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ABSTRACT

Landau-Zener Transitions in Noisy Environments and in Many-body Systems.

(May 2009)

Deqiang Sun, B.S., Nanjing University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Valery L. Pokrovsky

This dissertation discusses the Landau-Zener (LZ) theory and its application in

noisy environments and in many-body systems. The first project considers the effect

of fast quantum noise on LZ transitions. There are two important time intervals

separated by the characteristic LZ time. For each interval we derive and solve the

evolution equation, and match the solutions at the boundaries to get a complete

solution. Outside the LZ time interval, we derive the master equation, which differs

from the classical equation by a quantum commutation term. Inside the LZ time

interval, the mixed longitudinal-transverse noise correlation renormalizes the LZ gap

and the system evolves according to the renormalized LZ gap. In the extreme quan-

tum regime at zero temperature our theory gives a beautiful result which coincides

with that of other authors. Our initial attempts to solve two experimental puzzles

- an isotope effect and the quantized hysteresis curve of a single molecular magnet -

are also discussed.

The second project considers an ultracold dilute Fermi gas in a magnetic field

sweeping across the broad Feshbach resonance. The broad resonance condition allows

us to use the single mode approximation and to neglect the energy dispersion of the

fermions. We then propose the Global Spin Model Hamiltonian, whose ground state

we solve exactly, which yields the static limit properties of the BEC-BCS crossover.
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We also study the dynamics of the Global Spin Model by converting it to a LZ

problem. The resulting molecular production from the initial fermions is described

by a LZ-like formula with a strongly renormalized LZ gap that is independent of the

initial fermion density. We predict that molecular production during a field-sweep

strongly depends on the initial value of magnetic field. We predict that in the inverse

process of molecular dissociation, immediately after the sweeping stops there appear

Cooper pairs with parallel electronic spins and opposite momenta.
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CHAPTER I

INTRODUCTION TO TWO-STATE SYSTEMS AND LANDAU-ZENER

THEORY

A. Outline of this dissertation

The remaining sections of this chapter gives an introduction to Landau-Zener

theory. First we discuss the Landau-Zener model in the time-dependent two-state

systems. The static limit of LZ problem is then presented with great details. We

also present the solution to the LZ equation by solving directly the Weber equation

and by a semiclassical approach.

We apply the LZ theory to two systems which attracted attention recently. The

first one is the single molecular magnet, and the second one is BCS-BEC crossover.

In Chapter II we will discuss the part related to molecular magnets and in Chapter

III we will discuss the BCS-BEC crossover.

Chapter II discusses the LZ theory in the noisy environment. The review

and motivation of this problem is first given. We focus on the fast and quantum

noise. We study the characteristic time for the noise itself, and for the interaction

between the noise and the two-level system. Comparing with the characteristic LZ

time, the evolution of the state is separated into two intervals, i.e., inside or outside

(−τLZ ,+τLZ). Inside this interval, we then derive the master equation by using a

heuristic approach and solving a simplified microscopic Hamiltonian. Outside this

interval we find that the evolution is equivalent to a LZ transition with a renormalized

LZ gap due to the correlation between longitudinal and transverse noise. We also

present an initial calculation on longitudinal-longitudinal correlation, which can be

This dissertation follows the style of Physical Review Letters.



2

neglected for weak noise though. The solution in each interval is studied and then

matched at boundaries to give a complete picture of the evolution. The final state

population and transition probability can reproduce previous results on fast classical

noise, on pure LZ transitions, and on static limit. Especially our solution reproduces

the same result obtained by other authors for the zero temperature situation. Our

theory on the LZ transitions in a noisy environment is related to single molecular

magnet. We discuss the application of our theory to the explanation of the isotope

effect and the quantized hysteresis curve.

Chapter III discusses the untracold dilute fermi gas undergoing a broad Fesh-

bach resonance. A short introduction is given to bosonic and fermionic fluidity and

the connection between the two ends of superfluidity. The interaction of fermion

atom with the magnetic field is explained. We focus on the broad Feshbach reso-

nance which belongs to a strong coupling regime. We argue that the single mode

approximation and neglection of fermion dispersion are appropriate under the broad

Feshbach resonance condition. After the two approximations on the Hamiltonian,

we propose the Global Spin Model and solve the static problem, which represents

the static limit of the BEC-BCS crossover. For the dynamic problem, we convert

it to a LZ problem and give a complete solution to this molecular production and

dissociation problem. The solution represents a LZ-like formula with a strongly

renormalized LZ gap that is independent of the initial fermion density. In both the

static and dynamic situations, we estimated the cutoff momentum for the available

states and slightly improved our previous estimate on this cutoff momentum to the

current estimation. We conclude with our prediction that molecular production dur-

ing a field-sweep strongly depends on the initial value of magnetic field, and that in

the inverse process of molecular dissociation, immediately after the sweeping stops

there appear Cooper pairs with parallel electronic spins and opposite momenta.
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Finally Chapter IV gives the summary and conclusion on this research disser-

tation, and a brief outlook.

B. Quantum dynamics of two-state system

Two level quantum mechanical system plays an important role in physics funda-

mentals. The two-state problems are often encountered in quantum optics, magnetic

resonance, atomic collisions and other areas of scientific research. The solutions

of the time-dependent Schrodinger wave equation are hence important in quantum

dynamics. The general time-dependent Schrodinger equation has the form

i�
d

dt
|Ψ〉 = H |Ψ〉 . (1.1)

Since it is a two level system, the matrix form is

i�
d

dt

⎛
⎜⎝ A1

A2

⎞
⎟⎠ =

⎛
⎜⎝ H11 H12

H21 H22

⎞
⎟⎠

⎛
⎜⎝ A1

A2

⎞
⎟⎠ (1.2)

where A1 and A2 are, in the space spanned by basis |ϕ1〉 and |ϕ2〉, the complex

components of the wavefunction |Ψ〉

|Ψ〉 = A1 |ϕ1〉 + A2 |ϕ2〉 =

⎛
⎜⎝ A1

A2

⎞
⎟⎠ (1.3)

and H11,...,H22 are matrix elements of the Hamilonian operator H

H =

⎛
⎜⎝ H11 H12

H21 H22

⎞
⎟⎠ . (1.4)

In general all these components and matrix elements depend on t. The populations

of each state are |A1(t)|2 and |A2(t)|2. Usually the initial condition is such that the
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system is at ground state:

|A2(−∞)| = 1, |A1(−∞)| = 0 (1.5)

For a realistic process, the matrix elements Hij usually show a complicated

dependence on time t through other physical parameters and that makes it difficult

to obtain an exact solution for equation (1.2).

The simplest nontrivial case for which an exact solution for Eq. (1.2) can be

found is when

H22 −H11 = 0.

Then this system has two stationary levels and couples to a time-dependent in-

teraction, if Hij is real Hij = Hji, which usually means the system involves in a

strong-coupling or is close to a resonance. It can be easily calculated. By a phase

transformation

Ai = aie
[−i

∫
Hiidt], (1.6)

the time-dependent Schrodinger equation (1.2) becomes

iȧ1 = H12a2e
[−i

∫
(H22−H11)dt] = H12a2,

iȧ2 = H21a1e
[+i

∫
(H22−H11)dt] = H21a1.

And by taking one more differentiation respecting to time t, we have a variable

separated differential equation for each coefficient ai:

äi − Ḣij

Hij
ȧi + |Hij|2ai = 0,

where Hij = |Hij|eiν with ν defined as phase. For the special case of ν ≈ 0, or

H12 ≈ H21, the solution that satisfies the initial condition (1.5) is a1=cos[
∫
H12/�dt],

a2=−i sin[
∫
H12/�dt]. Together with the transformation (1.6), we can see that the

diagonal matrix element provides only a phase shift to amplitude of each state and
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this amplitude couples only to the time-dependent interaction. If the phase factor is

not close to 0 and is not very large, this problem becomes much harder, though it is

almost solved [1, 2, 3] in the case of a phase factor linear in time.

There exist various models for which an exact or approximate solution is studied

and discovered [4, 5, 6, 7, 8, 9]. Here some important models with simple forms of

Hij are listed below in Table I.

Table I. Examples of some models of Hamiltonian for time-dependent two-state prob-

lem. All parameters are constant. Note that only the amplitude of H12 is

explicitly written and the phase of H12 is implicitly included. This is also

the assumption through all the following text. The reason is that in the

Landau-Zener Model H12 always appear together with its complex conjugate

as H12H
†
21 in the calculation of population.

Model H22 −H11 H12 Refs.

Rosen-Zener β Δsech(γt) Rosen, Zener [10]

Landau-Zener α(t− t0) Δ Landau, Zener [6, 7]

Demkov β Δe−γt Demkov [9]

Nikitin αe−γt + β Δ Nikitin [8]

Exponential αe−γt + β Δe−γt George [5]

The model of considerable importance is the Landau-Zener model [6, 7], which

provides an approximate solution to equation (1.2) under the assumption that

H22 −H11 = α(t− t0), H12 = Δ,where α and Δ are time-independent. (1.7)

This theory is also sometimes referred as Landau-Zener-Stueckelberg theory [11] by

other authors. For abbreviation purpose, we will call it LZ theory hereafter. As

mentioned before, it has a broad range of application and has long been applied to
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various problems since it’s proposed. In the last decade, it was actively applied to the

quantum molecular hysteresis of nanomagnets [12, 13, 14], to the charge transport

properties of various kinds of nanodevices [15, 16, 17], and to the ultracold fermi gas

[18, 19], and to the Qubit control [20, 21]. The LZ theory is one of basic dynamic

problems of quantum mechanics.

Generally, this theory is useful for problems when the energy curves seem to

cross. Although H22 −H11 = α(t− t0) could incorporate complicated energy levels,

realistic encounters are that both energy levels are approximately linear at least near

crossing region.

If the Hamiltonian H is time-independent but depends on some physical pa-

rameter, and if the two unperturbed levels cross each other when this physical pa-

rameter changes, the perturbed levels will “repel” each other to avoid the crossing,

as explained in section C. This is the static situation or the adiabatic limit of the

dynamic situation. If this physical parameter becomes time-dependent and sweeps

through the crossing point, the behavior of the system will be different depending

on how fast the sweep is and how large the LZ gap is. As will be shown in sec-

tion D, supposing the velocity this parameter is the only experiment controllable

variable(which means the LZ gap is not varying), the fast sweeping drives the sys-

tem evolves according to the unperturbed(or so called diabatic) curve, while the slow

sweeping drives the system evolves according to the perturbed(or so called adiabatic)

curve. Close to the crossing region, transitions between the two states are induced by

the non-diagonal matrix element, which causes the level repulsion in adiabatic limit.

The repulsion of levels is also called avoided crossing of levels. If the velocity of this

physical parameter is not fast or slow, Landau-Zener model gives the asymptotic

solution.

Assuming Δ can be neglected in the Landau-Zener model, i.e. Δ = 0, and the
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other condition H22 −H11 = α(t− t0) is the same, we have a two level system with

two levels crossing each other at time t0. These two states(levels) are called diabatic

states(levels), like curve E1 and E2 explained in section C. So, if the diabatic state

is the ground state, i.e., the lower energy state, at time smaller than t0, it occurs to

be a higher energy state, at time larger than t0. The particle placed into a diabatic

state can follow it in time if Δ = 0. But any perturbation will destroy this state and

drive the system to the lower energy state if the transaction is allowed by the system

symmetry. This means that the assumption of Δ = 0 is not correct. As long as the

diagonal terms have the relation similar to the first equation in LZ assumption (1.7),

the non-diagonal elements must be considered. Specifically to molecular system, Von

Neumann and Wigner in 1929 proved the non-crossing rule [22, 23], which states:

Potential energy curves corresponding to electronic states of the same symmetry

cannot cross, unless the crossing is an accidental event. The reason follows. Close to

the crossing point the next order perturbation or approximation in the Hamiltonian,

which is previously neglected, becomes important and the next order expansion de-

stroys the crossing. In order for the crossing to take place, the constraints H11 = H22

and H12 = H21 = 0 at the crossing point must be satisfied simultaneously, which is

possible only if the number of parameters is more than one. If H11(R0) = H22(R0) at

crossing point where some parameter, say R, takes value R0, then there is no reason

to require H12(R0) = 0.This means the non-crossing rule is enforced for diatomic

molecule since there is only one parameter, the internuclear separation. For poly-

atomic system, there are sufficient parameters available to achieve degeneracy, so the

non-crossing rule is not enforced and states of different symmetry may cross. With

more avoided crossings seen in polyatomic system, the non-crossing rule is extended

in polyatomic system but to what extension is still arguable [24, 25, 26]. This topic

will not be discussed here.
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C. Static properties of two-state system

Now let us look at the situation that Hamiltonian is same as LZ Hamiltonian

with time substituted by a time-independent parameter. Let us now assume

H22 −H11 = η(R− R0),Δ = H12 �= 0,where η and Δ are time-independent. (1.8)

Hamiltonian is a linear function of some parameter R and the energy curves cross

at value R0. Δ in general is also a function of R. This is an exactly solvable static

problem. For the close reference, the solution is reviewed here.

Suppose the two normalized orthogonal wave functions |ϕ1〉 and |ϕ2〉 are the

eigenfunctions of Hamiltonian H, before the terms H12 and H21 are switched on. In

reality, these functions need also be selected such that they are orthogonal to other

states. The action of H12 and H21 (or Δ) is switched on when system is close to

the crossing point. |ϕ1〉 and |ϕ2〉 can serve as basis. Denote them as |1〉 =

⎛
⎜⎝ 1

0

⎞
⎟⎠

and |2〉 =

⎛
⎜⎝ 0

1

⎞
⎟⎠. According to the Hermitian property, H11 and H22 are both real.

Denote them by E1 and E2. H11 = E1 = 〈ϕ1|H |ϕ1〉. H22 = E2 = 〈ϕ2|H |ϕ2〉. Then

Schrodinger equation is now

E

⎛
⎜⎝ C1

C2

⎞
⎟⎠ =

⎛
⎜⎝ E1 H12

H21 E2

⎞
⎟⎠

⎛
⎜⎝ C1

C2

⎞
⎟⎠ , (1.9)

where C1 and C2 are the coefficients of eigenfunction of H expanded on |ϕ1〉 and |ϕ2〉.
In the view of perturbation theory, Hamiltonian H can be divided into two parts

H = H0 +H ′, (1.10)
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where H0 =

⎛
⎜⎝ E1 0

0 E2

⎞
⎟⎠ can be considered as the unperturbed term, and H ′ =

⎛
⎜⎝ 0 H12

H21 0

⎞
⎟⎠ can be considered as the perturbation term. In other words, (E1, E2)

and (|ϕ1〉, |ϕ2〉) are the eigenenergies and eigenstates of H0. Let 〈1|H |2〉 = |Δ| e−iγ ,

or equivalently |Δ| and γ are defined as amplitude and phase of H12.

Working in the representation of H0 where |1〉 and |2〉 are basis, without use

of perturbation method, we have the following exact solution, with the eigenvalues

given by

E± =
1

2
[(E1 + E2) ±

√
(E1 − E2)2 + 4 |Δ|2 = Ec ±

√
d2 + |Δ|2, (1.11)

and the eigenstates given by

∣∣ψ−〉 =

⎛
⎜⎝ cos θ

2

− sin θ
2
eiγ

⎞
⎟⎠ ; and

∣∣ψ+

〉
=

⎛
⎜⎝ sin θ

2

cos θ
2
eiγ

⎞
⎟⎠ ; (1.12)

where
∣∣ψ±〉 is the eigenstate corresponding to E± in the H0 representation, and Ec,

d and θ are defined such that

Ec =
1

2
(E1 + E2) =

1

2
(H11 +H22), (1.13)

d =
1

2
|(E2 −E1)| =

1

2
|(H11 +H22)|, (1.14)

tanθ =
|Δ|
d
, (1.15)

and H12 = |Δ| eiγ.

Again from perspective of perturbation theory, we can call E1 and E2 as “un-

perturbed levels”, and call E+ and E− as “perturbed levels”, though they are solved

exactly without approximation.



10

When d/Δ is large, θ is small, tanθ ≈ 0 and we have

E± = Ec ± d,∣∣ψ+,−
〉

= |2, 1〉 ∓ 1

2
θ |1, 2〉 .

(1.16)

As it is seen from Eq. (1.16), if d is large, or equivalently the system is far from

crossing point, the energy of perturbed states E± only slightly differs from that

of unperturbed states E1,2, and the perturbed states
∣∣ψ±〉 are almost same as the

unperturbed states
∣∣ψ1,2

〉
. While at the crossing point, d = 0, Eqs. (1.11, 1.12) lead

to the following result:

E± = Ec ± |Δ| ,∣∣ψ±〉 =
1√
2
(|1〉 ∓ |2〉).

(1.17)

At the crossing point, the perturbed states energy E± deviates most from unper-

turbed states energy Ec and the adiabatic states
∣∣ψ±〉 are half mixed from diabatic

states
∣∣ψ1,2

〉
. The maximum deviation between perturbed and unperturbed energies

is |Δ|, or the non-diagonal matrix element.

The minimum distance between the two perturbed energy levels E+ and E− are

2 |Δ|. The perturbed state, say
∣∣ψ−〉, evolves from almost completely |ψ2〉 at the far

left end, to half mixed by |ψ1〉 and |ψ2〉 at the crossing point, and ends again almost

FIG. 1. If E1 and E2 are parallel levels, E+ and E− are just parallel shifts. Here the

x-axes is the parameter R and the y-axes is the energy.
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completely |ψ1〉.
We can see that in order for E+(R0) = E−(R0) to be valid, Δ(R0) = 0 must

be also satisfied, besides E1(R0) = E2(R0). These conditions may not be satisfied

simultaneously. Crossing (of perturbed energy curves) is hence avoided except for

accidental crossing.

FIG. 2. If the “unperturbed levels” E1 and E2 cross each other at some parameter R0,

there will be level repulsion and avoided crossing, as seen by the “perturbed

levels” E+ and E−. The meaning of x-y axis are same as previous figure. If

the If the x-axis parameter becomes time-dependent, E1 and E2 are called

diabatic levels, and E+ and E− are called adiabatic levels.

If the energy curves E1 and E2 are just parallel to each other, the new energy

curve E+ (or E−) is just a parallel shift to the original one E2(or E1), as shown in

Fig. 1. However, if the energy curves E1 and E2 cross each other when the parameter

R is changed and passes R0, the new energy curves E+ and E−, plotted according

to the above equation (1.11), have an avoided crossing. This is illustrated in Fig. 2.

In this figure the y-axis is the energy value and x-axis is some parameter according

to which the energy would change, like magnetic field. In the discussion up to now,
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the problem is still assumed time independent.

If the x-axis parameter becomes time-dependent, this picture can be considered

as instantaneous static limit of the dynamic problem. In this time-dependent situa-

tion, the “unperturbed” terms are called “diabatic” terms and the “perturbed” terms

are called “adiabatic” terms. For example, the two states
∣∣ψ+

〉
and

∣∣ψ−〉 defined in

Eq. (1.12) are called adiabatic states. Their corresponding energies, designated as

E+ and E− in Fig. 2, are called adiabatic levels. The terms ’adiabatic levels’ and ’di-

abatic levels’ are associated with the Born-Opperheimer approximation, also known

as adiabatic approximation, for calculation of diatomic molecule energy, for exam-

ple. If the nuclei are moving slowly, which is assumed by the Born-Opperheimer

approximation, then the energy follows the adiabatic curve.

D. Asymptotic solution of Landau-Zener problem

Now let us return to the Landau-Zener model (1.7), i.e. if R in the equation (1.8)

becomes linearly dependent on time. The Hamiltonian is time-dependent and this

problem can not be solved like in the previous static case. The operators at different

times generally do not commute, and hence no general eigenvalues exist. However,

Fig. 2, like each snapshot of the system at each time t, can still be used to illustrate

the time dependent dynamic problem. For the time-dependent LZ Hamiltonian (1.7),

the state is not
∣∣ψ+

〉
or

∣∣ψ−〉, is not |ψ1〉 or |ψ2〉, but a superposition of
∣∣ψ+

〉
and

∣∣ψ−〉, or a superposition of |ψ1〉 and |ψ2〉. We choose the last two states as

basis because they are eigenvectors of the simple “unperturbed” Hamiltonian H0.

Following Rosen and Zener [6, 7], the Schrodinger equation (1.2) will be transformed

to a simpler form. H11 and H22 are real functions of t. The transformation that
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makes the diagonal elements vanish is

a1 = A1e
i
∫ t H11dt; a2 = A2e

i
∫ t H22dt. (1.18)

Here we have set � = 1. Note that a1 and a2 are now components of new

wavefunction. The time dependent occupation probabilities for the two states are

|a1|2 = |A1|2 and |a2|2 = |A2|2. The transformed Schrodinger equation is

i
d

dt

⎛
⎜⎝ a1

a2

⎞
⎟⎠ =

⎛
⎜⎝ 0 H12e

−i
∫ t(H22−H11)dt

H21e
i
∫ t(H22−H11)dt 0

⎞
⎟⎠

⎛
⎜⎝ a1

a2

⎞
⎟⎠ (1.19)

Now a1 and a2 can be decoupled and each obeys the second order ordinary

differential equation:

ä1 + (i(H22 −H11) − Δ̇

Δ
)ȧ1 + |Δ|2 a1 = 0 (1.20)

This is the equation to be solved. At this point, it’s necessary to apply the

assumption (1.7) to proceed. Although Landau solved this problem by going to

the complex plane of time t, we still follow the Zener way. By the substitution

H22 −H11 = α(t − t0), Δ̇ = 0, c1 = a1e
+i/2

∫
α(t−t0)dt, and c2 = a2e

−i/2
∫

α(t−t0)dt, Eq.

(1.20) for a1 is reduced to a Weber equation and we also have a similar equation

from a2:

c̈1 + (Δ2 − iα/2 + α2t2/4)c1 = 0,

c̈2 + (Δ2 + iα/2 + α2t2/4)c2 = 0,
(1.21)

where we have again come back to the assumption that Δ is just the amplitude. And
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by the substitutions

n ≡ iΔ2/α ≡ iγLZ ,

τ ≡ √
αe−iπ/4t,

the Weber equation above for c1 can be further reduced to the standard form

c̈1 + (n+ 1/2 − τ 2/4)c1 = 0 (1.22)

where c̈1 means d2c1/dτ
2. The standard form for c2 can also be obtained by a similar

substitution. The solution is called Weber function or parabolic cylinder function,

which is expressed in terms of confluent hypergeometric functions. By choosing

appropriate functions according to the initial condition (1.5), the superposition con-

stants in the solution can be determined and the asymptotic value of |c1|2 is given

by

|A1(∞)|2 = |c1(∞)|2 = 1 − e−2πγLZ , where γLZ = Δ2/α. (1.23)

It is also worthwhile to mention that the same asymptotic solution is obtained

in lecture notes by Valery Pokrovsky [27] through a semiclassical approach. In the

spirit of semiclassical approximation, the two independent solutions for Eq. (1.21)

�
2c̈+ p2(τ)c = 0, are in the forms of

c± =
1√
p(τ )

e
±i

∫ τ
τ0

p(τ)
�

dτ
(1.24)

where c denotes c1 or c2, τ ≡ αt, and p2(τ) ≡ γLZ ± i/2 + τ 2/4. At large |τ | the

integration may be calculated by expanding p(τ ) on a series of 1/τ . Take c2 for

example,

p(t) =
√

τ2

4
(1 + γLZ+i/2

τ2/4
)

p(t) = τ
2
(1 + 1

2
γLZ+i/2

τ2/4
+ ...)∫ τ

p(τ)dτ = τ2

4
+ (1

2
i+ γLZ) ln τ + Const.

(1.25)

At large |τ |, the term (1/
√
p) × e+i∗( 1

2
i ln τ) is approximately zero, if the sign in the
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exponent in Eq. (1.24) is +. In other worlds, the c2+ solution can be neglected. So

c2 =
1√
τ/2

e−iτ2/4−i(γLZ+i/2) ln τ+Const., (1.26)

when τ = eiπ, the Const. is required to be −πγLZ to meet the initial condition. So

when t goes +∞,

|c2| = e−πγLZ , (1.27)

which is essentially same as Eq. (1.23). The probability in Eq. (1.23) (1−e−2πγLZ ) is

the probability that the system remains in ground state (diabatic state |1〉 (t = +∞))

if it is initially in ground state (diabatic state |2〉 (t = −∞)). If γ is very large(or α

is very small) then the system stays in the adiabatic state and if γ is very small(or

α is very large) then the system has a transition from the lower adiabatic state

to the higher adiabatic state. The expression e−2πγLZ gives the probability for the

Landau-Zener transition from lower adiabatic state to higher adiabatic state. In one

sentence, (1 − e−2πγLZ is the population difference of the same diabatic state before

and after t0, while e−2πγLZ is the population difference of the same adiabatic state

before and after t0.
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CHAPTER II

LANDAU-ZENER THEORY AND FAST QUANTUM NOISE

A. Review and motivation

The research on the Landau-Zener transitions in a noisy environment is moti-

vated by the intensive development of quantum computing elements. New exper-

imental realization of qubits [28] questioned again to what extent it is possible to

minimize the decoherence, while simultaneously maintaining sufficiently strong cou-

pling to the external signal. Molecular magnets display a substantial narrowing of

the magnetic hysteresis curve at T 1K. This fact implies that the LZ process is

strongly influenced by thermal noise in this range of temperature.

The theory of the LZ transition in a noisy environment has relatively long his-

tory. One of the first considerations was based on ideas of stochastic trajectories

from Kasunoki [29]. In the pioneering work [30] Kayanuma calculated the transition

amplitude in the presence of a fast transverse Gaussian classical noise with a spe-

cific (exponential) two-time correlation function∗. This solution was simplified and

extended to general shape of correlation function by V. Pokrovsky and N. Sinitsyn

[31]. The same work considers a situation in which the transitions are produced

by noise as well as by regular Hamiltonian. Pokrovsky and Scheidl [32] calculated

the two-time correlation function of the transition probabilities for the LZ system

subject to a fast classical transverse noise. Longitudinal noise was considered by

Kayanuma [33], who proved that strong fast longitudinal noise enhances the nonadi-

abaticity, and the transition probability is given by a formula different from the LZ

∗The definition of transverse and longitudinal noise and the definition of quantum
noise will be introduced in next section.
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formula, while slow longitudinal noise does not change the LZ transition probability.

Gefen et al. [34] and Ao and Rammer [35] considered more wide range of parameters

and found the situations in which the noise changes the transition probability. In

the work [35] a rather detailed analysis of different limiting cases of temperature,

coupling to the phonon bath, its spectral width and sweeping rate was presented.

There occurred a controversy between the works [34] and [35]. Generally, there is

no complete agreement between different authors on what happens in the adiabatic

regime (very slow sweeping) in the presence of the longitudinal noise. Motivated by

this disagreement Kayanuma and Nakayama performed a comprehensive analytical

and numerical study of the LZ transition in the presence of longitudinal noise [36].

In particular they obtained a formula for the case of strong decoherence which is

valid in both low-temperature and high-temperature limits. In all these works the

quantum nature of the longitudinal noise was taken in account.

Despite of significant progress a complete theory of the LZ transition in noisy

environment still does not exist. Theoretical works considered either quantum longi-

tudinal noise with transitions originated from the regular transition matrix element

or the classical transverse noise. Quite recently Wubs et al. [37] have found an ele-

gant exact formula for the transition probability of the two-state system interacting

with the phonon bath at zero temperature ∗. The noise had both longitudinal and

transverse components. Their correlation and quantum nature were substantial. No

limitations to the noise strength and spectral width were assumed. However, the

limitation of zero temperature (phonon bath is in the ground state) does not allow

∗The result for survival probability obtained [37] is a consequence of the theorem
proposed by Brandobler and Elser [38] as a hypothesis and proved rigorously by Do-
brescu and Sinitsyn [39]. Wubs et al. have found the same method independently,
but a little later. Important steps toward the proof of the Brandobler-Elser hypoth-
esis were made by A.V. Shytov [40], N.A. Sinitsyn [41] and M.V. Volkov and V.N.
Ostrovsky [42, 43].



18

to extend these results to more realistic situations.

The purpose of this chapter is to present a theoretical description of the LZ

system subject to a fast quantum noise which has both transverse and longitudinal

components. It is not yet a complete theory, since it does not cover slow and interme-

diate noise, but in its range of applicability it allows to understand clearly all relevant

physical regimes and phenomena. We will show that, due to the fastness of the noise,

the LZ transition in the presence of the longitudinal noise and the transitions due

to the transverse noise are separated in time, whereas the correlation between the

transverse and longitudinal noise leads to a renormalization of the regular transition

matrix element in the LZ Hamiltonian. For a moderately strong transverse noise we

derive master equations governing the population of the two states and study their

solution. If the transverse noise is strong and also fast, the two-state system falls

into adiabatic regime. The population of levels comes to the equilibrium with the

spin bath if the bath is in the state of thermal equilibrium. We argue that a very

strong noise is classical and adiabatic. In this situation, as it was shown in [31], the

populations of the two levels are equal.

The plan of the remaining of this chapter is as follows. In section B we introduce

the Hamiltonian and characterize the noise. In section C we present simple heuristic

arguments resulting in master equations. In section D we derive the master equations

starting from microscopic Hamiltonian for the case of the transverse noise only and

zero LZ transition matrix element. In section E we derive the renormalization of the

regular transition matrix element due to correlation of longitudinal and transverse

noise. In section F we analyze the influence of the longitudinal noise. In section G we

find the solution of master equation and study it. In section H we match the solution

of the master equation with the solution of the LZ problem without transverse noise.

Section I contains the discussion and conclusion, where we compare our theory with
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that by Wubs et al. [37], and we briefly analyze possible applications of our theory

to molecular magnets.

B. Statement of the problem

We consider a two-state system interacting with a noisy environment. The latter

is a large system (bath) with a stationary density matrix. We neglect the influence of

the LZ transitions onto the state of the bath. For a definiteness we will speak about

the phonon bath, though it can include other Boson excitations like spin waves,

excitons, photons. Then the total Hamiltonian of the system can be represented as

follows:

H = H2 +Hb +Hint (2.1)

The term H2 in equation (2.1) is the Hamiltonian that represents the two-state

system, as discussed in Eq. (1.4):

H2 = −Ω (t)

2
σz + Δσx, (2.2)

where σx and σz are Pauli matrices, σz =

⎛
⎜⎝ 1 0

0 −1

⎞
⎟⎠, σx =

⎛
⎜⎝ 0 1

1 0

⎞
⎟⎠, and Ω (t) is

the time-dependent frequency or the energy difference between the so-called diabatic

levels, Ω (t) ≡ E2 − E1, Δ is the non-diagonal matrix element. The two state

Hamiltonian H2 in Eq. (2.2) is slightly different than that in Eq. (1.4), but if we

substitute the transformation ai = Aie
−i

∫ t Ecdt to the Eq. (1.1) we will have the

equivalent Hamiltonian H2. If t would be not time but some other parameter of the

Hamiltonian, then non-zero Δ provides repulsion of the adiabatic levels (the Wigner-

Neumann theorem on avoided levels crossing). For brevity we will call further the

regular transition matrix element Δ the LZ gap. Usually the linear approximation for
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the frequency Ω (t) = Ω̇t proposed by Landau and Zener is acceptable, but sometimes

it is necessary to go beyond this approximation. Namely, in real experiment the

sweeping of Ω (t) stops at some finite value, which can be not large in the frequency

scale of the problem. Therefore we will keep notation Ω (t) throughout this article.

The term Hb in equation (2.1) is the phonon bath Hamiltonian:

Hb =
∑
q

ωqb
†
qbq, (2.3)

where ωq are the phonon frequencies and q are their momenta, bq and b†q are the

operators of the phonon annihilation and creation, satisfying the standard quantum

commutation relations [bq, bq′ ] = 0, [b†q, b
†
q′ ] = 0, [bq, b

†
q′ ] = δq,q′ .

The Hamiltonian for interaction between two-state system and phonons reads:

Hint = u‖σz + u⊥σx, (2.4)

where u‖ and u⊥ are the transverse noise and longitudinal noise operators. The

transverse noises couple to the two-state system by making the system transit from

one state to another while the longitudinal noises couple to the two-state system by

making the energy curve deviate from its original path. The Hermitian operators u‖

and u⊥ responsible for the longitudinal and transverse noise depend linearly on the

phonon operators. Each of them is a sum of two Hermitian conjugated operators

containing either phonon annihilation or creation operators only:

uα = ηα + η†α; ηα =
1√
V

∑
q

gα (q) bq; α = ‖,⊥ (2.5)

where gα (q) are complex coupling amplitudes and V is the volume of the system

supporting phonons. The quantum character of the noise manifests itself in non-

commutativity of operators ηα and η†α. The problem consists in calculation of tran-
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sition and surviving probabilities for the two-state system at a fixed noise density

matrix. In the absence of the noise, the transition amplitudes, calculated from solv-

ing the Weber equation, constitute the LZ transition matrix belonging to the SU(2)

group and depending on the dimensionless LZ parameter γLZ = Δ2/Ω̇:

TLZ =

⎛
⎜⎝ α β

−β∗ α∗

⎞
⎟⎠ (2.6)

α = e−πγLZ ; β = −
√

2π exp
(−πγLZ

2
+ iπ

4

)
√
γLZΓ (−iγLZ)

If γLZ is small, the system with the probability close to 1 remains in initial

diabatic state; if γLZ is large the system with probability close to 1 proceeds along

the adiabatic state, i.e. changes the initial diabatic state to the alternative one. So

the Landau-Zener transition is preferred when γLZ is large. From the Fig. 3, we can

see that the characteristic time for the system to transit from one state to the other is

estimated at Δ/Ω̇, due to smaller energy barrier in the region |t−t0| < τLZ . If γLZ is

small and Δ/Ω̇ is too small, we estimate it at a larger value Ω̇−1/2 = (Δ/Ω̇)/
√
γLZ . So

the characteristic time necessary for the LZ transition is τLZ = max
(
Δ/Ω̇, Ω̇−1/2

)
.

Since the noise is Gaussian, the influence of the noise onto the two-state system

is completely described by the noise correlation functions:

〈
ηα (t) η†β (t′)

〉
=

1

V

∑
q

ga (q) g∗β (q) (nq + 1) eiωq(t′−t) (2.7)

〈
η†α (t) ηβ (t′)

〉
=

1

V

∑
q

ga (q) g∗β (q)nqe
iωq(t−t′) (2.8)

Here nq =
〈
b†qbq

〉
are the average phonon occupation numbers and 〈...〉 means aver-

aging over the phonon bath ensemble, not necessarily in thermal equilibrium. The
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FIG. 3. Illustration of initial condition and asymptotic situation, and illustration of

LZ time. The final state population depends on the LZ parameter.

Fourier-components of the correlation functions (2.7, 2.8) read:

〈
ηαη

†
β

〉
ω

=
2π

V

∑
q

ga (q) g∗β (q) (nq + 1) δ (ω − ωq) (2.9)

〈
η†αηβ

〉
ω

=
2π

V

∑
q

ga (q) g∗β (q)nqδ (ω + ωq) (2.10)

Note that one of the two correlators contains only positive, whereas the second one

contains only negative frequencies. If the noise is in equilibrium at temperature T ,

the Fourier-transforms of correlation functions obey a simple relation (ω > 0):〈
ηαη

†
β

〉
ω〈

η†αηβ

〉
−ω

= e
ω
T (2.11)

Let us denote ωg the range of frequencies in which the coupling coefficients gα (q)

do not vanish. If the occupation numbers nq are of the same order of magnitude for

all states within this region of frequencies, then ωg determines the spectral width of
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the noise Δω. In some cases, for example at low temperature T � ωg, there appears

a second, smaller scale of frequency (T ). The noise correlation time is τn = 1/Δω.

It is different for the two correlation functions
〈
ηα (t) η†β (t′)

〉
and

〈
η†α (t) ηβ (t′)

〉
at

low temperature and it is equal to ω−1
g for both at high temperature. By definition

the noise is fast if Δω 
 Δ, or τn � Δ−1. Noise starts to produce transition

if Δω ≥ Ω(t). This condition is equivalently t ≤ 1/ ˙Ωτn ≡ τ acc, where we define

the accumulation time τ acc as the time interval smaller than which noise produces

transitions. The accumulation time τ acc must be much larger than correlation time

τn in order for noise to produce any transition. From τacc 
 τn and combined with

τn � Δ−1, we have τn � min
(
Ω̇−1/2,Δ−1

)
, or Δω 
 max

(
Ω̇1/2,Δ

)
. We can also

see that τacc � τLZ by the definition of fast quantum noise. This inequality makes

possible the time separation of the evolution of the system.

Besides its spectral characteristics the noise is characterized by its strength. The

most natural measure of the noise strength is the average square of its amplitude:

〈
u2

α (t)
〉

=
〈
ηα (t) η†α (t)

〉
+

〈
η†α (t) ηα (t)

〉
=

1

V

∑
q

|ga (q)|2 (2nq + 1)
(2.12)

The noise is weak if 〈u2
α (t)〉 � Ω̇. Weak noise can be accounted as a small perturba-

tion to the LZ result. We call the noise moderately strong if it obeys the inequalities:

Ω̇ ≤ 〈u2
α (t)〉 � τ−2

n . Though for moderately strong noise the perturbation theory

is generally invalid at accumulation time scale determined in the next section, we

will show that it works during sufficiently small intervals of time still longer than τn.

Most of our results relate to the weak and moderate noise, i.e. for the noise obeying

the condition 〈u2
α (t)〉 � τ−2

n , which we will call not strong. The noise is called strong

if 〈u2
α (t)〉 ≥ τ−2

n . Note, that generally Ω̇ depends on time, so that the noise may be
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Table II. Definitions of time scales.

τn τLZ τacc τ rα

τn = 1/Δω τLZ = max(Δ/Ω̇, Ω̇−1/2) τacc =
(
Ω̇τn

)−1

τ rα = (〈u2
α (t)〉 τn)−1

Table III. Definitions of fastness and strength of quantum noise.

fast weak moderate strong

τn � min(Ω̇−1/2,Δ−1) 〈u2
α (t)〉 � Ω̇ Ω̇ ≤ 〈u2

α (t)〉 � τ−2
n 〈u2

α (t)〉 ≥ τ−2
n

weak or moderate during one time interval and strong during another one. Another

time scale, which we call the relaxation time τ rα = (〈u2
α (t)〉 τn)

−1
(see [36], where

it is called phase relaxation time), is defined by the condition that the probability

of finding the system in state 1 or 2 changes significantly. When the noise is strong,

the relaxation time becomes less than the noise correlation time τn. The definitions

of different time scales and their connection to the parameters of the problem are

collected in the Table II and Table III. It is convenient to introduce dimensionless

coupling function λαq = |gα (q)| / (ωga
3), where a is the lattice constant, α = ‖,⊥.

In condensed matter systems the values λαq never become large. Migdal [44] argued

that large coupling constants would lead to the lattice instability and reconstruction.

Though his arguments related directly to the electron-phonon coupling, his idea is

very general. If λαq are not large, a large value of 〈u2
α (t)〉 τ 2

n can be reached only

if phonon occupation numbers nq become large. In the equilibrium case it means

that the temperature must be large. Very strong noise is classical, irrespective of

its specific density matrix. An analogue of the LZ parameter for the noise reads

γnα = 〈u2
α (t)〉 /Ω̇ [31]. If it is small, the noise brings only a small perturbation to
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the LZ picture; if it is large, the occupation numbers of the two-state system follow

adiabatically the instantaneous value of frequency. We will return to this point later.

C. Heuristic approach

In the previous section we argued that the LZ gap and longitudinal noise become

ineffective for transitions beyond the LZ time interval (−τLZ , τLZ). We show later in

this section that the transverse noise produces transitions during much longer time

interval (−τ acc, τacc). Therefore, for |t| 
 τLZ it is necessary to solve a simplified

problem with Δ = 0 and u‖ = 0, so that all transitions are only due to the transverse

noise. In this section we develop a heuristic approach to this simplified problem.

Since τn � Ω̇−1/2, the instantaneous frequency of the two-state system does not

change during correlation time of the noise and it can be considered as a constant.

Thus, it is possible to calculate the instantaneous rate of transition probability us-

ing the standard quantum mechanical technique for transitions between stationary

energy levels.

FIG. 4. Feynman graph for a 3-phonon process. Thin solid lines correspond to the

state 1; thick solid lines correspond to the state 2; dashed blue lines corre-

spond to phonons.

If the noise is not strong, the transition probability can be calculated in the

first Born approximation. Indeed, according to the Fermi golden rule the rate of
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transition probability per unit time before the level crossing reads:

p1→2 (t) = 2π
〈
η†⊥η⊥

〉
Ω(t)

(2.13)

In the framework of the considered model the next after single-phonon is three-

phonon transition shown in Fig. 4. Its contribution to the transition probability

reads:

p
(3)
1→2 (t) = 2π ×

〈∫
dω1dω2

(2π)2

η†ω1
η†ω2

η†Ω(t)−ω1−ω2

ω1ω2
+ herm. conj.

〉
(2.14)

The 3-phonon contribution can be neglected if the noise is moderately strong. In the

same approximation it is possible to neglect the correction to the transition frequency

due to the interaction with the phonon bath. Thus, the occupation numbers of the

diabatic states N1,2 at negative time obey following master equation:

Ṅ1 = 2π

(
−

〈
η†⊥η⊥

〉
|−Ω(t)|

N1 +
〈
η⊥η

†
⊥
〉
|Ω(t)|

N2

)
(2.15)

which must be complemented by conservation law N1 + N2 = 1. For positive time

equation (2.15) must be modified as follows:

Ṅ1 = 2π

(
−

〈
η⊥η

†
⊥
〉
|Ω(t)|

N1 +
〈
η†⊥η⊥

〉
|−Ω(t)|

N2

)
(2.16)

The noise produces transitions as long as its spectral width exceeds the instantaneous

frequency |Ω (t) |. The accumulation time estimated from this requirement is τ acc =(
Ω̇tn

)−1

[31]. Since the noise is assumed to be fast the accumulation time τacc is

much longer than the noise correlation time τn. In real experiment the sweeping of

frequency may stop or saturate before the accumulation time is reached. The master

equations enable one calculating the occupation numbers at any time rather than

asymptotically at t → ∞. The accumulation time is also much longer than the LZ
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time τLZ . Therefore, it is possible to neglect the action of the noise during the LZ

time interval (−τLZ ,τLZ) and neglect the LZ gap Δ beyond this time interval. It

means that the action of the fast transverse noise and of the LZ gap are separated in

time as it was earlier shown for classical noise [31]. The solution of the LZ problem

without transverse noise and the noise transition problem with zero LZ gap Δ should

be matched at some intermediate time. It will be done in Section H.

The action of the fast longitudinal noise is very different from that of the trans-

verse one. The longitudinal noise does not produce transitions in the absence of

the LZ gap. Therefore, its action is effectively limited to the LZ time interval. In

the next section we demonstrate that the fast longitudinal noise must be sufficiently

strong to produce a substantial change in the LZ transition probability. Namely it

must satisfy an inequality
〈
u2
‖
〉

� Ω̇/ (Δτn) 
 Ω̇. An analogous criterion for the

transverse noise is much more liberal: 〈u2
⊥〉 � Ω̇. For a comprehensive analysis of

the longitudinal noise action we refer the reader to the cited articles [36, 35, 34]. Be-

yond the LZ time interval the classical longitudinal noise modulates the transverse

noise by a factor exp
(
−i ∫ t

t0
u‖dτ

)
. Correlation functions

〈
η⊥ (t) η†⊥ (t′)

〉
must be

substituted by
〈
η⊥ (t) η†⊥ (t′) exp

(
−i ∫ t

t′ u‖dτ
)〉

. Neglecting the correlation between

longitudinal and transverse noise and employing the Gaussian statistics of the noise,

one can express the latter correlator as follows:

〈
η⊥ (t) η†⊥ (t′) exp

(
−i

∫ t

t′
u‖dτ

)〉
=

〈
η⊥ (t) η†⊥ (t′)

〉

× exp

⎡
⎣−1

2

t∫
t′

t∫
t′

dt1dt2
〈
u‖ (t1) u‖ (t2)

〉⎤⎦ (2.17)

The transverse noise correlator decays rapidly when the modulus of difference

|t− t′| exceeds τn. Therefore, the value in the exponent in the right-hand side of
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equation (2.17) can be estimated as
〈
u2
‖
〉
τ 2

n � 1. This estimates shows that the

longitudinal noise can be neglected beyond the LZ time interval. In the next section

we consider this question in more details.

Though physical arguments of this section leading to the master equation sound

convincing, we used an implicit assumption that the quantum coherence is negligibly

small. In the next section we derive the master equation rigorously starting from the

microscopic Hamiltonian. This derivation shows that, though quantum coherence is

substantial at small time intervals less than τn, it does not play any role at larger

time scale.

D. Derivation of master equations

In this section as in the previous one we consider time interval beyond Landau-

Zener interval (−τLZ , τLZ) and neglect the LZ gap Δ and longitudinal noise. Our

goal is to find the dependence of the occupation numbers Nα (α = 1, 2) on time. The

same problem can be formulated as calculation of the average value of projectors Pα =

|α〉 〈α| = 1
2
(1 ± σz) [33, 35]. We consider the case Δ = 0, u‖ = 0. The calculation

will be performed in the interaction representation with the diagonal time-dependent

unperturbed Hamiltonian H0 = −Ω(t)
2
σz +Hb = −Ω(t)

2
(|1〉 〈1| − |2〉 〈2|) +Hb and the

interaction Hamiltonian V = u⊥σx = u⊥ (|1〉 〈2| + |2〉 〈1|). Being transformed to the

interaction representation, the interaction Hamiltonian depends on time as follows:

VI (t) = eiH0tV e−iH0t = u⊥ (t)
(
|1〉 〈2| e−i

∫ t
t0

Ω(τ)dτ
+ |2〉 〈1| ei

∫ t
t0

Ω(τ)dτ
)
, (2.18)

where

u⊥ (t) = eiHb(t−t0)u⊥ (t0) e
−iHb(t−t0) (2.19)
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In terms of the evolution operator in the interaction representation

UI (t, t0) ≡ T [e
−i

∫ t
t0

VI (τ)dτ
], (2.20)

the time-dependent occupation numbers can be expressed as

Nα (t) = Tr
[
ρ0U

−1
I (t, t0)PαUI (t, t0)

]
(2.21)

where ρ0 is the initial density matrix which is the direct product of two independent

density matrices ρ0 = ρ2ρb, where the first factor is the density matrix of the two-

state system and the second one is that of the bath.

The expression (2.21) is a Keldysh contour ordered average from −∞ to 0 and

then to −∞ again. The detailed calculation is explained in Appendix A. For now, the

calculation on these averages is done by employing a simplified version of the Keldysh-

Schwinger technique [45, 46] used already for a similar purpose in [33, 35, 36]. Each

of the two evolution operators is presented as a series of time ordered integrals. A

general term of such an expansion contains a product of two multiple time integrals.

With each time variable tk a vertex VI (tk) is associated. The product of vertices is

ordered in chronological time order in UI (t, t0) and in anti-chronological time order

in U−1
I (t, t0). All operators of VI (tk) belonging to U−1

I (t, t0) are located on the left

(“later”) than corresponding operators belonging to UI (t, t0).

FIG. 5. An example of a term in the perturbation theory. Points correspond to ver-

texes VI(tj).
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FIG. 6. A typical graph without phonon line crossings dominantly contributing to the

survival and transition probability.

FIG. 7. Elementary graphs. a) b) without phonon line crossing; c) d) with phonon

line crossing.

A particular contribution is graphically depicted in Fig. 5 before the averaging

over phonon bath is performed. It consists of two lines both starting at t0 and ending

at t. The upper line symbolizes UI (t, t0) and the lower one symbolizes U−1
I (t, t0).

Each solid line represents either the propagator of the state 1 (thin (red) line) or that

of the state 2 (thick(green) line). The dashed line represent a phonon absorption or

emission. Vertices on these lines correspond to the operators VI (tk). Each vertex

contains one phonon operator u (tk) and changes the state of the two-state system.

The presence of the projection operator Pα in equation (2.21) implies that the

state closest to the final time t on both lines must be |α〉. Applying the Wick’s rule

for phonons, one should form all possible pairing of (phonon) noise lines∗. Different

∗The Wick pairing ensures that the numbers of the state alternations on the upper
and the lower lines are either both even or both odd. Therefore, the occupation
numbers depend only on diagonal matrix elements of the initial density matrix.
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contributions can be represented by Feynman graphs such as shown in Fig. 6. These

propagators have the form:

G1,2(t, t
′) = exp

(
± i

2

∫ t

t′
Ω (τ ) dτ

)
(2.22)

By introducing these propagators we absorb the phase factors from the vertex (2.18).

The dashed (blue) lines represent the correlation functions of the transverse noise

D (t, t′) = 〈T (u⊥ (t) u⊥ (t′))〉. Each vertex carries the factor i at the upper line and

−i at the lower line. Integration over all time arguments must be performed in

chronological order at the upper line and in anti-chronological ordering at the lower

line. In the case of fast not strong noise the main contribution to the occupation

numbers comes from the graphs without crossing or overlapping of the phonon lines.

An example of a graph without overlapping is shown in Fig. 6. In comparison with

elementary graphs without phonon line overlapping or crossing (Fig. 7a,b) the contri-

butions of the graphs containing overlapping or crossing (Fig. 7c,d,) have additional

small factors of the order of 〈u2
⊥〉 τ 2

n and can be neglected if the transverse noise is

moderately strong. Indeed the time interval between the ends of each phonon lines

is about τn.

It’s difficult to calculate Eq. (2.21) directly according to Fig. 6. We consider a

set of graphs representing difference of the number of particles Nα at time t and t+Δt.

If we can calculate the differential difference, we can derive an dynamic equation for

the state evolution. Δt must satisfy the strong inequality τn � Δt � (〈u2
⊥〉 τn)

−1
.

First, there are graphs with phonon lines connecting the interval (t, t+ Δt) with the

interval (t0, t). Their contribution can be neglected since it is relatively proportional

to a small ratio τn/Δt. The contribution of k non-overlapping or intersecting noise

lines inside the interval (t, t+ Δt) is proportional to (〈u2
⊥〉 τnΔt)

k � 1. Therefore,
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FIG. 8. Graphic equation connecting Nα (t+ Δt) and Nα (t) containing 0 or 1 phonon

line.

the dominant contribution to the set comes from graphs containing exactly zero or

one line inside the interval (t, t+ Δt). Note the coarse-grain description: the master

equation is invalid at time scale τn and shorter. The graphical equation connecting

Nα(t + Δt) with Nα(t) is shown in Fig. 8, where the graph with a box and two

red thin lines at the left side of sign = denotes the number of particles occupying

state 1 at time= t+ Δt, and the four graphs at the right side of sign = denotes the

four possible (upto first order approximation) evolutions from t to t + Δt. There

is no line in the first graph, meaning that Nα(t) did not change during this time

interval. This is the zeroth order of expansion of Nα(t + Δt). The other there

graphs, represented by (Γ1,Π1, Π2), correspond to evolution with one phonon line

connecting ((+,-),(+,+),(-,-)) branches. So according to Fig. 9 we have the equation

Nα (t+ Δt) = Nα (t) + Γ1 + Π1 + Π2 (2.23)

To find their analytical expression, we calculate the contribution of the 3 elementary

subgraphs for α = 1 shown in Fig. 9.
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FIG. 9. Three elementary graphs with one phonon line in the interval t, t+ Δt.

They read:

Γ1 =

t+Δt∫
t

dt1

t+Δt∫
t

dt2 〈u⊥ (t1)u⊥ (t2)〉 e−i
∫ t1

t2
Ω(τ)dτ

≈ 2π 〈u⊥u⊥〉−Ω(t) Δt

(2.24)

Π1 = −
t+Δt∫

t

dt1

t+Δt∫
t1

dt2 〈u⊥ (t1) u⊥ (t2)〉 e+i
∫ t1
t2

Ω(τ)dτ

≈ −Δt

0∫
−∞

〈u⊥ (τ )u⊥ (0)〉 e+iΩ(t)τdτ (2.25)

Π2 = −
t+Δt∫

t

dt1

t1∫
t

dt2 〈u⊥ (t1)u⊥ (t2)〉 e+i
∫ t1
t2

Ω(τ)dτ

≈ −Δt

∞∫
0

〈u⊥ (τ )u⊥ (0)〉 e+iΩ(t)τdτ (2.26)

where the short notation for the Fourier transform is introduced

〈u⊥(t1)u⊥(t2)〉−Ω(t) ≡
∫ ∞

−∞
eiΩt 〈u⊥(t)u⊥(0)〉 dt. (2.27)

In this calculation we used the fastness of the noise
(
τn � Δt, τn �

√
Ω̇
)

to

substitute the integral in the exponent by Ω (t) (t1 − t2) and to extend the integration
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over the difference t1 − t2 to infinite limits. The graph 6a connects N1 (t+ Δt)

to N2 (t), two others graphs connect N1 (t+ Δt) to N1 (t). Different signs in the

contributions (2.24) and (2.25, 2.26) are associated with the fact that the vertex at

the upper line contains a factor −i, whereas it acquires the factor +i at the lower

line. The contributions from the last two graphs together are

Π1 + Π2 = −〈u⊥(t1)u⊥(t2)〉Ω(t) Δt. (2.28)

Collecting all contributions together, we arrive at the following differential equa-

tion for N1 when Δt approaches zero

dN1

dt
= N2 〈u⊥u⊥〉−Ω −N1 〈u⊥u⊥〉Ω , (2.29)

and a similar equation for N2

dN2

dt
= N1 〈u⊥u⊥〉Ω −N2 〈u⊥u⊥〉−Ω . (2.30)

According to the definition of u operator, we can further calculate the Fourier trans-

form Eq. (A.12) as following

〈
η⊥η

†
⊥
〉
−Ω

= θ(−Ω)

∫
d3q

(2π)2
δ(|Ω − ωq)|gq|2(nq + 1) = θ(−Ω)

〈
η⊥η

†
⊥
〉
|Ω|
,

〈
η†⊥η⊥

〉
Ω

= θ(Ω)

∫
d3q

(2π)2
δ(|Ω − ωq)|gq|2nq = θ(Ω)

〈
η†⊥η⊥

〉
|−Ω|

,

(2.31)

where θ (x) is the step function which is 1 at positive arguments and 0 at negative

arguments.

By the fact that N1 + N2 = 1 and imposing the new variable sz = N1−N2

2
=

N1 − 1
2

= 1
2
−N2 the master equation look simpler:

dsz

dt
= 2π(−sz ×

[〈
ηη†

〉
|Ω| +

〈
η†η

〉
−|Ω|

]
− 1

2
signΩ ×

[〈
ηη†

〉
|Ω| −

〈
η†η

〉
−|Ω|

]
)Ω=Ω(t)

(2.32)
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Master equation (2.32) can be treated as application of the Fermi Golden Rule to

the transition between the two levels separated by an instantaneous frequency Ω (t).

The Fermi Golden Rule or the first Born approximation at a fixed moment of time

can be applied since the frequency variation during the noise correlation is small

and the perturbation caused by the noise in the corresponding stationary problem is

weak. The perturbation theory is valid if
√〈u2

⊥〉 � |Ω (t)|. Within the accumulation

time interval the instantaneous frequency is of the same order of magnitude as the

spectral width of the noise: |Ω (t)| ∼ τ−1
n . The same inequality ensures that the

frequency exceeds the width of the levels and the change of frequency due to the

interaction with the noise.

Thus, we have proved by microscopic calculation that the quantum coherence is

negligible for the time evolution of the occupation numbers. Now the question about

the influence of the longitudinal noise onto the master equation is in order. First we

demonstrate that correlations of the type
〈
u‖ (t) u‖ (t′)

〉
do not change the master

equation. Indeed, let us consider the influence of the longitudinal noise onto the

difference between Nα (t+ Δt) and Nα (t). In analogy with the case of the transverse

noise, the contribution of one longitudinal phonon line inside the interval (t, t+ Δt)

must be taken in account. This contribution does not depend on preceding evolution

of the system just because it contains only propagators whose time arguments are

confined by the interval (t, t+ Δt). Therefore, it is the same as it would be in

the absence of the transverse noise. Since the longitudinal noise does not produce

transitions in the absence of the transverse noise, the total contribution of 3 graphs

of Fig. 9 for longitudinal noise is zero. Direct calculation confirms this statement.
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FIG. 10. Graphs containing mixed noise correlator (dash-dot line) and responsible for

the LZ gap renormalization.

E. Renormalization of the LZ gap

The problem of mixed correlations between transverse and longitudinal noise is

more subtle. The line of mixed correlation starts at one state, to say 1, and ends at

another one (2) as shown in Fig. 10. The self-energy part associated with the graphs

of Fig. 10 reads:

Πmix = |1〉 〈2| e−i
∫ t
t0

Ω(τ)dτ × [

0∫
−∞

〈
u‖ (t′)u⊥ (0)

〉
dt′ −

∞∫
0

〈
u⊥ (t′)u‖ (0)

〉
dt′] + H.C.

(2.33)

This operator has the same form as the operator Δσx in the interaction representa-

tion. Thus, at a time scale much longer than τn, the mixed correlation renormalizes

the LZ gap to a value

Δ̃ = Δ + i

∞∫
0

〈[
u⊥ (t′) , u‖ (0)

]〉
dt′ (2.34)

For the transformation of the integrals in equation (2.33) into integral in equation

(2.34) we employed the time-translation invariance:
〈
u‖ (−t) u⊥ (0)

〉
=

〈
u‖ (0)u⊥ (t)

〉
.
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Thus, the statement that one can neglect the action of the transverse noise within

the LZ time interval is not completely correct: it is legitimate to neglect transverse-

transverse correlations, but the mixed correlations can significantly change the LZ

gap up to turning it into zero and changing its sign.

The commutator entering equation (2.34) does not depend on the phonon occu-

pation numbers, i.e. on temperature. It is instructive to express the renormalization

of the LZ gap in terms of the phonon model (Section B, equations (2.5, 2.7, 2.8)):

Δ̃ − Δ = − 1

V

∑
q

g‖ (q) g⊥ (q)

ωq
(2.35)

F. Longitudinal noise

Next we consider the action of the purely longitudinal noise within the LZ time

interval. For this problem the transverse noise will be ignored. We start with the

classical longitudinal noise to have an idea when it produces substantial changes. The

noise is classical if the phonon occupation numbers are large (high temperature),

but the noise still may be weak or moderate if the coupling functions λα (q) are

small enough. If the noise is classical, the proper diagonal Hamiltonian is H0 =(
−Ω(t)

2
+ u‖

)
σz +Hb, whereas the non-diagonal part is V = Δσx. In the interaction

representation the non-diagonal part acquires the following form:

VI (t) = Δ
(
|1〉 〈2| ei

∫ t
t0
(Ω−2u‖)dτ

+ herm. conj.
)

(2.36)

Calculation of the transition probability is very similar to that considered above (see

equation (2.21) and Fig. 5), but the vertexes correspond to VI (t) given by (2.36)

(we will call them Δ−vertexes) and instead of connecting pairs of noise amplitudes it

is necessary to calculate average of a product
∏

j

exp
[
±2i

∫ tj
t0
u‖ (τ j) dτ j

]
. Number
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of the signs − in the exponent is equal to the number of signs +. Therefore, the

dependence on the initial moment of time t0 vanishes. The Gaussian statistics allows

to calculate the average of the product:〈∏
j

exp

[
±2i

∫ tj

t0

u‖ (τ j) dτ j

]〉

= exp[−22k−1

∫ t1

t0

dτ 1...

∫ t2k

t0

dτ 2k

∑
C

(± 〈
u‖(j1)u‖ (j2)

〉 〈
u‖(j3)u‖ (j4)

〉
+ ...

)
]

(2.37)

where summation is performed over all possible divisions of arguments τ j into pairs.

Each correlator vanishes if the modulus of corresponding time difference |τ − τ ′|
exceeds τn. The substantial range of integration over remaining variable (τ + τ ′) /2

is about τLZ = Δ/Ω̇. Therefore the order of magnitude of the number obtained in

the exponent (2.37) after integration is ∼
(〈
u2
‖
〉
τnτLZ

)k

. This value must be of

the order or larger than 1 to ensure a significant change of the transition probability

by the longitudinal noise. This requirement is equivalent to the inequality
〈
u2
‖
〉

�

Ω̇/ (Δτn) 
 Ω̇. For the transverse noise the analogues criterion is much softer [31]:

〈u2
⊥〉 � Ω̇.

The quantum longitudinal noise does not commute with itself at different mo-

ments of time. Therefore, it must be included into the non-diagonal Hamiltonian.

Then, besides of Δ−vertexes one should consider the noise vertexes. Thus, the

graphs contain triangular vertices symbolizing a transition between states 1 and 2

and each containing factor Δ, the two-state propagators G(t, t′) defined by equa-

tion (2.22) and dotted lines symbolizing the correlators of the longitudinal noise

D‖ (t, t′) =
〈
Tu‖ (t) u‖ (t′)

〉
which are connected to the two-state propagators by the

vertices carrying factors ±i. We obtain the same estimate considering the contribu-

tion of an elementary graph with one noise line. However, for the fast longitudinal
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noise it is possible to find not only an estimate, but also a system of integral equa-

tions for the transition amplitudes. These equations are linear, but they are numer-

ous and their kernel contains a complex combination of parabolic cylinder functions.

Their analysis is now in progress. Therefore, their derivation is transferred to the

AppendixB.

G. Solution of the master equation and noise diagnostic

The master equation (2.32) allows an explicit solution:

sz (t) =sz (t0) exp

(
−

∫ t

t0

f (τ) dτ

)
+

∫ t

t0

g (t′) exp

(
−

∫ t

t′
f (τ ) dτ

)
dt′,

where f (t) = 2π
(〈
ηη†

〉
|Ω(t)| +

〈
η†η

〉
−|Ω(t)|

)
,

and g (t) = −πsignΩ (t)
(〈
ηη†

〉
|Ω(t)| −

〈
η†η

〉
−|Ω(t)|

)
.

(2.38)

For classical noise g (t) = 0, and equation (2.38) reproduces the result ob-

tained in the reference [31]. At zero temperature
〈
η†η

〉
−|Ω(t)| = 0 and g (t) =

−1
2
signΩ (t) f (t). In these two cases the measurement of occupation numbers or

sz (t) gives direct information on spectral power of noise. In classical case we find

4π
〈
ηη†

〉
|Ω(t)| = − d

dt
ln |sz|; in purely quantum case (T = 0) the relationship is slightly

more complicated: 2π
〈
ηη†

〉
|Ω(t)| = − d

dt
ln

∣∣∣sz + signΩ(t)
2

∣∣∣. In general case it is possible

to find both spectral functions f (t) and g (t) by performing two series of measure-

ments with different initial states. Thus, the two-state system is an ideal noise

analyzer.

Next we consider regimes of very fast and very slow (adiabatic) frequency sweep-

ing. In the regime of fast sweeping
〈
ηη†

〉 � Ω̇ the perturbation theory for equation

(2.38) is valid. Indeed the integral
∫ t

t0
f (τ) dτ can be rewritten in terms of spectral
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power as follows:

∫ t

t0

f (τ) dτ = 2πΩ̇−1

Ω(t)∫
Ω(t0)

(〈
ηη†

〉
|ω| +

〈
η†η

〉
−|ω|

)
dω (2.39)

The integral in the r.-h. side of equation (2.39) reaches its maximum value, equal

to the average square fluctuation
〈
ηη† + η†η

〉
at Ω (t0) = −∞ and Ω (t) = +∞.

If the condition of fast sweeping is satisfied, the exponent in equation (2.38) can

be expanded into a series over small noise parameter γn =
〈
ηη† + η†η

〉
/Ω̇. The

variation Δsz (t) = sz (t)− sz (t0) is small at any time. In the leading approximation

it reads:

Δsz(t) = −2πΩ̇−1

Ω(t)∫
Ω(t0)

[
〈
ηη†

〉
|ω| (sz (t0) +

signω

2
)

+
〈
η†η

〉
−|ω| (sz (t0) − signω

2
)]dω

(2.40)

In the opposite regime of slow (adiabatic) sweeping the noise parameter γn is large.

In this case the exponents in equation (2.38) vary very rapidly allowing asymptotic

calculation of sz. However, in adiabatic regime it is simpler to start directly with the

master equation (2.32). Neglecting the time derivative in it, we find the adiabatic

solution:

sz (t) =
g (t)

f (t)
= −signΩ (t)

2

〈
ηη†

〉
|Ω(t)| −

〈
η†η

〉
−|Ω(t)|

〈ηη†〉|Ω(t)| + 〈η†η〉−|Ω(t)|
(2.41)

If the photon bath is in equilibrium with temperature T , equation (2.41) implies

sz (t) = − tanh Ω(t)
2T

. As it could be expected, at slow sweeping the two-state system

adiabatically accepts the equilibrium population with the temperature of the bath.

This conclusion shows that in the case of the quantum noise one must be more careful

with the asymptotic behavior of the time-dependent frequency than in genuine LZ

problem or even in the analogues problem with the classical noise. In the latter
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problems the linear approximation for Ω (t) = Ω̇t was satisfactory. However, this

approximation may be invalid for the quantum noise if the sweeping stops before the

frequency Ω (t) reaches the spectral width of the noise . In the opposite case the

value sz (t) saturates after t = τacc. In classical adiabatic case sz (t) becomes zero

after a short time τ tr =
(〈|η⊥|2〉 τn

)−1
. A similar time scale for the longitudinal

noise was introduced by Kayanuma and Nakayama [36].

At the edge of the adiabatic regime γn ∼ 1 the fast noise is still moder-

ately strong, i.e.
√〈ηη†〉 � τ−1

n . It means that, when the noise becomes strong√〈ηη†〉 � τ−1
n , the system is already in deeply adiabatic regime. If the phonon bath

is in equilibrium, the two-state system also is in equilibrium with the noise. This

equilibrium state is established in a time-independent, but strongly non-linear sys-

tem. The interaction of the two-level system characterized by the time-independent

frequency Ω with the strong noise renormalizes the frequency and creates a finite

width for each level. The situation becomes simpler in the limit of very strong noise√〈ηη†〉 
 τ−1
n � Ω. In this case the initial energy difference Ω between levels can

be neglected. The two states become equivalent and their occupation numbers are

equal (1/2), i.e. sz = 0. The same result can be obtained from the fact that, as

we already argued, the very strong noise must be classical. Equation (2.41) can be

considered as an interpolation between weak and very strong noise. Therefore, it

gives a reasonable description of intermediate regime.

H. Transitions in the presence of the LZ gap and noise

As we demonstrated earlier, for the fast moderately strong noise, the effective

time of the LZ transition due to the regular LZ gap τLZ = Δ/Ω̇ is much less than the

accumulation time τacc =
(
Ω̇τn

)−1

. Therefore it is possible to ignore the transverse
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noise within the LZ time interval |t| � τLZ and to ignore the LZ gap Δ beyond

this interval. In this section we match the LZ solution modified by longitudinal

noise inside the LZ interval with the solution of the problem with the transverse

noise and Δ = 0 (see Section G) beyond this interval. For this purpose we choose

a time scale t1 such that τLZ � t1 � τacc and first consider the solution (2.38) of

master equation in the interval (−∞,−t1) then use LZ solution with longitudinal

noise ignoring transverse noise in the interval (−t1, t1) and again use the solution of

the master equation in the interval (t1,+∞). The next step is to put t1 = 0 for the

solution of master equation and to put t1 = ∞ for the solution of the LZ equations

with longitudinal noise.Limiting values of the solutions at intervals left from ±t1
serve as initial values for solutions at intervals right from them. First we consider

the interval (−∞,−t1). For simplification we accept in the solution (2.38) t0 = −∞.

Since t1 � τacc it can be replaced by 0 in the solution (2.38) with high precision

∼ t1/τacc. Thus, at the left edge of the interval (−t1, t1) we find:

sz (−t1) � s(−)
z = exp

(
−

∫ 0

−∞
f (τ ) dτ

)
sz (−∞)

+

∫ 0

−∞
g (t′) exp

(
−

∫ 0

t′
f (τ ) dτ

)
dt′

(2.42)

This value can be treated as an initial condition s
(−)
z at t = −∞ for the LZ problem

with the longitudinal noise. If the solution of this problem is known, the value s
(+)
z

at t = +∞ can be calculated. The information necessary to make this calculation

effective is the knowledge of two numbers if there is no coherence in the initial system.

The density matrix ρ(+) at t = +∞ is obviously a linear function of the initial density

matrix ρ(−). There exists a linear 4×4 matrix Λ performing this transformation:

ρ
(+)
αβ = Λαβ,μνρ

(−)
μν (2.43)



43

The requirement that Trρ(+) = 1 if Trρ(−) = 1 implies the following equation:

Λαα,μν = δμν . If ρ
(−)
12 = ρ

(−)
21 = 0, the equation (2.43) results in following relationship

between s
(+)
z and s

(−)
z :

s(+)
z = (Λ1 + Λ2) s

(−)
z + (Λ1 − Λ2) , (2.44)

where we introduced abbreviations Λ1 and Λ2 for Λ11,11 and Λ22,22, respectively. If

the longitudinal noise is absent or sufficiently weak, the LZ values for Λα are:

Λ1 = Λ2 = exp (−2πγLZ) − 1

2
(2.45)

If
〈
u2
‖
〉
� Ω̇/ (Δτn), the longitudinal noise is weak enough to neglect the longitudinal-

longitudinal correlations. Still the correlation of the longitudinal and transverse noise

can significantly change the effective LZ gap (see equation (2.34)) . The values Λ1,2

for some specific situations in which the longitudinal noise is substantial can be

extracted from the cited works [35, 36].

The value s
(+)
z from equation (2.45) serves in turn as initial condition at t = +0

for the master equation. Its solution (2.38) at t = +∞ leads to the final result:

sz(+∞) = (Λ1 + Λ2)e
−2πγ⊥sz(−∞) + (Λ1 − Λ2)e

−πγ⊥ π

Ω̇
×
∞∫
0

[(
〈
ηη†

〉
Ω
− 〈

η†η
〉
−Ω

)

× e
− 2π

Ω̇

∞∫
Ω

(〈ηη†〉
ω
+〈η†η〉−ω

)dω

[(Λ1 + Λ2)e
− 4π

Ω̇

∫ Ω
0 (〈ηη†〉

ω
+〈η†η〉−ω

)dω − 1]]dΩ

(2.46)

Here γ⊥ = 〈u2
⊥〉 /Ω̇. We remind that the occupation numbers are related to sz as

N1,2 = 1/2 ± sz. Below we write the survival probability for the case when the

longitudinal-longitudinal correlations can be neglected
〈
u2
‖
〉
/Ω̇ � (Δτn)−1. In this

case sz (−∞) = 1/2, the values Λ1,2 are determined by equation (2.45) and from
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equation (2.46) we find:

P1→1 =
1

2

[
1 + e−2πγ⊥

(
2e−2πγLZ − 1

)]
+
π

Ω̇
×
∞∫
0

(
〈
ηη†

〉
Ω
− 〈

η†η
〉
−Ω

)

× e
− 2π

Ω̇

∞∫
Ω

(〈ηη†〉
ω
+〈η†η〉−ω

)dω

[(2e−2γLZ − 1)e
− 4π

Ω̇

∫ Ω
0

(〈ηη†〉
ω
+〈η†η〉−ω

)dω − 1]dΩ

(2.47)

To take in account the correlation between the longitudinal and transverse noise one

should replace the LZ gap Δ in the expression for γLZ = Δ2/Ω̇ by the renormalized

value from equations (2.34, 2.35).

I. Discussion, applications to molecular magnet

In the case of weak transverse noise or very fast sweeping γ⊥ � 1 equations

(2.46, 2.47) turn into the result (2.44) and the LZ survival probability, respectively.

In the opposite case of the strong transverse noise or slow sweeping γ⊥ 
 1 the

occupation numbers accept their stationary values at fixed instantaneous frequency

independently on the value of LZ parameter γLZ . The classical noise corresponds to

large phonon occupation numbers nq. In this case the operators η and η† commute;

all terms containing commutators
〈
ηη†

〉
Ω
− 〈

η†η
〉
−Ω

can be neglected. Then theory

reproduces the result for classical fast noise [31]. It is instructive to compare equation

(2.47) with the exact survival probability for T = 0 obtained in the recent article

by Wubs et al. [37]. At zero temperature the average value
〈
η† (t) η (t′)

〉
as well as

its Fourier transform turns into zero. This fact allows to calculate the integrals in

equation (2.47). More physically visible way of obtaining the same result is to keep

in mind that there is no live phonon at T = 0 and only spontaneous emission of

phonons is possible. Therefore, if initially only the lower state was populated, the

phonon cannot be emitted before the levels crossing. This consideration immediately



45

gives s
(−)
z = sz (−∞) = 1

2
and s

(+)
z = 1

2
(2e−2γLZ − 1). Employing general equation

(2.38), we find the value sz (+∞) = 1
2
[2 exp (−2π (γLZ + γ⊥)) − 1] and the survival

probability:

P1→1 = exp (−2π (γLZ + γ⊥))

= exp[−2π

Ω̇
((Δ − 1

V

∑
q

g‖ (q) g⊥ (q)

ωq
)2 +

〈
η⊥ (0) η†⊥ (0)

〉
)]

(2.48)

This result with precision of notations coincides with the exact result by Wubs et

al. [37], equations (6-8), obtained without any limitations to the strength of noise

and ratios of characteristic time scales. Surprisingly the multiphonon processes as

well as the longitudinal-longitudinal noise correlations do not contribute at all to

the survival and transition probabilities even at very high noise intensity. At zero

temperature such a high noise level can be reached only by enhancement of the

coupling amplitudes. Though large coupling amplitudes are physically implausi-

ble, as a mathematical model they are absolutely legitimate. The fact that these

high-intensity processes do not play role in the transitions supports our speculations

that the master equation range of validity may be broader than it follows from our

derivation.

Our theory is relevant to molecular magnets, first of all because the condition

of the noise fastness is perfectly satisfied in the experiment. Indeed, the highest

magnetic field rate used in the experiments with Fe8 and Mn12 was 103 Gs/s [12, 47].

This rate corresponds to Ω̇ = 1010s−2. The lowest temperature used in the cited

measurements was about 0.05K. The dimensionless ratio of the value
√

Ω̇ to the

smaller of the noise spectral widths is �

√
Ω̇/T ∼ 10−5.

Here is a brief introduction to molecular magnet. A molecule magnet is an in-

termediate size molecule containing a ferromagnetic core confined in organic ligands.
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They show slow relaxation of the magnetization originated purely from molecule it-

self. It means first of all a hard magnet, which shows hysteresis loop when being

magnetized in a magnetic field. It is also a magnet purely from single molecule whose

usually extremely weak interaction with neighboring molecules is not necessary for

the magnetism to occur. The single molecule magnets are usually consisting of a small

number of transition metal ions connected by simple bridges likeO2− orOH− or other

and then surrounded by various ligands. The most prominent examples are Mn12 [48]

and Fe8 [49]. Mn12 and Fe8 are abbreviations for [Mn12O12(CH3COO)16(H2O)4]

FIG. 11. Mn12 molecule. Red ions are Mn(Mn3+ or Mn4+), blue ones are O. Ligands

are surrounding. The total spin S = 10 and ground state Sz = ±10.

.2CH3COOH.4H2O and [(C6H15N3)6 Fe8O2(OH)12] .Br7H2O.Br.H2O, respectively.

The Mn12 molecule consists of 12 manganese ions, four Mn(IV) ions (s=3/2) in a
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central tetrahedron surrounded by eight Mn(III) ions (s=2), bound by oxide and

acetate ions. Both Mn12 and Fe8 have a spin ground state of S = 10 (indicating

8 × 2 − 4 × (3/2)), and an Ising-type magneto-crystalline anisotropy, which stables

the spin states M = ±10 and generates an energy barrier for the reversal of the

magnetization of about 67 K for Mn12 and 25 K for Fe8. As shown in Fig. 11, for

the magnetic core of Mn12, the magnetic atoms in the molecule are sufficiently close

to each other intermediated by Oxygen bridges, and have a rather strong exchange

interaction. On the other hand, the distance between centers of different molecules

are about 15 A◦. Centers of different molecules are well separated by the ligands of

the molecules. Therefore, the intermolecular interactions are utterly negligible and

magnetic molecules can be considered as being independent.

The curve of magnetization vs the field, recorded at a temperature of 2 Kelvin,

is very remarkable (see Fig. 12).It shows that the molecular crystal of Mn12 behaves

like a traditional hard magnet, with strong remnant magnetism and a strong coercive

field. At the same time it is like a quantum system. Since starting from temperature

about 0.5K the hysteresis loop does not change more width with the temperature

decreasing. At certain values of the magnetic field, the curve shows regularly spaced

steps which are the signature of the magnetic quantum tunneling effect, which was

discovered in 1995 [47].

After Mn12, new classes of magnetic molecules were synthesized, including the

class of spin rings and the class of giant Keplerate molecules and chain or planar

structure of these molecules [50, 51, 52, 53, 54, 55, 56]. For molecules Fe8 which

possess a high ground state spin and well separated higher lying levels the following

single-spin Hamiltonian

H = −DS2
z + E(S2

x − S2
y) − gμBS ·H (2.49)
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FIG. 12. There are steps at regular intervals of magnetic field in the hysteresis loop

of a macroscopic sample of oriented Mn12Ac crystals. This phenomenon

became later known as Quantum Tunneling effect.

is appropriate, see e.g. Ref. [57]. For Mn12, due to the tetragonal structure, the

forth powers S4
x and S4

x are important. Here, Sx, Sy, and Sz are the three components

of the spin operator, D and E are the anisotropy constants, and the last term of the

Hamiltonian describes the Zeeman energy associated with an applied field H . This

Hamiltonian accepts the hard, the medium, and the easy axis of magnetization for

the x, y and z direction, respectively. D and E are anisotropy constants, D > E,

both positive. The last term is the Zeeman energy. H is the external magnetic field.

If there are only terms containing Sz, i.e. E = Hx = Hy = 0, the system has an

energy spectrum labeled with the values of spin projections Sz = M , M ∈ [−s, s].
Terms containing Sx or S2

x usually lifts degeneracy(if there is one) and introduces
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transitions for m−m′ = 1 or 2.

For S=10, at H =0, the states M = ±10 have the lowest energy. Although

terms E(S2
x − S2

y) mix the two states, the level splitting is very small( (E/D)10)

and therefore the levels can still be labeled by M approximately. When a field is

applied along easy axis, H = −DS2
z + E(S2

x − S2
y) − gμBSzHz, the energy of the

states with M < 0 increase while that for states with M > 0 decrease. Therefore,

different energy levels cross at certain fields(Fig. 13). The crossing is avoided due

to transverse terms S2
x, S

2
y , Sx, Sy. The energy gap, the so-called tunnel splitting

ΔM,M ′ can also be tuned by an applied field in the xy-plane via the SxHx and SyHy

Zeeman terms. Interestingly the gap shows a oscillating dependence on field in the

Hx direction (hard anisotropy direction), due to the Berry’s phase [14].

FIG. 13. Sketch of part of a spectrum of high spin molecule in magnetic field. As

magnetic field changes, there are crossings of energy levels.
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The renormalization of the gap due to the correlation between longitudinal and

transverse noise (see section E) allows resolving at least qualitatively two puzzles

which appeared in experimental studies of nanomagnets.

The first of them relates to the selection rules at transitions. At zero field Hamil-

tonian H = −DS2
z + ES2

x. Such a Hamiltonian has non-degenerate spectrum, but

at large S the lowest energy levels characterized with a dominant projection of spin

±M are only slightly split. Being placed into the time-dependent magnetic field

these states change their energy and cross each other. The LZ transitions at such

crossings are due to the term bS2
x in the Hamiltonian. Therefore, only transitions

by ±2 in M are allowed by theory in contradiction with the experiment. The renor-

malization of the gap lifts this contradiction because the spin-phonon interaction

introduces terms like uxzSxSz. They result in non-zero renormalized gap between

the states with different parities of M and zero initial gap.

The second puzzle is the isotopic variation of the LZ gap Δ. Wernsdorfer et al.

[14] have found a significant effect at isotopic substitution of Fe58 by Fe57 and H by

D in the molecule Fe8, as in Fig. 14. The isotopic dependence looks puzzling if the

origin of the gap is electronic spin-orbit interaction, but it is quite natural in the gap

renormalization due to phonons.

In principle our theory can explain the temperature dependence of the hys-

teresis curve in molecular magnets. The molecular hysteresis curve displays clearly

pronounced steps at definite, temperature independent values of the magnetic field

[12, 47, 58]. They are identified with the LZ transitions at crossings of Zeeman levels

belonging to different M . The hysteresis curve becomes temperature independent

at temperature below 0.4K, but it strongly narrows at comparatively low temper-

ature about 1.5-3K. The application of our theory to the problem of the hysteresis

curve and relaxation requires several additional steps. The first is establishing of
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FIG. 14. Field sweeping rate dependence of the tunnel splittingΔ−10,10 measured by a

Landau-Zener method for three Fe8 samples, for Hx = 0. The Landau-Zener

method works in the region of high sweeping rates where Δ−10,10 is sweeping

rate independent.

the spin-phonon Hamiltonian. Its simplest form is Hs−ph = Λαβ,γδuaβSγSδ for in-

teraction with acoustic phonons or Hs−ph = Λα,βγuαSβSγ for interaction with optic

phonons. The coefficients Λαβ,γδ can be obtained from the measurements of magneti-

zation curves under the pressure and shear deformation. To our knowledge, there is

no such experimental data so far. We do not know how to extract the optic-phonon

coupling constants Λα,βγ from experimental data. Both these sets can be found by

numerical calculations for a single molecule. Keeping in mind a large number of

atoms in it , it is not a simple computational problem. We plan to derive a kind of
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effective media approach. But even if the spin-phonon coupling would be known, it

is necessary to translate them into the language of the two-level (spin 1/2) system

near each diabatic Zeeman level crossing. This procedure does not require additional

knowledge of parameters, but it requires work and time. We will give here a rough

estimate of the noise intensity. The transverse noise is very weak for transitions

with a large change of the spin projection, for example, from +10 to -10, since the

standard coupling of the deformations to spin can change the spin projection only

by ±1,±2. Therefore, the transverse noise linear in phonon operators appears only

in combination with high-order perturbation caused by the biaxial anisotropy b. For

transitions with the small change of the spin projection the transverse noise is of the

same order of magnitude as longitudinal one. Assuming that the coefficients Λαβ,γδ

have the same order of magnitude as a and b, intensity can be estimated from the

known value of magnetic anisotropy energy a � 0.06K (for Fe8) and the statistical

weight of phonons with frequency smaller than the anisotropy energy ∼ (a/ED)3,

where ED is the Debye energy. An additional factor a/ED comes from the square

of coupling function |gq|2, which is proportional to q at small wave vectors. Thus,〈
u2
‖
〉

∼ a2 (a/ED)4 √ m
M

� a = �ωg. This inequality shows that the condition of

moderately strong noise is well satisfied for the acoustic noise. Numerical estimate of

the value
〈
u2
‖
〉
/�2Ω̇ shows that it is small for the magnetic sweeping rate from 1 to

1000 Gs/s used in the experiment. Thus, the acoustic noise scarcely can explain the

strong temperature dependence of the hysteresis curve. More plausibly low-frequency

intramolecular oscillation are responsible for this phenomenon. However, there is no

doubt, that the thermal noise becomes important at a temperature of few Kelvin and

that the noise is fast and quantum. Though the longitudinal noise does not produce

transitions between diabatic levels, it is effective for transitions between adiabatic

levels [35].
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CHAPTER III

LANDAU-ZENER THEORY AND ULTRACOLD DILUTE FERMI GAS

A. Introduction

In recent years there have been numerous achievements in experimental studies

of ultra-cold gas of Fermi atoms. In this many-body system, the LZ transitions play

an important role. In this chapter we limit the discussion to the system through a

broad Feshbach resonance. The static and dynamics of the narrow resonance was

thoroughly analyzed theoretically in the review by Gurarie and Radzihovsky [59].

The case of the broad resonance was not fully understood since it is a strong interac-

tion problem. In this chapter we show that rather crude but qualitatively reasonable

approximations naturally stemming from the condition of the broad resonance allow

solving the static and dynamic problem exactly.

Bosonic superfluidity and fermionic superfluidity have long been the rich and

fruitful subjects of research frontier over the past century since Kamerlingh Onnes

liquefied helium-4 in 1908, and lowered its temperature below the λ-point Tλ = 2.2K

and noticed a maximal density at that point [60]. Onnes’s laboratory in 1923 also

noted again the possible discontinuity in the latent heart near the same temperature.

However the significance of these discoveries was not realized until later in 1938.

Onnes was then focusing on the electrical conductivity of metals at low temperature

and he then found in 1911 that mercury below TC = 4.2K showed zero resistance

and this phenomenon is called superconductivity, which is now also known as charged

superfluidity. In 1938 two groups, one by Kapitza and the other by Allen and Misener,

independently discovered the vanishing viscosity of He4. This phenomenon was then

called superfluidity in direct analogy with superconductivity.
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Bose and Einstein had predicted earlier the phenomenon of Bose Einstein con-

densation(BEC) in an ideal gas of non-interacting particles obeying Bose-Einstein

statistics. Below some temperature a fraction of particles go to a single particle state

with minimal energy(zero momentum). F. London noticed that the BEC would oc-

cur at 3.3K for noninteracting gas with same mass and density as He4. Lev Landau

then in 1941 approached the problem of superfluidity with a highly successful phe-

nomenological two-fluid model. The microscopic mechanism was explained by N.

Bogoliubov in 1946 by considering a weakly interacting Bose gas. He showed that

the excitation spectrum of a weakly interacting Bose gas is linear in the momentum of

the excitation and the critical velocity of superfluidity is finite. The weak interaction

does not destroy the Bose-Einstein condensate but an ideal Bose gas in BEC state

has a vanishing critical velocity and hence is not a superfluid. Generally a superfluid

requires correlation (the interaction) between particles to ensure collective motions.

Further investigation into liquid helium is still on-going [61].

Superconductivity was more difficult to understand, though it was discovered

earlier. Nevertheless these two kinds of superfluid turned out to be connected. A

breakthrough came in 1956 when Cooper realized that two fermions with opposite

spin and momentum on top of a filled Fermi sea would form bound pairs via an

arbitrarily weak attractive interaction. The electron pairs, also known as Cooper

pairs, occur not in real space but in momentum space. The attraction of these

pairs are via electron phonon interactions, which overcomes the Coulomb repul-

sion. Bardeen-Cooper-Schrieffer(BCS) theory was then developed to describe the

collective and correlated state and was able to explain the isotope effect and metal

superconductivity quantitatively. Although the BCS theory is successful in describ-

ing superconductivity and has applications in higher angular momentum paring and

neutral superfluidity and other pairing such as that in nuclear matter and neutron
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stars, it still describes a weak interaction. In 1986 high TC cuprate superconductors

were discovered and traditional BSC theory failed to explain. It then became im-

portant to consider strongly interacting fermions. Actually before the discovery of

high TC superconductivity, there was development trying to generalize BCS theory

to include strong interactions.

Using a generic two-body potential, Leggett [62] showed in 1980 that the limits

of tightly bound molecules and long-range Cooper pairs are connected in a smooth

crossover. The size of the fermion pairs changes smoothly from being much larger

than the interparticle spacing in the BCS-limit to the small size of a molecular

bound state. Accordingly, the pair binding energy varies smoothly from its small

BCS value (weak, fragile pairing) to the large binding energy of a molecule in the

BEC limit (stable molecular pairing). The tool that modulates the binding energy is

the Feshbach resonance. This technique was used by three groups on ultracold Fermi

atoms in 2003. In 1993 following the result of Leggett, Sa De melo et al. [63] smoothly

interpolated the BCS and BEC limits. The phase digram is qualitatively like Fig. 15.

The BCS-BEC crossover phase diagram is still currently under development efforts

from both experimentalists and theorists.

The first laboratory realization of BEC in ultracold dilute atomic gases in 1995

has led to a revolution in atomic physics. Beautiful experiments for example on

interference, on solitons and on vortices have directly demonstrated coherence, the

wave-like nature of the gas and supefluid flow [64, 65, 66]. From a condensed matter

perspective, these weakly interacting condensates represent the most fundamental,

basic many-body wave functions.

Comparing with conventional helium, superconductors, nuclear matter and neu-

tron stars, ultracold dilute fermi gas, as a many-body system, is generally simpler and

easier to be controled in laborotory. And hence it has has been extensively studied.
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FIG. 15. Phase diagram for ultracold superfluid. Here aS and kF are scattering length

and Fermi wavenumber. This diagram shows the Temperature Tpair when

fermion pairs begin to form and Tc when fermion pairs become coherent

and superfluid form. As the interaction strength increases, the Fermi liquid

smoothly evolves into molecular Bose liquid. The line where 1/aSkF = 0 is

the so called unitary limit. At this limit the chemical potential is zero.

One of the few ways to tune the interactions is to directly modify the inter-atomic

scattering using the so-called Feshbach resonance. Alkali atoms Li, Na, K, Rb, form

diatomic molecules similar to H2, but with very small binding energy( 10−2K). Ap-

plying an external magnetic field one can tune the electronic Zeeman energy of a

pair of atoms with parallel spins to the molecule energy. At this value of magnetic

field an intensive production of molecules from atoms starts. In 2003 [67] Jin group

produced molecules from fermi atoms of K40 by sweeping the magnetic field through
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Feshbach resonance. These molecules were found remarkably stable and were later

condensated to BEC state by three groups [68, 69, 70]. The major tool for these

experiments is the Feshbach resonance, which occurs when the energy of a quasi-

bound molecular state becomes equal to the energy of two free alkali atoms. The

magnetic-field dependence of the resonance allows precise tuning of the atom-atom

interaction strength in an ultracold gas [71]. Moreover, time-dependent magnetic

fields can be used to reversibly convert from atom pairs to weakly bound molecules

or from bound molecules to atom pairs [67, 72, 73, 70, 74, 75, 76, 77]. This tech-

nique has proved to be extremely effective in converting degenerate atomic gases

of fermions [67, 72, 73, 78, 68, 70, 69] and bosons [79, 76, 77] into bosonic dimer

molecules.

Theoretical works on the molecular production can be roughly divided in two

categories. The first is a phenomenology suggesting that pairs of molecules indepen-

dently undergo Landau-Zener (LZ) transitions [18, 19]. Therefore the total number

of molecules at the end of the process is the LZ transition probability multiplied by

the number of pairs. The most problematic issue in this approach is what should be

accepted for the LZ transition matrix element Δ (called the LZ gap again). Direct

calculation of the transition probability from a microscopic Hamiltonian, to the 4-

th order in the interaction constant [80], shows that in contrast to the assumption

of phenomenological works the many-body effects are essential. Another category

includes works based on a simplified model [81] in which molecules have only one

available state mimicking the condensate [82, 83, 84]. Although numerical works in

this category display a reasonable temperature dependence, they give no clear phys-

ical picture and detailed parameter dependence. The series of semi-analytical works

by Pazy et al. [85, 82, 86, 87] will be discussed later.

In this chapter we consider the process of molecule production from a Fermi gas
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of atoms after a broad FR is swept across the Fermi sea. Our theory is valid under

the assumption of strong interaction, equivalent to the condition of a broad resonance

[59]. We derive a closed equation for the process of molecule production. We show

that in a single-mode approximation this problem reduces to the linear LZ problem

for operators. However, the strong interaction leads to a significant renormalization

of the LZ gap. Contrary to the assumption of the phenomenological theories, this

LZ gap is independent of the Fermi gas density. Our results display a significant

dependence of the molecular production on the initial state preparation. For the

inverse process of transformation of the BEC molecular gas into the atomic gas,

immediately after magnetic field sweeping, the atomic gas appears in the state with

a strongly developed BCS condensate. We also show the static limit of the conversion

process. The condition of the broad resonance Eq. (3.4) allows simplification of the

model despite of strong interaction between fermions. The key idea is a proper cutoff

in the momentum space and neglection of the fermion dispersion. The resulting

model is similar to the Dicke spin model for superradiance [88]. This model allows

us to solve the static problem exactly. The complete spectrum and eigenstates are

found. The solution displays a crossover from BCS to BEC in the range of detuning

close to the FR. We find the density of the condensates and their correlation as

function of the detuning.

B. Feshbach resonance

When fermi atoms are placed in magnetic field, they are subject to Zeeman split-

ting interaction in addition to the hyperfine splitting interaction. The Hamiltonian

describing hyperfine and Zeeman interaction is gH
�I · �S+2μBBSz, where �I and �S are

nuclear and electron angular momentum, μB is the magnetic momentum, B is the
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FIG. 16. 40K atomic energy spectrum in presence of magnetic field. I = 4 for 40K.

magnetic field and Sz is the spin projection on the direction of the field. Since the

orbital momentum of fermi alkali atom is 0, the total angular momentum of electron

is just 1/2. The total spin �F ≡ �I + �S has value I ± 1/2. The atomic state can be

completely described by this quantum number and its z component mf . The atomic

energy spectrum for the example of 40K is shown in Fig. 16. The degeneracy in total

spin F is removed by hyperfine interaction and the degeneracy in mf is removed by

applying a magnetic field. Collisions of two fermi atoms in the s-wave channel is

possible only if they have different hyperfine states. In a typical experiment [67, 68]

an admixture of atoms of K40 with the same total atomic spin 9/2 but different spin

projection quantum numbers −7/2 and −9/2 was used. Further we will describe
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these two different states by a pseudospin σ, accepting two values ↑, ↓ respectively

as shown by the two small arrows in Fig. 16. We can also see that the energy of

these two states decrease as magnetic field increases.

FIG. 17. Energies of states vs interatomic distance(left) and magnetic field(right).

Alkali atoms entering in the triplet potential(red) are coupled to a singlet

bound molecular state(blue). By tuning the external magnetic field, this

bound state can be brought into resonance with the incoming state.

Feshbach resonance, first investigated in the context of nuclear physics [89],

refers to the phenomenon of the change of scattering length in an open channel due

to the coupling to a bound state in the nearby closed channels. There’s no coupling

to first order between open and closed channels, because there’s no continuum state

in closed channel. To the second order perturbation, two particles in an open channel

can scatter to an intermediate state in a closed channel, which subsequently decays

into two particles in one of the open channels. As one would expect from second-

order perturbation theory for energy shifts, coupling between channels gives rise to

a repulsive interaction if the energy of the incoming particles is greater than that

of a bound state, and an attractive interaction if less. The closer the energy of the
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incoming particles is to that of a bound state, the larger the effect on the scattering.

Such second-order process would contribute a term proportional to 1/(E−E0) to the

scattering length, where E0 is the bound state energy and is almost flat respecting

to magnetic field changes, as seen in Fig. 17. In this figure, two atoms enter in spin

triplet configuration. And if there was no coupling between the singlet potential(blue

curve) and the triplet potential(red curve), the atoms would simply scatter off each

other in triplet potential, acquiring some phase shift. However if there is a bound

state in the singlet potential with energy E0 close to the threshold energy E of the

open channel, these two channels are coupled, due to spin-exchange and dipole-dipole

interaction. The energy of the open channel depends on magnetic field and hence

the energy difference between the two channels can be tuned by the magnetic field

according to this formula

E − E0 = (μ1 + μ2 − μ0)(B − B0), (3.1)

where μ is the magnetic moment of each particle with subscripts 1 and 2 for atoms

and 0 for molecule, and B0 is the point when the energies of these two channels

become same. So the scattering length depends on the magnetic field,

a (B) = anr

(
1 − Bw

B −B0

)
. (3.2)

where anr is the non-resonant scattering length far away from B0, B0 is the magnetic

field at resonance point, and Bw is the magnetic-field width of resonance. The

Feshbach resonance makes it possible to tune up the interaction strength between

atoms via change of magnetic field. The Fig. 17 shows a sketch of the mechanism. As

magnetic field B is swept down, the atomic state is energy favorable at first. But as

the field B passes through the strongest resonant point B0, the triplet potential moves

above the the singlet potential. Then the bound molecule state is energy favorable.
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FIG. 18. The right side curve shows the broad resonance of 6Li and the left side curve

shows the narrow resonance, which is just a vertical line in the graph on the

right side.

We can then consider a Landau-Zener transition happens during the energy curve

crossing at B0 as field is swept.

A Feshbach resonance might be very broad or very narrow. Take the 6Li for

example, its resonance at B0 = 834G is more wide than 100G but its resonance

at B0 = 543G is less than 0.1G as shown in Fig. 18. The origination of and the

difference between broad FR and narrow FR require complete derivation of resonance

states. I will just present some results here partially according to the book [90]

and review [59]. By considering a simple potential, the state close to resonance is

|ϕ〉 = α |m〉+
∑
ck |k〉, where |m〉 represents the bound state close to resonance and

|k〉 is the continuum state, and α and ck are the amplitudes of each state. It is shown

that α2 ≈
√

EF

Δ̃
1

kF a
, where Δ̃ is an intrinsic energy scale associated with the strength

of the Feshbach coupling between the molecular state and the scattering continuum.

This intrinsic energy scale Δ̃ can be connected to experimental parameters as

Δ̃ =
4μ2

BB
2
w

�2/ma2
nr

(3.3)

If α2 � 1, the molecular state is is dressed and dissolved in open continuum
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throughout the crossover and the details of the original molecular state |m〉 do not

play a role, which is the case of a broad Feshbach resonance. The crossover occurs

for −1 � 1
kF a

� 1. So the resonance is broad if

Γ ≡
√

Δ̃

EF

 1, (3.4)

and is narrow if Γ � 1,where EF is the Fermi Energy

EF =
�

2

2m
(3π2N/V )2/3 =

�
2

2m
(3π2n)2/3. (3.5)

We will show later that the value Δ̃ characterizes the interaction in the Fermi-gas

or the interaction of the BCS pairs with the BEC condensate.

C. Approximation of the Hamiltonian

We start with the Timmermans et al. Hamiltonian [91]:

Ĥ =
∑
p,σ

(ε+ εp)â†pσâpσ +
∑

q

ωqb̂
†
qb̂q

+
g√
V

∑
p,q

(
b̂qâ
†
p+q↑â

†
−p↓ + b̂†qâ−p↓âp+q↑

) (3.6)

Here â†pσ are creation operators of fermionic atoms with momentum p and kinetic

energy εp = p2

2m
, b̂†q are the creation operators of the bosonic diatomic with kinetic

energy ωq = q2

4m
, the position of the FR is controlled by the experimentally tun-

able detuning energy ε, which becomes time-dependent in the dynamic problem, the

coupling constant g relates to the reaction of molecule formation from two atoms

and the inverse process of molecular dissociation. As it was explained earlier, the

coupling constant g stems from the hyperfine interaction. Its value can be estimated

as g ∼ εhf

√
a3

m, where εhf is a characteristic hyperfine energy (about 1mK) and am
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is the size of the diatomic molecule. The Hamiltonian (3.6) neglects nonresonant

atom-atom and molecule-molecule interactions that near a FR are subdominant to

the resonant scattering. To some extent the direct atom-atom interaction is taken

into account by the value a0 in Eq. (3.2). From now on, we use the word “atoms”

for both uncoupled atoms and atoms within molecules, and the word “fermions” for

atoms that are not bound in molecules. Correspondingly, we denote the number of

atoms as N and the number of fermions as N̂F .

To find the connection between the coupling constant g in the Hamiltonian

(3.6) and the value Δ̃ defined by equation (3.3) we eliminate b̂q and b̂†q from the

static Hamiltonian (3.6) and obtain the Hamiltonian for fermions only with 4-fermion

interaction. Assuming that εp and ωq can be neglected in comparison to ε (this

assumption will be justified later), the interaction Hamiltonian reads:

Hint =
g2

2V ε

∑
p,p′,q

â†p+q↑â
†
−p↓â−p′↓âp′+q↑ (3.7)

gF = g2/2ε. It is negative (attraction) at negative ε. The s-scattering length a is

related to the interaction constant gF by a standard relation [92] gF = 4π�
2a/m.

Thus, the singular part of the scattering length is associated with the fermion-boson

coupling constant g and the detuning energy ε as follows:

a(ε) =
mg2

8π�2ε
(3.8)

Comparing equation (3.8) with the resonance term in equation (3.2) and identi-

fying ε = μB (B − B0), we arrive at a relation 2BwanrμB = mg2/4π�
2. Using

εF = �
2(3π2n)2/3/2m, where n is the density of fermions, and substituting this into

equations (3.3, 3.4) we express the intrinsic energy Δ̃ and dimensionless parameter
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Γ in terms of the coupling constant g:

Δ̃ =
m3g4

16π2�6
(3.9)

Γ =
m2g2

�4n1/3

1

π5/331/323/2
(3.10)

The Hamiltonian (3.6) is still too complicated. However, we find out that the

broad resonance condition results in two approximations. The first important ap-

proximation leading to the simplification of Hamiltonian is the single-boson-mode

approximation. It means that all amplitudes b̂q will be neglected except that of

b̂q=0. To justify this approximation we note that the characteristic energy scale in

statics and dynamics is Δ̃. The corresponding value of the scattering length follow-

ing from equation (3.9) is a ∼ 1/
(
Γn1/3

)
. It means that the characteristic value

of the gas parameter an1/3 is small: an1/3 ∼ 1/Γ � 1. At this condition and zero

temperature almost all particles of the Bose-gas fall into the coherent condensate

with zero momentum. The approximation is not obvious at small |ε| ∼ Δ̃/Γ. We

will show later that they are not essential for the dynamic process. In the static state

these values of ε correspond to the strong interaction regime in which the fermions

are distributed in the broad range of momentum ∼
√

2mΔ̃. The maximal modu-

lus of the scattering length for such particles corresponding to the unitary limit is

a ∼ �/
√

2mΔ̃. The corresponding value of the gas parameter an1/3 is again of the

order 1/Γ and the single-mode approximation survives.

The Hamiltonian (3.6) conserves the total number of atoms:

N = N̂F + 2w0b̂
†
0b̂0

= N̂F + 2w0b̂
†b̂, if we omit the subscript 0.

(3.11)

Therefore, in the Hamiltonian (3.6) the detuning energy can be transformed to absorb

the term of energy of the molecules, only at the cost of a constant term in Hamilto-
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nian. So the bosonic term is absorbed by a newly defined detuning energy(we will

still use the same symbol for the new detuning energy though),

∑
p,σ

εâ†pσâpσ +
∑

q

ωqb̂
†
qb̂q =

∑
p,σ

εâ†pσâpσ + w0b̂
†
0b̂0

= w0N/2 +
∑
p,σ

(ε− w0/2)â†pσâpσ

→
∑
p,σ

εâ†pσ âpσ.

(3.12)

The other approximation is neglecting the fermion dispersion εp which is small

comparing to typical interaction energy. A typical value of b0 is
√
N . In the

broad resonance approximation g
√
N/

√
V ≡ g

√
n is much larger than εF , because

(g
√

n
εF

)2/Γ ≈ 1.2 and Γ 
 1. Therefore, it seems reasonable to neglect the kinetic

energy of fermions in comparison to ε. We will see that this approximation is well

justified for the dynamic problem, though it may be not so good for statics of the

model (3.17).

In the approximation of single mode and approximation of fermion dispersion

neglection, the Hamiltonian (3.6) is strongly simplified:

Hsm =
∑
p,σ

εâ†pσ âpσ +
g√
V

[
b0

∑
p

a†p↑a
†
−p↓ + b†0

∑
p

ap↓a−p↑

]
(3.13)

D. The global spin model and its Hilbert space

The Hamiltonian (3.13) acts separately in the subspace of single-occupied and

in the subspace of double-occupied or empty fermionic states. Following Anderson
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[93] we introduce spin operators:

spz =
1

2

(
a†p↑ap↑ + a†−p↓a−p↓ − 1

)
(3.14)

sp+ = a†−p↓a
†
p↑; sp− = ap↑a−p↓ (3.15)

In the double-occupied or empty fermionic states subspace they obey the standard

commutation relation:

[spz, sp′±] = ±δpp′sp±; [sp+, sp′−] = 2δpp′spz (3.16)

so that the double occupied state corresponds to spz = +1
2

and empty state cor-

responds to spz = −1
2
. Note that single-occupied fermionc state corresponds to a

singlet spin state: all three spin operators (3.14, 3.15) turn such a state to zero. In

terms of spin operators the Hamiltonian (3.13) reads:

Hsm = 2
∑
p,σ

εspz +
g√
V

[
b0

∑
p

sp+ + b†0
∑
p

sp−

]
, (3.17)

where we have omitted an infinite constant originated from the term −1 in equation

(3.14).

By introducing the global spin S from summating the individual spins over mo-

menta, the Hamiltonian (3.17) reduces to one containing only global spin operators:

HS = 2εSz +
g√
V

(
b0S+ + b†0S−

)
(3.18)

where

Sz =
∑

spz; S± =
∑

sp± (3.19)

obeying the standard permutation relationships: [Sz, S±] = ±S±; [S+,S−] = 2Sz.

A subtle assumption incorporated in the derivation of the Hamiltonian (3.18) and

the permutation relations for the global spin components is that the summation in
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the two definitions (3.19) runs over the same range of momenta. It is not obvious

since the summation in the sum for Sz is limited by the condition εp � |ε|, whereas

the summation in the second sum is naturally cut off by the range of interaction

(it means that g is a function of momentum vanishing at sufficiently large values of

the momentum modulus). In dynamical problem the Anderson spins rotate with the

frequencies (ε+ εp) /�. Therefore they can rotate coherently and enhance remarkably

their effective field exerted to the molecular amplitude b0 only if εp < |ε|. We will see

that such a coherence indeed takes place in the dynamic problem. The contributions

from larger values of momenta to S± are incoherent and mutually compensate their

effect. Thus, for dynamic problem, the summation in the same momentum region in

the two equations (3.19) is justified. It is not as clear for the static problem. We will

see later that the static model has many qualitative features resembling those of the

initial Timmermanns et al. model. In particular it displays a crossover from BCS

to BEC condensate with a large gap due to strong interaction in a broad vicinity of

the Feshbach resonance. However, in quantitative details they are different. Besides,

the global spin model (3.18) has an additional symmetry and additional conserved

value which the Timmermans Hamiltonian does not possess. Indeed the Hamiltonian

(3.18) conserves not only the value

I = Sz + b†b (3.20)

(this conservation law is equivalent to the conservation of the number of atoms (3.11),

but it also conserves the total spin S, where:

S (S + 1) = S2
z +

1

2
(S+S + S−S+) (3.21)

Further we will see that in the thermodynamic limit of large system it is possible

neglecting 1 in comparison to S and non-commutativity of S+ and S−. The conser-
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vation law (3.21) together with the conservation law (3.20) will be shown to establish

a simple relationship between the BCS and BEC condensates such that the quantity

of one of them can be increased only at expense of the other.

The cut-off in the momentum space define a finite-dimensional Hilbert space of

states. This Hilbert space and the Hamiltonian (3.18) acting in it form what we call

the Global Spin Model (GSM). Let the number of single-particle states defined by

the cut-off is Ns and the total number of atoms, both free and bound in molecules

is N . Then the dimensionality of the Hilbert space of the GSM is:

N (N,Ns) =

N/2∑
M=0

Ns!

(M)! (Ns −M)!
(3.22)

This formula follows directly from the Fermi-Bose-gas picture if each single-particle

state can be either double occupied or empty. The expression which is summated

in Eq. (3.22) is the number of possible distributions of M electron pairs among Ns

single-particle states. Each state in this model is a vector of a direct product of Ns

spin 1/2 representations corresponding to the Anderson spins sp. The combinatorial

coefficient Ns!/ (M)! (Ns −M)! entering Eq. (3.22) is the number of possible distri-

butions of M spins up and Ns −M spins down, i.e. the number of different states

with the spin projection:

Sz = (
N

2
−M) − Ns

2
=
N −Ns

2
−M (3.23)

Generally the direct product of Ns spin-1/2 states gives the maximal possible total

spin Ns/2 and the minimal total spin zero (we assume that Ns is even). However, not

any vector of the direct product is allowed by the conservation law (3.20). Indeed,

the number of electron pairs or the spin-up projections M satisfies 0 ≤ M ≤ N/2,
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the projection Sz is limited by inequalities:

−Ns/2 ≤ Sz ≤ (N −Ns)/2. (3.24)

According to (3.32), Sz is always negative and large in absolute value. The total spin

S cannot be smaller than |Sz|, it also cannot be larger than Ns/2. Thus, the allowed

values of the total spin S are

(Ns −N)/2 ≤ S ≤ Ns/2. (3.25)

The number of different representations with the total spin

S =
Ns

2
− i,where

(
0 < i < N

2

)
(3.26)

is [94]:

N (S) =
Ns!(

Ns

2
− S + 1

)
!
(

Ns

2
+ S − 1

)
!
− Ns!(

Ns

2
− S

)
!
(

Ns

2
+ S

)
!

(3.27)

=
Ns! (2S + 1)(

Ns

2
− S + 1

)
!
(

Ns

2
+ S

)
!

Each of these representations contains generally 2S+1 states, but only S−(Ns−N)/2

of them are allowed by the conservation law.

E. Number of available states

So far the number of available single-particle states Ns entered as a phenomeno-

logical parameter.
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1. Definition from intrinsic energy scale

Below we calculate it employing a kind of self-consistency arguments. Let introduce

the momentum cut-off ps. The number of available states reads:

Ns = V
p3

s

3π2�3
(3.28)

It is reasonable also to introduce the density of available states ns = Ns/V . The

requirement of our theory is that the fermionic dispersion can be neglected at the

characteristic energy scale Δ̃ defined by equation (3.3). Thus, a reasonable momen-

tum cut-off is:

ps =
√

2mΔ̃ (3.29)

Plugging Eq. (3.9) into Eq. (3.29), we find:

ps =
m2g2

23/2π�3
(3.30)

The last equation and Eq. (3.28) implies the following result for ns:

ns =
m6g6

29/2 · 3π5�12
(3.31)

With precision of the coefficient 1.09 the value Δ = g
√
ns coincides with Δ̃, see IV.

Because ns = nΓ3, the condition of the broad resonance is equivalent to the strong

inequality:

Ns 
 N (3.32)

Hence the determination of Ns is self-consistent.

2. Definition from LZ equation

While in the previous work we worked out Ns in the following different way. It follows

from the first equation (3.15) that Sz = (N̂F − Ns)/2, where N̂F is the number of
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fermions and Nsis the number of available fermionic states. Nsis determined below

by the model self-consistency requirement (see Eq. (3.36)) and turns out to be much

larger than the number of atoms N . Therefore, Sz ≈ −Ns/2. The Heisenberg

equations of motion are:

�
˙̂
b = −ig̃Ŝ−; �

˙̂
S− = −2iε(t)Ŝ− + 2ig̃b̂†Ŝz (3.33)

where g̃ = g/
√
V and dots denote the time derivatives. Generally these equations

are non-linear. However, in the broad-resonance approximation Sz = −Ns/2, they

become linear. Eliminating S−, we arrive at an ordinary linear differential equation

for the operator b̂:

�
2¨̂b+ 2i�ε(t)

˙̂
b+ Δ2b̂ = 0 (3.34)

where

Δ = g
√
ns (3.35)

and ns = Ns/V is the density of available states. Equation (3.34) becomes the

parabolic cylinder equation if ε(t) is a linear function of time. In the LZ theory it

describes the evolution of the probability amplitude to find the system in one of its

two states. The role of the LZ gap is played by Δ, which greatly exceeds g
√
n.

In the genuine LZ theory it is known that the transition proceeds during a

characteristic time interval at which the absolute value of detuning is less then Δ.

The formation of molecules starts when the detuning |ε| is of the order of Δ. Thus

the cutoff on the available (relevant) states is εps = p2
s/2m = Δ 
 εF . The density

of available states is then simply given by

ns =
(ps/�)3

3π2
=

(2mg/�2)6

(3π2)4
= 1.73nΓ3, (3.36)

where we have used equation (3.35). Note that both ns and Δ are independent of
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Table IV. The table for relevant quantities at different cutoff momentum. The left

column takes value if cutoff is chosen such that p2
s/2m = Δ̃ while the right

column is such that p2
s/2m = Δ. The middle column shows their differences

by numerical value. The new choice of ps would make the cutoff momen-

tum(energy) smaller to 0.83(0.69) of the value previous momentum(energy),

and would make the available states smaller to 0.58 of the previous value.

Note that the definitions of Δ̃, EF and Γ are not affected by value of ps.

Cutoff p2
s

2m
≡ Δ̃ ×1.202→

←0.832÷ Cutoff p2
s

2m
≡ g

√
ns

ps = m2g2

23/2π�3
×1.20→
←0.83÷ ps = 4m2g2

3π2�3

ns = m6g6

29/23π5�12
×1.73→
←0.578÷ ns = (2mg/�)6

(3π2)4

Δ ≡ g
√
ns

×√1.73→
←√0.578÷ Δ ≡ g

√
ns

Δ̃ = 0.91g
√
ns same Δ̃ = 0.69g

√
ns

the fermion density n.

3. Comparison of these two definitions and Importance of this cut-off

Note that the ns in these two different definitions is different by a factor of 0.578, the

current being smaller. Considering the Landau-Zener time is defined in a exponent

and is hence actually not very accurate, we are still very satisfied because the con-

clusion does not really depend on the numerical factor. With the new definition, the

transition occurs at 0.69 of the original Δ. And the comparison of all the quantities

derived from two different choices of cutoff of momentum ps is shown in Table IV.

The broad resonance condition (3.4) ensures that Ns 
 N , thus justifying this

approximation. In a series of works by Pazy, Tikhonenkov et al. [86, 87], the authors

neglected dispersion and set Ns = N . As demonstrated above, these two assumptions

are physically incompatible, at least for a broad resonance, although mathematically
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their model is consistent. The exact quantum solution of the same problem was

recently found by Altland and Gurarie [95].

The value g can be extracted from the experimental data on the magnetic field

dependence of the scattering length a near the FR [96] using the well-known relation:

g = �
√

4π(a− a0)ε/m (a0 is the scattering length far from resonance). On the other

hand g can be estimated theoretically as g ∼ εhf

√
a3

0, where εhf is the hyperfine

energy. Both these estimates give for 40K g ∼ 10−28erg× cm3/2 and from eqs. (3.35)

and (3.36) Δ ∼ 3 × 10−4K. However, Eq. (3.35) overestimates Δ by assuming

that the limiting kinetic energy is Δ instead of it being much smaller. A more

reliable estimate can be extracted from a comparison of Eq. (3.63) with experimental

data by Regal et al. [67]. The fitting gives the value Δ ∼ 10−5K for the broad

resonance at B0 = 224.21G in 40K. The cited measurements were performed at

the finite temperature T ∼ TF/3, and therefore the corresponding value of Δ is

underestimated in comparison to its zero-temperature value. Thus, a reasonable

estimate for Δ is between 10−5K and 10−4K. In the cited experiment the magnetic

field sweep amplitude was about 12G. It corresponds to an energy scale of about

10−3K, larger than Δ.

An important conclusion is that a strong interaction renormalizes the LZ gap.

The energy scale which appears in perturbation theory is Δ(0) = g
√
n [80]. For a

broad resonance Δ = g
√
ns is much larger than Δ(0) and does not depend on the

atomic density.
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F. Static properties, spectra and eigenstates of the GSM

1. For general states

At fixed values Ns,N and S, the stationary states |Ψ〉 of the Hamiltonian (3.18)

can be represented by a superposition of the states with fixed values of number of

molecules M :

|Ψ〉 =

M=N/2∑
M=0

ΨM |M〉 , (3.37)

with the amplitudes ΨM obeying the stationary Schrödinger equation:

EΨM = −2εMΨM +
g√
V

√
M (S − Sz) (S + Sz + 1)ΨM−1

+
g√
V

√
(M + 1) (S + Sz) (S − Sz + 1)ΨM+1

(3.38)

The solution of this system is still rather complicated, but it is strongly simplified by

the broad resonance condition (3.32). Indeed, due to this inequality and stemming

from it approximate relationships: S ≈ −Sz ≈ Ns/2, it is possible to replace S − Sz

and S − Sz + 1 in Eq. (3.38) by Ns. We should be more careful with the expression

S + Sz since the two terms almost completely cancel each other. By using the

following formula

b̂†Ŝ− |S,M〉 =
√

(S + Sz)(S − Sz + 1)(M + 1) |S,M + 1〉 ,

and valuing it at M = Mmax when Mmax = N
2
, we may infer that

S + Sz = 0 ⇒ S =
NS −N

2
+Mmax =

NS

2
(3.39)

And hence S + Sz = N
2
−M . We can also value the above equation when Mmax

is another value, and we have the correspondence such that if Mmax = N
2
− i, then

S = NS

2
− i, where i is any integer in the range [0, N/2].
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Employing the notation defined earlier Δ = g
√
ns and introducing new variables

m ≡M − N

4
; s ≡ N

4
, (3.40)

we arrive at a simplified version of equations (3.38):

(E + 2sε) Ψm = −2εmΨm

+ Δ
(√

(s−m) (s+m+ 1)Ψm+1 +
√

(s +m) (s−m+ 1)Ψm+1

)
,

(3.41)

in which m runs from −s to s, or equivalently [−N
4
, N

4
]. The equation above is easily

recognizable, as is generated by the following reduced spin Hamiltonian:

Hr = 2εsz + 2Δsx (3.42)

where sx, sz are spin operators corresponding to the total spin s. This is a Hamilto-

nian of a spin s in the magnetic field 2
√
ε2 + Δ2 tilted in the xz plane at the angle

θ = − tan−1(Δ/ε) to the z axis.

The energy levels are labeled by two integers s and m as (s,m):

Esm (ε) = 2m
√
ε2 + Δ2 − 2sε; − s ≤ m ≤ s; 0 ≤ s ≤ N/4 (3.43)

and the average of number of molecules is

〈M〉 = s−m
ε√

ε2 + Δ2
. (3.44)

The spectrum (3.43) possesses a symmetry:

Esm (ε) = −Es,−m (−ε) (3.45)

Levels with the same s and different m do not cross, but the levels with different s

and m cross each other. The crossing of the levels (s,m) and (s′, m′) happens at the
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point:

ε = Δ
sign

(
m−m′
s−s′

)
√(

m−m′
s−s′

)2 − 1
(3.46)

Besides of crossings each level (s,m) at any ε is N (S)−fold degenerate as it is

determined by Eq. (3.27).

2. For ground states

For each s the state with minimal energy is (s,−s). The ground state corresponds

to maximal possible value s = N/4 and m = −s. Its energy reads:

EG = EN/4,N/4 = −N
2

(√
ε2 + Δ2 + ε

)
(3.47)

The eigen-vectors are not so simple since they generally include the Jacobi polyno-

mials. However, the ground state is easy to construct since it corresponds to the

maximal total spin s = N/4. The spin s is oriented in the xz−plane at the angle

θ = − arctan Δ
ε

to z−axis. Therefore the average value of sz = m in the ground

state is equal to 〈m〉G = N
4

cos θ = Nε
4
√

ε2+Δ2 . Employing the second equation (3.40),

we find the average number of molecules:

〈M〉G =
N

4

(
1 +

ε√
ε2 + Δ2

)
(3.48)

It smoothly varies from 0 at ε = −∞ to N/2 at ε = +∞. The value 〈M〉G − N/4

is an odd function of the detuning energy. The average number of fermions 〈NF 〉
can be found from the conservation law NF + 2M = N . For the ground state it is

possible to find all amplitudes ΨM in the expansion (3.37). We start with the vector

of the ground state |ΨG〉in terms of the spin s. It can be represented as the direct

product of N/2 spin-1/2 states all oriented at the angle θ = − arctan Δ
ε

to z−axis.
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This direct product can be represented as a superposition:

|ΨG〉 =

N/4∑
m=−N/4

Φm |m〉 ; Φm =

[ (
N
2

)
!(

N
4
−m

)
!
(

N
4

+m
)
!

]1/2 (
cos

θ

2

)N
4

+m (
sin

θ

2

)N
4
−m

(3.49)

According to the operator relationship (3.40), the amplitudes Φm coincide with ΨM

at M = N/4 +m. Thus:

ΨM =

[ (
N
2

)
!

M !
(

N
2
−M

)
!

]1/2 (
cos

θ

2

)M (
sin

θ

2

)N
2
−M

(3.50)

As we explained earlier, the state |M〉 corresponds to the projection Sz = N−N2

2
−M

and the total spin S = Ns

2
. There are N

2
−M spins up on sites. The vector of the

ground state is symmetric with respect to any permutations of all Ns spins on sites.

ΨM has a sharp maximum at M = N
2

cos2 θ
2
. The position of this peak corresponds to

the most probable state and statistically the value of this position is called average,

which gives M = N
4
(1 + cosθ), as seen in Eq. (3.48). The value of ΨM in maximum

is 1, the width of the peak is
√
N/2 sin θ/2 cos θ/2.

The knowledge of the vector of state |ΨG〉 allows calculation of other physically

interesting values, like fluctuations of number of molecules. But an easier way is

using the operator method. The square fluctuation reads:

〈(ΔNm)2〉G = 〈ψ|(sz)
2|ψ〉 − 〈ψ|sz|ψ〉2, (3.51)

where the wave function |ψ〉 ≡ ∏N/2
i=1 ⊗|ψi〉 is a direct product of each individual

spin wave function |ψi〉 = (cos θ/2, sin θ/2)T
i , and the operator sz is accordingly sz =∑N/2

i=1 s
i
z. Since 〈m〉G = 〈ψ|sz|ψ〉 =

∑N/2
i=1 〈ψi|si

z|ψi〉 = N
4

cos θ, and 〈ψ|(sz)
2|ψ〉 =

N/8+
∑N/2

i
=j 〈ψi|si
z|ψi〉〈ψj |sj

z|ψj〉 = N/8+cos2(θ)N(N−2)/16, we have the quadratic
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fluctuation of the number of molecules as

〈(ΔNm)2〉G =
N

8
sin2θ =

N

8

Δ2

ε2 + Δ2
(3.52)

The fluctuation 〈(ΔNm)2〉 is maximal at ε = 0 where is the Feshbach Resonance,

and is an even function of the detuning ε.

An important value is the BCS condensate amplitude 〈S+〉G in the ground state.

Using the equation (3.23) Ŝz = N−Ns

2
− M̂ = −Ns

2
+ N

4
− m̂ and (3.21), we find that

|〈S+〉G|2 ≈ S2 −〈S2
z 〉G ≈ (Ns/2)2 − (Ns/2−N/4)2 −Ns〈sz〉G ≈ 1

4
NNs(1− cos θ) and

thus

|〈S+〉G| =

√
NNs

2
| sin θ/2| (3.53)

Finally, we find the BEC-BCS correlation function 〈b0S+〉. We demonstrated

earlier (see the derivation of Eq. (3.41) from Eq. (3.38)) that in the broad resonance

approximation Ns 
 N the product of operators b0S+ can be replaced by
√
Nss+.

Thus,

〈b0S+〉 =
√
Ns 〈s+〉 =

√
NsN

4
sin θ =

√
NsN

4

Δ√
ε2 + Δ2

(3.54)

This correlator vanishes at ε = ±∞ and has maximum at ε = 0.

The GSM displays BCS-BEC crossover in the range |ε| ∼ Δ near the Fesh-

bach resonance. In this range the BCS condensate amplitude grows to the value

∼
√

NsN
2


 N
2
. This enhancement of the condensate is due to a distribution of the

Cooper pairs over a wide range of momenta strongly exceeding the Fermi sphere. It

indicates that the famous BCS exponentially small condensate does not appear even

at very large detuning exceeding Δ. The reason for its appearance in the BCS the-

ory is not only the weakness of interaction, but also the narrowness of the attraction

range in the momentum space. This condition is violated not only in the GSM, but

also in the initial Timmermanns et al.model.
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G. Dynamics processes, production and dissociation

Employing equations (3.33), the general solution of the ordinary differential

equation (3.34) reads (further we put � = 1):

b̂ (t) = u (t, t0) b̂ (t0) − ig̃v (t, t0) Ŝ− (t0) , (3.55)

ig̃Ŝ−(t) = −u̇ (t, t0) b̂ (t0) + ig̃v̇ (t, t0) Ŝ− (t0) , (3.56)

where u (t, t0) and v (t, t0) are standard solutions of the same equation satisfying the

initial conditions u (t0, t0) = 1, u̇ (t0, t0) = 0 and v (t0, t0) = 0, v̇ (t0, t0) = 1. These

solutions have the following properties:

|u|2 + Δ−2
∣∣u̇2

∣∣ = Δ2
∣∣v2

∣∣ +
∣∣v̇2

∣∣ = 1; u̇∗v̇ + Δ2u∗v = 0. (3.57)

The solution (3.55, 3.56) allows finding the evolution of the number of molecules

Nm(t) = 〈b̂†b̂〉(t), the BCS condensate amplitude F (t) defined by equation F 2(t) ≡
〈Ŝ+Ŝ−〉(t), and the BCS-BEC coherence factor C(t) ≡ 〈b̂†Ŝ−〉(t). If the initial co-

herence factor C(t0) is zero, the evolution is given by:

Nm(t) = |u|2Nm(t0) + g̃2|v|2F 2(t0) (3.58)

g̃2F 2(t) = |u̇|2Nm(t0) + g̃2|v̇|2F 2(t0) (3.59)

C(t) = ig̃−1u̇u∗Nm(t0) + ig̃v̇v∗F 2(t0), (3.60)

Using (3.57) and summing eqs. (3.58) and (3.59), we find:

NsNm(t) + F 2(t) = const, (3.61)

which is a consequence of the conservation laws. Since for any state F 2(t) > 0, if

there are no molecules in the initial state, their number Nm(t) can not exceed the

value F 2(t0)/Ns at any time.
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Below we consider two experimentally most relevant situations: only fermions

and no molecules; and only molecules and no fermions in the initial state. In both

these cases the initial value C = 〈b̂†Ŝ−〉(t0) = 0. In the case of no molecules in the

initial state, so Nm(t0) = 0, the general equations (3.58, 3.60) simplify to

Nm(t) = g̃2|v|2F 2(t0); ig̃C(t) = −g̃2v̇v∗F 2(t0) (3.62)

The evolution of F (t) in this case is determined by (3.61) and (3.62). Note that the

coherence factor C(t) does not remain zero.

Far from the FR the relaxation is provided by collisions. The collision time τ coll

is no shorter than (nσvF )−1, where σ = πa2
0 is the collision cross-section and vF is

the Fermi velocity. For 40K at n ∼ 1013cm−3, we find τ coll ∼ 1ms. In this Letter we

assume that the sweeping time is much less than τ coll.

To produce a reasonable fraction of molecules it is necessary to have a large

condensate amplitude in the initial state. A natural way to generate such an initial

state is to start with a sufficiently small negative detuning energy ε. The effective

dimensionless BCS coupling constant is λBCS = −νF g
2/ε, where νF is the density of

state at the Fermi-energy [59]. It becomes of the order of 1 at | ε |∼ ΓεF , a value of

detuning between Fermi-energy and the gap Δ. When detuning becomes less than

this value the condensate spreads from the exponentially narrow spherical layer near

the Fermi sphere to a sphere of much larger radius.

Such a strong dependence of the final molecular production on the initial state

(in particular on the value of the initial magnetic field) explains why different experi-

menters obtain different fractions of molecules in the final state even in the adiabatic

regime [72, 69, 68, 67]. Note that in experiments where a significant molecular pro-

duction was achieved the initial state was indeed close to the FR, whereas the final

state was rather far from the FR. Thus, in a realistic experimental setup the ini-
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tial value of ε is small |ε0| ≤ ΓεF � Δ and then ε increases linearly with time.

In this case one can put t0 = 0, and ε(t) = ε̇t. Equation (3.34) turns into the

parabolic cylinder equation. Its standard solution u(t, 0) has the asymptotic behav-

ior: |u(∞, 0)|2 = exp(−πΔ2/2�ε̇). Employing it together with Eq. (3.57) and Eq.

(3.62), we arrive at the following number of molecules in the final state:

Nm(+∞) = F 2
0N
−1
s

[
1 − exp

(−πΔ2/2�ε̇
)]

(3.63)

It can be proven from Eq. (3.53) that the maximal possible value of F 2 is NsN/2.

This corresponds to the complete transformation of atoms into molecules in the adi-

abatic regime ε̇→ 0. Equation (3.63) looks exactly like the LZ transition probability

multiplied by an effective number of pairs. However, in contrast to phenomenological

theories [18, 19] and the perturbation theory result [80], the coefficient in front of 1/ε̇

in the exponent does not depend on the initial atom density. This theoretical pre-

diction can be checked experimentally. The effective number of pairs (pre-exponent)

depends on the initial BCS condensate amplitude F (t0). Finite temperature destroys

a fraction of the initial Cooper pairs and decreases the molecular production.

Finally, we consider an inverse process with no fermions, no BCS condensate and

only the molecular condensate in the initial state: 〈b̂〉(−∞) =
√
N/2 and sweeping of

the magnetic field in the opposite direction. Then at the end of the sweeping the con-

densate density is determined by the LZ value: 〈b̂〉(+∞) =
√
N/2 exp(−πΔ2/2�ε̇),

whereas the absolute value of the BCS condensate amplitude 〈Ŝ−〉 can be found from

the conservation law (3.61) for macroscopic condensate amplitude we can neglect the

non-commutativity of S+ and S−:

|〈Ŝ−〉|2 =
NsN

2

[
1 − exp

(
−πΔ2

�ε̇

)]
(3.64)

Notice factor of 2 difference in the exponents of (3.63) and (3.64). The result (3.64)
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has a clear physical interpretation. It corresponds to N/2 × [1 − exp (−πΔ2/�ε̇)]

Cooper pairs distributed with equal probability w = N
2Ns

[1 − exp (−πΔ2/�ε̇)] be-

tween Ns available states. Then the modulus of the pair amplitude at a fixed state is

|〈âp↑â−p↓〉| =
√
w. If all these amplitudes have the same phase, the total condensate

amplitude is equal to 〈Ŝ−〉 = Ns

√
w, which is equivalent to equation (3.64). This

result has experimentally verifiable consequences. Indeed, estimating the size of the

pair created after the sweeping of magnetic field from the Heisenberg uncertainty

principle, we find rpair = �/ps � n−1/3. It means that the pair is a compact object

well separated from other pairs, and therefore can be called quasimolecule in contrast

to the real molecules in the initial state before the magnetic field sweep.

The quasimolecules have two peculiarities. First, in contrast to the real molecules

the quasimolecules have parallel electron spins. Second, they are unstable: after

magnetic field sweep ends whereas the trap remains, the quasimolecules decay. The

relaxation time is rather long since fermion pair collisions do not produce energy

relaxation. The experimental estimate for the relaxation time is in the range from

milliseconds to seconds. Therefore, it seems quite feasible to switch off the trap

before the quasimolecules relax and observe the correlations of momenta and spins

in runaway particles. The prediction of our theory is that the correlation prefers

opposite velocities and parallel spins in the range of energy up to Δ. The remaining

molecules give rise to correlated atoms with opposite momenta and spins, providing

an alternative opportunity to find their number.
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CHAPTER IV

SUMMARY AND CONCLUSION

We have discussed the Landau-Zener transitions in the noisy environment and

many-body system.

At first we gave an introduction to Landau-Zener theory. We discussed the

general two level time-dependent system, and different solvable models especially

the LZ model. We gave a thorough review on different limit situations of LZ model,

especially the static limit. The asymptotic solution to the LZ transition problem was

presented by solving the Weber Equation directly or using a semiclassical approach.

Employing this LZ theory as a useful tool, we invested two research projects

that are closely related to LZ theory.

For the first project of fast quantum noise in LZ transitions, we obtained the

transition probability of the two-state system and discussed application to the single

molecular magnet.

We reviewed the research history for noise interacting with LZ transitions. Mo-

tivated by the current progress and experimental puzzles, we focus on the fast and

quantum noise. We presented the problem, by proposing the Hamiltonian and ana-

lyzing the properties of noise including strength and characteristic time scales. For

strong noise, it becomes the classical situation. Our result is good for weak and mod-

erately strong noise, though for moderately strong noise the longitudinal-longitudinal

correlation inside the LZ time interval is not completely studied. We demonstrated

that the action of the regular LZ transition matrix element and the longitudinal-

longitudinal noise correlation is limited by the LZ time scale τLZ , whereas the action

of the transverse noise is accumulated during much longer accumulation time τacc.

And hence the evolution of the two-state system is separated in time. Inside the
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LZ time interval, it is the longitudinal noise and LZ gap dominating the evolution.

Outside the LZ time interval, it is the transverse noise dominating the evolution.

The separation of time scales allows us to derive exact transition probability with

the LZ gap, longitudinal and transverse noise taken into account simultaneously.

Outside the LZ time interval we first tried an heuristic approach and then started

from the microscopic Hamiltonian to derive the master equation. The population of

each state was derived from establishing a differential equation by using the Keldysh

technique. We showed that the mixed longitudinal-transverse noise correlation leads

to the renormalization of the LZ gap Δ inside the LZ time interval. We also studied

the correlation between purely longitudinal noises inside the interval. This part is

not complete but this correlation was shown to be negligible if the noise is weak. The

solution in each interval was studied and then matched at boundaries to give a com-

plete picture of the evolution. Our theory successfully reproduced previous results.

The transition probabilities depend explicitly on the noise commutator reflecting the

quantum nature of the noise. It reproduces the result for fast classical noise if this

commutator is zero. In the limiting case of adiabatic transverse noise, which means

strong transverse noise or slow sweeping, the two-state system adiabatically follows

its stationary state at an instantaneous value of frequency independently on the value

of LZ parameter. In the limiting case of weak transverse noise or fast sweeping, the

transition probability is reduced to the genuine LZ probability. In the extreme quan-

tum regime at zero temperature our result coincides with exact result by Wubs et

al. [37]. We argued that the strong-noise effects such as multiphonon processes and

change of frequency appear only in the adiabatic regime for the fast noise and do not

change substantially the transition probability. Our theory on the LZ transitions in a

noisy environment is related single molecular magnet. We discussed the application

of our theory to the explanation of the isotope effect and the quantized hysteresis
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curve by introducing the phonon spin interaction. The pure longitudinal noise may

require additional work to make it clearly understood. Immediate efforts would be

the explanation of isotope effect and quantized hysteresis curve of single molecular

magnet. Both are covered in concluding section of Chapter II.

For the ultracold dilute Fermi gas in magnetic field, we have considered the

static limit and the dynamic molecule formation and dissociation when the magnetic

field is swept across the broad Feshbach resonance.

We have briefly reviewed the history of experimental and theoretical discover-

ies on bosonic and fermionic superfluidity, including the recent experiments. We

introduced the effect of magnetic field on alkali atoms, and hence the Feshbach res-

onance. We focused on the broad Feshbach resonance which belongs to a strong

coupling regime. The broad resonance condition allowed us to use the single mode

approximation and to neglect the fermion dispersion. After the approximation the

Hamiltonian is greatly simplified but still reflects the physical essentials. For the

static problem, by a spin transformation, the Hamiltonian is simplified to the Global

Spin Model Hamiltonian, which allows us to completely solve the static problem at

least for ground state. We obtained the energy spectrum, eigenvector, average num-

ber of molecules and its fluctuation, the amplitude of the BCS condensate, and the

correlation between BCS and BEC amplitudes, as a function of experiment param-

eters. From these quantities, we got the knowledge of the static limit properties of

the BEC-BCS crossover. And the dynamic problem, in the Global Spin Model, is

converted to a Landau-Zener problem. We derived the differential equation and com-

pared it with LZ equation. We gave general solution to the dynamic equation and

give exact expression for asymptotic solution. The resulting molecular production

from initial fermions is described by LZ-like formula with a strongly renormalized

LZ gap independent of the initial fermion density. The molecular dissociation pro-
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cess also shows LZ characteristics for the end values of condensates. The correlation

between BEC condensates and BCS condensates, which is actually a conservation

law. This conservation law may explain why there’s a molecular conversion ratio

limit. In both static and limit situations, we estimated the cutoff momentum and

improved our previous estimate to the current one. One of our predictions is that the

molecular production strongly depends on the initial value of magnetic field. This

effect may explain why different experiments have different molecular conversion ra-

tio limits. In the inverse process of molecular dissociation, immediately after the

sweeping stops, there appear Cooper pairs with parallel electronic spins and oppo-

site momenta, homogeneously distributed within a sphere of radius ps 
 pF in the

momentum space. Another experimentally verifiable prediction is the independence

of the coefficient in front of 1/ε̇ in the LZ exponents for the molecular production

(3.63) and the BCS condensate (3.64) productions of the initial density of atoms

(molecules). The more improvement on current work could be trying to solve the

problem with less approximations. Also the subject of ultracold Fermi gas is a rich

subject and there are many practical or fundamental questions.
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APPENDIX A

APPLICATION OF THE KELDYSH TECHNIQUE IN DERIVING MASTER

EQUATION

In this part we explain the derivation of the master equation in more details

than Section D in Chapter II.

The occupation number equation is expanded from Eq. (2.18) as

Nα (t) = Tr
[
ρ0T̃ [e

−i
∫ t
t0

VI(τ )dτ
]PαT [e

−i
∫ t
t0

VI (τ)dτ
]
]
, (A.1)

where T̃ is the anti-chronological ordering operator and VI(τ ) is Eq. (2.18)

VI (t) = eiH0tV e−iH0t = u⊥ (t)
(
|1〉 〈2| e−i

∫ t
t0

Ω(τ)dτ
+ |2〉 〈1| ei

∫ t
t0

Ω(τ)dτ
)
.

Now let us calculate the Green functions of fermions ( here fermions correspond

to state 1(thin red line) or state 2(thick green line) ):

G±,±
α (t, t′) ≡ 〈Tc[|α〉t 〈α|t′ ]〉 , (A.2)

where α index represents the state (1 or 2), the superscript ±,± represents the

four components of the 2x2 matrix of the Keldysh Green function, Tc means the

time ordering along the Keldysh contour as shown in Fig. 5, the + branch is the

branch in the chronological ordering and the − branch is the branch in the anti-

chronological ordering, and |α〉t = |α〉 eiEαt is time dependent state vector. According

to the Hamiltonian (2.2) and the negligible LZ effect outside the interval (−τLZ , τLZ),

|1〉t = |1〉 ei(−Ω(t)/2)t and |2〉t = |2〉 ei(+Ω(t)/2)t.
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Take state |1〉 for example, the four components of Keldysh Green function are

G−+
1 (t, t′) = 〈|α〉t 〈α|t′〉 ,

G+−
1 (t, t′) = 〈〈α|t′ |α〉t〉 ,

G−−1 (t, t′) =
〈
T̃ |α〉t 〈α|t′

〉
,

G++
1 (t, t′) = 〈T |α〉t 〈α|t′〉 .

(A.3)

Here follows the calculation of each component of Gα(t, t′).

G−+
α (t, t′) =

〈
|α〉 eiEαt 〈α| (eiEαt′)†

〉
= 〈|α〉 〈α|〉 eiEα(t−t′). (A.4)

In the second quantized form, we have

|α〉 = a†α |0〉 , (A.5)

or

|1〉 = a†1 |0〉 ,
|2〉 = a†2 |0〉 .

(A.6)

where a†α is the creation operator for the state α from an empty state. Note that

here the |1〉 and |2〉 do not include the usual meaning of the number of particles in

that state, but just mean the state 1 and state 2. Due to this reason, there are two

creation operators for two states, and there’s no direct relation between these two

operators. And for the same reason,

〈|α〉 〈α|〉 = 〈0| aαa
†
α |0〉 = 1,

〈〈α| |α〉〉 = 〈0| a†αaα |0〉 = 0.
(A.7)

So the (−+ and +−) components of propagators for state 1 and state 2 are

G−+
1 (t, t′) = e−

i
2

∫ t
t′ Ω(t)dt, G+−

1 = 0,

G−+
2 (t, t′) = e+

i
2

∫ t
t′ Ω(t)dt, G+−

2 = 0.
(A.8)
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By the fact that Green functions on the same branch are connected with those on

different branches

G++
α (t, t′) = θ(t− t′)G−+

α + θ(t′ − t)G+−
α ,

G−−α (t, t′) = θ(t′ − t)G−+
α + θ(t− t′)G+−

α ,
(A.9)

the remaining two components can also be found, if not calculated directly,

G++
1 (t, t′) = θ(t− t′)e−

i
2

∫ t
t′ Ω(t)dt,

G−−1 (t, t′) = θ(t′ − t)e−
i
2

∫ t
t′ Ω(t)dt,

G++
2 (t, t′) = θ(t− t′)e+

i
2

∫ t
t′ Ω(t)dt,

G−−2 (t, t′) = θ(t′ − t)e+
i
2

∫ t
t′ Ω(t)dt.

(A.10)

Now let us calculate the propagator of Bose phonon

D(t, t′) = 〈Tc[u⊥(t)u⊥(t′)]〉 =
〈
Tc[η(t)η

†(t′)]
〉

+
〈
Tc[η(t)η

†(t′)]
〉
. (A.11)

Similar calculation as fermion propagator follows.

D−+(t, t′) =
〈
η(t)η†(t′)

〉
+

〈
η(t)η†(t′)

〉
, D+−(t, t′) = D−+(t, t′), (A.12)

where

〈
η(t)η†(t′)

〉
= 1

V

∑
q |gq|2(nq + 1)e−iωq(t′−t),

〈
η†(t)η(t′)

〉
= 1

V

∑
q |gq|2nqe

−iωq(t′−t).

(A.13)

Note that the coupling gq between noise and system is absorbed in the noise operator.

So the vertex in the Keldysh formalism is reduced to −iσz. As of now, we have the

complete rules for each component in our Keldysh diagram. For each line or vertex

in the diagram, we just multiply all the elements. Let us see a detailed example on

the application of the Keldysh rules onto the diagrams. Take the the calculation of
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Γ1 in Fig. 9 for example, the state 1 element from t1 to t′ reads

G1(t
′, t1) =

⎛
⎜⎝ G++

1 (t′, t1) G+−
1 (t′, t1)

G−+
1 (t′, t1) G−−1 (t′, t1)

⎞
⎟⎠

=

⎛
⎜⎝ θ(t′ − t1)e

− i
2

∫ t′
t1

Ω(t)dt
0

e
− i

2

∫ t′
t1

Ω(t)dt
θ(t1 − t′)e−

i
2

∫ t′
t1

Ω(t)dt

⎞
⎟⎠

= e
− i

2

∫ t′
t1

Ω(t)dt

⎛
⎜⎝ 1 0

1 0

⎞
⎟⎠ ,

(A.14)

and there are similar expressions for state 2 and phonon line. Let t+ Δt ≡ t′ in the

calculation for abbreviation. We have

Γ1 = G2(t1, t)(−iσz)G1(t
′, t1)D(t1, t2)G1(t2, t

′)(−iσz)G2(t, t2),

=

⎛
⎜⎝ G++

2 (t1, t) G+−
2 (t1, t)

G−+
2 (t1, t) G−−2 (t1, t)

⎞
⎟⎠ (−iσz)

⎛
⎜⎝ G++

1 (t′, t1) G+−
1 (t′, t1)

G−+
1 (t′, t1) G−−1 (t′, t1)

⎞
⎟⎠D(t1, t2)

×

⎛
⎜⎝ G++

1 (t2, t
′) G+−

1 (t2, t
′)

G−+
1 (t2, t

′) G−−1 (t2, t
′)

⎞
⎟⎠ (−iσz)

⎛
⎜⎝ G++

2 (t, t2) G+−
2 (t, t2)

G−+
2 (t, t2) G−−2 (t, t2)

⎞
⎟⎠

(A.15)

It looks lengthy but the matrices for propagator of states are actually only half filled

with nonzero values. Through a careful multiplication of these matrices, the final

result is as simple as

Γ1 = e−i
∫ t1
t2

Ω(t)dtD+−(t2, t1) = e−i
∫ t1
t2

Ω(t)dtu⊥(t2)u⊥(t1). (A.16)

If the two times t1 and t2 are integrated over and the operators are averaged, we just

give the result in Eq. (2.24)

The formalism here is based on the Keldysh rules on different elements in dia-
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grams. But if we actually go through the derivation of those rules by expanding the

equation (A.1), or even the calculation of the matrices multiplication (A.15) above,

we can get simpler rules.

The rules are, for each vertex there is a vertex function V(t), and the vertex

functions are wrote in Keldysh contour order, and that is all. The vertex function is

either V2→1(t) ≡ ±iu⊥ (t) |1〉 〈2| e−i
∫ t Ω(τ)dτ or V1→2(t) ≡ ±iu⊥ (t) |2〉 〈1| e+i

∫ t Ω(τ)dτ ,

where V2→1 means through a phonon integration the state transits from state 2

to state 1, V2→1 means the transition from state 1 to state 2, and the sign ± de-

pends on whether this vertex is located on chronological ordering branch (+) or

anti-chronological ordering branch (−).

Use this new rule to calculate Π1 for example. For the vertex at t1, we write

V1→2(t1) = +iu⊥ (t1) |2〉 〈1| e+i
∫ t1 Ω(τ)dτ (A.17)

And for the vertex at t2, we write

V2→1(t2) = +iu⊥ (t2) |1〉 〈2| e−i
∫ t2 Ω(τ)dτ (A.18)

So this diagram is equivalent to

V1→2(t1)V2→1(t2) = − |2〉 〈2|u⊥ (t1) u⊥ (t2) e
+i

∫ t1
t2

Ω(τ)dτ , (A.19)

which can be seen as same as equation (2.25) if integrations and averages are per-

formed.
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APPENDIX B

EQUATIONS FOR FAST LONGITUDINAL NOISE

Here we derive a system of differential equations for the longitudinal noise acting

together. The characteristic interval in which both these factors are effective is the LZ

time τLZ . The action of transverse noise during this time can be neglected. First,

we prove that the contribution of the irreducible graphs ∗, which do not connect

different branches of the Keldysh contour, is zero. Indeed the remote ends of such

graphs are separated by the time interval of the order of τn � τLZ . Therefore, it

is possible to integrate over the time difference at a fixed “center of time” or “slow

time” as we did in the case of the transverse noise. In contrast to the latter case, for

longitudinal noise, the integral does not depend on slow time, since the longitudinal

noise vertex in the interaction representation does not contain time-dependent phase

factor(it connects identical states of the two-state system). By the same reason, it is

the same for states 1 and 2. Therefore, in a slow time scale much longer than τn (but

much less than τLZ) the contribution of such graphs is proportional to unit operator

for the two-state system and can be completely ignored. The irreducible noise graphs

connecting different branches of Keldysh contour form a four-pole vertex (see Fig.

19), which, by the same reason, does not depend on slow time and connects identical

states at each branch of the Keldysh contour. We denote this vertex by Γ.

Since the number of Δ−vertexes between vertexes Γ is arbitrary we need to

extend the number of amplitudes in consideration. Namely, we define transition

amplitudes Pαβ,α0β0
(t, t0) as the average value of the operator |α〉 〈β| at the moment

∗Following the quantum field tradition, we call a graph irreducible if it can not
be separated into too disconnected parts (which are not connected by a noise line).
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FIG. 19. Graphs containing the longitudinal noise only. Triangles correspond to the

LZ gap Δ. The first graph shows one noise loop. In the slow time scale they

are equivalent to addition of a constant energy. The second graph shows a

noise line connecting Keldysh branches. The third graph shows the general

graphic equation for P . See explanation in the text.

t if the density matrix for two-state system at the moment t0 was |α0〉 〈β0|. In the

accepted approximation these amplitudes obey a system of linear integral equations:

Pαβ,α0β0
(t, t0) = P

(0)
αβ,α0β0

(t, t0)

− Γ

t∫
t0

Pαβ,α′β′ (t, t′)P (0)

α′β′,α0β0
(t′, t0) dt′

(B.1)

Here P
(0)
αβ,α0β0

(t, t0) denotes the transition amplitude in the absence of noise. The

validity of equations (B.1) is limited by moderately strong noise. Otherwise the

amplitudes Pαβ,α0β0
(t, t0) vary significantly at a time scale τn. In this case more

complicated equations with a non-local in time kernel Γ and amplitudes depending

on 4 time arguments must be used.
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