fine-grained
molecular interactions among a host of genes, but ratherageia limited number of
genes, typically with very coarse quantization, whose legguy activities are significantly
related to a particular aspect of a specific disease, suchetastasis in melanoma [8].
Hence, while the asymptotic results on the complexitiegpihoal algorithms are encour-
aging, they are not our main interest; rather our problentsdedh networks with small

numbers of states. Fig. 19 shows the average execution fithe @alue and policy iter-
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ation algorithms ovet000 randomly generated intervention problems as a functiohef t
number of genes, along with the execution times of the MFPT algorithm. Pés figure,
the execution time of the MFPT algorithm is much smaller ttrenexecution time of the
two optimal algorithms. The direct comparison has beentéichto 10-gene networks on
account of the high complexity of the modeling and optim&timention algorithms. The
maximum size of the intervention problem which can be solwedur MFPT method is
hardware-dependent. For instance, our current hardwanfggooation (single Xeon pro-
cessor and 1-GB memory) can obtain MFPT intervention pdiicya synthetic 15-gene
regulatory network, which, given the data limits of currerpression measuring technol-
ogy, is sufficient for the applications in which we are now aged. Given more memory
and processing power, intervention strategies can bemksbigr larger networks. Should
the need arise for larger networks, we will consider impletagon on our Beowulf cluster

at the Translational Genomics Research Institute.
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2. Model-free Approach

The model-dependent approaches yield effective solufmnkirge numbers of observa-
tions. However, these approaches have major drawbackaatige. For lower numbers of
observations, which correspond better to feasible expariai conditions, estimating the
Markov chain yields poor results. Estimation errors mayehavhuge impact on finding
an effective intervention strategy, which is often quitesive to changes in the transition
probabilities [54]. Furthermore, the complexity of estting the transition probabilities of
a Markov chain increases exponentially with the number ofegen the modelQ(22").
This is in addition to the complexity of designing an effeetintervention strategy. Hence,
a procedure that can find an effective intervention strateglgout having to know the
transition probabilities is very attractive.

The model-free based MFPT algorithm (fourth applicaticst)reates the mean first-
passage times from time-course measurements. The cotypégstimating these vectors
following the proposed procedure in the previous sectiaroisstant with respect to for
each iteration, where denotes the number of genes. In other words, we devise attiedfe
intervention strategy by learning about the mean first-ggessimes directly from the data.

The highlight of this paper is the possibility of employingetMFPT algorithm in a
model-free approach. To this end, we summarize the two memefiis of our proposed
model-free method: 1) The complexity of the modeling an@mntion is significantly
less than that of the model-dependent methods; 2) In cgrtivahe optimal control prob-
lem approach, which is sensitive to changes in the systeemifPT algorithm needs the
average behavior of the system and is expected to be morelagpi®r smaller numbers of
observations. We corroborate this claim in the result sadty comparing the model-free

MFPT method with the model-dependent optimal control meétho
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D. Results and Discussion

In this section, we first study the performance of the MFPDiatgm for each of the afore-
mentioned applications through extensive simulationgnfiom PBNs. We then compare
the performance of the MFPT algorithm and the influence ntetbiothe network obtained

from a melanoma gene-expression data set.

1. Synthetic Networks

We postulate the following cost-per-stage:

(

0 if u=0andj € D,

. 10 ifu=0andj € U,
g(u,j) =
Cc ifu=1andj € D,

10+c ifu=1landj el,

wherec is the cost of control. The target gene is chosen to be the sigisificant gene
in the GAP. We assume the up-regulation of the target genedegirable. Consequently,
the state-space is partitioned into desirable st@®es, {0, ...,2"~! — 1}, and undesirable
statesi/ = {271 ... 2" — 1}, wheren is the number of genes. The cost values have
been chosen in accord with an earlier study [11]. Since ojeatibe is to down-regulate
the target gene, a higher cost is assigned to destinatitasstaving an up-regulated target
gene. Moreover, for a given status of the target gene for tndgien state, a higher cost is
assigned when the control is applied, versus when it is nairder to investigate the effect
of the cost of control in our algorithm, we vary its value frono 10, which is the cost of
the undesirable states.

We generate random PBNSs in the following manner. Each PBNistsof10 con-
stituent BNs. Each BN is randomly generated with a specits ki the bias being the

probability that a randomly generated Boolean functioesadn the value 1. Since the bias
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affects the dynamical properties of randomly generated BNsve take it as a parameter
in our simulations. We randomly select the biad a BN from a beta distribution. We vary
the mean of the beta distribution frobB to 0.7 with step-size).1. The variancer? of the
beta distribution is set to a constant value001. This provides random biases from low
(0.3) to high (0.7). We generaté000 random PBNSs for each bias mean. For each PBN,
the transition probabilities of the corresponding Markdnain are estimated. The above
procedure is repeated for networksba 10 genes. Due to the computational complexity
of the optimal stochastic control problem and the estinmatitbthe transition probabilities
of the corresponding Markov chain, the study of a large nunob@etworks beyond 0

genes is outside our current computational capacity.

a. ldentification of the Best Control Gene

We first show the performance of the MFPT algorithm and the&mfte method when they
are employed to predict the best control gene. Itis assunatthte cost of contralis equal

to 1. In Tables VIII, X, 1X, and XI, we compare the performancestod MFPT algorithm
and the influence method for predicting the best control gdfiest the optimal control
policy for each control gene is obtained by a dynamic prognamg algorithm. The best
control gengy* is found based on (6.4). Similarly, the MFPT control polioy éach control
gene is computed and the predicted control gersefound based on (6.5). The influence
method is also employed to predict the best control gene.piédicted best control gene
by the influence method is denotgd We define the probability of the correct prediction
of each method to be the number of PBNs for which the metha@ctly predicts the best
control gene divided by the total number of PBNs in the experit. The probabilities of
correctly predicting the best control gene by the MFPT atgor and the influence method
are shown in Tables VIIl and X. The average differences betwaoportions of reduction

in the total probability of undesirable states correspogdo the gene predicted by each
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method and the best control gene, iAPf" — AP®) and (PP — APJP), are shown in
Tables IX and XI. In our experiments, the probability of tleerect prediction by the MFPT
algorithm is always greater thandd. Table. IX shows that\P;*" — AP”™ on average is

less thar).0002.

Table VIII. The probability of finding the best control genélmthe MFPT algorithm when

¢ = 1 for networks with different number of genes.
Bias 0.3 0.4 0.5 0.6 0.7
(A) 5 genes| 0.9850| 0.9640| 0.9570| 0.9600| 0.9720
(B) 6 genes| 0.9430| 0.9700| 0.9760| 0.9580| 0.9870
(C) 7 genes| 0.9440| 0.9680| 0.9670| 0.9700| 0.9570
(D) 8 genes| 0.9660| 0.9740| 0.9860( 0.9790( 0.9710
(E) 9 genes| 0.9132| 0.9233| 0.9741| 0.9812| 0.9812
(F) 10 genes 0.9470| 0.9570| 0.9860| 0.9690| 0.9610

Table IX. The average difference between the proportiongadction in the total proba-
bility of undesirable states obtained by the best contraokge and the predicted
control gene obtained by the MFPT algoritljrfor networks with various number
of genes.

Bias 0.3 0.4 0.5 0.6 0.7
(A) 5genes| 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001
(B) 6 genes| 0.00016| 0.00010( 0.00003| 0.00006| 0.00006
(C) 7 genes| 0.00013| 0.00013| 0.00006| 0.00005| 0.00005
(D) 8 genes| 0.0001 | 0.00008| 0.00005| 0.00002| 0.00003
(E) 9 genes| 0.0002 | 0.00001| 0.00001| 0.00004| 0.00001
(F) 10 geneg 0.0001 | 0.00008( 0.00003| 0.00002| 0.00005

Table X. The probability of finding the best control gene wtik influence method when ¢
= 1 for networks with different number of genes.

Bias 0.3 0.4 0.5 0.6 0.7
(A) 5genes| 0.6660| 0.6240| 0.5480( 0.5670| 0.5740
(B) 6 genes| 0.5630| 0.5320| 0.4790| 0.5070| 0.5340
(C) 7 genes| 0.5470| 0.5550| 0.5320| 0.5460| 0.5060
(D) 8 genes| 0.5190| 0.5290| 0.5290| 0.5780| 0.5600
(E) 9 genes| 0.5086| 0.5186| 0.5186| 0.5676| 0.5496
(F) 10 genes 0.5480| 0.5230| 0.5030| 0.4010| 0.4610

The performance of the influence method is also shown in $a¥land XI. These
tables suggest that approximatély0 of the time the influence method’s prediction is

correct. In generalAP™ — AP is greater tham.001. Tables XII, XIlI, XIV, and XV
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Table XI. The average difference between the proportionedadiction in the total proba-
bility of undesirable states obtained by the best contrakge and the predicted
control gene obtained by the influence metlyddr networks with various num-
ber of genes.

Bias 0.3 0.4 0.5 0.6 0.7
(A) 5genes| 0.0079| 0.0109| 0.0102| 0.0133| 0.0134
(B) 6 genes| 0.0081| 0.0107| 0.0140| 0.0207| 0.0158
(C) 7 genes| 0.0086| 0.0108| 0.0104| 0.0115| 0.0130
(D) 8 genes| 0.0100| 0.0137| 0.0151| 0.0180( 0.0131
(E) 9 genes| 0.0016| 0.0228| 0.0134| 0.0415| 0.0130
(F) 10 genes 0.0104| 0.0097| 0.0152| 0.0178| 0.0211

Table XII. The probability of finding the best control gendtwihe MFPT algorithm.
Bias 0.3 0.4 0.5 0.6 0.7

(A)c=2 | 0.9034| 0.9121| 0.8983| 0.8848| 0.9085
(B)c=4| 0.8614| 0.8897| 0.8839| 0.8701| 0.8035

Table XIII. The average difference between the proportmfireduction in the total proba-
bility of undesirable states obtained by the best controkgeé and the predicted

control gene obtained by the MFPT algorittinwith various cost values.
Bias 0.3 0.4 0.5 0.6 0.7

(A) c=2 | 0.0004 | 0.0005| 0.0006| 0.0008| 0.0005
(B) c=4 | 0.0020| 0.0013| 0.0014| 0.0020| 0.0022

Table XIV. The probability of finding the best control gendlwihe influence method.
Bias 0.3 0.4 0.5 0.6 0.7

(A)c=2 | 0.6432| 0.6670| 0.5950| 0.5755| 0.6050
(B)c=4| 0.6151| 0.6247| 0.6616| 0.6321| 0.6533

Table XV. The average difference between the proportiongeadction in the total proba-
bility of undesirable states obtained by the best controbgeé and the predicted

control gene obtained by the influence metlyaalith various cost values.
Bias 0.3 0.4 0.5 0.6 0.7

(A)c=2 | 0.0098| 0.0102| 0.0120| 0.0133| 0.0144
(B) c=4 | 0.0103| 0.0190| 0.0151| 0.0190| 0.0115
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show the performance of the MFPT algorithm for higher valies Although the correct
prediction of the MFPT algorithm slightly degrades for heglvalues of the control cost

it still outperforms the influence method.

b. Approximation of the Optimal Control Policy

Once the best control gepéis known, the corresponding MFPT control poligy. can be
used as an approximate solution to the optimal stochastittagroblem. As previously
explained, the parameterdepends on the ratio of the cost of control to the cost of unde-
sirable states. We numerically find the minimal value of theametery for each control
cost so that on averagé®" > FQ’LFPT('”. It is shown that the average of>.P — APg“fFPT(”)
over random intervention problems with fixed control cosdnsall. We generate random
PBNs following the procedure explained earlier. The costrufesirable states is fixed. For
the PBNs with identical bias mean, we formulate the intetieenproblems with various
costs of control, which are varied such that the ratio of & of control to the cost of
undesirable states changes froro 1. For PBNs with each bias mean and cost of control,
we compute the averages AP>™ andI'{*". The averages are taken oue00 intervention

problems with PBNs whose bias means are fixed. Similarlyatieeages oAPM™ " and

(
g
MFPT(y
Fg*

) are found. Furthermore, we compute the average of thesagagover all bias
means. The parameteris determined such thif;AfPT(” < ng’t. For each given control
cost, we show the behavior &P andI'%" (APMFPT andT: ). As seen in Fig. 20a,
both APg'\fFPT('” andAP}IOt decrease when the ratio of the cost of control to the cost of un
desirable states increases. We observe that on averagéfénente betweerzﬁPgo*pt and
APg“fFPT(”) is less thard).02. As Fig. 20b shows, the probability of the execution of cohtr
for both policies decreases as the cost of control incredséde XVI shows the relation of
the parametey with the ratio of the cost of control to the cost of undesieadtiates found

in the above experiment.
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Table XVI. Value of the parameter as a function of the ratio of the cost of control to the
cost of undesirable states

Ratioofcosts| 0 | 0.2 | 0.4 | 0.6 |0.8| 1
5 0]029|061|(091|15]|194

Table XVII. Conservative value of the parameteas a function of the ratio of the cost of
control to the cost of undesirable states

Ratioofcostsy 0 [ 0.2(04]06|08]| 1
5 005/05{09|1.1({19]|23

Since the values in Table XVI are found from random PBNs, areliave a conser-

vative approach and choose the parametierbe greater than the proposed values. To this

end,F;"fPT("’) is smaller tharfgiJt in each intervention problem. Fig. 21 and Table XVII
show the outcomes of the same experiment explained eaitien the parameteris cho-
sen conservatively. In all the intervention problems cﬁﬂotperimenﬂ“gﬂfpm) < F‘;Et and

the deviation ofAPM™ T

- ) from AP Ptis smaller thard).04.

c. Controllability

To corroborate that the MFPT algorithm can be employed terdehe the controllability
of a network, we consider the results in Fig. 20. In this figuvben the cost of control
is zero ¢ = 0), APg“fFPT(O) IS an accurate approximation of tIz‘téD;Pt. The average of the

differenceAP"™ " — AP has a negligible value equal 600007.

d. Model-free Intervention

To compare the performance of the model-free MFPT contgiréghm with an optimal
control algorithm, where the latter includes estimatiomhaf transition probability matrix,
we generate synthetic time-course datalfdr, 000 time-steps from an existing model. Us-

ing the synthetic time-course data, we estimate the measpfissage times after eatbr
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time-steps, fok = 2, ..., 5, and fix the cost of control to have the valueAs the duration

of estimating the mean first-passage times increasz@g,FPT(”’) approachegngOPt. Fig. 22

shows the average 9P — APMTT)

, where AP>™ is obtained from the original

transition probabilities, with various estimating duoais over1 000 trials. For an optimal
control policy based on the Markov chain estimated from thdwe denote the shift in
the steady-state distribution @t. Fig. 22 shows the average kP> — A/Pg?f’ﬂ with
various estimating durations ov&p00 trials. The graphs clearly demonstrate the superior
performance of the model-free approach using the MFPT iitgor In particular, for lower
numbers of observations, which correspond better to feaskperimental conditions, es-

timating the Markov chain yields poor results, whereas tf&W approximation performs
quite well.

o
)
Q1

—Estirﬁation of transitioﬁ probability
----- Estimation of mean first-passage time

_APMFPT('}/)
o
N

©
—
&)

[APPLAP| and [APOP!
o
()
(9]

Log estimation duration

Fig. 22. Average of AP°P-APo| (solid) and| AP - APMFPTO) | (dash) over 1000 trials as
a function of the logarithm of estimation duration.
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2. Melanoma Gene Expression

In this section, we compare the performances of optimal aR€@Mcontrol polices in the
context of a gene network developed from steady-state dégiaed on our objective, the
cost of control is assumed to be 1 and the states are assignettips according to the

following scheme:

ifu=0andj € D,

0
. 5 ifu=0andj el,
r(u, j) =
1

ifu=1andj € D,

6 fu=1andjel,

which is the same cost structure as assumed in [11]. Sincagective is to down-regulate
the WNT5A gene, a higher penalty is assigned for destinatiates having WNT5A up-
regulated. Also, for a given WNT5A status for the destimatstate, a higher penalty is
assigned when the control is active versus when it is note @it the cost scheme reflects
our objective; in practice, the actual values would havea@ssigned by a physician ac-
cording to his or her understanding of the disease. OptimdNFPT control policies are
found for the melanoma-related PBN. Table XVIII summarizesamount of the shift in
the total probability mass of the undesirable states obthiny each of these two methods.
We apply the influence method to predict the best control géfeethen compare the pre-
diction of the influence method with the prediction of the MF&gorithm and the optimal
gene determined directly by the solution of a dynamic prognéng algorithm. Table XIX
shows the ranking of the genes based on: direct solutioneodpitimal control policy, the
MFPT algorithm, and the influence method. The MFPT methodnbt predicts the best
control gene, but it also exactly predicts the ranking ofdbetrol genes. As Table XIX

shows, the influence method does a poor job on predictingdsedontrol gene.
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Table XVIII. AP;F’t andAPgMFPT('Y) for all control geneg in the melanoma case-study

Gene ) | STC2 | Synuclein| HADHB | MART1 | PHOC | MMP3 | RET1 | S100P| pirin

APYP! 0.0733| 0.0892 | 0.1453 | 0.1104 | 0.2325| 0.1121| 0.0529| 0.1032| 0.1305

APMPTO) 10.0721| 0.0824 | 0.1437 | 0.1071 | 0.2312| 0.1120| 0.0507| 0.1021| 0.1272

Table XIX. Comparison of the control gene ranking based\&if”', AP, and AP

Rank 1 2 3 4 5 6 7 8 9

Optimal | PHOC | HADHB pirin MMP3 | MART1 | S100P| Synuclein| STC2| RET1

MFPT | PHOC | HADHB pirin MMP3 | MART1 | S100P| Synuclein| STC2| RET1

Influence| MMP3 | HADHB | MART1 | S100P| STC2 | pirin PHOC | RET1| Synuclein
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CHAPTER VI

CONCLUSION
In this work, we discussed several approaches that haverbeently developed for ad-
dressing the issue of inference and intervention in genelagyy networks. The results
reported indicate that significant progress has been matihsiarea. Our current collab-
orations with the Translational Genomics Research InstifliGen) aims at validating the
efficacy of mathematically derived intervention strateg@ controlling the pathological
behavior of cancerous cells. This research has the pdtémtizamatically impact future
medical practice. Engineering-based interventions ttlaieae cellular behavior alteration
will enhance current cancer treatment and lead to the denedat of personalized cancer
therapies. In the following, | outline some promising resbadirections for the future.
The feasibility of the proposed project critically depermsa genuine collaboration be-

tween biologists, physicians, and engineers

Effective Intervention in Heterogeneous Metastatic Cells

Metastasis, the spread of cancerous cells from the primampt to distant organs, and

their relentless growth, is the most fearsome aspect ofectabespite significant improve-

ments in diagnosis, surgical techniques, and generalmaidee, most deaths from cancer
are due to metastases that are resistant to conventiomaptee. The main barrier to the

treatment of metastases is the biological heterogeneitgméer cells in the primary tumor

and in metastases. Continual empiricism in the treatmetdméer metastasis is unlikely to
produce significant improvements in cancer therapy. Theselunderstanding the patho-
genesis of metastasis at the systemic level is an importahtog cancer research.

By the time of initial diagnosis, malignant tumors already@in multiple cell sub-

populations with diverse biological heterogeneity. Théehmgyeneous nature of the re-
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sponse of malignant tumor cell sub-populations to cytataixugs makes it unlikely that a
single treatment regimen will be able to kill all the cellsitumor. The goal of this research
project is to devise therapeutic methods to maximally estdi heterogenous metastatic
cells. To achieve this goal, we envision a number of objestior which both models and

experiments must be advanced.

Detect major cell subpopulations in a tumor.

Estimate the growth rate of each cell subpopulation.

Devise effective therapeutic methods to halt uncontratidtdgrowth in cell subpop-

ulations.

Devise adaptive strategy to eradicate various cell subdpopuos.

The current approach to cancer therapy is to experimentomiéhdrug after the other
until one drug works for a particular patient or all avaikablptions get exhausted. If this
proposed research is successful, it should be possibledy stcancer patient’s tumor in
vitro and predict apriori which treatment or set of treatises most likely to work for
that patient. This should enhance the current trial and epproach to cancer therapy and

thereby considerably improve the quality of life and thgraptcome for cancer patients.
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