# METEOROLOGICAL FACTORS REGULATING THE POPULATION EXPANSION AND CONTRACTION OF AMBLYOMMA MACULATUM (ACARI: IXODIDAE) IN TEXAS

A Thesis

by

### JORDAN MCQUADE COBURN

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2009

Major Subject: Entomology

# METEOROLOGICAL FACTORS REGULATING THE POPULATION EXPANSION AND CONTRACTION OF *AMBLYOMMA MACULATUM* (ACARI: IXODIDAE) IN TEXAS

### A Thesis

by

### JORDAN MCQUADE COBURN

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

### MASTER OF SCIENCE

Approved by:

| Chair of Committee, | Pete D. Teel           |  |
|---------------------|------------------------|--|
| Committee Members,  | Jeffery K. Tomberlin   |  |
|                     | Michael T. Longnecker  |  |
|                     | John W. Nielsen-Gammon |  |
| Head of Department, | Kevin M. Heinz         |  |

August 2009

Major Subject: Entomology

### ABSTRACT

Meteorological Factors Regulating the Population Expansion and Contraction of *Amblyomma maculatum* (Acari: Ixodidae) in Texas. (August 2009) Jordan McQuade Coburn, B.S., Texas A&M University Chair of Advisory Committee: Dr. Pete D. Teel

The interaction of tick species and the microclimate that they inhabit is a subject that is frequently studied. The known biology of the Gulf Coast tick, *Amblyomma maculatum* Koch (Acari: Ixodidae), was used to conduct analyses to determine which meteorological factors regulate Gulf Coast tick survivorship in an area of Texas that is known for reduced occurrence of this tick species.

Gulf Coast tick collection records, that indicated the collection of a single tick or multiple ticks from one animal or multiple animals at livestock markets, were obtained from the Texas Animal Health Commission. These records were used as an indicator of adult Gulf Coast tick abundance during each year in the 90 county study area and were used as the dependent variable in linear, quadratic, and cubic regression analyses. Independent variables used in these analyses were precipitation and differing drought thresholds during the peak activity time of the four life stages of the Gulf Coast tick and during combined life stage peak activity times.

Linear, quadratic, and cubic regression analyses to measure the effect of precipitation during differing peak activity times of the Gulf Coast tick on adult Gulf

Coast tick collection records were not statistically significant. These three regression analyses were also used to measure the effect of increasing drought thresholds, measured using a Keetch-Byram Drought Index, on adult Gulf Coast tick collection records. A determination was made that increasing drought thresholds during the peak activity time of differing Gulf Coast tick life stages reduce the number of Gulf Coast tick collection records the following year. I dedicate this thesis to my parents.

#### ACKNOWLEDGMENTS

I am highly appreciative of the support and guidance of my committee chair, Dr. Pete Teel, who has been a mentor for many years, and the other members of my committee: Dr. Jeffery Tomberlin, Dr. Michael Longnecker, and Dr. John Nielsen-Gammon. I also thank Otto Strey for assisting me with various phases of this project.

The hard work and dedication of the Texas Animal Health Commission is most appreciated. I thank the directors Dr. Dee Ellis, Dr. Dale Preston and other administrators for meeting with me on several occasions as my project was developing. I am also very grateful for the diligence of all Texas Animal Health Commission tick inspectors in all that they do on and off livestock sale markets. I also thank the Texas Animal Health Commission staff members Juanita Esparza, Cynthia King, and Sue Vittek for providing me with tick collection records and records on cattle that are tested for brucellosis.

Much time and effort of processing drought index data was saved by Elvis Takow, who wrote a computer script to quickly transfer drought data to an Excel spreadsheet. I also thank Dr. Maria Tchakerian for assisting me in producing graphical representations of livestock markets. I thank Dr. Jay Angerer from the Spatial Sciences Laboratory of Texas A&M University for providing information on obtaining precipitation data. The assistance of Taesoo Lee, also from the Spatial Sciences Laboratory, in providing me with Keetch-Byram Drought Index data is greatly appreciated. Lastly, I thank my parents, Janice and Edward Zavodny, and the rest of my family for their love and support during my time at Texas A&M University.

# TABLE OF CONTENTS

|                                                                                                                                                                                                                                                        | Page     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ABSTRACT                                                                                                                                                                                                                                               | iii      |
| DEDICATION                                                                                                                                                                                                                                             | v        |
| ACKNOWLEDGMENTS                                                                                                                                                                                                                                        | vi       |
| TABLE OF CONTENTS                                                                                                                                                                                                                                      | vii      |
| LIST OF FIGURES                                                                                                                                                                                                                                        | ix       |
| LIST OF TABLES                                                                                                                                                                                                                                         | х        |
| INTRODUCTION                                                                                                                                                                                                                                           | 1        |
| MATERIALS AND METHODS                                                                                                                                                                                                                                  | 5        |
| Methods used to analyze the effect of the number of cattle tested for<br>brucellosis on the number of Gulf Coast tick collection records<br>Methods used to analyze the effect of precipitation on the number of<br>Gulf Coast tick collection records | 6<br>7   |
| Obtaining drought data<br>Calculating a KBDI<br>Methods used to analyze the effect of KBDI threshold conditions                                                                                                                                        | 9<br>10  |
| on the number of Gulf Coast tick collection records<br>RESULTS                                                                                                                                                                                         | 11<br>14 |
| Methods used to evaluate all statistical analyses<br>The effect of the number of cattle tested for brucellosis on Gulf<br>Coast tick collection records                                                                                                | 14<br>14 |
| The effect of precipitation on the number of Gulf Coast tick<br>collection records<br>The effect of differing KBDI threshold conditions on the number of<br>Gulf Coast tick collection records                                                         | 16       |
| DISCUSSION AND CONCLUSION                                                                                                                                                                                                                              | 18<br>21 |

# Page

| REFERENCES | 26 |
|------------|----|
| APPENDIX A | 30 |
| APPENDIX B | 41 |
| VITA       | 52 |

## LIST OF FIGURES

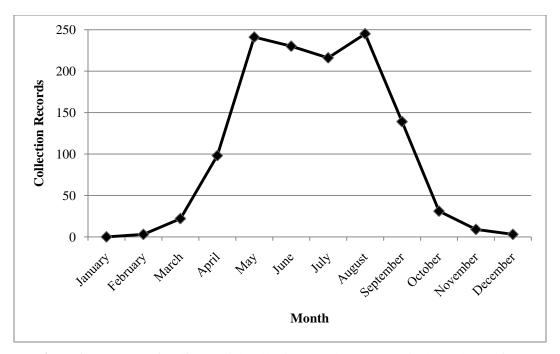
| FIGURE |                                                                                                                                                                                                                                                                 | Page |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1      | Summary of Gulf Coast tick collection record occurrences in the study area from 1992 through 2006                                                                                                                                                               | 3    |
| 2      | Geographic representation of the 90 county study area representing the inland population range of the Gulf Coast tick in Texas                                                                                                                                  | 5    |
| 3      | Geographic representation of the locations of the 32 livestock markets<br>within the study area that primarily sell cattle and have historically<br>reliable surveillance efforts                                                                               | 15   |
| 4      | Graphical representation of the analyses used to measure the effect of<br>the number of cattle tested for brucellosis on the number of Gulf Coast<br>tick collection records                                                                                    | 16   |
| 5      | Analysis of the effect of precipitation during the peak activity time of<br>the nymph stage on the number of Gulf Coast tick collection records                                                                                                                 | 17   |
| 6      | Analysis of the effect of precipitation during the peak activity time of all stages on the number of Gulf Coast tick collection records                                                                                                                         | 17   |
| 7      | Analysis of the effect of KBDI values above 150 during the PAT of the adult stage of the first year on the number of Gulf Coast tick collection records the following year                                                                                      | 19   |
| 8      | Analysis of the effect of KBDI values above 300 during the PAT of all<br>life stages beginning with the adults of the first year and ending with the<br>nymphs of the following year on the number of Gulf Coast tick<br>collection records the following year. | 19   |
| 9      | Analysis of the effect of KBDI values above 150 during the peak<br>activity time of the adult stage on the number of Gulf Coast tick<br>collection records that year                                                                                            | 20   |

## LIST OF TABLES

| TABLE |                                                                                                                                                                       | Page |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1     | Texas counties included in the study area of the Gulf Coast tick inland distribution                                                                                  | 6    |
| 2     | Summary of peak activity times of the Gulf Coast tick in the study area                                                                                               | 9    |
| 3     | Description of independent variables used to analyze the relationship<br>between precipitation data and Gulf Coast tick collection records                            | 9    |
| 4     | Description of KBDI threshold conditions analyzed                                                                                                                     | 12   |
| 5     | Description of independent variables used to analyze the relationship<br>between differing drought thresholds and Gulf Coast tick collection<br>records               | 13   |
| 6     | Comparison of regression model statistics testing the effect of the<br>number of cattle tested for brucellosis on the number of Gulf Coast tick<br>collection records | 15   |

#### **INTRODUCTION**

The Gulf Coast tick, *Amblyomma maculatum* Koch (Acari: Ixodidae), is of concern to medical and veterinary fields. This blood-feeding ectoparasite has a wide host range that includes ground-dwelling birds and rodents for immature ticks (Clark 1998, Teel et al. 1998, Barker et al. 2004) and livestock (cattle, sheep, and goats), horses, dogs, and humans for adult ticks (Bishopp and Trembley 1945, Durden et al. 1991, Kocan et al. 1999, Barker et al. 2004). The aggregation of Gulf Coast ticks on cattle can result in irritation and ear damage (Bishopp and Hixson 1936). These conditions can cause weight loss and poor body condition (Williams et al. 1977, Williams et al. 1978), which will result in a reduction in cattle sale price.


The Gulf Coast tick is recognized as an important vector of several pathogens. The Gulf Coast tick is a recognized vector of *Rickettsia parkeri*, a causative agent of spotted fever in humans (Lackman et al. 1949, Paddock et al. 2004, Sumner et al. 2007). The Gulf Coast tick is also recognized as the vector of *Hepatozoon americanum* causative agent of American canine hepatozoonosis in canines (Ewing et al. 2002). Furthermore, the Gulf Coast tick has been experimentally demonstrated to be a putative and efficient vector of *Ehrlichia ruminantium* (Uilenberg 1982, Mahan et al. 2000), an African tick-borne pathogen that is the causative agent of heartwater, a disease that is highly fatal to ruminants.

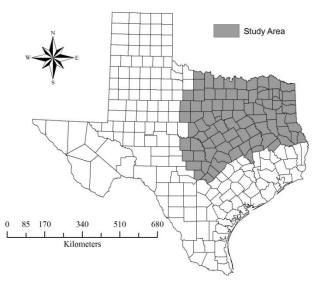
This thesis follows the style of the Journal of Medical Entomology.

The presence of *E. ruminantium* in the Caribbean and spread of an African tick, *Amblyomma variegatum*, increases the risk of the introduction of this pathogen to the United States mainland.

Gulf Coast tick distribution has been historically described to be areas within approximately 160 km of the Gulf Coast and areas of a few states along the Atlantic Coast (Bishopp and Trembley 1945). However, its distribution and/or abundance inland appear to fluctuate between wet and dry years. A single, inland permanent population of Gulf Coast ticks can be found in Kansas (Brillhart et al.1994) and Oklahoma (Barker et al. 2004).

The one-year life cycle of the Gulf Coast tick consists of egg, larval, nymphal, and adult stages with a seasonal period of presence or activity throughout much of the year (Fleetwood 1985). Adult Gulf Coast ticks are mostly found from May through August in inland areas of Texas (Figure 1). After acquiring a bloodmeal, engorged adult female Gulf Coast ticks detach from the host and waterproof their eggs twice, during oviposition in the leaf litter, using the Gené's organ. Most eggs then hatch during September and October following their incubation period. Larvae and nymphs are mostly present from November through February in the Gulf Coast region of Texas (Teel et al. 1988, Teel et al. 1998). Nymphs can also be collected through April in the Gulf Coast region of Texas. Adults are then able to extend their life cycle to two years for reproduction if necessary.




**Figure 1.** Summary of Gulf Coast tick collection record occurrences in the study area from 1992 through 2006.

Desiccation is a constant threat to the survival of ixodid (Acari: Ixodidae) ticks due to passive water loss through the cuticle. Ticks are most at risk to desiccation during periods between feeding due to exposure to varying meteorological factors such as temperature and relative humidity. These periods are known as an off-host phase, which constitutes greater than 90% of the life cycle of an ixodid tick (Needham and Teel 1991). Among ixodid ticks, the larval stage is at the highest risk to desiccation due to its high surface area-to-volume ratio (Edney 1977). This ratio in larval ixodid ticks provides for an increased amount of water loss through the cuticle. Desiccation begins to occur once the critical equilibrium activity (CEA) level is reached. The CEA is defined as the point at which the rate of water intake equals the rate of body water loss through the cuticle (O'Donnell and Machin 1988). The CEA level of the Gulf Coast tick is estimated to be between 86 – 93% RH (Needham and Teel 1991). Once the RH drops below the CEA level, ixodid ticks can attempt to retrieve some body water that is lost through their cuticle by utilizing active water vapor sorption. This process consists of a tick producing a salt-rich solution from their salivary glands onto their mouthparts. This solution then draws in moisture from the surrounding air, which is then imbibed by the tick for rehydration (Kahl and Knülle 1988).

Meteorological factors such as RH, dewpoint, precipitation, air temperature and drought conditions are possible factors that can be analyzed for their effect on Gulf Coast tick survivorship in all life stages. For example, decreased soil moisture would reduce vegetation cover, resulting in decreased RH and browsing for potential hosts. In contrast, increased soil moisture would increase the RH and availability of vegetation for browsing, resulting in increased stocking rates of livestock and the availability of hosts for all parasitic life stages. Therefore, my null hypothesis is that variation of certain meteorological factors is independent from the population expansion and contraction of Gulf Coast ticks in Texas. I will seek to test this hypothesis by completing two objectives: 1.) Define the spatial and temporal characteristics of Gulf Coast tick population change in Texas, and 2.) Determine whether meteorological factors can be associated with the population expansion and contraction of the Gulf Coast tick in Texas.

### **MATERIALS AND METHODS**

Tick-collection records utilized in this study were obtained from the Texas Animal Health Commission (TAHC), Austin, TX. After reviewing collection records for the time period of 1992 through 2008, it was determined that Gulf Coast tick populations are established in 90 counties in northeast Texas, an area extending north of this species' traditional 160 km Gulf Coast distribution (Figure 2) (Table 1). The time period of 1992 through 2008 was selected due to a statewide sustained increase in tick surveillance activity by TAHC inspectors. This 90 county area is characterized as having increasing precipitation from the western to the eastern edge and containing soil texture types of silt, clay, and sand. Thus, collection records from this area and time period were used to define Gulf Coast tick population changes in a diverse and less optimal ecological area of Texas for Gulf Coast tick survivorship.



**Figure 2.** Geographic representation of the 90 county study area representing the inland population range of the Gulf Coast tick in Texas.

| County   |           |           |               |              |
|----------|-----------|-----------|---------------|--------------|
| Anderson | Cooke     | Henderson | McCulloch     | San Saba     |
| Angelina | Coryell   | Hill      | McLennan      | Shackelford  |
| Archer   | Dallas    | Hood      | Milam         | Shelby       |
| Bell     | Delta     | Hopkins   | Mills         | Smith        |
| Blanco   | Denton    | Houston   | Montague      | Somervell    |
| Bosque   | Eastland  | Hunt      | Morris        | Stephens     |
| Bowie    | Ellis     | Jack      | Nacogdoches   | Tarrant      |
| Brazos   | Erath     | Johnson   | Navarro       | Throckmorton |
| Brown    | Falls     | Kaufman   | Palo Pinto    | Titus        |
| Burnet   | Fannin    | Kendall   | Panola        | Travis       |
| Callahan | Franklin  | Lamar     | Parker        | Trinity      |
| Camp     | Freestone | Lampasas  | Rains         | Upshur       |
| Cass     | Gillespie | Leon      | Red River     | Van Zandt    |
| Cherokee | Grayson   | Limestone | Robertson     | Wichita      |
| Clay     | Gregg     | Llano     | Rockwall      | Williamson   |
| Collin   | Hamilton  | Madison   | Rusk          | Wise         |
| Comal    | Harrison  | Marion    | Sabine        | Wood         |
| Comanche | Hays      | Mason     | San Augustine | Young        |

 Table 1. Texas counties included in the study area of the Gulf Coast

 tick inland distribution

Methods used to analyze the effect of the number of cattle tested for brucellosis on the number of Gulf Coast tick collection records. TAHC supervisors provided guidance on standards used by tick inspectors for animal inspection and tickcollecting methods, and for selection of livestock markets with dependable and sustained inspection reliability within the study area. Only livestock markets that primarily sell cattle and only those markets having surveillance efforts that were historically reliable were used. Ticks were collected from cattle by TAHC inspectors in the study area as they were testing female cattle that exceeded 18 months of age for brucellosis. At this point, ticks were collected, mainly from the head and rear areas, assigned a collection record number, and later identified to species. Ticks were also collected from other livestock species as time permitted and recorded in the same manner. TAHC surveillance defined a "collection record" as the collection of an adult tick or multiple adult ticks from an individual animal or from a group of animals (defined as a pen or herd). As the general tick population increased, the number of "collection records" should have hypothetically increased due to generally more favorable environmental conditions for tick survivorship. The effect of the number of cattle sold at these markets from 1997 through 2008 on the amount of Gulf Coast tick collection records was evaluated using linear, quadratic, and cubic regression analyses (SPSS, Inc. 2006). These analyses were used to determine if periods of drought, which may increase the number of cattle sold and tested for brucellosis, resulted in a biased increase in tick collection records. The model for these analyses was: Gulf Coast tick collection records from 1997 through 2008 (y) = cattle tested for brucellosis from 1997 through 2008 (x).

Methods used to analyze the effect of precipitation on the number of Gulf Coast tick collection records. Precipitation data were obtained for the time period of 1993 through 2008 from a website of the Center for Natural Resource Information Technology (CNRIT) of Texas A&M University, College Station, TX (CNRIT 2008). This website has a data system that allows the user to input longitude and latitude coordinates and receive precipitation data, with an option to interpolate missing data, for user-defined time periods at a grid resolution of 0.25 degrees latitude by 0.25 degrees longitude. The original data source for the CNRIT gridded precipitation analyses appears to be the National Oceanic and Atmospheric Administration Climate Prediction Center's daily retrospective and real-time precipitation analyses (Higgins et al. 2000, Climate Prediction Center 2009). These analyses are produced from rain gauge measurements from a variety of sources, including approximately 100 gauges within the study area. One point was selected, to avoid duplicated precipitation data, from the geometric center of each county in the study area, to obtain a representation of precipitation data for each county. Precipitation data were organized into groups that coincide with the peak activity time (PAT) of each developmental stage (eggs, larvae, nymphs, and adults) of the Gulf Coast tick (Tables 2 and 3). A total precipitation value was then obtained, to create an independent variable for each test group by combining the sum precipitation for each county in the study area. This independent variable was then used, in linear, quadratic, and cubic regression analyses for each test group, to analyze the effect of precipitation on the number of Gulf Coast tick collection records. For example, one of the models for these analyses was: Gulf Coast tick collection records from 1993 through 2008 (y) = the sum of precipitation during the PAT of the egg stage from 1992 through 2007 (x). The one year difference was in place because the precipitation during the PAT of the egg stage affected the survivorship of eggs in 1992 and their ability to reach the adult stage in 1993. Reduced or increased numbers of larvae emerging from eggs would then favor a decrease or increase, respectively, in the number of Gulf Coast tick collection records that occurred in 1993.

| Life Stage          | Peak Activity Time |
|---------------------|--------------------|
| Egg                 | 9/1 - 10/31        |
| Larva               | 11/1 - 2/28(29)    |
| Nymph               | 11/1 - 4/30        |
| Adult               | 5/1 - 8/31         |
| All Immatures       | 9/1 - 4/30         |
| All Stages          | 9/1 - 8/31         |
| Lagged Adults*      | 5/1 - 8/31         |
| Lagged All Stages** | 5/1 - 4/30         |

Table 2. Summary of peak activity times of theGulf Coast tick in the study area

\* Measurement of the effect of meteorological conditions during the PAT of the adult stage from the first year on the Gulf Coast tick collection records of the second year.

\*\* Measurement of the effect of meteorological conditions during the PAT of all life stages from the first and second years on the Gulf Coast tick collection records of the second year.

| Independent Variable    | Variable from Year(s) | Affecting     |
|-------------------------|-----------------------|---------------|
| Sum –Egg                | 1                     | Year 2 Adults |
| Sum – Larva             | 1 & 2                 | Year 2 Adults |
| Sum – Nymph             | 1 & 2                 | Year 2 Adults |
| Sum – Adult             | 2                     | Year 1 Adults |
| Sum – All Immatures     | 1 & 2                 | Year 2 Adults |
| Sum – All Stages        | 1 & 2                 | Year 2 Adults |
| Sum – Lagged Adults     | 1                     | Year 2 Adults |
| Sum – Lagged All Stages | 1 & 2                 | Year 2 Adults |
|                         |                       |               |

 Table 3. Description of independent variables used to analyze

 the relationship between precipitation data and Gulf Coast tick

 collection records

**Obtaining drought data.** Ground based estimates of precipitation and land surface temperature were obtained using several Next Generation Weather Radars (NEXRAD) and an Advanced Very High Resolution Radiometer (AVHRR), respectively, at a resolution of 1 km<sup>2</sup>. These estimates were then interpolated manually by the Texas Forest Service to generate a Keetch-Byram Drought Index (KBDI) to determine fire potential throughout Texas (Texas Weather Connection 2008). The Texas Weather Connection of the Spatial Sciences Laboratory of Texas A&M University, College Station, TX then stored these data and published them to their website (Texas Weather Connection 2008). Daily, county-level KBDI summaries were obtained via the Spatial Sciences Laboratory's website for the time period of 1995 through 2008.

Calculating a KBDI. KBDI values indicate how many hundredths of an inch of soil are saturate. A scale of 0 to 800 is used where 0 represents no soil moisture deficit and 800 represents maximum soil moisture deficit. Cumulative rainfall in inches is first obtained for a 24-hour duration. Net rainfall is then calculated by subtracting 0.20 inches from the cumulative rainfall value if rainfall did not occur on the previous day. Net rainfall is calculated, as 0.20 inches of rainfall would be intercepted by the tree canopy and leaf litter, quickly evaporated, and would not reach the soil layer. Any value above 0 net rainfall is then subtracted from the KBDI value of the previous day. For example, 0.50 inches of net rainfall would change a KBDI value of 700 from the previous day to 650 (Keetch and Byram 1968). After net rainfall is used to alter the current day's KBDI value, the drought factor is calculated and added to the new KBDI value. The drought factor value is dependent on the mean annual rainfall of the area in question and the maximum land surface temperature of the day which both increase the drought factor, and the KBDI value of the previous day, or the KBDI value as reduced by net rainfall, which decreases the drought factor. Areas with high mean annual rainfall have vegetation with thicker, deeper taproots resulting in increased transpiration rates, reducing soil moisture content. Increased land surface temperatures, the air temperature as measured a few inches above the leaf litter, increase the rate of evapotranspiration.

As the total number of days since the last occurrence of rainfall increases, the upper soil layers become dry, hardened, and form an insulating layer, reducing the evaporation of soil moisture. For example, an area that has a mean annual rainfall value between 40 through 59 inches, with a KBDI value from the previous day between 50 through 99, and with a maximum land surface temperature of the day between 98 through 100 has a drought factor of 37 (Keetch and Byram 1968). Therefore, the net rainfall reduced KBDI value of 650 from the previous example would increase to 687 once the drought factor is added to the present day's KBDI value. Thus, a KBDI value of 687 indicates that the upper 6.87 inches of soil are without moisture, impacting the tick microclimate.

Methods used to analyze the effect of KBDI threshold conditions on the number of Gulf Coast tick collection records. Drought data were organized to enable the number of days to be counted in each county where a certain drought threshold occurred. The total number of days where a certain KBDI threshold was surpassed were counted for each county and then combined to form a sum for the number of days in the county where the KBDI threshold in question occurred (Table 4). This method was used instead of using the average KBDI value for the study area because KBDI values can change very rapidly from rainfall. This was especially evident on the eastern side of the study area which typically has very saturated soil from increased precipitation as opposed to the western side of the study area which has varying levels of soil saturation. For example, in 1995 during the PAT of the egg stage, there were a total of 5459 days in the study area where the KBDI value was above 50. This sum was then combined with all remaining years with KBDI data available to form an independent variable. This independent variable was then used in linear, quadratic, and cubic regression analyses to analyze the relationship between KBDI values above 50 and the number of Gulf Coast collection records (Table 5). An example of this model is: Gulf Coast tick collection records from 1996 through 2008 (y) = the total number of days in the study area where KBDI values were above 50 for the PAT of the egg stage from 1995 through 2007 (x). As previously mentioned, this lag was used as drought that occurred in 1995 would reduce the number of eggs that could reach the adult stage in 1996.

| Independent Variable | Description     |
|----------------------|-----------------|
| 50                   | Value above 50  |
| 100                  | Value above 100 |
| 150                  | Value above 150 |
| 200                  | Value above 200 |
| 250                  | Value above 250 |
| 300                  | Value above 300 |
| 350                  | Value above 350 |
| 400                  | Value above 400 |
| 450                  | Value above 450 |
| 500                  | Value above 500 |
| 550                  | Value above 550 |
| 600                  | Value above 600 |
| 650                  | Value above 650 |
| 700                  | Value above 700 |
| 750                  | Value above 750 |

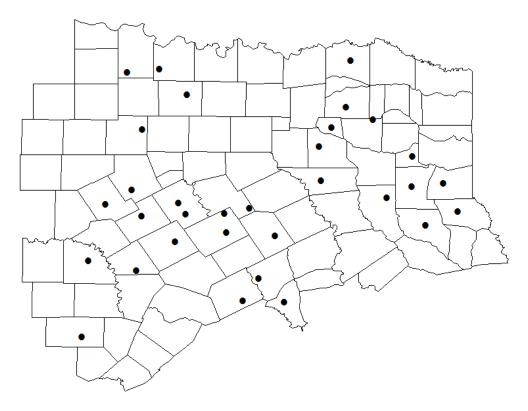
 Table 4. Description of KBDI threshold conditions analyzed

Value above represents "Total number of days in each county when the KBDI value was above".

| Independent Variable        | Variable from Year(s) | Affecting     |
|-----------------------------|-----------------------|---------------|
| Drought –Egg                | 1                     | Year 2 Adults |
| Drought – Larva             | 1 & 2                 | Year 2 Adults |
| Drought – Nymph             | 1 & 2                 | Year 2 Adults |
| Drought – Adult             | 2                     | Year 1 Adults |
| Drought – All Immatures     | 1 & 2                 | Year 2 Adults |
| Drought – All Stages        | 1 & 2                 | Year 2 Adults |
| Drought – Lagged Adults     | 1                     | Year 2 Adults |
| Drought - Lagged All Stages | 1 & 2                 | Year 2 Adults |

 Table 5. Description of independent variables used to analyze

 the relationship between differing drought thresholds and Gulf


 Coast tick collection records

Some meteorological data that may have been potentially useful were not able to be analyzed with known techniques. Soil temperature data were attainable but would not represent conditions occurring in the study area as only three weather stations that record these data on a daily basis were present in the study area. Dewpoint data were collected from PRISM Group of Oregon State University, Corvallis, OR (Daly 1997). Interpreted maps from PRISM Group of monthly dewpoint conditions for the United States were available but could not be used in a statistical analysis. Raster-based data of these dewpoint conditions, that could be used in ArcMap were available from PRISM Group, however, an interpretation of these data was not able to be performed.

#### RESULTS

**Methods used to evaluate all statistical analyses.** The results of the cubic regression analyses were used as the main indicator of statistical significance. This was an exploratory study where a relatively high type 1 error was acceptable so that weak relationships could be observed. A p-value of 0.20 and below was accepted when determining if the null hypothesis that the independent and dependent variables in question were independent could be rejected. Acceptable  $R^2$  values were 0.25 and above to indicate that least 25% of the variation of the dependent variable can be explained by the independent variable.

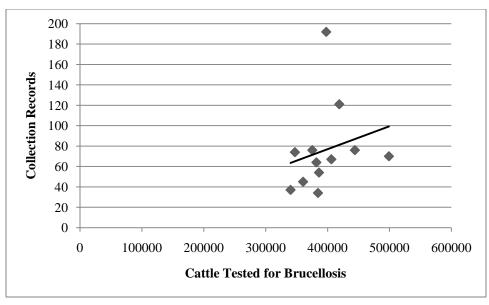
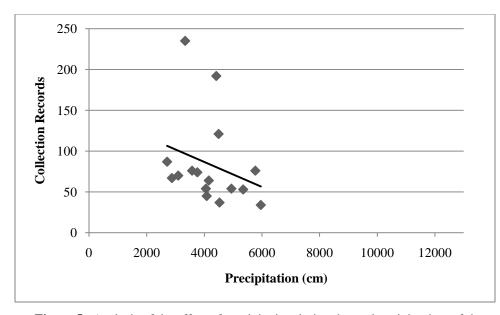
The effect of the number of cattle tested for brucellosis on Gulf Coast tick collection records. There were 32 livestock markets that were selected that satisfied the previously mentioned requirements (Figure 3). Less than 20% of the variation in the number of Gulf Coast tick collection records could be explained by the number of cattle tested for brucellosis ( $R^2 = 0.191$ ) (Table 6) (Figure 4). Furthermore, the analysis failed to reject the null hypothesis that the number of Gulf Coast tick collection records are independent from the number of cattle tested for brucellosis (P = .386). To further examine this null hypothesis, analyses were conducted to examine the contribution of differing drought thresholds and cattle tested for brucellosis to the explanation of variation in the number of Gulf Coast tick collection records. All analyses that were conducted indicated that drought conditions explain the variation in the number of Gulf Coast tick collection records.

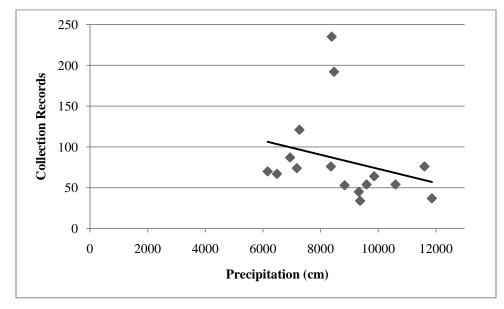


15

**Figure 3.** Geographic representation of the locations of the 32 livestock markets within the study area that primarily sell cattle and have historically reliable surveillance efforts.

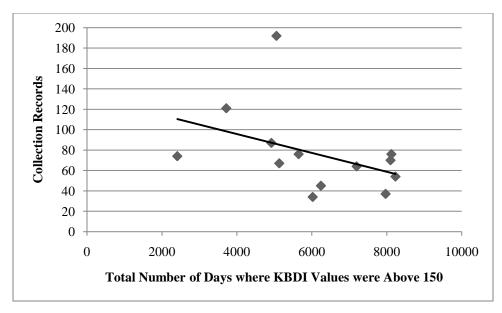
| Table 6. Comparison of regression<br>model statistics testing the effect of the<br>number of cattle tested for brucellosis on<br>the number of Gulf Coast tick collection<br>records |                |       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|--|
| Regression Model                                                                                                                                                                     | $\mathbb{R}^2$ | Р     |  |
| Linear                                                                                                                                                                               | 0.053          | 0.474 |  |
| Quadratic                                                                                                                                                                            | 0.189          | 0.389 |  |
| Cubic                                                                                                                                                                                | 0.191          | 0.386 |  |

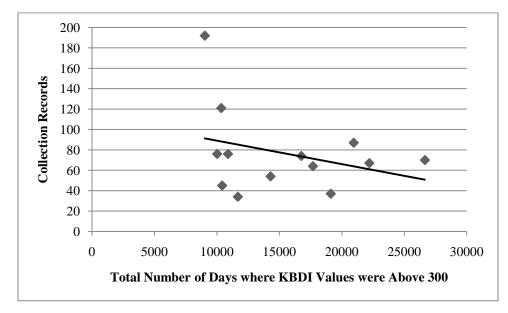


Figure 4. Graphical representation of the analyses used to measure the effect of the number of cattle tested for brucellosis on the number of Gulf Coast tick collection records.

### The effect of precipitation on the number of Gulf Coast tick collection

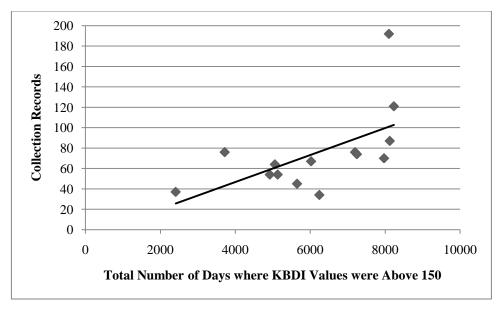
records. All analyses of the effect of precipitation on Gulf Coast tick collection records did not result in significant  $R^2$  values or p-values. However, analyses of precipitation during the PAT of nymphs and all stages did graphically demonstrate an insignificant decrease in Gulf Coast tick collection records as precipitation increased (Figures 5 and




**Figure 5.** Analysis of the effect of precipitation during the peak activity time of the nymph stage on the number of Gulf Coast tick collection records.




**Figure 6.** Analysis of the effect of precipitation during the peak activity time of all stages on the number of Gulf Coast tick collection records.


The effect of differing KBDI threshold conditions on the number of Gulf **Coast tick collection records.** In general, a relationship between differing drought thresholds and Gulf Coast tick survivorship was observed. A negative correlation was observed, that explained more than 40% of the variation of Gulf Coast tick collection records, beginning when KBDI values were above 150 for the PAT of lagged adults ( $R^2$ = 0.413) (Figure 7). Another negative correlation was observed, that explained more than 50% of the variation of Gulf Coast tick collection records beginning when KBDI values were above 300 for the PAT of lagged all stages ( $R^2 = 0.526$ ) (Figure 8). Additionally, the p-values were significant for these two analyses (P = 0.169 and P =0.07 respectively). Therefore, these analyses rejected the null hypothesis that the number of Gulf Coast tick collection records is independent from KBDI thresholds. Lastly, a positive correlation was observed that explained more than 57% of the variation of collection records, beginning when the KBDI values were above 150 during the PAT of the adult stage ( $R^2 = 0.577$ ) (Figure 9). The null hypothesis was also rejected in this analysis (P = 0.029).



**Figure 7.** Analysis of the effect of KBDI values above 150 during the PAT of the adult stage of the first year on the number of Gulf Coast tick collection records the following year.



**Figure 8.** Analysis of the effect of KBDI values above 300 during the PAT of all life stages beginning with the adults of the first year and ending with the nymphs of the following year on the number of Gulf Coast tick collection records the following year.



**Figure 9.** Analysis of the effect of KBDI values above 150 during the peak activity time of the adult stage on the number of Gulf Coast tick collection records that year.

#### **DISCUSSION AND CONCLUSION**

Several variables were taken into account to use Gulf Coast tick collection records from livestock markets. Discussions with three inspectors indicated that some inspectors compete with each other to collect more ticks. Another caveat to consider is that many ticks are identified only to genus and reported by the TAHC, potentially resulting in several missing Gulf Coast tick collection records per year. Also, some Gulf Coast ticks from collection records may not have originated in the study area. This can result if a rancher from outside the study area transports their livestock to a market within the study area.

A potential caveat was that only female cattle greater than 18 months old were tested for brucellosis and checked for ticks at the livestock market. Ticks were possibly missed due to this exemption and could have caused a misrepresentation of the true Gulf Coast tick population density for each year. However, cattle that were tested for brucellosis had the same potential for host utilization by Gulf Coast ticks as cattle that were not tested for brucellosis. Therefore, cattle tested for brucellosis were considered to be a representation of the total number of Gulf Coast ticks present at livestock markets.

There were positive aspects to using collection records from the TAHC to monitor Gulf Coast tick population changes. Surveying a region as large as the study area using methods such as flagging for an equivalent time period would have been very costly and required much labor and time. Livestock markets typically have sales once per week, allowing for weekly tick population monitoring from TAHC inspectors. Tick surveillance at this scale would not be possible by conventional field collecting methods. Also, ticks that were collected in this study area were exposed to a variety of meteorological factors depending on their county of origin.

It was shown that the number of cattle tested for brucellosis and collection records are independent. Furthermore, it was determined that differing drought thresholds have a more significant influence on the number of collection records than the number of cattle tested for brucellosis. In contrast, an analysis on the effect of drought during the PAT of the adult stage on Gulf Coast tick collection records indicated that increased levels of drought during that time period resulted in more tick collections. However, it should be noted that the number of inspectors at livestock markets does not increase when larger than average cattle sales occur. Therefore, this increase in Gulf Coast tick collection records may be due to an unknown factor.

The analyses of the effect of precipitation on Gulf Coast tick survivorship were expected to produce more statistically significant results. A statistically significant relationship indicating an increase in larval tick abundance the year following increased precipitation was observed when examining *Ixodes scapularis* Say (Acari: Ixodidae) populations (Jones and Kitron 2000). Low correlation between precipitation during the PAT of lagged adults and lagged all stages and the number of Gulf Coast tick collection records ( $R^2 = 0.073$  and  $R^2 = 0.001$  respectively) did not indicate a similar lagged response. Perhaps this was due to the generally abundant precipitation in a large portion of the study area. Also, the biology of *I. scapularis* is very different from the Gulf Coast tick, so obtaining similar results may not be possible.

22

Drought appeared to be more significant predictor of Gulf Coast tick population change than precipitation. This result was expected as a KBDI includes precipitation, land surface temperature, vegetation, and soil texture type. All of these factors have an influence on the microclimate that the Gulf Coast tick inhabits and desiccation. Similar results were obtained in other studies that measured the effect of drought on the survivorship on other tick species (Jones and Kitron 2000, Cumming 2002).

The analyses of the PAT of lagged adults and lagged all stages provided some insight into the effect of drought on Gulf Coast tick survivorship. For example, drought that occurred during the PAT of the adult stage in 2005 resulted in an increase in the number of Gulf Coast tick collection records that occurred, possibly due to an unknown factor. However, the analyses using KBDI thresholds during the PAT of lagged adults indicated that the number of Gulf Coast tick collection records the following year decreased. This is most likely due to a decrease in the population of adult Gulf Coast ticks from 2005 that can lay eggs that would become adults in 2006. It is because of this lagged population change that I believe that drought conditions can be used to predict Gulf Coast tick population change and survivorship within the study area.

There were some limitations to using naturally occurring drought conditions to predict changes in the number of Gulf Coast tick collection records. A KBDI value of 700 and above in the study area, representing very high soil moisture deficiency, would likely result in a significant decrease of Gulf Coast tick populations due to increased desiccation. However, this threshold was not frequently reached during most of the time period studied as this condition was mostly unnatural in the majority of the study area. Exceptions to this occurrence were during the majority time period studied during the PATs of the egg stage. Larva and nymph PAT analyses began having zeroes, for the number of days of a certain drought threshold in the study area, once KBDI values reached 500. The increasing amount of zeroes that occurred in the remainder of the increasing KBDI thresholds for larvae and nymph PAT introduced problems in the analyses which resulted in non-significant correlation. These zeroes first occurred at 450 due to a very wet summer in 2007 for much of the state during the PATs of the adult and lagged adult stages. The amount of zeroes began to increase for these two analyses once the KBDI threshold reached 600. Thus, the results of all drought analyses should only be used to indicate significance when there were not multiple zeroes present for the total number of days in the study area where a certain KBDI threshold was reached.

Several methods will be used to further refine the precipitation and KBDI threshold analyses. The counties that are typically serviced by each livestock market will be determined to conduct more refined analyses on the effect of precipitation and KBDI thresholds on Gulf Coast tick collection records. This restructuring is especially necessary at the three selected livestock markets that are located in counties bordering Oklahoma, and the two selected livestock markets that are located in counties bordering Louisiana, as these livestock markets may receive cattle from these neighboring states. Additionally, month by month analyses of the effect of precipitation and KBDI thresholds on month by month Gulf Coast tick collection records will be conducted for the PAT of the adult stage. These analyses will provide more replication points and potentially yield more significant results. Additional field applications of this research project are necessary. Weather monitoring stations could be placed at certain points in the study area that collect relative humidity and precipitation data. Containers would then be placed at these weather monitoring stations that contain laboratory reared cohorts of Gulf Coast ticks in the corresponding life stage, depending on the time of the year. These containers should then be monitored at least on a monthly basis to determine survivorship of each life stages. Continued monitoring of drought conditions would also be beneficial for a redesigned field experiment.

#### REFERENCES

- Barker, R. W., A. A. Kocan, S. A. Ewing, R. P. Wettemann, and M. E Payton. 2004. Occurrence of the Gulf Coast tick (Acari: Ixodidae) on wild and domestic mammals in North-Central Oklahoma. J. Med. Entomol. 41: 170-178.
- Bishopp, F. C., and H. Hixon. 1936. Biology and economic importance of the Gulf Coast tick. J. Econ. Entomol. 29: 1068-1076.
- Bishopp, F. C., and H. L. Trembley. 1945. Distribution and hosts of certain North American ticks. J. Parasitol. 31: 1-54.
- Brillhart, D. B., L. B. Fox, and S. J. Upton. 1994. Ticks (Acari: Ixodidae) collected from small and medium-sized Kansas mammals. J. Med. Entomol. 31: 500-504.
- Center for Natural Resource Information Technology (CNRIT). 2008. U.S. forage condition weather data system. Texas A&M University System. Available from http://cnrit.tamu.edu/usweather/weather.cgi. Accessed Aug. 2008.
- **Clark, K. L. 1998.** Distribution, abundance, and seasonal activities of ticks collected from rodents and vegetation in South Carolina. J. Vector Ecol. 23: 89-105.
- Climate Prediction Center. 2009. Retrospective analysis. Available from http://www.cpc.noaa.gov/products/precip/realtime/retro.shtml. Accessed May 2009.
- **Cumming, G. S. 2002.** Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecol. 83: 255-268.
- **Daly, C. 1997.** Parameter-elevation regressions on independent slopes model. Available from http://www.prism.oregonstate.edu. Accessed Aug. 2008.

- Durden, L. A., S. Luckhart, G. R. Mullen, and S. Smith. 1991. Tick infestations of white-tailed deer in Alabama. J. Wildl. Dis. 27: 606-614.
- Edney, E. B. 1977. Water Balance in Land Arthropods, Zoophysiology, and Ecology, 9. Springer, New York.
- Ewing, S. A., J. S. Mathew, and R. J. Panciera. 2002. Transmission of *Hepatozoon americanum* (Apicomplexa: Adeleorina) by ixodids (Acari: Ixodidae). J. Med. Entomol. 39: 631-634.
- Fleetwood, S. C. 1985. The environmental influences in selected vegetation microhabitats on the various life stages of *Amblyomma maculatum* Koch (Acari: Ixodidae). PhD Dissertation, Texas A&M University, College Station.
- Higgins, R. W., W. Shi, E. Yarosh, and R. Joyce. 2000. Improved United
  States precipitation quality control system and analysis: NCEP/Climate
  Prediction Center Atlas No. 7. U.S. Department of Commerce, Washington,
  D. C.
- Jones, C. J., and U. D. Kitron. 2000. Populations of *Ixodes scapularis* (Acari: Ixodidae) are modulated by drought at a Texas disease focus in Illinois. J. Med. Entomol. 37: 408-415.
- Kahl, O., and W. Knülle. 1988. Water vapour uptake from subsaturated atmospheres by engorged immature ixodid ticks. Exp. Applied Acarol. 4: 73-83.
- Keetch, J. J., and G. M. Byram. 1968. A drought index for forest fire control. USDA Forest Service Research Paper SE-38, 35 pp.
- Kocan, A. A., M. Breshears, C. Cummings, R. J. Panciera, S. A. Ewing, and R. W.

**Barker. 1999.** Naturally occurring hepatozoonosis in coyotes from Oklahoma. J. Wildl. Dis. 35: 86-89.

- Lackman, D. B., R. R. Parker, and R. K. Gerloff. 1949. Serological characteristics of a pathogenic rickettsia occurring in *Amblyomma maculatum*. Public Health Rep. 64: 1342-1349.
- Mahan, S. M., T. F. Peter, B. H. Simbi, K. Kocan, E. Camus, A. F. Barbet, and M.
   J. Burridge. 2000. Comparison of efficacy of American and African
   *Amblyomma* ticks as vectors of heartwater (*Cowdria ruminantium*) infection by
   molecular analyses and transmission trials. J. Parasitol. 86: 44-49.
- Needham, G. R., and P. D. Teel. 1991. Off-host physiological ecology of ixodid ticks. Annu. Rev. Entomol. 36: 659-681.
- O'Donnell, M. J. and J. Machin. 1988. Water vapor adsorption by terrestrial organisms. In *Advances in Comparative and Environmental Physiology*, 2: 47-90. Heidelberg: Springer-Verlag.
- Paddock, C. D., J. W. Sumner, J. A. Comer, S. R. Zaki, C. S. Goldsmith, J.
  Goddard, S. L. F. McLellan, C. L. Tamminga, and C. A. Ohl. 2004. *Rickettsia parkeri*: a newly recognized cause of spotted fever rickettsiosis in the United States. Clin. Infect. Dis. 38: 805-811.
- SPSS for Windows, Rel. 15.0.1.1. 2006. Chicago: SPSS Inc.
- Sumner, J. W., L. A. Durden, J. Goddard, E. Y. Stromdahl, K. L. Clark, W. K. Reeves, and C. D. Paddock. 2007. Gulf Coast ticks (*Amblyomma maculatum*) and *Rickettsia parkeri*, United States. Emerging Infect. Dis. 13: 751-753.

- Teel, P. D., S.C. Fleetwood, S. W. Hopkins, and D. Cruz. 1988. Ectoparasites of Eastern and Western meadowlarks from the Rio Grande plains of south Texas. J. Med. Entomol. 25: 32-38.
- Teel, P. D., S.W. Hopkins, W. A. Donahue, and O. F. Strey. 1998. Population dynamics of immature *Amblyomma maculatum* and other ectoparasites on meadowlarks and northern bobwhite quail resident to the coastal prairie of Texas.
  J. Med. Entomol. 35: 483-488.
- **Texas Weather Connection. 2008.** Spatial Sciences Laboratory. Texas A&M University. Available from http://twc.tamu.edu/kbdi.aspx. Accessed Aug. 2008.
- Uilenberg, G. 1982. Experimental transmission of *Cowdria ruminantium* by the Gulf Coast tick *Amblyomma maculatum*: danger of introducing heartwater and benign African theileriasis onto the American mainland. Am. J. Vet. Res. 43: 1279-1282.
- Williams, R. E., J. A. Hair, and R. G. Buckner. 1977. Effects of Gulf Coast ticks on blood composition and weights of drylot Hereford steers. J. Econ. Entomol. 70: 229-233.
- Williams, R. E., J. A. Hair, and R. W. McNew. 1978. Effects of Gulf Coast ticks on blood composition and weights of pastured Hereford steers. J. Parasitol. 64: 336-342.

### **APPENDIX A**

## SUMMARY OF DATA USED IN ALL ANALYSES

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult Gulf Coast tick life stage. These data were used to measure whether the number of cattle tested for brucellosis or increasing KBDI thresholds have a more significant effect on the number of Gulf Coast tick collection records

|      |                    |                               |      | KBDI T | Threshold | ,    |
|------|--------------------|-------------------------------|------|--------|-----------|------|
| Year | Collection Records | Cattle Tested for Brucellosis | 50   | 100    | 150       | 200  |
| 1997 | 76                 | 375,171                       | 6852 | 5107   | 3718      | 2664 |
| 1998 | 121                | 418,773                       | 8311 | 8299   | 8231      | 7986 |
| 1999 | 54                 | 386,021                       | 7714 | 6603   | 5131      | 3680 |
| 2000 | 67                 | 405,971                       | 7771 | 6989   | 6023      | 4969 |
| 2001 | 34                 | 384,378                       | 7863 | 7126   | 6243      | 5225 |
| 2002 | 45                 | 360,320                       | 7681 | 6597   | 5648      | 4709 |
| 2003 | 76                 | 443,986                       | 8083 | 7686   | 7196      | 6572 |
| 2004 | 64                 | 381,818                       | 7717 | 6487   | 5056      | 3591 |
| 2005 | 192                | 397,698                       | 8298 | 8247   | 8099      | 7723 |
| 2006 | 70                 | 499,004                       | 8286 | 8172   | 7969      | 7657 |
| 2007 | 37                 | 340,122                       | 6026 | 3988   | 2410      | 1256 |
| 2008 | 74                 | 347,132                       | 8202 | 7820   | 7245      | 6706 |

| Cont | inued |      |      |      |          |      |      |      |     |     |
|------|-------|------|------|------|----------|------|------|------|-----|-----|
|      |       |      |      | KBDI | Threshol | d    |      |      |     |     |
| 250  | 300   | 350  | 400  | 450  | 500      | 550  | 600  | 650  | 700 | 750 |
| 2038 | 1586  | 1180 | 798  | 494  | 238      | 69   | 7    | 0    | 0   | 0   |
| 7576 | 7018  | 6312 | 5397 | 4468 | 3683     | 2967 | 2288 | 1602 | 781 | 95  |
| 2545 | 1664  | 1054 | 601  | 332  | 147      | 53   | 19   | 13   | 4   | 0   |
| 4049 | 3281  | 2626 | 2075 | 1570 | 973      | 437  | 146  | 31   | 18  | 0   |
| 4264 | 3295  | 2466 | 1885 | 1368 | 905      | 492  | 207  | 47   | 5   | 0   |
| 3840 | 3024  | 2169 | 1369 | 724  | 260      | 33   | 1    | 0    | 0   | 0   |
| 5620 | 4420  | 3135 | 2009 | 1137 | 540      | 175  | 28   | 0    | 0   | 0   |
| 2371 | 1466  | 845  | 465  | 251  | 104      | 15   | 0    | 0    | 0   | 0   |
| 7056 | 6214  | 5306 | 4442 | 3663 | 2747     | 1752 | 801  | 139  | 0   | 0   |
| 7154 | 6530  | 5905 | 5123 | 4246 | 3234     | 2252 | 1438 | 699  | 208 | 0   |
| 592  | 235   | 83   | 27   | 8    | 4        | 0    | 0    | 0    | 0   | 0   |
| 6017 | 5308  | 4673 | 4025 | 3336 | 2605     | 1885 | 1101 | 441  | 77  | 0   |

Summary of the total amount of precipitation (cm) received in a 90 county study area of Texas during the peak activity time of individual and combined Gulf Coast tick life stages. These data were used to analyze the effect of precipitation on the number of Gulf Coast tick collection records

| Year | Collection Records | Egg    | Larva  | Nymph  | Adult  |
|------|--------------------|--------|--------|--------|--------|
| 1993 | 53                 | 1060.7 | 3633.2 | 5349.0 | 2347.3 |
| 1994 | 235                | 2016.9 | 2194.8 | 3333.2 | 3345.7 |
| 1995 | 54                 | 2331.8 | 3090.9 | 4939.4 | 3355.2 |
| 1996 | 87                 | 1045.3 | 1373.9 | 2706.2 | 4085.4 |
| 1997 | 76                 | 1805.7 | 3823.8 | 5770.7 | 3142.0 |
| 1998 | 121                | 1250.3 | 3433.9 | 4495.6 | 1632.3 |
| 1999 | 54                 | 2416.0 | 2673.7 | 4053.9 | 2473.0 |
| 2000 | 67                 | 847.0  | 1467.6 | 2873.4 | 2719.6 |
| 2001 | 34                 | 1156.7 | 4507.5 | 5961.3 | 2952.4 |
| 2002 | 45                 | 1635.8 | 2595.0 | 4082.3 | 3219.2 |
| 2003 | 76                 | 2124.2 | 2957.2 | 3574.3 | 2846.1 |
| 2004 | 64                 | 1584.0 | 2535.9 | 4154.5 | 4429.9 |
| 2005 | 192                | 1535.0 | 3586.9 | 4414.1 | 2536.7 |
| 2006 | 70                 | 620.3  | 1535.6 | 3092.3 | 1929.6 |
| 2007 | 37                 | 1707.0 | 2650.2 | 4527.6 | 5861.9 |
| 2008 | 74                 | 1184.7 | 1711.2 | 3757.0 | 2893.4 |

#### Continued

| Continued     |            |               |                   |
|---------------|------------|---------------|-------------------|
| All Immatures | All Stages | Lagged Adults | Lagged All Stages |
| 6409.7        | 8833.9     | 3307.2        | 9716.9            |
| 5350.1        | 8386.3     | 2347.3        | 7697.4            |
| 7271.2        | 10598.4    | 3345.7        | 10616.9           |
| 3751.5        | 6942.6     | 3355.2        | 7106.7            |
| 7576.4        | 11604.0    | 4085.4        | 11661.8           |
| 5745.9        | 7267.7     | 3142.0        | 8887.9            |
| 6469.9        | 9597.4     | 1632.3        | 8102.2            |
| 3720.4        | 6486.6     | 2473.0        | 6193.4            |
| 7118.0        | 9371.0     | 2719.6        | 9837.6            |
| 5718.1        | 9326.8     | 2952.4        | 8670.5            |
| 5698.5        | 8357.1     | 3219.2        | 8917.7            |
| 5738.5        | 9858.7     | 2846.1        | 8584.6            |
| 5949.1        | 8466.5     | 4429.9        | 10379.0           |
| 3712.6        | 6163.0     | 2536.7        | 6249.3            |
| 6234.6        | 11861.6    | 1929.6        | 8164.2            |
| 4941.7        | 7175.7     | 5861.9        | 10803.6           |
|               |            |               |                   |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the egg stage of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following each peak activity time of the egg stage

|      |                    |      |      |      | KBDI T | hreshol | d    |      |      |
|------|--------------------|------|------|------|--------|---------|------|------|------|
| Year | Collection Records | 50   | 100  | 150  | 200    | 250     | 300  | 350  | 400  |
| 1996 | 87                 | 5459 | 5407 | 5354 | 5220   | 4994    | 4701 | 4288 | 3746 |
| 1997 | 76                 | 5058 | 4454 | 3766 | 2930   | 2044    | 1246 | 631  | 187  |
| 1998 | 121                | 5477 | 5455 | 5419 | 5324   | 5183    | 5018 | 4790 | 4439 |
| 1999 | 54                 | 4925 | 4461 | 4102 | 3772   | 3445    | 3087 | 2782 | 2486 |
| 2000 | 67                 | 5490 | 5490 | 5490 | 5490   | 5490    | 5490 | 5489 | 5470 |
| 2001 | 34                 | 5490 | 5472 | 5460 | 5427   | 5389    | 5330 | 5245 | 5148 |
| 2002 | 45                 | 5344 | 5036 | 4534 | 3897   | 3274    | 2582 | 1896 | 1367 |
| 2003 | 76                 | 5246 | 4987 | 4815 | 4609   | 4435    | 4156 | 3736 | 3278 |
| 2004 | 64                 | 5450 | 5342 | 5157 | 4966   | 4729    | 4437 | 3883 | 3238 |
| 2005 | 192                | 5490 | 5480 | 5415 | 5323   | 5074    | 4669 | 4079 | 3271 |
| 2006 | 70                 | 5489 | 5481 | 5474 | 5458   | 5432    | 5372 | 5252 | 5061 |
| 2007 | 37                 | 5444 | 5377 | 5352 | 5345   | 5324    | 5236 | 5114 | 4962 |
| 2008 | 74                 | 5490 | 5483 | 5452 | 5377   | 5251    | 5006 | 4586 | 4026 |

Continued

|      | unueu |      |         |      |      |     |
|------|-------|------|---------|------|------|-----|
|      |       | KBD  | I Thres | hold |      |     |
| 450  | 500   | 550  | 600     | 650  | 700  | 750 |
| 3031 | 2207  | 1392 | 722     | 500  | 297  | 26  |
| 29   | 0     | 0    | 0       | 0    | 0    | 0   |
| 3924 | 3409  | 2643 | 1509    | 432  | 0    | 0   |
| 2244 | 2040  | 1822 | 1534    | 1243 | 765  | 115 |
| 5419 | 5275  | 5083 | 4767    | 4045 | 2094 | 431 |
| 5033 | 4734  | 4385 | 3870    | 3222 | 2465 | 562 |
| 876  | 470   | 186  | 33      | 0    | 0    | 0   |
| 2754 | 2112  | 1360 | 630     | 268  | 64   | 0   |
| 2521 | 1855  | 1059 | 363     | 16   | 0    | 0   |
| 2363 | 1636  | 974  | 536     | 168  | 6    | 0   |
| 4827 | 4482  | 3996 | 3236    | 2377 | 1213 | 138 |
| 4693 | 4193  | 3692 | 2945    | 1946 | 879  | 59  |
| 3250 | 2272  | 1275 | 599     | 114  | 0    | 0   |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the larval stage of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following each peak activity time of the larval stage

|      |                    |       |       |       | KBDI T | hreshold |       |      |      |
|------|--------------------|-------|-------|-------|--------|----------|-------|------|------|
| Year | Collection Records | 50    | 100   | 150   | 200    | 250      | 300   | 350  | 400  |
| 1996 | 87                 | 10648 | 10393 | 10075 | 9757   | 9138     | 8048  | 6151 | 4185 |
| 1997 | 76                 | 4153  | 2004  | 1051  | 674    | 421      | 261   | 111  | 38   |
| 1998 | 121                | 4516  | 3664  | 3068  | 2382   | 1784     | 1258  | 823  | 504  |
| 1999 | 54                 | 6016  | 3852  | 2553  | 1971   | 1540     | 1200  | 974  | 643  |
| 2000 | 67                 | 10890 | 10877 | 10822 | 10613  | 10401    | 10045 | 9469 | 8373 |
| 2001 | 34                 | 3502  | 1623  | 845   | 566    | 385      | 307   | 181  | 140  |
| 2002 | 45                 | 6907  | 4758  | 3923  | 3138   | 2422     | 1679  | 1069 | 713  |
| 2003 | 76                 | 6337  | 3423  | 1926  | 1029   | 518      | 250   | 141  | 76   |
| 2004 | 64                 | 9898  | 9285  | 8760  | 8090   | 7179     | 6020  | 4705 | 3445 |
| 2005 | 192                | 5150  | 2411  | 1434  | 1097   | 861      | 647   | 491  | 219  |
| 2006 | 70                 | 10674 | 10614 | 10536 | 10384  | 10236    | 10033 | 9789 | 9451 |
| 2007 | 37                 | 7921  | 6912  | 6278  | 5591   | 5005     | 4359  | 3489 | 2551 |
| 2008 | 74                 | 10506 | 10210 | 9870  | 9526   | 9011     | 8381  | 7395 | 6020 |

Continued

|      | unucu |      |          |      |      |     |
|------|-------|------|----------|------|------|-----|
|      |       | KBD  | I Thresl | nold |      |     |
| 450  | 500   | 550  | 600      | 650  | 700  | 750 |
| 2627 | 1460  | 584  | 112      | 10   | 0    | 0   |
| 15   | 0     | 0    | 0        | 0    | 0    | 0   |
| 249  | 87    | 0    | 0        | 0    | 0    | 0   |
| 386  | 173   | 27   | 4        | 1    | 0    | 0   |
| 6985 | 5470  | 4116 | 2709     | 907  | 68   | 0   |
| 92   | 49    | 27   | 14       | 6    | 0    | 0   |
| 504  | 185   | 18   | 0        | 0    | 0    | 0   |
| 24   | 0     | 0    | 0        | 0    | 0    | 0   |
| 2482 | 1539  | 837  | 332      | 100  | 0    | 0   |
| 79   | 26    | 1    | 0        | 0    | 0    | 0   |
| 9010 | 8339  | 7385 | 5665     | 3280 | 1387 | 46  |
| 1520 | 713   | 157  | 39       | 0    | 0    | 0   |
| 4585 | 3007  | 1482 | 441      | 101  | 0    | 0   |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the nymphal stage of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following each peak activity time of the nymphal stage

|      |                    | _     |       |       | KBDI  | Threshol | d     |       |       |
|------|--------------------|-------|-------|-------|-------|----------|-------|-------|-------|
| Year | Collection Records | 50    | 100   | 150   | 200   | 250      | 300   | 350   | 400   |
| 1996 | 87                 | 16138 | 15818 | 15362 | 14780 | 13649    | 11900 | 9338  | 6630  |
| 1997 | 76                 | 5866  | 2260  | 1056  | 674   | 421      | 261   | 111   | 38    |
| 1998 | 121                | 7756  | 5886  | 4471  | 2862  | 1851     | 1259  | 823   | 504   |
| 1999 | 54                 | 10016 | 6537  | 4182  | 2836  | 2018     | 1451  | 1088  | 672   |
| 2000 | 67                 | 16181 | 15679 | 14948 | 14069 | 13176    | 12292 | 11319 | 9842  |
| 2001 | 34                 | 5938  | 3000  | 1550  | 861   | 472      | 313   | 181   | 140   |
| 2002 | 45                 | 10695 | 7119  | 5352  | 4017  | 2807     | 1817  | 1128  | 752   |
| 2003 | 76                 | 10542 | 6342  | 3871  | 2162  | 1035     | 435   | 203   | 85    |
| 2004 | 64                 | 14139 | 12223 | 10500 | 8793  | 7376     | 6085  | 4730  | 3445  |
| 2005 | 192                | 9553  | 5384  | 3232  | 2005  | 1171     | 713   | 495   | 219   |
| 2006 | 70                 | 15824 | 15442 | 15005 | 14332 | 13569    | 12654 | 11729 | 10841 |
| 2007 | 37                 | 12246 | 9713  | 7787  | 6296  | 5391     | 4586  | 3620  | 2594  |
| 2008 | 74                 | 14731 | 13421 | 12486 | 11689 | 10783    | 9825  | 8517  | 6857  |

Continued

| Con  | unucu |      |         |      |      |     |
|------|-------|------|---------|------|------|-----|
|      |       | KBD  | I Thres | hold |      |     |
| 450  | 500   | 550  | 600     | 650  | 700  | 750 |
| 4248 | 2131  | 759  | 135     | 10   | 0    | 0   |
| 15   | 0     | 0    | 0       | 0    | 0    | 0   |
| 249  | 87    | 0    | 0       | 0    | 0    | 0   |
| 387  | 173   | 27   | 4       | 1    | 0    | 0   |
| 7943 | 6002  | 4316 | 2755    | 908  | 68   | 0   |
| 92   | 49    | 27   | 14      | 6    | 0    | 0   |
| 528  | 195   | 18   | 0       | 0    | 0    | 0   |
| 24   | 0     | 0    | 0       | 0    | 0    | 0   |
| 2482 | 1539  | 837  | 332     | 100  | 0    | 0   |
| 79   | 26    | 1    | 0       | 0    | 0    | 0   |
| 9996 | 9002  | 7749 | 5831    | 3350 | 1413 | 46  |
| 1533 | 724   | 157  | 39      | 0    | 0    | 0   |
| 5211 | 3437  | 1729 | 516     | 114  | 0    | 0   |

|      |                    |      |      |      | KBDI T | hreshol | d    |      |      |
|------|--------------------|------|------|------|--------|---------|------|------|------|
| Year | Collection Records | 50   | 100  | 150  | 200    | 250     | 300  | 350  | 400  |
| 1995 | 73                 | 7214 | 6103 | 4921 | 3954   | 3132    | 2446 | 1835 | 1287 |
| 1996 | 87                 | 8284 | 8229 | 8122 | 7926   | 7560    | 7018 | 6302 | 5369 |
| 1997 | 76                 | 6852 | 5107 | 3718 | 2664   | 2038    | 1586 | 1180 | 798  |
| 1998 | 121                | 8311 | 8299 | 8231 | 7986   | 7576    | 7018 | 6312 | 5397 |
| 1999 | 54                 | 7714 | 6603 | 5131 | 3680   | 2545    | 1664 | 1054 | 601  |
| 2000 | 67                 | 7771 | 6989 | 6023 | 4969   | 4049    | 3281 | 2626 | 2075 |
| 2001 | 34                 | 7863 | 7126 | 6243 | 5225   | 4264    | 3295 | 2466 | 1885 |
| 2002 | 45                 | 7681 | 6597 | 5648 | 4709   | 3840    | 3024 | 2169 | 1369 |
| 2003 | 76                 | 8083 | 7686 | 7196 | 6572   | 5620    | 4420 | 3135 | 2009 |
| 2004 | 64                 | 7717 | 6487 | 5056 | 3591   | 2371    | 1466 | 845  | 465  |
| 2005 | 192                | 8298 | 8247 | 8099 | 7723   | 7056    | 6214 | 5306 | 4442 |
| 2006 | 70                 | 8286 | 8172 | 7969 | 7657   | 7154    | 6530 | 5905 | 5123 |
| 2007 | 37                 | 6026 | 3988 | 2410 | 1256   | 592     | 235  | 83   | 27   |
| 2008 | 74                 | 8202 | 7820 | 7245 | 6706   | 6017    | 5308 | 4673 | 4025 |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult stage of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records

Continued

| COL  | unueu |      |          |      |     |     |
|------|-------|------|----------|------|-----|-----|
|      |       | KBD  | I Thresh | nold |     |     |
| 450  | 500   | 550  | 600      | 650  | 700 | 750 |
| 765  | 336   | 98   | 15       | 0    | 0   | 0   |
| 4297 | 3118  | 1790 | 754      | 167  | 19  | 0   |
| 494  | 238   | 69   | 7        | 0    | 0   | 0   |
| 4468 | 3683  | 2967 | 2288     | 1602 | 781 | 95  |
| 332  | 147   | 53   | 19       | 13   | 4   | 0   |
| 1570 | 973   | 437  | 146      | 31   | 18  | 0   |
| 1368 | 905   | 492  | 207      | 47   | 5   | 0   |
| 724  | 260   | 33   | 1        | 0    | 0   | 0   |
| 1137 | 540   | 175  | 28       | 0    | 0   | 0   |
| 251  | 104   | 15   | 0        | 0    | 0   | 0   |
| 3663 | 2747  | 1752 | 801      | 139  | 0   | 0   |
| 4246 | 3234  | 2252 | 1438     | 699  | 208 | 0   |
| 8    | 4     | 0    | 0        | 0    | 0   | 0   |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of all immature stages of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the egg stage

|      |                    |       |       |       | KBDI T | Threshold |       |       |       |
|------|--------------------|-------|-------|-------|--------|-----------|-------|-------|-------|
| Year | Collection Records | 50    | 100   | 150   | 200    | 250       | 300   | 350   | 400   |
| 1996 | 87                 | 21597 | 21225 | 20716 | 20000  | 18643     | 16601 | 13626 | 10376 |
| 1997 | 76                 | 10924 | 6714  | 4822  | 3604   | 2465      | 1507  | 742   | 225   |
| 1998 | 121                | 13233 | 11341 | 9890  | 8186   | 7034      | 6277  | 5613  | 4943  |
| 1999 | 54                 | 14941 | 10998 | 8284  | 6608   | 5463      | 4538  | 3870  | 3158  |
| 2000 | 67                 | 21671 | 21169 | 20438 | 19559  | 18666     | 17782 | 16808 | 15312 |
| 2001 | 34                 | 11428 | 8472  | 7010  | 6288   | 5861      | 5643  | 5426  | 5288  |
| 2002 | 45                 | 16039 | 12155 | 9886  | 7914   | 6081      | 4399  | 3024  | 2119  |
| 2003 | 76                 | 15788 | 11329 | 8686  | 6771   | 5470      | 4591  | 3939  | 3363  |
| 2004 | 64                 | 19589 | 17565 | 15657 | 13759  | 12105     | 10522 | 8613  | 6683  |
| 2005 | 192                | 15043 | 10864 | 8647  | 7328   | 6245      | 5382  | 4574  | 3490  |
| 2006 | 70                 | 21313 | 20923 | 20479 | 19790  | 19001     | 18026 | 16981 | 15902 |
| 2007 | 37                 | 17690 | 15090 | 13139 | 11641  | 10715     | 9822  | 8734  | 7556  |
| 2008 | 74                 | 20221 | 18904 | 17938 | 17066  | 16034     | 14831 | 13103 | 10883 |

| Co    |       | bor |
|-------|-------|-----|
| – COI | ntinu | uea |

| Com   | mucu           |       |      |      |      |     |  |  |  |
|-------|----------------|-------|------|------|------|-----|--|--|--|
|       | KBDI Threshold |       |      |      |      |     |  |  |  |
| 450   | 500            | 550   | 600  | 650  | 700  | 750 |  |  |  |
| 7279  | 4338           | 2151  | 857  | 510  | 297  | 26  |  |  |  |
| 44    | 0              | 0     | 0    | 0    | 0    | 0   |  |  |  |
| 4173  | 3496           | 2643  | 1509 | 432  | 0    | 0   |  |  |  |
| 2631  | 2213           | 1849  | 1538 | 1244 | 765  | 115 |  |  |  |
| 13362 | 11277          | 9399  | 7522 | 4953 | 2162 | 431 |  |  |  |
| 5125  | 4783           | 4412  | 3884 | 3228 | 2465 | 562 |  |  |  |
| 1404  | 665            | 204   | 33   | 0    | 0    | 0   |  |  |  |
| 2778  | 2112           | 1360  | 630  | 268  | 64   | 0   |  |  |  |
| 5003  | 3394           | 1896  | 695  | 116  | 0    | 0   |  |  |  |
| 2442  | 1662           | 975   | 536  | 168  | 6    | 0   |  |  |  |
| 14823 | 13484          | 11745 | 9067 | 5727 | 2626 | 184 |  |  |  |
| 6226  | 4917           | 3849  | 2984 | 1946 | 879  | 59  |  |  |  |
| 8461  | 5709           | 3004  | 1115 | 228  | 0    | 0   |  |  |  |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of all life stages of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the egg stage

|      |                    |       |       |       | KBDI 1 | Threshold |       |       |       |
|------|--------------------|-------|-------|-------|--------|-----------|-------|-------|-------|
| Year | Collection Records | 50    | 100   | 150   | 200    | 250       | 300   | 350   | 400   |
| 1996 | 87                 | 32514 | 31986 | 31231 | 30177  | 28280     | 25516 | 21579 | 17183 |
| 1997 | 76                 | 20517 | 14530 | 11203 | 8859   | 6996      | 5464  | 4103  | 2938  |
| 1998 | 121                | 24298 | 22383 | 20842 | 18848  | 17219     | 15758 | 14182 | 12292 |
| 1999 | 54                 | 25414 | 20360 | 16174 | 13045  | 10755     | 8935  | 7640  | 6457  |
| 2000 | 67                 | 32201 | 30917 | 29220 | 27287  | 25473     | 23815 | 22154 | 20030 |
| 2001 | 34                 | 22050 | 18357 | 16012 | 14272  | 12884     | 11688 | 10628 | 9891  |
| 2002 | 45                 | 26479 | 21510 | 18287 | 15373  | 12670     | 10143 | 7863  | 6094  |
| 2003 | 76                 | 26630 | 21770 | 18621 | 16043  | 13683     | 11412 | 9248  | 7217  |
| 2004 | 64                 | 30065 | 26811 | 23472 | 20109  | 17231     | 14737 | 12159 | 9703  |
| 2005 | 192                | 26085 | 21810 | 19384 | 17597  | 15707     | 13764 | 11677 | 9295  |
| 2006 | 70                 | 32352 | 31812 | 31118 | 30060  | 28670     | 26964 | 25158 | 23126 |
| 2007 | 37                 | 26475 | 21837 | 18310 | 15662  | 14075     | 12827 | 11588 | 10354 |
| 2008 | 74                 | 31168 | 29410 | 27731 | 26102  | 24084     | 21824 | 19159 | 15968 |

| ntin |  |
|------|--|
|      |  |
|      |  |
|      |  |

|       | KBDI Threshold |       |       |      |      |     |  |  |
|-------|----------------|-------|-------|------|------|-----|--|--|
| 450   | 500            | 550   | 600   | 650  | 700  | 750 |  |  |
| 12791 | 8438           | 4690  | 2095  | 918  | 372  | 27  |  |  |
| 2144  | 1373           | 733   | 412   | 238  | 75   | 0   |  |  |
| 10038 | 7985           | 5941  | 3836  | 2022 | 774  | 90  |  |  |
| 5603  | 4850           | 4211  | 3552  | 2677 | 1542 | 301 |  |  |
| 17440 | 14525          | 11745 | 9082  | 5827 | 2462 | 443 |  |  |
| 9161  | 8292           | 7346  | 6117  | 4656 | 2947 | 565 |  |  |
| 4620  | 3114           | 2049  | 1192  | 505  | 122  | 4   |  |  |
| 5340  | 3649           | 2124  | 919   | 335  | 65   | 0   |  |  |
| 7501  | 5310           | 3083  | 1223  | 221  | 9    | 0   |  |  |
| 7063  | 5032           | 3062  | 1450  | 321  | 6    | 0   |  |  |
| 21001 | 18436          | 15479 | 11666 | 6965 | 2896 | 184 |  |  |
| 9003  | 7674           | 6562  | 5529  | 4052 | 2106 | 250 |  |  |
| 12490 | 8646           | 4962  | 2213  | 658  | 77   | 0   |  |  |

|      |                    |      |      |      | KBDI 7 | Threshold |      |      |      |
|------|--------------------|------|------|------|--------|-----------|------|------|------|
| Year | Collection Records | 50   | 100  | 150  | 200    | 250       | 300  | 350  | 400  |
| 1996 | 87                 | 7214 | 6103 | 4921 | 3954   | 3132      | 2446 | 1835 | 1287 |
| 1997 | 76                 | 8284 | 8229 | 8122 | 7926   | 7560      | 7018 | 6302 | 5369 |
| 1998 | 121                | 6852 | 5107 | 3718 | 2664   | 2038      | 1586 | 1180 | 798  |
| 1999 | 54                 | 8311 | 8299 | 8231 | 7986   | 7576      | 7018 | 6312 | 5397 |
| 2000 | 67                 | 7714 | 6603 | 5131 | 3680   | 2545      | 1664 | 1054 | 601  |
| 2001 | 34                 | 7771 | 6989 | 6023 | 4969   | 4049      | 3281 | 2626 | 2075 |
| 2002 | 45                 | 7863 | 7126 | 6243 | 5225   | 4264      | 3295 | 2466 | 1885 |
| 2003 | 76                 | 7681 | 6597 | 5648 | 4709   | 3840      | 3024 | 2169 | 1369 |
| 2004 | 64                 | 8083 | 7686 | 7196 | 6572   | 5620      | 4420 | 3135 | 2009 |
| 2005 | 192                | 7717 | 6487 | 5056 | 3591   | 2371      | 1466 | 845  | 465  |
| 2006 | 70                 | 8298 | 8247 | 8099 | 7723   | 7056      | 6214 | 5306 | 4442 |
| 2007 | 37                 | 8286 | 8172 | 7969 | 7657   | 7154      | 6530 | 5905 | 5123 |
| 2008 | 74                 | 6026 | 3988 | 2410 | 1256   | 592       | 235  | 83   | 27   |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult stage of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the following year

Continued

|      | unueu          |      |      |      |     |     |  |
|------|----------------|------|------|------|-----|-----|--|
|      | KBDI Threshold |      |      |      |     |     |  |
| 450  | 500            | 550  | 600  | 650  | 700 | 750 |  |
| 765  | 336            | 98   | 15   | 0    | 0   | 0   |  |
| 4297 | 3118           | 1790 | 754  | 167  | 19  | 0   |  |
| 494  | 238            | 69   | 7    | 0    | 0   | 0   |  |
| 4468 | 3683           | 2967 | 2288 | 1602 | 781 | 95  |  |
| 332  | 147            | 53   | 19   | 13   | 4   | 0   |  |
| 1570 | 973            | 437  | 146  | 31   | 18  | 0   |  |
| 1368 | 905            | 492  | 207  | 47   | 5   | 0   |  |
| 724  | 260            | 33   | 1    | 0    | 0   | 0   |  |
| 1137 | 540            | 175  | 28   | 0    | 0   | 0   |  |
| 251  | 104            | 15   | 0    | 0    | 0   | 0   |  |
| 3663 | 2747           | 1752 | 801  | 139  | 0   | 0   |  |
| 4246 | 3234           | 2252 | 1438 | 699  | 208 | 0   |  |
| 8    | 4              | 0    | 0    | 0    | 0   | 0   |  |
|      |                |      |      |      |     |     |  |

Summary of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of all life stages of the Gulf Coast tick. These data were used to measure the effect of these differing KBDI thresholds on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the adult stage

|      |                    |       |       |       | KBDI 1 | Threshold |       |       |       |
|------|--------------------|-------|-------|-------|--------|-----------|-------|-------|-------|
| Year | Collection Records | 50    | 100   | 150   | 200    | 250       | 300   | 350   | 400   |
| 1996 | 87                 | 31444 | 29860 | 28029 | 26204  | 23851     | 20946 | 17115 | 13097 |
| 1997 | 76                 | 21949 | 17650 | 15603 | 14114  | 12509     | 10884 | 9211  | 7501  |
| 1998 | 121                | 22839 | 19193 | 16334 | 13534  | 11692     | 10340 | 9069  | 7717  |
| 1999 | 54                 | 26011 | 22056 | 19274 | 17351  | 15786     | 14289 | 12898 | 11253 |
| 2000 | 67                 | 32144 | 30531 | 28328 | 25998  | 23969     | 22198 | 20582 | 18556 |
| 2001 | 34                 | 21958 | 18220 | 15792 | 14016  | 12669     | 11674 | 10788 | 10081 |
| 2002 | 45                 | 26661 | 22039 | 18882 | 15889  | 13094     | 10414 | 8160  | 6610  |
| 2003 | 76                 | 26228 | 20681 | 17073 | 14180  | 11903     | 10015 | 8278  | 6570  |
| 2004 | 64                 | 30431 | 28010 | 25612 | 23090  | 20477     | 17683 | 14442 | 11242 |
| 2005 | 192                | 25504 | 20050 | 16341 | 13465  | 11025     | 9025  | 7227  | 5330  |
| 2006 | 70                 | 32364 | 31887 | 31248 | 30126  | 28572     | 26648 | 24559 | 22445 |
| 2007 | 37                 | 28735 | 26021 | 23867 | 22057  | 20628     | 19111 | 17397 | 15432 |
| 2008 | 74                 | 28992 | 25578 | 22897 | 20653  | 18660     | 16750 | 14569 | 11975 |

| ntin |  |
|------|--|
|      |  |
|      |  |

|       | KBDI Threshold |       |       |      |      |     |  |
|-------|----------------|-------|-------|------|------|-----|--|
| 450   | 500            | 550   | 600   | 650  | 700  | 750 |  |
| 9257  | 5658           | 2999  | 1356  | 751  | 353  | 27  |  |
| 5943  | 4250           | 2457  | 1161  | 405  | 94   | 0   |  |
| 6088  | 4564           | 3067  | 1576  | 434  | 0    | 0   |  |
| 9739  | 8384           | 7118  | 5817  | 4265 | 2316 | 391 |  |
| 16202 | 13701          | 11368 | 8967  | 5824 | 2462 | 443 |  |
| 9362  | 8359           | 7288  | 6049  | 4623 | 2942 | 565 |  |
| 5259  | 3744           | 2489  | 1375  | 541  | 127  | 4   |  |
| 4917  | 3365           | 1976  | 891   | 335  | 65   | 0   |  |
| 8388  | 5747           | 3242  | 1251  | 221  | 9    | 0   |  |
| 3666  | 2405           | 1341  | 656   | 182  | 6    | 0   |  |
| 20418 | 17952          | 14992 | 11053 | 6431 | 2697 | 184 |  |
| 13218 | 10877          | 8783  | 6936  | 4725 | 2305 | 250 |  |
| 9168  | 6052           | 3088  | 1123  | 228  | 0    | 0   |  |

#### **APPENDIX B**

# SUMMARY OF THE RESULTS OF ALL ANALYSES CONDUCTED

Comparison of regression model statistics testing whether the number of cattle tested for brucellosis or the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult Gulf Coast tick life stage have a more significant effect on the number of Gulf Coast tick collection records

| Independent Variables | Cattle Tested P | Drought Threshold P |
|-----------------------|-----------------|---------------------|
| Cattle Tested, 50     | 0.906           | 0.196               |
| Cattle Tested, 100    | 0.700           | 0.108               |
| Cattle Tested, 150    | 0.560           | 0.065               |
| Cattle Tested, 200    | 0.502           | 0.048               |
| Cattle Tested, 250    | 0.478           | 0.040               |
| Cattle Tested, 300    | 0.486           | 0.037               |
| Cattle Tested, 350    | 0.536           | 0.040               |
| Cattle Tested, 400    | 0.612           | 0.046               |
| Cattle Tested, 450    | 0.677           | 0.047               |
| Cattle Tested, 500    | 0.776           | 0.053               |
| Cattle Tested, 550    | 0.919           | 0.078               |
| Cattle Tested, 600    | 0.942           | 0.166               |
| Cattle Tested, 650    | 0.756           | 0.374               |
| Cattle Tested, 700    | 0.684           | 0.446               |
| Cattle Tested, 750    | 0.584           | 0.365               |

The lower p-value indicates a stronger effect on the number of Gulf Coast tick collection records.

Comparison of regression model statistics used to analyze the effect of precipitation (cm) in a 90 county study area of Texas during the peak activity time of individual and combined Gulf Coast tick life stages on the number of Gulf Coast tick collection records

|                         | R             | egression Mod | lel           |
|-------------------------|---------------|---------------|---------------|
| Independent Variable    | Linear        | Quadratic     | Cubic         |
| Sum – Egg               | $R^2 = 0.014$ | $R^2 = 0.052$ | $R^2 = 0.112$ |
|                         | P = 0.663     | P = 0.707     | P = 0.688     |
| Sum – Larva             | $R^2 = 0.003$ | $R^2 = 0.023$ | $R^2 = 0.037$ |
|                         | P = 0.842     | P = 0.862     | P = 0.926     |
| Sum – Nymph             | $R^2 = 0.072$ | $R^2 = 0.089$ | $R^2 = 0.088$ |
|                         | P = 0.314     | P = 0.545     | P = 0.551     |
| Sum – Adult             | $R^2 = 0.039$ | $R^2 = 0.049$ | $R^2 = 0.065$ |
|                         | P = 0.462     | P = 0.722     | P = 0.839     |
| Sum – All Immatures     | $R^2 = 0.027$ | $R^2 = 0.129$ | $R^2 = 0.120$ |
|                         | P = 0.540     | P = 0.406     | P = 0.434     |
| Sum – All Stages        | $R^2 = 0.027$ | $R^2 = 0.129$ | $R^2 = 0.120$ |
| C                       | P = 0.540     | P = 0.406     | P = 0.434     |
| Sum – Lagged Adult      | $R^2 = 0.026$ | $R^2 = 0.041$ | $R^2 = 0.073$ |
|                         | P = 0.564     | P = 0.778     | P = 0.834     |
| Sum – Lagged All Stages | $R^2 = 0.001$ | $R^2 = 0.001$ | $R^2 = 0.001$ |
|                         | P = 0.920     | P = 0.992     | P = 0.994     |

|                |                |       |   |       | F              | Regressio | n Mo | del   |                |       |   |      |
|----------------|----------------|-------|---|-------|----------------|-----------|------|-------|----------------|-------|---|------|
| KBDI Threshold |                | Linea | r |       |                | Quad      |      | Cubic |                |       |   |      |
| 50             | $\mathbb{R}^2$ | 0.044 | Р | 0.492 | $\mathbb{R}^2$ | 0.061     | Р    | 0.731 | $\mathbb{R}^2$ | 0.062 | Р | 0.72 |
| 100            | $\mathbb{R}^2$ | 0.051 | Р | 0.459 | $\mathbb{R}^2$ | 0.100     | Р    | 0.591 | $\mathbf{R}^2$ | 0.102 | Р | 0.58 |
| 150            | $\mathbb{R}^2$ | 0.045 | Р | 0.484 | $\mathbb{R}^2$ | 0.071     | Р    | 0.692 | $\mathbb{R}^2$ | 0.070 | Р | 0.69 |
| 200            | $\mathbb{R}^2$ | 0.037 | Р | 0.530 | $\mathbb{R}^2$ | 0.047     | Р    | 0.788 | $\mathbb{R}^2$ | 0.044 | Р | 0.79 |
| 250            | $\mathbf{R}^2$ | 0.020 | Р | 0.644 | $\mathbf{R}^2$ | 0.020     | Р    | 0.902 | $\mathbf{R}^2$ | 0.023 | Р | 0.89 |
| 300            | $\mathbb{R}^2$ | 0.009 | Р | 0.762 | $\mathbb{R}^2$ | 0.028     | Р    | 0.866 | $\mathbb{R}^2$ | 0.292 | Р | 0.35 |
| 350            | $\mathbf{R}^2$ | 0.001 | Р | 0.915 | $\mathbb{R}^2$ | 0.067     | Р    | 0.709 | $\mathbf{R}^2$ | 0.291 | Р | 0.35 |
| 400            | $\mathbf{R}^2$ | 0.003 | Р | 0.849 | $\mathbf{R}^2$ | 0.116     | Р    | 0.539 | $\mathbf{R}^2$ | 0.226 | Р | 0.49 |
| 450            | $\mathbf{R}^2$ | 0.026 | Р | 0.599 | $\mathbf{R}^2$ | 0.148     | Р    | 0.448 | $\mathbf{R}^2$ | 0.152 | Р | 0.66 |
| 500            | $\mathbb{R}^2$ | 0.049 | Р | 0.468 | $\mathbb{R}^2$ | 0.132     | Р    | 0.494 | $\mathbf{R}^2$ | 0.153 | Р | 0.66 |
| 550            | $\mathbb{R}^2$ | 0.079 | Р | 0.352 | $\mathbb{R}^2$ | 0.117     | Р    | 0.536 | $\mathbb{R}^2$ | 0.185 | Р | 0.58 |
| 600            | $\mathbb{R}^2$ | 0.106 | Р | 0.277 | $\mathbb{R}^2$ | 0.110     | Р    | 0.559 | $\mathbb{R}^2$ | 0.266 | Р | 0.40 |
| 650            | $\mathbb{R}^2$ | 0.141 | Р | 0.207 | $\mathbb{R}^2$ | 0.162     | Р    | 0.414 | $\mathbb{R}^2$ | 0.237 | Р | 0.46 |
| 700            | $\mathbb{R}^2$ | 0.185 | Р | 0.143 | $\mathbb{R}^2$ | 0.210     | Р    | 0.308 | $\mathbb{R}^2$ | 0.251 | Р | 0.43 |
| 750            | $\mathbf{R}^2$ | 0.138 | Р | 0.212 | $\mathbf{R}^2$ | 0.157     | Р    | 0.425 | $\mathbf{R}^2$ | 0.227 | Р | 0.48 |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the egg stage of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following each peak activity time of the egg stage

| the larval stage |                |       |    |           |                |           |      |       |                |       |     |       |
|------------------|----------------|-------|----|-----------|----------------|-----------|------|-------|----------------|-------|-----|-------|
|                  |                |       |    |           | F              | Regressio | n Mo | del   |                |       |     |       |
| KBDI Threshold   |                | Linea | ır | Quadratic |                |           |      |       |                | Cu    | bic |       |
| 50               | $\mathbb{R}^2$ | 0.034 | Р  | 0.546     | $\mathbb{R}^2$ | 0.036     | Р    | 0.834 | $\mathbf{R}^2$ | 0.041 | Р   | 0.81  |
| 100              | $\mathbb{R}^2$ | 0.039 | Р  | 0.516     | $\mathbf{R}^2$ | 0.077     | Р    | 0.669 | $\mathbf{R}^2$ | 0.155 | Р   | 0.66  |
| 150              | $\mathbb{R}^2$ | 0.036 | Р  | 0.535     | $\mathbb{R}^2$ | 0.075     | Р    | 0.676 | $\mathbf{R}^2$ | 0.101 | Р   | 0.800 |
| 200              | $\mathbf{R}^2$ | 0.031 | Р  | 0.565     | $\mathbf{R}^2$ | 0.071     | Р    | 0.693 | $\mathbf{R}^2$ | 0.081 | Р   | 0.850 |
| 250              | $\mathbb{R}^2$ | 0.028 | Р  | 0.585     | $\mathbf{R}^2$ | 0.063     | Р    | 0.722 | $\mathbb{R}^2$ | 0.063 | Р   | 0.892 |
| 300              | $\mathbb{R}^2$ | 0.026 | Р  | 0.597     | $\mathbb{R}^2$ | 0.056     | Р    | 0.749 | $\mathbb{R}^2$ | 0.064 | Р   | 0.890 |
| 350              | $\mathbf{R}^2$ | 0.024 | Р  | 0.612     | $\mathbb{R}^2$ | 0.042     | Р    | 0.807 | $\mathbb{R}^2$ | 0.060 | Р   | 0.899 |
| 400              | $\mathbb{R}^2$ | 0.025 | Р  | 0.608     | $\mathbb{R}^2$ | 0.048     | Р    | 0.784 | $\mathbb{R}^2$ | 0.083 | Р   | 0.84  |
| 450              | $\mathbb{R}^2$ | 0.021 | Р  | 0.634     | $\mathbf{R}^2$ | 0.045     | Р    | 0.793 | $\mathbb{R}^2$ | 0.076 | Р   | 0.86  |
| 500              | $\mathbb{R}^2$ | 0.015 | Р  | 0.694     | $\mathbb{R}^2$ | 0.029     | Р    | 0.861 | $\mathbb{R}^2$ | 0.045 | Р   | 0.93  |
| 550              | $\mathbb{R}^2$ | 0.009 | Р  | 0.752     | $\mathbf{R}^2$ | 0.017     | Р    | 0.918 | $\mathbb{R}^2$ | 0.021 | Р   | 0.97  |
| 600              | $\mathbf{R}^2$ | 0.007 | Р  | 0.781     | $\mathbf{R}^2$ | 0.013     | Р    | 0.935 | $\mathbf{R}^2$ | 0.022 | Р   | 0.97  |
| 650              | $\mathbb{R}^2$ | 0.005 | Р  | 0.817     | $\mathbf{R}^2$ | 0.011     | Р    | 0.945 | $\mathbb{R}^2$ | 0.011 | Р   | 0.94  |
| 700              | $\mathbf{R}^2$ | 0.003 | Р  | 0.866     | $\mathbf{R}^2$ | 0.008     | Р    | 0.961 | $\mathbf{R}^2$ | 0.008 | Р   | 0.96  |
| 750              | $R^2$          | 0.002 | Р  | 0.875     | $R^2$          | 0.002     | Р    | 0.875 | $\mathbf{R}^2$ | 0.002 | Р   | 0.87  |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the larval stage of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the larval stage

| the nymphal stage |                |       |    |           |                |           |      |       |                |       |     |       |
|-------------------|----------------|-------|----|-----------|----------------|-----------|------|-------|----------------|-------|-----|-------|
|                   |                |       |    |           | F              | Regressio | n Mo | del   |                |       |     |       |
| KBDI Threshold    |                | Linea | ır | Quadratic |                |           |      |       |                | Cu    | bic |       |
| 50                | $\mathbb{R}^2$ | 0.010 | Р  | 0.740     | $\mathbb{R}^2$ | 0.026     | Р    | 0.876 | $\mathbf{R}^2$ | 0.019 | Р   | 0.911 |
| 100               | $\mathbb{R}^2$ | 0.015 | Р  | 0.691     | $\mathbb{R}^2$ | 0.015     | Р    | 0.927 | $\mathbf{R}^2$ | 0.151 | Р   | 0.67  |
| 150               | $\mathbb{R}^2$ | 0.015 | Р  | 0.688     | $\mathbb{R}^2$ | 0.023     | Р    | 0.890 | $\mathbb{R}^2$ | 0.100 | Р   | 0.802 |
| 200               | $\mathbf{R}^2$ | 0.016 | Р  | 0.678     | $\mathbb{R}^2$ | 0.049     | Р    | 0.778 | $\mathbf{R}^2$ | 0.075 | Р   | 0.865 |
| 250               | $\mathbb{R}^2$ | 0.018 | Р  | 0.665     | $\mathbf{R}^2$ | 0.072     | Р    | 0.686 | $\mathbf{R}^2$ | 0.073 | Р   | 0.868 |
| 300               | $\mathbb{R}^2$ | 0.018 | Р  | 0.665     | $\mathbf{R}^2$ | 0.073     | Р    | 0.683 | $\mathbf{R}^2$ | 0.083 | Р   | 0.84  |
| 350               | $\mathbb{R}^2$ | 0.017 | Р  | 0.671     | $\mathbf{R}^2$ | 0.048     | Р    | 0.780 | $\mathbb{R}^2$ | 0.084 | Р   | 0.842 |
| 400               | $\mathbb{R}^2$ | 0.018 | Р  | 0.662     | $\mathbf{R}^2$ | 0.040     | Р    | 0.813 | $\mathbf{R}^2$ | 0.112 | Р   | 0.770 |
| 450               | $\mathbb{R}^2$ | 0.017 | Р  | 0.673     | $\mathbf{R}^2$ | 0.033     | Р    | 0.845 | $\mathbf{R}^2$ | 0.086 | Р   | 0.83  |
| 500               | $\mathbb{R}^2$ | 0.013 | Р  | 0.710     | $\mathbf{R}^2$ | 0.023     | Р    | 0.889 | $\mathbf{R}^2$ | 0.038 | Р   | 0.948 |
| 550               | $\mathbb{R}^2$ | 0.009 | Р  | 0.757     | $\mathbf{R}^2$ | 0.015     | Р    | 0.926 | $\mathbf{R}^2$ | 0.018 | Р   | 0.982 |
| 600               | $\mathbf{R}^2$ | 0.007 | Р  | 0.782     | $\mathbb{R}^2$ | 0.013     | Р    | 0.936 | $\mathbf{R}^2$ | 0.020 | Р   | 0.979 |
| 650               | $\mathbf{R}^2$ | 0.005 | Р  | 0.818     | $\mathbb{R}^2$ | 0.011     | Р    | 0.945 | $\mathbf{R}^2$ | 0.011 | Р   | 0.94  |
| 700               | $\mathbf{R}^2$ | 0.003 | Р  | 0.866     | $\mathbf{R}^2$ | 0.008     | Р    | 0.961 | $R^2$          | 0.008 | Р   | 0.96  |
| 750               | $R^2$          | 0.002 | Р  | 0.875     | $\mathbf{R}^2$ | 0.002     | Р    | 0.875 | $\mathbf{R}^2$ | 0.002 | Р   | 0.87  |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the nymphal stage of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the nymphal stage

| collection records |                |       |   |       |                |           |      |       |                |       |       |      |  |
|--------------------|----------------|-------|---|-------|----------------|-----------|------|-------|----------------|-------|-------|------|--|
|                    |                |       |   |       | F              | Regressio | n Mo | del   |                |       |       |      |  |
| KBDI Threshold     |                |       |   |       |                |           |      |       |                |       | lubic |      |  |
| 50                 | $\mathbb{R}^2$ | 0.239 | Р | 0.076 | $\mathbb{R}^2$ | 0.358     | Р    | 0.087 | $\mathbb{R}^2$ | 0.372 | Р     | 0.07 |  |
| 100                | $R^2$          | 0.300 | Р | 0.043 | $\mathbf{R}^2$ | 0.432     | Р    | 0.045 | $\mathbb{R}^2$ | 0.457 | Р     | 0.03 |  |
| 150                | $R^2$          | 0.345 | Р | 0.027 | $\mathbf{R}^2$ | 0.458     | Р    | 0.034 | $\mathbb{R}^2$ | 0.577 | Р     | 0.02 |  |
| 200                | $R^2$          | 0.367 | Р | 0.022 | $\mathbf{R}^2$ | 0.450     | Р    | 0.037 | $\mathbb{R}^2$ | 0.512 | Р     | 0.05 |  |
| 250                | $\mathbf{R}^2$ | 0.377 | Р | 0.019 | $\mathbf{R}^2$ | 0.427     | Р    | 0.047 | $\mathbb{R}^2$ | 0.436 | Р     | 0.11 |  |
| 300                | $\mathbf{R}^2$ | 0.381 | Р | 0.019 | $\mathbb{R}^2$ | 0.401     | Р    | 0.060 | $\mathbf{R}^2$ | 0.405 | Р     | 0.14 |  |
| 350                | $\mathbf{R}^2$ | 0.375 | Р | 0.020 | $\mathbb{R}^2$ | 0.376     | Р    | 0.075 | $\mathbb{R}^2$ | 0.419 | Р     | 0.12 |  |
| 400                | $\mathbf{R}^2$ | 0.368 | Р | 0.021 | $\mathbb{R}^2$ | 0.369     | Р    | 0.080 | $\mathbb{R}^2$ | 0.436 | Р     | 0.11 |  |
| 450                | $R^2$          | 0.376 | Р | 0.020 | $\mathbb{R}^2$ | 0.378     | Р    | 0.074 | $\mathbb{R}^2$ | 0.431 | Р     | 0.11 |  |
| 500                | $\mathbb{R}^2$ | 0.377 | Р | 0.020 | $\mathbb{R}^2$ | 0.380     | Р    | 0.072 | $\mathbb{R}^2$ | 0.396 | Р     | 0.15 |  |
| 550                | $\mathbb{R}^2$ | 0.353 | Р | 0.025 | $\mathbb{R}^2$ | 0.368     | Р    | 0.080 | $\mathbb{R}^2$ | 0.368 | Р     | 0.18 |  |
| 600                | $R^2$          | 0.261 | Р | 0.062 | $\mathbb{R}^2$ | 0.309     | Р    | 0.131 | $\mathbb{R}^2$ | 0.425 | Р     | 0.12 |  |
| 650                | $R^2$          | 0.133 | Р | 0.200 | $\mathbb{R}^2$ | 0.138     | Р    | 0.441 | $\mathbb{R}^2$ | 0.384 | Р     | 0.16 |  |
| 700                | $R^2$          | 0.099 | Р | 0.273 | $\mathbb{R}^2$ | 0.108     | Р    | 0.535 | $\mathbb{R}^2$ | 0.108 | Р     | 0.75 |  |
| 750                | $\mathbf{R}^2$ | 0.108 | Р | 0.252 | $\mathbf{R}^2$ | 0.108     | Р    | 0.252 | $\mathbf{R}^2$ | 0.108 | Р     | 0.25 |  |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult stage of the Gulf Coast tick on the number of Gulf Coast tick collection records

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of all immature stages of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the egg stage

|                |                |       |   |       | F              | Regressio | n Mo  | del   |                |       |     |      |
|----------------|----------------|-------|---|-------|----------------|-----------|-------|-------|----------------|-------|-----|------|
| KBDI Threshold |                | Linea | r |       |                | Quad      | ratic |       |                | Cu    | bic |      |
| 50             | $\mathbb{R}^2$ | 0.008 | Р | 0.771 | $\mathbb{R}^2$ | 0.026     | Р     | 0.877 | $\mathbb{R}^2$ | 0.021 | Р   | 0.90 |
| 100            | $\mathbb{R}^2$ | 0.010 | Р | 0.744 | $\mathbb{R}^2$ | 0.012     | Р     | 0.943 | $\mathbf{R}^2$ | 0.094 | Р   | 0.81 |
| 150            | $\mathbf{R}^2$ | 0.009 | Р | 0.759 | $\mathbb{R}^2$ | 0.009     | Р     | 0.956 | $\mathbb{R}^2$ | 0.064 | Р   | 0.89 |
| 200            | $\mathbf{R}^2$ | 0.008 | Р | 0.768 | $\mathbf{R}^2$ | 0.010     | Р     | 0.953 | $\mathbf{R}^2$ | 0.052 | Р   | 0.91 |
| 250            | $\mathbf{R}^2$ | 0.009 | Р | 0.759 | $\mathbf{R}^2$ | 0.011     | Р     | 0.948 | $\mathbf{R}^2$ | 0.042 | Р   | 0.93 |
| 300            | $\mathbb{R}^2$ | 0.009 | Р | 0.757 | $\mathbb{R}^2$ | 0.009     | Р     | 0.955 | $\mathbf{R}^2$ | 0.030 | Р   | 0.96 |
| 350            | $\mathbb{R}^2$ | 0.010 | Р | 0.745 | $\mathbb{R}^2$ | 0.010     | Р     | 0.949 | $\mathbf{R}^2$ | 0.022 | Р   | 0.97 |
| 400            | $\mathbb{R}^2$ | 0.016 | Р | 0.683 | $\mathbf{R}^2$ | 0.016     | Р     | 0.924 | $\mathbb{R}^2$ | 0.030 | Р   | 0.96 |
| 450            | $\mathbf{R}^2$ | 0.025 | Р | 0.608 | $\mathbf{R}^2$ | 0.029     | Р     | 0.861 | $\mathbf{R}^2$ | 0.051 | Р   | 0.91 |
| 500            | $\mathbb{R}^2$ | 0.030 | Р | 0.570 | $\mathbb{R}^2$ | 0.044     | Р     | 0.798 | $\mathbf{R}^2$ | 0.078 | Р   | 0.85 |
| 550            | $\mathbb{R}^2$ | 0.039 | Р | 0.519 | $\mathbb{R}^2$ | 0.078     | Р     | 0.666 | $\mathbf{R}^2$ | 0.100 | Р   | 0.80 |
| 600            | $\mathbb{R}^2$ | 0.053 | Р | 0.451 | $\mathbb{R}^2$ | 0.123     | Р     | 0.517 | $\mathbb{R}^2$ | 0.142 | Р   | 0.69 |
| 650            | $\mathbb{R}^2$ | 0.087 | Р | 0.329 | $\mathbb{R}^2$ | 0.204     | Р     | 0.319 | $\mathbb{R}^2$ | 0.212 | Р   | 0.52 |
| 700            | $\mathbf{R}^2$ | 0.144 | Р | 0.201 | $\mathbf{R}^2$ | 0.228     | Р     | 0.274 | $\mathbf{R}^2$ | 0.231 | Р   | 0.47 |
| 750            | $\mathbf{R}^2$ | 0.139 | Р | 0.210 | $R^2$          | 0.152     | Р     | 0.437 | $\mathbf{R}^2$ | 0.227 | Р   | 0.48 |

|                |                |       |   |       | F              | Regressio | n Mo | odel  |                |       |   |       |
|----------------|----------------|-------|---|-------|----------------|-----------|------|-------|----------------|-------|---|-------|
| KBDI Threshold | Linear         |       |   |       |                | Quad      |      | Cubic |                |       |   |       |
| 50             | $\mathbb{R}^2$ | 0.000 | Р | 0.980 | $\mathbb{R}^2$ | 0.021     | Р    | 0.899 | $\mathbb{R}^2$ | 0.020 | Р | 0.904 |
| 100            | $\mathbb{R}^2$ | 0.001 | Р | 0.920 | $\mathbf{R}^2$ | 0.019     | Р    | 0.907 | $\mathbf{R}^2$ | 0.020 | Р | 0.903 |
| 150            | $\mathbb{R}^2$ | 0.006 | Р | 0.807 | $\mathbb{R}^2$ | 0.034     | Р    | 0.841 | $\mathbf{R}^2$ | 0.050 | Р | 0.922 |
| 200            | $\mathbb{R}^2$ | 0.011 | Р | 0.736 | $\mathbb{R}^2$ | 0.051     | Р    | 0.769 | $\mathbf{R}^2$ | 0.073 | Р | 0.869 |
| 250            | $\mathbb{R}^2$ | 0.012 | Р | 0.724 | $\mathbb{R}^2$ | 0.056     | Р    | 0.749 | $\mathbf{R}^2$ | 0.082 | Р | 0.848 |
| 300            | $\mathbb{R}^2$ | 0.011 | Р | 0.739 | $\mathbb{R}^2$ | 0.058     | Р    | 0.743 | $\mathbf{R}^2$ | 0.084 | Р | 0.842 |
| 350            | $\mathbb{R}^2$ | 0.007 | Р | 0.790 | $\mathbb{R}^2$ | 0.052     | Р    | 0.766 | $\mathbb{R}^2$ | 0.067 | Р | 0.883 |
| 400            | $\mathbf{R}^2$ | 0.001 | Р | 0.913 | $\mathbf{R}^2$ | 0.029     | Р    | 0.862 | $\mathbf{R}^2$ | 0.031 | Р | 0.96  |
| 450            | $\mathbb{R}^2$ | 0.001 | Р | 0.927 | $\mathbb{R}^2$ | 0.012     | Р    | 0.941 | $\mathbb{R}^2$ | 0.015 | Р | 0.987 |
| 500            | $\mathbf{R}^2$ | 0.008 | Р | 0.774 | $\mathbf{R}^2$ | 0.009     | Р    | 0.955 | $\mathbf{R}^2$ | 0.030 | Р | 0.962 |
| 550            | $\mathbb{R}^2$ | 0.028 | Р | 0.586 | $\mathbb{R}^2$ | 0.033     | Р    | 0.845 | $\mathbb{R}^2$ | 0.074 | Р | 0.86  |
| 600            | $\mathbb{R}^2$ | 0.063 | Р | 0.409 | $\mathbb{R}^2$ | 0.092     | Р    | 0.619 | $\mathbb{R}^2$ | 0.138 | Р | 0.704 |
| 650            | $\mathbb{R}^2$ | 0.121 | Р | 0.245 | $\mathbb{R}^2$ | 0.163     | Р    | 0.412 | $\mathbb{R}^2$ | 0.202 | Р | 0.544 |
| 700            | $\mathbf{R}^2$ | 0.185 | Р | 0.142 | $\mathbf{R}^2$ | 0.187     | Р    | 0.356 | $\mathbf{R}^2$ | 0.194 | Р | 0.563 |
| 750            | $R^2$          | 0.195 | Р | 0.130 | $\mathbf{R}^2$ | 0.197     | Р    | 0.334 | $\mathbf{R}^2$ | 0.198 | Р | 0.554 |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the all life stages of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the egg stage

|                |                |       |   |       | F              | Regressio | n Mo | del   |                |       |     |      |
|----------------|----------------|-------|---|-------|----------------|-----------|------|-------|----------------|-------|-----|------|
| KBDI Threshold |                | Linea | r |       | r              | Quad      |      | uu    |                | Cu    | bic |      |
| 50             | $R^2$          | 0.075 | Р | 0.366 | $\mathbf{R}^2$ | 0.174     | Р    | 0.385 | $\mathbf{R}^2$ | 0.172 | Р   | 0.39 |
| 100            | $\mathbf{R}^2$ | 0.134 | Р | 0.220 | $\mathbb{R}^2$ | 0.194     | Р    | 0.341 | $\mathbf{R}^2$ | 0.185 | Р   | 0.35 |
| 150            | $\mathbf{R}^2$ | 0.166 | Р | 0.167 | $\mathbb{R}^2$ | 0.186     | Р    | 0.358 | $\mathbb{R}^2$ | 0.413 | Р   | 0.16 |
| 200            | $\mathbf{R}^2$ | 0.187 | Р | 0.140 | $\mathbf{R}^2$ | 0.187     | Р    | 0.354 | $\mathbf{R}^2$ | 0.435 | Р   | 0.14 |
| 250            | $\mathbf{R}^2$ | 0.200 | Р | 0.126 | $\mathbb{R}^2$ | 0.207     | Р    | 0.314 | $\mathbf{R}^2$ | 0.408 | Р   | 0.17 |
| 300            | $\mathbb{R}^2$ | 0.202 | Р | 0.123 | $\mathbb{R}^2$ | 0.237     | Р    | 0.258 | $\mathbf{R}^2$ | 0.363 | Р   | 0.23 |
| 350            | $\mathbb{R}^2$ | 0.200 | Р | 0.125 | $\mathbb{R}^2$ | 0.279     | Р    | 0.195 | $\mathbf{R}^2$ | 0.327 | Р   | 0.29 |
| 400            | $\mathbb{R}^2$ | 0.196 | Р | 0.129 | $\mathbb{R}^2$ | 0.319     | Р    | 0.146 | $\mathbf{R}^2$ | 0.327 | Р   | 0.29 |
| 450            | $\mathbf{R}^2$ | 0.186 | Р | 0.141 | $\mathbb{R}^2$ | 0.340     | Р    | 0.125 | $\mathbf{R}^2$ | 0.345 | Р   | 0.26 |
| 500            | $\mathbb{R}^2$ | 0.170 | Р | 0.161 | $\mathbb{R}^2$ | 0.299     | Р    | 0.169 | $\mathbf{R}^2$ | 0.388 | Р   | 0.20 |
| 550            | $R^2$          | 0.154 | Р | 0.185 | $\mathbb{R}^2$ | 0.204     | Р    | 0.320 | $\mathbf{R}^2$ | 0.355 | Р   | 0.24 |
| 600            | $R^2$          | 0.130 | Р | 0.225 | $\mathbb{R}^2$ | 0.174     | Р    | 0.384 | $\mathbb{R}^2$ | 0.191 | Р   | 0.57 |
| 650            | $\mathbb{R}^2$ | 0.088 | Р | 0.324 | $\mathbb{R}^2$ | 0.166     | Р    | 0.403 | $\mathbb{R}^2$ | 0.182 | Р   | 0.59 |
| 700            | $\mathbb{R}^2$ | 0.062 | Р | 0.413 | $\mathbb{R}^2$ | 0.154     | Р    | 0.434 | $\mathbb{R}^2$ | 0.154 | Р   | 0.43 |
| 750            | $\mathbf{R}^2$ | 0.027 | Р | 0.591 | $\mathbf{R}^2$ | 0.027     | Р    | 0.591 | $\mathbf{R}^2$ | 0.027 | Р   | 0.59 |

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of the adult stage of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the following year

Comparison of regression model statistics used to analyze the effect of the total number of days above corresponding KBDI thresholds in a 90 county study area of Texas during the peak activity time of all life stages of the Gulf Coast tick on the number of Gulf Coast tick collection records that occurred the year following the beginning of each peak activity time of the adult stage

|                | _              |       |    |       | F              | Regressio | n Mo  | del   |                |       |     |       |
|----------------|----------------|-------|----|-------|----------------|-----------|-------|-------|----------------|-------|-----|-------|
| KBDI Threshold |                | Linea | ır |       |                | Quad      | ratic |       |                | Cu    | bic |       |
| 50             | $\mathbf{R}^2$ | 0.020 | Р  | 0.643 | $\mathbb{R}^2$ | 0.030     | Р     | 0.858 | $\mathbb{R}^2$ | 0.028 | Р   | 0.869 |
| 100            | $\mathbf{R}^2$ | 0.041 | Р  | 0.505 | $\mathbf{R}^2$ | 0.053     | Р     | 0.761 | $\mathbf{R}^2$ | 0.056 | Р   | 0.749 |
| 150            | $\mathbb{R}^2$ | 0.057 | Р  | 0.430 | $\mathbb{R}^2$ | 0.132     | Р     | 0.494 | $\mathbb{R}^2$ | 0.132 | Р   | 0.494 |
| 200            | $\mathbf{R}^2$ | 0.073 | Р  | 0.373 | $\mathbb{R}^2$ | 0.213     | Р     | 0.302 | $\mathbf{R}^2$ | 0.213 | Р   | 0.302 |
| 250            | $\mathbf{R}^2$ | 0.087 | Р  | 0.328 | $\mathbb{R}^2$ | 0.256     | Р     | 0.229 | $\mathbb{R}^2$ | 0.256 | Р   | 0.229 |
| 300            | $\mathbf{R}^2$ | 0.098 | Р  | 0.299 | $\mathbb{R}^2$ | 0.259     | Р     | 0.224 | $\mathbb{R}^2$ | 0.526 | Р   | 0.070 |
| 350            | $\mathbf{R}^2$ | 0.112 | Р  | 0.264 | $\mathbb{R}^2$ | 0.261     | Р     | 0.221 | $\mathbb{R}^2$ | 0.406 | Р   | 0.178 |
| 400            | $\mathbf{R}^2$ | 0.137 | Р  | 0.212 | $\mathbb{R}^2$ | 0.335     | Р     | 0.130 | $\mathbb{R}^2$ | 0.426 | Р   | 0.155 |
| 450            | $\mathbf{R}^2$ | 0.161 | Р  | 0.175 | $\mathbb{R}^2$ | 0.430     | Р     | 0.060 | $\mathbb{R}^2$ | 0.497 | Р   | 0.090 |
| 500            | $\mathbf{R}^2$ | 0.163 | Р  | 0.171 | $\mathbb{R}^2$ | 0.456     | Р     | 0.048 | $\mathbb{R}^2$ | 0.532 | Р   | 0.066 |
| 550            | $\mathbf{R}^2$ | 0.162 | Р  | 0.172 | $\mathbb{R}^2$ | 0.419     | Р     | 0.066 | $\mathbb{R}^2$ | 0.552 | Р   | 0.055 |
| 600            | $\mathbf{R}^2$ | 0.169 | Р  | 0.163 | $\mathbb{R}^2$ | 0.344     | Р     | 0.122 | $\mathbb{R}^2$ | 0.443 | Р   | 0.137 |
| 650            | $\mathbb{R}^2$ | 0.201 | Р  | 0.124 | $\mathbb{R}^2$ | 0.320     | Р     | 0.145 | $\mathbb{R}^2$ | 0.348 | Р   | 0.257 |
| 700            | $\mathbf{R}^2$ | 0.247 | Р  | 0.084 | $\mathbf{R}^2$ | 0.258     | Р     | 0.224 | $\mathbf{R}^2$ | 0.306 | Р   | 0.326 |
| 750            | $R^2$          | 0.227 | Р  | 0.099 | $R^2$          | 0.239     | Р     | 0.255 | $R^2$          | 0.262 | Р   | 0.410 |

# VITA

| Name:          | Jordan McQuade Coburn                                                                                   |
|----------------|---------------------------------------------------------------------------------------------------------|
| Address:       | Texas A&M University, Department of Entomology, 2475 TAMU, College Station, TX 77843-2475               |
| Email Address: | jordan.coburn@us.army.mil                                                                               |
| Education:     | B.S., Texas A&M University, Entomology, May 2007<br>M.S., Texas A&M University, Entomology, August 2009 |