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ABSTRACT

Asymptotic, Algorithmic and Geometric Aspects

of Groups Generated by Automata. (August 2009)

Dmytro Savchuk, B.S., National Taras Shevchenko University of Kyiv, Ukraine;

M.S., National Taras Shevchenko University of Kyiv, Ukraine

Co–Chairs of Advisory Committee: Dr. Rostislav Grigorchuk
Dr. Volodymyr Nekrashevych

This dissertation is devoted to various aspects of groups generated by automata. We

study particular classes and examples of such groups from different points of view. It

consists of four main parts.

In the first part we study Sushchansky p-groups introduced in 1979 by

Sushchansky in “Periodic permutation p-groups and the unrestricted Burnside

problem”. These groups represent one of the earliest examples of Burnside groups

and, at the same time, show the potential of the class of groups generated by automata

to contain groups with extraordinary properties. The original definition is translated

into the language of automata. The original actions of Sushchansky groups on p-

ary tree are not level-transitive and we describe their orbit trees. This allows us

to simplify the definition and prove that these groups admit faithful level-transitive

actions on the same tree. Certain branch structures in their self-similar closures

are established. We provide the connection with so-called G groups introduced by

Bartholdi, Grigorchuk and Šunić in “Branch groups” that shows that all Sushchansky

groups have intermediate growth and allows us to obtain an upper bound on their

period growth functions.

The second part is devoted to the opposite question of realization of known

groups as groups generated by automata. We construct a family of automata with
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n states, n ≥ 4, acting on a rooted binary tree and generating the free products of

cyclic groups of order 2.

The iterated monodromy group IMG(z2 + i) of the self-map of the complex plain

z 7→ z2 + i is the central object of the third part of dissertation. This group acts

faithfully on the binary rooted tree and is generated by 4-state automaton. We provide

a self-similar measure for this group giving alternative proof of its amenability. We

also compute an L-presentation for IMG(z2+i) and provide calculations related to the

spectrum of the Markov operator on the Schreier graph of the action of IMG(z2 + i)

on the orbit of a point on the boundary of the binary rooted tree.

Finally, the last part is discussing the package AutomGrp for GAP system developed

jointly by the author and Yevgen Muntyan. This is a very useful tool for studying

the groups generated by automata from the computational point of view. Main

functionality and applications are provided.
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CHAPTER I

INTRODUCTION

The first appearance of groups generated by automata goes back to the beginning of

1960’s [Glu61, Hoř63]. But it took a while to realize their importance, utility, and,

at the same time, complexity. Among the publications from the first decade of the

study of automaton groups let us distinguish [Zar64, Zar65] and the book [GP72].

The first substantial results came only in the 1970’s and in the beginning of

the 1980’s when the it was shown in [Ale72, Sus79, Gri80, GS83b] that automaton

groups provide examples of finitely generated infinite torsion groups, thus making

a contribution to one of the most celebrated problems in algebra — the General

Burnside Problem. Initially, this problem was solved by E.S. Golod in [Gol64] using

the Golod-Shafarevich theorem.

There are two other version of Burnside problem. The “bounded Burnside

problem” (also originally asked by Burnside) asks for the existence of infinite finitely

generated group of bounded exponent (a group has bounded exponent n if gn is trivial

for all elements g of the group). This question obviously reduces to the question of

finiteness of free Burnside groups B(m,n) with m generators and exponent n. This

problem was solved positively in a series of long and very technical papers by Novikov

and Adian [NA68, NA68, NA68]. Namely, they have shown that B(m,n) is infinite

for any odd n ≥ 4381 and m > 1. Later Adian in [Adi79] improved the bound for

n to 665. The question for the even exponent remained open until Ivanov [Iva94]

and Lysenok [Lys96] obtained independently proofs for exponents ≥ 248 and ≥ 8000

correspondingly.

This dissertation follows the style of Algebra and Discrete Mathematics.
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The third version of Burnside problem, bearing the name “restricted Burnside

problem”, asks if there is, for any given m and n, an m generated finite groups with

exponent n of maximal order. Of course, if the free Burnside group B(m,n) is finite,

this group would be such a maximal group. But, as was discussed above, this is not

always the case. For prime exponents this question has been settled in the affirmative

by Kostrikin in 1950s. The complete positive solution of the restricted Burnside

problem was obtained by Zelmanov [Zel91b, Zel90, Zel91a]. More information on all

three versions of the problem can be found in [Adi79, Gol68, Gup89, Kos90, Zel91b,

GL02]).

In fact, the possible relation of groups generated by automata to the General

Burnside problem for the first time was suggested by Glushkov in [Glu61, p.46]. The

methods used to study the properties of the examples from [Ale72, Sus79, Gri80]

are very different. The methods used in [Ale72] are typical for the theory of finite

automata (in fact, the provided proof was incorrect; the first correct proof appeared

in [Mer83] as a combination of the results from [Gri80] and [Mer83], as well as in

the third edition of the book [KM82] and in [KAP85]). The exposition in [Sus79] is

based on Kaloujnine’s tableaux coming from his theory of iterated wreath products

of cyclic groups of prime order p. The approach in [Gri80] is based on the ideas

of self-similarity and contraction. These ideas are apparent both in the proof of the

infiniteness and the torsion property of the group. The self-similarity is apparent from

the fact that the set of all states of the automaton is used as a generating set for the

group (now it is common to call such groups self-similar). The contraction property

here means that the length of the elements contracts by a factor bounded away from

1 when one passes to sections. A principal tool introduced in the beginning of the

1980’s was the language of actions on rooted trees suggested by Gupta and Sidki

in [GS83b], which helped tremendously in bringing geometric insight to the subject.
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A new indication of the importance of automaton groups came when it was shown

that some of them provided the first examples of groups of intermediate growth [Gri83,

Gri84, Gri85a]. This not only answered the question of J.Milnor [Mil68] about

existence of such groups, but also answered a number of other questions in and around

group theory, including M. Day’s problem [Day57] on existence of amenable but not

elementary amenable groups. Basically, even to this day, all known examples of groups

of intermediate growth and non-elementary amenable groups are based on automaton

groups or groups acting on trees.

Actually, there is no mentioning of automata groups in the original paper by

Sushchansky [Sus79] on p-groups. As was mentioned above, V.I. Sushchansky used

a different language, namely the language of tableaux, introduced by L. Kaloujnine

to study properties of iterated wreath products [Kal48]. For each prime p > 2,

V.I. Sushchansky constructed a finite family of infinite p-groups generated by two

tableaux. Each such a tableau naturally defines an automorphism of a rooted tree and,

as was already noticed in [GNS00], can be represented by a finite initial automaton.

After introducing in Chapter II necessary notions, definitions and concepts,

Chapter III of this dissertation is devoted to study of Sushchansky groups using the

language of automata groups. The results of Chapter III are published in paper [BS07]

written jointly with I. Bondarenko. In particular, we construct initial automata

generating Sushchansky groups. The associated action on a rooted tree happens to be

not level-transitive and we describe its orbit tree and show that there exists a faithful

level-transitive action given by finite initial automata. Sushchansky groups are not

self-similar, in other words, they are not generated by all states of generating initial

automata. But every group generated by initial automata can be naturally embedded

into a self-similar group just by adding all states of automata to the generating set.

We show that self-similar closures of Sushchansky groups are generated by bounded
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automata and hence, are amenable. We find elements of infinite order in these groups,

show that they are weakly regular branch, and find regular branch subgroups of these

groups.

The main result of Chapter III is related to the Milnor problem on growth. It

was pointed out in [Gri85a] that all Sushchansky p-groups have intermediate growth,

but only the main idea of the proof was given. Here we provide a complete proof of

this fact together with new estimates on the growth function, thus contributing to the

Milnor question [Mil68]. Also we give an upper bound on the period growth function.

The main idea is to use G groups of intermediate growth introduced in [BŠ01] (see

also [BGŠ03]). For each Sushchansky p-group we construct a G group of intermediate

growth and prove that their growth functions are equivalent.

Investigations in the last two decades [Gri84, Gri85a, GS83b, GS83a, Lys85,

Neu86, Sid87a, Sid87b, Gri89, Roz93, Gri98, Gri99, Gri00, BG00a, BG00b, GŻ01,

Nek05, GŠ06] show that many automaton groups possess numerous interesting, and

sometimes unusual, properties. This includes just infiniteness (the groups constructed

in [Gri84, Gri85a] as well as in [GS83a] answer a question from [CM82] on new

examples of infinite groups with finite quotients), finiteness of width, or more generally

polynomial growth of the dimension of the successive quotients in the lower central

series [BG00b] (answering a question of E. Zelmanov on classification of groups of

finite width), branch properties [Gri84, Neu86, Gri00] (answering some questions of

S. Pride and M. Edjvet [Pri80, EP84]), finiteness of the index of maximal subgroups

and presence or absence of the congruence property [Per00, Per02] (related to

topics in pro-finite groups), existence of groups with exponential but not uniformly

exponential growth [Wil04b, Wil04a, Bar03, Nek07b] (providing an answer to a

question of M. Gromov), subgroup separability and conjugacy separability [GW00],

further examples of amenable groups but not amenable (or even sub-exponentially
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amenable) groups [GŻ02a, BV05, GNŠ06], amenability of groups generated by

bounded automata [BKN08], and so on.

The above discussion shows that the class of groups generated by automata is

interesting and rich as a counterexample-box. On the other hand, all transformations

defined by states of finite invertible automata over a fixed alphabet form a group

of automatic transformations over this alphabet and an interesting question is the

embedding of known groups into this group. For example, Brunner and Sidki proved

in [BS98] that GLn(Z) can be generated by finite automata over the alphabet with 2n

letters. In Chapter IV of this dissertation we address this question in regard to the free

products of groups of order 2 (we will often denote the group of order 2 by C2). The

first embedding of such free products into the group of automatic transformations over

the 2-letter alphabet was constructed by Olijnyk [Ol̄ı99]. We also mention results of

C. Gupta, N. Gupta and A. Olijnyk [Oli00, GGO07] who embedded the free product

of any finite family of finite groups into a group of automatic transformations over a

suitable alphabet.

The above constructions lack the important property of self-similarity. In other

words, the group is not generated by all states of a single automaton. The first self-

similar example was provided by a 3-state automaton B3 over 2-letter alphabet whose

Moore diagram is depicted in the left half of Figure 1, where σ = (1, 2) denotes the

nontrivial element of Sym({1, 2}). This automaton was studied during the summer

school in Automata groups held in 2004 at the Autonomous University of Barcelona

in Bellaterra. Since then, it is known as the Bellaterra automaton. It was proved

by Muntyan (see the proof in [BGK+08] or [Nek05]) that B3 generates the group

isomorphic to the free product of 3 copies of groups of order 2.

Many papers on free groups and free products generated by automata share the

same idea of dual automaton. For an automaton A the dual automaton Â is obtained
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Fig. 1. Bellaterra automata B3 and B4

from A by interchanging the states and the alphabet, and swapping the transition

and output functions. For precise definition see Section 1 in Chapter IV. It turns

out that the “freeness” properties of the group generated by A are related to certain

transitivity conditions of the action of the group generated by Â.

The Bellaterra automaton belongs to the class of bireversible automata [Nek05,

GM05], which seems to be a natural source for automata generating free groups

and free products. An invertible automaton is called bireversible if its dual and the

dual to its inverse are also invertible. It is worth mentioning that the Bellaterra

automaton was discovered while classifying all bireversible 3-state automata over 2-

letter alphabet.

The Bellaterra automaton gives rise to a family of bireversible automata in which

all states define involutive transformations. Namely, we modify the automaton B3 by

inserting new states on the path from c to a. More precisely, each automaton in the
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family is defined by wreath recursion

a = (c, b),

b = (b, c),

c = (q1, q1)σ0,

qi = (qi+1, qi+1)σi, i = 1, . . . , n− 4,

qn−3 = (a, a)σn−3,

(1.1)

where σi ∈ Sym({0, 1}) is chosen arbitrarily.

Conjecturally, each automaton in the family for which at least one of the σi is

nontrivial, generates the free product of groups of order 2. The first result supporting

this conjecture was obtained by M. Vorobets and Y. Vorobets [VV06]. It was shown

that if the number of states is odd and σi = (12) for all i, then the conjecture holds. In

the subsequent paper by the same authors and B. Steinberg [SVV06] the conjecture

was proved for the automata with even number of states and additional condition

that the number of nontrivial σi is odd.

In Chapter IV we prove that any n-state automaton Bn from the family (1.1)

with n ≥ 4 satisfying σ0 = (12) and σn−3 = (12) generates the free product of

groups of order 2. The smallest automaton B4 in this family is shown in the right

half of Figure 1. This result covers the series constructed in [VV06] except one, but

the most important case n = 3, and partially overlaps with a family constructed

in [SVV06]. The results of Chapter IV are presented in paper [SV08] written jointly

with Y. Vorobets.

In addition to the formulation of many algebraic properties of groups generated

by finite automata, a number of links and applications were discovered during the

last decade. This includes asymptotic and spectral properties of the Cayley graphs

and Schreier graphs associated to the action on the rooted tree with respect to the
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set of generators given by the set of states of the automaton. For instance, it is shown

in [GŻ01] that the discrete Laplacian on the Cayley graph of the Lamplighter group

Z n (Z/2Z)Z has pure point spectrum. This fact was used to answer a question

of M. Atiyah on L2-Betti numbers of closed manifolds [GLSŻ00]. The methods

developed in the study of the spectral properties of Schreier graphs of self-similar

groups can be used to construct Laplacians on fractal sets and to study their spectral

properties (see [GN07, NT08]).

One of the most remarkable discoveries in the recent years, due to, first of all,

V. Nekrashevych, is that the so-called iterated monodromy groups (IMG), which can

be related to any self-covering map, belong to the class of self-similar groups and

that, in the most natural situations, there is an explicit procedure representing them

by finite automata.

Even in the case of quadratic maps over C one gets a rich theory with wonderful

applications both to holomorphic dynamics and to group theory [Nek05, BN06].

Already the simplest examples of quadratic polynomials, such as z2 − 1 or

z2 + i, show that the corresponding groups can be quite complicated and can have

extraordinary properties.

The group IMG(z2 − 1) is called the Basilica group after the Julia set of z2 − 1

which (somewhat) resembles the roof of the San Marco Basilica in Venice (the top part

of the Julia set is the roof and the bottom part is its reflection in the water). Basilica

group is torsion free, of exponential growth, amenable but not elementary (and not

even subexponentially) amenable [BV05, GŻ02a], has trivial Poisson boundary, is

weakly branch, and has many other interesting properties.

The main object of Chapter V of this dissertation is the group IMG(z2 + i),

introduced in [BGN03] and later studied by Bux and Pérez [BP06], who proved that

IMG(z2 + i) has intermediate growth. This is not the first example of a self-similar
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group of intermediate growth (the first examples were constructed in [Gri80, Gri84]),

but it is the first example of a group of intermediate growth that naturally appears

in the area of applications of group theory.

The results of Chapter V are published in paper [GSŠ07] written jointly with

R. Grigorchuk and Z. Šunić. We give very detailed calculation of the action of

IMG(z2 + i) on the binary rooted tree. Then we show that the group IMG(z2 + i) is a

regular branch group, thus presenting an example of a branch group which naturally

appears in holomorphic dynamics. The main body of Chapter V is devoted to the

calculation of an L-presentation for IMG(z2 + i) (i.e., a presentation of a group by

generators and relations which involves a finite set of relators and their iterations by

substitution). Although it is known that L-presentations are quite common for groups

of branch type the number of examples in which explicit computation is performed

is rather small. We also note that IMG(z2 + i) follows in the family of iterated

monodromy groups of post-critically finite quadratic polynomials studied in [BN08].

For every group in this class the authors, in particular, give an L-presentation, which,

in the case of IMG(z2 + i), is more complicated than the one obtained in Chapter V.

The presence of L-presentations is important from different points of view. Such

presentations are at the first level of complexity after the finite presentations and

quite often provide the simplest way to describe a group that is not finitely presented

(IMG(z2 + i) is not finitely presented [Nek07c]). Further, such presentations can be

used to embed a group into a finitely presented group in a way that preserves many

properties of the original group. We use the obtained L-presentation of IMG(z2+i) to

embed IMG(z2 + i) into a finitely presented group with 4 generators and 10 relators,

which is amenable but not elementary amenable (this approach has been used for the

first time in [Gri98]).

The rest of Chapter V deals with finding a self-affine measure on IMG(z2 + i).
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The notion of a self-affine measure was introduced by Kaimanovich in [Kai05] (under

the name of self-similar measure), who extends some ideas (in particular the idea

of self-similarity of a random walk) that appeared in the work of Bartholdi and

Virág [BV05].

The self-affine measure is closely related to the problem of computation of the

spectrum of a Hecke type operator that can be related to any group acting on a

rooted tree and to the problem of computation of the spectrum of the discrete Laplace

operator (or, what is almost the same, the Markov operator) on the boundary Schreier

graph of a group (i.e., the graph of the action of the group on the orbit of a point of the

boundary of the tree). A general approach to the spectral problem (which extends

the ideas outlined in [BG00a, GŻ99]) is based on a renormalization principle and

leads to questions on amenability, multidimensional dynamics and multiparametric

self-similarity of operators. Unfortunately, the spectral problem is not solved yet

in our situation. What we are able to construct is a rational map on R3 whose

proper invariant set (shaped as a “strange attractor”) gives the spectrum of the

Markov operator after intersection by a corresponding line. Here we have a situation

analogous to the case of Basilica group [GŻ02b]. Further efforts in the description of

the shape of the attractor (and hence of the spectrum) are needed.

The Schreier graph in this case, viewed through a macroscope, has a form of a

dendrite and this is a reflection of a general fact relating the geometry of Schreier

graphs and Julia sets proved by Nekrashevych [Nek05].

In any case, our computations allow us to find a self-affine nondegenerate measure

on IMG(z2 + i), which gives a self-similar random walk on the group. The study of

asymptotic properties of such random walks is a promising direction and will be one

of our subsequent subjects of investigation.

In many situations automaton groups serve as renorm groups. For instance this
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happens in the study of classical fractals, in the study of the behavior of dynamical

systems [Oli98], and in combinatorics – for example in Hanoi Towers games on k pegs,

k ≥ 3, as observed by Z. Šunić (see [GŠ06, GŠ08]).

There is interest of computer scientists and logicians in automaton groups, since

they may be relevant in the solution of important complexity problems (see [RS08]

for ideas in this direction). Self-similar groups of intermediate growth are mentioned

by Wolfram in [Wol02] as examples of “multiway systems” with complex behavior.

Groups and semigroups generated by automata are extremely interesting from

the computational point of view. The word problem can be solved in contracting

self-similar groups by using an extremely effective branch algorithm [Gri84, Sav03].

The conjugacy problem can also be solved in many cases [WZ97, Roz98, Leo98,

GW00, LMU08] (in fact, we do not know of an example of an automaton group

with unsolvable conjugacy problem). In some instances, it is even known that the

membership problem is solvable [GW03].

On the other hand, major algorithmic problems are unsolved so far in the general

case but have solutions in certain special cases. The computations related to these

groups are often cumbersome to be performed by hands and the computers may be

of a great help here.

There was a strong need in the implementation of the algorithms related to

automata groups and semigroups in some computer algebra system. The package

AutomGrp [MS08] for GAP (Groups, Algorithms and Programming) system [GAP08],

developed jointly by the author of this dissertation and Yevgen Muntyan to satisfy

this need, is discussed in Chapter VI. The package was successfully used in the

project of the classification of groups generated by 3-state automata over 2-letter

alphabet [BGK+08], as well as by several other authors. Currently the status of the

package is “deposited”, but we are planning to submit it for refereeing in the nearest
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future.

Finally, Chapter VII concludes the dissertation by listing main results and stating

several open problems and conjectures, as well as possible directions for further

investigations.
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CHAPTER II

DEFINITIONS AND NOTATIONS

This chapter introduces most of necessary notions used throughout the dissertation.

1 Rooted trees

All groups we consider in this dissertation act on certain rooted trees. We start from

defining these basic objects.

Definition 1. A tree is a connected graph with no cycles. A rooted tree is a tree

with a selected vertex called the root of the tree.

It is natural to consider a combinatorial distance in the tree (the number of the

edges in the shortest path connecting two vertices). The sphere of radius n centered

at the root of the tree is called the n-th level of the rooted tree.

Definition 2. A homogenous (or spherically homogenous) rooted tree is a rooted tree

where the degrees of the vertices of the same level are equal.

Definition 3. A regular rooted tree of degree d (or d-ary tree) is an infinite

homogenous rooted tree where the degree of a root is d and the degrees of the other

vertices are equal to d + 1.

In a d-ary tree the n-th level has dn vertices. In the case d = 2 the tree is called

binary (see Figure 2).

In order to study the groups acting on trees there is a need to address the vertices

of the latter. For regular rooted trees this is done in the following way.

Let X be a finite alphabet of cardinality d. Denote by X∗ the set of all finite

words over X. The set X∗ can be naturally endowed with a structure of a regular
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Fig. 2. Binary tree

d-ary rooted tree by declaring that v is connected to vx for each v ∈ X∗ and x ∈ X.

The empty word ∅ plays a role of a root in this tree.

For spherically homogenous rooted trees one can perform similar identification

of the vertices of the tree with the finite words over the sequence of alphabets, whose

cardinalities agree with the degrees of the vertices on levels.

An important object is the boundary Xω of tree X∗, consisting of all infinite

words over X (if the tree is denoted by T its boundary is usually denoted by ∂T ).

The boundary of the tree has a natural ultrametric space structure with respect to

the following ultrametric. We define that the distance between words x1x2x3 . . . ∈ Xω

and y1y2y3 . . . ∈ Xω to be 2−n, where n is the length of the longest common beginning

of these two words. Thus, the words are closer if their common beginning is longer.

Topologically the boundary of a homogenous rooted tree is homeomorphic to the

Cantor set.
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2 Self-similar groups and automata

Consider the case of a regular d-ary tree X∗ (with X = {0, 1, 2, . . . , d − 1}). The

group Aut X∗ of all automorphisms of X∗ has the structure of an infinite iterated

permutational wreath product oi≥1 Sym(d) (because Aut X∗ ∼= Aut X∗ oX Sym(d),

where Sym(d) acts naturally on X by permutations). This gives a convenient way to

express automorphisms from Aut X∗ in the form

g = (g|0, g|1, . . . , g|d−1)σg, (2.1)

where g|0, g|1, . . . , g|d−1 are automorphisms of the subtrees of X∗ with roots at the

vertices 0, 1, . . . , d− 1 (these subtrees are canonically identified with X∗) induced by

g, and σg is the permutation of X induced by g (i.e., σg(x) = g(x) – the action of g

on x ∈ X). This decomposition is schematically shown in Figure 3.

σg

0 1 d − 1

g|0 g|1 g|d−1

Fig. 3. Decomposition of an automorphism of the tree

More generally, for every v ∈ X∗ we define g|v to be the automorphism of the

subtree of X∗ rooted at v (shown in Figure 4) identified with X∗ induced by g.

The automorphism g|v is called the section of g at v and is uniquely determined by

g(vw) = g(v)g|v(w), for all w ∈ X∗.

Throughout the dissertation we will use the following convention. If g and h are
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PSfrag replacements v
Fig. 4. Subtree rooted at v on which g|v acts

the elements of some (semi)group acting on set A and w ∈ A, then

gh(w) = h
(
g(w)

)
. (2.2)

Taking into account convention (2.2) one can compute sections of any element

of an automaton semigroup as follows. If g = g1g2 · · · gn and v ∈ X∗, then

g|v = g1|v · g2|g1(v) · · · gn|g1g2···gn−1(v). (2.3)

The decomposition (2.1) is particularly important from the computational point

of view. The product of automorphisms written in this form is performed in the

following way. If h = (h|0, h|1, . . . , h|d−1)σh then

gh = (g|0h|σg(0), . . . , g|d−1h|σg(d−1))σgσh.

Definition 4. A group G ≤ Aut X∗ is called self-similar if g|u ∈ G for all g ∈ G and

u ∈ X∗.

A convenient way to describe a particular finitely generated self-similar group G

generated by automorphisms g1, g2, . . . , gn is through a, so-called, wreath recursion.
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In this presentation we simply write the action of each gi in the form

gi =
(
w1(g1, . . . , gn), . . . , wd(g1, . . . , gn)

)
σgi

,

where wi, i = 1, . . . , n, are words in the free group of rank n.

Another fundamental language which describes self-similar groups is the language

of automaton groups (see the survey paper [GNS00] for details).

Definition 5. A Mealy automaton is a tuple (Q,X, π, λ), where Q is a set (a set of

states), X is a finite alphabet, π : Q×X → Q is a transition function and λ : Q×X →
X is an output function. If the set of states Q is finite the automaton is called finite.

One can think of an automaton as a sequential machine which, at each moment

of time, is in one of its states. Given a word w ∈ X∗ the automaton acts on it as

follows. It “eats” the first letter x in w and depending on this letter and on the

current state q it “spits out” a new letter λ(q, x) ∈ X and changes its state to π(q, x).

The new state then handles the rest of word w in the same fashion. Thus the map

λ can be extended to λ : Q×X∗ → X∗ – we just feed the automaton with letters of

u ∈ X∗ one by one. Each state q of the automaton defines a map, also denoted by q,

from X∗ to itself defined by q(w) = λ(q, w). In the special case when, for all q ∈ Q,

the map λ(q, ·) is a permutation of X the map q : X∗ → X∗ is invertible and hence,

an automorphism of the tree X∗. In this case the automaton is called invertible.

Definition 6. A group of automorphisms of X∗ generated by all the states of an

invertible automaton A is called the automaton group generated by A.

The class of automaton groups coincides with the class of self-similar groups.

Indeed, the action on X∗ of every element g of a self-similar group can be encoded by

an automaton whose states are the sections of g on the words from X∗, transition and
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output functions are derived from the representation (2.1). Namely, for each u ∈ X∗,

set π(g|u, x) = g|ux and λ(g|u, x) = g|u(x).

Important subclass of automaton groups consists of groups generated by finite

automata. For example, we know that for groups in this class the word problem

is solvable, though the general algorithm has exponential complexity. Essentially,

the general algorithm coincides with the algorithm of minimization of an automaton

described in [Eil74].

A standard way to visualize automata is by so-called Moore diagrams. Such a

diagram is an oriented graph where the set of vertices is Q and for every q ∈ Q,

x ∈ X, there is an edge from q to π(q, x) labeled by
(
x, λ(q, x)

)
. In case of invertible

automata it is common to label states by the corresponding permutations of X and

leave only the first coordinate on the edge labels. An example of a Moore diagram is

presented in Figure 21.

3 Amenability

Automata groups have been proven to play an important role in the questions related

to amenability. The notion of amenability was introduced by von Neumann in

1929 [vN29] in a relation to Banach-Tarski paradox (see [Wag93]). First, let us give

the formal definition of an amenable group.

Definition 7. A group G is called amenable, if there is a full measure µ on G, such

that:

• µ(G) = 1,

• µ is finitely additive,

• µ is left invariant, i.e. for any subset E of G we have µ(E) = µ(gE).
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There are a lot of other equivalent definitions of amenability, not only for groups,

but also for graphs, different kinds of spaces, C∗-algebras, etc. Below, we provide few

of them useful in the context of this dissertation.

Definition 8. Given an infinite graph Γ of bounded degree with the set of vertices

V and the set of edges E the Cheeger isoperimetric constant

h(Γ) = inf
S⊂V,|S|<∞

|∂S|
|S| ,

where ∂S consists of vertices of V \ S that have a neighbor in S.

Definition 9. A graph Γ is called amenable if h(Γ) = 0.

Proposition II.1 ([dlAGCS99]). A finitely generated group G is amenable if and

only if its Cayley graph with respect to some (every) finite generating set is amenable.

Another useful criterion for an amenability related to the simple random walk on

the Cayley graph of a group was developed by Kesten [Kes59] in the end of 1950s. Let

Γ be the Cayley graph of a d-generated group G with the set of vertices V . Consider

the Hilbert space l2(V ) of all square-summable functions on V , and the bounded

self-adjoint operator T (Markov operator) defined on this space by

Th(x) =
1

d

∑
y∼x

h(y)

for h ∈ l2(V ), x, y ∈ V and y ∼ x indicates the summation over all the neighbors of

x in Γ. The spectral radius of G is

ρ(G) = sup
{|λ|

∣∣λ is in the spectrum of T
}
.

Theorem II.2 (Kesten criterion for amenability). A finitely generated group G is

amenable if and only if ρ(G) = 1.
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Groups generated by automata give a new insight on the spectral problems and

analysis on graphs. In particular, using self-similarities of the Schreier graphs of the

actions of these groups on the tree, in some cases it is possible to describe completely

the spectrum of the Markov on the Cayley graph of the group. The most renown

application of this sort at this time is the negative answer to the strong Atiyah

conjecture [Ati76] on L2-Betti numbers obtained by Grigorchuk, Linnel, Schick and

Żuk [GLSŻ00]. We address these questions in the last section of Chapter V.

Based on this criterion Grigorchuk in [Gri79] developed another criterion using

the notion of cogrowth. This criterion was used by Olshansky in Adian in relation to

Tarski monsters and free Burnside groups (see below).

For a survey relating different definitions of amenability and discussing various

properties of amenable groups and pseudogroups we refer the reader to [dlAGCS99].

In the original paper [vN29] von Neumann formulated basic properties of the

class of amenable groups, listed in the following theorem.

Theorem II.3 ([vN29]). The class of amenable groups AG is closed under the

following operations:

1. taking subgroups;

2. taking factors;

3. taking extensions by amenable groups (N C G and G/N are amenable ⇒ G is

amenable);

4. taking direct unions Gn ∈ AG,Gn ⊂ Gn+1 ⇒ ∪n≥1Gn ∈ AG.

Definition 10. The minimal class EG closed under operations 1)-4) in Theorem II.3

and containing finite and abelian groups is called the class of elementary amenable

groups.



21

Let us also denote by NF the class of groups without free nonabelian subgroups.

Here is the direct corollary of Theorem II.3.

Corollary II.4. The following inclusion holds

EG ⊂ AG ⊂ NF.

The very natural conjectures posed by Day in [Day57] were asking if Theorem II.3

give the complete description of the class of amenable groups.

Conjecture 1 ([Day57]). Is it true that EG = AG? AG = NF?

Both these conjectures were proved to be wrong. The first question was resolved

negatively by Grigorchuk in [Gri83] (see also [Gri84]) by showing that the Grigorchuk

group he constructed in [Gri80] has intermediate growth, which is impossible for an

elementary amenable group. On the other hand, the Fölner criterion guarantees that

any group of subexponential growth is amenable (as a sequence of Fölner sets one

can take the balls in the Cayley graph of the group centered at the identity). Even

though the Grigorchuk group is not finitely presented, based on the same construction

in [Gri98] Grigorchuk constructed a finitely presented example of amenable, but not

elementary amenable group.

The examples by Grigorchuk discussed above were based on the subexponential

growth of the Grigorchuk group. Similarly to the class EG of elementary amenable

groups one can define a class SG of subexponentially amenable groups.

Definition 11. The minimal class SG closed under operations 1)-4) in Theorem II.3

and containing all groups of subexponential growth is called the class of

subexponentially amenable groups.

In [Gri98] Grigorchuk posed a question in some sense generalizing the Day

question on amenability. Namely, is it true that SG = AG. The first counterexample
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to this conjecture is, so-called, Basilica group generated by 3-state automaton. For

the first time this group was considered in [GŻ02a] and [GŻ02b] where, in particular,

was proved that it does not belong to the class SG. The fact that this group is

amenable was proved by Bartholdi and Virág in [BV05] using the random walks on

this group. We use similar ideas in Chapter V to show that iterated monodromy

group of the complex map z 7→ z2 + i is amenable.

The second question of Day was resolved in 1980 negatively by Olshansky

in [Ol′80] by constructing a nonamenable group whose all proper subgroups are

cyclic. In 1982 Adian [Adi82] proved nonamenability of free Burnside groups B(m,n)

for sufficiently large exponents. We also mention that both results of Olshansky

and Adian were based on Grigorchuk cogrowth criterion of amenability [Gri79].

Both constructions are not finitely presented. A finitely presented example of a

nonamenable group with no nonabelian free subgroups was constructed in [OS02].

Another celebrated finitely presented group solving one of the Day’s questions

is Thompson’s group F first studied by Thompson in 1965 (see the survey

paper [CFP96]). It was shown by Brin and Squier in [BS85] that F does not contain

a free nonabelian subgroup, and by Cannon, Floyd and Parry [CFP96] that it is not

elementary amenable. Thus, the currently open (for 30 years) question of amenability

of F is of a great interest and currently is one of the main motivations for studying

this group (see, for example, [Bel04, Sav09]).

Figure 5 shows the schematic relation between different classes related to

amenability, and the examples discussed above that distinguish these classes one

from another.
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Fig. 5. Classes related to amenability

4 Growth of automata in the sense of Sidki

One of the natural ways to classify automata relies on the cyclic structure of an

automaton. This way was originally suggested by S. Sidki in [Sid00a]. Let us first

recall the original definition.

Given an automorphism g of tree X∗ define θk(g) to be the number of vertices

on the k-th level of X∗, such that the sections of g at these vertices act nontrivially

on the first level. Also let αk(g) denote the number of vertices on the k-th level of

X∗, such that the sections of g at these vertices are nontrivial (but may act trivially

on the first level).

It follows immediately from the definition of θk and αk that θk(g) ≤ αk(g). On

the other hand in situations we are interested in there is in some sense converse
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relation. Namely, the following proposition holds.

Proposition II.5. Let g be an automorphism of X∗ given by finite initial automaton

with m states. Then

αk(g) ≤ θk(g) + θk+1(g) + · · ·+ θk+m−1(g)

The proof follows from the fact that any nontrivial automorphism of X∗ given

by finite automaton with m states will act nontrivially on the (m + 1)-st level of the

tree. The above proposition shows that from the asymptotic point of view there is

essentially no difference between the sequences θk(g) and αk(g). More precisely, if

one of the sequences is bounded from above by a polynomial of degree n, then the

other one is also bounded by the polynomial of degree n (possibly different). At the

same time if one of the sequences grows exponentially, then the other one does so.

It is proved in [Sid00a] that there are only two possible behaviors of the sequence

θk(g) in the case if g is given by finite automaton.

Proposition II.6 ([Sid00a]). Let g be an automorphism given by a finite initial

automaton with m states. Then the sequence θk(g) either grows exponentially or

polynomially of degree at most m− 1.

The following properties of θk(g) and αk(g) make these sequences more interesting

from the group theoretic point of view

θk(gh) ≤ θk(g) + θk(h), θk(g
−1) = θk(g),

αk(gh) ≤ αk(g) + αk(h), αk(g
−1) = αk(g)

(2.4)

for all automorphisms g, h of X∗.

The properties (2.4) imply that the set Bn = Bn(X) of automorphisms g of X∗

whose sequence θk(g) (equivalently, αk(g)) is bounded by a polynomial of degree n,
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forms a subgroup of Aut X∗. It is proved in [Sid00a] that the sequence of groups

Bn(X) is strictly increasing.

Definition 12. An automorphism g of X∗ is called polynomially growing (in the

sense of Sidki) if g belongs to Bn for some n ≥ 0.

The minimal number n with this property is called the degree of growth (or just

the degree) of an automorphism g. An automorphism of degree 0 is called bounded.

An automorphism, which is not polynomially growing, is called exponentially

growing.

Definition 13. A noninitial automaton A over finite alphabet X is called

polynomially growing (in the sense of Sidki) if all its states define polynomially

growing automorphisms of X∗.

The maximal degree of growth of its states is called the degree of growth (or just

the degree) of A.

A noninitial automaton automaton of degree 0 is called bounded.

A noninitial automaton, which is not polynomially growing, is called

exponentially growing.

Fortunately, there is an easy way to check whether the given automaton (initial

or noninitial) is of polynomial or exponential growth, and in the first case compute the

degree of growth. This information is stored in the cyclic structure of the automaton.

A cycle in the automatonA is the closed simple (does not intersect itself) oriented

(all the edged along the path are oriented in the same direction) path in its Moore

diagram. A cycle is called trivial, if it consists just of one loop and one state, which

represents the trivial automorphism of X∗. Two cycles are called disjoint if they do

not have vertices in common.

The degree of a nontrivial cycle is defined inductively. A cycle has degree 0 if
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all infinite paths leaving the cycle end up in the trivial state. A cycle has degree n

if all infinite paths leaving the cycle end up in the cycles of smaller degree or in the

trivial state, and there is an infinite path leaving the cycle and remaining in the cycle

of degree n− 1. In other words, a nontrivial cycle has degree n if there is a chain of

cycles of length n+1 starting from the given cycle, connected by directed paths, and

such n is maximal.

Proposition II.7. [Sid00a]. A finite invertible automaton is of polynomial growth if

and only if every two non-trivial cycles in the Moore diagram of the automaton are

disjoint. The degree of the automaton in this case is equal to the maximal degree of

the cycles in its Moore diagram.

Corollary II.8. [Sid00a] A finite invertible automaton is bounded if and only if every

two non-trivial cycles in the Moore diagram of the automaton are disjoint and not

connected by a directed path.

The algorithm for determining whether a given automaton is of polynomial

growth or not, and finding the degree of growth of polynomially growing automata is

implemented in AutomGrp package (see Chapter VI and [MS08]).

The classes of polynomially growing automata and bounded automata are

important because belonging to these classes imposes strong consequences for the

group generated by such an automaton. Below we provide the list of most important

properties of groups generated by polynomially growing automata.

It was proved in [Sid04] that finite initial automata of polynomial growth cannot

generate a free nonabelian group. This result was generalized in [Nek07a] to arbitrary

(not necessary finite state) polynomially growing automorphisms of X∗.

There is a relation between the growth of automaton and amenability of the group

generated by this automaton. The first result in this direction is due to Bartholdi and
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Virag [BV05] where the amenability of Basilica group, which is generated by bounded

automaton, was proved by means of random walks. The consequent works [Kai05,

GSŠ07] establishes amenability of other examples of groups generated by bounded

automata. Finally, Bartholdi, Kaimanovich and Nekrashevych in [BKN08] established

amenability of all groups generated by bounded automata. Recently a stronger result

was announced by Amir, Angel and Virag, which claims that all groups generated

by linearly growing automata are amenable [AAV09]. The discussion of the methods

used in these papers is presented in Chapter V.

It is proved in [BN03] that each group generated by bounded automaton is

contracting (see Section 5). This is not true in general for all polynomially growing

automata.

Groups generated by bounded automata are also nice from the computational

point of view. In particular, there is an algorithm determining the order of a given

automorphism defined by bounded automaton.

For further results on bounded automata we refer the reader to the PhD thesis

of I. Bondarenko [Bon07].

5 Contracting groups

A very important subclass of the class of self-similar groups is the class of contracting

groups.

Definition 14. A self-similar group G acting on a finite alphabet X is contracting if

there exists a finite subset N ⊂ G such that for every g ∈ G there exists n (generally

depending on g) such that section g|v belongs to N for all words v ∈ X∗ of length

at least n. The smallest set N possessing this property is called the nucleus of the

group G.
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In the case of a group generated by finite automaton there is an equivalent

definition of the contracting property, which explains better the term “contracting”.

Definition 15. For a finite invertible automaton A with the set of states S an

automaton group G = G(A) (i.e. G is generated by the set S of states of automaton

A) is called contracting if there exist constants κ, C, and N , with 0 ≤ κ < 1, such

that
∣∣g|v

∣∣ ≤ κ|g| + C, for all vertices v of length at least N and g ∈ G (where |g|
denotes the length of a shortest word over S representing g in G).

Thus the contracting property just means that the length of sufficiently long

words shrinks roughly by a factor of κ as we take their sections at level N . In

particular, for all sufficiently long elements g, all sections of g at vertices on level at

least N are strictly shorter than g.

This property is a key ingredient in many inductive proofs and algorithms. In

many cases it is responsible for a nontrivial torsion, intermediate growth and other

exciting properties of some self-similar groups.

Contracting groups are also interesting from algorithmic point of view. As it

was mentioned in Section 2 the word problem is solvable in the class of groups

generated by finite automata, but the general algorithm has exponential complexity.

For contracting groups the situation is much better. There exists an algorithm (first

mentioned in [Gri84]), that solves the word problem in a polynomial time. The degree

of a polynomial bounding the time required to solve the word problem depends on

the degree of the tree and on the size of the nucleus. More precisely, the following

theorem was proved in [Sav03].

Theorem II.9. Let G be a contracting group which acts on the d-ary rooted tree

and is generated by n-state automaton whose set of states contains the nucleus of

G. Then for any ε > 0 there exists an algorithm of polynomial complexity of degree
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(n2 − 1) log2 d + ε solving the word problem in G.

The real-world comparison of the polynomial time algorithm solving the word

problem in contracting groups and the general exponential algorithm solving the same

problem in all groups generated by automata is provided in Section 2 of Chapter VI.

Contracting groups also have rich geometric structure. Each contracting group

is the iterated monodromy group of its limit dynamical system. This system is an

(orbispace) self-covering of the limit space of the group. The limit space is a limit of

the graphs of the action of G on the levels Xn of the tree X∗. Section 7 provides more

information on iterated monodromy groups and their relation to contracting groups.

Unfortunately, there is no known algorithm to determine whether a given self-

similar group is contracting or not. But there is a partial answer to this question.

Namely, there is an algorithm that for each finitely generated contracting group

produces a positive answer to the above question and does not stop otherwise. This

algorithm is based on another algorithm determining if a given generating set of a

self-similar group contains a nucleus. The last algorithm stops after finitely many

steps and either produces a positive answer, or returns an element of a group that

needs to be in the nucleus. Thus, iterating this algorithm one can always get that

the group is contracting provided that the nucleus was finite.

It is usually harder to show that a self-similar group is not contracting. The most

common way to do this that works in a lot of cases consists in finding an element of a

group G of infinite order that fixes some vertex of the tree and has itself as a section

at this vertex. This shows that the nucleus of the group must contain all the powers of

this element and, hence, be infinite. Of course, this is based on the problem of finding

the order of an element, which does not have a general solution as of now. But there

are some situations were it is possible to find the order of an element. For example,
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for the binary tree and for the elements of the infinite permutational wreath product

of Cp there is an algorithm determining if a given element acts spherically transitively

on the levels of the tree (see [BGK+08, Ste06]), which is a sufficient condition for the

element to have an infinite order. Another wide class of automaton groups where it

is possible to compute the order of an element is the class of groups generated by

bounded automata [Sid00a].

Note, that the algorithms described above are implemented in the package

AutomGrp [MS08] (see Chapter VI).

6 Branch groups

Another important class of subgroups of Aut X∗ is the class of branch groups [Gri00,

BGŠ03]. There are two nonequivalent definitions of branch groups. In this

dissertation we will use the notion of geometrically branch groups. For definition

of algebraically branch groups we refer the reader to [BGŠ03].

Let G be a subgroup of Aut X∗. Then for any vertex v ∈ X∗ one can define the

subgroup of G consisting of all the elements in G fixing all words in X∗ that do not

have v as a prefix. This subgroup of G is called the rigid stabilizer of v and is denoted

by ristG(v). Furthermore, the subgroup

ristG(n) =

〈 ⋃
v∈Xn

ristG(v)

〉

generated by the union of the rigid stabilizers of vertices at level n, is called the rigid

stabilizer of the n-th level. Since elements of rigid stabilizers of different vertices on

the same level commute we have

ristG(n) =
∏

v∈Xn

ristG(v).

Note that, if G acts transitively on the levels of the tree, then all rigid stabilizers of
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the vertices on a fixed level are conjugate and, hence, isomorphic.

Definition 16. A group G of tree automorphisms of X∗ that acts transitively on

the levels of X∗ is called a (geometrically) branch group if all rigid level stabilizers

ristG(n), n ≥ 0, have finite index in G. If all rigid stabilizers are nontrivial then G is

called a weakly branch group.

The simplest example of a branch group is the full group of automorphisms of the

tree. More interesting question is to find finitely generated branch groups. The first

example of this sort was constructed by Grigorchuk in [Gri80]. This is the celebrated

Grigorchuk 2-group of intermediate growth generated by automaton shown in the

left half of Figure 6. Another related example was an infinite p-group constructed

by Gupta and Sidki in [GS83b] generated by automaton shown in the right part of

Figure 6 (this group acts on a p-ary tree Σ∗, where Σ = {1, 2, . . . , p}, σ = (123 . . . p)

is a long cycle permuting the elements of Σ and e denotes the identity transformation

of Σ).PSfrag replacements
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Fig. 6. Automata generating Grigorchuk and Gupta-Sidki groups

It is often easier to prove that a given group belongs to a more narrow class

of regular (weakly) branch groups. Consider a self-similar group G and its normal

subgroup StG(1) consisting of all elements in G that stabilize the first level of X∗.
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There is a natural embedding

Ψ: StG(1) ↪→ G×G× · · · ×G

given by

g
Ψ7→ (g|0, g|1, . . . , g|d−1).

Definition 17. Let K, K0, . . . , Kd−1 be subgroups of a self-similar group G acting on

X∗. We say that K geometrically contains K0 × · · · ×Kd−1 and write

K0 × · · · ×Kd−1 ¹ K

if K0 × · · · ×Kd−1 ≤ Ψ(StG(1) ∩K).

Definition 18. A group G of tree automorphisms of X∗ that acts transitively on the

levels of the tree X∗ is called a regular weakly branch group over its normal subgroup

K if

K × · · · ×K ¹ K.

If, in addition, the index of K in G is finite then G is called a regular branch group

over K.

It can be shown that if G is a regular (weakly) branch group than it is a (weakly)

branch group.

The first examples of branch groups appeared as groups with extraordinary

properties and as counterexamples to well-known conjectures in group theory. On

the other hand, in Section 2 of Chapter V on the example of IMG(z2 + i) we show

that branch groups appear naturally in the connection to holomorphic dynamics.

One more useful notion is the notion of self-replicating group (called fractal

in [BGŠ03]).
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Definition 19. A self-similar group G is called self-replicating if, for every vertex u

in X∗, the map ϕu : Gu → G given by ϕu(g) = g|u is onto (where Gu is the stabilizer

of the vertex u in G).

One of the most common applications of this notion is checking the spherical

transitivity, required for branchness, of a self-similar group. Namely, the following

proposition of folklore type holds.

Proposition II.10. Let G be a self-replicating self-similar group acting transitively on

the first level of the tree. Then G acts spherically-transitively (i.e. G acts transitively

on all levels of the tree).

Proof. Similar to the proof of Lemma III.8 by induction on levels of the tree.

7 Iterated monodromy groups

The theory of iterated monodromy groups was developed mostly by Nekrashevych.

A very detailed exposition can be found in his monograph [Nek05]. Here we give a

definition and some basic properties of these groups.

Consider a path connected and locally path connected topological space M . Let

M1 be an open and path connected subset of M and f : M1 → M be a d-fold covering

map. Fix a base point t ∈ M and let π1(M, t) be the corresponding fundamental

group. The set of iterated preimages of t under f has a natural structure of a d-ary

rooted tree T . Namely, each point s from this set has exactly d preimages s1, . . . , sd

and these preimages are declared to be adjacent to s in T . The nth level of the tree

T consists of the dn points in the set f−n(t). Note that although the intersection

of f−n(t) and f−m(t) may be nonempty for m 6= n, we formally consider the set of

vertices of T to be a disjoint union of the sets f−n(t), n ≥ 0.
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There is a natural action of π1(M, t) on the tree T . Let γ ∈ π1(M, t) be a loop

based at t. For any point s of f−n(t), there is a unique preimage γ[s] of γ under fn

which starts at s and ends at a point s′, which also belongs to f−n(t). We define an

action of γ on T by setting γ(s) = s′ (see Figure 7. This action induces a permutation

of f−n(t) because the preimages of γ−1 starting at the points of f−n(t) are defined

uniquely as well. The group of all permutations of f−n(t) induced by all elements of

π1(M, t) is called the nth monodromy group of f . If γ(s) = s′ then γ(f(s)) = f(s′)

since f(γ[s]) = γ[f(s)], so γ acts on T by a tree automorphism.

f−n(t)

f−2(t)

f−1(t)

γ

s

s′

t

γ[s]

Fig. 7. Action of the fundamental group on the tree of preimages

The action of π1(M, t) on T is not necessary faithful. Let N be the kernel of this

action.

Definition 20. The group IMG(f) = π1(M, t)/N is called the iterated monodromy

group of f .

It can be shown (see [Nek05] for details) that, up to isomorphism, IMG(f) does

not depend on the choice of the base point t.

In order to describe the automorphisms induced on T by the loops from π1(M, t)

we need to come up with a “coordinate system” on T . Let X = {0, 1, . . . , d − 1} be
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a standard alphabet of cardinality d. Then the set X∗ of all finite words over X also

has the structure of a d-ary rooted tree, where v is adjacent to vx, for any v ∈ X∗

and x ∈ X.

We go back now to iterated monodromy groups and construct an isomorphism

Λ: X∗ → T such that the induced action of π1(M, t) on X∗ becomes particularly nice

(self-similar).

We construct Λ level by level. Set Λ(∅) = t. For each vertex v in Xn we will

construct a path lv in M joining t to one of its preimages sv from f−n(t) and define

Λ(v) = sv. Choose arbitrarily d paths l0, . . . , ld−1 in M connecting t to its d preimages

in f−1(t) and, for x ∈ X, define Λ(x) to be the end of the path lx. Now assume we

have already defined Λ(v) and corresponding paths lv for all v ∈ Xm, m ≤ n and Λ

is an isomorphism between the first n levels of X∗ and T such that, for all vertices v

on the first n levels, Λ(v) is the endpoint of `v. For any word xu ∈ Xn+1 with x ∈ X

and u ∈ Xn define

lxu = luf
−n
[Λ(u)](lx),

where f−n
[Λ(u)](lx) is the unique preimage of the path lx under fn starting at the vertex

Λ(u) (composition of paths is performed from left to right, i.e., the path on the left

is traversed first). Define Λ(xu) to be the end of the path lxu.

In order to prove that Λ is an isomorphism of trees we need to show that

f
(
Λ(xvy)

)
= Λ(xv), for all x, y ∈ X and v ∈ X∗. Indeed,

f(lxvy) = f(lvy)f(f−n
[Λ(vy)](lx)) = f(lvy)f

−(n−1)
[Λ(v)] (lx).

By definition, f
−(n−1)
[Λ(v)] (lx) is a path going from Λ(v) to Λ(xv), so the end Λ(xvy) of

the path lxvy is mapped to Λ(xv) under f . Abusing the notation, we often identify

the trees T and X∗ and write v for Λ(v) (see Figure 8, where solid lines represent
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edges in the tree T and dashed lines represent paths in M).

Definition 21. The action of IMG(f) on X∗ induced by the isomorphism Λ is called

the standard action of IMG(f).

The tree isomorphism Λ allows us to compute iterated monodromy groups using

the language of self-similar groups [Nek05]. We provide the details here in order

to keep the paper relatively self-contained and to help the understanding of the

computations that follow. Recall, that for any loop γ based at t and any u ∈ f−n(t)

we denote by γ[u] the unique preimage of γ under fn that starts at the point u.

Similarly, f−n
[u] (lx) denotes the unique preimage of the path lx starting at u.

Theorem II.11. The standard action of IMG(f) is self-similar. More precisely, the

section γ|x of γ ∈ IMG(f) at x ∈ X is given by

γ|x = lxγ[x](lγ(x))
−1. (2.5)

Proof. Let v ∈ Xn be an arbitrary word and suppose γ(xv) = yu, for y ∈ X and

u ∈ Xn. Then vertices v and u are connected by the path

p = f−n
[v] (lx) · γ[xv] ·

(
f−n

[u] (ly)
)−1

,

which goes through the vertices v → xv → yu → u (see Figure 9, where solid curvesPSfrag replacements�(v) �(xv) �(xvy)�(vy)f�(n�1)[v] (lx) f�n[vy](lx)
Fig. 8. Isomorphism Λ between T and X∗
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Fig. 9. Self-similar action of iterated monodromy group

represent paths in M and dashed lines represent paths in the tree X∗). We have

fn(p) = lxγ[x]l
−1
y .

Thus the loop ` = lxγ[x]l
−1
y based at t represents the element of IMG(f) which moves

v to u. The loop ` is independent of v (and u). Thus we have γ|x = lxγ[x]l
−1
y .
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CHAPTER III

SUSHCHANSKY GROUPS

The results of this chapter are published in paper [BS07] written jointly with

I. Bondarenko. The structure of this chapter is as follows. In Section 1 we recall the

original definition of Sushchansky groups. In Section 2 we describe the corresponding

automata. The associated action on a rooted tree is not level-transitive and in

Section 3 we describe its orbit tree and show that there exists a faithful level-transitive

action given by finite initial automata. In Section 4 we show that every automorphism

of the tree of infinite order has an infinite orbit on the boundary of the tree. The self-

similar closure is studied in Section 5. The main results are presented in Section 6. It

was pointed out in [Gri85a] that all Sushchansky p-groups have intermediate growth,

but only the main idea of the proof was given. Here we provide a complete proof of

this fact together with new estimates on the growth function, thus contributing to the

Milnor question [Mil68], which was solved in [Gri83] by R.I. Grigorchuk. Also we give

an upper bound on the period growth function. The main idea is to use G groups of

intermediate growth introduced in [BŠ01] (see also [BGŠ03]). For each Sushchansky

p-group we construct a G group of intermediate growth and prove that their growth

functions are equivalent.

1 Original definition via tableaux

In this chapter let X = {0, 1, . . . , p − 1} be a finite alphabet for some prime p. We

identify X with the finite field Fp consisting of p elements. The set X∗ of all finite

words over X has a natural structure of a rooted p-ary tree.

The Sylow p-subgroup P∞ of the profinite group Aut X∗ is equal to the infinite
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wreath product of cyclic groups of order p, i.e. P∞ = oi≥1C
(i)
p . Using this

description one can construct special “tableau” representation of P∞. The “tableau”

representation was initially introduced by L. Kaloujnine for Sylow p-subgroups of

symmetric groups of order pm in [Kal48].

The group P∞ is isomorphic to the group of triangular tableaux of the form:

u = [a1, a2(x1), a3(x1, x2), . . .],

where a1 ∈ Fp, ai+1(x1, . . . , xi) ∈ Fp[x1, . . . , xi]/〈xp
1 − x1, . . . , x

p
i − xi〉. The

multiplication of tableaux is given by the formula:

[a1, a2(x1), a3(x1, x2), . . .] · [b1, b2(x1), b3(x1, x2), . . .] =

= [a1 + b1, a2(x1) + b2(x1 + a1), a3(x1, x2) + b3(x1 + a1, x2 + a2(x1)), . . .].

The action of the tableau u on the tree X∗ is given by:

u(x1x2 . . . xn) = y1y2 . . . yn, (3.1)

where y1 = x1 + a1, y2 = x2 + a2(x1), . . . , yn = xn + an(x1, . . . , xn−1), where all

calculations are made by identifying X with the field Fp.

For the duration of the rest of the chapter we fix a prime p > 2.

Fix some order λ = {(αi, βi), i = 1, . . . , p2} on the set of pairs {(α, β)|α, β ∈ Fp}.
For j > p2 we define (αj, βj) = (αi, βi) where i ≡ j mod p2. Define two tableaux

A = [1, x1, 0, 0, . . .], Bλ = [0, 0, b3(x1, x2), b4(x1, x2, x3), . . .],

where the coordinates of Bλ are defined by its values in the following way:

a) b3(2, 1) = 1;

b) bi(0, 0, . . . , 0, 1) = 1 if βi 6= 0;
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c) bi(1, 0, . . . , 0, 1) = −αi

βi
if βi 6= 0 and bi(1, 0, . . . , 0, 1) = 1 if βi = 0;

d) all the other values are zeroes.

The group Gλ = 〈A,Bλ〉 is called the Sushchansky group of type λ. The following

theorem is proven in [Sus79].

Theorem III.1. Gλ is infinite periodic p-group for any type λ.

2 Automata approach

In this section we explicitly construct automata associated to Sushchansky groups.

Let σ = (0, 1, . . . , p−1) be a cyclic permutation of X. With a slight abuse of notation,

depending on the context, σ will also denote the automorphism of X∗ of the form

(1, 1, . . . , 1)σ.

Given the order λ = {(αi, βi)} define words u, v ∈ Xp2
in the following way:

ui =





0, if βi = 0;

1, if βi 6= 0.
vi =





1, if βi = 0;

−αi

βi
, if βi 6= 0.

The words u and v encode the actions of Bλ on the words 00 . . . 01∗ and

10 . . . 01∗, respectively. Using the words u and v we can construct automorphisms

q1, . . . , qp2 , r1, . . . , rp2 of the tree X∗ by the following recurrent formulas:

qi = (qi+1, σ
ui , 1, . . . , 1), ri = (ri+1, σ

vi , 1, . . . , 1), (3.2)

for i = 1, . . . , p2, where the indices are considered modulo p2, i.e. i = i + np2 for any

n.

Formula (3.1) implies that qi and ri are precisely the sections of Bλ at the words

00(0)i−1+np2
and 10(0)i−1+np2

, respectively, for any n ≥ 0.
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The action of the tableau A is given by:

A = (1, σ, σ2, . . . , σp−1)σ;

while Bλ acts trivially on the second level and the action on the rest is given by the

sections:

Bλ|00 = q1, Bλ|10 = r1, Bλ|21 = σ

and all the other sections are trivial. In particular, the automorphisms A and Bλ are

finite-state and Sushchansky group Gλ is generated by two finite initial automata.

Denote the union of these two automata by Au,v. Its structure is shown in Figure 10.

The particular automaton for p = 3 and the lexicographic order on {(α, β)|α, β ∈ Fp}
is given in Figure 11 (all the arrows not shown in the figures go to the trivial state

1).
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Fig. 10. The structure of Sushchansky automata

Notice that the word v cannot be periodic since it contains exactly p − 1 zeros

and p − 1 - p2. On the contrary, u may be periodic with period p. In this case we
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have qi = qi+p and the minimization of Au,v contains p2 + 2p + 5 states. If u is not

periodic then Au,v contains 2p2 + p + 5 states. Let t be the length of the minimal

period in u (thus either t = p or t = p2).

Lemma III.2. The group 〈q1, . . . , qt, r1, . . . , rp2〉 is elementary abelian p-group.

Proof. All qi, rj have order p because

qp
i = (qp

i+1, 1, 1, . . . , 1), rp
i = (rp

i+1, 1, 1, . . . , 1),

and therefore qp
i and rp

i act trivially on the tree.

All qi, rj commute with each other, because

qiqj = (qi+1qj+1, σ
ui+uj , 1, . . . , 1), qjqi = (qj+1qi+1, σ

ui+uj , 1, . . . , 1);

rirj = (ri+1rj+1, σ
vi+vj , 1, . . . , 1), rjri = (rj+1ri+1, σ

vi+vj , 1, . . . , 1);

qirj = (qi+1rj+1, σ
ui+vj , 1, . . . , 1), rjqi = (rj+1qi+1, σ

ui+vj , 1, . . . , 1),

so the corresponding pairs act equally on the tree.

The last lemma implies that the order of Bλ is p. Since

Ap = (σ
p(p−1)

2 , σ
p(p−1)

2 , . . . , σ
p(p−1)

2 )

and p is odd, the order of A is also p.

3 Actions on rooted trees

Here we describe the structure of the action of Gλ on a p-ary tree by means of the orbit

tree. This notion is defined in [Ser03] and used in [GNS01] to establish a criterion

determining when two automorphisms of a rooted tree are conjugate. Here we use it

to simplify the definition of Sushchansky groups and show that they admit a faithful

level-transitive action on a regular rooted tree.
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Definition 22. Let G be a group acting on a regular p-ary tree X∗. The orbit tree

of G is a graph whose vertices are the orbits of G on the levels of X∗ and two orbits

are adjacent if and only if they contain vertices that are adjacent in X∗.

Proposition III.3. The structure of the orbit tree of Gλ does not depend on the type

λ and is shown in Figure 12.

Proof. Let TO be the orbit tree of Gλ. Denote by Orb(w) the orbit of the word

w ∈ X∗ under the action of Gλ. Define the set

V = {xyw ∈ X∗|xy ∈ Orb(00) and w ∈ X∗} ∪ {∅}, (3.3)

where ∅ is the root of the tree.

The generator Bλ stabilizes the second level of the tree and hence the orbit

Orb(00) coincides with the orbit of 00 under the action of the group generated by A.
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Fig. 12. The orbit tree of Sushchansky group

The set V and its compliment W = X∗ \ V are invariant under the action of Gλ.

Notice that {00, 10, 21} ⊂ Orb(00) and the generator Bλ acts trivially on all

words that lie in the set W . Since the sections of A on all words of length ≥ 2 are

trivial, every element g ∈ Gλ that acts trivially on the second level of the tree must

stabilize all the vertices of the set W . Hence, the orbits of Gλ on W coincide with

the ones of A. Automorphism A acts transitively on the first level and has order p.

Therefore the orbit of any word w ∈ W consists of p vertices, namely the images of

w under the action of the cyclic group of order p generated by A. Therefore the first

two levels of TO are exactly as shown in Figure 12 and p − 1 vertices on the second

level of TO are the roots of regular p-ary trees.

Let us prove that Gλ acts transitively on the levels of the set V , i.e. for every

n ≥ 1 the group Gλ acts transitively on the set

Vn = {xyw ∈ Xn+1|xy ∈ Orb(00) and w ∈ Xn−1}.

We use induction on n. For n = 1 there is nothing to prove. Assume Gλ acts
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transitively on Vn and consider the (n + 1)-th level. Since by construction either

un−1 = 1 or vn−1 = 1, the section of Bλ at either 00 . . . 01 or 10 . . . 01 is equal to

σ. Denote this word as s (here s ∈ Vn) and note that B stabilizes s. To prove the

induction step it suffices for an arbitrary s′z′ ∈ Vn+1, where s′ ∈ Vn and z′ ∈ X, to

construct an element g ∈ Gλ such that g(s0) = s′z′. By the inductive assumption

there is an element h ∈ Gλ such that h(s) = s′. Suppose h−1(s′z′) = sz for some

letter z ∈ X. Then for g = (Bλ)
zh (here we consider z as an integer) we have

g(s0) = h((Bλ)
z(s0)) = h(s(Bλ)

z|s(0)) = h(s(Bλ|s)z(0)) =

= h(sσz(0)) = h(sz) = s′z′

as required.

The set V has a natural structure of a rooted p-ary tree T , where the root ∅
is connected by an edge with every vertex in Orb(00) and there is an edge between

w and wx for all w ∈ V and x ∈ X. In other words, there is a natural 1-to-1

correspondence between V and vertices of T given by xyw 7→ xw for xy ∈ Orb(00)

and w ∈ X∗. Since the set V is invariant under the action of Gλ, the group Gλ acts

by automorphisms on the tree T . This action has simpler structure and the following

proposition holds.

Proposition III.4. The action of Sushchansky group Gλ on the tree T is faithful,

level transitive and has the following form

A = σ,

Bλ = (q1, r1, σ, 1, . . . , 1),

qi = (qi+1, σ
ui , 1, . . . , 1),

ri = (ri+1, σ
vi , 1, . . . , 1).

(3.4)
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Proof. The expressions (3.4) follow directly from the definition of Sushchansky

groups.

Let us prove that this action is faithful. Take an arbitrary nontrivial element

g ∈ Gλ. If g acts non-trivially on the second level of X∗, then the exponent of A

in g is not divisible by p. But then g acts non-trivially on the first level of T as

well because it is fixed under Bλ and A acts there as σ. If g acts trivially on the

second level of X∗ then it acts trivially on the complement of V in X∗ according to

Proposition III.3. Therefore to be nontrivial it must act nontrivially on T .

We proved in Proposition III.3 that Gλ acts transitively on every set Vn, which

is precisely the n-th level of the tree T .
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Fig. 13. Simplified Sushchansky automaton for p = 3 corresponding to the

lexicographic order

Figure 13 shows the impact of Proposition III.4 on the original Sushchansky

automaton for p = 3 and lexicographic order, shown in Figure 11.
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4 Orbits of automorphisms of infinite order

Here we include a useful result obtained jointly with Yaroslav Vorobets. Obviously, if

an automorphism g of the tree has infinite orbit on the boundary of the tree, it must

have infinite order. The converse statement is not that obvious, but still holds. We

will not need this result in subsequent sections, but it is interesting on its own.

Theorem III.5. Every finite-state automorphism of a d-ary tree of infinite order has

infinite orbit on the boundary of the tree.

We give a proof for a binary tree to avoid technicalities and make the idea behind

it more clear. The same proof with slight modifications (see remark after the proof)

works also for d-ary tree.

Lemma III.6. Let g be a finite-state automorphism of a binary tree, whose set of

sections has cardinality s. If g has infinite order, then there is a fixed by g vertex v

of the tree with |v| ≤ s, such that g|v acts nontrivially on the first level and also has

infinite order.

Proof. Define the following subset of the set of sections of g

D = {g|v
∣∣ v ∈ X∗, g(v) = v, g|v acts nontrivially on the first level}.

If each element in D has finite order, then the order of g is equal to the least common

multiple of these orders (note that D is finite since g has finitely many sections).

Therefore, in order for g to have infinite order, at least one element from D must

have infinite order as well. Suppose that this is a section of g at vertex w fixed by

g. If length of w is greater than s then there will be two identical sections g|u = g|v
along the path joining the root of the tree to w. One can remove the part of this path

between u and v to obtain another vertex w′ fixed by g such that g|w′ = g|w and the
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length of w′ is strictly shorter than the length of w. This process can be repeated

until we reach a word whose length is greater than s.

Proof of Theorem III.5. Let g be a finite-state automorphism of a binary tree of

infinite order, whose set of sections has cardinality s. By Lemma III.6 there is a

fixed by g vertex v1 with |v1| ≤ s, such that g|v1 acts nontrivially on the first level

and has infinite order. Then the orbit of any vertex below v1 under the action of g

has length at least 2.

The automorphism g|v1 also has no more than s sections since all its section are

the sections of g as well. Therefore, g|2v1
= g2|v1 is an automorphism of infinite order,

whose set of sections has cardinality no more than s2. Thus, by Lemma III.6 there is

a fixed by g2|v1 vertex v2 with |v2| ≤ s2, such that
(
g2|v1

)|v2 = g2|v1v2 acts nontrivially

on the first level and has infinite order. The orbit of any vertex below v1v2 under the

action of g2 has length at least 2. Hence, the orbit of any such vertex under g has

length at least 4.

Continuing this way we get an infinite path P = v1v2v2 . . ., such that the length

of vi is no more than s2i
and the orbit of v1v2 . . . vk under the action of g has length

at least 2k−1. This shows that the orbit of P is infinite.

Remark. In the case of d-ary tree for d > 2 the proof goes similarly, except that in

Lemma III.6 one proves the existence of a vertex v fixed by g for which there is a

vertex x in the first level of the tree such that the orbit of x under g|v has size k > 2

and gk|vx has infinite order.

5 Self-similar closure

The Sushchansky group Gλ is not generated by all the states of Au,v and is not self-

similar (see definition below). However, we can embed it into a larger self-similar
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group where we can use some known techniques to derive some important results

about Gλ itself. In particular that Gλ is amenable (Corollary III.11) and that the word

problem is solvable in polynomial time (Corollary III.12). For the definitions not given

here and more information on self-similar groups we refer to [Nek05] and [BGŠ03].

Definition 23. The self-similar closure of G < Aut X∗ is the group generated by all

the sections of all the elements of G at words in X∗.

Let G̃λ be the self-similar closure of Gλ, i.e. G̃λ is generated by all the

states of the automaton Au,v. Consider also the self-similar subgroup K =

〈q1, . . . , qt, r1, . . . , rp2 , σ〉 of G̃λ.

Lemma III.7. The group K is not periodic.

Proof. First, consider the case t = p. Then all ui’s are equal to 1 except one equal

to 0. In particular,
∑p

i=1 ui = p − 1. Then the element g = q1q2 · · · qtσ
p−1 has

representation

g = (q1q2 · · · qt, σ
p−1, 1, . . . , 1)σp−1.

Therefore

gp = (q1q2 · · · qtσ
p−1, ∗, . . . , ∗) = (g, ∗, . . . , ∗).

Since g is nontrivial it must have infinite order.

In case t = p2, exactly p of ui’s are zeros. We mark the vertices of the cycle

of qi’s in the automaton by the corresponding ui’s. There are at most
(

p
2

)
different

distances between the zeros in the cycle. But the length of the cycle is p2 so there are

p2 − 1

2
>

p2 − p

2
=

(
p

2

)

possible distances in the cycle, so let d be a distance that is not attained as a distance

between two zeros.
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Now consider the element g = q1qd+1σ
up2+ud . It can be written as

g = (q2qd+2, σ
u1+ud+1 , 1, . . . , 1)σup2+ud .

Since the distance between states qp2 and qd in the cycle is exactly d at least one of

up2 and ud is nonzero so σup2+ud is a cycle of length p. Hence

gp = (q2qd+2σ
u1+ud+1 , ∗, . . . , ∗).

Therefore if the order |g| of g is finite, then it is not smaller than p · |q2qd+2σ
u1+ud+1|.

Now we repeat this procedure p2 times and on the i-th iteration we get

qiqd+iσ
ui−1+ud+i−1 = (qi+1qd+i+1, σ

ui+ud+i , 1, . . . , 1)σui−1+ud+i−1 .

Again, the distance between qi−1 and qd+i−1 is exactly d so σui−1+ud+i−1 is a cycle

of length p and

(qiqd+iσ
ui−1+ud+i−1)p = (qi+1qd+i+1σ

ui+ud+i , ∗, . . . , ∗).

Therefore

|qiqd+iσ
ui−1+ud+i−1 | ≥ p · |qi+1qd+i+1σ

ui+ud+i|.

But after p2 steps we will meet g again. So its order cannot be finite.

Lemma III.8. A self-similar group of binary tree automorphisms is level transitive

if and only if it is infinite.

Proof. The proof of this lemma is similar to the proof of transitivity in

Proposition III.3. Let G be a self-similar group acting on a binary tree.

If G acts level transitively then G must be infinite (since the size of the levels is

not bounded).

Assume now that the group G is infinite.
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We first prove that all level stabilizers StabG(n) are different. Note that, since

all level stabilizers have finite index in G and G is infinite, all level stabilizers are

infinite. In particular, each contains a nontrivial element.

Let n > 0 and g ∈ StabG(n − 1) be an arbitrary nontrivial element. Let v =

x1 . . . xk be a word of the shortest length such that g(v) 6= v. Since g ∈ StabG(n− 1),

we must have k ≥ n. The section h = gx1x2...xk−n
is an element of G by the self-

similarity of G. The minimality of the word v implies that g ∈ StabG(k − 1), and

therefore h ∈ StabG(n − 1). On the other hand h acts nontrivially on xk−n+1 . . . xk

and we conclude that h ∈ StabG(n − 1) \ StabG(n). Thus all level stabilizers are

different.

We now prove level transitivity by induction on the level.

The existence of elements in StabG(0) \ StabG(1) shows that G acts transitively

on level 1.

Assume that G acts transitively on level n. Select an arbitrary element h ∈
StabG(n)\StabG(n+1) and let w =∈ Xn be a word of length n such that h(w1) = w0.

Let u be an arbitrary word of length n and let x be a letter in X = {0, 1}. We

will prove that ux is mapped to w0 by some element of G, proving the transitivity of

the action at level n + 1. By the inductive assumption there exists f ∈ G such that

f(u) = w. If f(ux) = w0 we are done. Otherwise, hf(ux) = h(w1) = w0 and we are

done again.

Next, we prove the following proposition.

Proposition III.9. G̃λ is a weakly regular branch group over Kp.

Proof. First of all note that Lemma III.7 guarantees that Kp is nontrivial. At least
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one (in fact more) of the ui’s is non zero, say u1. Then the relations (3.2) and

σq1σ
p−1 = (σu1 , 1, . . . , 1, q2)

show that the set of sections of the elements of K, that stabilize the first level X

of the tree, at letter 0 includes the generators of K and hence the whole group K

(therefore conjugating by σ ∈ K yields that K is self-replicating, i.e. for any x ∈ X

the projection of Stx(K) onto the vertex x coincides with K). Thus for any v ∈ K

there is w ∈ K of the form

w = (v, σi, 1, . . . , 1, qj
2)

for some i and j. But then by Lemma III.2

wp = (vp, σip, 1, . . . , 1, qjp
2 ) = (vp, 1, . . . , 1).

Therefore Kp Â Kp × 1 × · · · × 1. Since σ acts transitively on the first level and

belongs to the normalizer of Kp in K (because σ−1vpσ = (σ−1vσ)p) by conjugation

we get

Kp Â Kp ×Kp × · · · ×Kp,

as geometric embedding.

The transitivity of G̃λ on levels follows from the fact that its subgroup K

acts nontrivially on the first level and is self-replicating, and hence, level transitive.

Another proof follows from Proposition III.8.

We summarize some general properties of G̃λ in the following proposition:

Proposition III.10. The self-similar closure of Gλ is neither torsion, nor torsion

free, level-transitive group of tree automorphisms. Moreover, it is generated by a

bounded automaton, hence it is contracting and amenable.
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Proof. The first three assertions are already proved above. The automaton Au,v is

bounded by Corollary 14 in [Sid00a] (see the definition in Section 4). As a corollary

G̃λ is contracting (see [BN03]) and amenable (see [BKN08]).

Corollary III.11. Gλ is amenable.

Note also that the last corollary follows from Theorem III.19.

Corollary III.12. The word problem in Gλ is solvable in polynomial time.

Proof. See Proposition 2.13.10 in [Nek05].

6 Intermediate growth

Let G be a group finitely generated by a set S. The growth function of G is defined

by

γG(n) =
∣∣{g ∈ G|g = s1s2 . . . sk for some si ∈ S ∪ S−1, k ≤ n}

∣∣ .

Two functions γ1 and γ2 are called equivalent if there exists a constant C > 0 such

that γ1(
1
C
n) ≤ γ2(n) ≤ γ1(Cn) for all n. The growth function γG depends both on G

and on S, but the equivalence class of γG does not depend on S.

In 1968 John Milnor asked about the existence of finitely generated groups with

growth that is intermediate between polynomial and exponential. The first examples

of such groups were provided by R.I. Grigorchuk in [Gri83], where he constructed

uncountable family of such groups. In particular, it was shown, that there are groups

of intermediate growth generated by automata with 5 states, namely, Gω for ω =

(012)∞ (not to be confused with Sushchansky groups Gλ). These examples were

generalized to the notion of G groups [BGŠ03]. Under some finiteness restriction all

G groups have intermediate growth.

Recently it was proved [BP06] (see also [Nek07c]) that there is a 4-state

automaton over a 2-letter alphabet generating a group of intermediate growth. This
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group itself is isomorphic to the iterated monodromy group of the map f(z) = z2 + i.

But it is still an open question whether there is a group of intermediate growth

generated by a 3-state automaton over a 2-letter alphabet.

In view of the examples above it is not very surprising that the two of the

pioneering examples of infinite finitely generated periodic groups introduced by

S.V. Aleshin in [Ale72] and V.I. Sushchansky in [Sus79] also have intermediate growth.

For Aleshin group it follows from the intermediate growth of Grigorchuk group and the

result of Y.I. Merzlyakov [Mer83], who proved that Aleshin group contains a subgroup

of finite index isomorphic to the subdirect product of four copies of Grigorchuk group.

Also the relation between these two groups was studied in [Gri85b].

As was mentioned above in [Gri85a] R.I. Grigorchuk pointed out that all

Sushchansky groups have intermediate growth, but only the idea of proof was given.

In this chapter we give a complete proof of this fact based on the results from [BŠ01]

and [BGŠ03].

At the present moment the main method of obtaining the upper bounds for

growth functions of groups was originated by R.I. Grigorchuk in [Gri84]. Different

modifications of this method in [Bar98, MP01, BŠ01] allowed to improve existing

estimates and to prove the estimates for new groups.

As for the lower bounds for growth functions, there are several techniques.

In [Gri84] R.I. Grigorchuk uses self-similarity to obtain the lower bound of the form

e
√

n for most of his groups. Moreover, he shows that any group G that is abstractly

commensurable with its own power Gk for some k ≥ 2 has a growth function not

smaller that enα
for some 0 < α ≤ 1.

In [Gri89] R.I. Grigorchuk used bounds on the coefficients of Hilbert-Poincaré

series of graded algebras associated with groups to bound their growth functions.

Namely, it was obtained that any residually p-group whose growth function is not
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bounded above by polynomial, must grow at least as e
√

n.

Y.G. Leonov [Leo01], L. Bartholdi and Z. Šunić [Bar98, BŠ01] used more

advanced techniques (common in spirit to the ones used in [Gri84]) also based on

certain self-similarity of the groups acting on trees. In obtaining the lower bounds for

the growth functions of these groups the important role was played by the property,

which is in some sense opposite to contraction. The main idea is that the sections of

elements cannot be much shorter than the elements themselves.

A. Erschler used random walks and Poisson boundary to approach to this

question. In particular, in [Ers04] it was shown that the growth function of Grigorchuk

group Gω for ω = (01)∞, which is generated by 5-state automaton, grows faster than

enα
for any α < 1. The upper estimate of the same sort was obtained for this group

in spirit of [Gri84], which shows that groups Gω for ω = (012)∞ and ω = (01)∞ have

essentially different growth functions.

Recall the definition of a G group.

Definition 24. Let R be a subgroup of Sym(X), D be any group with a sequence

of homomorphisms wi : D → Sym(X), i ≥ 1. Then R acts on the first level of X∗

and D acts on X∗ in the following way. Each d ∈ D defines the automorphism d̂ that

acts trivially on the first level and is given by its sections

d̂
∣∣
0i1

= wi(d), i ≥ 1

and all the other sections act trivially on X. Denote D̂ = {d̂ | d ∈ D}.
The group G = 〈R, D̂〉 is called a G group if the following conditions are satisfied:

(i) The groups R and wi(D), i ≥ 1, act transitively on X.

(ii) For each d ∈ D the permutation wi(d) is trivial for infinitely many indices.

(iii) For each nontrivial d ∈ D the permutation wi(d) is nontrivial for infinitely many
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indices.

The groups R and D are called the root part and the directed part of G correspondingly.

PSfrag replacements
R D̂

w1(d)w2(d)w3(d)w4(d)
Fig. 14. The action of G group on the tree

The actions of R and D̂ on the tree are schematically depicted in Figure 14. Note

that in [BGŠ03] the definition of a G group is given in slightly more general settings.

The results in [BŠ01] and [BGŠ03] imply the following theorem.

Theorem III.13. All G groups with finite directed part have intermediate growth.

There is a lower bound for the growth of such groups given in [BGŠ03]:

γG(n) º enα

, (3.5)

where α = log(|X|)
log(|X|)+log(2)

.

The sequence of homomorphisms wi in the definition of a G group is called

r-homogeneous, if for every finite subsequence of r consecutive homomorphisms
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wi+1, wi+2, . . . , wi+r every element of D is sent to the identity by at least one of

the homomorphisms from this finite subsequence. In particular, if the sequence of

homomorphisms {wi, i ≥ 1} defining a G group is periodic with period r, it is also

r-homogeneous.

It is proved in [BŠ01] that in case of r-homogeneous sequence of defining

homomorphisms there is an estimate of the upper bound on the growth function.

Moreover, in this case if the directed part has finite exponent there is an upper bound

on the torsion growth function π(n) (the maximal order of an element of length at

most n).

Theorem III.14 (η-estimate). Let G be a G group defined by an r-homogeneous

sequence of homomorphisms. Then the growth function of the group G satisfies

γG(n) ¹ enβ

, (3.6)

where β = log(|X|)
log(|X|)−log(ηr)

< 1 and ηr is the positive root of the polynomial xr + xr−1 +

xr−2 − 2.

If the directed part D of G has finite exponent q, then the group G is torsion and

there exists a constant C > 0, such that the torsion growth function satisfies

π(n) ≤ Cnlog1/ηr
(q). (3.7)

Sushchansky groups Gλ are not G groups, because the automorphism Bλ

cannot be expressed as d̂ for some homomorphisms wi. On the other hand, the

automorphisms qi and ri can, and the following proposition shows that the self-similar

closure of Gλ contains a subgroup which is a G group. Since the simplified definition

of Gλ from Proposition III.4 does not simplify considerably the proofs in this section,

we will use the original definition in order to make this section independent from
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Section 3.

Proposition III.15. The group H = 〈q1, r1, σ〉 is a G group with finite directed part

defined by a periodic sequence of homomorphisms with period p2.

Proof. We prove that the subgroups 〈q1, r1〉 and 〈σ〉 are the directed and the root

parts of H.

First observe that 〈q1, r1〉 ' Zp ⊕ Zp. Indeed, the group 〈q1, r1〉 is elementary

abelian p-group by Lemma III.2. Suppose that r1 ∈ 〈q1〉, r1 = qk
1 . Comparing sections

at words 0 . . . 01 we get vi = kui. Contradiction, since ui = 0 and vi = 1 for i with

βi = 0.

Consider the periodic sequence of homomorphisms wi : 〈q1, r1〉 → Sym(X) with

period p2 given by wi(q1) = σui and wi(r1) = σvi . Then for any d ∈ 〈q1, r1〉 the

associated d̂ from the definition of a G group coincides with the automorphism d. To

complete the proof we need to check the conditions (i)–(iii) from the definition of a

G group.

(i) The root part generated by σ acts transitively on X. Furthermore, for any

i ≥ 1

wi(q1) = σ, if βi 6= 0;

wi(r1) = σ, if βi = 0.

In any case wi(〈q1, r1〉) contains σ and thus acts transitively on X.

(ii),(iii) Let d = qk
1r

l
1, k, l ∈ Zp, be an arbitrary nontrivial element of 〈q1, r1〉.

Since the sequence wi is periodic it suffices to show at least one occurrence of trivial

and one occurrence of nontrivial wi(d).



59

Find i such that

(αi, βi) = (1, 0), if l = 0;

(αi, βi) = (k, l), if l 6= 0.

Then

wi(d) =





wi(q
k
1) = σkui = 1, if l = 0;

wi(q
k
1r

l
1) = σkui+lvi = σk+l(−k/l) = 1, if l 6= 0.

For a nontrivial occurrence find i such that

(αi, βi) = (0, 1), if l = 0;

(αi, βi) = (1, 0), if l 6= 0.

Then

wi(d) =





wi(q
k
1) = σkui = σk, if l = 0;

wi(q
k
1r

l
1) = σkui+lvi = σl, if l 6= 0.

The last proposition shows that the growth function of H satisfies

inequalities (3.5) and (3.6), for r = p2. Also note that it is proved in [BGŠ03]

that a G group is torsion if and only if its directed part D is torsion. Therefore, the

group H is torsion. The next proposition exhibits another regular branch structure

inside G̃λ.

Proposition III.16. The group H = 〈q1, r1, σ〉 is regular branch over its commutator

subgroup H ′.

Proof. Let Hk = 〈qk, rk, σ〉, k = 1, . . . , p2 be the subgroups of G̃λ. First we show that

H ′
k º H ′

k+1 ×H ′
k+1 × · · · ×H ′

k+1 (3.8)
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for all k. Indeed, at least one of uk and vk is nonzero. Suppose uk 6= 0. Then relations

qk = (qk+1, σ
uk , 1, . . . , 1) and rk = (rk+1, σ

vk , 1, . . . , 1) imply

[qk, rk] = ([qk+1, rk+1], 1, . . . , 1),

[qk, (q
σ−1

k )1/uk ] = ([qk+1, σ], 1, . . . , 1),

[rk, (q
σ−1

k )1/uk ] = ([rk+1, σ], 1, . . . , 1).

Since the projection of the stabilizer of the first level in Hk on the leftmost vertex

coincides with Hk+1 we get H ′
k º H ′

k+1× 1× · · · × 1. Conjugation by σ ∈ Hk implies

inclusion (3.8). Since H1 = Hp2+1 = H, we obtain H ′ º H ′ × H ′ × · · · × H ′ as

geometric embedding induced by the restriction on Xp2
.

The transitivity of H on the levels is proved by the method used in

Proposition III.3.

Now H is a torsion p-group, hence, so is H/H ′, which is abelian. But each torsion

finitely generated abelian group is finite. Thus, H ′ is a subgroup of finite index in

H.

When we deal with a group G of automorphisms of X∗, it is sometimes difficult

to say something about the whole group, but we know something about the group P

generated by all the sections of the elements in G at some level k of the tree. In case

G is self-similar, P is a subgroup of G and if G is self-replicating, P coincides with G.

Some properties of P are inherited by G itself. In particular, if P is finite or torsion

then so is G (the converse is not true). But what we are interested in here is that the

growth of G can be estimated in terms of the growth of P .

Let S be a finite generating set of G. Then P is generated by the set S̃ of the

sections of all elements of S at all vertices of k-th level Xk of the tree. The following

lemma holds.
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Lemma III.17. The growth function γG(n) of the group G with respect to S is

bounded from above by

γG(n) ¹ (
γP (n)

)|X|k
, (3.9)

where γP (n) is the growth function of the group P with respect to S̃. In particular,

the growth type of G (finite, polynomial, intermediate or exponential) cannot exceed

the one of P .

Proof. Let g ∈ G be an element of length n with respect to the generating set S.

This element induces a permutation πk of the k-th level of the tree and |X|k sections

g|v, v ∈ Xk, at words of length k. Moreover, different automorphisms correspond to

different tuples (πk, {g|v, v ∈ Xk}) of sections and permutations. Each such a section

is a word of length not greater than n with respect to the generating set S̃ of P . So

for each vertex v ∈ Xk the number of possible sections at v is bounded from above

by γP (n).

The following corollary shows an easy way to construct new examples of groups

with intermediate (finite, polynomial, exponential) growth.

Corollary III.18. Let F be a finite set of automorphisms from Aut X∗, whose

sections at some level k belong to G (in particular, F could be a set of finitary

automorphisms). Then

γG(n) - γ〈G,F 〉(n) -
(
γG(n)

)|X|k
.

where γ〈G,F 〉(n) is the growth function of the group 〈G,F 〉 with respect to the

generating set S ∪ F .

In particular the previous corollary shows that if a group G is generated by a

finite automaton, then the growth type of this group depends only on the nucleus

(see definition in [Nek05]) of this automaton.
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An interesting question is whether it is true that if G grows faster than

polynomially then γG(n) ∼ γ〈G,F 〉(n).

We are ready to prove the main results.

Theorem III.19. All Sushchansky p-groups have intermediate growth. The growth

function of each Sushchansky p-group Gλ satisfies

enα ¹ γGλ
(n) ¹ enβ

,

where α = log(p)
log(p)+log(2)

, β = log(p)
log(p)−log(ηr)

and ηr is the positive root of the polynomial

xr + xr−1 + xr−2 − 2, where r = p2.

Proof. The group generated by all the sections of elements of Gλ at the second level

is H = 〈q1, r1, σ〉, which is a G group of intermediate growth by Proposition III.15

and Theorems III.13 and III.14, whose growth function satisfies inequalities (3.5)

and (3.6). Therefore by Lemma III.17 the Sushchansky group Gλ has subexponential

growth function, which satisfies inequality

γG(n) - (γH(n))p2 - γH(n). (3.10)

The last part of this inequality follows from Proposition III.16, where it is proved

that H is regular branch over H ′.

Now consider the subgroup L = 〈Bλ, ABλA
p−1, A2BλA

p−2〉 of Gλ. This subgroup

stabilizes the second level of the tree and the sections of the generators at the second

level look like:

Bλ = (q1, ∗, . . . , ∗),
ABλA

p−1 = (r1, ∗, . . . , ∗),
A2BλA

p−2 = (σ, ∗, . . . , ∗).
Each word of length n in L will be projected on the corresponding word of length

n in H. Therefore γL(n) ≥ γH(n) for all n ≥ 1. But L is a finitely generated subgroup
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of Gλ. Thus

γH(n) - γL(n) - γG(n). (3.11)

Inequalities (3.10) and (3.11) imply

γG(n) ∼ γH(n). (3.12)

Finally, it was mentioned above that the group H is torsion as a G group with

torsion directed part. But periodicity of H implies that Gλ is periodic as well. This

gives a different proof of Theorem III.1 proved by V.I. Sushchansky. The theory of G

groups allows to sharpen this result.

Theorem III.20. There is a constant C > 0, such that the torsion growth function

of each Sushchansky p-group Gλ satisfies inequality

πGλ
(n) ≤ Cnlog1/ηr

(p),

where ηr is the same as in the previous theorem.

Proof. By Proposition III.15 the group H is a G group defined by a p2-homogenous

sequence of homomorphisms, whose directed part 〈q1, r1〉 is an elementary abelian

p-group (see Lemma III.2). Therefore by Theorem III.14 the torsion growth function

πH(n) satisfies inequality

πH(n) ≤ C1n
log1/ηr

(p)

for some constant C1.

For any element g of length n in Gλ, gp stabilizes the second level of the tree

and the sections of gp at the vertices of the second level are the elements of H, whose

length is not bigger than pn. Hence, the order of gp cannot be bigger than the least
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common multiple of the orders of g|v, v ∈ X2. Since the orders of these sections are

the powers of p, the least common multiple coincides with the maximal order among

the sections. This implies

Order(g) = p ·Order(gp) ≤ pπH(pn) ≤ pC1(pn)log1/ηr
(p) ≤ Cnlog1/ηr

(p)

for C = C1p
log1/ηr

(p)+1.
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CHAPTER IV

DUAL AUTOMATA AND FREE PRODUCTS OF GROUPS OF ORDER 2

The results of this chapter are presented in paper [SV08] written jointly with

Y. Vorobets. The structure of this chapter is as follows. All necessary definitions

are given in Section 1. The automaton generating the free product of 4 cyclic groups

of order 2 is studied in Section 2. In Section 3 the family of automata generating the

free products of groups of order 2 is considered.

1 Preliminaries

In this chapter let X be a finite alphabet of cardinality d. We start from introducing

the notion of dual automaton. For any finite automaton one can construct a dual

automaton defined by switching the states and the alphabet as well as switching the

transition and the output functions.

Definition 25. Given a finite automaton A = (Q,X, π, λ) its dual automaton Â is

a finite automaton (X, Q, λ̂, π̂), where

λ̂(x, q) = λ(q, x),

π̂(x, q) = π(q, x)

for any x ∈ X and q ∈ Q.

Note that the dual of the dual of an automaton A coincides with A. The

semigroup S(Â) generated by dual automaton Â of automaton A acts on the free

monoid Q∗. This action induces the action on S(A). Similarly, S(A) acts on S(Â).

Definition 26. For an automaton semigroup G generated by automaton A the dual

semigroup Ĝ to G is a semigroup generated by a dual automaton Â.
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A particularly important class of automata is the class of bireversible automata.

Definition 27. An automaton A is called bireversible if it is invertible, its dual is

invertible, and the dual to A−1 are invertible.

In particular, for any group generated by a bireversible automaton A one can

consider a dual group generated by the dual automaton Â.

The following proposition is proved in [VV07] by induction on level. With a

slight abuse of notations we will denote by the same symbol the element of a free

monoid and its image under canonical epimorphism onto corresponding semigroup.

Proposition IV.1. Let G be an automaton semigroup acting on X∗ and generated

by the finite set S. And let Ĝ be a dual semigroup to G acting on S∗. Then for any

g ∈ G and v ∈ X∗ we have g|v = v(g) in G. Similarly, for any g ∈ S∗ and v ∈ Ĝ,

v|g = g(v) in Ĝ.

2 Automaton generating C2 ∗ C2 ∗ C2 ∗ C2

Consider the group generated by the 4-state automaton B4, whose

transition and output functions are given by wreath recursion (its Moore diagram

is shown in the right half of Figure 1)

a = (c, b),

b = (b, c),

c = (d, d)σ,

d = (a, a)σ.

(4.1)

In this chapter we will denote this group by G. The next Theorem is the main result

of this section.

Theorem IV.2. Group G is isomorphic to C2 ∗ C2 ∗ C2 ∗ C2.
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The proof of this theorem is split into a number of lemmas below.

First, we note that the automaton B4 is bireversible. The dual group Γ to G is

generated by the following automaton (shown in Figure 15)

O = (O,O,1,1)(a c d),

1 = (1,1,O,O)(a b c d).
(4.2)

PSfrag replacements�
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Fig. 15. Automaton dual to Bellaterra automaton B4

This group acts on a rooted 4-ary tree T whose vertices are labelled by the words

over {a, b, c, d}. Since a2 = (c2, b2), b2 = (b2, c2), c2 = (d2, d2) and d2 = (a2, a2) we get

that a2 = b2 = c2 = d2 = 1 in Γ and the image of any word containing any of a2, b2,

c2 or d2 under any element of Γ will also contain one of these subwords. Therefore

there is an invariant under Γ subtree T̂ of T consisting of all words over {a, b, c, d}
that do not have a2, b2, c2 and d2 as subwords. The root of T̂ has 4 descendants and

all the other vertices in T̂ have three (see Figure 16, where subtree T̂ is drawn with

bold edges).

The following simple proposition was obtained independently by Z. Šunić

(private communication) and the proof is implicitly contained in the book of

V. Nekrashevych [Nek05].

Proposition IV.3. Let G be any semigroup generated by a finite automaton and Ĝ

be its dual semigroup. Then G is finite if and only if Ĝ is finite.
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Fig. 16. Trees T and T̂

Proof. Since dual of the dual of the automaton generating G coincides with this

automaton, it is enough to show the implication in one direction.

Suppose G is finite. For any element v ∈ Ĝ and any vertex g of tree the semigroup

Ĝ acts on, we have v|g = g(v) in Ĝ by Proposition IV.1. Therefore the number of

different sections of v is bounded by the size of G. But there are only finitely many

different automata with a fixed number of states. Thus Ĝ is finite.

Lemma IV.4. The group G is infinite.

Proof. The lemma follows from the fact that the group acts transitively on each level

of the tree. To prove this we first observe that the group G/ StabG(2) is cyclic of

order 4 and the portrait of depth 2 of every element of G (rooted binary tree of depth

2, where each vertex is labelled by the permutation induced by this element at this

vertex) must coincide with one of the listed in Figure 17.

Fig. 17. Possible portraits of elements of G of depth 2

It is proved in [GNS01] that an automorphism g of the rooted binary tree acts



69

level transitively if and only if on each level the number of sections of g at the vertices

of this level acting nontrivially on the first level, is odd.

By induction on level it follows that each element g of G acting nontrivially on

the first level acts spherically transitively. Indeed, if the number of sections of g

at the vertices of the k-th level acting nontrivially on the first level (the number of

“switches” on the k-th level) is odd, then each of these sections will produce exactly

one switch on the (k + 1)-st level, while the sections acting trivially on the first level

will produce either none or two switches on the (k + 1)-st level. Thus, the total

number of switches on the (k + 1)-st level will remain odd.

The direct corollary of Proposition IV.3 and Lemma IV.4 is

Corollary IV.5. The group Γ is infinite.

Corollary IV.6. The stabilizers of levels of T in Γ are pairwise different.

Proof. Since Γ is infinite by Corollary IV.5 and all stabilizers of levels are finite index

subgroups in Γ, they are all infinite. Let g ∈ StabΓ(n) be arbitrary and nontrivial and

let m ≥ n + 1 be the smallest level on which g acts nontrivially. Then there exists a

vertex v = x1x2 . . . xm−1 of the tree, such that g|v acts nontrivially on the first level.

Then g|x1x2...xm−n−1 ∈ StabΓ(n) \ StabΓ(n + 1).

Lemma IV.7. Let T̂n be the subtree of T̂ consisting of the first n levels. Then

StabΓ(n) = StabΓ(T̂n).

Proof. Since the leaves of T̂n are vertices of the n-th level of T we have StabΓ(n) ⊂
StabΓ(Tn).

Suppose v ∈ StabΓ(T̂n) \ StabΓ(n). Then there is a vertex g of the n-th level

which is not in T̂ and is not fixed under v. Since v fixes Tn it follows that g = ftth
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and v(g) = ftth′ for some f, h, h′ ∈ G and t ∈ {a, b, c, d}. Then

v(fh) = v(f)v|f (h) = f · (v|f )|tt(h) = fv|ftt(h) = fh′.

The second equality above holds since for any t ∈ {a, b, c, d} we have t2 = 1 and thus

for any w ∈ Γ by Proposition IV.1, w|tt = (tt)(w) = w in Γ and for any word h ∈ T

we have w|tt(h) = w(h).

We can repeat this procedure until we get an element of T̂n not fixed under the

action of v, obtaining contradiction. Thus v ∈ StabΓ(n) \ StabΓ(Tn).

The next statement follows directly from Corollary IV.6 and Lemma IV.7.

Corollary IV.8. For any n ≥ 1 there is an element in Γ fixing T̂n but moving some

vertex in T̂n+1.

Lemma IV.9. The sections of any element of StabΓ(n) at the vertices of the n-th

level act on the first level by even permutations.

Proof. By self-similarity it is enough to prove the Lemma for n = 1. The claim follows

from the fact that | StabΓ(1)/ StabΓ(2)| = 33 (this was computed using [MS08]).

Therefore the sections of any element of StabΓ(1) at the vertices of the first level act

on the first level by permutations, whose order is a power of 3, which are either cycles

of length 3 or the trivial permutation. All these are even permutations.

Below we provide a proof that does not rely on computer computations. This

proof is also important because it introduces certain notation that will be used later

in Section 3.

First we show that if v ∈ Γ fixes vertex d, then the parities of the actions of v

and v|d on the first level coincide. For this purpose we introduce a new generating
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set in Γ. For any x ∈ Sym({a, b, c, d}) denote by x̄ the automorphism of T defined by

x̄ = (x̄, x̄, x̄, x̄)x.

The portrait of x̄ has x at each vertex of the tree. Since (O1−1)2 = (O−11)2 = 1 we

obtain

O1−1 = (O1−1,O1−1,O1−1,O1−1)(a b) = (a b) (4.3)

and

O−11 = (O−11,O−11,O−11,O−11)(b c) = (b c). (4.4)

This shows that (a c) ∈ Γ. If we denote

α = 1 · (a c) = (α, α, β, β) (a b)(c d),

β = O · (a c) = (β, β, α, α) (c d),
(4.5)

then α2 = β2 = 1 and, taking into account that βα−1 = (a b),

Γ = 〈α, β, (b c)〉.

Suppose now v ∈ Γ is an arbitrary element fixing vertex d. Represent v as a

word over {α, β, (b c)}
v = v1v2 · · · vk,

then by (2.3)

v|d = v1|d · v2|v1(d) · · · vk|v1v2···vk−1(d).

The parity of the action of vi on the first level is different from the one of vi|v1v2···vi−1(d)

only in case vi is α or β and v1v2 · · · vi−1(d) = c or v1v2 · · · vi−1(d) = d.

Note that in this situation if v1v2 · · · vi−1(d) = c then v1v2 · · · vi(d) = d, and if

v1v2 · · · vi−1(d) = d then v1v2 · · · vi(d) = c. The converse is also true in the following
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sense: if v1v2 · · · vi−1(d) 6= d and v1v2 · · · vi(d) = d then v1v2 · · · vi−1(d) = c and vi is

either α or β, and if v1v2 · · · vi−1(d) = d and v1v2 · · · vi(d) 6= d, then v1v2 · · · vi(d) = c

and vi is either α or β. In other words, the parity of the action of vi on the first

level is different from the one of vi|v1v2···vi−1(d) exactly when there is a change from d

to anything else or from something to d in the sequence {d, v1(d), . . . , v1v2 · · · vk(d)}.
But since v1v2 · · · vk(d) = v(d) = d, there must be an even number of such changes.

Hence, the parity is different in even number of places and the parities of the actions

of v and v|d on the first level coincide.

By the above for any g = (g|a, g|b, g|c, g|d) ∈ StabΓ(1) the parity of the action

of g|d on the first level is even. Furthermore, the conjugate gβ = β−1gβ has

decomposition

gβ = (∗, ∗, ∗, (g|c)α) ∈ StabΓ(1),

which implies that (g|c)α and, hence, g|c acts on the first level by an even permutation.

Finally,

g(a c) = (∗, ∗, (g|a)(a c), ∗) ∈ StabΓ(1),

g(b c) = (∗, ∗, (g|b)(b c), ∗) ∈ StabΓ(1).

This shows that all sections of g at the vertices of the first level act on the first level

by even permutations.

Lemma IV.10. The group Γ acts transitively on the levels of T̂ .

Proof. We proceed by induction on levels. The transitivity on the first level is clear.

Assume Γ acts transitively on the n-th level of T̂ . By Corollary IV.8 there is an

element v ∈ Γ that fixes T̂n and acts nontrivially on T̂n+1. This means that there is

a vertex g ∈ T̂n such that v(g) = g and v|g acts nontrivially on the first level. By

Lemma IV.9 the permutation induced by v|g on the first level is even, which implies

that it is a cycle of length 3. Thus v|g acts transitively on the first level of the tree.
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Without loss of generality assume that g ends with d. By induction assumption,

for any vertex h1h2 . . . hn+1 of T̂n+1 there is an element w ∈ Γ that moves g to

h1h2 . . . hn. Then vkw, where k is 0, 1 or 2 will move ga to h1h2 . . . hn+1. Thus, Γ

acts transitively on T̂n+1.

Finally, we have all ingredients for the proof of Theorem IV.2.

Proof of Theorem IV.2. For every n ≥ 1 there is a nontrivial element h ∈ G that

belongs to the n-th level of T̂ (h = (ab)
n−1

2 c 6= 1 for an odd n and h = (ab)
n
2
−1ac 6= 1

for an even n). By Lemma IV.10 the group Γ acts transitively on each level of T̂ .

Therefore for any word g from the n-th level of T̂ (which is a word of length n without

double letters) there exists v ∈ Γ such that

g|v = v(g) = h 6= 1.

Thus there are no relations in G except a2 = b2 = c2 = d2 = 1.

3 Family of automata generating the free products of C2

Let us define a family of automata obtained from the automaton B4 by inserting

new states on the path from c to d. Namely, for every integer n > 4 and any

permutations σn,i ∈ Sym({1, 2}), i = 1, . . . , n−4 consider an automaton with n states

an, bn, cn, qn1, qn2, . . . , qn,n−4, dn whose transition and output functions are given via
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Fig. 18. Bellaterra automaton B(n)

the wreath recursion

an = (cn, bn),

bn = (bn, cn),

cn = (qn1, qn1)σ,

qn,i = (qn,i+1, qn,i+1)σn,i, i = 1, . . . , n− 5,

qn,n−4 = (dn, dn)σn,n−4,

dn = (an, an)σ.

(4.6)

With a slight abuse of notation we denote this automaton by B(n) regardless of the

choice of permutations σn,i. The Moore diagram of B(n) is shown in Figure 18.

From the wreath recursion it is easy to observe that the generators of B(n) are

involutions.

This section is devoted to the proof of the following theorem.

Theorem IV.11. The group G(n) generated by automaton B(n) is isomorphic to the

free product of n copies of the cyclic group of order 2.

The proof relies on the results of Section 2. The approach is similar. We prove
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that the dual automaton acts transitively on the invariant subtree consisting of words

without double letters. This yields the structure of the free product in the group G(n).

Note that the automaton B(n) is bireversible so that the dual group Γ(n) to G(n)

is well defined. The group Γ(n) is generated by automaton acting on the rooted n-ary

tree T (n) as follows

On = (On,On,1n,Kn1, . . . ,Kn,n−4,1n)(an cn qn1 . . . qn,n−4 dn),

1n = (1n,1n,On,Ln1, . . . ,Ln,n−4,On)(an bn cn qn1 . . . qn,n−4 dn),
(4.7)

where Kn,i = On and Ln,i = 1n if σn,i is a trivial permutation, and Kn,i = 1n and

Ln,i = On otherwise.

Consider a subtree T̂ (n) of T (n) consisting of all words over the alphabet

Y (n) = {an, bn, cn, qn1, qn2, . . . , qn,n−4, dn} without double letters. The root of T̂ (n)

has n descendants and all other vertices have n− 1. This subtree is invariant under

the action of Γ(n).

Similarly to (4.3) and (4.4) we get that On1
−1
n = (an bn) and O−1

n 1n = (bn cn).

Similarly to (4.5) we define transformations αn = 1n · (an cn) and βn = On · (an cn)

for which we have

αn = (αn, αn, βn, γn1, . . . , γn,n−4, βn) (an bn)(cn qn1 . . . qn,n−4 dn),

βn = (βn, βn, αn, δn1, . . . , δn,n−4, αn) (cn qn1 . . . qn,n−4 dn),
(4.8)

where γn,i = αn and δn,i = βn if σn,i is a trivial permutation, and γn,i = βn and

δn,i = αn otherwise.

Since α−1
n βn = (an bn) we get a new generating set for Γn,

Γ(n) = 〈αn, βn, (bn cn)〉.

The following lemma establishes a relation between the actions of the groups
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Γ and Γ(n). We consider the tree T̂ naturally embedded in the tree T̂ (n) via a

homomorphism of monoids induced by a 7→ an, b 7→ bn, c 7→ cn, c 7→ cn, d 7→ dn.

Then the group Γ acts also on T̂ (n) (the action on the letters not in the image of T̂ is

defined to be trivial).

Lemma IV.12. For any v ∈ Γ there exists v′ ∈ Γ(n) with the following property. For

any word g over {an, bn, cn} such that v(g) is also a word over {an, bn, cn}, we have

v(g) = v′(g).

Proof. Let x1x2 . . . xk be the word over {α, β, (bn cn)} representing v. Define yi ∈
{αn, βn, (bn cn)} by the following rule. If xi = (bn cn), then put yi = xi. In the case

xi = α (resp. xi = β) compute the total number of α and β among x1, x2, . . . , xi−1.

If this number is even, then define yi = αn (resp. yi = βn). Otherwise, put yi = α−1
n

(resp. yi = β−1
n ).

Now let g be any word over {an, bn, cn}. We will show by induction on i that

y1y2 . . . yi(g) is obtained from x1x2 . . . xi(g) by replacing all occurrences of dn by qn1

when the total number of α and β among x1, x2, . . . , xi−1 is odd, and coincides with

x1x2 . . . xi(g) otherwise.

The claim holds trivially for i = 0. Let us prove the induction step. First of all,

if xi+1 = yi+1 = (bn cn) then the relation between y1y2 . . . yi+1(g) and x1x2 . . . xi+1(g)

is the same as between y1y2 . . . yi(g) and x1x2 . . . xi(g). This is because (bn cn) fixes

letters dn and qn,1. Hence we can assume that xi+1 = α or xi+1 = β.

Suppose first that there is an odd number of α and β among x1, x2, . . . , xi. By

induction assumption y1y2 . . . yi(g) is obtained from x1x2 . . . xi(g) by replacing all

occurrences of dn by qn1 and, in particular, is a word over {an, bn, cn, qn1}. If xi+1 = α

(xi+1 = β), then by construction yi+1 = α−1
n (respectively yi+1 = β−1

n ), for which we

have
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α−1
n = (α−1

n , α−1
n , β−1

n , β−1
n , γ−1

n1 , . . . , γ−1
n,n−4)(an bn)(cn dn . . . qn1),

β−1
n = (α−1

n , α−1
n , β−1

n , β−1
n , δ−1

n1 , . . . , δ−1
n,n−4) (cn dn . . . qn1).

(4.9)

Therefore the images of y1y2 . . . yi(g) under the actions of α−1
n and β−1

n coincide

with the images of x1x2 . . . xi(g) under the actions of α and β correspondingly. Thus,

y1y2 . . . yi+1(g) = x1x2 . . . xi+1(g), which is exactly what we need since the number of

α and β among x1, x2, . . . , xi+1 is even.

In case of even number of occurrences of α and β among x1, x2, . . . , xi by

induction assumption y1y2 . . . yi(g) coincides with x1x2 . . . xi(g). In particular, it is a

word over {an, bn, cn, dn}. Also by construction yn+1 = αn or yn+1 = βn.

It follows from (4.8) that yi+1 acts on the letters of y1y2 . . . yi(g) exactly as xi+1,

except it everywhere moves cn to qn1, instead of moving it to dn. Therefore, the

resulting word y1y2 . . . yi+1(g) can be obtained from x1x2 . . . xi+1(g) by changing all

occurrences of dn by qn1. This agrees with the fact that the total number of α and β

among x1, x2, . . . , xi+1 is odd.

Finally, to finish the proof of the lemma, it is enough to put v′ = y1y2 . . . yk

and note that if v(g) is a word over {an, bn, cn}, then v′(g) must coincide with v(g)

regardless of the number of α and β in the word representing v.

Lemma IV.13. The group Γ(n) acts transitively on the levels of T̂ (n).

Proof. We proceed by induction on levels. Obviously, Γ(n) acts transitively on the

first level. Suppose it acts transitively on level m. We will show that any vertex of

the (m + 1)-st level can be moved to the vertex anbnanbn . . . bnan or anbnanbn . . . anbn

(depending on the parity of m).

Let g be the vertex of the (m + 1)-st level of T̂ (n). Then g = ht, where h is the

vertex of the m-th level and t ∈ Y (n). For definiteness let us assume that m is even.
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By induction assumption there is v ∈ Γ(n) that moves h to anbnanbn . . . bn. Then

v(g) = anbnanbn . . . anbnt′

for some t′ ∈ Y (n). Since βn fixes anbnanbn . . . anbn and βn|anbnanbn...anbn = βn, after

applying, if necessary, a power of βn we can assume that t′ ∈ {an, bn, cn}. Now we

invoke the transitivity of the group Γ on T̂ . By Lemma IV.10 there is w ∈ Γ such that

w(anbnanbn . . . anbnt′) = anbnanbn . . . anbnan. Then by Lemma IV.12 there is w′ ∈ Γ(n)

such that w′(anbnanbn . . . anbnt′) = w(anbnanbn . . . anbnt
′) = anbnanbn . . . anbnan. This

proves transitivity of Γ(n) on the levels of T̂ (n).

Finally, Theorem IV.11 is derived from Lemma IV.13 exactly in the same way

as Theorem IV.2 is obtained from Lemma IV.10.
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CHAPTER V

ON ITERATED MONODROMY GROUP IMG(Z2 + I)

The results of this chapter are published in paper [GSŠ07] written jointly with

R. Grigorchuk and Z. Šunić. The structure of this chapter is as follows. We give

very detailed calculation of the action of IMG(z2 + i) (denoted by G in the rest of

this chapter) on the binary rooted tree in 1. Then in Section 2 we show that the

group G is a regular branch group, thus presenting an example of a branch group

which naturally appears in holomorphic dynamics. The main body of this chapter is

devoted to the calculation of an L-presentation for G. Section 4 deals with finding

a self-similar measure on G. Finally, in Section 5 we construct a rational map on

R3 whose proper invariant set (shaped as a “strange attractor”) gives the spectrum

of the Markov operator acting on the boundary of the tree after intersection by a

corresponding line.

1 Computing the action of IMG(z2 + i) on the tree

All necessary for this chapter definitions and notations were described in Section II.7.

The only critical point of the map z 7→ z2 + i is z = 0, which is preperiodic:

0
f−→ i

f−→ (i− 1)
f

À −i.

and, hence, the postcritical set of f is {i, i− 1,−i}. Therefore the restriction of f on

M1 = C \ {i, i− 1,−i, 0} is a 2-fold covering of M = C \ {i, i− 1,−i}.
Set t = 0 ∈ C as the base point. It has two preimages ei3π/4 and ei7π/4 which are

identified with the letters 0 and 1, respectively (more precisely, we set Λ(0) = ei3π/4

and Λ(1) = ei7π/4). For the paths l0 and l1 connecting t to its preimages we choose
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Fig. 20. Preimages of the generating loops

the straight segments shown in Figure 19(a).

The fundamental group π1(M, t) is generated by the 3 loops a, b, c shown in

Figure 19(b) going around i, −i and i − 1 respectively. Each of these loops has two

preimages a[i], b[i] and c[i], i = 0, 1, shown in Figure 20.

According to formula (2.5) in Chapter II and Figures 19 and 20 the sections of
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Fig. 21. Automaton generating group IMG(z2 + i)

the generators a, b, c at 0 and 1 satisfy:

a|0 = l0a[0]l
−1
1 = 1, a|1 = l1a[1]l

−1
0 = 1,

b|0 = l0b[0]l
−1
0 = a, b|1 = l1b[1]l

−1
1 = c,

c|0 = l0c[0]l
−1
0 = b, c|1 = l1c[1]l

−1
1 = 1,

where 1 denotes the trivial loop at t, which represents the identity element of IMG(z2+

i).

Since a permutes the elements of f−1(t), while b and c do not, we obtain the

following wreath recursion for the generators of IMG(z2 + i)

a = (1, 1)σ, b = (a, c), c = (b, 1), (5.1)

where σ is the nontrivial transposition in Sym(2).

These relations show that the set of all sections of the generators a, b, c of G is

{1, a, b, c} and that the group G is generated by the states of the finite automaton

shown in Figure 21.

We now say a few words about the relation between the dynamics of the map

z 7→ z2 + i and the combinatorial properties of the action of G on the tree T .

Recall that if a group G acts on a set Y then the Schreier graph of this action

with respect to the generating set S of G is an oriented graph, whose set of vertices is
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Fig. 22. Schreier graph of G and Julia set of z2 + i

Y and there is an edge from y ∈ Y to z ∈ Y labeled by s ∈ S if and only if s(y) = z.

It is convenient sometimes to forget about the labels and/or the orientation of the

edges.

Every group acting on a rooted tree acts on each level of the tree. The Schreier

graphs of such actions are of particular interest, since in many situations (such as the

one we are in) they can be used to find the spectrum of the Markov operator on the

boundary of the tree (see Section 5).

Recent results of Nekrashevych [Nek05] show that the Schreier graphs of IMG(f)

on the levels of the tree converge to the Julia set of the map f . Therefore the structure

of the Julia set of f provides understanding of the structure of the Schreier graphs

of IMG(f) (and vice versa). In our case the Julia set of z2 + i is the dendrite shown

in the left half of Figure 22. The right half of this figure displays the Schreier graph

of G on level 8. The set of vertices of this graph is just f−8(0) and the vertices are

connected according to the action of G (no loops are drawn though to emphasize the

relation between left and right halves of the figure).
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2 Branch structure in IMG(z2 + i)

In this section we prove that G is a self-replicating branch group (see Section II.6 for

definitions). The fact that it is self-replicating is clear from the equalities

b = (a, c), c = (b, 1), aba = (c, a), aca = (1, b).

Consider the normal subgroup N of G defined by

N = 〈[a, b], [b, c]〉G.

By definition, [g, h] = g−1h−1gh and 〈·〉G denotes normal closure in G.

Theorem V.1. The group G is a regular branch group over N .

Proof. First we observe that N has finite index in G. Direct computation shows that

a2 = b2 = c2 = (ac)4 = (ab)8 = (bc)8 = 1, so G/N is a homomorphic image of

〈a, b, c | a2 = b2 = c2 = (ac)4 = [a, b] = [b, c] = 1〉 ∼= C2 ×D4,

where C2 is the cyclic group of order 2 and D4 is the dihedral group of order 8.

Further, we have

[b, c] = ([a, b], 1) [c, ba] = ([b, c], 1)

Since [c, ba] = cb[b, a]cb[b, a] = [b, a]bc[c, b][b, a] ∈ N we have that ([a, b], 1) and ([b, c], 1)

are elements in N . The fractalness of G enables us to conjugate the sections in

([a, b], 1) and ([b, c], 1) by arbitrary elements in G without leaving N . Thus we get

the inclusion N × 1 ¹ N . The transitivity of G on the first level then implies

N ×N ¹ N.

The level transitivity of G can be obtained almost for free. The fact that N is
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nontrivial along with the fact that N ×N ¹ N implies that N is infinite, and hence

so is G. Now Lemma III.8 tells that a self-similar group acting on a binary rooted

tree is infinite if and only if it acts transitively on all levels. Another way to show

transitivity would be to use Proposition II.10.

3 L-presentation

The goal of this section is to prove the following result.

Theorem V.2. The group G has the following L-presentation

G ∼=
〈
a, b, c

∣∣ φn(a2), φn
(
(ac)4

)
, φn([c, ab]2), φn([c, bab]2),

φn([c, ababa]2), φn([c, ababab]2), φn([c, bababab]2), n ≥ 0
〉
, (5.2)

where φ is the substitution defined on words in the free monoid over the alphabet

{a, b, c} by

φ :





a → b,

b → c,

c → aba.

In order to prove Theorem V.2 we introduce some notation and prove a few

intermediate results.

The group

Γ = 〈a, b, c | a2, b2, c2, (ac)4〉

covers G (the relators of Γ are relators of G). The action of G on the binary tree

induces an action of the covering group Γ on the same tree, which is not faithful. Let

Ω be the kernel of this action. Then, obviously, a set of generators of Ω as a normal

subgroup in Γ, together with the relators in Γ constitutes a presentation for G.
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The embedding G ↪→ G o Sym(2) induces a homomorphism

Ψ: Γ → Γ o Sym(2)

defined by

Ψ:





a 7→ (1, 1)σ,

b 7→ (a, c),

c 7→ (b, 1).

Indeed, the relators of Γ are mapped to the trivial element (1, 1) of Γ o Sym(2):

Ψ(a2) = (1, 1)σ(1, 1)σ = (1, 1), Ψ(b2) = (a, c)2 = (a2, c2) = (1, 1),

Ψ(c2) = (b, 1)2 = (b2, 1) = (1, 1), Ψ((ac)4) = ((1, b)σ)4 = (b2, b2) = (1, 1).

The homomorphism Ψ induces homomorphisms Ψn : Γ → Γ o (oni=1 Sym(2)
)

(here

oni=1 Sym(2) denotes the iterated permutational wreath product) defined recursively

by Ψ1 = Ψ and

Ψn : Γ
Ψn−1−−−→ Γ o

(n−1o
i=1

Sym(2)

)
Ψ−→ (

Γ o Sym(2)
) o

(n−1o
i=1

Sym(2)

)
= Γ o

( no
i=1

Sym(2)

)
.

If, for g ∈ Γ, we have Ψn(g) = (g|u, u ∈ Xn)σn, with g|u ∈ Γ and σn ∈ oni=1 Sym(2)

we call g|u the section of g at u.

For every g ∈ Γ denote by l(g) the length of the shortest word in a, b, c

representing g in Γ. The following lemma shows that Γ possesses the so called

contraction property.

Lemma V.3. For every g ∈ Γ and u ∈ X2

l(g|u) ≤ l(g) + 1

2
. (5.3)
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Proof. Observe that, because of the self-similarity, all generators satisfy

inequality (5.3). Indeed,

Ψ2(a) = (1, 1, 1, 1)(02)(13), Ψ2(b) = (1, 1, b, 1)(01), Ψ2(c) = (a, c, 1, 1),

where, for ease of notation, the vertices on the second level are renamed by using the

identifications 00 ↔ 0, 01 ↔ 1, 10 ↔ 2, and 11 ↔ 3.

All pairwise products of generators also satisfy inequality (5.3):

Ψ2(a
2) = 1, Ψ2(b

2) = 1, Ψ2(c
2) = 1,

Ψ2(ab) =
(
Ψ1(c), Ψ1(a)

)
σ = (b, 1, 1, 1)(0213),

Ψ2(ba) =
(
Ψ1(a), Ψ1(c)

)
σ = (1, 1, b, 1)(0312),

Ψ2(ac) =
(
Ψ1(1), Ψ1(b)

)
σ = (1, 1, a, c)(02)(13),

Ψ2(ca) =
(
Ψ1(b), Ψ1(1)

)
σ = (a, c, 1, 1)(02)(13),

Ψ2(bc) =
(
Ψ1(ab), Ψ1(c)

)
= (c, a, b, 1)(01),

Ψ2(cb) =
(
Ψ1(ba), Ψ1(c)

)
= (a, c, b, 1)(01).

(5.4)

Any word w in a, b, c of length n can be split into a product of at most (n + 1)/2

products of pairs of generators (if the length of w is odd one can pair the last letter in

w with 1). Therefore the sections of w on the vertices of the second level are products

of at most (n + 1)/2 letters. Thus the inequality (5.3) holds for w as well.

Define an increasing sequence of subgroups of Γ by

Ωn = ker Ψn.

Lemma V.4. The kernel Ω of the canonical epimorphism Γ → G satisfies

Ω =
⋃
n≥1

Ωn
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Proof. Let h be a word in a, b, c of length at most 2n + 1 representing the trivial

element in G. Then, since for any words u, v ∈ X∗

h|uv = h|u|v, (5.5)

by Lemma V.3 we obtain that all sections of h have length at most 1 on the 2(n+1)th

level. Therefore they must be trivial, because h acts trivially on the tree. Hence,

h ∈ Ω2(n+1).

The above lemma reduces the problem of finding generators for Ω to finding

generators for Ωn. We start from Ω1 = ker Ψ and, based on it, derive generators for

Ωn.

Let H = StΓ(1) be the stabilizer of the first level of the tree in Γ.

Lemma V.5. The group H has the following presentation

H = 〈β, δ, γ, ρ | β2 = δ2 = γ2 = ρ2 = (ρδ)2 = 1〉,

where β = b, δ = c, γ = aba, ρ = aca.

Proof. The index of H in Γ is 2 and the coset representatives are {1, a}. The

Reidemeister-Schreier procedure gives the above presentation.

Obviously, each Ωn is a subgroup of H. Therefore one can restrict Ψ to H. Since

H stabilizes the first level one can think of Ψ as a homomorphism H → Γ× Γ. This

map is given by

Ψ:





β = b → (a, c),

γ = aba → (c, a),

δ = c → (b, 1),

ρ = aca → (1, b),
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which mimics the corresponding embedding of the generators b, aba, c, aca of StG(1)

into G×G.

Define the following words in Γ:

U1 = (ba)8, U2 = [c, ab]2, U3 = [c, bab]2,

U4 = [c, ababa]2, U5 = [c, ababab]2, U6 = [c, bababab]2.

Lemma V.6. Ω1 = 〈U1, U2, U3, U4, U5, U6〉Γ.

Proof. In order to find a generating set for Ω1 = ker Ψ we first describe Ψ(H). Since

Ψ(δ) = (b, 1) and Ψ(ρ) = (1, b), we get

B ×B E Ψ(H),

where B = 〈b〉Γ. Furthermore, Ψ(H)/(B ×B) ∼= 〈(a, c), (c, a)〉 ∼= D4. Therefore

Ψ(H) ∼= (B ×B)oD4.

Now we provide a presentation for B.

Define

ξ1 = b, ξ2 = ba, ξ3 = bc, ξ4 = bca,

ξ5 = bac, ξ6 = baca, ξ7 = bcac, ξ8 = bacac.

Since Γ = C2 ∗ D4 where the cyclic group C2 of order 2 is generated by b and the

dihedral group D4 of order 8 is generated by a and c, it is clear that B is generated

by all conjugates of b by the elements in D4 = 〈a, c〉. Thus { ξi | i = 1, . . . , 8 } is a

generating set for B. Moreover, it is clear that

B = 〈ξi, i = 1, . . . , 8 | ξ2
i = 1, i = 1, . . . , 8〉,

i.e., B is a free product of 8 copies of the cyclic group of order 2 (indeed, none of the
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b’s in an expression of the form ξi1ξi2 . . . ξim can be canceled in Γ when ij 6= ij+1 for

j = 1, . . . , m− 1).

Therefore B×B is generated by 16 elements, namely, ξ̃i = (ξi, 1) and ξ̂i = (1, ξi)

and is presented by

B ×B = 〈ξ̃i, ξ̂j, i, j = 1, . . . , 8 | ξ̃2
i , ξ̂

2
j , [ξ̃i, ξ̂j], i, j = 1, . . . , 8〉.

Now we compute the action of D4 generated by x = (a, c) and y = (c, a) on

B ×B.

ξ̃x
1 = (b, 1)(a,c) = (aba, 1) = ξ̃2,

ξ̃x
2 = (aba, 1)(a,c) = (b, 1) = ξ̃1,

ξ̃x
3 = (cbc, 1)(a,c) = (acbca, 1) = ξ̃4,

ξ̃x
4 = (acbca, 1)(a,c) = (cbc, 1) = ξ̃3,

ξ̃x
5 = (cabac, 1)(a,c) = (acabaca, 1) = ξ̃7,

ξ̃x
6 = (cacbcac, 1)(a,c) = (acacbcaca, 1) = ξ̃8,

ξ̃x
7 = (acabaca, 1)(a,c) = (cabac, 1) = ξ̃5,

ξ̃x
8 = (acacbcaca, 1)(a,c) = (cacbcac, 1) = ξ̃6,

(5.6)
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ξ̃y
1 = (b, 1)(c,a) = (cbc, 1) = ξ̃3,

ξ̃y
2 = (aba, 1)(c,a) = (cabac, 1) = ξ̃5,

ξ̃y
3 = (cbc, 1)(c,a) = (b, 1) = ξ̃1,

ξ̃y
4 = (acbca, 1)(c,a) = (cacbcac, 1) = ξ̃6,

ξ̃y
5 = (cabac, 1)(c,a) = (aba, 1) = ξ̃2,

ξ̃y
6 = (cacbcac, 1)(c,a) = (acbca, 1) = ξ̃4,

ξ̃y
7 = (acabaca, 1)(c,a) = (cacabacac, 1) = (acacbcaca, 1) = ξ̃8,

ξ̃y
8 = (acacbcaca, 1)(c,a) = (cacacbcacac, 1) = (acabaca, 1) = ξ̃7.

(5.7)

The action on ξ̂i’s can be determined from the action on ξ̃i. Namely, if ξ̃x
i = ξ̃p

and ξ̃y
i = ξ̃q, then

ξ̂x
i = ξ̂q and ξ̂y

i = ξ̂p. (5.8)

Now we can write down a presentation for Ψ(H).

Ψ(H) = 〈ξ̃i, ξ̂j, i, j = 1, . . . , 8, x, y | ξ̃2
i = ξ̂2

j = [ξ̃i, ξ̂j] = 1, i, j = 1, . . . , 8,

x2 = y2 = (xy)4 = 1, relations (5.6),(5.7) and (5.8)〉.

Note that relations (5.6), (5.7) and (5.8) show that Ψ(H) = 〈ξ̃1, ξ̂1, x, y〉. The

kernel of Ψ is generated by the preimages of the relators of Ψ(H). We have

Ψ(c) = ξ̃1, Ψ(aca) = ξ̂1, Ψ(b) = x, Ψ(aba) = y.

We can now start writing down the generators of ker Ψ as a normal subgroup in H.

x2 → b2 = 1 y2 → (aba)2 = 1 (xy)4 → (baba)4 = (ba)8 = U1

We use the fact that (ba)8 ∈ ker Ψ to simplify the further calculations.
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Each of ξ̃i’s and ξ̂i’s has the form ξ̃zi
1 and ξ̂wi

1 , respectively, for some zi, wi ∈
〈x, y〉. The lifts of all elements from 〈x, y〉 constitute the normal closure 〈b〉D8 of b in

D8 = 〈a, b〉. Therefore the lifts of ξ̃i’s will have form

ξ̃i → cz,

where z runs over all elements of 〈b〉D8 . In the same way the lifts of ξ̂i’s look like

ξ̂i → (aca)z = caz = cw,

where w runs over the complement of 〈b〉D8 in D8, which is just the coset a〈b〉D8 .

Hence we get the remaining lifts of relators

ξ̃2
i → (cz)2 = z−1czz−1cz = 1,

ξ̂2
i → (cw)2 = w−1cww−1cw = 1,

[
ξ̃i, ξ̂j

]
, i, j = 1, . . . , 8 → [cz, cw], z ∈ 〈b〉D8 , w ∈ a〈b〉D8

Now we would like to simplify the generators we obtained. First of all, since

c2 = 1 we immediately get

[cz, cw] = [c, cwz−1

]z

so we can get rid of z (because wz−1 ∈ a〈b〉D8). Furthermore,

[c, cw] = cw−1cw · cw−1cw = [c, w]2

We can discard 3 more generators since

[c, ba]2 =
(
[c, ab]−2

)c
, [c, bababa]2 =

(
[c, ababab]−2

)c
, [c, a]2 = (ca)4 = 1.
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Thus we get 5 more generators for ker Ψ:

[c, ab]2 = U2, [c, bab]2 = U3, [c, ababa]2 = U4,

[c, ababab]2 = U5, [c, bababab]2 = U6.

These generators, together with U1 = (ba)8 generate ker Ψ as a normal subgroup

in Γ.

Lemma V.7. Ωn = 〈φi(Uj), i = 0, . . . , n− 1, j = 1, . . . , 6〉Γ

Proof. We will use induction on n. For n = 1 the statement holds by Lemma V.6.

Assume it is true for some fixed n.

By the definition of Ωn+1 we have Ψ(Ωn+1) ≤ Ωn × Ωn. We will show that

Ψ(Ωn+1) ≥ Ωn × Ωn. Observe that

ϕ1

(
Ψ

(
φi(Uj)

))
= 1 (5.9)

in Γ (recall that, for an element h = (h|0, h|1) in H, ϕ1(h) = h|1. Indeed, since

ϕ1

(
Ψ

(
φ(Γ)

)) ≤ 〈a, c〉 = D4 it’s sufficient to check only that all Ui’s are trivial in D4.

But this is true since all these words are squares of commutators and [D4, D4] ∼= Z/2Z.

Equation (5.9) for i = n + 1, together with the inductive assumption yields

Ωn × 1 ≤ Ψ(Ωn+1). Since Ωn+1 is normal in Γ conjugation by a yields 1 × Ωn ≤
Ψ(Ωn+1). Therefore

Ψ(Ωn+1) = Ωn × Ωn.

Equation (5.9) also implies that

Ψ(φn+1(Uj)) = (φn(Uj), 1), Ψ(φn+1(Uj)
a) = (1, φn(Uj)),

i.e.,

Ψ(〈φi(Uj), i = 1, . . . , n, j = 1, . . . , 6〉Γ) = Ωn × Ωn.
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Therefore

Ωn+1 = ker Ψ · 〈φi(Uj), i = 1, . . . , n, j = 1, . . . , 6〉Γ

= 〈φi(Uj), i = 0, . . . , n, j = 1, . . . , 6〉Γ.

Lemmas V.7 and V.4 prove Theorem V.2. Since φ
(
(ac)4

)
= (ba)8 = U1, φ(a2) =

b2, φ(b2) = c2 and φ(c2) = (aba)2 = 1 the presentation in (5.2) is slightly simplified.

Corollary V.8. The group G embeds into an amenable finitely presented group of

exponential growth

G̃ = 〈a, b, c, s | a2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2,

as = b, bs = c, cs = aba〉,

which is an ascending HNN-extension of G.

Proof. By Theorem V.2 and the fact that ϕ0(Ψ(φ(u))) = u the substitution φ induces

an injective endomorphism of G. Thus the HNN-extension construction can be

applied. Since G̃ is an extension of the amenable group G (see Section 4) by the

amenable group Z generated by s, G̃ is amenable. The growth of G̃ is exponential

because it contains a free semigroup of rank 2 (it follows from the HNN-extension

construction that, for example, s and sa generate such a semigroup).

4 Self-affine measures and amenability

Although the amenability of G follows from the intermediate growth of this group,

which was established in [BP06], we present here a different approach based on the

tools developed in [BV05, Kai05]. More precisely, we construct a particular self-affine

measure on G, which proves the vanishing of the asymptotic entropy and, hence,

amenability.
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Let G be a self-similar group acting spherically transitively on a d-ary tree.

Consider a nondegenerate probability measure µ on G (the support of µ generates

G). Then for any x ∈ X one can define a new probability measure µ|x on G, which

is called the restriction of µ on x. The details of the definition and proofs of relevant

statements are given in [Kai05] and here we only give the basic idea.

We consider a right random walk gn = h1h2 . . . hn on G determined by µ, i.e.,

{hn} is a sequence of independent variables identically distributed according to the

measure µ. We consider G as embedded in G o Sym(2) and keep track of the xth

coordinate of the image of gn in G o Sym(d). Recall that hn is an automorphism of

X∗. For x ∈ X, hn(x) denotes the action of hn on x. Since

gn+1|x = gn|x · hn+1|gn(x)

the probability distribution of gn+1|x is completely determined by gn|x and gn(x).

Therefore the induced random walk

(gn|x, gn(x)) (5.10)

on G×X is again a Markov chain. The last random walk is called a random walk with

internal degrees of freedom. Since X is finite and G acts transitively on X, the subset

G×{x} ⊂ G×X is recurrent with respect to (5.10). Therefore one can consider the

trace of the random walk (5.10) on G × {x}, which is also a random walk. Finally,

we define the measure µ|x as the transition law for the last random walk on G× {x}
considered as a copy of G.

There is a convenient way to compute µ|x using the properties of the random

walk (5.10). The random walk with internal degrees of freedom is governed by the

matrix

M = (µxy)x,y∈X
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whose entries µxy are subprobability measures on G such that µxy(h) is a transition

probability of getting to the state (gh, y) from the state (g, x).

With slight abuse of notation, we denote by g the δ-measure concentrated at g.

Then the matrix M can be expressed as

M =
∑

g∈supp µ

µ(g)M g,

where

M g
xy =





g|x, y = g(x),

0, y 6= g(x),

The following theorem is proved in [Kai05].

Theorem V.9. The measure µ|x, x ∈ X can be expressed in terms of the matrix M

as

µ|x = µxx + Mxx̄(1−Mx̄x̄)
−1Mx̄x, (5.11)

where Mxx̄ (resp., Mx̄x) denotes the xth row (column) of M from which the entry µxx

is removed, and Mx̄x̄ is the matrix obtained from M by removing the xth row and the

xth column.

One can define µ|w for any w = x1x2 · · · xn ∈ X∗ by

µw = (· · · (µ|x1)|x2 · · · )|xn .

Definition 28. The nondegenerate probability measure µ on a self-similar group G

is called self-affine (self-similar in [Kai05]) if there is a word w ∈ X∗ such that

µ|w = αe + (1− α)µ,

where 0 < α < 1 and e is the identity element in G.

For simplicity, we write α instead of αe.
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Theorem V.10 ([Kai05]). If a self-similar group G carries a self-affine

nondegenerate measure µ with finite entropy, then it is amenable.

In this section we construct such a measure on G. Since this measure should be

nondegenerate and have finite entropy the most natural place to look for it is the

space Q of positive convex linear combinations of δ-measures concentrated on the

generators a, b, and c, i.e., measure µ of the form

µ = xa + yb + zc, x + y + z = 1, x, y, z > 0.

Suppose we want this measure to be self-affine with respect to x ∈ X. By definition

this means µ|x = α + (1− α)µ or, equivalently,

µ =
µ|x − α

1− α
.

Since µ(e) = 0 we get α = µ|x(e). Thus the measure µ is a fixed point of the

transformation

Φ: µ 7→ µ|x − µ|x(e)
1− µ|x(e) , (5.12)

which is defined in [Kai05] and used to prove amenability of a family of groups

generalizing Basilica group IMG(z2 − 1).

Let’s compute µ|0 and the corresponding transformation Φ in the case of G. The

support of µ is {a, b, c} and the corresponding matrices M g are given by

Ma =




0 e

e 0


 , M b =




a 0

0 c


 , M c =




b 0

0 e


 . (5.13)

Hence,

M = xMa + yM b + zM c =




ya + zb x

x yc + z


 .
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By Theorem V.9

µ|0 = (ya + zb) + x2(1− yc− z)−1.

Since c has order 2 in G it is easy see that in the group algebra RG

(1− yc− z)−1 =
y

z2 − 2z + 1− y2
· c− z − 1

z2 − 2z + 1− y2
.

Therefore

µ|0 = y · a + z · b +
yx2

z2 − 2z + 1− y2
· c− (z − 1)x2

z2 − 2z + 1− y2

and the transformation Φ takes the form

Φ(xa + yb + zc) =
y · a + z · b + yx2/(z2 − 2z + 1− y2) · c

1 + (z − 1)x2/(z2 − 2z + 1− y2)

=
y(z2 − 2z + 1− y2)

z2 − 2z + 1− y2 + x2z − x2
· a

+
z(z2 − 2z + 1− y2)

z2 − 2z + 1− y2 + x2z − x2
· b

+
yx2

z2 − 2z + 1− y2 + x2z − x2
· c.

Now we are interested in a fixed point of the rational map F : R3 → R3 induced

by Φ, which maps (x, y, z) to the coefficients of Φ(xa + yb + zc). Moreover, we are

searching for such a fixed point only in the invariant simplex x+y+z = 1, x, y, z > 0.

Fortunately, there is such a fixed point. If ζ ≈ 0.4786202932 is the unique real root

of the polynomial Z3 − 6Z2 + 11Z − 4, then the point

(
ζ, ζ2 − 4ζ + 2, −1 + 3ζ − ζ2

)

is fixed under F , which produces a self-affine nondegenerate probabilistic measure on

G with finite support, proving amenability of G. This point is unique in the simplex

of nondegenerate measures. Indeed, from the equation F1(x, y, 1− x− y) = x, where
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(a) (b)

Fig. 23. Uniqueness of a self-affine measure

F1 is the first coordinate of F , we get

y = 1
4
(−x2 + x± x

√
x2 − 10x + 9). (5.14)

Substitution in F2(x, y, 1− x− y) = y yields

(−x4 + 12x3 − 39x2 + 40x− 12)±
√

x2 − 10x + 9(x3 − 7x2 + 12x− 4) = 0. (5.15)

Moving the second summand to the righthand side and squaring both sides

produces the equation x(x − 1)(x3 − 6x2 + 11x − 4) = 0, whose unique real root

on the interval (0, 1) is ζ. The graphs of the two functions in (5.15) are shown in

Figure 23: (a) for “plus” and (b) for “minus.” The solution comes from (a), so

in (5.14) “plus” should be used. It is a routine to check that indeed y = ζ2 − 4ζ + 2.

5 Spectral properties and Schur complement

Let H be a Hilbert space and M be an operator on H. Let H = H0 ⊕H1 and there

are operators A ∈ B(H0), D ∈ B(H1), B : H1 → H0 and C : H0 → H1, such that the
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matrix of M in the basis consisting of the bases of H0 and H1 takes the form:

M =




A B

C D


 .

The following fact is of folklore type.

Proposition V.11. Let D be invertible. The operator M is invertible if and only if

S1(M) = A−BD−1C is invertible.

The matrix S1(M) is called the first Schur complement of M .

Proof. Indeed, the matrix

L =




I0 0

−D−1C D−1




is invertible. Therefore M is invertible if and only if

ML =




A−BD−1C BD−1

0 I1




is invertible, which is equivalent to the nonsingularity of S1(M).

In our case the action of G on the boundary Xω (the set of infinite sequences

over X) of the tree X∗ induces a unitary representation πg(f)(x) = f(g−1x) of G in

H = B
(
L2(X

ω)
)
. The Markov operator M = 1

3
(πa + πb + πc) corresponding to this

unitary representation plays an important role (we do not include inverse elements

because all generators are of order 2). The usual method to find the spectrum of

M for a self-similar group G is to approximate M with finite dimensional operators

arising from the action of G on the levels of the tree X∗. For more on this see [BG00a].

For simplicity we write g for πg.

Let Hn be the subspace of H spanned by the 2n characteristic functions fv,

v ∈ Xn, of the cylindrical sets, corresponding to the 2n vertices of the nth level. Then
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Hn is invariant under the action of G and Hn ⊂ Hn+1. Also Hn can be naturally

identified with L2(X
n). By π

(n)
g (or, with a slight abuse of notation, by gn) we denote

the restriction of πg on Hn. Then, for n ≥ 0,

Mn = 1
3
(an + bn + cn)

are finite-dimensional operators whose spectra converge to the spectrum of M in the

sense

sp(M) =
⋃
n≥0

sp(Mn).

Moreover, if P is the stabilizer of an infinite word from Xω, then one can consider

the Markov operator MG/P on the Schreier graph of G with respect to P . The

following fact is observed in [BG00a] and can be applied in the case of G.

Theorem V.12. If G is amenable then

sp(MG/P ) = sp(M).

Common practice for finding the spectrum of M , initiated in [BG00a], is to

consider a pencil of operators

M̃(y, z, λ) = a + yb + zc− λ

and find the set sp(y, z, λ) of points (y, z, λ) such that M̃(y, z, λ) is not invertible.

Then the spectrum of M is just the intersection of sp(y, z, λ) with the line y = z = 1,

shrunk by a factor of 1
3
. We take 1 as the coefficient at a to simplify the computation.

Otherwise one can divide it out (we restrict our attention to the case when x, y, z are

nonzero).

Let us consider the corresponding pencil M̃n(y, z, λ) = an + ybn + zcn − λ

and find its matrix in the basis {fv : v ∈ Xn}. The orthogonal subspaces H
(i)
n =
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span(fiv, v ∈ Xn−1), i = 0, 1 span Hn and are naturally isomorphic to Hn−1. The

self-similar structure of G gives the following operator recursion (which coincides

with the recursion (5.13))

an =




0 In−1

In−1 0


 , bn =




an−1 0

0 cn−1


 , cn =




bn−1 0

0 In−1


 , (5.16)

for n > 0, where In−1 denotes the identity matrix of size 2n−1. The matrices a0, b0

and c0 are equal to the 1 × 1 matrix [1]. For any constant r, we write r instead of

rIn. Thus we have,

M̃n(y, z, λ) = an + ybn + zcn − λ =




yan−1 + zbn−1 − λ 1

1 ycn−1 + z − λ


 .

By Proposition V.11 in case ycn−1 + z − λ is invertible the operator M̃n(y, z, λ)

is invertible if and only if S1(M̃n(y, z, λ)) is invertible. The inverse of ycn−1 + z − λ

in RG is

y

−y2 + z2 − 2zλ + λ2
· cn−1 +

−z + λ

−y2 + z2 − 2zλ + λ2
.

Hence, ycn−1+z−λ is not invertible if and only if −y2+z2−2zλ+λ2 = (z − λ− y)×
(z − λ + y) = 0. Denote the union of these 2 planes by Z1. Note, that M̃n(y, z, λ) is

not necessary singular at each point of Z1.

The first Schur complement of M̃ is

S1(M̃n(y, z, λ))

= yan−1 + zbn−1 − λ− (ycn−1 + z − λ)−1

= y · an−1 + z · bn−1 +
y

−y2 + z2 − 2zλ + λ2
· cn−1 +

−z + λ

−y2 + z2 − 2zλ + λ2
− λ.
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If y = 0 we get S1(M̃n(0, z, λ)) = zbn−1 + 1
λ−z

− λ is not invertible if and only if

det




1/(λ− z)− λ z

z 1/(λ− z)− λ




=
1

(λ− z)2
(1− (λ− z)(λ + z))(1− λ + z)(1 + λ− z) = 0.

Denote corresponding union of a hyperbola and two lines in R3 by Z2. Note that

Z2 ∩ Z1 = ∅.

If y 6= 0 then

1

y
S1(M̃n(y, z, λ)) = an−1 +

z

y
· bn−1 +

1

−y2 + z2 − 2zλ + λ2
· cn−1

− −λy2 + λz2 − 2zλ2 + λ3 + z − λ

y(−y2 + z2 − 2zλ + λ2)

= M̃n−1(F (y, z, λ)),

where F : R3 → R3 is the rational map defined by

F : (y, z, λ) →
(

z

y
,

1

−y2 + z2 − 2zλ + λ2
,
−λy2 + λz2 − 2zλ2 + λ3 + z − λ

y(−y2 + z2 − 2zλ + λ2)

)
.

Therefore the set spn(y, z, λ) of points (y, z, λ) where M̃n(y, z, λ) is not invertible

in this case (y 6= 0) is a preimage under F of the corresponding set spn−1(y, z, λ). To

summarize,

Z2 ∪ F−1(spn−1(y, z, λ)) ⊂ spn(y, z, λ) ⊂ Z1 ∪ Z2 ∪ F−1(spn−1(y, z, λ)). (5.17)

Since M̃0(y, z, λ) = (1 + y + z − λ) we have

sp0(y, z, λ) = {(y, z, λ) : 1 + y + z − λ = 0}. (5.18)

Denote this plane by P .
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Equations (5.17) and (5.18) show that

F−n(P ) ∪
n−1⋃
i=0

F−i(Z2) ⊂ spn(y, z, λ) ⊂ F−n(P ) ∪
n−1⋃
i=0

F−i(Z1 ∪ Z2). (5.19)

Since Z2 consists of points with y = 0 every point (y, z, λ) from F−1(Z2) must

satisfy z = 0. But the preimages of all such points are empty. Hence, F−2(Z2) = ∅

and
⋃n−1

i=0 F−i(Z2) = Z2 ∪ F−1(Z2). Denote the last subset by Z3.

One can easily check that P ⊂ F−1(P ) and, hence, F−n(P ) =
⋃n

i=0 F−i(P ).

Therefore equation (5.19) transforms to

Z3 ∪
n⋃

i=0

F−i(P ) ⊂ spn(y, z, λ) ⊂ F−n(P ) ∪ Z3 ∪
n−1⋃
i=0

F−i(P ∪ Z1).

Thus, the spectrum of the operator M̃ on L2(X
ω) satisfies

Z3 ∪
∞⋃
i=0

F−i(P ) ⊂ sp(M̃(y, z, λ)) =
∞⋃
i=0

spn(y, z, λ) ⊂ Z3 ∪
∞⋃
i=0

F−i(P ∪ Z1).

Note, that the sets A = Z3 ∪
⋃∞

i=0 F−i(P ) and B = Z3 ∪
⋃∞

i=0 F−i(P ∪ Z1) are

almost invariant with respect to F , in the sense that

F−1(A) ∪ Z2 = A, F−1(B) ∪ Z1 ∪ Z2 = B,

which is an analog of [GŻ02b, Theorem 4.1] for the Basilica group.

The preimages of the plane P under F 4 and F 5 are shown in Figure 24.

Note that there are points in the spectrum of M̃(y, z, λ) which do not belong to

any preimage of the plane P . In particular, the point (−1
2
, 0, 1

2
) belongs to Z1 so it is

not in the domain of F , but

det M̃n(−1
2
, 0, 1

2
) = det((an−1 + 1)(cn−1 + 1)− 4) = 0

since 4 is an eigenvalue of (an−1 + 1)(cn−1 + 1). However, this point could be in the
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Fig. 24. Part of the spectrum of M̃(y, z, λ)

closure of the union of all preimages of P .

On the other hand we can formulate a conjecture that the spectrum of M =

1
3
(a + b + c) is the intersection of the line y = z = 1 with A = Z3 ∪

⋃∞
i=0 F−i(P ),

shrunk by a factor of 1
3
. This conjecture survives at least up to the 6th level.

Note also that the map F is conjugate to a simpler map

G : (y, z, λ) →
(

z

y
,
λ

y
(−2 + yλ),

1

λ
(−y + yλ2 − λ)

)

by the conjugator map

(y, z, λ) →
(

1

y
,
1

z
, y + z − λ

)
.

The histogram for the spectral density of the operator Mn acting on 9th level is

shown in Figure 25.

Further steps are required to identify the spectrum of the pencil M̃(y, z, λ) and

of M more precisely. This is related to the problem of finding invariant subsets of the

rational map F . Perhaps the spectrum of M is just the intersection of the “strange

attractor” of F with the line y = z = 1, shrunk by factor of 1
3
. In any case here we
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Fig. 25. Histogram of the spectrum on the 9th level

have one more example when the spectral problem is related to the dynamics of a

multidimensional rational map. There is a hope that the methods developed for this

type of transformations (see, for instance [Sib99]) could help to handle this case.
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CHAPTER VI

PACKAGE AutomGrp FOR COMPUTATIONS IN SELF-SIMILAR GROUPS AND

SEMIGROUPS

1 Functionality

The AutomGrp package provides methods for computations with groups and

semigroups generated by finite automata or given by wreath recursions, as well as

with their finitely generated subgroups, subsemigroups and elements.

The project originally started in 2000 mostly for personal use. It was gradually

expanding during consequent years, including both addition of new algorithms and

simplification of user interface. In this section we briefly outline main functionality

which is currently available

• The package deals with

– groups generated by finite-state automata

– semigroups generated by finite-state automata

– groups generated by recursively defined automata

– semigroups generated by recursively defined automata

– groups and semigroups acting on homogeneous rooted trees

– contracting groups

– initial and noninitial Mealy automata

• Properties for groups and semigroups:

– testing whether the group or semigroup is abelian
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– testing self-replicating (fractalness) property

– testing spherical transitivity

– testing self-similarity for subgroups of self-similar groups

– testing contracting property

– testing amenability

– working with automata generating the groups and semigroups

• Operations for groups and semigroups:

– finding the size of the group

– computing the action on the levels of the tree

– computing stabilizers of vertices and levels

– computing projections of the stabilizer of a vertex on this vertex

– finding group or semigroup relations between generators of a group or

semigroup up to a given length

– iterating over the elements of groups and semigroups

– computing first values of the growth function of a group

– computing nucleus of a contracting group

– computing the level of contraction to the nucleus

– finding the type and the degree of growth of an automaton generating a

group in the sense of Sidki (see Section II.4)

– producing a random element of a group

– computing the matrix of a finite dimensional Markov operator induced by

the action of a group on the levels of the tree
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– for groups and semigroups generated by recursively defined automata

finding whether the generators are defined by finite initial automata and,

if the answer is positive, computing these automata

– using rewriting systems to simplify the computations and the output, and

also to introduce relators in groups or semigroups generated by recursively

defined automata

– for finite groups finding isomorphic permutational group

• Properties and operations with group and semigroup elements

– testing transitivity on a given level

– testing spherical transitivity

– word problem (testing whether a given word represents the trivial element

in the group or semigroup). The general algorithm has exponential

complexity in the sense of the length of a given word, but for contracting

groups the polynomial time complexity algorithm is implemented

– computing order of an element

– computing actions on levels of the tree

– computing sections of elements of groups and semigroups at the vertices

of the tree

– finding decompositions of the elements on the levels of the tree, which

are defined as images of the elements (acting on a d-ary tree) under the

embedding

Aut T ↪→ Aut T o Sym(d)

– computing orbits of vertices of the tree under the action of the given

element



109

– for elements of groups and semigroups generated by recursively defined

automata finding whether they are defined by finite initial automata

– finding the contraction portraits of the elements of contracting groups

• Operations with noninitial automata

– computing the minimization of an automaton

– finding the type and the degree of growth of an automaton in the sense of

Sidki (see Section II.4)

– computing dual automaton

– checking whether automaton is bireversible

– computing the product of automata

– computing minimal subautomaton containing given states

– computing the nucleus of an automaton

– generating a group (semigroup) by automaton

• The package also contains a library of predefined groups studied in the literature.

2 Example session

In this section we give several examples that exploit basic functionality of the package

AutomGrp and explain how the user interface works. The package also contains a

complete manual available on its webpage.

Here is how to define Grigorchuk group and Basilica group.

gap> GrigorchukGroup := AutomatonGroup("a=(1,1)(1,2),b=(a,c),c=(a,d),

d=(1,b)");

< a, b, c, d >
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gap> Basilica := AutomatonGroup( "u=(v,1)(1,2), v=(u,1)" );

< u, v >

Similarly one can define a group (or semigroup) generated by a noninvertible

automaton. As an example we consider the semigroup of intermediate growth

generated by the two state automaton studied in [BRS06].

gap> SG := AutomatonSemigroup( "f0=(f0,f0)(1,2), f1=(f1,f0)[2,2]" );

< f0, f1 >

Another type of groups (semigroups) implemented in the package is the class

of groups (semigroups) defined by wreath recursion (finitely generated self-similar

groups).

gap> WRG:=SelfSimilarGroup("x=(1,y)(1,2),y=(z^-1,1)(1,2),z=(1,x*y)");

< x, y, z >

Now we can compute several properties of GrigorchukGroup, Basilica and SG

gap> IsFinite(GrigorchukGroup);

false

gap> IsSphericallyTransitive(GrigorchukGroup);

true

gap> IsFractal(GrigorchukGroup);

true

gap> IsAbelian(GrigorchukGroup);

false

gap> IsTransitiveOnLevel(GrigorchukGroup, 4);

true
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We can also check that Basilica and WRG are contracting and compute their

nuclei

gap> IsContracting(Basilica);

true

gap> GroupNucleus(Basilica);

[ 1, u, v, u^-1, v^-1, u^-1*v, v^-1*u ]

gap> IsContracting( WRG );

true

gap> GroupNucleus( WRG );

[ 1, y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, z^-1*y^-1*x^-1,

y^-1*x^-1*z*y^-1, z*y^-1*x*y*z, x*y*z ]

As was mentioned in Section 5 of Chapter II for contracting groups there is

algorithm solving the word problem in a polynomial time. On practice, this algorithm

indeed works much faster than the general exponential time algorithm for long words,

but can actually work longer for short words if the nucleus of the group is sufficiently

large. Below we provide an example comparing the two algorithms solving the word

problem in the contracting group with nucleus consisting of 41 elements.

Note also then in order to use the polynomial time algorithm the, so-called,

contracting table that stores the information on how the pairwise products of

generators of the group contract to the nucleus, has to be computed first, which

takes some time when the nucleus is big. This sometimes causes some delay.

gap> G := AutomatonGroup("a=(b,b)(1,2), b=(c,a), c=(a,a)");

< a, b, c >

gap> IsContracting(G);

true
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gap> Size(GroupNucleus(G));

41

gap> ContractingLevel(G);

6

gap> ContractingTable(G);; time;

11336

gap> v := a*b*a*b^2*c*b*c*b^-1*a^-1*b^-1*a^-1;;

gap> w := b*c*a*b*a*b*c^-1*b^-2*a^-1*b^-1*a^-1;;

gap> UseContraction(G);;

gap> IsOne(Comm(v,w)); time;

true

251

gap> FindGroupRelations(G, 5);; time;

a^2

b^2

c^2

b*a*b*c*a*b*a*b*c*a

b*c*a*c*a*b*c*a*c*a

881

gap> DoNotUseContraction(G);;

gap> IsOne(Comm(v,w)); time;

true

3855

gap> FindGroupRelations(G, 5);; time;

a^2

b^2
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c^2

b*a*b*c*a*b*a*b*c*a

b*c*a*c*a*b*c*a*c*a

451

Therefore for a word of length 48 the polynomial time algorithm outperformed

the general one (251 vs. 3855). On the other hand, in the example below dealing

with computing short relations of length up to 10 in the same group the standard

algorithm was almost twice as fast as the polynomial one (451 vs. 881).

The group GrigorchukGroup is generated by a bounded automaton and, thus,

is amenable (see [BKN08])

gap> IsGeneratedByBoundedAutomaton(GrigorchukGroup);

true

gap> IsAmenable(GrigorchukGroup);

true

We can compute the stabilizers of levels and vertices

gap> StabilizerOfLevel(GrigorchukGroup, 2);

< a*b*a*d*a^-1*b^-1*a^-1, d, b*a*d*a^-1*b^-1, a*b*c*a^-1, b*a*b*a*b^-1

*a^-1*b^-1*a^-1, a*b*a*b*a*b^-1*a^-1*b^-1 >

gap> StabilizerOfVertex(GrigorchukGroup, [2, 1]);

< a*b*a*d*a^-1*b^-1*a^-1, d, a*c*b^-1*a^-1, c, b, a*b*a*c*a^-1*b^-1*a^

-1, a*b*a*b*a^-1*b^-1*a^-1 >

In case of a finite group we can produce an isomorphism into a permutational

group



114

gap> f := IsomorphismPermGroup(Group(a,b));

[ a, b ] ->

[ (1,2)(3,5)(4,6)(7,9)(8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,

22)(23,25)(24,26)(27,29)(28,30)(31,32), (1,3)(2,4)(5,7)(6,8)(9,

11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,

28)(29,31)(30,32) ]

gap> Size(Image(f));

32

Here is how to find relations in Basilica between elements of length not greater

than 5.

gap> FindGroupRelations(Basilica, 6);

v*u*v*u^-1*v^-1*u*v^-1*u^-1

v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1

[ v*u*v*u^-1*v^-1*u*v^-1*u^-1, v*u^2*v^-1*u^2*v*u^-2*v^-1*u^-2,

v^2*u*v^2*u^-1*v^-2*u*v^-2*u^-1 ]

Or relations in the subgroup 〈p = uv−1, q = vu〉

gap> FindGroupRelations([u*v^-1,v*u], ["p", "q"], 5);

q*p^2*q*p^-1*q^-2*p^-1

[ q*p^2*q*p^-1*q^-2*p^-1 ]

Or relations in the semigroup SG

gap> FindSemigroupRelations(SG, 4);

f0^3 = f0

f0^2*f1 = f1
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f1*f0^2 = f1

f1^3 = f1

[ [ f0^3, f0 ], [ f0^2*f1, f1 ], [ f1*f0^2, f1 ], [ f1^3, f1 ] ]

Some basic operations with elements are the following:

The function ‘IsOne’ computes whether an element represents the trivial

automorphism of the tree

gap> IsOne( (a*b)^16 );

true

Here is how to compute the order (this function might not stop in some cases)

gap> Order(a*b);

16

gap> Order(u^22*v^-15*u^2*v*u^10);

infinity

One can check if a particular element acts spherically transitively on the tree

(this function might not stop in some cases)

gap> IsSphericallyTransitive(a*b);

false

gap> IsSphericallyTransitive(u*v);

true

The sections of an element can be obtained as follows

gap> Section(u*v^2*u, 2);

u^2*v

gap> Decompose(u*v^2*u);
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(v, u^2*v)

gap> Decompose(u*v^2*u, 3);

(v, 1, 1, 1, u*v, 1, u, 1)(1,2)(5,6)

One can try to compute whether the elements of group WRG defined by wreath

recursion are finite-state and calculate corresponding automaton

gap> IsFiniteState(x*y^-1);

true

gap> AllSections(x*y^-1);

[ x*y^-1, z, 1, x*y, y*z^-1, z^-1*y^-1*x^-1, y^-1*x^-1*z*y^-1,

z*y^-1*x*y*z, y*z^-1*x*y, z^-1*y^-1*x^-1*y*z^-1, x*y*z, y, z^-1,

y^-1*x^-1, z*y^-1 ]

gap> A := MealyAutomaton(x*y^-1);

<automaton>

gap> NumberOfStates(A);

15

To get the action of an element on a vertex or on a particular level of the tree

use the following commands

gap> [1,2,1,1]^(a*b);

[ 2, 2, 1, 1 ]

gap> PermOnLevel(u*v^2*v, 3);

(1,6,4,8,2,5,3,7)

The action of the whole group GrigorchukGroup on some level can be computed

via ‘PermGroupOnLevel’ (see ”PermGroupOnLevel”).
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gap> PermGroupOnLevel(GrigorchukGroup, 3);

Group([ (1,5)(2,6)(3,7)(4,8), (1,3)(2,4)(5,6), (1,3)(2,4), (5,6) ])

gap> Size(last);
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The next example shows how to find all elements of Grigorchuk group of length

at most 5, which have order 16.

gap> FindElements(GrigorchukGroup, Order, 16, 5);

[ a*b, b*a, c*a*d, d*a*c, a*b*a*d, a*c*a*d, a*d*a*b, a*d*a*c, b*a*d*a,

c*a*d*a, d*a*b*a, d*a*c*a, a*c*a*d*a, a*d*a*c*a, b*a*b*a*c,

b*a*c*a*c, c*a*b*a*b, c*a*c*a*b ]

3 Application to the classification of groups generated by 3-state

automata over 2-letter alphabet

Among the major problems in many areas of mathematics are the classification

problems. If the objects are given combinatorially then it is natural to try to classify

them first by complexity and then within each complexity class.

A natural complexity parameter in our situation is the pair (m,n) where m is

the number of states of the automaton generating the group and n is the cardinality

of the alphabet.

There are 64 invertible 2-state automata acting on a 2-letter alphabet, but

there are only six non-isomorphic (2, 2)-automaton groups, namely, the trivial

group, C2, C2 × C2, Z, the infinite dihedral group D∞, and the lamplighter group

Z o C2 [GNS00, GŻ01]. A classification of semigroups generated by 2-state automata

(not necessary invertible) over a 2-letter alphabet is provided by I. Reznikov and

V. Sushchanskĭı [RS02a]. Some examples from this class, including an automaton
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generating a semigroup of intermediate growth, were studied in the subsequent

papers [RS02c, RS02b, BRS06].

It is not known how many pairwise non-isomorphic groups exist for any class

(m,n) when either m > 2 or n > 2. Unfortunately, the number of automata that has

to be treated grows super-exponentially with either of the two arguments (there are

mmn(n!)m invertible (m,n)-automata).

Nevertheless, a reasonable task is to consider the problem of classification for

small values of m and n and try to classify the (3, 2)-automaton groups and (2, 3)-

automaton groups.

The author of this dissertation is a part of a research group at Texas A&M

University including also I. Bondarenko, R. Grigorchuk, R. Kravchenko, Y. Muntyan,

V. Nekrashevych, and Z. Šunić which (with some contribution by Y. Vorobets and

M. Vorobets) has been working on the problem of classification of (3, 2)-automaton

groups for the last five yeas. In this section we outline main results of this project.

The ongoing progress was published in [BGK+07a, BGK+09, BGK+07b] and the

full report in [BGK+08] (see also [Mun09] for the latest progress). We start from

introducing the numbering of automata in this class.

Every 3-state automaton A with set of states S = {0,1,2} acting on the 2-

letter alphabet X = {0, 1} is assigned a unique number as follows. Given the wreath

recursion 



0 = (a12, a13)σ
a11 ,

1 = (a22, a23)σ
a21 ,

2 = (a32, a33)σ
a31 ,

defining the automaton A, where aij ∈ {0,1,2} for j 6= 1 and ai1 ∈ {0, 1}, i = 1, 2, 3,
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assign the number

Number(A) =

a12 + 3a13 + 9a22 + 27a23 + 81a32+

243a33 + 729(a11 + 2a21 + 4a31) + 1

to A. With this agreement every (3, 2)-automaton is assigned a unique number in the

range from 1 to 5832. The numbering of the automata is induced by the lexicographic

ordering of all automata in the class. Each of the automata numbered 1 through 729

generates the trivial group, since all vertex permutations are trivial in this case. Each

of the automata numbered 5104 through 5832 generates the cyclic group C2 of order

2, since both states represent the automorphism that acts by changing all letters in

every word over X. Therefore the nontrivial part of the classification is concerned

with the automata numbered by 730 through 5103.

Denote by An the automaton numbered by n and by Gn the corresponding

group of tree automorphisms. Sometimes we may use just the number to refer to the

corresponding automaton or group.

The following three operations on automata do not change the isomorphism class

of the group generated by the corresponding automaton (and do not change the action

on the tree in essential way):

(i) passing to inverses of all generators,

(ii) permuting the states of the automaton,

(iii) permuting the alphabet letters.

Definition 29. Two automata A and B that can be obtained from one another by

using a composition of the operations (i)–(iii), are called symmetric.
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Fig. 26. Symmetric automata generating the lamplighter group

For instance, the two automata in Figure 26 are symmetric. The wreath recursion

for the automaton obtained by permuting both the names of the states and the

alphabet letters of the first of these two automata is

a = (b, a)

b = (b, a)σ

and this wreath recursion describes exactly the inverses of the tree automorphism

defining the second of the two automata.

Additional identifications can be made after automata minimization is applied

(for the algorithm of minimization see [Eil74]), since the automaton and its

minimization always generate the same group.

Definition 30. If the minimization of an automaton A is symmetric to the

minimization of an automaton B, we say that the automata A and B are minimally

symmetric and write A ∼ B.

Our research goals moved in three main directions:

1. Search for new interesting groups and an attempt to use them to solve known

problems. An example of such a group is the Basilica group (automaton [852]).

It is the first example of an amenable group (shown in [BV05]) that is not sub-

exponentially amenable group (shown in [GŻ02a]).

2. Recognition of already known groups as self-similar groups, and use of the self-
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similar structure in finding new results and applications for such groups. As examples

we can mention the free group of rank 3 (automaton [2240]), the free product of three

copies of Z/2Z (automaton [846]), Baumslag-Solitar groups BS(1,±3) (automata

[870] and [2294]), the Klein bottle group (automaton [2212]), and the group of

orientation preserving automorphisms of the 2-dimensional integer lattice (automaton

[2229]).

3. Understanding of typical phenomena that occur for various classes of

automaton groups, formulation and proofs of reasonable conjectures about the

structure of self-similar groups.

The main general results on the class of groups generated by (3, 2)-automata are

as follows.

Theorem VI.1. There are at most 115 non-isomorphic groups generated by (3, 2)-

automata.

The numbers in brackets in the next two theorems are references to the numbers

of the corresponding automata.

Theorem VI.2. There are 6 finite groups in the class: the trivial group {1} [1], C2

[1090], C2 × C2 [730], D4 [847], C2 × C2 × C2 [802] and D4 × C2 [748].

Theorem VI.3. There are 6 abelian groups in the class: the trivial group {1} [1],

C2 [1090], C2 × C2 [730], C2 × C2 × C2 [802], Z [731] and Z2 [771].

Theorem VI.4. The only nonabelian free group in the class is the free group of rank

3 generated by the Aleshin-Vorobets-Vorobets automaton [2240].

Theorem VI.5. There are no infinite torsion groups in the class.

The short list of general results does not give full justice to the work that has

been done. Namely, in most individual cases we have provided a lot of results and
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detailed information for the group in question. The variety is rather extreme and it

is not surprising at all that one cannot formulate too many general results.

More work and, likely, some new invariants are required to further distinguish

the 115 groups that are listed in this paper as potentially non-isomorphic. In some

cases one could try to use the rigidity of actions on rooted trees (see [LN02]), since

in many cases it is easier to distinguish actions than groups. In the contracting case

one could use, for instance, the geometry of the Schreier graphs and limit spaces to

distinguish the actions.

Next natural step would be to consider the case of (2, 3)-automaton groups or

2-generated self-similar groups of binary tree automorphisms defined by recursions in

which every section is either trivial, a generator, or an inverse of a generator. The

cases (4, 2) and (5, 2) also seem to be attractive, as there are many remarkable groups

in these classes.

Another possible direction is to study more carefully only certain classes of

automata (such as bounded and polynomially growing automata in the sense of

Sidki [Sid00b], etc.) and the properties of the corresponding automaton groups.
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CHAPTER VII

CONCLUSIONS AND OPEN PROBLEMS

In this dissertation we study different questions and approaches emerging in the area

of groups generated by automata, as well as some connections of this part of group

theory to other branches of mathematics, such as holomorphic dynamics, spectral

analysis and random walks. Below we outline major results and state main open

problems and possible directions for further investigations.

The first main part of the dissertation is devoted to Sushchansky p-groups

introduced by V. Sushchansky in [Sus79] in 1979 as one of the pioneering

examples of Burnside groups. The results of this Chapter are published in [BS07].

Sushchansky used a different language, namely the language of tableaux, introduced

by L. Kaloujnine to study properties of iterated wreath products [Kal48]. For

each prime p > 2, V.I. Sushchansky constructed a finite family of infinite p-groups

generated by two tableaux. Each such a tableau naturally defines an automorphism of

a rooted tree and can be represented by a finite initial automaton. We describe these

automata in Chapter III. The associated action on a rooted tree is not level-transitive

and we describe its orbit tree and show that there exists a faithful level-transitive

action given by finite initial automata.

Theorem VII.1. The action of Sushchansky group Gλ on the tree T is faithful, level

transitive and has the following form

A = σ,

Bλ = (q1, r1, σ, 1, . . . , 1),

qi = (qi+1, σ
ui , 1, . . . , 1),

ri = (ri+1, σ
vi , 1, . . . , 1).

(7.1)
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Unlike Grigorchuk group, Sushchansky groups are not self-similar. We consider

a self-similar closure and prove the following theorem.

Theorem VII.2. The self-similar closure of Gλ is neither torsion, nor torsion free,

level-transitive group of tree automorphisms. Moreover, it is generated by a bounded

automaton, hence it is contracting and amenable.

The question if the self-similar closure of any of Sushchansky groups is branch

(or regular branch) is still open.

Our main result about Sushchansky groups is the following theorem which gives

bounds on the growth functions of Sushchansky groups.

Theorem VII.3. All Sushchansky p-groups have intermediate growth. The growth

function of each Sushchansky p-group Gλ satisfies

enα ¹ γGλ
(n) ¹ enβ

,

where α = log(p)
log(p)+log(2)

, β = log(p)
log(p)−log(ηr)

and ηr is the positive root of the polynomial

xr + xr−1 + xr−2 − 2, where r = p2.

This theorem is a contribution to the Milnor question on the existence of such

groups, which was solved in [Gri83] by R.I. Grigorchuk. Also we give an upper

bound on the period growth function. The main idea is to use, so called, G groups

of intermediate growth introduced in [BŠ01] and [BGŠ03]. For each Sushchansky

p-group we construct a G group of intermediate growth and prove that their growth

functions are equivalent.

We were able to prove that the self-similar closures of Sushchansky groups are

regular weakly branch. The questions of removing the word “weakly” from the above

sentence is still open.
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Problem 1. Are Sushchansky p-groups or their self-similar closures branch? regular

branch?

Sushchansky p-groups are among the automata groups with extraordinary

properties (infinite torsion in this case). But the class of automata groups is wide

enough to contain previously known groups. The realization of a known group as a

group generated by automata is also important because it may shed additional light

on the structure of this group or revel some additional properties and create new links

and applications for this group.

Chapter IV is devoted to the realizations of free products of groups of order 2 as

self-similar groups acting on a binary rooted tree.

All transformations defined by states of finite invertible automata over a fixed

alphabet form a group of automatic transformations over this alphabet. The structure

of this large group is yet to be understood. An interesting question is the embedding

of known groups into this group. For example, Brunner and Sidki proved in [BS98]

that GLn(Z) can be generated by finite automata over the alphabet with 2n letters.

The first embedding of free products of groups of order 2 into the group of automatic

transformations over the 2-letter alphabet was constructed by Olijnyk [Ol̄ı99].

The above construction lack the important property of self-similarity [Nek05]. In

other words, the group is not generated by all states of a single automaton. The first

self-similar example was provided by 3-state Bellaterra automaton B3 over 2-letter

alphabet. It was proved (see, for example, [BGK+08, Nek05]) that it generates the

group isomorphic to the free product of 3 copies of groups of order 2.

The Bellaterra automaton gives rise to a family of bireversible automata in which

all states define involutive transformations. The construction is very simple. Namely,
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we modify the automaton B3 by inserting new states on the path from c to a. More

precisely, each automaton in the family is defined by wreath recursion

a = (c, b),

b = (b, c),

c = (q1, q1)σ0,

qi = (qi+1, qi+1)σi, i = 1, . . . , n− 4,

qn−3 = (a, a)σn−3,

(7.2)

where σi ∈ Sym({0, 1}) is chosen arbitrarily.

Conjecture 2. Each automaton in the family (7.2) for which at least one of the σi

is nontrivial, generates the free product of groups of order 2.

The first result supporting this conjecture was obtained by M. Vorobets and

Y. Vorobets [VV06]. It was shown that if the number of states is odd and σi = (12)

for all i, then the conjecture holds. In the subsequent paper by the same authors and

B. Steinberg [SVV06] the conjecture was proved for the automata with even number

of states and additional condition that the number of nontrivial σi is odd.

In Chapter IV we prove that any n-state automaton from the family (1.1) with

n ≥ 4 satisfying σ0 = (12) and σn−3 = (12) generates the free product of groups of

order 2. This result covers the series constructed in [VV06] except one, but the most

important case n = 3, and partially overlaps with a family constructed in [SVV06].

More precisely, our main results are as follows.
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For any n ≥ 4 let B(n) be the n-state automaton defined by the wreath recursion

an = (cn, bn),

bn = (bn, cn),

cn = (qn1, qn1)σ,

qn,i = (qn,i+1, qn,i+1)σn,i, i = 1, . . . , n− 5,

qn,n−4 = (dn, dn)σn,n−4,

dn = (an, an)σ,

where σn,i ∈ Sym({1, 2}) are chosen arbitrarily.

Theorem VII.4. The group generated by the automaton B(n) is the free product of

n copies of cyclic group of order 2.

In papers [VV06] and [SVV06] other families of automata (so called, Aleshin

families) generating free groups were considered. These families were obtained from

the mentioned ones by postcomposing each state with automorphism (1, 1)σ. The

proof of the above theorem is simpler than the ones in [VV06] and [SVV06]. As a

downside, the result cannot be automatically extended to the corresponding family

of automata presumably generating free groups. More precisely, for any n ≥ 4 let

A(n) be the n-state automaton defined by the wreath recursion

an = (cn, bn)σ,

bn = (bn, cn)σ,

cn = (qn1, qn1),

qn,i = (qn,i+1, qn,i+1)σn,i, i = 1, . . . , n− 5,

qn,n−4 = (dn, dn)σn,n−4,

dn = (an, an),
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where σn,i ∈ Sym({1, 2}) are chosen arbitrarily.

Problem 2. Is it true that the automata A(n) generate free groups of rank n?

As was mentioned above all constructions producing self-similar groups with

nonabelian free subgroups were based on bireversible automata. The structure of

groups generated by this automata was not studied well yet but the studied examples

naturally lead to the following conjecture.

Conjecture 3. Every group generated by bireversible automaton contains a

nonabelian free group.

One of the most remarkable discoveries in the recent years is the observation,

due to Nekrashevych, that the so-called iterated monodromy groups (IMG), which

can be related to any self-covering map, belong to the class of self-similar groups and

that, in the most natural situations, there is an explicit procedure representing them

by finite automata [Nek05].

In Chapter V we study the connections of automata groups to holomorphic

dynamics, spectral theory and random walks on the example of the iterated

monodromy group IMG(z2 + i) of the complex self-covering mapping z to z2 + i. This

group is generated by 3 nontrivial states of 4-state automaton over 2-letter alphabet.

We show that the group IMG(z2 + i) is a regular branch group, thus presenting

an example of a branch group which naturally appears in holomorphic dynamics.

The main body of the chapter is devoted to the calculation of an L-presentation for

IMG(z2 + i) (i.e., a presentation of a group by generators and relations which involves

a finite set of relators and their iterations by substitution). More precisely, we prove

the following theorem
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Theorem VII.5. The group IMG(z2 + i) has the following L-presentation

IMG(z2 + i) ∼=
〈
a, b, c

∣∣ φn(r), r ∈ {a2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2,

[c, ababab]2, [c, bababab]2}, n ≥ 0
〉
, (7.3)

where φ is the substitution defined on words in the free monoid over the alphabet

{a, b, c} by

φ :





a → b,

b → c,

c → aba.

Although it is known that L-presentations are quite common for groups of branch

type the number of examples in which explicit computation is possible is rather small.

The presence of L-presentations is important from different points of view. Such

presentations are at the first level of complexity after the finite presentations and

quite often provide the simplest way to describe a group that is not finitely presented.

Further, such presentations can be used to embed a group into a finitely presented

group in a way that preserves many properties of the original group. We use the

obtained L-presentation of IMG(z2 + i) to embed this group into a finitely presented

group with 4 generators and 10 relators, which is amenable but not elementary

amenable (this approach has been used for the first time in [Gri98]).

It was shown by K.-U. Bux and R. Pérez that the group IMG(z2 + i) has

intermediate growth and, hence, is amenable. We find a self-similar measure on

IMG(z2 + i) (first time introduced by Kaimanovich in [Kai05]) providing a different

proof that the group is amenable. As was pointed out in Section 4 of Chapter II,

similar methods were used in [BKN08] to prove amenability of groups generated by

bounded automata. A more general question is still open.
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Conjecture 4. Each group generated by polynomially growing automata (in the

sense of Sidki) is amenable.

The self-similar measure is closely related to the problem of computation of

the spectrum of a Hecke type operator that can be related to any group acting on a

rooted tree and to the problem of computation of the spectrum of the discrete Laplace

operator (or, what is almost the same, the Markov operator) on the boundary Schreier

graph of a group (i.e., the graph of the action of the group on the orbit of a point of

the boundary). Unfortunately, the spectral problem is not solved yet in our situation.

What we are able to construct is a rational map on R3 whose proper invariant set

(shaped as a “strange attractor”) gives the spectrum of the Markov operator after

intersection by a corresponding line. Here we have a situation analogous to the case of

Basilica group [GŻ02b]. Further efforts in the description of the shape of the attractor

(and hence of the spectrum) are needed.

Problem 3. Completely describe the spectrum of the Markov operator on the

boundary Schreier graph of IMG(z2 + i).

Problem 4. Find an example of a group acting on the tree leading to

counterexamples to Atiyah conjecture (asking to construct a Riemannian manifold

with irrational L2-Betti numbers).

Finally, Chapter VI presents the package AutomGrp for computations in groups

and semigroups generated by automata. These groups are particularly nice from the

computational point of view. Major algorithmic problems are unsolved so far in the

general case but have solutions in certain special cases. The computations related

to these groups are often cumbersome to be performed by hands and the computers

may be of a great help here.
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There was a strong need in the implementation of the algorithms related to

automata groups and semigroups in some computer algebra system. The package

AutomGrp [MS08] for GAP (Groups, Algorithms and Programming) system [GAP08]

was developed jointly with Yevgen Muntyan to satisfy this need. The package was

successfully used in the project of the classification of groups generated by 3-state

automata over 2-letter alphabet [BGK+08], as well as by several other authors.

Currently the status of the package is “deposited”, but we are planning to submit it

for refereeing in the nearest future.

The functionality of the package currently includes several methods for the

word problem (including a polynomial time algorithm for contracting groups, whose

complexity bounds were obtained in [Sav03] in terms of size of the nucleus of the

group), finding relations, computing actions on the tree, computing various stabilizer

subgroups, deciding whether group is contracting or not, finding the order of an

element (two last problems currently have only partial solutions in certain cases), etc.

The package is constantly developing with new releases published regularly.

There is a lot of room for extension of our package. In particular, we are planning

to implement algorithms solving the conjugacy problem in certain classes of branch

groups. We also have to add functionality related to branch groups and iterated

monodromy groups.

The major application of the package AutomGrp by far is the project of

classification of groups generated by 3-state automata over 2-letter alphabet.

Similarly to other classes of groups the question of classification of groups generated by

automata naturally arises. The first step in this direction was completed in [GNS00],

where it was proven that there are 6 nonisomorphic groups generated by 2-state

automata over 2-letter alphabet, namely the trivial group, Z/2Z, Z/2Z ⊕ Z/2Z, Z,

infinite dihedral group D∞ and lamplighter group Z o (Z/2Z).
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During my studies at Texas A&M University I was involved in the project of

classification of groups generated by 3-state automata over 2-letter alphabet. For

simplicity, we will denote this class as (3,2)-groups. More generally, the class of (m,n)-

groups consists of groups generated by m-state automata over n-letter alphabet. The

results of our work were published in [BGK+08, BGK+07a, BGK+09, BGK+07b]

(see also [Mun09]). The situation here is much more complicated than in the case

of 2-state automata. The main results about the whole class include the following

theorems.

Theorem VII.6. There are no more than 115 nonisomorphic groups in the class of

(3,2)-groups.

Theorem VII.7. There are 6 finite groups in the class of (3,2)-groups: the trivial

group {1}, C2, C2 × C2, D4, C2 × C2 × C2 and D4 × C2.

Theorem VII.8. There are 6 abelian groups in the class: the trivial group {1}, C2,

C2 × C2, C2 × C2 × C2, Z and Z2.

Theorem VII.9. The only nonabelian free group in the class is the free group of

rank 3 generated by the Aleshin-Vorobets-Vorobets automaton.

Theorem VII.10. There are no infinite torsion groups in the class.

A substantial information about these groups is obtained: all finite groups and

all abelian groups are detected, it is proved that there are no infinite torsion groups,

and there is only one noncommutative free group is in the class, namely F3, etc.

Even though a lot of work has been done towards the classification of groups

generated by 3-state automata over 2-letter alphabet, there are still much more open

questions than the answered ones.

Problem 5. Classify all (3, 2)-groups up to isomorphism.
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Problem 6. What is the minimal automaton over 2-letter alphabet generating

infinite torsion group? group of intermediate growth?

The classification of (2, 3)-groups was started in the PhD dissertation of Yevgen

Muntyan [Mun09].
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[BŠ01] L. Bartholdi and Z. Šuniḱ. On the word and period growth of some

groups of tree automorphisms. Comm. Algebra, 29(11):4923–4964, 2001.

[BS07] I. Bondarenko and D. Savchuk. On Sushchansky p-groups.

Algebra Discrete Math., (2):22–42, 2007. (available at

http://arxiv.org/abs/math/0612200 ) (retrieved in December 2007).

[BV05] L. Bartholdi and B. Virág. Amenability via random

walks. Duke Math. J., 130(1):39–56, 2005. (available at

http://arxiv.org/abs/math.GR/0305262 ) (retrieved in May 2007).

[CFP96] J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on

Richard Thompson’s groups. Enseign. Math. (2), 42(3-4):215–256, 1996.

[CM82] B. Chandler and W. Magnus. The history of combinatorial group theory,

volume 9 of Studies in the History of Mathematics and Physical Sciences.

Springer-Verlag, New York, 1982.



138

[Day57] M. M. Day. Amenable semigroups. Illinois J. Math., 1:509–544, 1957.

[dlAGCS99] P. de lya Arp, R. I. Grigorchuk, and T. Chekerini-Sil′berstăın.
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Atiyah. C. R. Acad. Sci. Paris Sér. I Math., 331(9):663–668, 2000.



139

[Glu61] V. M. Glushkov. Abstract theory of automata. Uspekhi mat. nauk.,

16(5):3–62, 1961. (in Russian).

[GM05] Y. Glasner and S. Mozes. Automata and square complexes.

Geom. Dedicata, 111: 43–64, 2005. (available at

http://arxiv.org/abs/math.GR/0306259 ) (retrieved in March 2006).

[GN07] R. Grigorhuk and V. Nekrashevych. Self-similar groups, operator

algebras and schur complement. J. Modern Dyn., 1(3):323–370, 2007.

[GNS00] R. I. Grigorchuk, V. V. Nekrashevich, and V. I. Sushchanskĭı. Automata,
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Boston, MA, 2000.



141

[GS83a] N. Gupta and Said Sidki. Some infinite p-groups. Algebra i Logika,

22(5):584–589, 1983.

[GS83b] N. Gupta and S. Sidki. On the Burnside problem for periodic groups.

Math. Z., 182(3):385–388, 1983.
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