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ABSTRACT 

 

Optimum Usage and Economic Feasibility of Animal Manure-Based Biomass in 

Combustion Systems.  (May 2009) 

Nicholas Thomas Carlin, B.S., The University of Texas at Austin; 

M.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Kalyan Annamalai 

 

Manure-based biomass (MBB) has the potential to be a source of green energy at 

large coal-fired power plants and on smaller-scale combustion systems at or near 

confined animal feeding operations.  Although MBB is a low quality fuel with an 

inferior heat value compared to coal and other fossil fuels, the concentration of it at large 

animal feeding operations can make it a viable source of fuel. 

Mathematical models were developed to portray the economics of co-firing and 

reburning coal with MBB.  A base case run of the co-fire model in which a 95:5 blend of 

coal to low-ash MBB was burned at an existing 300-MWe coal-fired power plant was 

found to have an overall net present cost of $22.6 million.  The most significant cost that 

hindered the profitability of the co-fire project was the cost of operating gas boilers for 

biomass dryers that were required to reduce the MBB’s moisture content before 

transportation and combustion.  However, a higher dollar value on avoided 

nonrenewable CO2 emissions could overrule exorbitant costs of drying and transporting 

the MBB to power plants.  A CO2 value of $17/metric ton was found to be enough for 

the MBB co-fire project to reach an economic break-even point. 

Reburning coal with MBB to reduce NOx emissions can theoretically be more 

profitable than a co-fire project, due to the value of avoided NOx emissions.  However, 

the issue of finding enough suitable low-ash biomass becomes problematic for reburn 



 iv

systems since the reburn fuel must supply 10 to 25% of the power plant’s heat rate in 

order to achieve the desired NOx level.  A NOx emission value over $2500/metric ton 

would justify installing a MBB reburn system. 

A base case run of a mathematical model describing a small-scale, on-the-farm 

MBB combustion system that can completely incinerate high-moisture (over 90%) 

manure biomass was developed and completed.  If all of the energy or steam produced 

by the MBB combustion system were to bring revenue to the animal feeding operation 

either by avoided fueling costs or by sales, the conceptualized MBB combustion system 

has the potential to be a profitable venture. 
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1. INTRODUCTION 

Over* the past 50 years, the rural landscape of the United States has changed 

from one that contained an abundance of relatively small, scattered farms to one that 

struggles to hold onto a few, extremely large concentrated animal feeding operations 

(CAFOs).  The industrialization of American agriculture has come about due to low 

commodity prices, federal funding, high competition between farmers, and a large fast 

food industry.  Currently, fewer than five million Americans live on farms, and only 

about half of them keep any farm animals on their land.  However, for those who do 

house dairy cows, beef cattle, hogs, chickens, and other traditional farm animals, the 

amount of manure produced from the hundreds, sometimes thousands, of animals on the 

farm is a significant undertaking (Centner, 2004).  Figure 1.1 is a photograph of a typical 

large feedlot operation.  These CAFOs show the potential for water, soil, and air 

pollution, yet the concentration of the manure (Figure 1.2) makes this low heat value 

feedstock a viable source of fuel for combustion and emission control systems either at 

nearby power plants or in smaller energy conversion systems on or near the farm. 

 

 
Figure 1.1 Feedlot cattle on large confined animal feeding operation (FactoryFarm.org, 2007) 

                                                 
This dissertation follows the style of the International Journal of Green Energy. 
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Figure 1.2 Solid manure generated from an animal feeding operation (FactoryFarm.org, 2007) 

 

1.1. Industrialization of Agriculture 

From a global perspective, larger, more homogenized agricultural operations 

have become necessary to compete with cheaper, foreign commodities.  Lower prices on 

food stuffs and most other agricultural products have made smaller, less efficient farms 

even more obsolete in the modern industrial agricultural system.  Even operators of large 

CAFOs have difficulty satisfying the economic bottom lines of their farms.  It is 

estimated that 55% of American farms have an operator, an operator’s spouse, or both 

working a secondary job, off the farm, to generate additional revenue.  Usually, in order 

for his/her survival, the operator must expand the operation and keep more animals or 

grow more crops to keep the farm competitive.  Indeed thousands of farms have 

shutdown, even in the past 10 years.  For example, in Figure 1.3 it can be seen that the 

overall number of operations that housed dairy cows was over 120,000 in 1997; 
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however, by 2007 only about 70,000 farm operations kept dairy cows.  At the same time, 

the number of dairy operations with more than 500 head increased by 38% to over 3,200 

(NASS, 2008). 

The domination by larger animal feeding operations in the dairy industry is 

further illustrated in Figure 1.4.  Seventy-six percent of the 71,500 dairy operations in 

the US each house less than 100 milk cows, but these smaller farms only contain about 

23% of all milk cows in the country and produce only about 19% of the country’s milk.  

About half of all dairy cows, 49%, in the US are kept on the relatively few dairy farms 

with more than 500 head each.  These large farms also produce 54% of the country’s 

milk.  Similarly, the 601,000 feed cattle operations with less than 50 head only contain 

about 10% of all cattle on feed in the nation.  See Figure 1.5.  Almost a third, 31%, of all 

feed cattle are kept on large feedlot operations with over 1,000 head each.  However, this 

trend of dominance from large CAFOs is perhaps most perceptible when considering 

hog or swine farms.  See Figure 1.6.  Fifty-six percent of all hogs and pigs are kept on 

large 5,000-plus head operations, which only make up about four percent of all swine 

feeding operations in the US.  The smallest 61% of swine operations keep only one 

percent of all swine in the country. 
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Figure 1.3 Change in number of operations with milk cows and growth of large dairy operations in the US 

from 1997 to 2007 (NASS, 2008) 
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Figure 1.4 Number of operations with milk cows, milk cow inventory percentage, and milk production 

percentage in 2007 vs. size category of operation, Total operations in US = 71,510 (NASS, 2008) 
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Figure 1.5 Number of operations with feed cattle and feed cattle inventory percentage in 2007 vs. size 

category of operation, Total operations in US = 967,540 (NASS, 2008) 
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Figure 1.6 Number of operations with hogs & pigs and hog & pig inventory percentage in 2007 vs. size 

category of operation, Total operations in US = 65,640 (NASS, 2008) 
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Due to this dominance, a relative few, large animal feeding operations can 

control the values of agricultural products, such as milk and beef prices.  Large farms 

can flood the market with animal-based products and lower prices, causing difficulty for 

smaller, family farms to stay competitive.  Since family farm operators are also residents 

of rural communities, hundreds of ancillary businesses in small American towns have 

also suffered.  As farmers have obtained less disposable income or have simply moved 

away to urban and suburban areas, American rural economies as a whole have suffered 

(Centner, 2004). 

In general, all agricultural operations, not just animal farms, have been increasing 

in size and concentration for most of the 20th Century and into the 21st Century.  

Basically, there have been two forces behind this growth:  (1) state and federal funding 

and (2) competition between farmers.  Since the creation of the United States 

Department of Agriculture (USDA) and the Land Grant University System in 1865, 

research and development in agricultural equipment and practices have made the 

American Agricultural System the most productive and least labor intensive agriculture 

system in the world.  See Figure 1.7.  American Agriculture has become an increasingly 

mechanized and specialized system capable of growing more food on less land.  

Consequently, many smaller, family oriented farms that tended to grow a variety of 

crops and keep a diverse population of animals have disappeared.  In order to stay 

competitive, most farmers have had to specialize in one or two crops or keep one type of 

animal.  Growing single monocultures and keeping one animal type has allowed farmers 

to produce more food more efficiently (Centner, 2004). 
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Figure 1.7 Number of total American farms and farm labor workers vs. year (NASS Census, 2002) 

 

In the 1930s, New Deal legislation offered safety nets and funding for American 

farmers.  Many similar funds are still available to farmers even today.  However, many 

of the larger agricultural producers have joined to create conglomerates and politically 

powerful congressional lobbies, causing much of the available state and federal funding 

to go to larger operations.  A 1999 study by the General Accounting Office in 

Washington D.C. showed that 52% of federal funds for agriculture were paid to the 

largest 8% of American farms.  Small farms, which make up about 76% of the number 

of farms in the United States, received only 14% of these funds.  Consequently, many 

larger operations have the ability to buy out smaller farms which may be competing with 

them.  Yet even though most American farms are considered “small”, most of the 

country’s agricultural production comes from “superfarms” that concentrate on eight 

major crops:  wheat, corn, barley, oats, sorghum, rice, cotton, and oilseeds (soybeans).  

About 3% of the country’s largest farms produce about half of the entire agricultural 

commodities in the United States (Centner, 2004).  Large CAFOs also benefit from 

government subsidies of these major crops because feed grains are included with these 
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specialized products.  Hence, cheap grain allows owners of large CAFOs to feed many 

animals; however, other aspects of keeping animals, such as bedding application and 

waste handling, remain expensive and physically demanding. 

For this study, animal farms, particularly large CAFOs, are of most concern.  All 

of the trends of the growing industrial agricultural system are especially true for these 

large farms.  CAFOs, which include cattle feedlots and dairy operations, are a 

cornerstone of the agricultural economy of the United States, particularly in Texas and 

neighboring states in the Southern Great Plains.  The US is the largest producer of beef 

and the third largest producer of pork products.  Yet, a consequence of this success has 

been the high amounts of manure and associated wastes from animal feeding operations.  

CAFOs in the US produce more than 350 million dry tons of manure per year (USDA, 

2003).   

Animal feeding operations have not only become larger, but also more 

concentrated.  Part of the reason for keeping more animals in smaller spaces is the 

decrease in available labor and higher labor costs.  In Figure 1.7, it can be seen that not 

only are the numbers of labor workers dropping on American farms, but also the average 

number of workers per farm is decreasing.  In 1950, there were about 1.75 workers per 

farm (this includes animal farms and crop farms); however, by 2000 this ratio dropped 

22% to 1.36 workers per farm.  Proper waste disposal is made more challenging and 

expensive due to the concentration of animals, and hence manure.   

Large CAFOs have been cited as major point sources for potential air, soil, and 

water pollution, while land application of manure, as fertilizer, has been cited as a non-

point source for water contamination (TNRCC, 2001).  Dairy farmers (Matthews et al., 

2003), feedlot farmers (Sweeten, 1990), and swine farmers (Reisner, 2005; Anderson et 

al., 2006) have come under pressure to address the impacts their operations have on the 

environment.  Large rainfall events, poorly maintained manure storage structures such as 

lagoons, and over application of manure as fertilizer on nearby parcels of land are all 

potential causes of nutrient leaching and contamination of water sources.  Too much 

nutrients, such as phosphorus and nitrogen, in rivers, streams and coastal waters can 
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cause algal blooms, which can destroy fish.  Aquatic life may also be harmed from high 

ammonia concentrations in waterways near animal feeding operations.  Nutrient 

contamination can also make water unsafe to drink in towns and cities near CAFOs.  

Moreover, high quantities of the greenhouse gases nitrous oxide (N2O) and methane 

(CH4) come from large animal farms.  Odors and possible exposure of nearby food 

sources to pathogens are also risks incurred by CAFOs. 

The possible seepage of manure nutrients to surface and ground water sources 

has been a major concern.  The high cost of transporting manure solids from feeding 

operations to composting sites and application fields, together with relatively shallow 

top soil and high intensity rainfall, limit the ability to properly distribute the manure.  

Moreover, the amount of manure to be applied is usually determined by the amount of 

nitrogen contained in the solids.  Sometimes this can lead to an overloading of 

phosphorus on the land.  Only recently have farms begun to switch to P-based land 

application and composting (Osei et al., 2000), (Keplinger et al., 2004), (McFarland et 

al., 2006). 

Moreover, when wet and composting manure streams decompose or 

anaerobically digest in relatively uncontrolled settings, such as poorly maintained 

manure storage lagoons, methane (CH4) and malodorous odors can form, reducing the 

quality of life near the farm (Mukhtar, 1999). 

Yet, there is little doubt that larger and more concentrated animal feeding 

operations have made the production of beef, pork, dairy, and poultry products more 

efficient.  However, as other aspects of animal farming, such as feeding, breeding, and 

slaughtering, have become more industrialized and automated, manure disposal has 

generally not advanced beyond usage of manure as fertilizer, compost, or simple 

disposal of the manure in landfills.  Due to the concentration of manure at CAFOs, it is 

possible that manure-based biomass (MBB) can be used for fossil fuel supplementation. 
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1.2. Coal-fired Power Plants and Their Emissions 

Energy production facilities, particularly coal-fired power plants, may benefit 

from MBB as bio-fuel feedstock.  The recent increased concern over CO2 emissions and 

global warming is only the latest in a seemingly perpetual call to reduce the amount of 

fossil fuels used for heat and electrical energy and the resulting emissions from fossil 

fuel power plants.  Nitrogen oxides (NOx), sulfur oxides (SOx), mercury (Hg), and 

particulates have all been regulated emissions from coal-fired power plants, and 

restrictions on these products of combustion will probably continue to tighten. 

About 50% of the electrical energy generated in the United States comes from 

burning coal.  Most coal consumed in the US is burned in utility coal power plants.  

Almost every state in the country obtains at least some of its electrical energy from coal 

plants, and, with the exception of the New England States and the Pacific States, coal is 

generally the primary source of electricity.  Table 1.1 is a list of the number of coal-fired 

units, electrical capacity, coal consumption, average coal price and average coal heat 

value for each state.  Note that each coal plant may have more than one coal-fired unit.  

The East North Central Region of the US, including Ohio, Indiana, and Illinois, 

consumes the most coal of any region; about 232 million metric tons of coal in 2006.  

Texas burned almost 100 million metric tons of coal in 2006 and is the largest single 

state consumer of coal. 
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Table 1.1 Electric coal-fired units, electrical capacity, coal consumption, average coal prices, and average 
coal heat value in 2006 for each state in the US 

Census Region, 
State 

Number of 
Electric Coal-

fired Unitsa 

Total 
Electrical 
Capacitya 

(MW) 

Coal 
Consumptionb 

(103 metric 
tons) 

Average Price of 
Coal Delivered to 
End Useb ($/GJth) 

Average Heat 
Value of 

Coalb (kJ/kg)
New England  17 2,817 7,961 2.53 27,667
   Connecticut  3 553 2,037 NR 23,389
   Maine  2 85 133 NR 29,734
   Massachusetts  8 1,651 4,309 2.64 26,854
   New Hampshire  4 528 1,482 2.43 30,692
   Rhode Island  0 0 0 -- --
   Vermont  0 0 0 -- --
Middle Atlantic  123 24,006 63,493 2.16 27,765
   New Jersey  10 2,124 4,205 2.59 29,701
   New York  35 3,474 8,543 2.27 26,943
   Pennsylvania  78 18,408 50,745 1.63 26,652
East North Central  362 78,025 210,245 1.39 23,282
   Illinois  64 15,822 48,933 1.19 20,786
   Indiana  79 19,532 54,960 1.29 24,742
   Michigan  70 11,781 31,685 1.59 23,200
   Ohio  97 22,224 53,165 1.61 26,805
   Wisconsin  52 8,666 21,502 1.25 20,875
West North Central  180 36,589 132,931 1.00 19,483
   Iowa  45 6,520 19,265 0.88 20,030
   Kansas  17 5,323 18,937 1.13 20,019
   Minnesota  34 5,074 17,757 1.04 20,726
   Missouri  52 11,218 41,371 0.95 20,486
   Nebraska  16 3,858 11,686 0.76 19,802
   North Dakota  14 4,121 22,043 0.83 15,469
   South Dakota  2 476 1,872 1.43 19,849
South Atlantic  284 70,438 162,157 2.16 28,332
   Delaware  7 1,043 1,986 NR 28,843
   District of  
   Columbia  0 0 0 -- --
   Florida  31 10,693 25,179 2.43 28,241
   Georgia  33 13,262 35,281 2.06 25,570
   Maryland  16 4,912 10,558 2.15 29,082
   North Carolina  77 13,046 27,630 2.55 28,534
   South Carolina  31 7,160 14,298 2.00 29,269
   Virginia  50 5,686 12,877 2.32 29,287
   West Virginia  39 14,636 34,349 1.58 27,833
East South Central  140 37,432 105,869 1.93 24,553
   Alabama  40 11,647 33,719 2.00 25,303
   Kentucky  57 14,709 38,046 1.61 26,905
   Mississippi  10 2,677 9,415 2.62 20,842
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Census Region, 
State 

Number of 
Electric Coal-

fired Unitsa 

Total 
Electrical 
Capacitya 

(MW) 

Coal 
Consumptionb 

(103 metric 
tons) 

Average Price of 
Coal Delivered to 
End Useb ($/GJth) 

Average Heat 
Value of 

Coalb (kJ/kg)
   Tennessee  33 8,399 24,690 1.48 25,163
West South Central  72 36,950 137,712 1.28 19,418
   Arkansas  6 4,458 13,258 1.39 20,416
   Louisiana  10 4,349 14,821 1.47 19,084
   Oklahoma  14 5,216 19,222 0.93 20,344
   Texas  42 22,927 90,412 1.35 17,828
Mountain  117 31,861 104,095 1.21 22,826
   Arizona  15 5,736 18,603 1.22 23,261
   Colorado  29 5,893 17,878 1.21 22,798
   Idaho  0 0 0 -- --
   Montana  11 2,497 10,253 0.74 19,602
   Nevada  12 3,038 3,164 1.64 26,736
   New Mexico  12 3,940 15,387 1.48 21,589
   Utah  15 4,606 15,068 1.29 25,540
   Wyoming  23 6,152 23,741 0.87 20,254
Pacific  21 2,748 6,895 1.23 23,247
   Alaska  NR 105 370 NR NR
   California  18 503 816 NR 28,338
   Hawaii  NR 180 653 NR 25,452
   Oregon  1 556 1,315 1.23 19,353
   Washington  2 1,404 3,742 NR 19,844
United States Total 1,316 320,866 931,357 1.65 24,064
aSource:  2006 National Electric Energy Data System (NEEDS) of the Environmental Protection Agency, Integrated Planning 
Model (IPM).  Includes approved new units.  See (USEPA, 2007a) in the reference section. 
bSource:  Energy Information Agency (EIA), 2006 United States Electricity Profiles 

NR:  Not Reported 

 

 

Table 1.1, continued 
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Recently, CO2 emissions from fossil fuel combustion have garnered the most 

attention due to the threat of global warming caused by higher concentrations of CO2 in 

the atmosphere.  In the US, 36% of CO2 emissions in 2006 came from the combustion of 

coal.  See Figure 1.8.  Ninety-one percent of all CO2 emissions from burning coal are 

emitted from electric power plants.  Currently, there are no commercially available 

technologies that can reduce CO2 emissions after combustion.  The only feasible way to 

reduce CO2 emissions, at this time, is to obtain electricity from alternative sources such 

as nuclear, hydro-electric, solar, wind, and biomass combustion or to burn other fossil 

fuels that emit less CO2 per unit energy, such as natural gas.  However, in most parts of 

the country, coal is both cheaper and more available than any alternative form of energy.  

Plus, coal is generally cheaper than most other fossil fuels per unit energy.  The average 

price of natural gas for electricity producers in 2006 was $6.74/GJth ($7.11/MMBtu) 

(EIA, 2007b).  However, from Table 1.1 it can be seen that the price of coal in all states 

is much lower than this price. 
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Figure 1.8 CO2 emissions from all nonrenewable fuels in the US (EIA, 2007a) 
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Moreover, there are no mandatory CO2 cap-and-trade laws or carbon taxes in 

most of the US, giving little incentive for developing carbon-neutral alternatives or 

developing carbon sequestration technologies.  The one exception is the Regional 

Greenhouse Gas Initiative, which held its inaugural CO2 allowance auction in September 

2008.  However, only 10 Northeastern states were required to participate, including New 

York, Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New 

Jersey, Rhode Island, and Vermont (RGGI, 2008).  From Table 1.1, it can be seen that 

most of these states are already among the lowest consumers of coal, thus CO2 

allowance auctions need to be extended to other parts of the country before there is a 

significant impact on CO2 emissions from electric coal plants. 

Since there are no commercial technologies that can capture carbon post-

combustion, CO2 emissions from coal are usually a good indicator of coal consumption.  

In Figure 1.9, the coal consumption of the top 20 CO2-emitting states in 2004 is 

compared to the CO2 emissions of those same states.  The trend is generally the same, 

states that burned more coal, emitted more CO2.  However, since the carbon content and 

average heat value of coal vary from state to state, the relationship is not exactly one-to-

one. 
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Figure 1.9 Top 20 states that emitted CO2 from coal combustion in 2004 and their respective coal 

consumption (EIA, 2007c) 
 

However, some other emissions from coal combustion have been successfully 

reduced in recent years due to cap and trade laws and emission control technologies.  

Figure 1.10 shows how NOx and SOx emissions from conventional power plants 

(burning fuels including coal, natural gas, and petroleum) and combined heat-and-power 

plants have decreased since 1995.  Sulfur oxides (SOx) dropped by nearly 30% since a 

high of 13.5 million metric tons in 1997.  This reduction is partly attributed to the 

installation of Flue Gas Desulphurization (FGD) systems on fossil-fueled steam-electric 

generators.  As of 2005, 248 fossil-fueled units had a FGD system, which is a 28% 

increase since 1995 (EIA, 2007c).  Scrubber efficiencies from FGD systems are usually 

about 95% for large steam-electric generators (USEPA, 2007a).  Moreover, lower SOx 

emissions allowances, under the American Clean Air Interstate Rule, have recently 

increased the demand for low sulfur, sub-bituminous coal, mined mostly out of the 

Powder River Basin (Global Energy Decisions, 2006). 
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Figure 1.10 NOx and SOx emissions from conventional power plants and combined heat-and-power plants 

in the US from 1995 to 2006 (EIA, 2007c) 
 

Nitrogen oxides (NOx) have also been reduced by nearly 52% since 1995.  These 

reductions are mostly due to primary combustion controls, including low-NOx burners 

and air staging, now installed in most existing coal-fired power plants.  Moreover, post-

combustion NOx controls such as selective catalytic reduction (SCR) and selective non-

catalytic reduction (SNCR) have also been installed on many fossil-fueled power plants.  

As of 2005, over 150 coal-fired units utilized SCR technology (Srivastava et al, 2005).  

Currently, the best primary NOx controllers can lower NOx levels down to about 

60 g/GJth (0.14 lb/MMBtu), while SCR systems, which are generally more expensive, 

can lower NOx down to 26 g/GJth (0.06 lb/MMBtu) (USEPA, 2007a).  However, caps on 

regional NOx emissions continue to decline, making NOx allowances more expensive.  

Therefore research into cheaper and more effective ways to reduce NOx from fossil fuel 

combustion has continued. 
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1.3. Problem Statement 

Based on these understandings of large industrial CAFOs and fossil fueled power 

plants, there seems to be an opportunity for a more symbiotic relationship between 

animal farmers and energy producers, or at least for animal farmers to become energy 

producers themselves.  If burning MBB can alleviate the waste disposal issues found on 

some large animal farms and generate more jobs and activity to rural economies, while 

at the same time displacing a fraction of the fossil fuels that are burned for energy 

generation, then perhaps MBB can be added to the list of renewable and carbon-neutral 

energy production technologies that will eventually supplement fossil fuel combustion. 

Co-combustion of coal and MBB has been found to reduce NOx emissions, 

increase the oxidation of elemental mercury emissions, and reduce the amount of 

nonrenewable CO2 emissions from coal combustion.  This claim will be warranted and 

explained in the following sections of this dissertation.  However, the primary purpose of 

this study is to investigate the economic feasibility of processing and transporting MBB 

to existing energy production facilities and subsequently burning the biomass.  Can the 

avoided costs of coal and emissions balance out the costs of processing and transporting 

the MBB, as well as any additional operation and maintenance costs involved in burning 

MBB?  If so, what are the limiting factors of a successful co-combustion system?  If not, 

can MBB still be utilized on smaller, on-the-farm combustion systems for waste disposal 

and possible energy production for the farm?  The following study will attempt to 

answer these questions, but first, a deeper understanding of the properties of coal and 

MBB and the supply of MBB must be obtained. 
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2. BACKGROUND INFORMATION 

2.1. Fuel Supply and Properties 

This study will focus on MBB utilization at nearby coal plants or smaller scale 

on-the-farm combustion facilities.  Emissions, flame temperatures, and heat energy 

outputs from burning biomass are required to determine the effectiveness and 

profitability of biomass energy conversion systems.  However, in order to estimate these 

outputs, fuel properties of both coal and biomass must be known.  The following is a 

review of the fuel properties of coals and some manure-based biomasses.  A brief 

discussion of the supply of manure biomasses will also be included. 

Equation Chapter 2 Section 1 

2.1.1. Coal 

The type of coal consumed for a particular power plant usually depends on what 

type of coal is mined at nearby coal fields; although, recently many plants around the 

country have begun to import low-sulfur sub-bituminous coal from the Powder River 

Basin.  Figure 2.1 is a map of the major coal fields in the United States.  The largest coal 

deposits are in the Powder River Basin, the North Dakota or Fort Union Region, the 

Four Corners or Southwest Region, the Appalachian Basins and the Illinois Basins 

(Probstein, 2006a).  The rank of the coal is usually determined by the carbon content.  

Higher ranked coals have higher percentages of carbon on a dry, ash-free basis, and 

generally have a greater higher heating value, or calorific value.  A proximate analysis of 

the fuel can provide the moisture, ash, fixed carbon, and volatile matter contents of the 

fuel.  Volatile matter is the part of the solid fuel that will vaporize, or pyrolize, in an 

inert environment when heated.  Fixed carbon is material that will not vaporize in inert 

environments, but will oxidize when a reactant (usually air or oxygen) is heated along 

with the fuel.  The ash is the inert portion of the solid fuel that is left even after the 

reaction with the oxidizer.  Yet, for this study, an ultimate analysis of the fuels, which 

includes the elemental contents of the fuel (Carbon, Hydrogen, Nitrogen, Oxygen, and 
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Sulfur) along with moisture and ash, will be required for emissions and energy release 

calculations.   

 

 
Figure 2.1 Coal fields in the United States (EIA, 2005) 
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Table 2.1 Ultimate and heat value analyses of major coals mined in the US (Probsein et al., 2006a) 

  
Fort Union 

Lignite 

Powder River 
Basin Sub-
bituminous 

Four Corners 
Sub-

bituminous 
Illinois C 

Bituminous 
Appalachia 
Bituminous 

(by mass) As received 
Moisture 36.2 30.4 12.4 16.1 2.3
Ash 8.6 7.8 25.6 7.4 9.7
Carbon 39.9 45.8 47.5 60.1 73.6
Hydrogen 2.8 3.4 3.6 4.1 4.9
Nitrogen 0.6 0.6 0.9 1.1 1.4
Oxygen 11 11.3 9.3 8.3 5.3
Sulfur 0.9 0.7 0.7 2.9 2.8
HHV (kJ/kg) 15,600 18,400 19,600 24,900 31,200
  Dry, ash-free 
Moisture 0 0 0 0 0
Ash 0 0 0 0 0
Carbon 72.3 74.1 76.6 78.6 83.6
Hydrogen 5.1 5.5 5.8 5.4 5.6
Nitrogen 1.1 1.0 1.5 1.4 1.6
Oxygen 19.9 18.3 15.0 10.8 6.0
Sulfur 1.6 1.1 1.1 3.8 3.2
HHV (kJ/kg) 28,261 29,773 31,613 32,549 35,455
 

Ultimate analyses of several representative coals in the US are presented in Table 

2.1 on both an as-received basis and a dry, ash-free basis.  These coals follow the general 

trend for ranking coal.  Lignite coals generally have less carbon, but more oxygen, than 

higher ranked sub-bituminous and bituminous coals on a dry, ash-free basis.  Heat values 

also increase for higher ranked coals.  For the present study, a closer look into coals 

burned at Texas steam-electric power plants will be conducted later.  Fuel analyses of 

Texas lignite from the Gulf Coast lignite field and Wyoming sub-bituminous from the 

Powder River Basin will be used during simulations.  The ultimate, proximate and heat 

value analyses of these coals are presented in Table 2.2.   
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Table 2.2 Ultimate, proximate, and heat value analyses of coals 
modeled in this study (TAMU, 2006) 

  Texas Lignite 
Wyoming Sub-

bituminous 
(by mass) As received 
Moisture 38.3 32.9
Ash 11.5 5.6
Fixed Carbon 25.4 33.0
Volatile Matter 24.8 28.5
Carbon 37.2 46.5
Hydrogen 2.1 2.7
Nitrogen 0.7 0.7
Oxygen 9.6 11.3
Sulfur 0.6 0.3
HHV (kJ/kg) 14,290 18,194
  Dry, ash-free 
Moisture 0.0 0.0
Ash 0.0 0.0
Fixed Carbon 50.6 53.7
Volatile Matter 49.4 46.3
Carbon 74.1 75.7
Hydrogen 4.2 4.4
Nitrogen 1.4 1.1
Oxygen 19.1 18.4
Sulfur 1.2 0.4
HHV (kJ/kg) 28,467 29,594

 

As part of determining coal properties, a thermal gravimetric analyzer/ 

differential scanning calorimeter (TGA/DSC) instrument can provide information on the 

moisture and combustible volatile matter released during pyrolysis and early gasification 

processes.  Tests were performed using a TA Q600 TGA/DSC and discussed by 

Lawrence (2007) and Carlin et al. (2008).  The purge gases typically used are N2 for 

pure pyrolysis and air for oxidation reactions.  The instrument monitored temperature, 

particle mass, and heat flow versus time.  The pyrolysis temperature was found to be 

approximately 350 °C (650 °F) and the ignition temperature was about 320 °C (620 °F) 

for Texas lignite. 

Much of the present study will also require some understanding of the processing 

of solid fuels before combustion, particularly drying.  Abhari et al. (1990) studied the 

drying kinetics of lignite, sub-bituminous, and bituminous coals.  Strezov et al. (2004) 
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discussed several correlations for computing the specific heat (heat capacity) of coals on 

a dry, ash-free basis, given the temperature and volatile matter content of the coal.  

Priyadarsan (2002) discussed the specific heat of coal ash.  He reported that the specific 

heat of coal ash varied only slightly with temperature and had values of 1.28 – 1.46 

kJ/kg K from temperatures ranging from 900 K to 1200 K.  Priyadarsan also reported 

that the dry, ash free specific heat of coal ranged between 32.69 and 34.21 kJ/kg K at the 

same temperature range.  Higher ash contents in coal lower the composite specific heat 

of the combined coal and ash solid. 

 

2.1.2. Dairy Biomass 

There are certain areas of the country, such as the Bosque River Watershed near 

Waco, Texas and many parts of California that contain dozens of large dairy operations, 

each with over 500 milking cows.  See Figure 2.2.  The dairy cows in the Bosque River 

Watershed make up about 25% of the total number of dairy cows in Texas.  The 

Californian counties of Tulare (26%), Merced (14%), and Stanislaus (10%), house about 

50% of the 1.74 million dairy cows in California (CDFA, 2006). 

Full-grown milking cows can produce 7 to 8% of their body weight in manure 

per day; roughly 7.3 dry kg (16 lb) per animal per day according to Schmidt et al. 

(1988).  The American Society of Agricultural Engineer (ASAE) standard, as excreted, 

manure production from a full grown lactating cow is 8.9 dry kg (20 lb) per animal per 

day.  The manure is roughly 87% moisture when excreted (ASAE, 2005).  If about 70% 

of this manure can be collected, then 21.2 million dry metric tons (23.3 million tons) of 

dairy manure per year can be utilized in the US.  Texas dairy cows produce about 

890,000 dry metric tons (980,000 tons) of manure per year.  If dairy manure solids are 

roughly 40% ash on average, and the dry ash-free heating value of the manure is about 

20,000 kJ/kg, then the thermal energy conversion of dairy manure in the US can 

potentially produce about 255 million GJ/yr (242 million MMBtu/yr). 
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The term “cattle biomass (CB)” will refer to both feedlot and dairy manure in 

general.  Manure from feedlots will be termed feedlot biomass (FB) and manure from 

dairies will be termed dairy biomass (DB). 
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Figure 2.2 Average numbers of dairy cows in the US (not including heifers) for 2006 (NASS, 2007 and 

USDA, 2007) 
 

Figure 2.3 is an illustration of some of the most common ways DB and FB is 

collected, treated, and used at most animal feeding operations.  Feedlot biomass will be 

discussed in the next section.  The manure collection processes at dairies generally 

depend on how the animals are kept.  Most dairies keep cows primarily in open lots or 

corrals paved with soil.  Manure is periodically removed by scraping the corrals with a 

tractor and box blade, usually when the cows are at the milking center.  However, large 

amounts of dirt and other inert material is also scraped along with the manure, making 

the DB from open lot dairies high in ash and unsuitable for most direct combustion 

processes.  Scraping manure from soil surfaced open lots can produce 16.1 dry kg 

(35.5 lb) of recoverable solids per animal per day.  About 43% of these solids are inert 

material or ash.  The moisture percentage of scraped solids from soil surfaced lots can 
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range between 39 and 69% (ASAE, 2005).  Hybrid dairy facilities have open lots plus 

free stalls.  Free stalls are covered, open air barn structures, typically paved with 

concrete.  Bedding, which can be straw, sand, or composted manure, is usually placed on 

the concrete floor for the animals’ comfort.  Sometimes loafing beds are placed on the 

concrete floors to further increase the animals’ comfort level as well (Mukhtar et al., 

2008). 

Manure may be removed from free stall barns in several ways.  The manure, 

along with the bedding material can be washed or flushed with water, which usually 

flows downhill from one end of the free stall barn to the other.  At the bottom end of the 

barn, some dairies have solid separators that remove some of the solids from the liquid 

flushed manure.  The separated solids are either stored or composed and are eventually 

used as fertilizer on nearby plots of land or discarded at landfills.  The remaining 

wastewater from the separator is typically sent to a treatment pond or lagoon, where the 

remaining solids are diluted and broken down by anaerobic biological processes.  See 

Figure 2.3.  Any inorganic matter in the wastewater will sink to the bottom of the lagoon 

and create a layer of sludge.  After treatment, the water in the lagoon is typically used for 

further flushing in the free stall, or as irrigation water (Mukhtar, 1999).  Alternatively, a 

vacuum machine can collect the manure and bedding into a “slurry wagon.”  After 

manure is vacuumed, it is taken either to fields and used as fertilizer or spread and dried.  

If flushing or vacuum systems are not available, free stalls can be also be scraped to 

remove manure (Mukhtar et al., 2008).  About 11.2 dry kg (24.7 lb) of manure per 

animal per day can be recovered when scraping concrete surfaces.  Whereas only 5.36 

dry kg (12 lb) per animal per day can be recovered from flushed DB slurry.  The slurry 

will be roughly 92% moisture (ASAE, 2005). 

The makeup of the combustible or dry ash-free portion of the manure biomass is 

largely determined by the feed or the ration that the animals eat.  In Table 2.3, the mean 

proximate, ultimate and heat value analyses of the cattle feed, as excreted manure, and 

aged manure solids are listed for a number of dairies in Texas obtained by Mukhtar et al. 

(2008).  On an as received basis and on a dry basis (i.e. all moisture removed) the heat 
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value of the excreted manure was less than the heat value of the original rations that 

were feed to the animals.  However, on a dry, ash free basis, the heat values for excreted 

manure and cattle feed was very similar.  On a dry basis, it may also be seen that the heat 

value for aged solids was lower compared to the excreted manure.  This decrease in heat 

value was predominantly due to the loss of volatiles during composting or storage of 

manure solids. 
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Figure 2.3 Current dairy and feedlot manure disposal (adapted from Schmidt et al., 1988) 
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Table 2.3 Averaged ultimate, proximate, and heat value analyses of dairy 
cow feed, as-excreted manure, and aged solids for various dairies in 
Texas (Mukhtar et al., 2008) 

  
Dairy Cattle 

Feed 
As Excreted 

Dairy Manure 
Aged Solid 

Dairy Manure 
(by mass) As received 
Moisture 41.4 84.1 36.2
Ash 5.2 3.2 41.7
Fixed Carbon 11.2 2.3 0.7
Volatile Matter 42.2 10.4 21.4
Carbon 26.3 6.8 11.1
Hydrogen 3.2 0.8 1.2
Nitrogen 1.5 0.4 1.0
Oxygen 21.7 4.7 8.6
Sulfur 0.2 0.0 0.3
HHV (kJ/kg) 9,159 1,161 2,810
  Dry 
Moisture 0.0 0.0 0.0
Ash 8.9 20.1 65.4
Fixed Carbon 19.1 14.5 1.1
Volatile Matter 72.0 65.4 33.5
Carbon 44.9 42.8 17.4
Hydrogen 5.5 5.0 1.9
Nitrogen 2.6 2.5 1.6
Oxygen 37.0 29.6 13.5
Sulfur 0.3 0.0 0.5
HHV (kJ/kg) 15,792 7,354 4,519
  Dry, ash free 
Moisture 0.0 0.0 0.0
Ash 0.0 0.0 0.0
Fixed Carbon 21.0 18.1 3.2
Volatile Matter 79.0 81.9 96.8
Carbon 49.3 53.5 50.2
Hydrogen 6.0 6.3 5.4
Nitrogen 2.8 3.1 4.5
Oxygen 40.6 37.0 38.9
Sulfur 0.4 0.0 1.4
HHV (kJ/kg) 16,644 16,788 13,045

 

In Table 2.4, the ultimate, proximate, and heat value analyses for dairy manure 

solids collected by various methods are presented from the same study by Mukhtar et al. 

(2008).  Scraped DB solids were collected at open lots and hybrid lots in both central 

Texas and the Texas Panhandle region.  Separated solids from flushed systems on hybrid 
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lots were also collected in these two Texas regions.  Vacuumed DB solids were collected 

from two hybrid lots in central Texas as well.  First, notice the moisture percentage on 

an as received basis.  Scraped DB, which was once 80% moisture as excreted, mixes 

with either bedding or soil in open lots and is dried in the sun to about 40% moisture; 

however, on a dry basis the DB’s ash percentage increases from 20% as excreted to 

about 36%, on average, when scraped.  Scraped solids can be as high as 70% ash on a 

dry basis, depending on the open lot surfacing and the care taken by the box blade 

operator when collecting the manure. 

On the other hand, mechanically and gravitationally separated solids are 

extremely high in moisture as they are screened or settled from streams of high moisture 

flushed dairy manure.  Mechanically separated solids were found to be very low in ash, 

as much of the inert material in the DB is made-up of smaller particles that pass through 

screen meshes more easily than the combustible, organic material.  This data confirms 

the same hypothesis by Carlin (2005) and Carlin et al. (2007a), who found that separated 

DB solids from a dairy in Hico, Texas were only 11% ash on a dry basis.  However, 

gravitationally separated solids are higher in ash since the small inert particles settle to 

the bottom of settling basins along with the combustible material. 
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Table 2.4 Averaged ultimate, proximate, and heat value analyses for dairy manure solids collected by 
various methods for various dairies in Texas (Mukhtar et al., 2008) 

  
Scraped Dairy 
Solid Manure 

Mechanically 
Separated Dairy 

Solids 

Gravitationally 
Separated Dairy 

Solids 
Vacuumed w/ 
Sand Bedding 

Vacuumed w/ 
Compost 
Bedding 

(by mass) As received 
Moisture 40.8 83.2 69.9 52.0 83.6
Ash 21.2 1.3 12.4 38.6 3.6
Fixed Carbon 5.3 10.5 8.5 6.7 5.6
Volatile Matter 32.7 5.0 9.2 2.7 7.2
Carbon 18.8 8.0 12.0 5.9 6.8
Hydrogen 2.2 0.9 1.4 0.7 0.8
Nitrogen 1.3 0.3 0.5 0.3 0.4
Oxygen 13.8 6.2 8.2 2.4 4.7
Sulfur 0.3 0.1 0.1 0.1 0.1
HHV (kJ/kg) 6,433 2,554 3,777 2,258 2,740
  Dry 
Moisture 0.0 0.0 0.0 0.0 0.0
Ash 35.8 7.7 41.2 80.4 22.0
Fixed Carbon 9.0 62.5 28.2 14.0 34.1
Volatile Matter 55.2 29.8 30.6 5.6 43.9
Carbon 31.8 47.6 39.9 12.3 41.5
Hydrogen 3.7 5.4 4.7 1.5 4.9
Nitrogen 2.2 1.8 1.7 0.6 2.4
Oxygen 23.3 36.9 27.2 5.0 28.7
Sulfur 0.5 0.6 0.3 0.2 0.6
HHV (kJ/kg) 11,361 15,480 11,452 4,854 14,813
  Dry, ash free 
Moisture 0.0 0.0 0.0 0.0 0.0
Ash 0.0 0.0 0.0 0.0 0.0
Fixed Carbon 13.9 67.7 48.0 71.3 43.8
Volatile Matter 86.1 32.3 52.0 28.7 56.3
Carbon 49.5 51.6 67.8 62.8 53.1
Hydrogen 5.8 5.8 7.9 7.4 6.3
Nitrogen 3.4 1.9 2.8 3.2 3.1
Oxygen 36.3 40.0 46.3 25.5 36.7
Sulfur 0.8 0.6 0.6 1.1 0.8
HHV (kJ/kg) 17,667 16,788 18,255 23,949 19,130
 

The type of material used as bedding in free stalls and open lots plays a 

significant role in how much inert material is collected along with the DB.  In Table 2.4, 

fuel analyses for vacuumed DB solids are also presented.  It can be seen that vacuumed 

solids from free stalls with sand bedding had significantly higher ash contents than from 
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free stalls with compost bedding.  According to Sweeten and Heflin (2006), this higher 

ash content from free stalls bedded with sand is also true for flushed manure and the 

related separated solids.  In general, sand bedding causes ash contents in manure to be 

extremely high, no matter what collection technique is employed, and thus making the 

DB unsuitable for most any thermo-chemical conversion process.  On a dry basis, the 

results for vacuumed manure from free stalls with compost bedding seem promising, 

with a mean ash percentage of only 22%.  Vacuum machines can collect almost all of the 

manure from the free stalls, along with the bedding. 

On a dry, ash free basis, the compositions and heat values of each of the manure 

samples in Table 2.3 and Table 2.4 should be similar; however, since these numbers are 

averages of samples taken from several dairies in different parts of Texas, there seems to 

have been some variation in the combustible contents of the DB samples.  In Table 2.5, 

ultimate and heat value analyses are presented for a dairy in Comanche, Texas.  The 

low-ash DB sample was taken from separated solids from a free stall using composted 

manure as bedding.  The high-ash sample is from scraped DB from an open lot at the 

same dairy.  The combustible contents of these two samples on a dry, ash free basis 

seem similar, although the heat value for the high ash sample is significantly lower, even 

on a dry, ash-free basis.  This lower heat value for higher ash manure samples has been 

observed on several occasions over the course of this study and previous work; however, 

physically the low-ash and high-ash samples should be almost identical on a dry, ash-

free basis if the manure samples are from the same feeding operation and the animals are 

given the same ration.  The discrepancy may be from the fuel testing itself.  Higher heat 

values are typically determined from bomb calorimeters, and it may be that part of the 

combustible content is shielded or diluted in the high ash content of the fuel and not 

burned during the calorimetry test.  Ash analyses of these fuels as well as other coals and 

agricultural based biomasses can be found at the Texas A&M Coal and Biomass Energy 

Laboratory website (TAMU, 2006). 
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Table 2.5 Ultimate and heat value analyses of dairy 
manure from a dairy in Comanche, Texas (Sweeten and 
Heflin, 2006) 

  
Low-ash Dairy 

Manure 
High-ash Dairy 

Manure 
(by mass) As received 
Moisturea 25.3 12.2
Ash 14.9 59.9
Fixed Carbon 13.0 3.9
Volatile Matter 46.9 24.0
Carbon 35.2 18.0
Hydrogen 3.1 1.6
Nitrogen 1.9 1.2
Oxygen 19.2 6.9
Sulfur 0.4 0.2
HHV (kJ/kg) 12,843 4,312
  Dry 
Moisture 0.0 0.0
Ash 20.0 68.2
Fixed Carbon 17.4 4.4
Volatile Matter 62.8 27.3
Carbon 47.1 20.5
Hydrogen 4.2 1.8
Nitrogen 2.6 1.3
Oxygen 25.6 7.9
Sulfur 0.6 0.2
HHV (kJ/kg) 17,183 4,912
  Dry, ash-free 
Moisture 0.0 0.0
Ash 0.0 0.0
Fixed Carbon 21.7 14.0
Volatile Matter 78.4 86.0
Carbon 58.9 64.6
Hydrogen 5.2 5.7
Nitrogen 3.2 4.1
Oxygen 32.0 24.9
Sulfur 0.7 0.6
HHV (kJ/kg) 21,475 15,467
aMoisture in manure samples is low due to solar drying prior to fuel 
analysis, typically 80% moisture for low-ash dairy manure before 
drying, moisture of scraped high-ash solids is variable before drying 

 

Yet, as far as the use of DB as a fuel for thermo-chemical conversion 

technologies is concerned, there may be a problem with the availability of low-ash DB 

feedstock.  The vast majority of DB from large CAFOs is scraped.  A very small fraction 
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of the total DB produced from large dairy operations is the low-ash separated solids 

from flushed free stall barns that is ideal for energy conversion.  One reason for the short 

supply of low-ash feedstock is that many dairy operators have chosen to not to switch to 

hybrid or free stall systems at their dairies.  Free stalls are usually built in parts of the 

country where there is a lot of rain fall or inclement weather, which causes mud 

problems in open lots.  Therefore, in dryer parts of the country, such as the Texas 

Panhandle, most dairies have remained dry open lots.  In central Texas the climate is 

marginal and the rate of water evaporation minus the amount of average rain fall 

(moisture deficit) is between 50 and 130 cm (20 and 50 inches).  Dairy operators must 

make difficult decisions to either continue running their dairies as dry open lots or 

convert to hybrid lots (Stokes et al., 1999). 

Other reasons to convert to free stall barns are environmental regulations of 

wastewater runoff and herd profitability.  Free stall operations offer a more controlled 

environment for the dairy cows, and hence more milk production.  However, water 

consumption by the farm usually does increase for free stalls due to the flushing systems.  

Plus, manure management becomes a very different process compared to open lots.  

Labor costs may also increase due to bedding management (Stokes et al., 1999).  Even 

when dairy operators convert to free stall systems, if sand is used as bedding, the DB 

produced from the dairy will be very high in ash.  So, the ability to secure enough low-

ash DB for energy conversion is a challenge in and of itself. 

The two fuel analyses shown in Table 2.5 will be used later in modeling studies 

of MBB combustion and its associated economic feasibility and impacts. 

For DB, as well as FB and other MBB, the moisture and ash percentages of the 

biomass significantly affect the fuel’s heat value.  Plotting heating value against 

moisture and ash percentage allows some estimation of the required moisture and ash 

percentage necessary for combustion in boilers, gasification chambers, and other 

combustors.  From Figure 2.4, it can be deduced that CB fuels with ash percentages 

greater than 40%, on a dry basis, would be unsuitable for suspension coal-fired boilers, 

but may be acceptable for fluidized bed combustion.  It can also be seen from the figure 
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that, even for lower ash CB with ash contents of 10 to 20% (dry basis); pre-drying 

processes may be required for raw CB fuels which may contain 60 to 85% moisture as 

received.  Ikeguchi et al. (1997) studied the mass transfer of moisture and ammonia from 

manure in free stall barns.  They found heat transfer correlations for manure biomass in 

terms of air velocity and compared the mathematical correlations to experimental data 

found in a testing wind tunnel.  Carlin (2005) also investigated maximum allowable ash 

and moisture contents of DB for small-scale, on-the-farm combustion schemes.  
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Figure 2.4 Higher heating value of cattle biomass vs. moisture and ash percentage (assuming a dry, ash 

free HHV of 19,770 kJ/kg) 
 

From TGA experiments, pyrolysis temperatures were found to be 60 to 70 °C 

less for pure CB fuels than Texas lignite (Lawrence, 2007 and Carlin et al., 2008).  

Finally, in Figure 2.5, the nitrogen, sulfur, and chlorine contents of DB, FB, lignite, and 

Wyoming sub-bituminous coal are compared on an energy basis.  Nitrogen contents of 

DB and FB are about 2 to 3 times those of lignite and sub-bituminous coal, which 

suggest higher NOx emissions if the biomass fuels are burned under fuel lean conditions.  

Sulfur contents of DB and FB seem to be slightly lower than that of lignite; however, 

Wyoming sub-bituminous has the lowest sulfur content of all.  Moreover, chlorine 
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content of DB is much greater than either lignite or sub-bituminous coal, which suggests 

the possibility of higher mercury (Hg) oxidation during coal and biomass co-combustion 

(Arcot Vijayasarathy, 2007). 
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Figure 2.5 Nitrogen, sulfur, and chlorine contents of DB, FB, Texas lignite, and Wyoming sub-bituminous 

(adapted from TAMU, 2006 and Arcot Vijayasarathy, 2007) 
 

Properties of MBB, such as density and specific heat, are also essential for this 

study, since drying and transporting models require at least some estimates of these 

traits.  Most of the research into the thermal properties of MBB was conducted in the 

1970s and 80s.  Houkom et al. (1974) and Chen (1982 and 1983) studied the effect of 

moisture content on the bulk density, specific heat, thermal conductivity, and thermal 

diffusivity of FB.  Both authors conducted experiments and provided curve fitted 

equations for their data.  Houkom’s work was also reviewed in a textbook by Mohsenin 

(1980).  Later, Bohnhoff et al. (1987) conducted experiments and developed similar 

curve fitted equations for separated DB solids.  Bohnhoff et al. also studied the effect of 

volatile matter content on the average dry particle density of DB solids.  Finally 

Achkari-Begdouri et al. (1992) conducted their own study of the thermal properties of 

high-moisture dairy manure from dairies in Morocco.  Achkari-Begdouri et al. also 
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reviewed all the other previous work into the thermal properties of MBB.  Since the 

results for FB and DB were found to be quite similar according to these studies, the 

properties of both will be discussed here and compared. 

Bohnhoff et al., Chen, and Achkari-Begdouri et al. all published their estimates 

of average dried manure particle density, which are listed in Table 2.6.  Brohnhoff et al. 

also modeled particle density as a function of volatile solids percentage.  A plot of the 

fitted line produced by their experiments is shown in Figure 2.6.  According to the 

expression, the particle density increases when less volatile content is present in the 

manure.  However, Brohnhoff et al. did not distinguish between fixed carbon and inert 

ash as was done earlier in Table 2.4.  The term “fixed solids” refers to the combined total 

of fixed carbon and ash.  Yet, presumably less volatile solids means higher ash content 

in the manure, meaning that high-ash manures are denser and heavier than low-ash 

solids.  This relation between ash percentage and density corroborates some personal 

discussion with Heflin (2008) who demonstrated, to the current author, that higher ash 

feedlot manure at an experimental feedlot facility in Bushland, Texas was generally 

heavier than low-ash feedlot manure. 

 
Table 2.6 Measured mean dry particle density for manure-based biomass from various sources. 

mean dry particle 
density, ρp,MBB 

(kg/m3) Source Notes 
1524 Chen (1982) Average particle density from beef cattle 

manure samples.  Standard deviation = 110 
kg/m3. 

1576 Bohnhoff et al. (1987) Average particle density from separated 
dairy manure solids samples.  Range: 1534 

to 1626 kg/m3. Standard deviation = 29 
kg/m3.  Also modeled mean particle 

density as a function of volatile solids 
percentage. 

1690 Achkari-Begdouri et al. 
(1992) 

Average particle density from high-
moisture (%M > 85) dairy manure 

samples. Range: 1424 to 1902 kg/m3. 
Standard deviation = 102 kg/m3. 

 



 35

1500

1520

1540

1560

1580

1600

1620

1640

1660

1680

75 80 85 90 95 100
Volatile Solids Percentage, dry basis (%)

M
an

ur
e 

M
ea

n 
D

ry
 P

ar
tic

le
 D

en
si

ty
 (k

g/
m

3 )
ρ p,MBB  = 100 * [((%VS /100)/ρ p,VS ) + ((100 - %VS )/ρ p,FS )]-1

ρ p,VS  = volatile solids density = 1508.2 kg/m3

ρ p,FS  = fixed solids density = 2820.8 kg/m3

Bohnhoff et al. (1987), Separated diary biomass solids

 
Figure 2.6 Manure-based biomass mean dry particle density vs. volatile solids percentage 

 

One problem with the work conducted by Bohnhoff et al. was the extremely high 

volatile solids percentage found in separated dairy manure solids.  They found that raw 

separated dairy manure had volatile percentages of about 94% and composted dairy 

manure had volatile percentages between 85% and 90%.  These numbers are much 

higher than those seen in the previous tables.  In fact, even on a dry, ash-free basis, no 

manure samples in the literature were shown to have such high volatile matter contents, 

except for the averaged volatile matter content of aged DB solids on a dry, ash-free basis 

presented in Table 2.3.  In Table 2.4, separated dairy manure solids were shown to have 

a volatile matter percentage of just 30% on a dry basis and about 32% on a dry, ash-free 

basis, far less than what was reported by Bohnhoff et al.  In Table 2.5, low-ash separated 

DB was found to have 62.8% volatile matter on a dry basis and 78.4% on a dry, ash-free 

basis.  Similarly in a previous study by Carlin (2005), separated DB solids were found to 

have 69.7% volatile matter on a dry basis and 78.5% on a dry, ash-free basis.  It is not 

clear if the modeling equation used in Figure 2.6 can be applied to manure with 
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significantly lower volatile matter, since the density of the fixed solids may change when 

the proportion of the fixed carbon and inert ash change relative to each other. 

Bulk density was also measured for different moisture contents.  The results from 

Chen (1983) and Houkom et al. (1974) are shown in Figure 2.7.  Bulk density is of 

special importance when estimating hauling costs of transporting MBB to combustion 

facilities.  Depending on the collection process and weather conditions, the moisture 

percentage, along with the bulk density, of the MBB can vary greatly. 
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Figure 2.7 Measurements and fitted curves for bulk density of manure-based biomass from various 

sources. 
 

At very high moisture contents the density of MBB approaches that of water, but 

as the moisture content decreases the density increases steadily as the manure remains in 

a liquid phase with dense manure particles.  At about 80 or 85% moisture, the manure 

becomes a dense, high-moisture solid.  The density of freshly separated dairy manure 

solids is greater than the density of the liquid manure entering the mechanical solids 

separator.  However, at about 50 or 60% moisture, the density of the MBB drops steeply 

as the moisture evaporates leaving numerous void volumes among the manure particles.  
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The solid manure particles are still dense, but the void volumes in between the particles 

make the MBB, in bulk, a relatively light solid. 

The specific heat of MBB is also highly dependant on moisture content.  In 

Figure 2.8, data from Chen (1982), as well as curve fits from various other researchers, 

show a linear relationship between specific heat and moisture percentage.  Curve fitted 

lines by Chen (1982), Bohnhoff et al. (1987), and Achkari-Begdouri et al. (1992) predict 

that the specific heat of MBB at close to 100% moisture is very close to that of pure 

water (4.197 kJ/kg K).  However, at the other extreme at 0% moisture, the different 

equations do not exactly agree, and predict that the specific heat of dry MBB will be 

between 0.92 and 1.44 kJ/kg K. 

 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50 60 70 80 90 100
Moisture Percentage, wet basis (%)

M
an

ur
e 

B
io

m
as

s 
Sp

ec
ifi

c 
H

ea
t (

kJ
/k

g 
K

)

Data obtained 
by Chen (1982)

Chen, 1982, Beef cattle manure
c MBB  = 1.44 + 2.75(%M/ 100)

Houkom et al., 1974, Beef 
cattle manure
c MBB  = 0.953 + 3.52(%M/ 100)

Bohnhoff et al., 1987, Sep. dairy 
manure solids

c MBB  = 0.920 + 3.295(%M/ 100)

Achkari-Begdouri et al., 1992, 
Liquid dairy manure
c MBB  = 1.2975 + 2.89(%M/ 100)

 
Figure 2.8 Measurements and fitted curves for specific heat of manure-based biomass from various 

sources. 
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Figure 2.9 Measurements and fitted curves for thermal conductivity of manure-based biomass from 

various sources. 
 

Thermal conductivity can also be plotted against moisture percentage; however, 

most of the studies reviewed here, with the exception of Achkari-Begdouri et al. (1992), 

did not fit thermal conductivity curves to moisture percentage.  Bohnhoff et al. (1987) 

fitted thermal conductivity to four parameters: bulk density, the density of water, the 

temperature, and the moisture percentage.  See Figure 2.9.  Chen (1983) fitted thermal 

conductivity with different parameters depending on the range of moisture and density 

of the MBB.  For MBB with < 49% moisture: 

 ( )706 exp 3.06MBBk ε= ∗ − ∗  (2.1) 

where ε is the porosity or the void volume of the biomass.  For MBB with >49% 

moisture and a bulk density less than that of water: 

 2
, ,119.5 0.372 0.00066MBB b MBB b MBBk ρ ρ= − +  (2.2) 

If the bulk density is greater than that of pure water, then: 

 ( ), 0.607 0.0051 100 %MBB b MBBk Mρ ⎡ ⎤= − −⎣ ⎦  (2.3) 

Thermal diffusivity of MBB can be computed with the following expression: 
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Chen (1983) and Bohnhoff et al. (1987) also plotted thermal diffusivity against various 

parameters. 

Finally, for MBB in solid states, it is also helpful to know the size distribution of 

the particles.  Houkum (1974) used number 4, 8, 16, 30, 50, 100, and 140 sized sieves to 

measure the size distribution of particles of both high moisture (85%) and low moisture 

(25%) beef cattle manure.  The results of these experiments are shown in Table 2.7.  

Meyer et al. (2007) conducted similar experiments for as-excreted dairy cow manure for 

lactating cows, heifers, and calves.  The results for adult lactating cows are shown in 

Table 2.8 along with results for partially composed separated dairy cow manure used for 

coal-MBB co-firing experiments by Lawrence (2007).   

 
Table 2.7 Results of sieve analyses of beef cattle manure 

Sieve No. 
Particle Size 

(μm) % on Sieve
Cumulative % greater 

than stated size 

Beef cattle manure with a 25% moisture content 
(Houkum, 1974) 

4 4750 3.80 3.80
8 2380 35.40 39.20

16 1190 27.80 67.00
30 541 18.30 85.30
50 282 9.50 94.80
100 149 3.40 98.20
140 104 1.00 99.20
Pan   0.80 100.00

Beef cattle manure with an 85% moisture content 
(Houkum, 1974) 

4 4750 3.20 3.20
8 2380 7.10 10.30

16 1190 11.90 22.20
30 541 9.70 31.90
50 282 7.90 39.80
100 149 3.60 43.40
140 104 1.30 44.70
Pan   55.30 100.00
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Table 2.8 Results of sieve analyses for dairy cow manure 

Sieve No. 
Particle Size 

(μm) % on Sieve

Cumulative % 
greater than stated 

size 

Low-ash partially composted separated solids, after being solar 
dried and coarsely ground (Lawrence, 2007) 

10 2000 0.04 0.04
16 1190 0.26 0.30
20 840 0.84 1.14
50 300 21.82 22.96

100 150 31.45 54.41
200 75 22.88 77.29
325 45 9.60 86.89
Pan   13.11 100.00

As-excreted lactating dairy cow manure 
(Meyer et al., 2007) 

10 2000 30.00 30.00
18 1000 7.00 37.00
35 500 6.00 43.00
60 250 5.00 48.00

120 125 3.00 51.00
Pan*   49.00 100.00

*Includes feces and urine  
 

The DB used by Lawrence was solar dried in a green house, finely ground and partially 

crushed by Kevin Heflin at the Texas A&M AgriLife Research and Extension Center in 

Amarillo, Texas before the sieve analysis. 

The distributions of all of these MBB samples are compared to each other in the 

log-log plot in Figure 2.10.  Rosin-Rammler distribution equations can be fitted to the 

data from the sieve analyses to predict the particle size distribution at all particle sizes.  

The Rosin-Rammler distribution equation has the following form: 

 ( ) 100 1 exp
n

p
p

c

Mass percentage
d

less than the indicated D d
d

particle size

⎛ ⎞ ⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎜ ⎟ ⎢ ⎥= = ∗ − −⎨ ⎬⎜ ⎟⎜ ⎟ ⎢ ⎥⎝ ⎠⎪ ⎪⎜ ⎟ ⎣ ⎦⎩ ⎭⎝ ⎠

 (2.5) 

where dc is the characteristic particle size of the distribution and n is a shape parameter.  

In the case of the Rosin-Rammler distribution, dc is the particle size at which 63.2% of 

the mass of the particles are smaller in size than dc.  From the figure, it can be seen that 

the characteristic particle size was 274 μm for high moisture beef cattle manure, 
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2180 μm for low moisture beef cattle manure, 963 μm for as-excreted dairy manure, and 

246 μm for air dried, coarsely ground DB.  The Rosin-Rammler distribution is discussed 

further by Brown et al. (1995) and Hinds (1999).  Lawrence (2007), as well as Thien 

(2002), applied the distribution equation to coals and MBB for co-fire experiments.  The 

current author applied the distribution to the data from Houkum (1974) and Meyer et al. 

(2007). 
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Figure 2.10 Particle size distributions of beef cattle and dairy cow manure from various sources plus 

Rosin-Rammler distribution equations generated by Lawrence (2007) and the current author 
 

It is somewhat surprising that higher moisture MBB would have a more even 

distribution and lower characteristic diameter size than lower moisture solids.  The 

comparative results from these studies seem to suggest that high moisture solids, 

including as-excreted solids which can be about 80% moisture, are relatively fine.  

During drying, the particles seem to agglomerate together to form a broader distribution 

of particle sizes, with a greater characteristic size, making dried manure more coarse 

than fresh manure.  Only after grinding, is the characteristic size decreased, however, the 

broad size distribution still remains, as seen by the data from Lawrence (2007). 
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Alternatively, the MBB can be characterized by the mass mean diameter, which 

can be computed with the following expression: 

 i i
mm

m d
d

M
= ∑  (2.6) 

where mi can be read from column 3 in Table 2.7 or Table 2.8, di can be read from 

column 2, and M in this case would be 100%.  Masses of each group and the total mass, 

M, can also be used instead of percentages (Hinds, 1999). 

 

2.1.3. Feedlot Biomass 

The population of feedlot cattle on large operations in the US is illustrated in 

Figure 2.11.  The three largest cattle states are Texas, Kansas and Nebraska, 

respectively.  These three states produce more feedlot cattle than the other 47 states 

combined.  Most of the Texas feedlots are concentrated in the Panhandle region of the 

state (NASS, 2007).  Feedlots in the Texas and Oklahoma Panhandle regions can range 

between 5,000 and 75,000 head (Harman, 2004).  Moreover, feedlot cattle can produce 5 

to 6% of their body weight in manure each day; roughly 5.5 dry kg (12 lb) per animal 

per day (DPI&F, 2003).  According to the ASAE (2005) standard, full grown beef cattle 

excrete 6.6 dry kg (15 lb) of manure per animal per day.  However, only about 5.0 dry 

kg (11 lb) per animal per day is collectable when scraped from earthen lots.  Beef cow 

manure from earthen lots can range between 53 and 87% ash (dry basis), and 24 and 

42% moisture.  Thus, nearly 18 million dry metric tons (19.8 million tons) of cattle 

manure per year comes from large feedlot CAFOs.  Texas alone produces over 27% of 

this annual total.  If the manure is roughly 70% ash (dry basis), and the dry ash-free 

heating value of the manure is roughly 20,000 kJ/kg, the thermal energy conversion of 

the collectable manure from large feedlot operations in the US can produce about 

109 million GJ/yr (103 million MMBtu/yr). 
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Figure 2.11 Feedlot cattle on large 1,000+ head operations in the US (NASS, 2007 and USDA, 2007) 

 

In Table 2.9, ultimate and heat value analyses are presented for cattle feed ration, 

low-ash feedlot manure, and high-ash feedlot manure collected at an experimental 

feedlot facility at Bushland, Texas by Mr. Kevin Heflin.  Just as with DB, the primary 

concern with FB is the ash content in the manure.  Hence, the way the manure is 

collected and how the feed cattle are kept is important.  Most cattle on feed at large 

feedlot operations are kept in large feed yards or corrals, similar to open lots discussed 

previously for dairies.  The important distinction between feedlots that produce low-ash 

FB and feedlots that produce high-ash FB is the type of surfacing of the feed yards.  

Feedlots that are not paved or only paved with soil tend to produce high ash manure, 

about 45% on a dry basis according to Table 2.9.  Although ash contents can be much 

greater from unpaved lots if less care is taken when scraping the corrals.  As illustrated 

in Figure 2.12, inert material can be mixed with the excreted manure by the animals 

when they shuffle their hooves and from box blade scrapers collecting soil along with 

the manure.  Problems with mud in open lots also causes soil (ash) entrainment, which 

leads to collecting FB higher in ash.  On the other hand, as seen in Figure 2.13, feedlots 
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paved with either cement or fly ash byproduct from coal combustion can produce FB 

that is very low in ash.  Further discussion of paved and un-paved feedlots was 

undertaken by Sweeten et al. (2006). 
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Figure 2.12 Feedlot biomass collection at soil surfaced feed yards 
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Figure 2.13 Feedlot biomass collection at paved surfaced feed yards 

 



 45

Table 2.9 Ultimate and heat value analyses of cattle feed ration and feedlot 
manure from Bushland, Texas 

  
Cattle Feed 

Rationb 
Low-ash Feedlot 

Manurec 
High-ash Feedlot 

Manurec 
(by mass) As received 
Moisturea 19.8 29.3 27.3
Ash 3.6 9.6 32.9
Fixed Carbon 17.9 12.9 7.3
Volatile Matter 59.5 48.0 32.5
Carbon 35.9 35.1 23.5
Hydrogen 5.0 4.2 2.8
Nitrogen 1.6 2.4 1.7
Oxygen 34.0 19.1 11.5
Sulfur 0.1 0.4 0.3
HHV (kJ/kg) 14,700 13,222 8,189
  Dry 
Moisture 0.0 0.0 0.0
Ash 4.5 13.6 45.2
Fixed Carbon 22.3 18.2 10.0
Volatile Matter 74.2 67.9 44.7
Carbon 44.8 49.6 32.3
Hydrogen 6.2 5.9 3.9
Nitrogen 2.0 3.3 2.3
Oxygen 42.4 27.0 15.8
Sulfur 0.1 0.5 0.4
HHV (kJ/kg) 18,329 18,688 11,266
  Dry, ash-free 
Moisture 0.0 0.0 0.0
Ash 0.0 0.0 0.0
Fixed Carbon 23.4 21.2 18.4
Volatile Matter 77.6 78.5 81.7
Carbon 46.9 57.4 59.1
Hydrogen 6.5 6.8 7.0
Nitrogen 2.1 3.9 4.2
Oxygen 44.4 31.3 28.9
Sulfur 0.1 0.6 0.8
HHV (kJ/kg) 19,191 21,626 20,572
aMoisture in manure samples is low due to solar drying prior to fuel analysis 
bSweeten et al., 2003 
cSweeten and Heflin, 2006 

 

Sweeten et al. (2003) reported that the higher heating value (HHV) of FB on a 

dry, ash-free basis tends to generally be between 18,000 and 22,000 kJ/kg depending on 
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the animal’s feed ration.  In Figure 2.14, it may be seen that raw FB, partially composted 

(PC) FB, fully/finished composted (FC) FB, and cattle ration (cattle feed) all fall under 

this dry, ash-free (DAF) HHV range.  Similar results are also found when blending 5% 

crop residues with each FB fuel. 
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Figure 2.14 Higher heating values for cattle ration, raw FB, partially composted FB, finished composted 

FB, coal, and respective FB+5% crop residue blends (adopted from Sweeten et al., 2003) 
 

On a dry, ash-free basis, the combustible contents of low-ash FB and high-ash 

FB are similar to the feed ration given to the animals, just as was the case for dairy cows.  

However, also like dairies, very few feedlots produce low-ash biomass, because the vast 

majority of feedlots are unpaved.  There are concerns of how the hard surfaces of paved 

lots will affect the animals.  Moreover, paving feedlots is expensive, and since many 

operations are so large, a tremendous amount of concrete or coal ash would be needed to 

completely convert an entire feedlot operation to paved surfaces.  Over time, 

maintenance and repaving may also be required, since the animals are heavy and 

generate a great amount of force when they stomp on the ground.  This in turn may add 

to the cost of operating the feedlot (Heflin, 2008). 
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Previous TGA experiments by Martin et al. (2006) found similar ignition 

temperature results for FB as with DB, discussed earlier.  Pure FB samples had an 

average ignition temperature of 474 °C (885 °F), while biomass blends with Texas 

lignite coal had an average ignition temperature of 292 °C (560 °F).  The lower ignition 

temperatures in coal-FB blends are generally due to the high amount of fixed carbon in 

coal that is not present in pure biomass fuels.  Ignition temperature did not vary 

appreciably between high ash FB and low ash FB.  Nor did it vary significantly with 

average particle size or coal:FB blend ratio.  Additional TGA analyses of FB pyrolysis 

are also provided by Raman et al. (1981a).  A study by Rodriguez et al. (1998) showed 

that drying at 100 °C (212 °F) did not significantly affect the heating value of cattle 

biomass fuels.  Moreover, additional information of biomass fuel properties and heating 

values can be found by Annamalai et al. (2006) and Annamalai et al. (1987b). 

 

2.1.4. Hog or Swine Biomass 

Most of the discussion in this dissertation will center on cattle manure.  However, 

much of the same findings and modeling equations presented here can be used for hog or 

swine MBB in combustion systems as well.  In 2007, Iowa had the largest inventory of 

hogs and pigs with over 19 million head.  This was almost twice as much as the second 

largest state inventory, which belonged to North Carolina with about 10 million head.  

Minnesota, Illinois, and Indiana were the next largest swine states in 2007.  In Table 1.1, 

the East North Central census region of the US was shown to be the largest coal 

consuming region.  Four of these states (Illinois, Indiana, Michigan, and Ohio) are all 

among the states with the largest swine inventories.  Figure 2.15 is a graph of hog and 

pig inventory by state in 2007. 

The ultimate, proximate, and heat value analyses from three different studies of 

swine manure may be found in Table 2.10.  Like cattle manures, swine manure is 70 to 

80% volatile matter with a dry, ash free higher heating value of about 20,000 kJ/kg.  

Swine manure is also, at many times, flushed from indoor piggeries and stalls, and very 

high in moisture, as can be seen in the table.  However, the ash content of this high 
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moisture swine manure is about 30 to 35% on a dry basis, which is slightly higher than 

low-ash dairy manure, which is also generally flushed from free stall barns. 
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Figure 2.15 Total inventory of hogs and pigs by state in the US in 2007 (NASS, 2007) 
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Table 2.10 Ultimate, proximate, and heat value analyses of various hog or swine 
manures 

  
Air-dried Raw 
Hog Manurea 

High Moisture 
Swine Manureb 

High Moisture 
Pig Manurec 

(by mass) As received 
Moisture 7.2 72.57 92.1 
Ash 29.1 NRd 2.8 
Fixed Carbon 11.3 NRd 1.0 
Volatile Matter 52.3 23.94 4.1 
Carbon 34.3 12.53 2.8 
Hydrogen 5.0 1.77 0.3 
Nitrogen 3.5 0.95 0.2 
Oxygen 27.4 8.59 1.7 
Sulfur 0.7 0.1 NR 
HHV (kJ/kg) 14,511 NR 1,089 
  Dry 
Moisture 0.0 0.0 0.0 
Ash 31.4 NR 35.4 
Fixed Carbon 12.2 NR 12.7 
Volatile Matter 56.4 87.3 51.9 
Carbon 37.0 45.7 35.4 
Hydrogen 5.4 6.5 3.8 
Nitrogen 3.7 3.5 2.8 
Oxygen 29.5 31.3 21.5 
Sulfur 0.7 0.4 NR 
HHV (kJ/kg) 15,640 NR 13,785 
  Dry, ash-free 
Moisture 0.0 0.0 0.0 
Ash 0.0 0.0 0.0 
Fixed Carbon 17.8 NR 19.6 
Volatile Matter 82.2 NR 80.4 
Carbon 53.9 NR 54.9 
Hydrogen 7.9 NR 5.9 
Nitrogen 5.5 NR 4.3 
Oxygen 43.0 NR 33.3 
Sulfur 1.0 NR NR 
HHV (kJ/kg) 22,798 NR 21,353 
aJensen et al., 2003 
bHe et al., 2000 
cECN, 2003 
dAsh + fixed carbon is 3.49% on an as received basis 

NR:  Not reported 
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According to the ASAE (2005) standard, gestating sows excrete about 0.5 dry kg 

(1.1 lb) of manure per animal per day, lactating sows excrete 1.2 dry kg (2.5 lb) of 

manure per animal per day, and boars excrete about 0.38 dry kg (0.84 lb) of manure per 

animal per day.  About 0.32 dry kg (0.70 lb) of manure per animal per day is collectable 

from flushed manure from indoor piggeries.  Liquid flushed manure from indoor 

piggeries is generally about 98% moisture.  Roughly 7.9 million dry metric tons 

(8.7 million tons) of swine manure can be collected every year in the US.  If the manure 

solids are 40% ash on average, then the thermal energy conversion of swine manure can 

potentially generate about 95 million GJ/yr (90.3 million MMBtu/yr). 

 

2.2. Manure-based Biomass’s Effect on Emissions from Coal Combustion 

The average baseline NOx levels for wall and tangentially-fired boilers, using 

both bituminous and sub-bituminous coals, have decreased from 1995 to 2003, primarily 

due to the usage of low-NOx burners and air staging.  The nitrogen contained in a solid 

fuel is released to the gas phase during combustion and can either form NO or N2 

depending on the combustion conditions.  Fuel nitrogen is typically released as a mixture 

of HCN, NH3 and N2 from coal and biomass, see Figure 2.16.  During homogeneous 

combustion, these gases will form NO mostly under lean conditions when O2 is 

available; however, under fuel rich conditions, N2 will form, as there is a limited amount 

of O2 to form NO.  The amount of NO that is converted to N2 depends on the proportion 

of NH3 to HCN, with higher NH3/HCN ratios providing greater conversion.  The NOx 

generated from fuel nitrogen compounds is termed as fuel NOx, while the NOx from 

atmospheric N2 is referred as thermal NOx.  For most coal-fired units, thermal NOx 

contributes about 25% of the total NOx emission, and fuel NOx contributes the other 

75% of the total (DOE, 1999).   

Although MBB such as cattle biomass contains high amounts of fuel nitrogen, 

much of the nitrogen is released very rapidly during combustion along with the rest of 

the volatile matter.  Researchers at Texas A&M University have hypothesized that much 

of the fuel nitrogen from biomass is also released in the form of NH3.  If this is true, then 
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MBB has the potential to be an effective reburn fuel that can, not only reduce NOx by 

releasing hydrocarbon fragments in rich secondary combustion regions as in reburning 

with natural gas, but also release NH3 that can also react with existing NOx emissions 

from coal combustion in primary burn zones, thereby reducing NOx more effectively 

than other reburn fuels that have been studied in the past.  In the next section of this 

dissertation, a more detailed description of coal-biomass co-combustion technologies 

will be made. 
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Figure 2.16 Fuel nitrogen paths to NO and N2 (adapted from Di Nola, 2007) 

 

Co-combustion of coal and cattle biomass can also reduce the amount of 

nonrenewable CO2 emissions from coal-fired power plants.  Coal combustion accounted 

for 36% of the roughly 5.9 billion metric tons of CO2 released by anthropogenic sources 

in the US during 2006.  Of course, burning coal with cattle biomass, alone, will not 

reduce CO2 emissions to acceptable levels; however, as discussed by Pacala et al. 

(2004), biomass combustion can be one of many wedges of development in alternative 

technologies that can create an energy economy capable of sustaining our climate and 

our way of life.  See Figure 2.17.  Most of these technologies, such as nuclear power, 

solar energy, and bio-fuel combustion, are already well understood, but they still must be 

further implemented into our current energy production systems. 



 52

 

  

0

6

4

2

10

8

12

14

16

2000 2010 2020 2030 2040 2050 2060

Fo
ss

il 
fu

el
 e

m
is

si
on

s 
(G

tc
ar

bo
n/

yr
)

Year

Continued fossil 
fuel emissions

Stabilization 
triangles

Reductions from 
nuclear, solar, 
wind, carbon 
capture, biomass 
combustion, etc.

Projected carbon emissions 
from current trends of fossil 
fuel consumption

 
Figure 2.17 Stabilization triangles of avoided emissions and allowed emissions (adapted from 

Pacala et al., 2004) 
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Figure 2.18 CO2 emission vs. O/C and H/C ratios, with various fuels indicated (Carlin et al., 2008) 

 

Carbon emissions from a fuel are directly related to the hydrogen-carbon (H/C) 

ratio and the oxygen-carbon (O/C) ratio, as can be seen in Figure 2.18.  Note that this 
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figure shows total CO2 emission (both for renewable and non-renewable fuels).  Plotting 

CO2 emissions in this way can provide an estimation of carbon released during synthetic 

gas (e.g. methane) and value added liquid fuel (e.g. ethanol) processing.  For instance, 

CO2 released by the generation of ethanol from corn or grain through fermentation is 

indicated on Figure 2.18.  This difference of CO2 emission between corn (approximately 

the same as coal) and ethanol must be accounted for when determining carbon savings 

and footprints.  Ideally, this difference in CO2 emission should also come from a 

renewable source when generating value added liquids and gases. 

The drive for cleaner air has also caused an increased concern for control of toxic 

metal emissions from coal combustion systems.  In particular, mercury has been targeted 

for control due to its unique characteristics such as high volatility, bio-accumulation and 

other toxic properties.  To date, there are no post combustion treatments which can 

effectively capture elemental mercury vapor.  The Environmental Protection Agency 

(EPA) has released a Clean Air Mercury Rule, which caps the mercury emission from 

coal-fired power plants from a current rate of 158 tons per year to 15 tons per year by 

2018.  Elemental mercury (Hg0), due to its volatile nature, exists in vapor phase in the 

flue gases which escapes into the atmosphere without being captured in any 

environmental emission capturing devices currently available, while an oxidized form of 

mercury (Hg2+, e.g. HgCl2) can be captured in commonly used Flue Gas 

Desulphurization (FGD) units, since oxidized mercury is soluble in water.  Moreover, 

particulate mercury (Hgp), which is found in fly ash, can be captured in bag houses and 

electrostatic precipitators (ESP).  See Figure 2.19.  The objective of this aspect of the 

research is to use cattle biomass and coal/biomass blends as fuel to effectively convert 

Hg0 to its oxidized form which can be captured more easily when using traditional 

environmental devices.  The high chlorine content of CB, particularly DB, may allow 

more Hg0 to be converted to Hg2+. 
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Figure 2.19 Mercury reduction co-benefits from secondary combustion controls (adapted from Arcot 

Vijayasarathy, 2007) 
 

Yet, due to the high amount of fuel-bound nitrogen in CB fuels, it is critical to 

determine what happens to this nitrogen during combustion.  Otherwise, any reductions 

in CO2 and Hg may be overruled by higher NOx emissions.  In following sections of this 

paper, CB co-firing, reburning, and gasification experiments will be reviewed.  This 

review includes most of the work conducted at the Coal and Biomass Laboratory of 

Texas A&M University as well as limited literature review.  There will also be a brief 

review of biological gasification processes for high moisture manure. 

 

2.3. Energy Conversion Technologies 

Five different paths for energy production from manure based-biomass (MBB) 

are illustrated in Figure 2.20.  From the high moisture MBB exiting free stall barns, open 

lots, and feed yards, the remaining liquid stream from mechanical (screen) separation 

can be sent through an anaerobic digestion system, which will be referred to as Path 1.  

Anaerobic digestion allows for methane capture from natural biological decomposition 

of manure wastes.  The resulting CH4/CO2 gas mixture (usually termed biogas) can then 

be burned in gas turbines, internal combustion engines, or heat furnaces for energy 

production. 
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Figure 2.20 Five paths to heat and electrical energy production from MBB (adapted from Annamalai et 

al., 2007) 
 

The remaining manure solids from the mechanical separation can be dried, 

ground, and either gasified or fully combusted.  Path 2 in the present discussion will be 

thermal gasification of MBB either with air or air-steam mixtures to produce low to 

medium-calorific value gases which can then be utilized in a variety of different 

combustion processes.  Moreover, gasification allows the usage of coarser, higher ash, 

and higher moisture MBB solids.  Path 3 will be burning coal in a primary burn region 

and then reburning the coal with MBB in a secondary or reburn zone of an existing coal-

fired power plant.  The primary purpose of reburning is to reduce NOx emissions.  Path 4 

will be co-firing coal with MBB in the primary burn region of a coal-fired power plant.  

In Paths 3 and 4 MBB is utilized as a supplementation to coal, which can reduce the 

amount of non-renewable CO2 emissions from large coal plants; however, both of these 

applications generally require drying and fine grinding of both coal and MBB fuels.  

Finally, Path 5 is the direct firing or incineration of manure wastes on or very near the 
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farm.  The primary purpose of Path 5 is to dispose of manure while reducing the need of 

transporting large quantities of raw manure off the farm or land application of 

unprocessed solids as fertilizer.  Electrical or heat energy is an additional benefit of Path 

5 systems. 

In this section, there will first be a brief discussion of anaerobic digestion.  

Anaerobic digestion is the most commercially available energy conversion system 

involving MBB.  Investigators at Texas A&M have studied Paths 2 through 5 

extensively for research and development purposes.  Results from experimental research 

on gasification, reburning, and co-firing (Paths 2, 3, and 4, respectively) are presented in 

order to show how CB can reduce coal consumption, NOx emissions, and Hg emissions.  

The economic viability of installing a co-combustion system on an existing coal plant is 

the main topic of discussion for this dissertation, along with computational models and 

system designs for Path 5.  However, information about Paths 1 through 4 will be 

presented first. 

 

2.3.1. Biological Gasification of Manure-based Biomass 

To date, most of the research on energy conversion systems that involve high 

moisture and/or high ash animal biomass have dealt with capturing methane (CH4) or 

biogas (mixture of CH4, CO2, and other trace gases) biologically produced from 

anaerobic digesters.  The biological conversion of MBB to biogas can occur 

anaerobically (absence of oxygen) in three different steps.  First, hydrogen-producing 

acetogenic bacteria consume organic acids in the liquid manure to produce hydrogen, 

CO2, formate, and acetate.  Secondly, homoacetogenic bacteria form more acetate from 

H2, CO2, and formate.  Finally, methanogenic bacteria produce CH4.  There may be an 

initial hydrolysis step to break down lignocellulosic material, but this step is primarily 

used when digesting crop residues.  In contrast to plant or crop-based biomass, manure 

typically does not contain enough lignin to make an initial hydrolysis step cost effective 

(Probstein et al., 2006c). 
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Figure 2.21 Simplified anaerobic digestion flow diagram (adopted from Probstein et al., 2006c) 

 

Ideally all three steps should occur in separate reactors; however, as shown in 

Figure 2.21, manure is usually first sent to an equalization pond so that a mixture of 

biomass, water and nutrients can form a homogeneous substrate before entering a 

digester.  Sometimes the digester will be divided into two stages, with mechanical 

mixing occurring in the first stage, although mixing may be found not to be energy 

efficient.  Wen et al. (2007) found that treating the manure before sending it to the 

digester, and thereby increasing its organic strength, had more of an effect on biogas 

production and organic matter removal than mixing.  Plug flow reactors and completely 

mixed reactors performed very similarly when the manure was treated before entering 

the digester.  It was also found that liquid manure from storage lagoons did not produce 

as much biogas as liquid manure created from as-excreted manure plus fresh tap water 

(1:4 and 1:2, by weight, mixtures of manure and tap water were investigated).  

Reduction of total solids in the manure varied between 27 and 48% and reduction of 

volatile solids varied between 26 and 47%, with higher reductions being found for the 

1:2 mixture of excreted manure to tap water. 
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Depending on whether the desired end product is a low, medium, or high 

calorific value gas, the biogas can be upgraded by removing undesirable contaminants, 

such as hydrogen sulfide (H2S), and neutral gases, such as CO2 and water vapor.  

Generally, both of these products must be removed to various extents in order to provide 

an adequate natural gas substitute.  Hydrogen sulfide and CO2 are usually removed from 

a product gas through liquid absorption (Kohl et al., 1974).  However, if the biogas is to 

be burned in a conventional, industrial IC engine for electric power, on or very near the 

animal feeding operation (in situ), usually only particulate matter and water vapor 

removal from the raw biogas are required. 

The bacteria involved in anaerobic digestion can also be divided into the 

temperature range in which they thrive.  Psychophilic bacteria thrive at near ambient 

temperatures (25 °C or 77 °F), mesophyllic bacteria dominate at about 35 °C (95 °F) and 

thermophyllic bacteria dominate at higher temperatures of 57 °C (135 °F).  The selection 

of operating temperature determines which bacteria group will thrive, and hence also 

determines the percentage of CH4 in the biogas, the conversion rates, the residence time 

of the substrate in the digester, and the overall cost of the system (Probstein et al., 

2006c).  Typically biogas can contain between 55 to 70% CH4 and 30 to 45% CO2; 

although, there have been reports of biogases with as much as 90% CH4, even without 

upgrading (Krich et al., 2005). 

Nutrients such as nitrogen, phosphorus, and alkali metals must be present for 

anaerobic bacteria to survive, thus manure, which contains all of these, is an ideal 

feedstock for these systems.  Yet, very high ammonia (NH3) concentrations may be 

toxic.  Therefore, the carbon to nitrogen ratio in animal biomass is critical.  Dairy 

manure has a higher than average C/N ratio, approximately 20 as can be derived from 

data in Table 2.4.  Higher C/N ratios make retention times relatively short.  However, in 

batch processes, there is a limit to C/N ratio in which anaerobic digestion will stop.  

Nitrogen concentrations are usually higher in the effluent after digestion, making the 

effluent an even more valuable fertilizer (Probstein et al., 2006c), (Monnet, 2003), 

(Wen, et al., 2007). 
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The percentage of CH4 may be reasonably predicted using atom conservation 

equations for the reaction between digestible solids and H2O.  Krich et al. (2005) and 

Probstein et al. (2006c) presented this atom balance generalized as cellulose as follows: 

 ( )6 10 5 2 2 4C H O H O 3CO 3CHbacteria− − + ⎯⎯⎯→ +  (2.7) 

From this equation an ideal methane production of 0.3 kg CH4 per kg of biomass may be 

expected.  Krich et al. (2005) also conducted atom balances for wastes containing 

proteins ( 10 20 6 2C H O N , which produces a CH4:CO2 ratio of about 55:45) and fats or 

triglycerides ( 54 106 6C H O , which produces a ratio of about 70:30).  The actual CH4:CO2 

ratio produced from manure, however, depends on a number of other factors such as 

temperature in the digester, residence time, pretreatment of the substrate, etc. 

Moreover, Carlin (2005) and Annamalai et al. (2006) conducted atom balances 

from ultimate analysis of manure biomass with the following chemical balance equation: 

 2

4 2

2 ( )

4( ) 2( ) ( )

CH N O S H O

CH CO N S
h n o s H O l

bacteria
CH g CO g n s solid

N

N N

′+

′ ′⎯⎯⎯→ + +
 (2.8) 

From here, methane concentrations and higher heating values of the resultant biogas can 

be estimated in terms of the C/N and C/O ratios.  See Figure 2.22 (a) and (b).  Also, note 

that the water in these reaction equations is very small compared to the amount of water 

entering the digester.  The effluent contains nearly all of the water that was present in the 

substrate.  The remaining material in the effluent can sometimes be further processed to 

make fertilizer.  Effluent can also be recycled back to make more substrate; however, 

this recycling is limited because toxins may build up in the system and harm the methane 

producing bacteria.  The pH level of the digester should be maintained between 6.6 and 

7.6 (Probstein et al., 2006c), (Monnet, 2003), (Ghaly, 1996).  An overall mass and 

energy balance for CB digestion was presented by Probstein et al. (2006c), based on 

results found by Chen, et al. (1980), and is summarized in Table 2.11. 
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Figure 2.22 (a) Mole fraction of methane in biogas vs. H/C and O/C ratios in flushed DB (b) HHV of 

biogas vs. H/C and O/C ratios in flushed DB (adopted from Carlin, 2005) 
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Table 2.11 Material and thermal balance for anaerobic digestion of cattle manure 
(adopted from Probstein et al., 2006c) 

  Mass, kg 
Heat Content, 

MJ/kg Heat, MJ 
Heat, % of 

Total 

IN     

Cattle Manure (dry) 100† 13.4 1340 84.7 

Dilution water (10% 
solids) 900 -- -- -- 

Substrate heating‡ -- -- 157 9.9 

Mixing energy -- -- 55 3.5 

Gas scrubbing -- -- 21 1.3 

Methane compression 
(to 1 MPa) -- -- 9 0.6 

Total 1000  1582 100.0 

     

OUT     

Methane (21 m^3) 15 55.6 834 52.7 

Carbon dioxide 41 -- -- -- 

Moisture in gas§ 6 -- -- -- 

Effluent water 888 -- -- -- 

Sludge (dry) and 
losses (by difference) 50 -- 748 47.3 

Total 1000  1582 100.0 

     

     

          

†About 22 bovine-days worth 

‡Assuming 50% heat recovered from the effluent 

§Assuming gas saturated at 55 deg C and 101 kPa  

 

However, despite being the most commercial energy conversion systems for 

manure biomass, digestion systems installed on animal feeding operations are not very 

common in the United States.  There were only 41 operational systems in this country as 

of November 2007; 29 of those systems were installed on dairy farms, 10 were installed 

on swine farms, one on a duck farm and one on a chicken farm (USEPA, 2007b).  

However, near Stephenville, Texas, the largest manure-to-natural gas plant in the United 

834 100 53%
1582

Thermal efficiency = ∗ =
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States has recently been completed.  The plant obtains manure from local dairies in Erath 

County and mixes it with restaurant grease and other wastes to produce biogas.  The 

biogas is then upgraded to industry standards as a natural gas replacement fuel.  It is 

expected that the natural gas from this plant can produce enough energy to power 11,000 

homes (Associated Press, 2007). 

Goodrich et al. (2005) studied the overall biogas production and economics of a 

digester system installed on an 800-cow dairy in Princeton, Minnesota.  In this example, 

the dairy profited greatly from the production of biogas, using it to meet most of the 

electrical energy needs of the farm and either selling unused electricity to the utility or 

flaring excess biogas produced in the digester that cannot be consumed by the engine.  

Goodrich et al. (2005) do admit that most dairies may not be able to profit on the 

installation of an anaerobic digester, as the installation and operation & maintenance 

costs may be too overwhelming and feasibility is very “site specific.”  Long operation 

times and biodegradable bedding (instead of sand) are also necessities to make manure 

digesters profitable.  However, some digesters are not installed to obtain an economic 

profit.  Rather, they are installed to control odors and to reduce pathogens from manure 

storage.  Relatively inexpensive digesters can be installed by simply covering a storage 

lagoon with a tarp and placing a flare to burn the biogas.  With these systems, no 

economic return is expected from electricity sales; although small boilers may be 

installed with the flare to provide heat to buildings at or near the farm.  The USEPA 

(2007b) also provides estimated installation costs for all current, on-the-farm operating 

systems, which vary from $15,000 to $1.4 million, depending on what kind of digester is 

installed and whether or not an engine-generator set is purchased along with the digester. 

Further discussions of biological energy conversion of manure-based biomass 

solids can be found in the literature.  These include, but are not limited to:  Meyer 

(2003), who discussed a digester on a 700-cow dairy in Iowa; Chang (2004), who 

compared the efficiencies and sustainability of anaerobic digesters to non-biological, 

thermal gasification; Simons et al. (2003), who reviewed some of the initiatives for 

digester installations in California; Ghaly (1996), who compared the anaerobic digestion 
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of cheese whey and dairy manure in a two-stage reactor; and Monnet (2003), who 

provides a general review of digester types and operating conditions. 

 

2.3.2. Thermal Gasification of Manure-based Biomass 

Extensive literature exists on technologies used to gasify coals.  These systems 

are very briefly summarized by Hotchkiss (2003), including fixed-bed, fluidized bed, 

and entrained gasifiers.  More detailed discussions of coal gasification are also available 

by Howard-Smith (1976), Nowacki (1981), and Probstein et al. (2006b).  Moreover, a 

review of common gasification technologies for wood and crop-based biomass is 

provided by Quaak et al. (1999). 

However, there have been limited studies on non-biological, thermal gasification 

of high moisture, high ash manure biomass.  An advanced gasification system discussed 

by Young et al. (2003) proposed the use of separated DB solids pressed to 70% moisture 

from an auger press in a high temperature, air blown gasifier to produce synthetic gas.  

Gasification conversion efficiencies were estimated to range between 65 and 81%, and 

the gasification temperature was assumed to be about 1300 °C (2370 °F).  The product 

gas composition was found to be approximately 30.2% (molar) CO, 5.5% CO2, 25.7% 

H2, and 38.6% N2, with a heating value of 7,140 kJ/kg (3,076 Btu/lb).  The gas could 

then be fired in an internal combustion engine to generate electrical power.  The dairy 

would be able to produce twice its electrical energy requirement from the synthetic gas.   

Experiments are being performed by investigators at Texas A&M University on 

gasification of coal and CB.  Furthermore, modeling results on gasification of FB with 

air and air-steam mixtures as oxidizing agents have also been generated (Sami et al., 

2001), (Priyadarsan et al., 2005a), (Gordillo, 2008). 

There has also been extensive work and application on thermal gasification of 

CB in fluidized bed combustors.  Sweeten et al. (1986) conducted several experiments 

on a 0.305 m (1.0 ft) diameter pilot plant fluidized bed combustor.  It was found that 

when bed and vapor space temperatures exceeded 788 °C and 927 °C (1450 °F and 1700 

°F), respectively, severe ash agglomeration and plugging occurred in the vapor space 
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transition duct and hot cyclone.  However, ash agglomeration, plugging and slagging 

could be avoided if the combustor was operated on a re-circulating bed mode, which 

lowered vapor space temperature to 649 °C (1200 °F).  Annamalai et al. (1987a) found 

that on a 0.15 m (0.5 ft) diameter fluidized bed combustor with bed temperatures ranging 

from 600 °C to 800 °C (1112 °F to 1472 °F), gasification efficiencies ranged from 90 to 

98% and combustion efficiencies ranged from 45 to 85%.  Moreover, Raman et al. 

(1981b) developed a mathematical model to describe FB gasification in fluidized bed 

combustors.  It was assumed that initial volatilization of the biomass fuel was nearly 

instantaneous and only secondary reactions including char gasification and water-gas 

shift reaction were modeled.  The resulting calculations suggested that the water-gas 

shift reaction was the most dominant reaction.  However, when comparing 

computational results to experimental data, it was found that reactions involving 

volatiles from devolatilization (pyrolysis) should be included. 

The applications of CB gasification have proven to be beneficial as a renewable 

source of energy.  For example, Panda Ethanol, Inc., based out of Dallas, Texas, has 

recently completed a bubbling fluidized bed gasification plant near Hereford, Texas, 

which will convert FB from local feedlot operations to synthetic gas.  The gases can then 

be burned in a combustor to produce steam, which is necessary to process corn into 

ethanol.  See Figure 2.23 for an overview of this system.  A by-product of the ethanol 

production process is wet-distiller grains and solubles (WDGS), which can be used as an 

additive in cattle feed ration.  The bubbling sand bed is operated at low temperatures to 

avoid ash agglomeration and fouling (Panda Ethanol, 2007).  The disposal of ash from 

manure gasification has proven to be one of the more challenging aspects because unlike 

ash from coal combustion, manure ash is not suitable as a replacement for Portland 

cement or as aggregate in Portland cement concrete.  However, there are alternative uses 

for manure ash such as road base, flowable fills, and soil amendments (Megel et al., 

2007). 
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Figure 2.23 Cattle manure gasification for corn ethanol production (Panda Energy, 2007) 

 

Recent experimentation at the Texas A&M University Coal and Biomass 

Laboratory has concentrated on fixed-bed gasification of MBB, which may be 

particularly suitable for small-scale energy conversion operations, because fixed-bed 

gasifiers have a high thermal efficiency and require little pre-treatment of the solids 

before gasification (Hobbs et al., 1992).  For fixed bed gasification, the products from 

thermal gasification are emitted at different zones in the gasifier’s chamber.  The 

different zones that the CB, or any solid fuel, encounters during the gasification process, 

as well as the main expected product gas species from coal and biomass gasification, are 

listed in Figure 2.24.  In the drying zone, with temperatures of 25 – 130 °C (78 – 265 

°F), the fuel’s moisture is vaporized.  In the pyrolysis section, 130 – 330 °C (265 – 630 

°F), the fuel is broken down into volatile gases and solid char.  The char, carbon dioxide, 

and water vapor undergo reactions in the reduction zone in which carbon monoxide 

(CO) and hydrogen (H2) are produced.  The remaining char is burned in the oxidation 

zone providing heat, carbon dioxide, and water vapor for the reduction zone.  Reduction 
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and oxidation zones generally occur at temperatures of 330 – 1050 °C (630 – 1920 °F) 

(Gordillo et al., 2008). 
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Figure 2.24 Different zones in an updraft, fixed-bed gasifier (adapted from Priyadarsan et al., 2005b) 

 

Gasification experiments were conducted and discussed by Priyadarsan (2002), 

Priyadarsan et al. (2005a), Priyadarsan et al. (2005b), and Priyadarsan et al. (2005c).  In 

these experiments FB, chicken litter biomass (LB), blends of LB with FB, and blends of 

LB and FB with coal were each used as fuel for an updraft, fixed-bed gasifier.  The 

experiments were performed on a 10 kW (30,000 Btu/hr) counter-current fixed bed 

gasifier using air as the oxidizing agent.  The experimental setup in Figure 2.25 is similar 

to that used by Priyadarsan et al., except that steam is added to the reactant air in current 

experiments.  The grate has also been fitted with a linear vibrator so that ash can be 

continuously removed from the gasifier, thus allowing for uninterrupted operation and 

constant location of the peak temperature of the bed. 
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Figure 2.25 Schematic of 10 kW (30,000 Btu/hr) fixed-bed counter flow gasifier (Gordillo et al., 2008) 

 

Figure 2.26 shows the species compositions measured at different distances over 

the grate, and the bed temperature profile from FB gasification experiments obtained by 

Priyadarsan (2002) in a study of fixed gasification at normal pressure.  Here, results for 

experiments performed at 45 SCFM (76.5 m3/hr) are presented.  The figure shows that 

the maximum production of CO (31%) is reached at half an inch (12.7 mm) above the 

grate and starts to stabilize through the grate at about 27%.  On the other hand, the H2, 

CO2, and CH4 concentrations increase continuously, indicating the presence of pyrolysis 

throughout the bed.  However, the increased rate of the production of CO2 and H2 is 

higher than the production of CH4.  Also, the experimental results show that the 

maximum production of H2 (8%) and CO2 (10%) are reached at the top of the bed 

(7 inch, 178 mm).  Beyond two and a quarter inches (57 mm) above the grate, there is a 

rapid increase in the production of H2 and CO2 marking the drying and devolatilization 

zone in the bed.  It should be noted that, although there seems to be devolatilization 

taking place over the entire bed, the oxidation and gasification reaction’s maximum 

contribution to the product gas species is near the base of the bed.  The bed temperature 

data curve shows a peak at two and a quarter inches (57 mm) indicating that, before this 

point, oxidation and gasification occur and after this point, drying and devolatilization 

processes occur.  Typically, the gas composition data is correlated with the peak 

temperature in fixed bed gasification.  Additional information on animal biomass 
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gasification and co-gasification of animal biomass fuels with coals can be found by 

Priyadarsan et al. (2005b) and Priyadarsan et al. (2005c). 

 

  

 
Figure 2.26 Gas species profiles for FB at air flow rate of 45 SCFH (adopted from Priyadarsan, 2002) 
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Figure 2.27 Experimental bed-temperature profile for DB at a time interval of 140 minutes with 
equivalence ratio of 1.8 and ASR of 0.38 (Carlin et al., 2008) 

 

Experiments on the gasification of CB with air and air-steam mixtures as 

oxidizing agents are currently underway.  In Figure 2.27, a temperature profile of a DB 

gasification experiment with equivalence ratio (ER) of 1.8 and air steam ratio (ASR) of 
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0.38 is presented.  The peak temperature of 860 °C occurs near the grate.  More 

discussion of these experiments may be found in a paper by Gordillo et al. (2008). 

One other form of gasification that can possibly be an energy conversion process 

for MBB, particularly high moisture MBB, is high-pressure catalytic gasification.  A 

patent by Elliot et al. (1997) describes the process as:  maintaining a liquid organic 

mixture and an effective amount of metal catalyst (ruthenium, rhodium, osmium, 

iridium, or mixtures thereof) in a pressure reactor at 300 – 450°C and at least 130 

atmospheres for an effective amount of time to produce a gas consisting of methane, 

carbon dioxide and hydrogen.  Water is the only oxidizer.  The process is basically steam 

reforming, and Elliot et al. (2004) reported that the percentage of carbon recovered as 

gas was close to 100% for most of the bench-scale test experiments performed.  The 

percentage of methane in the product gas varied between 52 and 61% (by volume). 

Ro et al. (2007) continued work on wet catalytic gasification on animal manure 

and municipal wastes by conducting overall energy balances and economic analyses.  A 

high efficiency heat recovery system would be needed in order for wet gasification of 

municipal solid wastes and feedlot manure from unpaved lots (i.e. high-ash feedlot 

manure) to generate positive energy returns.  High sulfur contents in the feedstock can 

cause poisoning and decrease the life of the catalysts.  Partly due to the catalyst and 

pretreatment of feedstock, wet catalytic gasification was found to be considerably more 

expensive than anaerobic lagoon gasification. 

 

2.3.3. Co-firing Coal and Manure-based Biomass in Primary Burn Zones 

Cattle biomass can also be used as a fuel by mixing it with coal and firing it in 

the primary burn zone of an existing coal suspension fired combustion system.  This 

technique is known as co-firing.  The high temperatures produced by the coal allow the 

biomass to be completely burned.  Previous work concerned with co-firing FB with coal 

may be found in papers by Annamalai et al. (2007), Sweeten et al. (2003), Frazzitta et 

al. (1999), Arumugam et al. (2005), Annamalai et al. (2003a), and Annamalai et al. 

(2003b).  Di Nola (2007) conducted co-firing experiments for coal-chicken litter 
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biomass blends.  Most co-firing experimental results obtained when using coal and 

finely ground CB seem to indicate that NOx emissions did not increase and sometimes 

even decreased when co-firing coal and animal biomass. 

Co-firing experiments have been conducted with two primary objectives:  (1) to 

access the feasibility of using CB to reduce NOx and (2) to measure the mercury 

emissions when co-firing coal with CB.  Co-firing experiments at Texas A&M were 

conducted using a 30 kWth (100,000 Btu/hr, approximately 15 lb or 6.80 kg of coal/hr) 

small scale furnace capable of firing most types of ground fuels. 

 

  

 
Figure 2.28 Schematic of small-scale 30 kW (100,000 Btu/hr) co-firing experimental setup 

 

A schematic of the furnace used at Texas A&M is shown in Figure 2.28.  The 

combustion air was split between primary (~20%) and secondary (~80%) air.  Primary 

air was necessary to propel the solid fuel through the fuel line and into the furnace.  A 

blower provided the secondary air.  Before being injected into the furnace, the air passed 
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through a pre-heater to heat the air to approximately 150 °C (300 °F).  Propane and 

natural gas were used to heat the furnace to the operating temperature of 1100 °C 

(2000 °F).  Type-K thermocouples were present along the axial length of the furnace.  

These thermocouples provided a detailed profile of the temperature of the furnace 

throughout the combustion zone.  A solid fuel hopper fed coal and coal/biomass blends 

during experiments.  Solid fuel exited the solid fuel line as a finely ground powder 

lightly dispersed in the primary air stream.  Combustion gas compositions were 

measured using an E-Instruments 8000 Flue Gas Analyzer.  The instrument measured 

the dry volume percentages of CO, CO2, O2, SO2, NO, NO2, and combined NOx.  

Another method for detecting NOx with laser sensors is discussed by Thomas et al. 

(2006).  At the furnace’s final port, a probe was used to sample the flue gases.  Just after 

the final port, exhaust gases passed through a water cooling spray to significantly lower 

the temperature of the gases.  The water was pumped out of the furnace by a sump 

pump.  More details are provided by Annamalai et al. (2007), Annamalai et al. (2003a), 

and Annamalai et al. (2003b).  A study on fouling during co-firing may be found by 

Annamalai et al. (2003c). 

Results from the study by Annamalai et al. (2003b) are shown in Figure 2.29.  

These co-firing experiments were conducted on the same boiler described above.  The 

figure shows that even for fuel lean (excess oxygen) conditions, NOx emissions for a 

90:10 coal to FB blend were lower than those for burning pure coal.  However, similar 

experiments conducted by Arumugam et al. (2005) (Figure 2.30) seem to suggest that 

lower NOx emissions are not seen until 20% (by mass) biomass is blended with coal.  

Residence time, fuel particle size, and other factors may have caused the slight 

difference between the two results. 
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Figure 2.29 NO emission from coal and 90:10 coal-FB blends (adopted from Annamalai et al., 2003b) 
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Figure 2.30 NO emission for coal, 90:10, and 80:20 blends of coal and FB vs. equivalence ratio (adapted 

from Arumugam et al., 2005) 
 

Experiments at the Texas A&M Coal and Biomass Laboratory continue the work 

begun by Annamalai et al.  Experiments in which pure Wyoming Powder River Basin 

coal, Texas Lignite coal, and blends of each coal with partially composted separated DB 

solids were burned have been conducted.  Each coal was blended in 95:5, 90:10, and 
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80:20 (by mass) blends with DB.  Experiments were performed for equivalence ratios of 

0.8, 0.9, 1.0 (stoichiometric), 1.1, and 1.2.  The results of these experiments may be 

found in a thesis by Lawrence (2007). 

In principle, it is difficult to hypothesize whether or not NOx emissions, 

particularly during lean (low ER) combustion, will be lower for coal-CB blends.  Since 

CB has more fuel-bound nitrogen, one may conclude that more NOx would be formed if 

oxygen is available.  However, since CB has a higher volatile content that is released 

quicker than the volatiles in coal, the oxygen might react more quickly to the nitrogen in 

the volatile matter, creating local fuel rich areas where NO reduction can take place, 

even during an overall lean combustion process.  This reduction would be intensified if 

the fuel N in the CB was released as NH3.  Moreover, the size of the FB particles is 

significant.  Smaller FB particles can release volatile matter during combustion more 

quickly than larger particles.  In both studies by Annamalai et al. (2003b) and 

Arumugam et al. (2005), the fuels were ground to similar sizes.  Seventy percent of the 

FB particles in each study passed through a 170 µm sieve. 

The manure contains two forms of nitrogen (N):  (1) Less stable inorganic 

(ammonium) N present as urea in urine (50% of total N) and (2) more stable organic N 

present in the feces, which is released more slowly (USDA et al., 2007).  The organic N 

is a mixture of proteins, peptides, etc. of undigested feed.  While the N slightly decreases 

during composting, the heat value decreases much faster and as such N per GJ increases 

with composting (Sweeten et al., 2003) since the stable organic N decomposes very 

slowly.  Thus it is hypothesized that more stable N is released at high temperatures.  

However, no measurements have yet been published to determine nitrogen percentage 

released as NH3, HCN and other forms when co-firing coal with CB. 

One other way to investigate NOx emissions from coal-CB blends is to compute 

the fuel nitrogen conversion efficiency to NOx.  The fuel nitrogen converted to NOx can 

be estimated with the following equation: 

 
2

( / ) NO
CONV

CO CO

c n XN
X X

∗
=

+
 (2.9) 
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where c/n is the ratio of fuel carbon to fuel nitrogen, XNO is the mole fraction of NO, 

2COX  is the mole fraction of CO2 and XCO is the mole fraction of CO in the combustion 

products.  The results for N conversion efficiency for coal, 90:10, and 80:20 blends of 

coal and FB can be found in Figure 2.31.  In general, N conversion efficiency to NOx 

was lowest for the 80:20 blend of coal and FB.  However, conversion efficiency for 

90:10 blends was higher than pure coal combustion except for leaner combustion at 

equivalence ratio of 0.87.  Yet for all operating conditions, the conversion efficiency of 

fuel-N to NOx was never significantly higher than efficiencies found when burning pure 

coal.  The greatest difference between pure coal combustion and 90:10 combustion was 

only a 3% increase seen at ER of 0.95.  These results, at least ease some concern over 

producing significantly more NOx when blending FB (a higher nitrogen containing fuel) 

with coal.  In fact, the 80:20 results imply that if FB had a similar nitrogen content to 

that of coal, it may produce less NOx than pure coal.  For more discussion on fuel 

nitrogen conversion efficiency please refer to work by Annamalai et al. (2003b) and 

Lawrence (2007). 
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Figure 2.31 Fuel nitrogen conversion efficiency to fuel NOx for coal, 90:10, and 80:20 blends of coal and 

FB (computed by Carlin et al., 2008 from data found by Arumugam et al., 2005) 
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During the recent co-firing experiments with Wyoming sub-bituminous coal-FB 

blends, mercury measurements were also taken.  Elemental Mercury measurements were 

taken using a Mercury Instrument VM 3000 based on the cold vapor atomic absorption 

principle.  The oxidized mercury was measured using the wet chemistry method.  To 

better understand the speciation of mercury compounds, this wet chemistry based flue 

gas conditioning system was developed which is based on a modified Ontario Hydro 

Method for online detection.  The results presented in Figure 2.32 are promising, as they 

indicate greater reductions of elemental Hg when more DB is blended with both Texas 

lignite and Wyoming sub-bituminous.  For a full discussion of mercury emissions during 

co-firing experiments, please refer to a thesis by Arcot Vijayasarathy (2007). 
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Figure 2.32 Elemental Hg reductions while co-firing coal with cattle biomass (adopted from Arcot 

Vijayasarathy, 2007) 
 

2.3.4. Reburning Coal with Manure-based Biomass 

During co-firing experiments NOx was reduced slightly when coal was co-fired 

with FB at many operating conditions, possibly due to significant release of fuel-bound 

nitrogen in the form of NH3.  Therefore, experiments have also been performed to 

determine FB’s effectiveness as a reburn fuel for NOx reduction in coal fired power 
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plants.  The basic reburn technology in coal-fired plants uses two separated combustion 

zones:  the primary combustion zone where primary fuel is fired (e.g. coal) and the 

reburn combustion zone where the additional fuel (typically natural gas) is fired in order 

to reduce NOx produced in the main burner.  In the primary zone, coal is fired under 

normal to low excess air conditions with 70 to 90% of the total heat input, whereas in the 

reburn zone, the reburn fuel along with the products of combustion from the primary 

zone are burned with a deficient amount of air. 

In the case of natural gas reburn fuels that do not contain fuel-bound nitrogen, 10 

to 30% less NOx is produced simply because 10 to 30% (by heat) of the primary coal 

fuel is displaced by the reburn fuel.  Moreover, in the reburn zone, while operating in a 

fuel-rich regime, the natural gas molecules break down to hydrocarbon fragments which 

react with NOx to form hydrogen cyanide (HCN) and NH3.  These nitrogen compounds 

then react with other nitrogen-containing species to form N2.  Similar processes also 

occur when reburning with nitrogen containing fuels such as coal, oil, and biomass.  See 

Figure 2.33 for a general illustration of the reburning process.  The optimal equivalence 

ratio (ER) in the reburn zone is 1.18 to 1.05 (stoichiometric ratio of 0.85 to 0.95, 

respectively) (DOE, 1999).  The reburn fuel produces 10 to 30% of the total heat input.  

Over fire air (OFA) is typically used downstream of the reburn zone to create a burnout 

zone for complete combustion.   
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Figure 2.33 Simplified schematic of the reburn process 

 

Nitrogen oxide (NOx) reduction while reburning with OFA using a down-fired 

pilot-scale (300 kW) combustion facility was examined for the effect of metal-

containing compounds by Lissianski et al. (2001).  Natural gas was used as the main fuel 

and the reburn fuel.  Metal-containing compounds such as sodium carbonate, potassium 

carbonate, calcium acetate, and fly ash were injected with the main fuel or the reburn 

fuel.  Reburning resulted in a 50% reduction of SO2.  The baseline NOx level was 600 

ppm.  Reburning with natural gas alone provided a 66% NOx reduction, while injection 

of 100 ppm of the metal compounds provided a 4 – 7% additional reduction in NOx. 

Yang et al. (1997) investigated NO reduction when coal was reburned with more 

coal in the reburn zone.  Eight different bituminous coals were used as reburn fuel.  A 

maximum NOx reduction of 65% was found, as well as an optimum residence time of 

450 ms.  Base NOx levels of 600 ppm from the primary burn zone were simulated by 

burning a mixture of propane and NH3.  Reburn zone stoichiometry and the volatile 

matter content of the reburn fuel were found to influence the reburn performance the 

most.  However, fuel nitrogen content of the reburn fuel was found not to be as 
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important as most of the other operating conditions of the experiments.  Yet the nitrogen 

content of the reburn fuel may become significant in cases where the NO concentration 

from the primary zone is very low, such as cases when low-NOx burners and air staging 

are installed.  Yang et al. (1997) suggests that at some point (about 150-170 ppm) NO-

forming mechanisms overtake NO-reducing reactions, causing a net increase in NOx.  

This places a limitation on the practicality of reburning with nitrogen containing fuels 

such as coal, oil and MBB. 

Table 2.12 is a summary of various reburn experiments and existing systems and 

their bottom line NOx reduction performances.  Some descriptions of the experimental 

parameters are also indicated; however, please refer to each source for a full explanation 

of the tested systems. 
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Table 2.12 Reburn systems and experimental results with various reburn fuels 

Primary 
Fuel Reburn Fuel 

NOx Reduction 
Results Source Comments 

Coal Straw, miscanthus 
(type of grass), 
natural gas, and 

wood 

Measured NOx 
levels between 125 

to 150 ppm 

Rudiger et al. 
(1996) 

300 kWth total heat input.  Reduction 
zone residence time varied from 1.0 

to 1.6 seconds.  Under same 
conditions coal reburning only 

achieved a NOx level of 250 ppm. 

Coal Pyrolysis gases 
from coal and 

miscanthus (with 
and without tars) 

Measured NOx 
levels as low as 

100 ppm 

Rudiger et al. 
(1997) 

Best results were from coal pyrolysis 
gases with tars produced at 800 °C.  

Gas composition, stoichiometry, and 
residence time in the reburn zone all 
influenced the NOx reduction results. 

Propane + 
NH3 

8 different 
bituminous coals 

Up to a 65% 
reduction from a 
base level of 600 

ppm 

Yang et al. 
(1997) 

NH3 in primary fuel is used to 
simulate base NOx level.  Reburn 

fraction was varied between 10 and 
35%.  Reburn stoichiometry was 

found to be the most significant factor 
for NOx reduction.  Optimum reburn 
zone residence time was found to be 

450 ms.  Smaller particles with higher 
volatile matter improve reduction. 

Natural 
gas and 

coal 

Fir lumber wood 
waste, coal, coal 

pond fines, 
carbonized refuse 

derived fuel, 
orimulsion 

(bitumen-based 
fuel) 

Up to 70% 
reduction from 
basic reburning 

(20% heat input), 
85 to 95% 

reduction from 
advanced 

reburning (10% 
heat input) 

Maly et al. 
(1999) 

Base NOx levels were varied between 
200 and 1300 ppm.  Fuel N content, 

volatile content, and ash content 
significantly affected reductions.  
Most effective promoters during 

advanced reburning were alkalis, such 
as sodium compounds. 

Coal Coal and 
micronized coal 

25 to 55% 
reduction 

DOE (1999), 
Srivastava et al. 

(2005) 

Survey of coal reburning applications 
on US coal-fired boilers.  Four 

applications in total.  Three 
applications were still operational as 

of 2005. 

Coal Natural gas 40 to 68% 
reduction 

DOE (1999), 
Srivastava et al. 

(2005) 

Survey of gas reburn applications on 
US coal-fired boilers.  22 operations 
in total.  All operations, as of 2005, 

were decommissioned or not 
operating, except for one application 
at the Somerset plant in New York 

that also had a selective non-catalytic 
reduction system. 
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Primary 
Fuel Reburn Fuel 

NOx Reduction 
Results Source Comments 

Natural 
gas and 
Illinois 

and Ohio 
coals 

Natural gas, coal, 
furniture waste, 

willow wood and 
walnut shells 

60% reduction 
from gas and 

biomass reburning, 
50% reduction 

from coal 
reburning 

Zamansky et al. 
(2000) 

Base NOx levels were varied from 
400 to 900 ppm.  Fibrous willow 

wood was the most difficult biomass 
fuel to prepare for combustion.  
Economics was also discussed. 

Natural 
gas and 
Illinois 

and Ohio 
coals 

Advanced 
reburning with 
above fuels and 
nitrogen agent 

injection 

83 to 90% 
reductions 

Zamansky et al. 
(2000) 

Three advanced reburn technologies 
tested:  injection of nitrogen agent 

with over fire air, injection of 
nitrogen agent in rich reburn zone, 

and SNCR reagent injected 
downstream of over fire air. 

Natural 
Gas+NH3 

Natural Gas 66% reduction 
from a base level 

of 600 ppm 

Lissianski et al. 
(2001) 

Reburn fuel was 25% of total heat 
rate.  NH3 in primary fuel is used to 

simulate base NOx level. 

Natural 
Gas+NH3 

Natural Gas+100 
ppm Na, K, or Ca 

70 - 73% reduction 
from base level of 

600 ppm 

Lissianski et al. 
(2001) 

Reburn fuel was 25% of total heat 
rate.  15 - 20% reduction when Ca 
injected alone without natural gas. 

Propane + 
NH3 

Coal, feedlot cattle 
manure biomass, 
90:10 and 50:50 

blends of coal and 
biomass 

Up to a 40% 
reduction with 
coal, up to 80% 
reduction with 

pure biomass from 
a base level of 600 

ppm 

Annamalai et al. 
(2001, 2005) 

It was speculated that most of the 
nitrogen in FB exists as NH3, and 
volatile matter of FB (little fixed 
carbon) is twice that of coal and 

hence FB serves as a better reburn 
fuel in controlling the NOx emissions. 

Natural 
gas+NH3 

Low-nitrogen 
switch grass and 

high-nitrogen 
alfalfa 

Up to 70% 
reduction from a 
base level of 500 

ppm 

Sweterlitsch et 
al. (2002) 

Initial O2 percentage varied between 
1 and 6% and reburn fraction varied 
from 0 to 23% (heat).  Two reburn 

fuel carrier gases were investigated:  
N2 and steam. 

Propane + 
NH3 

Coal, feedlot cattle 
manure biomass, 
90:10 and 50:50 

blends of coal and 
biomass 

Up to 14% 
reduction with 

coal, up to a 62% 
reduction with 

pure biomass from 
a base level of 600 

ppm 

Arumugam 
(2004) 

Equivalence ratio varied from 1.0 to 
1.2.  Circular jet and flat spray nozzel 

injectors were used. 

 

 

Table 2.12, continued 
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A study by Annamalai et al. (2001, 2005) showed that 80% NOx reductions were 

possible when reburning with pure FB.  See Figure 2.34.  Again, base NOx levels from 

the primary zone were about 600 ppm.  Greater reductions were seen with higher (more 

fuel rich) equivalence ratios, except for pure FB reburning which did not vary as 

significantly with ER.  The reductions from pure FB reburn fuels were found to be 

greater than those for coal reburning or reburning with blends of coal and FB. 

 

  

 
Figure 2.34 NO reduction percentage with coal, feedlot biomass and blends of coal and FB from a base 

level of 600 ppm NO (adopted from Annamalai et al., 2001 and Annamalai et al., 2005) 
 

The small scale facility used for on-going reburn experiments at the Texas A&M 

University Coal and Biomass Laboratory is discussed in detail by Annamalai et al. 

(2001).  The small-scale facility has a capacity of 30 kWth (100,000 Btu/hr).  The 

facility, illustrated in Figure 2.35, also simulated primary NOx levels by burning a 

mixture of propane and NH3.  Pulverized reburn fuels were injected into the reburn zone 

through a hopper.  Temperature distribution along the boiler was measured, as were 

emissions.  Results for reburning with Texas Lignite (TXL) coal and Wyoming coal 

were used as a base case for subsequent experiments involving biomass.  NOx emissions 
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from reburning with pure TXL, TXL:low-ash partially composted FB blends, TXL:high 

ash partially composted FB blends, pure WY coal, and WY coal:low ash partially 

composted FB blends were obtained.  Some of these results are presented in Figure 2.36.  

Experiments with pure high ash partially composted FB were not performed due to 

severe amounts of slag built up in the area near the reburn injectors in the furnace.  A 

study by Oh et al. (2007) investigated ash fouling from reburning with CB.  The level of 

NOx emissions in the exhaust decreased with increased equivalence ratio and CO 

percentage in the exhaust gases.  With increased equivalence ratio, the oxygen in the 

combustion zone was depleted quickly and hence more CO was formed.  Low levels of 

oxygen slowed down the NO formation reaction and allowed the NO reduction reaction 

to be dominant in the combustion zone.  Studies by Annamalai et al. (2001, 2005) and 

Arumugam (2004) found that one of the greatest influences on NOx emission levels was 

equivalence ratio in the reburn zone.  Greater NOx reduction from cattle biomass fuels 

compared to lignite is clearly shown in Figure 2.36, but at the expense of higher CO 

emissions.  Greater amounts of burn-out air injected after the reburn zone will be 

required when reburning with CB. 
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Figure 2.35 Schematic of small-scale 30 kW (100,000 Btu/hr) coal reburn facility 
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Figure 2.36 NOx vs. CO for two reburn fuels from a base NOx level of 340 g/GJ (0.79 lb/MMBtu) 
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Figure 2.37 Numerical simulation of Hg oxidation from reburning coal with various fuels (adopted from 

Colmegna, et al., 2007) 
 

With a longer residence and reaction time, more NOx reduction is possible.  The 

estimation of the mixing time for the lateral injection was 0.32 seconds when a linear 

mixing model was used with a mixing length of 30.48 cm (12 in).  The vitiated air 

reduced oxygen concentration by dilution while better mixing reduced oxygen 

concentration by mixing with the main combustion stream.  Better mixing also caused 

the fuel to combust faster and thus reduced the oxygen levels.  The reduced oxygen 

levels inhibited NOx formation mechanisms. 

Oxidized mercury (Hg2+) measurements for CB reburning have not yet been 

conducted on the small-scale experiments discussed above.  However, Hg2+ emissions 

were numerically simulated by Colmegna et al. (2007).  The simulation accounted for 

the high amounts of Cl in cattle biomass, allowing for very high mercury oxidation.  

This may be seen in Figure 2.37, which is a plot of oxidized mercury percentage of total 

mercury emitted during combustion.  Similar oxidation was also predicted for coal-CB 

blended reburn fuels.  It can be deduced that CB helps the oxidation of mercury, which 



 85

in turn, signifies that mercury can be captured more effectively at the exhaust by flue gas 

desulphurization-type environmental controls. 

 

2.4. Competing NOx Control Technologies 

Perhaps the most promising application of MBB in coal-fired power plants is 

reburning.  Experiments have shown that reburning coal with MBB can reduce NOx 

emissions by over 90%, which rivals the most effective commercially available NOx 

reduction technologies.  However, in the United States, there are not many potential 

reburn applications at coal-fired power plants.  According to the National Electric 

Energy Data System of the USEPA (2007a), of the over 1300 coal steam units existing 

in the US or recently approved for construction, 70% of them utilize some type of low-

NOx burner, over fire air, or other primary NOx control technology to reduce NOx.  The 

NOx levels achieved by these primary controllers are usually low enough to meet current 

emissions standards, plus the NOx levels are usually so low that reburning with nitrogen 

containing fuels, such as MBB, becomes impractical.  Of the roughly 400 coal steam 

units that do not have primary NOx controllers, 68 of them are fluidized-bed combustors 

that can achieve emission standards without any primary NOx controls.  Ten of these 

fluidized-bed combustors also use selective non-catalytic reduction (SNCR) systems to 

reduce NOx after combustion.  Another 25 coal steam units without primary NOx 

controllers have selective catalytic reduction (SCR) systems, which essentially 

eliminates the need for other NOx control technologies.  Seven other coal steam units 

without primary controllers utilize SNCR.  Therefore, of the 1300 coal steam units, only 

about 22% can potentially utilize a reburn system with a nitrogen containing fuel like 

MBB, because they do not have primary or secondary NOx controllers and are not 

fluidized-beds. 

According to Srivastava et al. (2005), 29 US coal-fired boilers have utilized 

reburn technology since 1988.  As of 2003, only four of these reburn systems were still 

operating.  Most had been decommissioned because natural gas was used as the reburn 

fuel, and prices of natural gas had become too high to justify continued operation of the 
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reburn systems.  Other reburn systems were only demonstration projects that were not 

continued as part of the regular operation of the power plants.  In this section, competing 

NOx control technologies such low-NOx burners, SCR, and SNCR will be discussed. 

 

2.4.1. Primary NOx Controls 

The primary NOx controls on coal-fired power plants typically consist of either 

low-NOx burners, over fire air (OFA), or a combination of both.  These controls are 

widely used in coal-fired plants throughout the US.  The more common primary control 

technologies and their NOx reduction efficiencies are listed in Table 2.13.  Low-NOx 

burners delay the complete mixing of fuel and air as long as possible in order to reduce 

oxygen in the primary flame zone, reduce flame temperature, and reduce residence time 

at peak temperatures.  An illustration of the slower air and fuel mixing in low-NOx 

burners may be seen in Figure 2.38.  The effectiveness of a LNB depends on several 

factors such as the properties of the coal and the size of the furnace.  Higher rank coals, 

that do not have high volatile matter and nitrogen contents, do not inhibit NOx formation 

in local fuel-rich environments as well as low rank coals.  Long flames from the LNB 

may impinge on furnace walls (Srivastava et al, 2005). 
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Table 2.13 NOx reduction performance of primary control technology applications on coal-fired boilers 
(adopted from Srivastava et al., 2005) 

Boiler 
Type* Coal Type 

Primary 
Control 
Technology 

2003 Average 
Controlled NOx 
Emission (g/GJ) 

Average NOx 
Reduction 
Efficiency from 
1995 Levels (%) 

Range of NOx 
Reduction 
Efficiencies 
(%) 

Number 
of Boilers 

Wall-fired Bituminous LNB 177 39.2 8.6-70.1 62 

Wall-fired Bituminous LNBO 151 53.3 32.7-71.9 16 

Wall-fired 
Sub-
bituminous LNB 121 45.5 19.4-80.3 16 

Wall-fired 
Sub-
bituminous LNBO 60 63.4 40.0-80.9 4 

Tangential
-fired Bituminous LNC1 168 35.0 17.2-65.4 26 

Tangential
-fired Bituminous LNC2 134 36.6 23.3-70.8 15 

Tangential
-fired Bituminous LNC3 108 54.9 38.1-72.2 19 

Tangential
-fired 

Sub-
bituminous LNC1 90 45.4 11.3-74.4 18 

Tangential
-fired 

Sub-
bituminous LNC2 99 45.6 33.9-65.4 3 

Tangential
-fired 

Sub-
bituminous LNC3 60 60.5 48.2-77.2 23 

Notes:  LNB = low-NOx burner; LNBO = LNB with over fire air; LNC1 = LNB with close-coupled OFA; LNC2 
= LNB with separated OFA; and LNC3 = LNB with both close-coupled and separated OFA.  *All boilers are 
dry-bottom type. 
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Figure 2.38 Delayed fuel-air mixing in low-NOx burners 

 

Moreover, unburned carbon levels typically increase when low-NOx burners are 

installed.  High unburned carbon levels affect boiler efficiency and the salability of ash.  

The amount of unburned carbon in fly ash, typically referred to loss on ignition (LOI), is 

limited to 6% by ASTM C618 for cement replacement in ready-mix concrete.  Low-NOx 

burners can increase LOI by 2-5% points (Srivastava et al, 2005).  Additional 

information and case studies on reducing LOI in wall fired and tangentially fired units 

can be found in (Conn et al, 2005). 

Over fire air is typically used as a supplementary technology to low-NOx burners 

in which 5-20% of the combustion air is diverted and injected downstream from the 

primary combustion zone.  The diverted air is used to complete the combustion process 

when burners are operated at low air-fuel ratios.  When over fire air is added to low-NOx 

burners in wall-fired furnaces, NOx reductions can increase 10-25%.  Over fire air in 

tangentially-fired boilers can reduce NOx by more than 50%.  Enhancements to these 

primary NOx controls such as multilevel over fire air and rotating opposed fire air can 

also be found in a paper by Srivastava et al. (2005).  Li et al. (2007) reviewed newer 

designs for swirl burner technology for low-grade coal combustion. 
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2.4.2. Selective Catalytic Reduction 

One of the most common and effective ways to reduce NOx emissions, post 

combustion, is selective catalytic reduction (SCR).  A schematic of a SCR system may 

be seen in Figure 2.39.  Ammonia (NH3) (aqueous or anhydrous) or some other reagent 

is injected downstream from the combustion zone at flue gas temperatures of 340-400°C 

(650-750°F), in the presence of a catalyst to reduce NOx.  Selective catalytic reduction 

systems can have reductions between 80 and sometimes greater than 90%, depending on 

the catalyst, the flue gas temperature and the amount of NOx present in the combustion 

gases exiting the primary burn zone (Srivastava et al, 2005). 

Currently, most commercial SCR systems do not reduce NOx further beyond 25.8 

g/GJ (0.06 lbs/MMBtu) (USEPA, 2004).  However, if economics allowed, SCR systems 

could theoretically reduce NOx emissions by 100% (Mussatti et al, 2000b). 
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Figure 2.39 Schematic of a SCR application (adapted from Srivastava et al., 2005) 
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The major operational factors for SCR systems include: 

• Reaction temperature range, 

• Residence time available for reduction, 

• Mixing between the reagent (NH3) and the combustion gases, 

• Molar ratio of injected reagent to uncontrolled NOx in the combustion gases, 

• Uncontrolled NOx concentration level, 

• Ammonia slip (amount of reagent escaping with exhaust gases), 

• Catalyst activity, selectivity, deactivation, pitch, management, and 

• Pressure drop across the catalyst. 

 

The most common reagent is NH3.  Usually the NH3 is transported in an aqueous 

solution (either 19% or 29.4% ammonia in water) due to required permits on handling 

and storing pressurized anhydrous NH3.  In Figure 2.40, a comparison of cost for 

different reagents is presented for both all year operation and ozone season operation.  

As can be seen, anhydrous ammonia tends to be cheaper for all boiler sizes (ratings) 

because more energy is spent on electric vaporizers when preparing aqueous ammonia 

for injection.  Moreover, a greater amount of aqueous ammonia must be delivered to the 

plant to inject the equivalent amount of ammonia into the SCR system.  However, since 

there are fewer regulatory restrictions on aqueous ammonia, it tends to be the most 

common.  Yet urea-to-NH3 conversion seems to be an option that is both cheaper than 

importing large amounts of aqueous ammonia and has fewer restrictions in transporting 

and storing than anhydrous ammonia (Salib et al, 2005). 
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Figure 2.40 Comparative costs for different reagents in SCR applications (Salib et al., 2005) 

 

The catalyst is typically made of a metal oxide such as molybdenum oxide 

(MoO3) or vanadia (V2O2) deposited on various materials including titanium oxide 

(TiO2) and Zeolite.  The catalysts may be configured as a ceramic honeycomb or coated 

parallel metal plates in which the surface promotes the reaction between the NH3 and 

NOx molecules to form nitrogen (N2) and nitrous oxide (N2O) (Srivastava et al, 2005).  

For coal-fired plants, the catalyst operating life is between 10,000-30,000 hours (about 

1-3 years).  Sometimes the manufacturer of the catalyst will reactivate or recycle 

components of the catalyst for other uses.  Otherwise, the facility operator must dispose 

of the catalyst in a landfill; however, catalyst formations are not considered hazardous in 

the US.  There are several reasons for catalyst deactivation (Mussatti et al, 2000b).  

Some of these are: 
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• Poisoning:  fuel constituents such as calcium oxide and magnesium oxide occupy 

active pores in the catalyst.  This is typically the main factor for catalyst 

deactivation. 

• Thermal Sintering:  high flue gas temperatures change pore structure. 

• Other factors:  blinding, fouling, plugging, erosion, and aging of the catalyst. 

 

Currently, more than 200 existing and planned coal steam units in the US have or 

will have SCR systems (USEPA, 2007a).  Of the more than 40 units in Texas, 10 already 

have or will have SCR systems installed by 2009. 

 

2.4.3. Selective Non-catalytic Reduction 

Selective non-catalytic reduction (SNCR) is a similar post combustion 

technology to SCR, except that the NH3 or urea is injected without the presence of a 

catalyst and at higher temperatures of 980-1150°C (1800-2100°F) (Srivastava et al, 

2005).  However, reductions for SNCR are rarely over 35% for large boilers with heat 

rates greater than 880,000 kWh/hr (3,000 MMBtu/hr) due to mixing problems.  

Therefore, SNCR systems are typically present in smaller units, less than 200 MW in 

capacity, due to their relatively low capital costs and better reductions up to 65% 

(Mussatti et al, 2000a and USEPA, 2004).  A schematic of a SNCR system may be seen 

in Figure 2.41.  The major operational factors for SNCR are generally the same as SCR 

except for those dealing with the catalyst. 
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Figure 2.41 Schematic of a SNCR application (adapted from Srtivastava et al., 2005) 

 

The reagents for SNCR are typically aqueous ammonia or a 50% solution of urea 

and water.  Anhydrous ammonia is usually not used for SNCR due to restrictions and 

required permits.  Yet between aqueous ammonia and urea, urea is more commonly used 

in SNCR applications because it is non-toxic and safer to transport and store.  Also, urea 

droplets can penetrate further into the exhaust gases when it is injected, which enhances 

mixing (Mussatti et al, 2000a).   

Despite the lower capital cost and relative ease to install, SNCR technology has 

not been as prolific in coal-fired boilers as low-NOx burners and SCR.  This is greatly 

attributed to the technology’s unreliability and relative uncontrollability.  Moreover, 

boiler design and operation parameters, for example lower flame temperatures from low-

NOx burners, have made SNCR impractical for many applications (Mussatti et al, 

2000a).  Furthermore, SCR systems have a few advantages over SNCR.  For example, 

since SCR can occur at lower and broader temperature ranges, SCR systems can be 



 94

installed at various positions downstream from the main furnace (i.e. before or after an 

electrostatic precipitator) without the need for too much reheating.  Currently, over 100 

SNCR systems exist or are planned for construction in US coal steam units; however, 

there are no SNCR systems installed in coal-fired plants in Texas (USEPA, 2007a). 

 

2.5. Competing Uses for Manure-based Biomass 

In addition to competing emissions control technologies, there are also 

competing uses for the manure itself.  The most common current use for manure is 

fertilizer or a supplement to fertilizer.  Just as market food prices of crops like corn and 

sorghum can affect the price of ethanol and other bio-fuels, or vice versa, the price of 

chemical fertilizers and nitrogen can affect the price of manure.  That is, fertilizer prices 

can affect the price that an animal farm operator will ask for, if an energy producer 

requests to haul away manure for co-firing or reburning operations.  This asking price 

would then be added to the cost of transporting and processing the manure, which can 

possibly make the value of manure more expensive than coal or other fossil fuels.  

Hence, the coal-manure co-combustion facility or the small-scale, on-the-farm 

combustion system may become impractical. 

Texas Cattle Feeders Association (TCFA) does have a program on the internet 

that computes the value of manure based on the nutrient content of the manure and the 

going prices of nitrogen and phosphorus.  The program can also be used to compare the 

total annual cost of using fertilizer alone to the total annual cost of using manure and 

fertilizer in combination based on the manure collection cost, hauling distance, and 

specifics about the crops being fertilized (Weinheimer, 2008). 
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3. LITERATURE REVIEW 

The primary purpose of this dissertation is to determine if utilizing MBB on large 

scale combustion facilities is economically feasible and to determine if MBB can be 

used on smaller scale on-the-farm energy conversion systems.  The following section 

will be a brief review of these two areas.  Much of the information discussed here will be 

used in the development of computational models, which will be discussed in a later 

section. 

 

3.1. Previous Economic Studies 

3.1.1. Co-firing Coal with Biomass 

Although there have not been many studies on burning manure biomass in large 

combustion facilities, there have been co-combustion studies of other solid biomass fuels 

such as wood-based biomass.  In fact, there have even been several recent biomass co-

firing tests and proposals.  For example, in 2005, American Electric Power, the largest 

electric generator and coal consumer in the US, successfully displaced 10% of the coal 

consumed at the 100 MW Picway coal plant near Columbus, Ohio with wood chips and 

wood waste-based biomass (Electric Power Daily, 2005).  In 2007, as part of a proposal 

to approve the construction of a 750 MW plant, LS Power proposed to co-fire switch 

grass, cornstalks, and ethanol production wastes to supplement coal (Waterloo Courier, 

2007).  In the United Kingdom, the electric generator, Drax, is aiming to co-fire coal 

with 10% olive cake and elephant grass biomass at a 4,000 MW power plant in 

Yorkshire by 2009.  Doing so would displace 1 million tons of coal and save 2 million 

tons of CO2 per year.  It was estimated that the delivery cost of the biomass would be 2 

to 5 times that of coal, but benefits from renewable obligation certificates (ROCs) would 

justify the additional fueling costs (Froley, 2007). 

In 2004, the US Department of Energy (DOE) conducted a fairly expansive study 

on co-firing coal with biomass.  The study centered on the success of a pilot co-firing 
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test at the DOE Savannah River Site in Aiken, South Carolina.  The DOE facility is 

composed of two stoker boilers that generate steam for heating applications.  The facility 

is relatively small compared to most utility coal steam electric power plants, and 

consumes about 11,145 tons of coal per year.  At the time of the study, the as delivered 

price of coal was $50 per ton.  The facility also generated about 280 tons of scrap paper 

and cardboard per year.  The waste paper and wood products were converted to “process 

engineered fuel” cubes and co-fired along with the coal.  Twenty percent of the coal was 

offset by the biomass cubes.  The project resulted in a net annual savings of about 

$254,000.  These savings were computed after subtracting the cost of processing the 

wood and paper wastes.  The total investment of the project was $850,000, which was 

paid back in approximately four years.  The 10-year, net present worth of the system was 

determined to be $1.1 million (DOE, 2004). 

There are several reasons why this specific co-firing application was so 

profitable.  First, the cost of coal was relatively high.  Secondly, the biomass that was 

used was generated from the facility itself, so the avoided costs of discarding the paper 

and wood waste in a landfill were added to the overall savings of the project.  Although 

the DOE study sites various examples of successful co-firing applications on all types of 

boilers, it did say that stoker boilers are uniquely suited for co-firing because very little 

investment is required to accommodate most biomass fuels (DOE, 2004).  Moreover, 

unlike manure biomass, wood biomass generally has very little moisture, ash, and sulfur, 

making it much more suitable for many direct combustion applications.  Overall the 

study seemed to suggest that the eastern part of the US is particularly suited for co-firing 

applications because as delivered coal prices tend to be higher in eastern states, see 

Table 1.1. Also landfill tipping fees are generally more expensive in eastern states, 

giving added incentive to utilize waste-based biomasses in alternative ways. 

For the purposes of this study, the most difficult cost to estimate is the capital 

investment cost of making the necessary modifications to the power plant site to process 

and handle the new biomass fuel.  Several studies of biomass co-firing have quoted 

estimates of the investment costs of a co-fire project.  Some of these studies are listed in 
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Table 3.1.  Note that capital costs are listed as dollars per kWe generated from the 

biomass. 

 
Table 3.1 Capital investment costs of installing a biomass co-firing system on an existing coal-fired power 
plant, taken from various sources 

Capital Cost, η 
($/kWe from biomass) Source Notes 

CO-FIRING 

60 (Robinson et al, 2003) 
Mode co-firing rate for <2% biomass on an 
energy basis.  Range: 40 - 100 $/kW biomass. 
Wood and agriculture residue 

200 (Robinson et al, 2003) 

Mode co-firing rate for >2% biomass on an 
energy basis, separate stream and injection 
required.  Range:  150 - 300 $/kW biomass. 
Wood and agriculture residue 

175 - 200 (Hughes, 2000) Co-firing with separate feeder.  Wood waste, 
short rotation crops, and switch grass biomass 

109 (USEPA, 2007c) >500 MWe pulverized coal plant. Probably 
wood and crop based biomass 

218 (USEPA, 2007c) 201 - 500 MWe pulverized coal plant. Probably 
wood and crop based biomass 

251 (USEPA, 2007c) <200 MWe pulverized coal plant. Probably 
wood and crop based biomass 

 

Robinson et al. (2003), along with the DOE (2004) study, suggested that a major 

factor in the capital investment cost of a co-firing project was the percentage of biomass 

that the boiler would use.  If less than 2% biomass were to be utilized, then the 

investment costs would be significantly lower because existing equipment used to 

process the coal may also be used at the same time to process the biomass.  The coal and 

biomass would be directly mixed before grinding and conveying to the burner.  Figure 

3.1 illustrates the new equipment that would be required to process the biomass under 

this scenario.  However, this may not be true for some pulverized coal power plants, 

which have equipment specifically designed to micronize coal and not biomass, which 

may be more difficult to grind. 
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Figure 3.1 Schematic of a blended-feed co-firing arrangement for a pulverized coal boiler (adapted from 
DOE, 2004) 
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Figure 3.2 Schematic of a separate-feed co-firing arrangement for a pulverized coal boiler (adapted from 

DOE, 2004) 
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If more than 2% biomass were to be utilized, then additional processing equipment 

would be necessary, adding to the overall investment cost.  Figure 3.2 illustrates the 

greater amount of new equipment that must be purchased if separate equipment were 

used to handle the biomass.  However, keep in mind that these projected additions to 

coal-fired facilities are for wood-based biomass.  Manure-based biomass may require 

different equipment. 

The USEPA (2007c) study, listed in Table 3.1, also provided estimates for the 

annual operation and maintenance costs.  According to the study, the fixed operation and 

maintenance cost for operating the additional biomass processing equipment was 

estimated to be approximately $7.63 per kWe from biomass per year.  Additional values 

were given to estimate the cost of transporting the biomass to the combustion facility. 

 

3.1.2. Reburning Coal with Biomass 

As discussed earlier, there have been relatively few reburn tests at coal-fired 

power plants in the US.  Most of these tests included reburning coal with natural gas and 

only four or five power plants reburned coal with more micronized coal.  Thus, one of 

the challenges of this study was to estimate the cost performance of a MBB reburning 

system at a coal plant, even when only experimental results and pilot scale tests have 

been conducted for MBB reburning, and few applications of gas and coal reburning 

systems existed for comparison.  Work by Zamansky et al. (2000) suggested that reburn 

systems utilizing furniture wastes, willow wood, and walnut shell biomass as reburn fuel 

have similar capital costs to coal reburning systems.  An earlier USEPA (1998) report 

for the Clean Air Act Amendment, which was also sited by Biewald et al. (2000), 

modeled both gas and coal reburn systems, although the coal reburn model was meant 

only for cyclone boiler types.  And since gas reburning costs are generally lower than 

coal reburning costs, the reburn capital cost model presented by the USEPA (1998) 

would only be applicable for cyclone boilers.  Cyclone boilers burn coarsely crushed 

coal, but coal reburn systems typically require pulverized or micronized coal to avoid 

unburned carbon emissions.  Hence, purchasing pulverizing equipment is generally 
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required for cyclone boiler plants that wish to install coal, or other solid fuel, reburn 

systems. 

 
Table 3.2 Capital investment costs of installing a reburning system on an existing coal-fired power plant, 
taken from various sources 

Capital Cost, η 
($/kWe total plant 

capacity) Source Notes 
REBURNING 

35 (Zamansky et al, 2000) 
Same cost for both coal and biomass reburning.  
300 MWe plant. Furniture, willow wood, and 
walnut shell biomass. 

45 (Zamansky et al, 2000) Same cost for both coal and biomass reburning.  
300 MWe plant.  Advanced reburn process. 

 

 

 

(USEPA, 1998) Coal reburning in cyclone boilers only.  P = plant 
capacity in MWe 

60 (Smith, 2000) 
Coal reburning in cyclone boilers, 40% NOx 
reduction from an 0.86 lb/MMBtu baseline 
emission 

6 - 13 (Smith, 2000) Pulverized coal configurations using some existing 
equipment for coal reburn fuel preparation 

66 and 43 (Mining Engineering, 2001) 
For 110 MW and 605 MW plants, respectively.  
50% NOx reduction on cyclone burners with 
pulverized coal for reburn fuel 

 

Some estimates of coal and biomass reburn capital costs are presented in Table 

3.2.  Unlike co-firing, reburning costs are usually expressed on a “dollar per kWe of total 

plant capacity” basis.  Smith (2000) reported that coal reburn capital costs may be as low 

as $6/kWe for pulverized coal plants with existing equipment available for preparing the 

reburn fuel.  However, MBB is significantly different from most wood and plant-based 

biomasses, as well as coal.  The moisture and ash contents in MBB vary to greater 

degrees than wood biomass, although low ash cattle biomass has a comparable heat 

value to the biomass discussed by Zamansky et al. (2000).  Moreover, reburn systems 

usually require 15 – 20% of the power plant’s heat rate to be supplied by the reburn fuel.  

If biomass were to be used as the reburn fuel, additional processing equipment would 

almost certainly be required, based on the previous discussion of biomass co-firing. 

0.38830070.7
P

⎛ ⎞
⎜ ⎟
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Also note that capital costs for reburning in Table 3.2 do not include the capital 

cost of dryers and biomass hauling vehicles which will be needed for manure biomass 

reburning but not coal reburning.  These costs must be computed separately.  As for 

fixed operation and maintenance costs of the reburn fuel’s processing equipment, the 

model presented by the USEPA (1998), for reburning coal with micronized coal, may be 

used for the current study; however, an additional correction factor that accounts for the 

MBB’s poorer heat value, and hence greater required fueling rate, should be 

implemented. 

 

3.1.3. Competing NOx Control Technologies 

In addition to modeling the economics of reburning coal with biomass, 

comparative estimates of other competing NOx control technologies should also be 

computed.  Fortunately, the economics of more common NOx control technologies such 

as low-NOx burners, SCR, and SNCR are modeled by the US EPA.  The USEPA 

Integrated Planning Model (IPM) is a multi-regional, dynamic, deterministic linear 

programming model of the US electric power sector.  The results from the IPM are 

meant to compare energy policy scenarios and governmental mandates concerning 

electric capacity expansion, electricity dispatch and emission control strategies.  The 

model and base case inputs to the model are updated annually.  The latest update, as of 

the writing of this dissertation, may be found on the USEPA (2006) website.  Since a 

section of the IPM is concerned with evaluating the cost and emission impacts of 

proposed policies, it is possible to adopt these emission models to describe the 

economics of common primary and secondary controls, and then compare them to 

results for MBB reburning.  However, since reburn technologies are not a significant 

part of the current efforts to reduce NOx at coal-fired power plants in the US, their 

associated investment and operating costs were not included in the latest version of the 

IPM. 

The NOx control technology options modeled by the EPA IPM are low-NOx 

burners (with and without over fire air), SCR, and SNCR.  Capital and fixed operation 
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and maintenance costs were set as functions of power plant capacity, while variable 

operation and maintenance costs were set as functions of heat rate.  Models presented by 

Mussatti et al. (2000 a & b) offer more detailed and comprehensive representations for 

SCR and SNCR cost components, but require more detailed inputs.  The cost equations 

in the IPM for NOx control technologies are based on costs for 300 MWe sized boilers.  

These costs are then translated to costs for different boiler sizes with scaling factors.  

The cost equations and scaling factors of IPM will be discussed further in the modeling 

section of this dissertation. 

 

3.1.4. Dollar Values of Emissions 

Annual monetary values pertaining to NOx, SOx, nonrenewable CO2, and ash 

revenues are also required.  Values for NOx and SOx emission credits can be found by 

the South Coast Air Quality Management District (SCAQMD) (2007).  In 2006, trading 

credits for NOx were $2,353/ton for the 2005 compliance year and as high as 

$15,698/ton for the 2010 compliance year.  For compliance years beyond 2010, the NOx 

credit values were $11,100/ton.  SOx credits were traded at $882/ton for the 2005 

compliance year and $966/ton for the 2006 compliance year.  In a white paper prepared 

for TXU Energy (now Luminant Energy) by NERA Economic Consulting in 2004, the 

NOx permit price assumption for long term strategic fuel planning was $4,000/ton NOx 

with a sensitivity range of $2,000 to $6,000/ton NOx.  The permit price assumption for 

SO2 was $250/ton SO2 with a sensitivity range of $150 to $500/ton SO2 (NERA, 2004). 

Although most coal-fired plants in the US are currently not required to reduce 

CO2 emissions, speculations may be made as to how emission taxes, cap and trade-based 

CO2 allowances, or avoided sequestering costs may affect the profitability of a MBB co-

fire or reburn system.  The same NERA report to TXU estimated that the cost of 

reducing CO2 by capture and storage would range between $50 and $80/ton CO2.  

Comparatively, the report showed that the cost of reducing CO2 by co-firing coal with 

biomass ranged between $5 and $15/ton CO2.  However, the biomass referred to in this 

study was undoubtedly wood or plant-based biomass, and was probably based on a 
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similar report to the DOE (2004) study on biomass co-firing discussed earlier.  

Moreover, ongoing results of the Regional Greenhouse Gas Initiative (RGGI, 2008) can 

provide some basis of the monetary value put on CO2 in the US, even though the RGGI 

is in its infancy and only has jurisdiction in the northeastern part of the US.  According 

to the RGGI website, the clearing price of CO2 allowances in its inaugural auction in 

September 2008 was $3.07/ton CO2. 

Finally, the ability of plant managers to find suitable uses for ash produced from 

biomass combustion as well as local buyers, could greatly affect a MBB co-fire or 

reburn system’s overall profitability.  Preliminary studies on the possible usage of ash 

produced from manure combustion have provided mixed results.  Ash produced from 

manure combustion is a suitable sub-grade material for road construction, and if mixed 

with 10% Portland cement, can be used as a light weight concrete material with about 

one-third of the compressive strength of concrete.  Yet the manure ash is not self-

cementing and is not a suitable replacement for Portland cement.  Also, chemical 

analyses show that manure ash is a non-hazardous, possibly reactive industrial waste 

which could be used for feedlot surfacing, road base, some structural building projects, 

and possibly fertilizer (Megel et al, 2006 and Megel et al, 2007).  More information 

about the uses of fly ash from coal combustion was provided by the USDOT (2006).  If 

ash is not sold, then it must be discarded, typically in local landfills, which require 

tipping fees. 

 

3.2. Review of Designs for Small-scale, On-the-farm Manure-based Biomass 

Combustion Systems 

Manure-based biomass can also be considered a possible feedstock for smaller, 

on-the-farm combustion systems designed to properly dispose of manure solids and 

wastewater.  Using commercially available equipment like solid separators, augers, and 

dryers, MBB can be prepared for smaller combustion processes.  If these systems are 

constructed on or near a CAFO, the benefits of reducing tremendous amounts of waste 

and avoiding potential environmental misfortunes can be realized with out much of the 
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transportation and processing costs required to burn cattle biomass in large electric 

utility boilers. 

There have been several patents and design studies of small scale, combustion 

systems meant to burn manure on or near large animal farms.  One such design was the 

gasification system discussed earlier by Young et al. (2003) for dairy manure biomass.  

The dairy manure is first reduced to about 70% moisture with an auger press and then 

sent through a high-temperature, entrained-flow air gasification system.  A patent by 

Kolber (2001) was an elaborate design of an energy conversion system that could treat 

solid and liquid manure from confined animal feeding operations.  The motivation of 

this study was to reduce the need for anaerobic treatment lagoons at large pig farms in 

North Carolina.  The design is illustrated in Figure 3.3.  Flushed manure wastes from 

growing buildings enter a waste holding tank, where the manure is either sent to a 

covered waste processor or held if the rest of the system is backed up.  The components 

of the covered waste processor are shown in Figure 3.4.  Wastewater is homogenized 

and then sent to a solids separator, after which the solids are dried and then burned or 

gasified in a combustor.  The liquid from the separator is treated or deodorized in an 

ozonation tank, where organic material left in the liquids is oxidized.  The liquids are 

then sent to a flush water reservoir.  Air and hot flue gases from the manure combustion 

are used to dry the separated solids.  Any waste gases generated from the other 

components of the system would also be burned in the combustor. 
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Figure 3.3 Design for a wastewater treatment plant for large confined animal feeding operations and 

drainage of anaerobic treatment lagoons (Kolber, 2001) 
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Figure 3.4 Components of the covered waste processor in the wastewater treatment plant discussed by 

Kolber (2001) 
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A solar drying system, which Kolber called a “Smart Evaporator”, would 

evaporate any wastewater that is not treated in the covered waste processor and keep the 

system from overflowing.  Each of these components, as well as a control system and 

alternative embodiments, are discussed in greater detail in Kolber’s patent. 

There is also a prototype system developed by Skill Associates, Inc. called 

ElimanureTM that can eliminate both the liquid and solids of any animal manure.  The 

system is pictured in Figure 3.5.  Waste manure up to 95% moisture enters large drying 

units and is mixed by large augers with hot air.  The temperature in the drying units 

reaches 82 °C (180 °F) and the manure is dried to about 40% moisture.  The water vapor 

is ventilated out of the drying unit, while the 40% moisture solid manure is sent to a 

thermal gasification boiler where it is burned at 1090 °C (2000 °F).  The boiler generates 

steam which runs turbines to generate electricity.  During the first two hours of 

operation, the system uses propane or some other fuel to start up, but after that, the dried 

manure can sustain the process.  Besides water vapor from the drying process, the only 

byproduct is a grey powdery ash which contains the inorganic or noncombustible 

material in the manure.  The facility was constructed at an animal farm in Greenleaf, 

Wisconsin in 2005 (Skill Associates, 2005), which houses 4,000 animal units (dairy 

cows, horses, and other animals) and produces 1,007 dry kg (2,220 dry lbs) of manure 

per hour.  At this animal farm, the boiler produces 4500 kg (10,000 lb) of steam per hour 

at 2,000 kPa (300 psi).  The turbine is sized to produce 600 kWe of electricity. 

An update of the Elimanure system, installed in Greenleaf, was written in Ag 

Nutrient Management Magazine (Caldwell, 2008).  During early operation of the 

combustor, Skill Associates assumed that dried manure would burn (gasify) much like 

sawdust, however, they soon found that the higher ash content of the manure created 

plugging in the boiler and heat exchangers.  Moreover, the ash formed “lava” in the 

burning bed of the combustor.  In July 2008, however, Skill Associates claimed they had 

solved the ash problem with the combustor by “modify[ing] and improve[ing] the 

combustor, making it more robust.”  A “new, larger, and state-of-the-art” combustor 
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replaced the original one.  The cost estimates for the system were also updated to $4.5 

millions initial investment with a 3.5 year payback period.  Part of the reason for the 

quick payback period was the fact that the animal farm originally produced 94.6 million 

liters (25 million gallons) of liquid manure per year, which needed to be hauled away 

from the farm at an annual cost of $400,000.  Reducing the liquid manure to just ash 

greatly reduced the waste disposal cost of the farm. 
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Figure 3.5 The ElimanureTM System developed by Skill Associates (2005) 

 

On-the-farm combustion systems were also modeled by Carlin (2005) and Carlin 

et al. (2007a).  Thermodynamically, a black box method was utilized to determine the 

greatest amount of waste that could be converted into the desired end products.  This 

method is shown in Figure 3.6, with the inputs and outputs to the system crossing 

through the control volume (CV) fixed around the combustion system.  A complete mass 

and energy balance of the system was conducted.  The ash and moisture percentages 

were treated as variables in order to determine their required values to convert all 

material to combustion gases, water vapor, dry ash, and to maintain a desired system 

temperature (for example, 373 K). 
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Figure 3.6 Black box thermodynamic model of a manure energy conversion system (Carlin, 2005) 
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Figure 3.7 Required manure biomass solids composition needed to completely convert manure waste to 
combustion gases, water vapor, dry ash, and to maintain a desired system temperature of 373 K (Carlin, 

2005) 
 

Figure 3.7 displays the results of the black box methodology.  According to the 

figure, if the flushed manure emanating from a dairy or feedlot has a moisture 

percentage of more than 85%, then no amount of combustible material in the solids can 

produce enough heat during combustion to fully vaporize all of the moisture portion 
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(wastewater) of the manure.  However, ash also plays a limiting role in the effectiveness 

of independent manure combustion systems.  Depending on the manure collection 

process, the bedding used in the dairy free stalls, or the pavement surfacing of the feed 

yards and open lots, the ash content of the solid manure material can make direct 

combustion impossible due to fowling and inadequate fuel heating value. 
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Figure 3.8 Conceptualized model for manure biomass thermo-chemical energy conversion system for a 

CAFO (Carlin, 2005) 
 

The conceptualized system shown in Figure 3.8 has the potential to burn most of 

the manure solids and vaporize at least a portion of the wastewater stream.  Again, the 

flushed manure is mechanically separated into solid and liquid streams.  The solids are 

injected into a combustor, furnace, or perhaps a gasifier with a subsequent product gas 

burner.  The combustion air is preheated in a heat exchanger by the hot products of 

combustion.  Meanwhile, some of the remaining wastewater is sent to a fire-tube boiler 
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where it is sprayed onto heat pipes containing the combustion gases.  The remaining 

solids from the wastewater can be removed periodically from the boiler (similar to blow 

down in conventional fire-tube boilers) and either sent back to the combustor or used as 

fertilizer. 

This system was modeled by Carlin (2005) and Carlin et al. (2007a).  Carlin et 

al. (2007b) added the effects of combustion air pre-heating.  The steam could be used as 

a general heat commodity for the farm or it can be used to dry the manure solids.  Figure 

3.9 shows some of the results of the modeling of the system in Figure 3.8.  Here, the 

waste disposal percentage is defined as the heat released by the combustion process, 

divided by the heat required to evaporate all of the manure wastewater.  Waste disposal 

was plotted against the added amount of fuel injected into the combustor.  Methane, coal 

and addition composted manure solids were all modeled.  As can be seen, if no 

additional fuel is used, then the combustion process only releases about 32% of the heat 

required to incinerate the manure wastes.  From this plot it can be seen how much 

additional fuel would be required to eliminate all of the manure wastes. 
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Figure 3.9 Waste disposal efficiency of conceptualized manure biomass energy conversion system vs. 

mass of additional fuel used for combustion (Carlin, 2005) 
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In addition to the combustor, one of the main design challenges of the 

conceptualized system in Figure 3.8 is the fire-tube boiler.  There are numerous designs 

for wastewater evaporators such as the patented design by Gregory (1993).  These 

evaporation tanks can handle most sludge and liquid waste streams.  Kamen et al. (2008) 

patented a locally powered water distillation system for converting any wastewater, even 

raw sewage, to clean, potable water.  The inspiration for this invention was the lack of 

available clean water to millions of people in developing countries in Southeast Asia, the 

Middle East, and Africa.  The pressure vapor cycle liquid distillation system is about the 

size of a residential washing machine and designed to provide enough water for a family 

or small rural village.  The design is meant to be relatively affordable for governments 

and individuals of third world countries, about $1,000 to $2,000 each when mass 

production is established.  The distillation system was designed to be powered locally 

with easily obtainable fuels, such as “cow dung” (Schonfeld, 2006).  Such a system may 

be scaled-up in size to handle the larger amount of wastewater from a CAFO. 

For most of the energy conversion systems discussed in this section, designers 

assumed that high temperature gasification would be the most appropriate means by 

which the manure solids would be burned.  However, there are some claims to directly 

firing manure solids such as a patent for a moving grate combustor by Mooney et al. 

(2005).  See Figure 3.10.  However, most of these systems are essentially two-stage 

gasification systems in which the released volatile gases are immediately fired, in this 

case, by a natural gas pilot burner.  In this sense, these systems become co-firing 

furnaces, only now the manure is the primary fuel and the fossil fuel is an igniter. 
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Figure 3.10 Schematic of a moving grate manure biomass combustor (adapted from Mooney et al., 2005) 
 

On-the-farm MBB gasification systems might also solve many of the economic 

and practical issues with reburning and co-firing on larger coal-fired power plants 

discussed earlier.  For example, synthesis gas from MBB gasification may be a viable 

and effective reburn fuel itself.  Synthesis gas can be piped to the power plant from 

CAFOs or centralized gasification facilities, instead of hauled by truck.  Plus, no 

additional ash loading would be incurred by the coal plant.  Moreover, reburning with 

gas requires significantly less capital costs compared to solid fuel reburning systems; 

although, the capital cost of constructing enough gasifiers to supply a suitable amount of 

synthetic gas to the coal plant must be taken into account.  Studies by Rudiger et al. 

(1996) and Rudiger et al. (1997) investigated the fuel nitrogen content in pyrolysis gases 

from both coal and wood and grass-based biomass that could possibly be used as reburn 

fuel.  Future investigation into the nitrogen content and reburn effectiveness of pyrolysis 

gases from MBB should also be undertaken. 
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4. OBJECTIVE AND TASKS 

In order to determine the optimum usage and feasibility of MBB in combustion 

systems, two objectives are hereby proposed. 

1. Investigate the underlying requirements and overall emission and economic impacts 

of firing MBB in existing large utility coal-fired boilers, and 

2. Research and develop designs for small-scale, on-the-farm combustion systems for 

MBB disposal and possible energy production. 

In order to achieve the above objectives, the following tasks are proposed during the 

doctoral research. 

1. Tasks under Objective 1: 

1.1 Determine capital expenditures for a MBB reburn and/or co-firing system 

including the cost of installing the reburner on an existing coal-fired power 

plant, the cost of purchasing transportation vehicles, and the cost of 

purchasing biomass processing equipment such as dryers. 

1.2 Determine the operation and maintenance costs that would be inherent to a 

MBB reburn and/or co-firing system. 

1.3 Estimate the NOx and nonrenewable CO2 savings, as well as the additional 

ash production and perhaps additional SOx emissions during MBB 

combustion in an existing coal-fired power plant.  Also account for carbon 

and NOx emissions from drying and transporting biomass. 

1.4 Estimate the economic impacts of reducing NOx and CO2 and increasing ash. 

1.5 Determine the capital, operation and maintenance costs for other, more 

common NOx control technologies such as low-NOx burners and selective 

catalytic reduction (SCR), and compare to findings for MBB reburning. 

1.6 Compute the overall annualized cost of reducing NOx for each NOx control 

technology.  Moreover, estimate the net present worth and simple payback 

period of a MBB reburn retrofit project on an existing coal-fired power plant. 

1.7 Conduct a full sensitivity analysis of the annualized cost and/or the net 

present worth to all significant parameters in the economic model. 
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1.8 Determine optimum conditions for a MBB reburn system including 

maximum acceptable biomass transportation distance and minimum required 

dollar values of CO2 and NOx emissions.  

2. Tasks under Objective 2: 

2.1 Review any current designs for on-site MBB combustion systems including 

biological gasification systems such as anaerobic digesters. 

2.2 Expand on initial designs developed during MS research (Carlin, 2005), 

including ways to utilize waste heat and options for thermally drying MBB 

before combustion. 

2.3 Investigate and suggest values for design parameters of heat exchangers, 

biomass dryers, combustors, and boilers, so that future experimentation and 

pilot-tests may be conducted. 

2.4 Estimate economic costs of installing and operating a MBB combustion 

system on an animal feeding operation (either solid fuel burners or gasifiers 

with subsequent producer gas firing).  Determine if on-site combustion of 

biomass would provide any long term financial benefits to the animal feeding 

operation owners. 

2.5 Compare the viability of burning MBB on smaller scale, on-the-farm 

combustion systems to the possibility of burning in larger scale reburn or co-

fired system on existing coal-fired power plants. 
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5. MODELING 

The methodology of this study was largely based on mathematical models 

derived from thermodynamic, fluid mechanic, and heat transfer analyses, as well as 

engineering economic analysis.  In this section, the derivation and general rationalization 

of all equations included in these models will be presented.  Pre-combustion processing, 

including manure-based biomass (MBB) drying, grinding, and transporting, will be 

discussed.  Next a general model for coal and MBB combustion will be generated.  Then 

this general combustion model will be applied to both coal/MBB co-combustion in large 

coal plants and MBB combustion in small scale, on-the-farm combustion systems.  

Finally the economics of pre-combustion, combustion, and emissions from combustion 

processes will be modeled.  Capital and operation and maintenance (O&M) costs will be 

included in the economics portion, as well as overall net present worth and simple 

payback analyses of combustion systems utilizing MBB.  However, first a brief review 

of modeling biomass properties will be presented based on studies discussed in the 

Background Information Section of this dissertation. 

Equation Chapter 5 Section 1 

5.1. Modeling the Properties of Manure-based Biomass 

For combustion and gasification modeling, usually only the results of ultimate, 

proximate and heat value analyses found in Table 2.1 through Table 2.5 will be needed 

for both coal and MBB.  However, since the current analyses will also include modeling 

drying processes and transportation, MBB properties such as bulk density and specific 

heat will also be required.  Moreover, it is important to know how these parameters will 

change with other known parameters such as temperature and moisture percentage. 

According to the study by Bohnhoff et al. (1987), cited earlier, the dry particle 

density of the MBB is a function of the volatile matter percentage.  However, Bohnhoff 

et al. did not distinguish between fixed carbon percentage and ash percentage as was 

done in most of the proximate analyses presented in this dissertation.  Thus, a 
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modification to the equation for dry particle density, presented by Bohnhoff et al., can be 

used for the present study. 

 
1

,
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100 dry dry dry
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 (5.1) 

The subscript BD for the volatile solids (VS), fixed carbon (FC) and ash (A) denotes that 

the parameters must be entered on a dry basis.  The densities of these three components 

must also be known.  According to Bohnhoff et al., VSρ  was approximately 1500 kg/m3.  

Moreover, FCρ  can be assumed to be approximately the density of graphite or pure 

carbon, 2300 kg/m3, and ashρ  can be approximated as the density of loose earth or soil, 

1200 kg/m3 (Engineeringtoolbox.com, 2008). 

The bulk density, ,b MBBρ , can be modeled by a curve fit of Chen’s (1983) data in 

Figure 2.7 as a function of moisture percentage. 
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The curve represented by this equation (R2 = 0.7553) can also be seen in Figure 2.7 

along with Chen’s data.  Alternatively, Houkom et al.’s (1974) equation, which is also 

displayed in Figure 2.7, could be used, but for consistency in this study, equation (5.2) 

will be used during the rest of the present discussion. 

The air-filled porosity or void volume, MBBε , can also be modeled by an 

expression presented by Bohnhoff et al. (1987). 
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Here, 
2 ( )lH Oρ  is the density of liquid water. 
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Similarly to the expression for ,p MBBρ , the expression for the specific heat of the 

dry fraction of the MBB, ,MBB dryc , can be a modification of a linear rule presented by 

Bohnhoff et al. 

 ,
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dry dry dry
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A FC VM
c c c c

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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Again, the specific heats of ash and fixed carbon can be estimated to be those of soil and 

graphite, 0.80 kJ/kg K and 0.71 kJ/kg K, respectively (Engineeringtoolbox.com, 2008).  

According to Bohnhoff et al., the specific heat of MBB, on a dry basis, was 0.92 kJ/kg K 

when the volatile matter was 94%.  Therefore the specific heat of the volatile matter 

component of the MBB, VMc , can be back-calculated and found to be 0.93 kJ/kg K.  On 

an as-received basis, the specific heat of the MBB is simply: 
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where 
2 ( )lH Oc  is the specific heat of liquid water. 

Although the thermal conductivity of bulk MBB does not appear in this study, it 

can be modeled by the following expression from Bohnhoff et al. 

 
( )

( )

2
,

2

0.0212 0.00714 273.15 0.485

0.003754 273.15

b MBB
Wk T

m K
T

θ θ

θ

⎡ ⎤ = + − +⎢ ⎥⋅⎣ ⎦
− −

 (5.6) 

Here, T is in degrees K and θ  is the volumetric moisture content defined as: 
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Finally, if the thermal diffusivity of bulk MBB must be known, then it can be 

computed from the following expression: 
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5.2. Modeling Biomass Fuel Pre-combustion Processing 

5.2.1. Drying Manure-based Biomass 

Solid biomass fuels can be dried by several methods, utilizing different types of 

dryers.  Choosing the best type of dryer largely depends on the characteristics of the 

biomass, the drying medium, and the available sources of heat (Brammer et al., 1999).  

For this study, the operation and economic costs of two types of dryers will be modeled: 

1. Conveyor belt (or band) dryers and 

2. Steam-tube rotary driers. 

Both dryers are suitable for handling granular, free-flowing solids such as MBB.  Both 

dryers are also common in other agricultural applications such as conveyor belt dryers 

used in food processing and steam-tube rotary dryers used to dry distiller’s grains, 

distiller’s solubles, corn germ, and corn fiber feed.  Rotary dryers can also handle 

powdery solids (particles less than 140 microns or 100 mesh), such as the finer particles 

in the MBB.  For operation on or near feeding operations, farmers may find that rotary 

dryers operate similarly to rotary composting drums. 

Conveyor belt dryers are suitable for accepting wet, as-harvested MBB and 

continuously supplying dry biomass (10-20% moisture) to co-fire and reburn systems at 

large-scale combustion facilities.  Moreover, conveyor belt dryers can be installed at 

either large CAFOs, at centralized drying and composting facilities, or directly at the 

power plant sites or combustion facilities.  If the biomass is dried at the CAFO or at a 

composting facility, fossil fuels such as natural gas or propane may be required to 

provide heat for the drying process.  Solar drying is also a possibility, but there may be 

difficulty supplying a consistent and large enough mass flow of MBB for power plants, 

especially for reburn systems that would require at least a 15% heat input from the 

biomass if pure biomass is used as the reburn fuel.  However, if the dryer is installed at 

the combustion site, then perhaps waste heat from the combustion processes can be used 

to dry the biomass.  But in this case, raw manure would have to be transported and 

possibly stored at or near the combustion facility causing aesthetic and possibly 

regulatory problems. 
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Steam-tube rotary dryers may be more suited for the smaller scale, on-the-farm 

combustion systems that will be discussed later in this section, since for many cases low-

quality or saturated steam will be present.  However, both types of dryers could probably 

be used for either large scale supply to coal plants or for usage at small scale facilities.  

The physical modeling of these drying systems will be the basis of estimating the 

economics of these dryers.  For example, the capital cost of conveyor belt dryers is a 

function of the conveyor belt area and the capital cost of rotary dryers is a function of the 

moisture content of the exiting biomass and the total heat transferred to the solids during 

drying.  Thus, the underlying objective will be to compute these specific parameters.  

The operation costs of the dryers are dependant on gas consumption, steam 

consumption, and electricity consumption. 

The analysis can begin by determining how many dryers will be required.  If the 

annual amount of manure required from the combustion facility, ,MBB annumM&  (kg/yr), the 

annual operation hours of the dryers, OHdryer (hr/yr), and the moisture content of the as-

harvested biomass, %MMBB,0, are known, then the mass flow rate of dry MBB solids 

going through the dryers can be computed in kg/s. 

 , ,0
,

% 11
100 3600

MBB annum MBB
MBB dry

dryer

M M hrm
OH s

⎛ ⎞⎛ ⎞
= − ∗⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

&
&  (5.9) 

Here, the subscript dry will denote matter on a dry basis, meaning zero moisture 

percentage.  MBB exiting a dryer will probably not be completely dry as there will be a 

minimum equilibrium moisture percentage of the biomass dependant on the local 

temperature and relative humidity.  However, in order to determine the number of 

dryers, ,MBB drym&  must be compared to the maximum rated flow of dry matter through the 

dryer, , ,MBB dry capacitym& . 

 
, , ,

,
, , ,

, ,

1, if

, if

MBB dry MBB dry capacity

dryers MBB dry
MBB dry MBB dry capacity

MBB dry capacity

m m

N m
ceiling m m

m

≤⎧
⎪

= ⎨
>⎪

⎩

& &

&
& &

&

 (5.10) 

And if , , ,MBB dry MBB dry capacitym m>& & , then it will be understood that in the following equations,  
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% 11
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MBB dry

dryers

M OH M hrm
N s

⎛ ⎞⎛ ⎞
= − ∗⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

&
&  (5.11) 

for the mass flow in each dryer. 

Moreover, the moisture content of the MBB or the air used to dry the biomass 

can be expressed on a wet basis, 
2 ,H O imf  (kg H2O / kg total mass), or on a dry basis, ωi 

(kg H2O / kg dry mass).  The values 
2 ,H O imf , ωi, and the moisture percentage, %Mi, are 

related to each other by the following expression. 

 
2 ,

% 11
100 1

i
H O i

i

Mmf
ω

= = −
+

 (5.12) 

 

5.2.1.1. Conveyor belt biomass dryers 

A process flow diagram for conveyor belt dryers is illustrated in Figure 5.1.  

Ambient air enters the drying system enclosed by the control volume, CVdryer, and mixes 

with recycled air from the drying chamber enclosed by CVchamber.  The air mixture flows 

through a heat exchanger, where it acquires heat from steam generated from a boiler.  

The air mixture then enters the drying chamber where it carries moisture away from the 

as-harvested MBB.  Some of the air is recycled, while the rest exits the dryer system. 
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Figure 5.1 Mass and energy flow diagram for conveyor belt dryers (adapted from Kiranoudis et al., 1994) 
 

The total enthalpy of air as a function of temperature, T, and humidity ratio, ω, can be 

written as: 

 ( )2 ( ) 2 ( )

0
, , , ,g gair i p air i i f H O p H O ih c T h c Tω= + +  (5.13) 

where cp,air is the specific heat of dry air, 
2 ( ), gp H Oc  is the specific heat of water vapor in 

the air, and 
2 ( )

0
, gf H Oh  is the enthalpy of formation of water vapor, which is approximately 

2501.6 kJ/kg.  The total enthalpy of the wet MBB can also be expressed as: 

 
2 ( ), lMBB MBB dry i i H O ih c T c Tω= +  (5.14) 

Here, cMBB,dry is the specific heat of dry MBB, and 
2 ( )lH Oc  is the specific heat of liquid 

water, which is about 4.20 kJ/kg K.  Ti is in degrees K.  Note that relative humidity, φ , 

is usually known, and ω can be computed from φ  and the temperature with the 

following expression: 

 
( )

( ), 0.622 i g i
air i

air i g i

P T
P P T
φ

ω
φ

=
−

 (5.15) 
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Pair is the air pressure (for this case approximately ambient pressure, 101,325 Pa), and Pg 

is the saturation pressure as a function of temperature.  The Antoine Equation may be 

used to compute Pg from a known air temperature (Pakowski et al., 1991). 

 
( )

3816.44133.322 exp 18.3036
46.13g

i

P
T

⎡ ⎤
= ∗ −⎢ ⎥

−⎢ ⎥⎣ ⎦
 (5.16) 

where Pg is in Pascal (Pa) and Ti is in degrees K. 

Now, a mass and energy balance can be conducted about CVdryer.  From the mass 

balance, the following expression can be found: 

 ( ) ( ),0 , ,0a a a MBB dry MBB MBBm mω ω ω ω− = −& &  (5.17) 

And from the energy balance: 

 ( ) ( ),0 , ,0dryer a a a MBB dry MBB MBBQ m h h m h h= − + −& & &  (5.18) 

A mass and energy balance can also be conducted about CVchamber.  The mass balance 

provides the following expression: 

 ( ) ( ), ,0ac a ac MBB dry MBB MBBm mω ω ω ω− = −& &  (5.19) 

And from the energy balance: 

 ( ) ( ), ,0ac ac a MBB dry MBB MBBm h h m h h− = −& &  (5.20) 

From Figure 5.1, the following expression can also be generated from the mixing of 

ambient air and recycled air for the air mixture that will be sent to the drying chamber. 

 ( ),0ac am a a ac a am h m h m m h= + −& & & &  (5.21) 

For this analysis, the following are usually considered known parameters: 

• the initial moisture content and the temperature of the MBB entering the dryer, 

ωMBB,0 and TMBB,0,  

• the desired moisture content of the MBB, ωMBB, 

• the ,MBB drym&  can be found from equation (5.11), and 

• the properties of the ambient air entering the dryer, ωa,0 and Ta,0. 

The following parameters are typically considered design variables for the dryer: 
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• the moisture content and temperature of the air exiting the dryer chamber, ωa and 

Ta, and 

• the air temperature drop over the drying chamber, ΔTchamber. 

The dryer’s temperature drop is defined as: 

 chamber ac aT T TΔ = −  (5.22) 

Now, the following parameters must all be computed from equations (5.17) 

through (5.22):  am& , Tac, TMBB, dryerQ& , ωac, acm& , and Tam.  The mass flow of air entering 

and exiting CVdryer, am& , can be computed from equation (5.17).  The temperature of the 

air exiting the heat exchanger and entering the drying chamber, Tac, can be computed 

from the defined temperature drop in equation (5.22).  The solution for TMBB depends on 

how exactly the MBB is dried in the chamber.  For example, if the conveyor belt dryer is 

a perpendicular flow dryer, as depicted in Figure 5.2, then TMBB will be approximately 

equal to Ta.  However, if the dryer is a parallel flow dryer as in Figure 5.3, then TMBB is 

approximately equal to the wet bulb temperature, Twb, which is a function of Ta and ωa. 

 
, if perpendicular flow dryer
, if parallel flow dryer

a
MBB

wb

T
T

T
⎧

≅ ⎨
⎩

 (5.23) 

Please refer to Appendix B for an algorithm for computing Twb.  With temperatures Ta,0, 

Ta, TMBB,0, and TMBB either known or computed along with the moisture contents, ω, of 

both the MBB and air, the enthalpies can be computed at each point in Figure 5.1 with 

equations (5.13) and (5.14), and dryerQ&  may be computed from equation (5.18).   

Now, in order to find ωac, and acm& , the remaining equations (5.19) and (5.20) 

must be combined: 

 ,0

,0

MBB MBBac a

a ac MBB MBB

h hh h
ω ω ω ω

−−
=

− −
 

and arranged as: 

 ,0 ,0

,0 ,0

MBB MBB MBB MBB
ac ac a a

MBB MBB MBB MBB

h h h h
h hω ω

ω ω ω ω
− −

+ = +
− −
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From equation (5.13), the enthalpy of the air entering the dryer is 

( )2 ( ) 2 ( )

0
, , ,g gac p air ac ac f H O p H O ach c T h c Tω= + + .  Plugging this equation into the expression 

above, and solving for ωac, an equation for ωac can be obtained: 

 

2 ( ) 2 ( )

,0
,

,0

,00
, ,

,0
g g

MBB MBB
a a p air ac

MBB MBB
ac

MBB MBB
f H O p H O ac
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h h
h c T

h h
h c T

ω
ω ω

ω

ω ω

⎛ ⎞−
+ −⎜ ⎟⎜ ⎟−⎝ ⎠=
⎛ ⎞−

+ + ⎜ ⎟⎜ ⎟−⎝ ⎠

 (5.24) 

With ωac computed, acm&  can be found with either equations (5.19) or (5.20).  The 

enthalpy, and hence the temperature, of the air mixture, Tam, can be computed from 

equation (5.21). 

Thus far, the analysis has produced solutions for drying parameters that are 

essential for computing operation costs of drying.  For example, the value determined for 

dryerQ&  can now be used to determine how much steam will be required for the heat 

exchanger.  If the boiler is operated at a pressure, Pboiler, and produces saturated steam, 

then the steam temperature, Tst can be computed by rearranging the Antoine Equation: 

 
( )

3816.44 46.13
18.3036 ln 133.322st

boiler

T
P

= +
−

 (5.25) 

The steam consumption is thus, 

 
2 ,

st

dryer
steam T

H O fg

Q
m

h
=
Δ

&
&  (5.26) 

where 
2 ,

stT
H O fghΔ  is the latent heat of vaporization, which is a function of Tst.  Pakowski et 

al. (1991) suggested the following polynomial equation to compute 
2 ,

stT
H O fghΔ : 

 

( ) ( )
( ) ( )
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2
,
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2504.65 2.80701 273.15 1.21884 2 273.15

1.25205 4 273.15 4.50499 7 273.15
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H O fg st st

st st
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h T e T

e T e T

e T

Δ = − ∗ − + − ∗ −
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− − ∗ −

 (5.27) 
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Here, 
2 ,

stT
H O fghΔ  is in kJ/kg and Tst is in K.  The amount of fuel required, in kJth/s, to 

produce this steam can be computed as: 

 
( ) ( )( ),0steam steam st fw a

dryer fuel
boiler

m h T h T
F

η

−
=
&

&  (5.28) 

Here, boilerη  is the boiler efficiency, hsteam is the enthalpy of the steam entering the heat 

exchanger, and hfw is the enthalpy of the boiler feed water, which is usually a function of 

the ambient temperature.  The capital cost of the dryer’s boiler is usually a function of 

steamm& . 

The electrical energy consumed by the dryer’s fans can be computed, in kW, 

with the following expression: 

 1
1,000

chamber ac
fans

air

P m kNE
Nρ

⎛ ⎞Δ ∗
= ∗⎜ ⎟

⎝ ⎠

&&  (5.29) 

where ΔPchamber is the pressure drop in the drying chamber, in Pa, and ρair is the air 

density. 

However, in order to determine the capital investment cost of a conveyor belt 

dryer, the conveyor belt area, Abelt, must be determined, and this analysis depends on 

whether the air flow is perpendicular to a screen mesh conveyor or if the air flow runs 

parallel to the conveyor belt.  Expressions suitable to estimate the belt area for both of 

these cases will now be presented. 

 

5.2.1.1.1 Perpendicular air flow dryer 

A schematic of a parallel flow, conveyor belt dryer can be seen in Figure 5.2.  

Dryer air, which was heated by the steam, flows over a packed bed of MBB traveling 

along a conveyor of length, l, and a known width, w.  The belt area, Abelt is simply l*w.  

There are two different ways to compute Abelt for perpendicular flow dryers:  (1) a drying 

model based on an empirical drying constant, km, discussed by Kiranoudis et al. (1994) 
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and (2) a drying model based on a transfer number B, discussed by Incropera et al. 

(2002). 
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Figure 5.2 Perpendicular-flow conveyor belt dryer 

 

Drying model with km: 

The drying constant, km, is proportional to the time rate of moisture removal from 

the MBB, and can be defined as: 

 ( ),
MBB

m MBB E MBB
d k

dt
ω ω ω= −  (5.30) 

Here, ,MBB Eω  is the equilibrium moisture percentage of the MBB.  This equation can be 

integrated: 

 ( )
,0 , 0

MBB

MBB

t
MBB

m
MBB E MBB

d k dt
ω

ω

ω
ω ω

′
′=

′−∫ ∫  

The prime on the variables indicates a dummy variable for integration.  Completing the 

integration with a substitution method, and solving for the final moisture percentage of 

the MBB, M BBω , the following expression may be obtained: 

 ( ) ( ), ,0 , expMBB MBB E MBB MBB E mk tω ω ω ω= + − −  (5.31) 
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Here, t can be thought of as the MBB residence time in the dryer.  The equilibrium 

moisture percentage, ωMBB,E, is the driest moisture percentage that can be obtained for 

the biomass, given the air temperature and humidity.  Thus, ωMBB,E is a function of Ta 

and the relative humidity, aφ .  The Guggenheim-Anderson-de Boer (GAB) Equation can 

be used to compute ωMBB,E: 

 
( )( ), 1 1

m a
MBB E

a a a

CK
K K CK

ω φω
φ φ φ

=
⎡ ⎤− − +⎣ ⎦

 (5.32) 

where,  
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P
P T
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Here, ωm, C0, CHΔ , K0, and KHΔ are constants that can be found from drying 

experiments   

The drying constant, km, can be expressed as an empirical constant as a function 

of a characteristic MBB particle size, dc (such as the mass-mean diameter), the 

temperature of the exiting air, Ta, the humidity of the exiting air, ωa, and the air velocity, 

U∞. 

 0
l UTk k kk

m c a ak k d T Uωω ∞=  (5.33) 

The constants k0, kl, kT, kω and kU are all empirical constants that can be found from 

experiments for different biomass solids such as MBB.  The air velocity, U∞, which is 

actually the upstream velocity that would exist if the packed MBB bed were not present, 

can be defined with the following expression: 

 ( ) ( )1 1ac ac ac ac

air belt air

m m
U

A lw
ω ω

ρ ρ∞

+ +
= =
& &

 (5.34) 

One other important parameter is the biomass application load at the dryer’s 

entrance, ,0MBBρ′  (kg/m2, on a wet basis).  This application load is simply the product of 
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the MBB’s as-received bulk density, , ,0b MBBρ , and the application thickness, at,0 (in 

meters), of MBB on the conveyor belt at the entrance of the dryer. 

 
( ), ,0

,0 , ,0 ,0

1MBB dry MBB
MBB b MBB t
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m t
a

A
ω

ρ ρ
+

′ ≡ =
&

 (5.35) 

The application thickness, and thus ,0MBBρ′ , can be considered a design value.  

However, equations (5.31), (5.33), (5.34), and (5.35) must be used to compute the 

following four unknowns in this analysis:  U∞, t, Abelt, and km.  First, combine equations 

(5.31) and (5.33) to eliminate km and solve for U∞: 
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 (5.36) 

Similarly, combine equations (5.34) and (5.35) to eliminate Abelt and solve for U∞: 
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Now, equate (5.36) and (5.37) and solve for the MBB residence time, t: 
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 (5.38) 

Once t is found, either equations (5.36) or (5.37) can be used to find U∞, equation (5.33) 

can be used to find km, and finally Abelt can be computed from either equations (5.34) or 

(5.35). 

This analysis can be very useful if the empirical constants in equations (5.32) and 

(5.33) are known for the product that is being dried, in this case MBB, and thus avoiding 

the use of thermo-physical properties and transport coefficients which may produce 

inaccurate results, especially in large scale industrial applications such as a MBB 

distribution system for large coal-fired power plants (Kiranoudis et al., 1994).  However, 
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if these coefficients are not known, then a mass transfer model based on a transfer 

number, B, must be utilized instead. 

 

Drying model with B: 

An alternative model for drying biomass can be based on a presumption that the 

rate of evaporation is controlled by moisture transport through the boundary layer 

between the solid biomass particles and the dryer air.  The transfer number, B, is the 

driving force for the transfer of moisture from the MBB to the dryer air.  The transfer 

number, for this problem, can be defined as: 

 2 2

2

, ,

, 1
H O H O s

H O s

mf mf
B

mf
∞ −=

−
 (5.39) 

Here, 
2 ,H Omf ∞  is the mass fraction of water in the dryer air and 

2 ,H O smf  is the mass 

fraction of water at a point very near the biomass surface.  For this problem, let the 

temperature of the dryer air T∞ = Tac, and let the 
2 ,H Omf ∞  = 

2 ,H O acmf , which can be 

computed from equation (5.12). 

In order to compute 
2 ,H O smf , it is necessary to know the temperature near the 

biomass surface, Ts.  At steady state operation, it can be assumed that the process in the 

drying chamber is adiabatic, so that Ts ≈ Twb.  The wet bulb temperature, Twb, is a 

function of T∞ and ω∞.  The saturated humidity ratio very near the MBB surface can then 

be computed as: 

 
( )

( )
0.622 g wb

s
air g wb

P T
P P T

ω =
−

 

Finally, 
2 ,H O smf  can then be computed from equation (5.12). 

The moisture removal rate from the MBB to the dryer air can be computed, for 

this case, with the following expression: 

 ( )w ac a acm m ω ω= −& &  (5.40) 

The transfer number, B, is proportional to this moisture removal rate with a mass transfer 

conductance coefficient, g. 
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B is dimensionless and g has dimensions of kg/m2 s.  g* is the mass transfer conductance 

coefficient for a very small mass transfer rate.  The ratio of g and g* is a strong function 

of B, and for turbulent flows with constant free-stream velocities and high mass-transfer 

rates, the ratio of g and g* can be approximated by the following expression (Annamalai 

et al., 2006): 

 ( )ln 1
*

Bg
g B

+
=  (5.42) 

AMBB is the wetted surface area of the biomass particles per unit volume of the packed 

bed of MBB on top of the conveyor belt, and has units of m2 / m3.  Multiplying AMBB 

with the length (l), width (w), and height of the biomass bed will produce the 

approximate surface area of the particles exposed to the dryer air.  The height of the bed 

will be the sum of the application thickness, at,0, and the conveyor belt or screen 

thickness, abelt.  AMBB can be computed with the following expression: 

 ( )2

3

6 1
MBB

c

mA
m d

ε
ψ

−⎡ ⎤
=⎢ ⎥ ⋅⎣ ⎦

 (5.43) 

where, ε is the porosity of the MBB, which is defined as the void volume of the packed 

bed of biomass divided by the total volume of the bed.  The parameter, ψ, is the 

sphericity factor, which is a correction for non-spherical particles.  Bituminous coal has 

a sphericity factor between 1.05 and 1.11 and sand has a sphericity of 1.57 (Hinds, 

1999). 

The only parameter, aside from l, that is not known in equation (5.41) is g*.  The 

purpose of this analysis is to find l and thus the conveyor belt area (l * w).  However, 

first g* can be expressed in terms of the mass-transfer Stanton number (Stm).  The Stm is 

a modification of a dimensionless concentration gradient at the surface of the MBB (or 

whatever product is being dried) called the Sherwood number (Sh).  With this 

modification, inertial forces can be related to mass transfer resistance; in this case, the 



 131

resistances of moisture transfer from the MBB to the dryer air.  The Stm can be defined 

as the following: 

 m
*St

air

g
Uρ ∞

=  (5.44) 

However, for this case, in order for the Stm to be useful it must be particularly applied to 

the flow of air through a packed bed of particles, as in the MBB dryer.  In order to do 

this, the Colburn j factor for mass transfer must be introduced. 

 2/3
mSt Scmj =  (5.45) 

where Sc is the ratio of momentum forces to mass diffusivities.  For air at nominal 

temperatures, Sc is approximately 0.6.  This Colburn j factor is a dimensionless mass 

transfer coefficient, which becomes useful for this case since it can be applied to flow 

over packed beds with the following equation given by Incropera et al. (2002). 

 0.5752.06 Re
cm djε −⋅ =  (5.46) 

This expression is valid for Re
cd  between 90 and 4000.  The Reynolds number (Re) is 

the ratio of inertial forces to viscous forces and for this case, the characteristic length is 

dc.  The Re for this problem can be expressed as the following: 
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&
 (5.47) 

Since U∞ is not yet known, it can be eliminated by inserting the definition of U∞ from 

equation (5.34). 

Now, combining equations (5.44), (5.45), and (5.46), an expression for the 

unknown g* can be obtained: 

 2/3 0.575* 2.06 Sc Re
c
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⎝ ⎠

 (5.48) 

Next, if this expression for g* is inserted into equation (5.41), along with equation (5.42) 

for the ratio of g over g*, the following equation will be obtained: 
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Then, the definitions of the Re and the U∞, equations (5.47) and (5.34) respectively, can 

be plugged along with equation (5.40) for wm&  to provide: 
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Finally, solving for l, gives an explicit formula for computing the length of the biomass 

dryer. 
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Multiplying through by the width of the conveyor belt, w, will give an expression for the 

area, Abelt: 
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Once Abelt is computed, the velocity, U∞, and the residence time, t, may be found 

with the definitions for velocity, equation (5.34), and manure application load, ,0MBBρ′  

equation (5.35). 

The pressure drop, for perpendicular flow dryers, may be estimated by the 

Carmen-Kozeny Equation for fluid flow through packed beds (Ergun, 1952 and 

Ramadan et al., 2007): 
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 (5.50) 

where the friction factor, f ′ , for packed beds has been found to be: 

 1150 1.75
Re

cd

f ε⎛ ⎞−′ = +⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.51) 

Here, the Reynolds number is based on dc, just as in equation (5.47). 
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5.2.1.1.2 Parallel air flow dryer 

A schematic of MBB entering and exiting a parallel flow conveyor belt drying 

chamber is illustrated in Figure 5.3.  The analysis for finding Abelt for this case is similar 

to that of perpendicular flow dryers, except that the solution for g* differs. 
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Figure 5.3 Parallel flow conveyor belt dryer 

 

The rate of moisture removal, wm& , remains the same as equation (5.40), as does the 

definition of B in equation (5.39) and the value of the ratio (g / g*) in equation (5.42); 

however, equation (5.41) now becomes the following 

 *
*

wm ggB g B
lw g

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠

&
 (5.52) 

This problem can be estimated as drying over a flat plate, described in Kays et al. 

(2005) for laminar flow.  The definition of the Sherwood number with respect to the 

length of the dryer’s conveyor belt can be expressed as the following: 

 
2 ,

*Sh l
air H O air

g l
ρ

⋅
=

D
 (5.53) 

where 
2 ,H O airD  is the binary mass diffusion coefficient for water vapor in air.  At standard 

pressure and temperature, 
2 ,H O airD  is approximately 0.26 x 10-4 m2/s.  However, since the 
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flow in the dryer will probably be turbulent, an expression relating Shl to Rel and Sc for 

turbulent flow over a flat plate can be taken from Incropera et al. (2002). 

 1/3 4/5Sh 0.037 Sc Rel l= ⋅  (5.54) 

The Reynolds number for this problem, Rel, can be defined as the following: 
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where U∞ is now: 
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and the effective linear velocity of the MBB through the dryer is: 
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These two velocities are added together in equation (5.55) if the flow of the dryer air is 

opposite, or counter-flow, to the travel direction of the conveyor belt.  If the air flow is 

flowing in the same direction as the travel of the conveyor belt, then UMBB is subtracted 

from U∞.  Also note that a is the height of the drying chamber as shown in Figure 5.3. 

Now, equating expressions (5.53) and (5.54) and solving for g*: 

 2 , 1/3 4/5* 0.037 Sc Reair H O air
lg

l
ρ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

D
 (5.58) 

Next, equations (5.42) and (5.58) can be inserted into equation (5.52) to obtain the 

following: 

 ( )
2

1/3 4/5
,0.037 ln 1 Sc Rew air H O air lm B wρ= +& D  (5.59) 

 

Finally, inserting equations (5.55), (5.56), (5.57) and (5.40) into equation (5.59) and 

solving for the conveyor belt length, l: 
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Multiplying through by w, will give Abelt: 
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This equation is applicable for 5Re 5 10l >> × .  Unlike the previous problem for 

perpendicular flow dryers, U∞ does not depend on Abelt or l, and can be computed simply 

with equation (5.56).  The MBB residence time in the dryer for this case is simply: 

 ( )
, ,0 ,0
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5.2.1.2. Steam-tube rotary biomass dryers 

Another type of dryer that may be utilized to dry MBB for combustion processes 

is a steam-tube rotary biomass dryer.  These dryers may be particularly useful when a 

supply of steam happens to be available, as will be the case for some of the small-scale, 

on-the-farm systems that will be discussed later.  An illustration of a rotary steam-tube, 

indirect dryer is shown in Figure 5.4.  The numbering system for the points in this 

diagram follows the numbering system for small scale combustion systems that will be 

discussed later.  At point 2, wet as-harvested biomass enters the dryer and tumbles down 

an incline at angle, α, as the drum rotates with an angular velocity, Ndrum.  The inner 

diameter of the drum is D, while the total length of the dryer will once again be denoted 



 136

as l.  At point 3, dry biomass exits the dryer.  Pressurized saturated steam is supplied at 

point 9d where it resides in both an outer steam jacket and inner steam tubes of smaller 

diameter.  This water exits the dryer at point 10 as saturated liquid, having never come 

into direct contact with the biomass.  The drying chamber is kept open to the atmosphere 

so that at steady state operation vapor generated from the evaporated moisture from the 

biomass entrains the chamber, along with a small amount of air, and exits the dryer at 

point 11. 
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Figure 5.4 Indirect rotary steam-tube dryer for biomass 

 

A cross-sectional view of the rotary dryer can be seen in Figure 5.5.  The smaller 

steam tubes within the drying chamber have diameters, dtubes, and the total number of 

these tubes in the dryer is ntubes.  As the drum rotates, fins scoop up the biomass particles 

and drop them at the top of the dryer’s diameter.  The biomass particles fall through the 

entrained vapor, where it is presumed that much of the drying occurs through forced 

convection as the particles free-fall back to the bottom of the drum. 
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Figure 5.5 Cross-sectional view of rotary steam-tube dryer (adapted from Canales et al., 2001) 

 

There are four basic modes of heat transfer occurring during the steady state 

operation of these types of dryers that are considered to be the most significant: 

1. Latent heat of vaporization from the biomass particles to the entrained vapor, 

2. Sensible heat from the small steam tubes to the vapor, 

3. Sensible heat from the vapor to the biomass particles, and 

4. Sensible heat from the steam jacket to the vapor. 

The processes for this dryer are divided into two sections:  a heating zone in which the 

biomass solids are heated up to a drying temperature and a drying zone in which 

moisture is removed from the biomass particles.  The axial direction down the length of 

the dryer will be denoted as the z direction.  As can be seen in Figure 5.6, the 

temperature of the biomass, TMBB,0, increases to TMBB = T3 in the heating zone at a point 

z′ .  From z′  to the end of the dryer’s length, l, the temperature of the MBB remains 

constant at TMBB.  In the heating zone, the moisture content of the MBB, remains 

constant at ωMBB,2, but drops down to ωMBB,3 in the drying zone.  The temperature of the 

steam remains constant, Tsteam, throughout the length of the dryer since it enters as 
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saturated steam and exits as saturated liquid at the same pressure.  Moreover, since the 

pressure of the vapor generated from the moisture removal of the MBB particles is 

assumed to be at uniform ambient pressure throughout the drying chamber, the vapor 

temperature, Tvapor, is also considered constant throughout the length of the dryer at 

steady state operation. 
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Figure 5.6 Heating and drying zones and assumed temperature and moisture content profiles for rotary 

steam-tube dryer (adapted from Canales et al., 2001) 
 

This type of dryer has been modeled by Canales et al. (2001) for modeling fish 

meal drying and more information about these types of dryers can be found in this 

reference.  The modeling equations and assumptions for the model are presented by 

Canales et al., but a solution for the purposes of this modeling study will be presented 

here.  During Canales et al.’s study, the objective was largely to compute the final 

moisture content of the dried product (in their case, fish meal).  However, for the current 

application, the final MBB moisture percentage, ωMBB,3, is known, and the primary 
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purpose will be to compute the vapor temperature, Tvapor, and ultimately the required 

steam flow rate, ,9steam dm& . 

The analysis can begin by considering the Drying Zone, that is, the second part 

of the dryer from point z′  in Figure 5.6 to point l.  The moisture loss of the MBB 

particles can be written as: 

 MBB

MBB

d R
dz U
ω

=  (5.62) 

where UMBB is the effective linear velocity of the MBB down the z-axis of the dryer, 

while R is the rate of drying (kg water / kg MBB s).  For this case, R can be computed 

as: 

 ( )
2 ,

MBB

MBB v MBB
vapor MBBT

vapor H O fg

h AR T T
hρ

−= − −
Δ

 (5.63) 

Here, MBB vh −  is the convective heat transfer coefficient between the MBB particles and 

the entrained vapor in the dryer chamber, AMBB is the wetted area of the MBB particles 

exposed to the vapor.  The parameter is similar to equation (5.43); however, instead of a 

fixed bed, the solid biomass is a percentage of the total volume of the dryer.  This 

percentage of volume is usually referred to as the “holdup” of the dryer, χ .  Equation 

(5.43) may be modified for the case of rotary dryers. 
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=  (5.64) 

where χ  here is inputted as a fraction.  ρvapor is the density of the vapor, and 
2 ,H O fghΔ  is 

the enthalpy of vaporization of water and is a function of TMBB.  Integrating equation 

(5.62) for the entire length of the Drying Zone, from z′  to l: 
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and inserting equation (5.63) for R, the following expression can be obtained: 
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Next, an energy balance of the heat transfer in and out of the entrained vapor in 

the drying chamber’s Drying Zone can be conducted.  This can be best visualized in 

Figure 5.5 for the different heat transfer rates to and from the vapor. 
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Here, t vh −  and j vh −  are the convective heat transfer coefficients for the steam tubes and 

the steam jacket, respectively, to the vapor.  Atubes and Ajacket are the surface areas of the 

tubes and the jacket, respectively, in the Drying Zone.  dryerV  is the volume of the Drying 

Zone. 

 ( )tubes tubes tubesA n d l zπ ′= −  (5.67) 

 ( )jacketA D l zπ ′= −  (5.68) 

 ( )
2

4dryer
DV l zπ ′= −  (5.69) 

The diameter, D, of the dryer, the ratio, (l - z′ ) / D, and the rotation speed of the 

drum, Ndrum, will be considered design parameters.  Equations (5.65) and (5.66) will be 

used to solve for Tvapor and UMBB.  However, first TMBB must be computed and 

expressions for each of the heat transfer coefficients must be found. 

Since the drying occurring in the rotary steam-tube dryer is not adiabatic, the 

assumption that the MBB particles will be near the wet bulb temperature will not be 

valid, but the temperature of the MBB particles during drying still corresponds to the 

saturation temperature of water vaporizing at its partial pressure.  Since the dryer 

chamber is uniformly at atmospheric pressure with a small fraction of air, the saturation 

pressure is: 

 ( ) ,sat MBB atm steam vaporP T P Y=  (5.70) 
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where Ysteam,vapor is the molar fraction of steam in the entrained vapor (mole steam / mole 

vapor).  Basically, this molar fraction must be considered another design parameter for 

the dryer.  Canales et al. (2001) set Ysteam,vapor to 0.95 as the base case in their study. 

Now, the convective heat transfer coefficients must be determined, beginning 

with MBB vh − .  After the MBB particles are carried up to the top of the drum, they fall 

through the vapor.  As this happens, most of the vaporization occurs.  If it is assumed 

that the particles reach a terminal velocity as they fall, then a Reynolds number can be 

determined, then a Nusselt number (Nu) can be computed, and finally MBB vh −  may be 

found.  The terminal velocity of a particle in free fall depends on its drag coefficient, CD; 

however, in order to compute CD, the velocity must be known, hence this is usually an 

iterative problem.  However, Hinds (1999) provides an empirical equation that can be 

used to compute a particle’s terminal velocity, VMBB,t, directly: 

 ( )2
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MBB t
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μ
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 (5.71) 

where J is: 
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Again, dc is a characteristic MBB particle size and ρp,MBB is the dry density of a MBB 

particle.  Also, gc is the gravitational acceleration, 9.81 m/s2.  The Reynolds number for 

this case is: 

 ,Re vapor MBB t c
MBB v

vapor

V dρ
μ− =  (5.72) 

Once VMBB,t is computed with equation (5.71), ReMBB-v can be computed.  If ReMBB-v > 1, 

then the value for VMBB,t is accurate.  However, if ReMBB-v is found to be < 1 and if dc > 1 

μm, then Stokes law should be used instead of equation (5.71) to find VMBB,t: 
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The Prandtl number, which is the ratio of momentum forces and thermal 

diffusivities, can be computed for the entrained vapor as: 

 ,Pr p vapor vapor
vapor

vapor

c
k

μ
=  (5.73) 

Here, kvapor is the thermal conductivity of the entrained vapor in the drying chamber. 

Now, the Nu can be expressed as a function of ReMBB-v and Prvapor.  According to 

Canales et al. (2001) and Incropera et al. (2002), the following relation may be used for 

this case: 

 ( )1/2 2/3 0.4
, ,Nu 2 0.4Re 0.06Re PrMBB v MBB v MBB v vapor− = + +  (5.74) 

Finally, from the definition of the Nu, MBB vh −  can be computed: 

 Nu vapor
MBB v MBB v

c

k
h

d− −

⎛ ⎞
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⎝ ⎠
 (5.75) 

Next, t vh −  must be determined.  Although Canales et al. (2001) does not go into 

detail on how to find this heat transfer coefficient, a comparable relation can be found in 

Incropera et al. (2002).  The steam tubes, as seen in Figure 5.5, are in a staggered 

arrangement around the drying chamber.  As the drum rotates, these tubes move through 

the entrained vapor. 
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Figure 5.7 Arrangement of steam tubes in rotary dryer 

 

The arrangement of these steam tubes is illustrated in Figure 5.7.  The velocity of the 

steam tubes on the inner ring will be: 

 , 2inner tube drum
DV N κ

=  (5.76) 

where Ndrum is in radians/s.  κ is a fraction of the drum’s radius (D/2) where the inner 

ring of tubes is located, for example ½ or ¾.  The distance between the tubes on the 

inner ring can be computed with the following expression, assuming that the tubes are 

evenly spaced: 

 
( )2L

tubes

DS
n
π κ⋅ ⋅

=  (5.77) 

Notice that ntubes must be an even number of tubes and that (ntubes/2)*dtubes < πκD.  Next, 

the distance, ST may be computed with the following: 

 ( )
2T
DS λ κ= −  (5.78) 

and the diagonal distance, SD, can be found to be: 
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The Reynolds number for this problem is based on the maximum velocity, 

Vmax,tube, of the fluid flow through the staggered tube arrangement, which can be 

computed as: 
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Now, the Reynolds number for this problem, Retubes, can be computed as: 

 max,Re vapor tube tube
tubes

vapor

V dρ
μ

=  (5.81) 

Again, the Nusselt number will be a function of Re and Pr; however, in addition to 

Prvapor, the Prandtl number evaluated at the temperature of the steam tubes, Tsteam, will be 

required. 

 ( ) ( ) ( )
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,Pr p vapor steam vapor steam
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c T T
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=  (5.82) 

Next, the Nusselt number can be expressed in the following form (Incropera et 

al., 2002): 
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 (5.83) 

where C and m are empirical constants, which can be found in Table 5.1. 

 
Table 5.1 Constants for Nusselt number computed in equation (5.83) 
Retubes C m 

10 - 102 0.90 0.40 

102 - 103 0.51 0.50 

103 – 2 x 105 0.35*(ST/SL)1/5 0.60 

2 x 105 – 2 x 106 0.022 0.84 

 

Finally, ht-v can be found from the Nusselt number definition: 
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t v
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k
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d
−

− =  (5.84) 

The last convective heat transfer coefficient that must be computed is for the heat 

transferred from the steam jacket to the entrained vapor, hj-v.  This heat transfer problem 

can be estimated to be simply fluid flow through a circular pipe.  The first step is to 

determine an effective velocity for the entrained vapor, Uvapor.  This velocity can be 

related to the mass flow rate of moisture evaporation from the MBB particles. 
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The Reynolds number for this case is simply: 

 Re vapor vapor
D

vapor

U Dρ
μ

=  (5.86) 

and the Nusselt number can be computed as a function of Re and Pr (Incropera et al., 

2002), and hj-v can be determined from the Nusselt definition once again: 

 4/5 0.4Nu 0.023Re Prj v D vapor− =  (5.87) 

 
Nu j v vapor

j v

k
h

D
−

− =  (5.88) 

Now, inputting equations (5.67) through (5.69) into equation (5.66) and 

rearranging, the following expression may be obtained: 
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The only remaining unknown in this equation is Tvapor, which can be solved iteratively.  

Notice that the left hand side of the equation is simply the cross-sectional area of the 

dryer, so only the right hand side must be computed iteratively for Tvapor.  However, 

since Tvapor must be lower than Tsteam and higher than TMBB, as can be seen in Figure 5.6, 

the iterative process for this expression is relatively simple.  But also notice that some of 
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the properties, such as ρvapor and μvapor, used to calculate the convective heat transfer 

coefficients are also functions of Tvapor.  Once the solution for Tvapor is completed, then 

equation (5.65) can be solved for UMBB: 
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( )
2 , ,2 ,3
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hρ ω ω
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 (5.90) 

In order to find the total length of the dryer, l, and not just the length of the 

Drying Zone, (l - z′ ), the Heating Zone must be evaluated.  The rate of temperature 

increase of the MBB solids can be found to be: 
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 (5.91) 

Integrating this expression from 0 to z′  and TMBB,0 to TMBB, the following equation for z′  

may be obtained: 
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 (5.92) 

The total length is then: 

 ( )l l z z′ ′= − +  

With UMBB, the required tilt or slope of the rotary dryer, α, can be computed.  

However, empirical holdup equations for rotary dryers must be used for this 

computation.  Friedman et al. (1949) suggested the following equation for the residence 

time, t, of solids in a rotary dryer: 

 0.9 tanMBB drum

l lt
F N D
χ ξ

α
⋅ ⋅

= =
&

 (5.93) 

where χ is the holdup, or the percentage of the dryer’s volume that is full of biomass, or 

whatever solids are being dried.  ξ is an empirical constant that must be determined 

experimentally for each dryer arrangement.  Also, MBBF&  is the volumetric feed rate of the 

MBB with units of m3/s per m2 of dryer cross-section.  For this case, MBBF&  can be 

computed in terms of the mass flow rate: 
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MBBF&  can now be used find α  with the following equation. 

 0.9tan MBB
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F
N D

ξα
χ

=
&

 (5.95) 

The holdup and volumetric flow rate can also be related to UMBB, 

 
0.9 tandrumMBB
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N DFlU
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α

χ ξ
= = =

&
 (5.96) 

Friedman et al. (1949) suggested that χ values between 3 and 7% of the dryer’s volume 

are usually preferable.  Also, for computing t in seconds, a value of 10.584 for ξ was 

found to agree well with experiments for direct contact rotary dryers; however, 

experiments would have to be conducted with steam-tube dryers to find a more accurate 

value for ξ. 

In order to compute the steam consumption of the dryer, an energy balance about 

the entire dryer, CVdryer in Figure 5.4, must be conducted.  The solution for the steam 

consumption, steamm& , is: 
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Here, hvapor is the enthalpy of the entrained vapor exiting the dryer at point 11 in Figure 

5.4. 

In this study, steam-tube rotary dryers will be mostly considered for conceptual 

designs of small scale, on-the-farm combustion systems.  However, the economic costs 

of rotary dryers can be estimated for large scale applications in a similar way to 

conveyor belt dryers.  Whereas the capital cost of a conveyor belt dryer is a function of 

the conveyor belt area, according to Brammer et al. (2002) the capital cost of a rotary 

dryer depends on the average moisture content of the solids, the mean temperature 
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difference between the solids and the drying medium (in this case, the entrained vapor), 

and the heat transferred to the biomass solids. 

 ( )MBB v MBB dryer vapor MBB

heat transfered to
h A V T T

MBB solids −

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (5.98) 

 

5.2.2. Transporting Manure-based Biomass 

Coal transportation and processing is generally well understood and practiced.  

Most industrial and utility operations that require coal have amortized capital and 

operational procedures already in place and the cost of importing coal to the plant and 

injecting it into the burner is pretty much set for each individual operation and type of 

coal burned.  Therefore, for the present study, the cost of processing and importing coal 

will be a simple dollar per ton input or design value. 

However, the cost of transporting the biomass for co-firing and reburning 

processes must be determined from known values of fueling rate, moisture percentage, 

labor, distance between plant and feeding operation and other transportation costs. 
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Figure 5.8 Transporting MBB from animal feeding operations to centralized drying facilities and to large 

power plants 
 

The cost of transporting the dried cattle biomass to the power plant is one of the 

most significant cost to a biomass reburn facility.  One of the most important parameters 

that will be considered is the average distance between the animal feeding operation(s) 

and the power plant, D̂  in km.  This average distance may also include the driving 

distance between the feeding operations and any centralized drying composting facility 

if drying equipment is not directly built on the feeding operations.  See Figure 5.8.  This 

distance will determine the number of hauling vehicles (trucks) required to move the 

biomass (Ntrucks, trucks per trip), as well as the number of round trips that those trucks 

must take per year (Ntrips) to consistently supply the biomass to the power plant. 

The following hauling transportation analysis is adopted largely from a USEPA 

(2001) report on the economics of running confined animal feeding operations.  Other 

parameters that must be known for the following transportation analysis are: 
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• the annual hours of operation of the reburn facility (OHreburn), which may or may 

not be the same as OHplant, 

• the biomass loading and unloading times (tload & tunload) in minutes, 

• the average truck speed ( t̂rucks ) in km per hour, 

• the hauling schedule (HS), that is, the number of hours per day spent hauling, 

• the number of hauling days per year (Nhaul days), 

• the density of the dried biomass (ρb,MBB), and 

• the volumetric capacity of each truck ( truckV ) in cubic meters (m3) per truck. 

The modeling of biomass transportation begins with the total annual amount of 

cattle biomass required for the power plant, ,MBB annumM& .  Taking into account loading, 

unloading, and driving time, the total time (hours) for one trip must now be computed. 

 ( ) ˆ2
ˆ60

load unload
trip

truck

t t Dt
min hr s
+

= +  (5.99) 

Here, D̂  is multiplied by two in order to account for the total round trip of the haul.  

With the time for one trip known, the maximum annual number of trips for one truck 

may be determined. 

 ,
haul days

trips max
trip

HS N
N Ceiling

t
∗

=  (5.100) 

The word “ceiling” in the equation means that the result of this computation is rounded 

up to the nearest integer number of trips.  Moreover, the hauling capacity, in kg, for each 

truck can be computed from its haul volume. 

 ,truck b MBB truckC Vρ=  (5.101) 

The total number of trucks required may be determined from ,MBB annumM& , 

equation (5.100), and equation (5.101). 

 ,

,

MBB annum
trucks

trips max truck

M
N Ceiling

N C
=

&
 (5.102) 
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This is the total number of trucks that the power plant must purchase to consistently 

supply the plant with biomass reburn fuel.  The capital cost of these trucks can be a 

significant obstacle for implementing the retrofit on the plant, especially for larger 

capacity firing units. 

Subsequently, once the number of trucks is determined, the actual number of 

trips required per year may now be computed. 

 ,
,

MBB annum
trips actual

trucks truck

M
N Ceiling

N C
=

&
 (5.103) 

Lastly, the total annual hours each truck spends loading, unloading, and 

transporting biomass reburn fuel can be computed with the following expression. 

 , ,total annual trip trips actualt t N=  (5.104) 

One other significant factor in determining the number of trucks and hauling time 

during MBB transport is the decision of whether to dry the biomass before transportation 

or to transport raw, wet manure and dry the biomass at the power plant.  Drying the 

manure at the power plant might save considerable dryer fueling costs if waste heat from 

the coal-fired boiler is used to dry the biomass.  However, transporting raw manure 

would mean higher diesel consumption for the transport vehicles because the hauling 

vehicles would also transport a considerable amount of moisture with the manure solids.  

As far as equations (5.99) through (5.104) are concerned, the parameter that will change 

with this decision is the total mass of MBB that must be transported, ,MBB annumM& .  If raw 

manure is transported, then ,MBB annumM&  is considerably greater, and hence, Ntrucks, 

Ntrips,actual, and ttotal,annual will all be greater as well. 

The annual fuel consumption of all the transport vehicles can be computed in 

liters with the following expression. 
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5.2.3. Grinding and Processing of Manure-based Biomass 

As discussed in the literature review, the operation and maintenance costs for 

processing biomass for co-firing and reburning facilities has been modeled previously by 

the DOE (2004), the USEPA (2007c), and during the earlier reburn model conducted by 

the USEPA (1998).  In order to utilize the estimations from these previous studies, only 

the plant capacity or the hourly consumption of MBB (co-fire or reburn fuel) is required 

to compute an annual dollar cost of operating and maintaining grinders, silos, and 

conveyor belt systems at the power plant to handle the biomass before combustion. 

However, it is possible that the grinding and processing cost of manure biomass 

may deviate from that of coal or wood-based biomass discussed by the previous studies.  

In particular, it is not known if MBB can be grinded in the same equipment used to grind 

coal, particularly in pulverized coal plants.  All experiments and pilot scale tests for 

MBB reburning and co-firing that have been conducted by the Texas A&M Coal and 

Biomass Laboratory were done with manure that had been pulverized with a hammer 

mill and a subsequent impact mill at the Texas A&M University System, Bushland 

Research and Extension Center in Bushland, Texas.  However, these mills are not 

necessarily the type of mills used at pulverized coal plants.  Hammer mills are used to 

chop solids that are more fibrous than coal, such as MBB, into coarsely ground particles.  

The coarse particles can then be pulverized by blasting them in an impact mill (Heflin, 

2008). 

Ideally, an experimental study should be conducted to compare the electricity 

consumption of hammer mills and impact mills processing coal, wood-based biomass, 

and MBB.  From these experiments, anticipated maintenance and labor costs should also 

be estimated.  Shi et al. (2003) conducted an energy-based model for swing hammer 

mills at coke oven feed burners, but the modeling equations in this study have empirical 

constants that require experimental results for each specific hammer mill tested. 

For the sake of the current modeling study, the estimations from the DOE (2004), 

the USEPA (2007c), and the earlier reburn model conducted by the USEPA (1998) will 
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be used along with a gross estimation of the electric consumption of the hammer mill 

and impact mill used at the Bushland facility. 

 

5.2.4. Emissions from Pre-combustion Processing of Biomass 

In addition to the cost of operating and maintaining drying and transportation 

equipment for manure biomass, there may also be indirect costs from gaseous emissions 

resulting from drying and transporting.  Here, the more significant emission is CO2 from 

both gas boilers for the manure dryers and diesel combustion for the hauling vehicles.  

Of course, carbon emissions from pre-processing will only be economically significant if 

there is a monetary value placed on CO2 from nonrenewable sources.  In fairness, this 

monetary value would also be applied to these emissions from dryers and trucks, which 

may detract from the emissions savings seen when burning MBB in the place of coal.  In 

cases when MBB is used as reburn fuel in existing coal plants for NOx reduction, NOx 

emissions from transport vehicles may also be significant and must be accounted for 

during emission savings calculations. 

The CO2 levels from drying depend on what fuel is burned to generate the heat 

energy in the boilers.  If natural gas is burned, then the CO2 emissions can be estimated 

to be the same as carbon emissions from burning methane (CH4).  The CO2 level from 

burning methane, 
2 ,CO dryingL , is 49.4 kg CO2 / GJ.  If propane is used instead of natural 

gas, then 
2 ,CO dryingL  will be 59.5 kg / GJ.  The annual emission of CO2, in metric tons, 

from drying the manure biomass can be computed with the following expression: 
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 (5.106) 

The fuel consumption, ,dryer fuelF& , can be computed with equation (5.28).  Notice, that the 

biomass dryers will also consume electricity, predominantly from fans and blowers.  The 

annual CO2 emission from electricity consumption can be estimated from the electricity 
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consumption from the fans, fansE& , which was computed earlier in equation (5.29), along 

with the CO2 levels from burning coal, which will be discussed in a later section.  Since 

about half of the electricity consumed in the US is generated from burning coal, carbon 

emissions from coal combustion may be a worst case estimate for the actual carbon 

footprint of fans and blowers in manure dryers.  However, other estimates of the carbon 

emission from electricity consumption may be made if electricity is known to come from 

other sources. 

Carbon dioxide will also be emitted from hauling vehicles, which are typically 

fueled with diesel.  If diesel can be estimated as C12H26, then about 2.64 kg of CO2 is 

emitted for every liter of diesel (22 lb CO2 / gallon) that is burned, assuming that the 

density of diesel is approximately 0.85 kg/liter.  So, the annual emission of CO2 from the 

vehicles can be computed with the following expression. 

 
2 2, ,

1
1,000CO trucks CO diesel diesel
metric tonF

kg
⎛ ⎞

= ∗ ∗⎜ ⎟
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&E L  (5.107) 

where, 
2 ,CO dieselL  for this case is simply 2.64 kg/liter and dieselF&  was computed in equation 

(5.105). 

Nitrogen oxides from biomass transportation may also be significant.  If the 

average distance from feeding operations, is long enough, then over time the NOx 

emitted by the hauling trucks may become significant compared to the controlled 

amount of NOx from the power plant.  Currently, most diesel powered vehicles limit 

NOx with exhaust flue gas recirculation (EGR) systems, oxidation catalysts, and special 

injection timing to meet lower NOx limits of about 0.93 g/MJ (2.5 g/bhp-hr).  However, 

to meet 2007 standards of 0.075 g/MJ (0.2 g/bhp-hr), diesel powered trucks are to be 

equipped with special NOx absorbers and selective catalytic reduction (SCR) systems 

(Krishnan et al., 2005).  Therefore the NOx emission level from each of the trucks will 

be: 
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The total annual hours spent hauling the manure can be computed as: 
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If the typical percent load factor for the trucks is %Ltruck and the rated horsepower is 

hptruck, then the annual NOx emission from hauling manure biomass to existing coal 

plants can be computed with the following expression. 
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5.3. General Modeling of Coal and Biomass Oxidation 

5.3.1. Direct and Complete Combustion of Coal and Biomass Fuels 

Modeling the combustion of coal or MBB can begin with determining an 

empirical chemical formula quantifying the elements in the combustible material of the 

fuel—carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S).  This 

empirical formula can be derived from an ultimate analysis of the fuel.  Moreover, the 

systems that are modeled in this study involve variations of the moisture and ash 

percentages (%M and %A, respectively) of MBB.  For example, different MBB 

collection techniques at animal feeding operations partly determine the ash content of 

the as-fired biomass and solid separators; and dryers change the moisture percentage of 

MBB before combustion.  Cleaning and drying processes also alter the %M and %A of 

coals.  Therefore, during this analysis, the combustible elements must be expressed in 

terms of %M and %A for both coal and MBB. 
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Here, the numbers DAFk are the dry, ash-free fractions (kg element per kg of dry, ash-

free fuel) of each element in the fuel and the constants in the denominators are the 

elemental molecular weights. 
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Figure 5.9 General combustion process for coal and manure-based biomass 

 

Consider the generalized combustion system for coal and/or MBB fuels in Figure 

5.9.  Fuel, with a certain amount of moisture and ash, is injected into the system along 

with air and is burned completely, generating heat and products of combustion (CO2, 

H2O, SO2, N2, and O2).  The empirical formula of the combustible material in the fuel 
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(CCHHNNOOSS) can be used in the following chemical reaction equation, derived from a 

balance of species entering and exiting the control volume about the combustion system, 

to determine the amount of each product of combustion.  Since this particular analysis 

will be utilized several times throughout this section, the control volume in Figure 5.9 

will be referred to as the reference control volume (CVref). 
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 (5.112) 

Here, w is the number of kmoles of liquid water per 100 kg of as received fuel and 

2 ,H O airy  is the mole fraction of water vapor in the combustion air.  The water vapor mole 

fraction can be found with the following equation: 

 
2 ,

( )
( )

g air
H O air

air g air

P T
y

P P T
φ
φ

=
−

 (5.113) 

where φ  is the known relative humidity of the air, Pair is the air pressure, and Pg is the 

saturation pressure as a function of temperature found in equation (5.16). 

Note than the water, c, in the right hand side of equation (5.112) includes the 

liquid water in the fuel, the water vapor initially in the combustion air, and the water 

produced during the combustion process.  Moreover the ash in this chemical balance 

equation is assumed to be inert and does not contribute to the chemical balance equation; 

however, the inert ash will play some role in determining flame temperatures and heat 

transfer rates later in the analysis and so, is included here for completeness.  Since there 

are six unknowns in equation (5.112):  a, b, c, d, e, and f, and only five elemental 

balance equations from the five elements present in the reaction (C, H, N, O, and S), 

another input parameter and equation must be introduced in order to solve the chemical 

reaction equation.  Determining this equation can begin by considering the 

stoichiometric reaction equation describing the case in which an ideal amount of air is 

used in the combustion process so that no O2 remains in the products of combustion. 
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where ast is the stoichiometric amount of air required to completely burn the fuel.  Now, 

conducting an atom balance for equation (5.114). 

 Carbon: 

 b C=  (5.115) 

 Hydrogen: 

 
2 ,

791
2 21st H O air
Hc w a y ⎛ ⎞= + + +⎜ ⎟
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 (5.116) 

 Sulfur: 

 e S=  (5.117) 

 Oxygen: 

 
2 ,

792 1 2 2
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⎝ ⎠
 

Inserting equations (5.115), (5.116), and (5.117), and solving for ast: 

 
4 2st
H Oa C S= + + −  (5.118) 

The excess air percentage can now be defined as the following: 

 % 1 100
st

aEA
a

⎛ ⎞
= − ∗⎜ ⎟
⎝ ⎠

 (5.119) 

%EA can now be treated as a design variable and is the extra input parameter required 

for this analysis.  Solving equation (5.119) for a and inserting equation (5.118): 

 % 1
100 4 2

EA H Oa C S⎛ ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.120) 

With a known, equation (5.112) can now be solved.  Note that b, c, and e are the 

same as in equations (5.115), (5.116), and (5.117). 

 Oxygen: 
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 Nitrogen: 
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Now, with equations (5.115) through (5.117) and equations (5.120) through (5.122), the 

number of kmoles of each species, Nk, entering and leaving CVref can be determined.  

The number of kmoles entering the CVref as fuel, excluding ash, are: 
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The number of kmoles entering the CVref as the combustion air are: 
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 (5.124) 

The number of kmoles exiting the CVref as products of combustion, excluding ash, are: 
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 (5.125) 

Equations (5.123) through (5.125) can also be expressed in terms of %M and %A 

if equation (5.111) is plugged in.  Moreover, the liquid moisture and the ash in the fuel 

can be expressed with the following equations. 

 %
18.02

Mw =  (5.126) 

 , , %ash fuel ash outm m A= =  (5.127) 

The next step in this analysis is to conduct an energy balance about CVref.  This 

conservation analysis will be done for two general cases:  one in which Qloss in Figure 

5.9 is zero so that an adiabatic flame temperature can be calculated and secondly, where 

Qloss is the heat transferred from the furnace to a process, for example heat to boil water 

to generate steam. 

The fist case is shown in Figure 5.10.  Here, coal or MBB solids will be directly 

fired in a furnace, producing heat and products of combustion.  Since there is no heat 

lost by the system, the temperature of the products exiting the system, Tout, is 

approximately the same as the flame temperature, Tflame. 
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Figure 5.10 Energy conservation for computing adiabatic flame temperature 

 

The energy balance equation for this system can be written as: 

 

( )
( ){ }

( ){ }

2, , ( ), ,

,
, ,

,

0 298

298

298

fuel DAF fuel DAF H O l fuel ash p ash fuel

k k k k fly ash p ash out
air in products out

bottom ash p ash ash

N h wh m c T

N h N h m c T

m c T

= + + −

+ − − −

− −

∑ ∑  (5.128) 

where ,ash fuel fly ash bottom ashm m m= + .and cp,ash is the specific heat of the inert material in the 

fuel.  The enthalpies, kh , have two components:  enthalpies of formation, 0
,298,f kh , and 

changes in thermal enthalpy, ,
T

t khΔ .  The temperature 298 K (537 R, 77 °F) is assumed to 

be the reference temperature.  The changes in thermal enthalpy are functions of 

temperature, in this case, either the temperature of the air or the flame temperature. 

 0
,298, ,

T
k f k t kh h h= + Δ  (5.129) 

 ( ) ( ), , ,
298

T
T T

t k t k p kh h T c T dT ′Δ = Δ = ∫  (5.130) 
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In order to calculate ,
T

t khΔ , the function of ,p kc  in terms of T must be known.  

Although, in cases where the flame temperature is either known or hypothesized to be at 

a certain range, the specific heats can be considered to be approximately constant with T, 

usually allowing for an analytical solution to complete combustion problems.  However, 

for the current study, since moisture and ash percentages of MBB fuels will vary greatly, 

so too will the flame temperature, and thus specific heats will not be considered 

constant.  Instead, polynomial equations for specific heats for different species will be 

used when determining values of ,
T

t khΔ .  These polynomials are provided in Table 5.2. 

 
Table 5.2 Polynomial equations used to compute specific heats of various species (Annamalai et al., 2006) 
Species Temperature 

range 
Polynomial equation for computing specific heat ( pc R ) 

300 – 1,000 K 2.275724 + 0.09922072E-1*T - 0.10409113E-4*T2 + 0.06866686E-7*T3 - 
0.0211728E-10*T4 CO2 

1,000 – 5,000 K 4.453623 + 0.03140168E-1*T - 0.12784105E-5*T2 + 0.02393996E-8*T3 - 
0.16690333E-13*T4 

300 – 1,000 K 3.386842 + 0.03474982E-1*T - 0.06354696E-4*T2 + 0.06968581E-7*T3 - 
0.02506588E-10*T4 H2O(g) 

1,000 – 5,000 K 2.672145 + 0.03056293E-1*T - 0.08730260E-5*T2 + 0.12009964E-9*T3 - 
0.06391618E-13*T4 

300 – 1,000 K 3.298677 + 0.14082404E-2*T - 0.03963222E-4*T2 + 0.05641515E-7*T3 - 
0.02444854E-10*T4 N2 

1,000 – 5,000 K 2.92664 + 0.14879768E-2*T - 0.0568476E-5*T2 + 0.10097038E-9*T3 - 
0.06753351E-13*T4 

300 – 1,000 K 3.212936 + 0.11274864E-2*T - 0.0575615E-5*T2 + 0.13138773E-8*T3 - 
0.08768554E-11*T4 O2 

1,000 – 5,000 K 3.697578 + 0.06135197E-2*T - 0.1258842E-6*T2 + 0.01775281E-9*T3 - 
0.11364354E-14*T4 

SO2 300 – 2,000 K 5.699 + 0.801E-3*T - 1.015E5*T-2 
Here, R  is the ideal gas constant, 8.314 kJ/kmole K, and T is in degrees K 

 

The enthalpy of the fuel may be computed as the following: 

 

( )

( )
2 2

2

0
, ,298, ,

0 0
, ,298, ,298, ( )

0
,298, ,

298

2
298

fuel DAF f fuel fuel DAF fuel fuel

fuel DAF fuel f CO f H O l

f SO fuel DAF fuel fuel

h h c MW T

HHHV MW Ch h

Sh c MW T

= + −

= + +

+ + −

 (5.131) 
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Here, ,fuel DAFc  is the specific heat of the dry, ash-free content of the fuel.  The molecular 

weight of the dry, ash-free fuel is simply: 

 100 1
12.01 1.008 14.0067 15.994 32.065

fuel
kg DAF fuel kg DAF fuelMW or

kg as received kmole DAF fuel
C H N O S

⎡ ⎤
⎢ ⎥
⎣ ⎦
= ∗ + ∗ + ∗ + ∗ + ∗

 (5.132) 

Next, expand the summations in equation (5.128) and plug in equations (5.129) 

and (5.131) to obtain the following energy equation for the control volume problem in 

Figure 5.10.  Keep in mind that the values of 
2

0
,298,f Oh  and 

2

0
,298,f Nh  are zero. 
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 (5.133) 

The temperature of the incoming fuel (Tfuel), incoming air (Tair), and outgoing bottom ash 

(Tash) are considered known design variables.  The only unknown in equation (5.133) is 

Tout, which is approximately equal to the flame temperature, Tflame.  However, this 

variable is embedded in the polynomial equations for , ,
298

out

out

T
T

t k p kh c dT ′Δ = ∫  and must be 

solved iteratively. 

The second case in which the energy balance about CVref can be conducted is one 

in which Qloss is not zero, but rather is defined as the heat lost by the combustion system 

and gained by an external process such as steam production.  This case is illustrated in 

Figure 5.11. 
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Figure 5.11 Energy conservation for computing heat lost to an external process 

 

In this case, simply revisit equation (5.128), and include Qloss. 
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 (5.134) 

If Qloss is positive, then heat is said to be entering CVref.  If Qloss is negative, then heat is 

exiting CVref and being transferred to the desired process.  Since the objective of the 

combustion system in Figure 5.11 is to transfer as much heat to the boiler water as 

possible, a more negative Qloss is desirable.  Hence, it can be seen how preheating the 

fuel and the combustion air (i.e. increasing the quantities of the last four terms in 

equation (5.134) on the right-hand side) would improve the amount of heat transferred 

from the combustion system to the external process.  Lowering Tout as much as possible 
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is also desirable, although in practice this is limited due to the formation of sulfuric acids 

in the stack.  Equation (5.134) can be expanded in much the same way as equation 

(5.133), only here, all temperatures—incoming fuel temperature (Tfuel), incoming air 

temperature (Tair), exiting bottom ash temperature (Tash), and the temperature of the 

products of combustion exiting the stack (Tout = Tstack)—are considered known design 

variables. 

 

5.3.2. Partial Oxidation and Gasification of Coal and Biomass Fuels 

From a practical design point, there is a major issue confronting a combustion 

system such as the one depicted in Figure 5.11, and that is ash fouling and clogging in 

the fire tube as the products of combustion travel from the furnace to the stack.  This 

problem is of particular concern for fuels with high ash contents such as MBB.  Fouling 

and clogging from high ash inputs are also problems for steam-tube boilers (although 

probably not to the same extent) in which the boiler water and subsequent steam are 

located in the tube(s) and the hot combustion products travel over the steam tube(s). 

One way to avoid much of the ash fouling and clogging on heat exchanger and 

boiler tube surfaces is to avoid having any fly ash in the hot products of combustion at 

all.  It is possible to achieve this by first partially oxidizing, or gasifying, the coal and/or 

MBB solids generating producer gas predominantly made up of carbon monoxide (CO) 

and hydrogen (H2).  See Figure 5.12.  The producer gas can then be fed into a gas 

furnace to generate heat energy.  As shown in the figure, the producer gas may also be 

sent through a filter or clean-up system to remove any remaining inert particles before 

combustion. 

In addition to air, steam may also be supplied to the gasifier to produce higher 

concentrations of H2 in the producer gas.  The objective of this analysis is to 

approximate the composition of the producer gas; given the fuel composition, the 

amount of air injected into the gasifier, the amount of steam injected into the gasifier, the 

pressure in the gasification chamber, and the temperature in which the gasifier is 

operated. 
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Figure 5.12 Partial oxidation of coal and biomass and subsequent burning of producer gases 

 

The analysis may begin with the chemical balance formula for the species 

entering and exiting CVgasifier. 

 

( )
2

2 4 2 2

2 2

2 (l) , 2 2 2 (g)

, 2 , , 4 , 2 , 2

, 2 , 2 (g)

79C H N O S H O Ash O N H O
21

CO CO CH H S N

H H O Ash

C H N O S O air steam

CO g CO g CH g H S g N g

H g H O g

w n n

n n n n n

n n

⎛ ⎞+ + + + +⎜ ⎟
⎝ ⎠

→ + + + +

+ + +

 (5.135) 

The amount of air injected into the gasifier, unlike in the previous complete combustion 

case, will be less than the stoichiometric amount required to completely burn the fuel 

and convert all carbon present in the fuel to CO2.  Therefore, instead of defining %EA, 

an equivalence ratio will be defined as: 

 
2 ,

st

O air

aER
n

=  (5.136) 
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where the definition of ast for this case is the same as that in equation (5.118).  Yet, %EA 

can be expressed in terms of ER. 

 2 , 1% 1 100 1 100O air

st

n
EA

a ER
⎛ ⎞ ⎛ ⎞= − ∗ = − ∗⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (5.137) 

However, for gasification, ER will be greater than one, making %EA negative, thus 

making it an air deficiency percentage. 

For cases in which steam is injected into the gasifier along with air, a steam-air 

ratio is defined as the following: 

 

2 ,
791
21

steam

O air

nSAR
n

=
⎛ ⎞+⎜ ⎟
⎝ ⎠

 (5.138) 

The solution to the chemical reaction equation (5.135) can begin with an atom balance, 

just as was done for equation (5.112). 

Carbon: 

 
2 4, , ,CO g CO g CH gC n n n= + +  (5.139) 

Hydrogen: 

 
4 2 2 2, , , ,2 2 4 2 2 2steam CH g H S g H g H O gH w n n n n n+ + = + + +  (5.140) 

Oxygen: 

 
2 2 2, , , ,2 2O air steam CO g CO g H O gO w n n n n n+ + + = + +  (5.141) 

Nitrogen: 

 
2 2, ,

792 2
21O air N gN n n⎛ ⎞+ =⎜ ⎟

⎝ ⎠
 (5.142) 

Sulfur: 

 
2 ,H S gS n=  (5.143) 

With equations (5.118) and (5.136), 
2 ,O airn  can be found to be: 

 
2 ,

1
4 2O air
H On C S

ER
⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

 (5.144) 

Inserting this result into equation (5.138): 
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 791
21 4 2steam

SAR H On C S
ER

⎛ ⎞⎛ ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

 (5.145) 

And inserting into equation (5.142): 

 
2 ,

1 79
2 21 4 2N g
N H On C S

ER
⎛ ⎞⎛ ⎞= + + + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (5.146) 

Now, the remaining unknowns are 
2 ,CO gn , ,CO gn , 

4 ,CH gn , 
2 ,H gn , and 

2 ,H O gn , but 

only equations (5.139), (5.140), and (5.141) remain.  In order to complete this problem, 

two equations from chemical equilibrium analysis must be obtained.  However, first 

these remaining equations can be reformatted and simplified by defining the total 

number of moles of carbon ( ,C inn ), hydrogen (
2 ,H inn ), and oxygen (

2 ,O inn ) entering the 

gasifier’s chamber (CVgasifier in Figure 5.12) as: 

 ,C inn C=  (5.147) 

 
2 , 2H in steam

Hn w n= + +  (5.148) 

 
2 2, ,2 2 2

steam
O in O air

O w nn n= + + +  (5.149) 

Moreover, the mole fractions of each species in the producer gas can be defined as 

, , ,i g i g tot gy n n= , where ,tot gn  is the total moles in the producer gas. 

 
2 4 2 2 2 2, , , , , , , ,tot g CO g CO g CH g H S g N g H g H O gn n n n n n n n= + + + + + +  (5.150) 

and 

 2 2

2 4 2 2

, ,
, , , , ,

, ,

1 H S g N g
CO g CO g CH g H g H O g

tot g tot g

n n
y y y y y

n n
= + + + + + +  (5.151) 

So that equations (5.139), (5.140), and (5.141) become 

 ( )2 4, , , , ,C in CO g CO g CH g tot gn y y y n= + +  (5.152) 

 2

2 4 2 2

,
, , , , ,

,

2 H S g
H in CH g H g H O g tot g

tot g

n
n y y y n

n
⎛ ⎞

= + + +⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.153) 
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2 2

,,
, , ,2 2

H O gCO g
O in CO g tot g

yy
n y n

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠

 (5.154) 

Assuming that there is no O2 present in the producer gas and that all the solid 

carbon in the coal and/or MBB fuel is converted to either CO2, CO, or CH4, the relevant 

chemical equilibrium reaction equations can be reduced to the following two (Probstein 

et al., 2006b): 

I 4 2 2CH H O CO 3H+ ↔ +  (5.155) 

II 2 4 2CO CH 2CO 2H+ ↔ +  (5.156) 

For a general reaction, A B C DA B C Dν ν ν ν+ ↔ + , the equilibrium constant, K, can be 

computed as: 

 ( )
C D A B

C D

A B

C D

A B ref

y y PK T
y y P

ν ν ν ν
ν ν

ν ν

+ − −
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

where, P is the reactor pressure and Pref is a reference pressure—usually 1 atmosphere 

(101.325 kPa).  So, for this case the equilibrium constants are: 

 ( ) 2

4 2

3
, , 2

, ,

CO g H g

CH g H O g

y y
K T P

y y
=I  (5.157) 

 ( ) 2

2 4

2 2
, , 2

, ,

CO g H g

CO g CH g

y y
K T P

y y
=II  (5.158) 

These two equations are the remaining two equations required to successfully complete 

the analysis of CVgasifier; however, the equilibrium constants, which are functions of 

temperature, must first be computed.  It can be shown that log logi iK Kν=∑ , so that 

for this case: 

 ( )
4 2

CO

CH H O

KK T
K K

=
⋅I  (5.159) 

and 

 ( )
2 4

2
CO

CO CH

KK T
K K

=II  (5.160) 
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where, 

 ( )
0

, ,exp f T i
i

g
K T

RT
⎛ ⎞−Δ

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (5.161) 

Here, 0
, ,f T igΔ  is the Gibbs free energy function, which can be expressed in terms of the 

enthalpy of formation and a polynomial function of temperature.  The ideal gas constant, 

R , is 0.008314 kJ/mol K.  Note that since the Gibbs free energy of H2 is zero, 
2HK  is 

unity, and thus does not appear in equations (5.159) and (5.160).  Probstein et al. 

(2006b) suggested the following equation for 0
, ,f T igΔ : 

 0 0 2 3 43 4 5
, , ,298, 1 2 6 7ln

2 3 2f T i f i
c c cg h c T T c T T T c c T

T
⎛ ⎞ ⎛ ⎞ ⎛ ⎞Δ = + − − − + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (5.162) 

The constants for this equation can be found in Table 5.3. 

 

Table 5.3 Constants for computing Gibbs free energy, 0
, ,f T igΔ , in equation (5.162) in kJ/mol, temperature, 

T, in degrees Kelvin (Probstein et al., 2006b) 

Species 

0
,298,f ih  

(kJ/mol) c1 c2 c3 c4 c5 c6 c7 
CH4 -74.8 -4.620E-2 +1.130E-5 +1.319E-8 -6.647E-12 -4.891E+2 +1.411E+1 -2.234E-1 

CO -110.5 +5.619E-3 -1.190E-5 +6.383E-9 -1.846E-12 -4.891E+2 +8.684E-1 -6.131E-2 

CO2 -393.5 -1.949E-2 +3.122E-5 -2.448E-8 +6.946E-12 -4.891E+2 +5.270E+0 -1.207E-1 

H2O -241.8 -8.950E-3 -3.672E-6 +5.209E-9 -1.478E-12 0 +2.868E+0 -1.722E-2 

 

Now, using equations (5.151) through (5.154), (5.157), and (5.158), the chemical 

equilibrium problem can be solved.  Combining equations (5.151) through (5.154), the 

mole fractions ,CO gy , 
4 ,CH gy , 

2 ,H gy , and 
2 ,H O gy  can be expressed in terms of 

2 ,CO gy  and 

,tot gn : 

 2 2

2

, , , ,
, ,

,2
C in H in N g tot g

CO g CO g
tot g

n n n n
y y

n
− − +

= −  (5.163) 

 2 2

4

, , , ,
,

,2
C in H in N g tot g

CH g
tot g

n n n n
y

n
+ + −

=  (5.164) 
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y y

n
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= +  (5.165) 

 2 2 2

2 2

, , , , ,
, ,

,

4
2

O in H in C in N g tot g
H O g CO g

tot g

n n n n n
y y

n
+ − + −

= −  (5.166) 

Next, combining equations (5.157) and (5.158): 

 2 2

2

, ,

, ,

H O g CO g

H g CO g

K y K y
y y

=I II  

and plugging in equations (5.163), (5.165), and (5.166), and rearranging, a quadratic 

equation for 
2 ,CO gy  can be obtained in terms of ,tot gn : 

 
( ) ( )

( )
2 2 2

2

2 2
, , , , 2 ,

, 1 1

4 2 4

4 0

tot g CO g tot g O in CO g

O in

n K K y n K n A K y

n A A K

− − +

+ − =

I II I II

I

 (5.167) 

The solution to this equation using the quadratic formula is: 

 
( )( )

( )
2

2

2 2
, , 1 1

, 2
,

16 4

8
tot g O in

CO g
tot g

b b n K K n A A K
y

n K K

− ± − − −
=

−
I II I

I II

 (5.168) 

where, 

 ( )2, , 22 4tot g O inb n n K A K= − +I II  

 
2 21 , , , ,C in H in N g tot gA n n n n= − − +  

 
2 2 2 22 , , , , , ,3 4 2 3tot g O in C in H in H S g N gA n n n n n n= − − − − −  

Values for ,tot gn  can be chosen in an iterative fashion, generating solutions for 

the mole fractions in equations (5.163) through (5.166) and (5.168).  Then, checking if 

these solutions satisfy both equations (5.157) and (5.158), the true solution for the mole 

fractions and ,tot gn  may be determined; thus, establishing the composition of the 

producer gas exiting the gasifier chamber in Figure 5.12. 

The higher heating value of the producer gas can be computed with the following 

expression. 

 ( )prod gas i iHHV y HHV= ∗∑  (5.169) 
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Now, the analysis that was just discussed for the mass and energy balance about 

CVgasifier is really only necessary if the constituents and the heat value of the producer 

gas must be known.  However, going back to Figure 5.12, the same reference control 

volume (CVref) that was used to model complete combustion (see Figure 5.9 and Figure 

5.10) can be drawn around the combined process of gasification plus immediate 

combustion of the producer gas in a furnace.  If air is the only oxidizer in the gasifier, 

then the gasifier-furnace system depicted in Figure 5.12 is thermodynamically equivalent 

to the solid burner depicted in Figure 5.10, since the same inputs (solid fuel and air) and 

same outputs (products of combustion and ash) flow in and out of CVref in both cases.  

Therefore, for the remainder of this paper, particularly in the discussion of small-

scale on-the-farm combustion systems, the term “combustion” can either mean a solid 

fuel burner or a gasifier-furnace system.  The analysis for complete oxidation of solid 

fuels presented in Section 5.3.1 can adequately model the mass and energy flows of both 

solid fuel burners and gasifier-furnace systems. 

The one problem with this reasoning may come from loss on ignition (or leftover 

char or carbon) that may exit the gasifier with the bottom ash and slag.  If this carbon 

loss is significant, then either the heat value of the solid fuel inputted into the model can 

be decreased (say by 10 to 20%) or an additional term can be written into the mass and 

energy balances (equations (5.112) and (5.134), respectively). 

 

5.4. Modeling Manure-Based Biomass Combustion in Large Utility Coal-Fired 

Boilers 

In order to model the economics of MBB combustion in large coal fired power 

plants, whether it be for co-firing or for reburning with coal, the power plant’s operating 

conditions must first be known or computed.  Plant operating parameters such as the 

capacity, the heat rate, the capacity factor, the annual operating hours, the ultimate 

analyses of the primary and co-fire (or reburn) fuels, the higher heating values of the 

fuels, and the percentage of the plant’s heat rate supplied by each fuel are known or 

design variables.  Other parameters such as the plant’s overall heat energy consumption 
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rate, the mass fueling rates of the primary and co-fire (or reburn) fuels, the plant’s 

overall thermal efficiency, and the various emissions can generally be computed from 

these inputs.  Also, different blends of fuels may be assigned to the primary and reburn 

zones.  Moreover, the moisture and ash percentages (before and after any drying and/or 

transportation process) of each of the fuels must be known as well. 

After the plant’s operating parameters and emissions are determined, then the 

drying, preparation and transportation of MBB can be modeled.  Finally, the economics 

of all of these aspects to the overall biomass combustion system can be estimated. 

 

5.4.1. Heat and Fueling Rates of Coal-fired Power Plants 
Coal-fired power plants are usually defined by their electric capacity, P , in MW.  

Typically, a power plant will have a number of separate units (say two or three), each 

with its own capacity, fuel and air injection systems, and emissions controls.  Parameters 

that are typically known and considered design parameters are: 

• the plant’s heat rate, H , is commonly expressed in Btu/kWh in the US (that is, 

Btu of heat supplied per kWh of electricity produced), but for this paper in which 

modeling equations are expressed in SI units, H  will be expressed in kJth/kWh, 

• the plant’s capacity factor, %CF, which is the average annual percentage of 

capacity at which the plant is operating (i.e. actual electrical power production 

level divided by the electrical capacity), 

• the plant’s annual hours of operation, OHplant, in hr/yr, 

• the higher heating values of each of the fuels (coal, biomass, etc.), HHV, in 

kJ/kg, and 

The power plant’s overall, time rate consumption of heat, Q& , in kJ/s can be computed 

with the following expression: 

 1,000 /% 1
100 3600

e

e

kJ sCF hrQ
MW s

⎛ ⎞ ⎛ ⎞⎛ ⎞= ∗ ∗⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

& H P  (5.170) 

The plant’s overall efficiency percentage may be computed as: 
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 ( )1 3600 100%
1plant

s
hr

η
⎛ ⎞

= ∗ ∗⎜ ⎟
⎝ ⎠H

 (5.171) 

The required mass rate of fuel required to satisfy the plant’s time rate of heat 

consumption, in kg/s, is: 

 
,

,
% %1 100 100

coal
coal coalcoal as fired

coal DAF

Q Qm
M AHHV HHV

= =
⎛ ⎞∗ − −⎜ ⎟
⎝ ⎠

& &
&  (5.172) 

If the chemical composition of the coal (ultimate analysis) is known, then 

equations (5.123) through (5.125) can be used to find the amount of air required to burn 

the coal in the furnace, as well as the emissions of CO2, H2O, N2, SO2, and O2 in the 

exhaust gas, assuming complete combustion. 

 

5.4.2. Coal-fired Power Plant Emissions 

Co-firing and reburning coal with MBB can at least affect four different 

emissions from coal-fired power plants:  NOx, SOx, ash, and nonrenewable CO2.  

However, before discussing MBB’s impact on these emissions, some knowledge of the 

production of these emissions during regular operations, before any biomass is utilized, 

must be obtained. 

 

5.4.2.1. NOx from primary burn zones 
In coal plants, the main source of NOx is fuel-bound nitrogen.  Seventy to 80 percent of 

the NOx produced from coal combustion is generated from the oxidation of HCN and 

NH3 emitted during the primary pyrolysis of volatile nitrogen, secondary pyrolysis of tar 

nitrogen, and heterogeneous combustion of char nitrogen. 

To simplify the analysis, instead of generating an equilibrium model to estimate 

the NOx emission from coal combustion, base NOx level assumptions will be adopted 

from the US EPA’s Integrated Planning Model (IPM) for predicting emissions, electric 

capacity, and economic costs of utility power generators.  In Table 5.4 the levels of 
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uncontrolled NOx from coal combustion ( ,uncontrolled NOxL ), assuming that no primary 

controls such as low-NOx burners are installed on the power plant, are listed for different 

boiler types and coal ranks in g/GJth. 

 
Table 5.4 Uncontrolled NOx levels for wall and tangentially fired coal-fired power plants, assuming no 
primary or secondary NOx control technologies are used (USEPA, 2006) 

Boiler Type Coal Type 

Uncontrolled Base NOx 
Levels (g/GJth), 

,uncontrolled NOxL  
Bituminous 640.20 Wall fired Sub-bituminous/lignite 348.90 
Bituminous 330.16 

Tangentially fired Sub-bituminous/lignite 217.68 

 

However, most coal-fired boilers in the US do have special low-NOx burners that 

decrease NOx emissions from the primary burn region to more acceptable levels.  The 

extent to which NOx levels are reduced by primary controls depends on the type of 

boiler, the type of coal, and the type of low-NOx burner and over fire air configuration.  

The EPA suggested the following expression for computing the average NOx levels 

achieved by primary controls, , xprimary NOL , in g/GJth. 

 ( ), , ,1primary NOx uncontrolled NOx uncontrolled NOxa b⎡ ⎤= − + ∗⎣ ⎦L L L  (5.173) 

The values of constants a and b are listed in Table 5.5 for different primary controls 

installed on wall-fired and tangentially-fired boilers. 
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Table 5.5 Constants for equation (5.173), used to determine NOx levels, in g/GJth, attained by primary 
NOx controls (USEPA, 2006) 

Boiler Type Coal Type 
Primary NOx 

Control* 
a in equation 

(5.173) 
b in equation 

(5.173) 
LNB 0.163 6.3263E-4 

Bituminous LNBO 0.313 6.3263E-4 

LNB 0.135 12.5828E-4 
Wall-fired 

Sub-bituminous/ 
lignite LNBO 0.285 12.5828E-4 

LNC1 0.162 7.8149E-4 

LNC2 0.212 7.8149E-4 Bituminous 
LNC3 0.362 7.8149E-4 

LNC1 0.200 16.6764E-4 

LNC2 0.250 16.6764E-4 

Tangentially-fired 

Sub-bituminous/ 
lignite 

LNC3 0.350 16.6764E-4 
*LNB = low-NOx burner; LNBO = LNB with over fire air; LNC1 = LNB with close-coupled OFA; LNC2 = LNB with 
separated OFA; and LNC3 = LNB with both close-coupled and separated OFA. 
 

Nitrogen oxide emissions can also be expressed in different ways when reporting 

them to regulatory agencies such as the EPA.  The NOx level computed with equation 

(5.173) is a ratio of mass of pollutant and energy consumed, but NOx can also be 

expressed as a ratio of mass of pollutant and electrical energy delivered by the plant, 

g/kWh. 

 , , 6

1
10x xprimary NO primary NO

GJ
kJ

⎛ ⎞
′ = ∗ ∗⎜ ⎟

⎝ ⎠
L L H  (5.174) 

The emission index, EINOx (g NOx / kg fuel), can be computed with the following: 

 , , 6

1
10NOx primary NOx coal as fired

GJEI HHV
kJ

⎛ ⎞
= ∗ ∗⎜ ⎟

⎝ ⎠
L  (5.175) 

The annual NOx emission, NOxE , can be computed with the following equation, in metric 

tons per year: 

 , , 6 6

1 1 3600
10 10 1x xNO hourly primary NO

metric ton GJ sQ
g kJ hr

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= ∗ ∗ ∗ ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
&E L  (5.176) 

 , ,x xNO annum NO hourly plantOH= ∗E E  (5.177) 
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In order to find the kmole (or volume) fraction of NOx in the exhaust from the primary 

burn region, equations (5.125) for the number of kmoles of each element, Nk,out, in the 

exhaust can be used in the following equation. 

 
( )

2

,
,

1* 100 /
1,000

x

NOx NO

NO
k out

out dry

kgEI kg fired MW
g

fraction
N

⎛ ⎞
∗⎜ ⎟

⎝ ⎠=
∑

 (5.178) 

Typically, kmole fractions are reported on a dry basis, thus 
2 ( ) ,gH O outN  will be left out of 

the summation in the denominator of equation (5.178).  Moreover, by convention, the 

molecular weight of NO2 (
2NOMW  = 46) is used when reporting NOx emissions because 

the species NO is quickly converted to NO2 in the atmosphere, and NO2 is more 

germane to the health effects from NOx emissions.  The fraction can also be expressed in 

parts per million (ppm) of NOx. 

 610NOx NOxppm fraction= ∗  (5.179) 

Molar fractions of emissions, such as NOx, are also reported on a standard 

oxygen percentage basis to avoid any distortion of pollutant emissions by diluting the 

exhaust with air.  The standard oxygen level, %Ostandard, in the exhaust is defined as: 

 

2

2

2 2 2 2

,

,
, ,

,

, , , ,

%
100

O outstandard

k out
out dry standard

O out

CO out N out SO out O out

NO
N

N
N N N N

=

=
+ + +

∑
 (5.180) 

Inserting equations (5.125) into (5.180) and solving for %EA, the equivalent excess air 

percentage (%EAstandard) to the standardized oxygen percentage for a fuel with an 

empirical formula, CCHHNNOOSS, can be computed. 

 

% 79
100 2 21 4 2

% 100%
% 791 1

100 21 4 2

standard

standard
standard

O N H OC S C S
EA

O H OC S

⎛ ⎞ ⎡ ⎤⎛ ⎞∗ + + + + + −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎝ ⎠= ∗
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞− + ∗ + + −⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 (5.181) 
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The standard oxygen level, %Ostandard, for coal fired utility boilers is usually either 3% or 

15%.  Next, plug in %EAstandard to equations (5.125) for %EA and compute 

,
, ,

k out
out dry standard

N∑ .  The corrected fractionNOx (and subsequently ppmNOx) for the standard 

oxygen level is computed with the following expression. 

 
,

, ,
, ,

,
, ,

k out
out dry actual

NOx standard NOx actual
k out

out dry standard

N
fraction fraction

N
= ∗

∑
∑

 (5.182) 

The NOx reduction percentage achieved by the primary NOx controls can be 

computed as: 

 
( ), ,

,
,

% 100%uncontrolled NOx primary NOx
primary NOx

uncontrolled NOx

−
= ∗

L L
R

L
 (5.183) 

and the annual NOx reduction is simply: 

 , , ,x x xprimary NO uncontrolled NO primary NO= −R E E  (5.184) 

 

5.4.2.2. Ash from coal 
The amount of ash in MBB may be the greatest obstacle when co-firing and 

reburning with coal in large utility coal plants.  Although most coals and lignite do not 

contain as much ash as MBB (even low-ash MBB), it is first necessary to estimate how 

much ash is produced when only coal is burned.  The ash production level of the power 

plant, ashL , may be computed, in kg/GJ, with the following expression. 

 
6

,

%
100 10

1

coal

ash
coal as fired

A
kJ

HHV GJ

⎛ ⎞⎜ ⎟ ⎛ ⎞⎝ ⎠= ∗⎜ ⎟
⎝ ⎠

L  (5.185) 

The hourly and annual emission of ash may be computed in much the same way as NOx 

emissions. 

 , 6

1 1 3600
1,000 10 1ash hourly ash
metric ton GJ sQ

kg kJ hr
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ∗ ∗ ∗ ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

&E L  (5.186) 

 , ,ash annum ash hourly plantOH= ∗E E  (5.187) 
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5.4.2.3. CO2 from coal 

Again, the emission of CO2 from burning coal may be obtained from the results 

of the earlier complete combustion analysis found in equation (5.125).  Here, 
2COL  is 

expressed in kg/GJ. 

 
( )2

2 2

6
,

,

100 10
1

CO out
CO CO

coal as fired

N kg fired kJMW
HHV GJ

⎛ ⎞
= ∗ ∗⎜ ⎟

⎝ ⎠
L  (5.188) 

Next, 
2COE , can be computed as was done in equations (5.186) and (5.187). 

 

5.4.2.4. SO2 from coal 

The emission of SO2 from burning coal may also be obtained from the results of 

the earlier complete combustion analysis found in equation (5.125).  Here, just as with 

ash and CO2, 
2SOL  is expressed in kg/GJ. 

 
( )2

2 2

6
,

,

100 10
1

SO out
SO SO

coal as fired

N kg fired kJMW
HHV GJ

⎛ ⎞
= ∗ ∗⎜ ⎟

⎝ ⎠
L  (5.189) 

Next, 
2SOE , can be computed as was done in equations (5.186) and (5.187). 

 

5.4.3. Co-firing Coal with Manure-based Biomass 

The general idea of co-firing coal with MBB is illustrated in Figure 5.13.  

Depending on how much the biomass contributes to the overall heat rate of the plant, the 

coal and MBB can be blended and then injected into the primary burn region of the 

furnace or, if the mass flow rate is too great to be handled by one fuel injector, separate 

streams of coal and MBB can be fired simultaneously in the primary burn region.  

However, both of these cases are modeled the same way here.  Additional biomass 

injection systems will only impact the economics portion of the model which will be 

discussed later. 
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Figure 5.13 Co-firing coal with biomass 

 

When MBB is fired along with coal in the primary burn region of an existing 

combustion facility, the overall fuel mass injected into the burner as well as the 

emissions of ash, CO2, SOx, and possibly NOx will change.  In order to forecast the 

economic cost and benefits of co-firing biomass with coal, these changes must be 

understood. 

This analysis may begin by defining the biomass co-fire mass fraction as: 

 MBB
MBB

coal MBB

mmf
m m

=
+
&

& &
 (5.190) 

Next, with if the moisture and ash percentage of both the MBB and coal are known, 

along with the dry, ash-free contents of both fuels, equations (5.111) can be computed 

for the two fuels fired in the boiler.  Next, the moisture and ash contents of the blend can 

be computed: 

 ( )% 1 % %blend MBB coal MBB MBBM mf M mf M= − ∗ + ∗  (5.191) 

 ( )% 1 % %blend MBB coal MBB MBBA mf A mf A= − ∗ + ∗  (5.192) 
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Moreover, in a similar fashion to equations (5.111), the combustible content of the blend 

can be computed as: 

 

( )
( )
1

1
blend MBB coal MBB MBB

blend MBB coal MBB MBB

blend

blend

blend

C mf C mf C

H mf H mf H
N
O
S

= − ∗ + ∗

= − ∗ + ∗

=
=

=

L

L

L

 (5.193) 

Now, equations (5.112), (5.114), (5.118) through (5.120), and (5.123) through 

(5.134) can be computed with %Mblend, %Ablend, and Cblend through Sblend for the case in 

which coal is co-fired with MBB in the primary burn region of a power plant.  Note that 

the inputs and outputs of CVref in Figure 5.13 are the same as the inputs and outputs in 

CVref in Figure 5.9.  The higher heat value of the fuel blend can also be expressed as: 

 ( )1blend MBB coal MBB MBBHHV mf HHV mf HHV= − ∗ + ∗  (5.194) 

Referring to equation (5.170); which is used to relate the power plant’s overall 

consumption of heat, Q& , to the electric capacity, P , capacity factor, %CF, and heat rate, 

H ; theoretically Q&  should stay the same during co-firing since the P  and %CF will be 

the same.  That is, the electric demand on the power plant will remain the same 

regardless of the fuels being fired or the blend’s mass fraction mfMBB.  However, in 

reality, it is possible that H  may increase (and hence plantη  decrease) with mfMBB, since 

MBB has higher ash content than coal, which will cause fouling of heat exchanger 

surfaces and lower flame temperatures.  If ash is not removed sufficiently, then co-firing 

with MBB may significantly increase Q& , and hence increase the power plant’s fuel 

consumption: 

 total coal MBB
blend

Qm m m
HHV

= + =
&

& & &  (5.195) 

When MBB is blended with coal, the HHV of the blend will decrease, which will also 

increase the total fuel consumption, totalm& .  This phenomenon can easily be described by 

the equations (5.194) and (5.195).  On the other hand, it is more difficult to predict how 
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Q&  will change with mfMBB, because this change will depend on the ash removal 

operations and frequency of ash removal of the plant and the general ability to prevent 

fouling on heat exchanger surfaces.  For this study, therefore, it will be assumed that Q&  

remains the same when co-firing, which physically means that additional ash loading on 

the boiler will not significantly affect H .  Yet for future work, and for specific 

applications, it may be possible to find how Q&  will increase when co-firing coal with 

MBB, by finding a relation such that: 

 ( ), % , % , ,MBB MBB coalmf A A ash removal system= KH H  

Moving on, it may be necessary to convert the mfMBB to a heat fraction, hfMBB, 

defined as: 

 MBB MBB MBB MBB
MBB

coal MBB coal coal MBB MBB

Q Q m HHVhf
Q Q Q m HHV m HHV

= = =
+ +

& & &
& & & & &

 (5.196) 

Since, the fuel consumptions of coal and MBB can be expressed in terms of mfMBB: 

 ( )1coal MBB totalm mf m= −& &  (5.197) 

 MBB MBB totalm mf m=& &  (5.198) 

The heat fraction can be expressed as: 

 
( )1

MBB MBB
MBB

MBB coal MBB MBB

mf HHVhf
mf HHV mf HHV

=
− +

 (5.199) 

Although there is a definite requirement of increasing the overall fueling rate 

when co-firing coal with MBB, the tradeoff is the possibility that emissions will have a 

net change that will positively affect the environment and perhaps even the bottom line 

economics of the power plant if cap and trade or emission taxes are in place.  As 

discussed earlier, it is currently not clear if co-firing with MBB will increase or decrease 

NOx.  For now, it will be assumed that co-firing does not significantly change NOx 

emissions. 

Ash emissions, however, will definitely increase when co-firing with MBB.  The 

level of ash production from co-firing, ,ash cofiringL , can be found in kg/GJ: 
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 (5.200) 

This level can be compared to the ash level before co-firing computed in equation 

(5.185) by simply computing a difference: 

 ,ash ash cofiring ashΔ = −L L L  (5.201) 

Hourly and annual ash production rates can also be computed much the same way as was 

done in equations (5.186) and (5.187). 

The level of total CO2 may increase when co-firing coal with MBB, which can be 

expressed by the following equation: 
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 (5.202) 

However, if MBB is considered a renewable fuel source in which the CO2 generated 

from its combustion does not add to the overall loading in the atmosphere, then the only 

CO2 that is reported are emissions from the coal. 

 
( )

2 2

6

, ,

1
10100
1

coal
MBB

CO cofiring reported CO
blend

Cmf
kJMW

HHV GJ

⎛ ⎞− ⎜ ⎟ ⎛ ⎞⎝ ⎠= ∗ ∗⎜ ⎟
⎝ ⎠

L  (5.203) 

The reduction percentage of non-renewable CO2 is then computed with the following: 

 2 2

2

2

, ,
,% 100%CO CO cofiring reported

CO cofiring
CO

−
= ∗

L L
R

L
 (5.204) 

Hourly and annual reductions, 
2 ,CO cofiringR , can also be computed from emission rates, 

2 ,CO cofiringE . 
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Sulfur emissions may become a setback during co-firing and reburning if the 

sulfur content of the MBB is significantly higher than coal on a “per energy” basis.  This 

is especially true when using MBB to replace low sulfur coals such as Wyoming sub-

bituminous.  Moreover, many coal plants that burn low sulfur coals do not have flue gas 

desulphurization systems, which means that any additional SO2 released when co-firing 

coal with MBB will be added to the exhaust emissions of the power plant.  The SO2 

emission level during co-firing operations can be computed with the following: 
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L  (5.205) 

This level can be compared to the SO2 level before co-firing computed in equation 

(5.189) by simply computing a difference: 

 
2 2 2,SO SO cofiring SOΔ = −L L L  (5.206) 

Hourly and annual ash production rates can also be computed much the same way as was 

done in equations (5.186) and (5.187).  However, during these calculations it is essential 

to account for different operating hours of the co-fire system (OHcofire) and the power 

plant (OHplant).  The power plant may not co-fire coal and biomass the entire time it is 

operating. 

 

5.4.4. Reburning Coal with Manure-based Biomass 

With respect to the mathematical modeling in this study, reburning is simply a 

special type of co-firing in which NOx emissions are significantly reduced when utilizing 

MBB in coal-fired power plants.  The general idea of reburning is depicted in Figure 

5.14.  Coal is burned in the primary burn region, and then burned again with MBB (or 

some other reburn fuel) in a secondary burn region under fuel-rich conditions.  Over-fire 

air is then injected to complete the combustion and avoid any CO or unburned 

hydrocarbon emissions.  The reburn fuel (RF) provides between 10 and 20% of the 

power plants overall heat input.  The RF is usually natural gas, but can also be oil, 

biomass, more coal; or any other hydrocarbon-based fuel.  The primary burn region will 
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be referred to as the primary zone (PZ) and the secondary burn region will be referred to 

as the reburn zone (RZ). 
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Figure 5.14 Reburning coal with biomass 

 

Usually when discussing reburn technology, the hf is prescribed instead of the 

mf, but one can be converted to the other using equation (5.199).  Also, variables in the 

reburn model will generally have subscripts RF and PF to denote reburn fuel and 

primary fuel.  For example, the heat generated by the reburn fuel and the primary fuel 

are: 

 RF RFQ hf Q=& &  (5.207) 

and 

 ( )1PF RFQ hf Q= −& &  (5.208) 

respectively.  The power plant’s total heat consumption, Q& , may still be computed with 

equation (5.170).  Equations (5.191) through (5.194) can also be used for reburning with 

the RF and PF notation, since thermodynamically co-firing and reburning are similar 

processes.  The control volume problem, CVref introduced in Figure 5.9, is applicable to 
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both the reburn and co-fire analysis.  Therefore, the earlier equations (5.112), (5.114), 

(5.118) through (5.120), and (5.123) through (5.134) may also be used, noting that %EA 

includes the over-fire air in the reburn fuel staging.   

More sophisticated reburn models that attempt to predict the NOx reductions 

from reburning must first contain a mass and energy balance, as well as an equilibrium 

analysis for both the PZ and the RZ.  However, since the primary purpose of the current 

model is to describe the economic impacts of reburning coal with MBB at large coal-

fired power plants, computations can be greatly simplified if the NOx level achieved by 

reburning with MBB, , xreburn NOL , is treated as an input to the model.  As discussed in the 

Background Information Section of this dissertation, , xreburn NOL  can be as low as 26 g/GJ 

(0.06 lb/MMBtu) when reburning with MBB.  The NOx reduction from reburning, 

,% reburn NOxR , or any other secondary NOx control technology, can be measured from 

either one of two data:  (1) the NOx level achieved by the primary NOx control (e.g. low-

NOx burner) and (2) the uncontrolled NOx level generated when neither primary nor 

secondary controls are used. 

 , ,
,

,

% 100%primary NOx reburn NOx
reburn NOx

primary NOx

−
= ∗

L L
R

L
 (5.209) 

or 

 , ,
, ,

,

% 100%uncontrolled NOx reburn NOx
reburn NOx total

uncontrolled NOx

−
= ∗

L L
R

L
 (5.210) 

In some cases, the power plant may not utilize the reburn fuel throughout the 

year.  For example, reburning may only be conducted during a summer ozone season, 

when regulations on NOx emissions are more stringent.  For this case, the annual reburn 

operation hours, OHreburn, will be different from the plant’s operating hours, and so the 

annual NOx emission, in metric tons per year, can be computed as: 

 
( ), , ,

6 6

1 1 3600
10 10 1

NOx annum reburn NOx reburn primary NOx plant reburnOH OH OH Q

metric ton GJ s
g kJ hr

⎡ ⎤= + − ∗⎣ ⎦
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

∗ ∗ ∗⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

&E L L
 (5.211) 
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Ash, nonrenewable CO2, and SO2 emissions are computed in the same manner as 

with co-firing.  Annual emissions of these pollutants must also take into account any 

differing operation hours for reburning as was done in equation (5.211). 

 

5.4.5. Comparing Reburning to Other Secondary NOx Control Technologies 

On top of modeling MBB reburn systems installed on large coal plants, a 

comparison to other, more commercial secondary NOx control technologies should also 

be made in order to determine if power companies and plant proprietors should opt to 

install biomass reburn systems over these more common reduction methods.  In the US, 

the most common secondary NOx control technologies are selective catalytic reduction 

(SCR) and selective non-catalytic reduction (SNCR). 
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Figure 5.15 Selective catalytic reduction modeling 
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Figure 5.16 Selective non-catalytic reduction modeling 

 

In Figure 5.15 and Figure 5.16, it can be seen that the same combustion analysis 

that was conducted for the control volume (CVref) problem in Figure 5.9 can be used 

here, except for the fact that a reagent (usually ammonia or urea) is injected into the 

control volume.  However, for this model it will be assumed that the reagent does not 

significantly add to the heat input of the plant, and thus does not alter the coal 

consumption of the power plant.  Hence, for the SCR and SNCR cases, the combustion 

problem is treated as if coal alone is fired, without any biomass.  Equations (5.112), 

(5.114), (5.118) through (5.120), and (5.123) through (5.134), as well as equations 

(5.170) through (5.188) are still applicable for the SCR and SNCR cases, with the 

exception that NOx levels will now be reduced to some level ,SCR NOxL  or ,SNCR NOxL .  NOx 

reduction percentages can then be computed as they were for MBB reburning in 

equation (5.210).  For example: 

 , ,
, ,

,

% 100%uncontrolled NOx SCR NOx
SCR NOx total

uncontrolled NOx

−
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R

L
 (5.212) 

and 
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5.5. Modeling Small-Scale, On-the-farm Manure-Based Biomass Combustion 

Systems 

Manure-based biomass may also be utilized on smaller scale combustion systems 

located on or very near large animal feeding operations.  The primary purpose of these 

combustion systems would be to incinerate manure wastes not used for fertilizer, 

compost, or other external purposes.  These systems would be particularly useful in 

situations were few application fields or crop lands exist near the feeding operation or 

when there are local environmental laws or mandates that restrict the size of manure 

storage structures such as anaerobic treatment lagoons.  Combustion systems can also 

alleviate odor problems on large animal feeding operations. 

As discussed in the Literature Review section of this dissertation, there have been 

several designs, and even at least one demonstration system, for local thermo-chemical 

conversion of MBB.  In these systems, there have been several common aspects such as: 

(1) the separation of high moisture manure streams into a solid manure portion and a 

liquid wastewater portion, (2) aggressive usage of waste heat, (3) drying of high 

moisture solids, and (4) the recycling of wastewater.  In addition to previous work 

conducted by Carlin (2005) and Carlin et al. (2007), these facets can be added to the 

system shown in Figure 3.8 to form a revised conceptual design that is inclusive of most 

of these aspects.  Although most of the discussion here will center on the disposal of 

high moisture MBB, simpler systems with much of the same design characteristics can 

also be designed to handle lower moisture solid MBB from feedlots, large corrals, and 

open lot dairies. 
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5.5.1. Combustion System for High Moisture Manure-based Biomass 

A revised conceptualized thermo-chemical conversion system for high moisture 

MBB is shown in Figure 5.17.  This system, if installed at or near a large animal feeding 

operation, has the potential to burn most of the manure solids and vaporize at least a 

portion of the wastewater generated from the feeding operation.  The flushed manure can 

be mechanically separated into solid and liquid streams.  The solids can then be dried, in 

this case using an indirect rotary steam-tube dryer, which was discussed earlier.  The 

dried solids can then be injected into a combustor, which can be a solid fuel burner but 

probably would have to be a gasifier-burner system due to ash fouling.  However, the 

mass and energy balances for both these systems are equivalent (see Section 5.3.2).  The 

combustion air may be preheated before it is injected along with the manure solids.  

Meanwhile, some of the wastewater from the solids separator may be sent back to the 

animal housing units for further flushing or to storage or treatment lagoons for later 

irrigation or fertilizer uses.  The rest of the wastewater would be pumped to a fire-tube 

boiler where it can be vaporized by heat pipes containing the hot gaseous products of 

combustion.  The remaining solids that were contained in the vaporized wastewater can 

be removed periodically from the boiler (similar to blow down in conventional fire-tube 

boilers) and either sent back to the combustor or used as fertilizer.  The steam produced 

in the fire-tube boiler can be used for drying solids, preheating combustion air, or for 

external uses such as hot water generation for milking center cleanup, space heating at 

feeding operations located in northern states, production of cattle feed in steam flaking 

mills, or any other process on or near the farm that may require steam and make the 

combustion system profitable. 
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Figure 5.17 Conceptualized design of MBB thermo-chemical energy conversion system for large free stall 

dairies or large indoor piggeries with flush waste disposal systems 
 

The generalized equations presented earlier for drying and burning biomass can 

be applied to this system, but the mass and energy balances can become complicated.  

Moreover, if extra fuel is added to the combustor, the analysis becomes slightly more 

complicated. 

The analysis of this system can begin with a mass balance about the solids 

separator.  It is important to remember that the MBB flows at points 1, 2a, and 7 in 

Figure 5.17 all contain solid and moisture fractions.  The solid separator will probably 

not remove all of the solids from the flushed manure.  The mass balance of dry solids 

entering and exiting the separator can be expressed as the following: 

 , ,1 , ,7 , ,2MBB dry MBB dry MBB dry am m m= +& & &  (5.214) 
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where , ,1MBB drym&  is the flow rate of dry biomass entering the solid separator, , ,7MBB drym&  is 

the relatively small amount of biomass solids remaining in the wastewater exiting the 

solids separator, and , ,2MBB dry am&  is the dry fraction of the separated solids.  But each of 

these points also has a moisture fraction.  The flow of moisture in and out of the 

separator can be expressed as: 

 , ,1 ,1 , ,7 ,7 , ,2 ,2MBB dry MBB MBB dry MBB MBB dry a MBB am m mω ω ω= +& & &  (5.215) 

where ,MBB iω  is the moisture content of the MBB in each point, i.  Recall that iω  can be 

converted to a moisture percentage, %Mi, or fraction, 
2 ,H O imf , with equation (5.12).  Also 

note that: 
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 (5.216) 

Usually, , ,1MBB drym&  and ,1MBBω  will be known from fuel analyses and knowledge of the 

number of animals on the farm or how much liquid manure must be incinerated.  

Moreover, ωMBB,2a and ωMBB,7 will be known from design specifications of the solids 

separator.   

The remaining unknowns, , ,2MBB dry am&  and , ,7MBB drym& , may be found by combining 

equations (5.214) and (5.215): 

 ,7 ,1
, ,2 , ,1

,7 ,2

MBB MBB
MBB dry a MBB dry

MBB MBB a

m m
ω ω
ω ω
⎛ ⎞−

= ⎜ ⎟⎜ ⎟−⎝ ⎠
& &  (5.217) 

, ,7MBB drym&  is simply the difference between , ,1MBB drym&  and , ,2MBB dry am& . 

Now, the prime mover for this system is the combustor.  In order to determine 

how much wastewater can be vaporized, it is necessary to know how much heat is 

released during combustion, but the tools for these computations have already been 

discussed.  First the numbers of kmoles of each species entering and exiting the 
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combustor must be computed just as in equations (5.123) through (5.127).  The only 

exception might be for cases in which additional fuel such as propane, coal, or additional 

composted biomass is used.  For this case, the same concept that was discussed for co-

firing in large coal plants in Section 5.4.3 can be utilized.  Namely, equations (5.123) 

through (5.127) will be based on the combined blend of the two fuels: 
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 (5.218) 

Here, mfEF is defined as: 

 EF
EF

fuel

mmf
m

=
&

&
 (5.219) 

where, EFm&  is the mass flow rate of extra fuel and fuelm&  is the total amount fuel 

consumed by the combustor. 

 ,3fuel MBB EFm m m= +& & &  (5.220) 

It is also important to distinguish time rate flows of mass through the combustion 

system ( m& ) as opposed to mass flows per 100 kg of fuel fired (m).  This distinction can 

be described by the following general equation: 

 , , , 100
k

k i k i fuel k i fuel
MWm m m N m= ∗ = ∗ ∗& & &  (5.221) 

for each species k = O2, N2, CO2, etc. and point in Figure 5.17 i = 1, 2a, 2b, 3, etc. 

Next, the adiabatic flame temperature, T5, can be found with a modification of 

equation (5.133). 
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This equation must be iterated for T5.  Note that if there is extra fuel added to the 

combustor, it is simply lumped with the MBB fuel at point 3.  Here, the inert solid 

byproduct of combustion (ash) can be divided into fly ash, which will travel with the 

other gaseous products of combustion, through point 5, and bottom ash or slag, which 

will exit the combustor at point 5a.  So, if the fly ash percentage of the solid byproduct is 

%FA, and the total amount of ash produced per 100 kg of fuel fired in the combustor is 

mash,3, then: 

 ,5 ,3
%
100ash ash
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 (5.223) 
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 (5.224) 

Next, the heat generated from the combustion, that in turn heats the wastewater 

entering the boiler to produce steam, can be computed in a similar fashion to equation 

(5.134). 
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Here T6 is the stack temperature, which is usually a known design variable, dependant on 

the operating conditions of the boilers. 

Once the quantity of heat transferred to the wastewater is known, the amount of 

wastewater that can possibly be vaporized in the boiler can be computed.  This analysis 

can begin by isolating the wastewater in the boiler and conducting a mass and energy 

balance of that system.  See Figure 5.18. 
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Figure 5.18 Mass and energy balance of wastewater in fire-tube boiler 

 

So, the objective of this analysis is to find the amount of wastewater entering the 

fire-tube boiler per 100 kg of fuel burned in the combustor, mww,8.  An energy balance of 

the wastewater system provides the following. 
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Noting that , ,8 , ,2MBB DAF MBB DAF bm m=  and that ,8 ,2ash ash bm m=  
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The ash and moisture percentages at points 8 and 2b are known.  The moisture 

percentage at 2b, which is the remaining amount of moisture in the solids coming out of 

the boiler in the blow down process, will be considered a design variable dependant on 

the specifics of the boiler’s operation.  In equation (5.226), 8,,DAFMBBm , 8,ashm , blOHm 2),(2
, 

8),(2 lOHm , and 9,steamm , must be expressed in terms of moisture percentage, ash 

percentage, and one unknown variable, such as 8,wwm , the flow of wastewater into the 

boiler per 100 kg of fuel burned in the combustor.  The ash and the dry ash free portions 

of the incoming wastewater can be shown to be: 

 8
, ,8 , ,2 ,8

% %1 1
100 100

dry
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A Mm m m
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where %Adry is the ash percentage on a dry basis.  The moisture percentage of the 

wastewater at 2b can be defined as: 
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Inserting equations (5.227) and (5.228) into this definition provides the following: 
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The moisture percentage of the incoming wastewater is simply: 
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The steam production rate is simply the difference between 8),(2 lOHm  and blOHm 2),(2
: 
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Now, inserting equations (5.227) through (5.231), the ratio of heat produced by 

the combustion to the amount of wastewater entering the boiler can be solved in terms of 

the moisture and ash percentages of the wastewater stream and the temperatures. 
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Since, Qcomb has already been computed, mww,8 can now be found.  Subsequently, values 

can be found for equations (5.227) through (5.231).  However, it is also required to find 

all of these mass flows on a time rate basis, but since all of the values so far are on a “per 

100 kg fired” basis, it is now necessary to compute the time rate of fuel fired in the 

boiler.  The calculation of fueling rate involves a rather complicated mass balance since 

the burned separated solids, extra fuel, wastewater for the boiler, and steam used to dry 

the separated solids are all interconnected in the system.  The following is an explanation 

of this mass balance. 

Just before the rotary dryer, the separated solids are combined with the remaining 

solids from the wastewater boiler so that: 

 , ,2 , ,2 , ,2MBB dry a MBB dry b MBB drym m m+ =& & &  (5.233) 

 , ,2 ,2 , ,2 ,2 , ,2 ,2MBB dry a MBB a MBB dry b MBB b MBB dry MBBm m mω ω ω+ =& & &  (5.234) 

The combined biomass solids will then go through the dryer, where moisture will be 

removed, but the dry solid fraction will remain the same.  That is: 

 , ,2 , ,3MBB dry MBB drym m=& &  (5.235) 

On an as received basis, the mass balance through the dryer can be expressed as the 

following: 

 ,3 ,2 ,11MBB MBB vaporm m m= −& & &  (5.236) 
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Inserting expression (5.233) for 2,MBBm& , along with an expression for the flow of vapor 

exhaust leaving the dryer, which is implied in equation (5.85), equation (5.236) 

becomes: 

 ( ),3 ,2 ,2 , ,3 ,2 ,3MBB MBB a MBB b MBB dry MBB MBBm m m m ω ω= + − −& & & &  (5.237) 

Next, inserting this expression for 3,MBBm&  into equation (5.220) for the total fuel entering 

the combustor: 

 ( ),2 ,2 , ,3 ,2 ,3fuel MBB a MBB b MBB dry MBB MBB EFm m m m mω ω= + − − +& & & & &  (5.238) 

Rearranging this equation: 

 
( ), ,3 ,2 ,3 ,2 ,2

,3

,2

1

1

MBB dry MBB MBB MBB a MBB b EF

MBB EF fuel fuel

MBB b EF

m m m m
m m m m

m mf

ω ω− −
= + −

+

= + −

& & & &

& & & &  (5.239) 

Before solving for the biomass flow rate at point three, 2,MBBω  and EFm&  must be 

replaced with known variables.  If equations (5.233) and (5.234) are combined, the 

following expression for 2,MBBω  can be found: 

 , ,2 , ,2
,2 ,2 ,2 ,2

, ,3 , ,3

MBB dry a MBB dry a
MBB MBB a MBB b MBB b

MBB dry MBB dry

m m
m m

ω ω ω ω= + −
& &

& &
 (5.240) 

Next, with equations (5.219) and (5.220), EFm&  can be eliminated by finding the 

following expression: 

 
( ),3

, ,3

1
1
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EF MBB dry
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mf
m m

mf
ω+

=
−

& &  (5.241) 

Finally, plugging equations (5.240) and (5.241) into (5.239) and noting that 

( ),3 , ,3 ,31MBB MBB dry MBBm m ω= +& & , the following formula for , ,3MBB drym&  can be obtained. 

 
( )( )

( ) ( )
, ,2 ,2

, ,3
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1 1
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MBB dry a MBB b EF
MBB dry
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ω
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− − +

&
&  (5.242) 

where, 

12,1 −+= EFbMBB mfmC  
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( ) ( ) 13,3,2,2 1 CC MBBMBBbMBB ωωω +−−=  

All the moisture contents in this equation are known, or have been computed.  

, ,2MBB dry am&  was computed with equation (5.217) and bMBBm 2,  can be found with equation 

(5.227).  With the value for , ,3MBB drym& , EFm&  can be computed, and hence fuelm&  can also 

be found.  Thus, the time rate mass flow of wastewater and left over solids flowing in 

and out of the fire-tube boiler can also be found, along with each reactant entering the 

combustor and each product of combustion exiting the stack, along with the ash 

production using equation (5.221). 

Now, some discussion should be articulated as to the limits of applicability of the 

formulae derived for this model; namely, the maximum amount of extra fuel that can be 

added to the combustor before all of the wastewater is vaporized in the boiler.  Once 

fuelm&  is known, a value for the amount of wastewater that can be vaporized, 8,wwm& , can 

be computed, but the total amount of liquid manure coming from the solids separator, 

,7MBBm&  , may be computed with the following expression. 

 ,7 ,8 ,8MBB ww ww ewm m m= +& & &  (5.243) 

where ewwwm 8,&  is the amount of extra wastewater from the solids separator that could not 

be handled by the boiler because the combustion of the fuel blend could not provide 

enough heat.  But as mfEF increases, ewwwm 8,&  will eventually become zero and 8,wwm&  will 

be greater than 7,MBBm& .  If this is the case, then additional wastewater, not produced from 

the confined animal units, can be handled by the system, or the steam produced in the 

boiler can be superheated and not simply saturated vapor. 

There are two main factors that may be used to gage the effectiveness of this 

conceptualized MBB combustion design.  The first is the boiler efficiency, which is 

defined as the total amount of heat transferred to the boiler water divided by the heat 

released by the fuel.  However, since in this case the boiler water is wastewater 

emanating from the solid separator, there will be a great deal of solids in the boiler water 
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as it is being vaporized.  Thus the equation for boiler efficiency must be modified to 

account for these solids. 

 
( )( )

2 2 ( ), ,2 , ,2 2 8

,3

lcomb MBB BD b MBB BD H O b H O b

boiler
fuel fuel

Q m c m c T T

m HHV
η

− − −
=
& & &

&
 (5.244) 

Finally, the disposal efficiency is an indication of how much of the liquid flushed 

manure from the animal housing was incinerated.  Since there will always be ash 

leftover from the combustion, the disposal efficiency can never be unity, but high 

disposal efficiencies are achieved when all of the water in the liquid manure is vaporized 

and all of the combustible material in the manure has been burned. 

 1 8, 5

1

ew a
disposal

m m m
m

η
− −

=
& & &

&
 (5.245) 

 

5.5.2. Combustion System for Scraped Solids and Lower Moisture Biomass 

Not all manure waste from large CAFOs is handled as a liquid or is even high in 

moisture.  Scraped manure from open lots and feedlots, especially in areas with dry 

climates, will usually be lower than 30% (Heflin, 2008).  For these cases, solids 

separators and dryer would not be needed.  See Figure 5.19.  Plus, instead of using 

wastewater in the boiler, a standard vapor-power cycle would suffice, in order to utilize 

heat from biomass combustion to generate steam for external processes. 
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Figure 5.19 Conceptualized design of MBB thermo-chemical energy conversion system for large feedlot 

corrals or open lot dairies that produce low moisture manure 
 

There are of course different ways a MBB combustion system could be designed.  

For instance, if the large feedlot has a lagoon that stores wastewater runoff, a fire-tube 

boiler could be used in a similar way to that of the flushed manure design.  Also, it is 

possible to avoid producing steam at all, and still generate useful energy.  If the MBB is 

gasified, as in Figure 5.12, then the producer gas can be burned in a modified internal 

combustion engine or a gas turbine to produce electrical energy.  All of these 

possibilities can be modeled with the equations presented throughout this section.  The 

use of a vapor-power cycle in manure biomass energy conversion systems, shown in 

Figure 5.19, was discussed by Carlin (2005) for cases where lower moisture biomass 

was present.  However, in that report, it was thought that vacuumed manure solids would 

have similar moisture contents to scraped manure solids.  Yet, based on the data reported 

in Table 2.4, this assumption may not be true for most cases.  The moisture content of 

manure, that is not flushed or washed with water, is probably more dependant on the 

climate of the local geographic area. 
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Moreover, it should be noted that for all of these small-scale combustion 

systems, low-ash manure is preferred.  High ash contents in manure make direct 

combustion processes very difficult, if not impossible.  Even for gasification processes, 

the cost of continuously removing ash and increased maintenance to equipment can 

become very costly. 

 

5.6. Modeling the Economics of Manure-based Biomass Combustion Systems 

The economics of MBB combustion can now be discussed.  In this section, 

capital, operation and maintenance (O&M) costs of drying biomass, transporting 

biomass, and processing and burning biomass at large-scale combustion facilities (for 

both co-fire and reburn processes) will be discussed.  Additional fueling costs (or 

savings) from utilizing MBB will also be discussed.  The equations for capital and O&M 

costs of competing NOx control technologies will be presented for cases in which 

reburning with biomass will be compared to SCR and SNCR.  Equations for the total 

dollar cost (or savings) of CO2, NOx, SOx, and ash emissions from the combustion 

facility will then be presented. 

Finally, several economic analyses that can integrate all costs and benefits from 

MBB utilization to determine the overall profitability of using biomass in large coal-

fired power plants will be presented.  These include: (1) the net present worth (NPW) of 

a MBB combustion project, (2) the simple payback period, (3) the rate of return (ROR) 

on investment of capital necessary for a MBB combustion project, and (4) an annualized 

cost of a MBB combustion project.  Taxes on income and depreciation of capital will 

also be included in the economic analysis. 

The scope of the economic study for co-firing coal with MBB is illustrated in 

Figure 5.20 and the scope for reburning with MBB is shown in Figure 5.21.  The studies 

for both co-firing and reburning may be divided into three portions:  drying MBB, 

transporting MBB to the power plant, and processing of MBB at the power plant.  The 

emissions from each of these parts of the system will also enter into the model. 

 



 203

Biomass 
Transport

Biomass 
Drying

CO2

Ash

CO2

NOx

Co-firing 
with 

Biomass

Biomass 
Grinding, 

Processing, 
and Firing

SOx

Previous 
Operations

Compare

Biomass 
Transport

Biomass 
Drying

CO2

Ash

CO2

NOx

Co-firing 
with 

Biomass

Biomass 
Grinding, 

Processing, 
and Firing

SOx

Previous 
Operations

Compare

 
Figure 5.20 Scope of manure-based biomass co-firing economic study 

 

The primary difference between the co-fire and the reburn models is that the 

operating costs for co-firing will only be compared to the status quo operation of the 

coal-fired power plant whereas reburning will be compared to both the status quo 

operation and the operating costs of other more common NOx control technologies.  

Moreover, since current experimental research has not yet provided a definite idea of 

how co-firing coal and MBB will affect NOx, especially in coal burners with low-NOx 

burners and other primary controls, NOx emissions will be assumed unchanged during 

co-firing, and will not enter into the economics model. 
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Figure 5.21 Scope of manure-based biomass reburn economic study 

 

Finally, note that the dollar costs and savings computed from the following equations are 

estimates taken from literature review, government reports, and manufacturer’s data.  

Unlike other engineering calculations involving thermodynamics or heat transfer 

problems, economic calculations are highly speculative and are not rooted in 

fundamental physical laws.  Cost estimates presented here and in the literature are based 

on previous experiences and current market values of commodities, and since situations 

can vary and commodity values can change, the estimations from the equations 

presented here can also change.  For these reasons, sensitivity analysis methods will also 

be discussed at the end of this section. 

Before discussing the individual costs of co-fire and reburn systems, note that 

some fuel prices and values of emissions, as well as labor, escalate annually throughout 

the life of the co-fire or reburn project.  The price of the commodity at any year, n, can 

be computed with the following expression. 
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 ( )( ), , 1 ,
$ 1

n
n

i n i year price iPrice Price
yr

ε
⎡ ⎤

= ∗ +⎢ ⎥
⎣ ⎦

 (5.246) 

where the price of commodity i will be in year-n dollars computed from the annual 

escalation rate, ,price iε . 

 

5.6.1. Drying Cost Estimations 

For the reburning and co-firing models, conveyor belt dryers will be considered 

the dryer of choice.  The capital cost, or purchasing cost of a conveyor belt dryer is a 

function of the conveyor belt area, which was computed in equations (5.34) or (5.49) for 

perpendicular air flow dryers and in equation (5.60) for parallel air flow dryers.  

Brammer et al. (2002) suggested the following equation for the capital cost of a 

conveyor belt dryer. 

 [ ] ( )0.863$ 6,015 2.79 52.2dryer beltCapital A= +  (5.247) 

Each dryer receives heat energy from a steam generating boiler, the cost of which may 

be estimated as the following. 

 [ ] ,
$160,000$dryer boiler steam dryerCapital m

kg s− = ∗ &  (5.248) 

The steam consumption of a dryer, ,steam dryerm&  was computed with equation (5.26).  Other 

ancillary capital costs of the MBB drying system such as loaders, land, and extra manure 

storage bins may be computed with the following three equations. 

 [ ] $$loaders loader

loaders per
Capital Price

dryer loader
⎛ ⎞ ⎡ ⎤= ∗⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

 (5.249) 

 [ ] $$land land

number of acres per
Capital Price

drying sites site acre
⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ∗ ∗⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠

 (5.250) 

 [ ] $$storage trailer

number of extra storage
Capital Price

drying sites trailers per site trailer
⎛ ⎞ ⎛ ⎞ ⎡ ⎤= ∗ ∗⎜ ⎟ ⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠ ⎝ ⎠

 (5.251) 

The total capital cost of the entire drying system is simply the sum of these costs. 
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[ ] ( ), $total drying dryer dryer boiler loader dryer

land storage

Capital Capital Capital Capital N

Capital Capital
−= + + ∗

+ +
 (5.252) 

Here, Ndryer is the total number of dryers required to supply the biomass, which was 

computed in equation (5.10). 

Brammer et al. (2002) also suggested than the fixed operation and maintenance 

(O&M) cost of the dryers could be estimated to be about 4% of the capital cost.  For this 

model, fixed O&M was estimated to be the following for the dryers. 

 
( )$& 0.04dryers dryer dryer boiler loader

dryer

FO M Capital Capital Capital
yr

N

−

⎡ ⎤
= ∗ + +⎢ ⎥

⎣ ⎦
∗

 (5.253) 

There are two components to the variable O&M cost of the dryers.  First, the fueling cost 

of the dryer can be computed with the following: 

 

6

$ $&

3600
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dryer fuel dryer fuel dryer dryer fuel
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dryers

VO M F OH Price
yr GJ

s hrN
kJ GJ

−
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= ∗ ∗ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

∗ ∗

&

 (5.254) 

dryer fuelF&  was computed with equation (5.28) and OHdryer is the annual operating hours 

per year for the dryers.  The second component to the variable operation and 

maintenance cost for the dryer is the electricity consumption of the dryer’s fans, fanE& .  

fanE&  was computed with equation (5.29). 

 $ $& dryer fan fan dryer electricity dryersVO M E OH Price N
yr kWh−

⎡ ⎤ ⎡ ⎤= ∗ ∗ ∗⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
&  (5.255) 

Finally, labor is based on how many operators are assumed to be employed per dryer and 

the price of labor, both of which are input values.  Labor costs, for this model can thus 

be simply computed with the following expression. 

 $ $
dryer dryers dryer labor

operators
Labor N OH Price

per dryeryr hr
⎡ ⎤ ⎛ ⎞ ⎡ ⎤= ∗ ∗ ∗⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎝ ⎠

 (5.256) 

The total O&M cost of the drying system is simply the sum of all of these costs. 
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$& & & &total drying dryers dryer fuel dryer fan

dryer

O M FO M VO M VO M
yr

Labor

− − −

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
+

 (5.257) 

 

5.6.2. Transportation Cost Estimations 

The purchasing price of the hauling vehicles is an input, therefore the total 

capital cost of purchasing all of the required hauling vehicles is simply: 

 [ ] $$truck trucks truckCapital N Price
truck
⎡ ⎤= ∗ ⎢ ⎥⎣ ⎦

 (5.258) 

The number of trucks required to haul all of the MBB, Ntrucks, was computed with 

equation (5.102).  The fixed operation and maintenance of the hauling vehicles is the 

general cost of maintaining the quality of the vehicles and is based on a dollar-per-

kilometers driven value. 

 ,
$ $ˆ& 2truck trips actual repair trucksFO M DN Price N
yr km

⎡ ⎤ ⎡ ⎤= ∗ ∗⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (5.259) 

The number of trips each truck travels per year, Ntrips,actual, was computed with 

equation (5.103).  The variable operation and maintenance cost of the hauling vehicles is 

simply the price of fueling them with diesel. 

 ,
ˆ2$ $&

,
trips actual trucks

truck fuel diesel

DN N
VO M Price

fuel economyyr liter
km per liter

−

⎡ ⎤ ⎡ ⎤= ∗⎢ ⎥ ⎢ ⎥⎛ ⎞ ⎣ ⎦⎣ ⎦
⎜ ⎟
⎝ ⎠

 (5.260) 

Labor is also taken into account for the hauling vehicles.  The annual number of hours 

spent loading, unloading, and transporting biomass, ttotal,annual was computed with 

equation (5.104). 

 ,
$ $

trucks total annual labor trucksLabor t Price N
yr hr

⎡ ⎤ ⎡ ⎤= ∗ ∗⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (5.261) 
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Finally, if SCR systems are installed on the hauling vehicles to reduce NOx emissions 

from their tailpipes, then the additional cost of installing and maintaining these SCR 

systems must also be added to the overall cost hauling MBB. 

 ,
$ $

truck SCR truck trucksSCR Price N
yr yr

⎡ ⎤ ⎡ ⎤
= ∗⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
 (5.262) 

The total O&M cost of hauling the manure from the animal feeding operations to 

the power plant is the sum of the previous four equations. 

 
$& & &total truck truck truck fuel trucks

truck

O M FO M VO M Labor
yr

SCR

− −

⎡ ⎤
= + +⎢ ⎥

⎣ ⎦
+

 (5.263) 

 

5.6.3. Processing and Firing Cost Estimations 

The cost of installing an environmental retrofit on a coal-fired power plant can be 

broken up into three different components:  capital cost, fixed operation and 

maintenance costs (FO&M), and variable operation and maintenance costs (VO&M).  

The capital cost is the initial investment of purchasing and installing all necessary 

equipment so that the system is fully functional.  Fixed operation and maintenance costs 

are generally incurred whether the system is running or not.  These costs typically 

include labor and overhead items such as fuel feeders, grinders, and air and fuel 

injectors, whereas, VO&M costs include handling and delivery of raw materials and 

waste disposal (Newnan et al., 2000). 

 

5.6.3.1. Co-firing 

Some suggestions for co-firing capital costs for biomass are listed in Table 3.1.  

For this model, the capital costs suggested by the USEPA (2007c) will be adopted.  Thus 

the following expression was used to compute capital costs for co-firing coal with 

manure.  These expressions are based on the total electrical energy generated from the 

biomass combustion. 



 209

 [ ]

$251 , 200
100

$$ 218 , 201 500
100

$109 , 500
100

plant
MBB e

e

plant
cofire MBB e

e

plant
MBB

e

Q if MW
kW

Capital Q if MW
kW

Q if MW
kW

η

η

η

⎧ ⎡ ⎤ ⎛ ⎞
≤⎪ ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦⎪
⎪ ⎡ ⎤ ⎛ ⎞⎪= < <⎨ ⎜ ⎟⎢ ⎥

⎝ ⎠⎣ ⎦⎪
⎪ ⎡ ⎤ ⎛ ⎞⎪ ≥⎜ ⎟⎢ ⎥⎪ ⎝ ⎠⎣ ⎦⎩

&

&

&

P

P

P

 (5.264) 

Here, MBBQ&  is the heat generated from biomass combustion and can be computed from 

equation (5.196).  The plant efficiency, plantη , was computed with equation (5.171), and 

P is the electric capacity of the power plant. 

The fixed operation and maintenance cost of co-firing is also based on the 

electricity produced from biomass combustion.  The USEPA (2007c) suggested the 

following expression, which will be adopted here. 

 $ $&
100

plant
co fire MBB

e

FO M Q
yr kW yr

η
θ−

⎡ ⎤ ⎛ ⎞⎡ ⎤
= ⎜ ⎟⎢ ⎥⎢ ⎥ ⋅⎣ ⎦ ⎝ ⎠⎣ ⎦

&  (5.265) 

The USEPA (2007c) suggested a value of $7.63/kWe-yr for θ . 

Finally, the annual cost of burning coal when co-firing con be computed with the 

following expression. 
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&  (5.266) 

The coal consumption rates, coalm& , before and during co-firing operations were 

computed with equations (5.172) and (5.197)  Here, OHco-fire is the number of hours per 

year that the power plant is co-firing with biomass.  The net dollar savings from avoided 

coal combustion is simply: 

 ,
$

coal coal cofiringCoal Savings Fueling Fueling
yr

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (5.267) 
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If the farmer providing the MBB to the coal plant requests some compensation 

for the biomass, perhaps a dollar value comparable to the biomass’s value as a fertilizer, 

then an additional cost for purchasing the MBB must be considered. 

 

,0
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 (5.268) 

 

5.6.3.2. Reburning and other secondary NOx control technologies 

For this study, both primary and secondary NOx control technologies were 

modeled in much the same way as was done for the USEPA Integrated Planning Model 

(IPM).  The IPM is a multi-regional, dynamic, deterministic linear programming model 

of the U.S. electric power sector.  The results from the IPM are meant to compare energy 

policy scenarios and governmental mandates concerning electric capacity expansion, 

electricity dispatch and emission control strategies.  The model and base case inputs to 

the model are updated annually.  The latest update, as of the writing of this paper, may 

be found on the USEPA (2006) website.  Since a section of the IPM is concerned with 

evaluating the cost and emission impacts of proposed policies, it is possible to adopt 

these emission models to describe the economics of common primary and secondary 

controls, and then compare them to results for MBB reburning. 

The NOx control technology options modeled by the EPA IPM are LNB (with 

and without over fire air), SCR, and SNCR.  Capital and FO&M costs are functions of 

power plant capacity, while VO&M costs are functions of heat rate.  Models presented 

by Mussatti et al (2000a&b) offer more detailed and comprehensive representations for 

SCR and SNCR cost components, but require more inputs.  Economic modeling 

equations in the IPM for LNB are based on costs for 300 MW size boilers, listed in 

Table 5.6. 
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Table 5.6 Cost of primary NOx combustion controls for coal boilers, 300 MWe size (adopted from 
USEPA, 2006) 

Boiler Type Primary Control Technology 
Capital, α 
($/kWe) 

FO&M, β 
($/kWe yr) 

VO&M, γ 
($/kWhe) 

Low-NOx Burner without Over fire Air 19.24 0.29 6.00E-05 Dry Bottom 
Wall-Fired Low-NOx Burner with Over fire Air 26.12 0.40 8.00E-05 

Low-NOx Coal-and-Air Nozzles with 
Close-Coupled Over fire Air 10.14 0.16 1.00E-06 
Low-NOx Coal-and-Air Nozzles with 
Separated Over fire Air 14.17 0.21 2.70E-05 

Tangentially-
Fired 

Low-NOx Coal-and-Air Nozzles with 
Close-Coupled and Separated Over fire 
Air 16.19 0.25 2.70E-05 

 

These costs may be translated to cost for different boiler sizes with the following 

expressions provided by the USEPA (2006): 

 
0.359300 1,000[$]primary

kWCapital
MW

α ⎛ ⎞ ⎛ ⎞= ∗⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

P
P

 (5.269) 
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kWFO M
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β
⎡ ⎤ ⎛ ⎞ ⎛ ⎞= ∗⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦

P
P

 (5.270) 

 ( )$ % 1,000&
100primary plant

CF kWVO M OH
yr MW

γ
⎡ ⎤ ⎛ ⎞ ⎛ ⎞= ∗⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎣ ⎦

P  (5.271) 

Here, P is the power plant’s electrical capacity in MWe, %CF is the plant’s 

capacity factor as a percentage, and OHplant is the number of hours per year that the plant 

is operational.  Similarly, SCR and SNCR may be modeled using the values in Table 5.7 

 
Table 5.7 Cost of secondary NOx combustion controls for coal boilers (adopted from 
USEPA, 2006) 

Secondary Control Technology 
Capital, δ 
($/kWe) 

FO&M, ε 
($/kWe yr) 

VO&M, ζ 
($/kWhe) 

SCR 111.48 0.74 6.70E-04 
SNCR--Term 1 19.06 0.28 
SNCR--Term 2 21.74 0.33 

9.80E-04 

 

Similarly, the following expressions may be used to compute capital and O&M costs for 

SCR and SNCR (USEPA, 2006). 
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Reburn technologies were not included in the latest version of the IPM.  Thus, 

the main challenge of this study was to estimate the cost performance of a MBB 

reburning system even when only experimental results and pilot scale tests have been 

conducted for these systems, and few applications of gas and coal reburning systems 

existed for comparison.  Work by Zamansky et al. (2000) suggested that reburn systems 

utilizing furniture wastes, willow wood, and walnut shell biomass have similar capital 

costs to coal reburning systems.  An earlier USEPA (1998) report for the Clean Air Act 

Amendment, which was also sited by Biewald et al. (2000), modeled both gas and coal 

reburn systems, although the coal reburn model was meant only for cyclone boiler types.  

And since gas reburning costs are generally lower than coal reburning costs, the reburn 

capital cost model presented by the USEPA (1998) would only be applicable for cyclone 

boilers.  Cyclone boilers burn coarsely crushed coal, but coal reburn systems typically 
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require pulverized or micro-ionized coal to avoid unburned carbon emissions.  Hence, 

purchasing pulverizing equipment is generally required for cyclone boiler plants. 

Some estimates of coal and biomass reburn capital costs are presented in Table 

3.2.  If a value for reburn capital (η  in $/kWe of total plant capacity) is chosen from this 

table, the following expression may be used to compute the capital cost of a reburn 

system installed on a plant with a capacity P. 

 [ ] 1,000$reburn
kWCapital

MW
η ⎛ ⎞= ∗⎜ ⎟

⎝ ⎠
P  (5.278) 

Note that capital costs for reburning (values for η listed in Table 3.2) do not 

include the capital cost of dryers and biomass hauling vehicles which will be needed for 

CB reburning but not coal reburning.  These costs, as was discussed earlier, were 

computed separately.  As for the FO&M cost equation, the model presented by the 

USEPA (1998) was used for the spreadsheet model, with the exception of an additional 

scaling factor that accounted for the MBB’s poorer heat value and hence greater required 

fueling rate. 
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P

 (5.279) 

The USEPA (1998) suggested that θ = $1.07/kWe-yr.  However, to describe the 

uniqueness of MBB reburning to other reburning facilities, VO&M costs such as 

biomass drying, transporting, and ash disposal were individually calculated in a previous 

section.  The cost of burning coal when reburning with biomass can be computed in 

much the same way as was done for co-firing. 

 

5.6.4. Cost of Emissions 

Emission reductions when co-firing and reburning were discussed in 

Sections 5.4.3 and 5.4.4.  Beginning with CO2 emissions, carbon savings must include 

the reduction of nonrenewable CO2 emitted from the power plant, as well as emissions 

from drying and hauling vehicles. 
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Similarly the cost or savings, depending on the sulfur content of the co-fired fuel, of SO2 

emissions may be computed with the following expression. 
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Ash can either be sold for external uses, such as cement production, or discarded 

in a landfill.  The overall cost of ash disposal and ash sales can be computed with the 

following two equations. 
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However, sometimes ash may not be sold at the same rate or at all when co-firing.  If 

this is the case, then the above two equations should be adjusted accordingly. 

These annual cash flows for emissions are applicable to both co-firing and 

reburning.  However, in this study, NOx emission reductions are unique to reburning and 

are ignored for co-firing.  The NOx savings may be computed with the following 

expression when reburning coal with MBB. 
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A similar equation may also be written for NOx emission savings from SCR and SNCR. 

 

5.6.5. Overall Economic Analysis 

To this point, the modeling equations could be used to generate many different 

cash flows and dollar values that vary from the purchase price of hauling vehicles to the 

dollar savings of CO2 emissions.  However, in order to make sense of the bottom line 

meaning of all the dollar figures computed to this point, there must be a system to 

integrate all of the dollar values computed above to form one encompassing figure or 

number that can indicate the bottom line economic success or inadequacy of co-firing (or 

reburning) coal with MBB in an existing coal plant.  One of the more common ways to 

indicate the economic bottom line of a project is to compute a net present worth (NPW) 

that is the equivalent combined value of all cash flows computed throughout the life of 

the project in present dollars. 

When modeling SCR and SNCR for the Integrated Planning Model, the USEPA 

assumed a project life for environmental retrofits of 30 years.  Following this method, 

both co-fire and reburn retrofits were assumed to have a project life of 30 years as well.  

However, note that the same analysis can be conducted for shorter or longer project 

lives.  Taking into account price escalations, each of the annual (dollar per year) costs 

and revenues for the co-fire project can be computed for each year.  Cash flow diagrams, 

such as the one in Figure 5.22, are helpful when visualizing all of the computed cash 

flows. 

Moreover, at year zero of the co-fire project the plant equipment and the 

measures required to install a biomass co-fire system, as well as the trucks and the dryers 

and associated equipment were all purchased in full.  However, since hauling vehicles 

and drying equipment probably will not last the full 30 years of the project’s life, an 
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entirely new set of trucks was assumed to be purchased at years seven, 14, and 21.  

Similarly, an entirely new set of dryers and all ancillary dryer equipment was assumed to 

be purchased at year 15, the mid-point of the project.  These future capital investment 

cash flows are also shown in Figure 5.22.  Computing the value of these future 

investments in real dollars is similar to the computation of future commodity prices with 

equation (5.246).  For example, the capital cost of a dryer at year 15 can be computed 

with the following equation. 

 ( )( )15
15

,15 , 0 ,
$ 1total drying total drying year price dryerCapital Capital
yr

ε− −

⎡ ⎤
= ∗ +⎢ ⎥

⎣ ⎦
 (5.285) 

The same can be done for truckCapital  for years seven, 14, and 21. 
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Figure 5.22 Capital and annual cash flows encountered for manure-based biomass co-fire and reburn 

operations and retrofit projects 
 

Now all of the cash flows in Figure 5.22 must be converted into one net present 

worth.  The first step in computing the NPW is to compute an Operating Cost (or 

revenue) for each year, n.  This summation is shown in the following expression. 
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Depending on the size of the benefits versus the costs, the operating income can be 

positive (revenue) or negative (cost).  The operating income is shown arbitrarily in the 

cash flow diagram in Figure 5.23 
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Figure 5.23 Generating an annual operating income or cost from the addition of individual cash flows for 

each year in the life of the co-fire or reburn project 
 

Next, the capital investments must be added together, including the future 

investments in trucks and drying equipment, to produce an overall capital investment 

cost in present dollars.  Thus, the total investment in drying equipment for the entire life 

of the project will be: 
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Here, ccr is the capital charge rate.  Similarly, the total investment in hauling vehicles 

can be computed with the following equation. 

 , 0 ,
7,14,21

1
100

n

trucks truck year truck n
n

ccrInvestment Capital Capital
−

=

⎡ ⎤⎛ ⎞= + + ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∑  (5.288) 

Thus, the total investment, in present dollars, for co-firing will be: 

 $total present cofire drying trucksInvestment Capital Investment Investment⎡ ⎤ = + +⎣ ⎦  (5.289) 

This translation of future capital investments to present dollars is illustrated in Figure 

5.24. 

 

Project 
time (yrs)

C
as

h 
Fl

ow
s 

(D
ol

la
rs

)

3015 20 255 10

Operating cost/revenue Total Investment Cost

Annual Cash Flows Capital Costs

Operating cost 
or revenue

Project 
time (yrs)

C
as

h 
Fl

ow
s 

(D
ol

la
rs

)

3015 20 255 10

Operating cost/revenue Total Investment Cost

Annual Cash Flows Capital Costs

Operating cost 
or revenue

 
Figure 5.24 Translation of future capital costs to present dollar values 

 

Now, before computing the NPW, depreciation of capital and taxes on income 

must be addressed, starting with depreciation.  The depreciation method adopted for the 

present analysis was the modified accelerated cost recovery system (MACRS).  The 

MACRS of depreciation schedule is a combination of declining balance depreciation and 

straight line depreciation.  However, under the MACRS, the “property life” is usually 

shorter than the actual useful life; therefore, there are no salvage values of capital at the 
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end of the project.  For the current model, dryers and their associated equipment were 

assumed to have useful lives of 15 years, but have a 10-year property life.  Trucks had 

useful lives of seven years, but have a 5-year property life.  Co-fire and reburn capital 

(as well as SCR and SNCR capital) were assumed to have useful lives of 30 years, but 

each had a 20-year property life.  More information about the MACRS of depreciation 

can be found in the textbook by Newnan et al. (2000).  A list of the applicable 

depreciation rates under the MACRS is given in Table 5.8. 

 
Table 5.8 MACRS depreciation rates for 5, 10 and 20-year property life classes 
used for modeling biomass co-fire and reburn systems (adapted from Newnan 
et al., 2000) 
 rates displayed as percentages 

Recovery Year 
Trucks (5-year 
property life) 

Dryers (10-year 
property life) 

Co-fire and Reburn 
Equipment at Power 

Plant (20-year property 
life) 

1 20.00 10.00 3.75 
2 32.00 18.00 7.22 
3 19.20 14.40 6.68 
4 11.52* 11.52 6.18 
5 11.52 9.22 5.71 
6 5.76 7.37 5.29 
7   6.55* 4.89 
8  6.55 4.52 
9   6.56 4.46* 

10   6.55 4.46 
11  3.28 4.46 
12     4.46 
13     4.46 
14   4.46 
15     4.46 
16     4.46 
17   4.46 
18     4.46 
19   4.46 
20   4.46 
21     2.23 

*all classes convert to straight-line depreciation in the optimal year--shown 
with and asterisk (*) 
Note: Land for the drying equipment depreciates at 2.56% throughout the 30-
year life of the project. 
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The depreciation can be computed by simply multiplying the depreciation rate in 

the table above to the capital cost.  Thus, the depreciation at year, n, for a capital cost, i, 

can be computed as: 

 [ ], , ,$i n i i nCapital r= ∗ DD  (5.290) 

where , ,i nrD  is the depreciation rate read from Table 5.8.  The total depreciation of capital 

for a year n is: 

 , ,
, , .

total n i n
i trucks dryers etc=

= ∑D D  (5.291) 

Now, the adjusted income can be computed with the following expression: 

 ,n n total nAdjusted Income Operating Income= −D  (5.292) 

The adjusted income is the amount of income that will be taxed, so that: 
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 (5.293) 

If there were any renewable energy tax credits for co-firing or reburn systems, they 

would be accounted for here.  The income after tax is thus: 

 [ ]$n n nIncome after tax Operating Income Tax= −  (5.294) 

Finally, the NPW can be computed.  First, the income after tax must be 

discounted (or transformed) to present dollars.  In order to do this, the discount rate, DR, 

must be known.  The DR is usually divided into a non-inflated (real) rate, DR*, and the 

inflation rate, f.  A bank or a lender will usually quote a DR to a borrower (for example a 

power company that wants to borrow money to install a co-fire system at one of its 

power plants).  The lender usually quotes a DR that includes the inflation rate.  

However, if only DR* is known, then the following expression can be used to compute 

DR. 

 * *DR DR f DR f= + + ∗  (5.295) 

The income after tax will be discounted by a factor: 

 ( )1 n
nDiscount factor DR= +  (5.296) 
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And the discounted income in present dollars is simply: 

 $ n
n present

n

Income after taxDiscounted Income
Discount factor

⎡ ⎤ =⎣ ⎦  (5.297) 

Finally, the NPW can be computed with the following expression. 

 
30

1

$ present n total
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NPW Discounted Income Investment
=

⎡ ⎤ = −⎣ ⎦ ∑  (5.298) 

If the NPW is positive, then it is usually referred to as the net present value 

(NPV), while negative NPWs are called net present costs (NPC).  The net present worth 

is displayed graphically in Figure 5.25. 
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Figure 5.25 Integrating capital investment costs with annual operating incomes to generate an overall net 

present worth of a co-fire or reburn system 
 

Sometimes, the NPW can be expressed as an annualized cost leveled throughout 

the life of the project (see Figure 5.26).  For this case, 
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From here, the leveled annual cost can be expressed with other parameters specific to the 

co-fire or reburn model.  For example, the specific CO2 reduction cost can be computed 

with annualized cost with the following: 
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 (5.300) 

A similar calculation may be made for Specific NOx Reduction Cost.  Or a cost based on 

the electrical energy output of the power plant can be computed as well. 
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Figure 5.26 Generating a overall annualized cost from the net present worth 

 

Other ways to display the overall economics of a project are the rate of return (ROR): 

 , 0ROR DR such that NPW= =  (5.302) 
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and the simple payback period: 

 [ ] [ ]
[ ]

$
$

totalInvestment
Simple payback years

Average Income after Tax yr
=  (5.303) 

However, the simple payback does not account for the DR or the time value of money in 

anyway. 

 

5.6.6. Economics of Small-scale, On-the-farm Systems 

Some estimation of the economic costs for the small-scale system discussed in 

Section 5.5.1 may also be made as well.  Brammer et al. (2002) provided the following 

two capital cost equations for rotary dryers and gasifiers, respectively. 
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 [ ] ( )0.698

,3$ 10,300,000gasifier fuelCapital m= &  (5.305) 

Here, %MMBB,mean is the mean moisture percentage of the manure passing through the 

dryer, while to MBBQ&  is the heat transferred to the MBB while in the drying drum.  The 

capital cost of the gasifier is simply a function of the fuel flow rate. 

Moreover, Mou et al. (2002) suggested the following equation for the capital cost 

of the heat exchanger. 

 [ ]$ 11,000 302heat exchanger HXCapital A= + ∗  (5.306) 

The heat transfer area of the heat exchanger, AHX, may be computed with the following 

expression. 
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where UHX is the overall heat transfer coefficient and Q&  is the heat transferred to the air.  

Since the fire-tube boiler may be the more innovative component of the system, its 

capital cost will be treated as an input for this study. 

The fixed O&M cost of the system as a whole can be assumed to be a percentage 

of the total capital cost.  However, the rest of the annual cash flows and savings due to 

the small scale system may depend heavily on the specific animal feeding operation at 

which the system is being installed. 
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6. RESULTS AND DISCUSSION 

The modeling equations presented in the previous section can be compiled into 

spreadsheet or other computer-based programs.  The resulting estimates of energy 

consumption from dryers, fuel consumption from hauling vehicles, firing rates of coal 

and biomass at the power plant utilizing the biomass, and emission reductions will be 

presented in this section.  Subsequently, a discussion of overall costs and benefits of the 

use of manure-based biomass (MBB), based on these results, in existing power plants for 

co-firing and reburning applications will be conducted.  Finally, there will be a 

discussion of how a smaller-scale, on-the-farm system, such as the one presented 

previously, may perform compared to larger applications.  First, the results for MBB 

drying system models will be discussed. 

Equation Chapter 6 Section 1 

6.1. Biomass Drying Models 

Equations (5.13) through (5.29) describe the overall heat and mass balance of the 

drying system chosen to dry the MBB (see Figure 5.1), and are applicable to both the 

perpendicular flow conveyor belt dryer and the parallel flow conveyor belt dryer.  Two 

main parameters that are computed from these equations are the air mass flow rate in the 

drying chamber ( acm& ) and the dryer’s heat consumption rate ( dryerQ& ).  These parameters 

are particularly important for economic analyses.  First, acm&  largely determines the air 

velocity in the drying chamber (U∞ ) which in turn affects the pressure drop ( chamberPΔ ) 

and the electricity consumption ( dryerE& ) of the dryer.  On the other hand, dryerQ&  

exclusively determines the steam consumption of the dryer, and if conventional fuels 

such as natural gas or propane are used to generate this steam, then the dryer’s fuel 

consumption (equation (5.28)) is greatly dependant on dryerQ& . 

The variables in equations (5.13) through (5.29) that are typically known are the 

ambient temperature, ambient relative humidity (Ta,0 and ,0aφ , respectively), and the 
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initial temperature of the MBB (TMBB,0), which can usually be assumed to be equal to 

Ta,0.  The dry mass flow of MBB traveling through the dryer will, in this case, be 

determined by how much biomass is needed to fuel a co-fire or reburn system at a 

particular power plant of a known electric capacity and heat rate.  The initial moisture 

content of the MBB will also be considered a known input value in this analysis.  

Moreover, the desired moisture content of the MBB ( ,0% MBBM ) is also determined by 

the needs of the power plant. 

However, there are three main design variables, inherent to the dryers 

themselves, which greatly affect the air mass flow rate and the heat consumption.  These 

variables are:  the temperature drop in the drying chamber ( chamberTΔ ); the temperature of 

the air exiting the drying chamber (Ta); and the relative humidity of the air exiting the 

drying chamber ( aφ ).  Ideally, in order to reduce fan power costs and fueling costs, it is 

necessary to find a combination of these three design variables that will lower both acm&  

and dryerQ&  as much as possible.  Beginning with acm& , Figure 6.1 is a plot of the air mass 

flow rate in the chamber vs. Ta and aφ  at a fixed value for chamberTΔ  of 10 K.  Increasing 

Ta and aφ  will decrease the flow rate.  Similarly, Figure 6.2 is a plot of acm&  vs. Ta and 

chamberTΔ  at a fixed value for aφ  of 20%.  Again here, acm&  decreases with higher values 

of Ta and chamberTΔ . 
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Figure 6.1  Dryer air flow rate vs. air exit temperature and exit relative humidity at fixed chamber 

temperature drop, ΔTchamber = 10 K.  MBB being dried from 60% to 20% moisture at a rate of 0.56 kg/s 
(2 metric tons/hour) 
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Figure 6.2  Dryer air flow rate vs. air exit temperature and drying chamber temperature drop at fixed exit 

relative humidity = 20%.  MBB being dried from 60% to 20% moisture at a rate of 0.56 kg/s 
(2 metric tons/hour) 
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However, in practice a person operating a dryer does not have direct control of 

Ta, aφ , and chamberTΔ .  Instead, the air flow rate and the amount of air that is recycled 

through the heat exchanger and drying chamber, ( )ac am m−& & , can be controlled with 

dampers and controlling the air fans.  But in the context of designing the dryer (or 

dryers) for providing a predetermined amount of biomass at a required moisture content 

to a power plant, Ta, aφ , and chamberTΔ  can be treated as the variables, similarly to the 

analysis by Kiranoudis et al. (1994).  For example, suppose that two metric tons/hour of 

biomass is required per dryer, and that the biomass must be dried from 60% moisture to 

20% moisture.  From the above figures, a set of base case values can be selected.  A low 

flow rate is desired; therefore, chamberTΔ  should be at least 20 K.  The temperature of the 

exiting air cannot be too high since MBB, which is assumed to leave the dryer at a 

temperature equal to Ta (see equation (5.23)), may begin to rapidly de-volatilize at 

temperatures over 470 K (386 °F) (Lawrence, 2007).  Rodriguez et al. (1998) reported 

that there was a 4.6% loss in heating value when drying cattle manure at 377 K (219 °F) 

for 360 minutes.  Therefore, Ta should certainly be lower than 470 K, and if it is between 

370 and 470 K, then the residence time of the MBB in the dryer should be as limited as 

possible. 

To reduce energy costs, a significant amount of the exiting drier air should be 

mixed with incoming fresh air and recycled back to the heat exchanger and drying 

chamber.  Doing this will keep aφ  high, at least to 20%, but recycling the process air will 

also increase Ta between 360 K and 380 K.  The plot of recycled air flow vs. Ta and 

chamberTΔ , in Figure 6.3, shows that this recycled flow rate peaks between 360 and 380 K 

for chamberTΔ  greater than 10 K. 
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Figure 6.3 Recycled dryer air flow rate vs. air exit temperature and drying chamber temperature drop at 
fixed exit relative humidity = 20%.  MBB being dried from 60% to 20% moisture at a rate of 0.56 kg/s 

(2 metric tons/hour)   
 

Yet, there is a greater reason why Ta should be kept between 360 and 380 K.  

Ultimately, the most important parameter that must be found from equations (5.13) 

through (5.29) is dryerQ& , which is independent of the physical dimensions of the dryer 

such the conveyor belt area (Abelt) and only weakly dependant on whether the air flow is 

perpendicular or parallel to the conveyor belt by equation (5.23).  Moreover, dryerQ&  is 

independent of chamberTΔ .  In Figure 6.4, dryerQ&  decreases asymptotically below 2,000 kW 

at exit temperatures above 380 K, for aφ  greater than 10%.  Fixing Ta at 380 K or above 

ensures that a minimum amount of heat will be consumed by the dryer. 
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Figure 6.4 Dryer heat consumption vs. air exit temperature and exit relative humidity.  MBB being dried 

from 60% to 20% moisture at a rate of 0.56 kg/s (2 metric tons/hour) 
 

Thus, base values for Ta, aφ , and chamberTΔ  of 380 K, 20%, and 30 K, 

respectively, can be chosen so that dryerQ&  and acm&  remain low.  Next, the MBB handling 

capacity of the dryer can be increased to investigate how heat consumption and air flow 

rate will change.  This plot is shown in Figure 6.5. 
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Figure 6.5 Dryer heat consumption and air mass flow rate in drying chamber vs. rate of manure-based 

biomass 
 

After finding the heat consumption and air flow rate in the drying chamber, the 

next step in the drying analysis is to find the pressure drop over the conveyor belt, 

chamberPΔ , and the required area of the conveyor belt, Abelt.  The pressure drop is needed 

to compute the electrical energy consumption of the fans in equation (5.50), while Abelt is 

needed to compute the capital investment cost of the dryer.  Both of these parameters are 

significant when computing the overall cost of drying MBB.  Other parameters such as 

the MBB residence time in the dryer (t) and the velocity of the dryer air (U∞ ) can be 

computed after finding Abelt. 

The conveyor belt area, unlike dryerQ&  and acm& , is dependant on whether the dryer 

air flows perpendicular or parallel to the conveyor belt.  Perpendicular flow dryers are 

covered in Section 5.2.1.1.1 , while parallel flow dryers are covered in Section 5.2.1.1.2.  

For the economic analysis that will follow later in this part of the dissertation, the focus 

will be on perpendicular flow dryers.  The discussion of parallel flow dryers is included 

mostly for completeness. 
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Within the discussion of perpendicular flow dryers in Section 5.2.1.1.1, two 

separate models were presented for determining Abelt:  one based on a drying rate 

constant (km) defined in equation (5.30) and one based on a transfer number (B) defined 

in equation (5.39).  The drying constant (km) model requires empirical constants in 

equations (5.32) and (5.33).  The following table is a list of these constants for several 

drying experiments on different processed foods. 

 
Table 6.1 Empirical constants required for drying constant (km) model for 
perpendicular air flow dryers 

  onions peppers potatoes carrots tomatoes 
k0 (s-1) 5.83E-08 1.11E-08 1.72E-07 9.44E-08 NR
kl -0.8080 -0.9820 -1.5100 -1.4800 NR
kT 1.5500 1.5400 0.3210 0.5710 NR
kω 0.2480 0.0903 0.0359 0.1110 NR
kU -0.1190 0.2930 -0.1440 -0.0624 NR
ωm (dry basis) 0.2020 0.2110 0.0870 0.2120 0.1820
C0 2.30E-05 1.46E-05 1.86E-05 5.94E-05 1.99E-05

CHΔ  (kJ/kmol) 32,500 33,400 34,100 28,900 34,500
K0 5.79E-02 5.56E-02 5.68E-02 8.03E-02 5.52E-02

KHΔ  (kJ/kmol) 6,430 6,560 6,750 5,490 6,700
NR: Not reported 
Data adopted from Kiranoudis et al. (1992) and Kiranoudis et al. (1993) 

 

On the other hand, the transfer number (B) model is dependant on non-

dimensional numbers such as the mass transfer Stanton number (Stm) and the Colburn j 

factor ( mj ) and relationships between these numbers such as equations (5.44) through 

(5.46).  Both the km and the B-models are highly dependant on the characteristic particle 

size of the MBB (dc) and the initial manure application thickness on the conveyor belt at 

the dryer’s entrance (at,0).  In order to choose which model should be integrated into the 

overall economic model, these models should be compared against each other to see if 

there is any agreement between them.  One way to compare the two models is by 

plotting Reynolds number ( Re
cd ) for each of them.  The Reynolds number for this case 

is defined in equation (5.47) and directly incorporates acm& , Abelt, and dc.  This plot can be 

seen in Figure 6.6.  The solid-lined data are results from the B-model, while the dotted-
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lined data are results from the km-model.  The Reynolds number is plotted against dc and 

the sphericity factor, ψ , for the B-model, and for the km-model, it is plotted against dc 

for carrots and potatoes. 
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Figure 6.6 Comparison of two drying models for perpendicular air flow dryers by monitoring Reynolds 

number against characteristic biomass particle size and sphericity.  Biomass application thickness on 
conveyor belt = 80 mm 

 

First of all, the curves seem to have the same general shape for both models, 

indicating that Re
cd  increases steeply as dc decreases.  This relationship may seem 

counter-intuitive at first, since in equation (5.47), Re
cd  is directly proportional to dc; 

however, Re
cd  is also inversely proportional to Abelt (= l * w).  From equation (5.49), it 

may be seen that Abelt is also proportional to not only dc, but also acm& .  Thus dc and acm&  

cancel out of the Reynolds equation when equation (5.49) is plugged into (5.47).  The 

reason why Re
cd  still changes with dc is because the wetted surface area of the biomass 

particles (AMBB) is inversely proportional dc as well.  Subsequently plugging equation 

(5.43) into (5.47) will show that: 
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 (6.1) 

Thus, Re
cd  increases quickly with lower dc, especially for spherical particles ( 1ψ ≈ ).  

Physically, this relationship means that collections of smaller particles with greater 

surface areas dry quicker, and thus require a smaller conveyor belt area and residence 

time. 

These smaller belt areas in turn increase the air velocity (U∞ ) as can be seen in 

equation (5.34).  Ultimately, for this drying problem, high Reynolds numbers suggest 

high air velocities in the dryer.  High velocities are problematic however, because 

manure particles would be blown off of the conveyor belt as they travel through the 

dryer and hit the fans.  Earlier in Section 2.1.2, the Rosin Rammler characteristic particle 

size of dried cattle manure was shown to be 2.18 mm (0.086 inches).  At this particle 

size, the Re
cd  is beyond the 4000 limit of equation (5.46).  However, for the km-model 

assuming constants for potatoes, the Reynolds number is predicted to be 726 and U∞  is 

predicted to be 9 m/s (about 20 mph). 

There are two possible reasons for the quantitative disagreement of the models in 

Figure 6.6.  (1) Perhaps the food particles studied by Kiranoudis et al. truly had high 

sphericity factors.  Higher values of ψ  dampen the relationship between Re
cd  and dc in 

equation (6.1), and bring the curves of the two models to better agreement (see curve for 

ψ  = 4 in Figure 6.6).  However, such high values for ψ  in all of the foods tested by 

Kiranoudis et al. are unlikely.  A cubic particle has a sphericity factor of 1.08; a 

cylindrical particle with an axial ratio of 10 has a sphericity of 1.58, at most (Hinds, 

1999).  (2) The disagreement between the empirical km-model and the B-model are more 

likely due to the inherent limits to the Colburn j factor relationships in equations (5.45) 

and (5.46).  These equations are probably more suited to flows over larger particle sizes.  

Thus the constants and exponents in equations (5.45) and (5.46) may need to be altered, 

in effect changing the exponent of 40/23 in equation (6.1).  Thus, for the remainder of 

this discussion and the discussion of the economics model, the km-model will be used to 
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estimate Abelt.  The models did not vary significantly between the different foods listed in 

Table 6.1, so, for brevity in the remaining figures, the constants for potatoes will be used 

from now on.  However, there is still value in the B-model in that a greater physical 

understanding of the drying problem is gained as the km-model (equation (5.33)) is 

simply a fit to experimental data. 

The Reynolds number, and hence the air velocity, is also a function of the 

application thickness of the manure on the conveyor belt at the dryer’s entrance (at,0).  

Figure 6.7 is a plot of Re
cd  against dc and at,0 at a constant ψ  = 1.11.  According to the 

plot, Re
cd  increases with at,0.  The quantitative disagreement between the km and the B 

models can be seen here as well. 
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Figure 6.7 Comparison of two drying models for perpendicular air flow dryers by monitoring Reynolds 
number against characteristic biomass particle size and biomass application thickness on conveyor belt 

 

During the operation of the conveyor belt dryer, it is necessary to determine the 

appropriate manure application thickness (at,0).  Thicker applications increase the 

required U∞  and the pressure drop in the chamber ( chamberPΔ ) which in effect increase the 
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electrical consumption of the dryer fans.  However, thicker applications also reduce the 

required conveyor belt area, which reduces the capital investment cost of the dryer (i.e. 

smaller dryers require thicker applications of manure in order to handle the same 

throughput and achieve the desired moisture percentage).  Thus, a compromise must be 

made between the two costs.  In Figure 6.8, Abelt, chamberPΔ , and U∞  are plotted against 

at,0.  The data for this case, suggests that an application thickness of 30 to 50 mm (1.18 

to 1.96 inches) would be most appropriate, because both Abelt and chamberPΔ  are relatively 

low at this range.  At a 40 mm thickness, the km-model for potatoes predicts a required 

belt area of 9.55 m2 (about 100 ft2), an air velocity of 4.89 m/s (about 11 mph), a MBB 

residence time of about 5 minutes, and a required fan power of 331 kW. 
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Figure 6.8 Determination of appropriate manure-based biomass application thickness 

 

Another option for drying the MBB would be to use a conveyor belt dryer with 

air blowing parallel to the belt as discussed in Section 5.2.1.1.2.  However, for the 

manure throughput and moisture reduction required for this drying problem, equation 

(5.60) predicts extremely large belt areas even at very thin application thicknesses (at,0).  
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These large areas may be reduced if the cross sectional area of the drying chamber is 

reduced (i.e. reducing a and w in equation (5.60)).  However, if cross-sectional area is 

decreased, the air velocity becomes too great.  From these results, perpendicular flow 

conveyor belt dryers may be more appropriate for drying manure at a scale large enough 

to supply coal-fired power plants than parallel flow dryers. 

The one advantage to parallel dryers is that the conveyor belt does not have to be 

a screen, since air flows over the belt and biomass and not through them.  Solid, non-

screen conveyor belts may be helpful since the biomass particles have a wide range of 

sizes; smaller particles may fall through the screen causing major design issues for the 

dryer when handling granular solids of non-uniform size. 

However, as stated before, conveyor belt size becomes an issue with these 

parallel flow conveyor belt dryers.  An alternative to conveyor belt dryers are rotary 

dryers.  Rotary dryers can handle granular solids with smaller particle sizes such as 

powders (< 100 mesh) (Brammer et al. (1999)), and remain relatively compact compared 

to conveyor belt dryers.  Partly for this reason, rotary steam-tube dryers were modeled 

for drying biomass solids in Section 5.2.1.2.  However, in this study, rotary dryers were 

modeled for small-scale MBB combustion designs, which will be discussed later.  Yet, 

the performance of the rotary dryer can still be compared to the conveyor belt dryer.  A 

list of base parameters for running the rotary dryer model is presented in Table 6.2.  

Again, a biomass throughput of 2 metric tons/hour (dry basis) can be assumed, as was 

done for the conveyor belt dryer.  The same initial and desired moisture percentages are 

also assumed for this case. 
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Table 6.2 Base case parameters for rotary steam-tube 
manure-based biomass dryer 

Parameter Base Value (unit) 
Mass flow of MBB through the 
dryer 

0.56 kg/s 
(2 metric tons/hr) 

Initial moisture percentage of 
biomass 

60% 

Desired moisture percentage of 
biomass 

20% 

Dryer drum diameter 1 m 
Drying zone length to drum 
diameter ratio 

5 (m/m) 

Rotation speed of drum 35 rpm 
Steam tube diameters 0.04 m 
Number of steam tubesa 36 
Characteristic particle size of 
MBB 

2.18 mm 

Sphericity factor 1.11 
Holdup 5% 
Molar fraction of steam in 
vapor phase 

0.9 

Boiler pressure 350 kPa, gage 
Boiler efficiency 85% 
aThe steam tubes are arranged in two concentric rings around the drum's center. 
The first is half the distance from the center of the drum to the steam shell, the 
second is located 80% of the distance from the center of the drum to the shell.  
See Figure 5.7 

 

From the base case results it was found that at 2 metric tons/hour, a rotary steam-

tube dryer would consume about 16% less heat energy, and thus consume 16% less fuel 

a if similar 350 kPa (gage) boiler were to provide steam to both dryers.  Figure 6.9 is a 

graph of fuel consumption versus biomass flow rate for both a conveyor belt dryer and a 

rotary dryer.  Energy savings become more noticeable at higher biomass throughputs, 

according to the results of the dryer models.  Moreover, the length of the rotary dryer 

was computed to be 5.29 m (about 17.5 ft).  With a rotation speed of 35 rpm, the drum 

would need to be tilted 0.8 degrees (0.014 m/m) from horizontal and the biomass 

particles would travel through the drum at about 0.03 m/s (about 6 ft/minute) and have a 

residence time in the rotary dryer of 2.7 minutes. 
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Figure 6.9 Comparison of fuel consumption between conveyor belt dryer and rotary steam-tube dryer 

 

Another point of interest for these dryers may be the vapor temperature and the 

temperature of the biomass in drying zone (see Figure 5.6).  For this model, the 

temperature at which the biomass dries is solely determined by the molar fraction of 

steam in the vapor phase, Ysteam, vapor.  The drying temperature of the biomass is then used 

to determine the vapor temperature, the length of the heat-up zone of the dryer, and the 

steam consumption.  Figure 6.10 is a plot of these temperatures versus Ysteam,vapor.  This 

plot agrees fairly well with a similar plot made by Canales et al. (2001); however, the 

vapor temperature computed here seems to be two or three degrees below what Canales 

et al. computed.  This difference is probably due to a slightly lower boiler pressure (and 

thus lower steam temperature) for this case. 
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Figure 6.10 Temperature of entrained vapor and temperature of biomass solids in the drying zone vs. 

molar fraction of steam in vapor phase 
 

The vapor temperature is also very dependant on biomass particle size, as can be 

seen in Figure 6.11.  Larger particles require more time to heat up to the biomass drying 

temperature, thus the required length of the dryer is predicted to be slightly longer for 

larger particles.  Since the flow rate of the vapor is fixed by the desired moisture 

percentage, the vapor spends slightly more time in the dryer heated by the steam tubes 

and steam shell, and the vapor’s temperature begins to approach the temperature of the 

steam tubes and shell. 
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Figure 6.11 Temperature of entrained vapor vs. characteristic particle size of biomass solids 

 

One other parameter unique to the rotary dryer is the holdup.  Increasing the 

holdup in the dryer changes most of the operating conditions of the dryer.  For example, 

in Figure 6.12, the slope of the drum, the residence time of the biomass and the linear 

speed at which the biomass solids travel through the drum are plotted against holdup.  A 

greater holdup means that there are more solids in the dryer at any given time.  More 

solids require longer residence times, thus the slope of the dryer must decrease and the 

biomass must move through the dryer slower. 
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Figure 6.12 The effect of holdup on the slope, biomass residence time, and biomass speed through a 

rotary steam-tube dryer 
 

6.2. Biomass Transportation Model 

The manure based biomass (MBB) may be transported before or after drying.  

The decision of when to dry the MBB may greatly affect the transportation costs because 

the liquid water in the manure is added weight that must also be transported and because 

the bulk density of the manure is a function of the moisture percentage.  The benefit of 

transporting wet MBB and drying it at the power plant is that waste heat from the plant’s 

combustion processes may be used for drying manure instead of using natural gas or 

propane.  From equation (5.2) and Figure 2.7, the bulk density of the MBB decreases as 

moisture is reduced below 60%.  The transportation analysis discussed here was first 

presented in a USEPA (2001) report for transporting composted solids from feeding 

operations.  However, changes in density were not mentioned in that report and are 

unique to the analysis presented here.  In the USEPA report, densities were assumed to 

be roughly the same as the density of water (998 kg/m3). 
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So, there are seemingly two components when considering transportation costs 

vs. MBB moisture percentage:  if the manure is transported when it is high in moisture, 

more weight must be carried from the feeding operations to the combustion facility, but 

the manure will be denser, hence hauling vehicles with fixed carrying volumes (see 

Figure 6.13) can carry more of it.  On the other hand, if the manure is transported after 

drying, when moisture is low, less weight must be transported, but the dried solids will 

not be as dense and each truck with a fixed carrying volume will not be able to carry as 

much biomass (assuming no compaction or compression equipment is used to artificially 

increase the density of the dried MBB). 

 

 
Figure 6.13 Montone 33.6 m3 (44 yd3) dump trailer (Montone Trailers, LLC., 2008) 

 

For example, suppose that 76,000 dry metric tons per year is required by a 

particular power plant.  This is approximately the amount of low-ash dairy biomass that 

would be required for a 300 MWe coal plant co-firing a 95:5 blend of Wyoming sub-

bituminous coal and MBB.  Moreover, suppose the biomass must be transported 50 km 

(31 miles) to the power plant, that each truck has a carrying volume of 30.6 m3 (40 yd3), 

and that the average truck speed is 80.5 km/hr (50 mile/hr).  Manure hauling is assumed 

to be conducted 16 hours per day and 320 days per year, and loading and unloading 

times are assumed to be 25 minutes each.  In Figure 6.14, the number of trucks required 
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(equation (5.102)) and the hauling weight per truck (equation (5.101)) are plotted against 

the moisture percentage of the MBB when it is transported.  These results seem to 

suggest that even with more liquid mass being hauled for high moisture biomass, the 

number of trucks required to haul this additional mass will not change significantly due 

to the increase of bulk density.  There is no significant difference in capital or 

purchasing costs for hauling vehicles once the MBB has been dried below 70% 

moisture.  However, the figure does show that hauling liquid manure, such as flushed 

manure from free stalls, at 90% moisture would be significantly more expensive. 
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Figure 6.14 Number of hauling vehicles and hauling weight vs. moisture percentage of transported 

manure based biomass 
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Figure 6.15 Total diesel fuel consumption from hauling vehicles vs. moisture percentage of transported 

manure based biomass 
 

The same analysis can be extended to the fueling costs of the transport vehicles.  

Figure 6.15 is a plot of total diesel consumption of the vehicles (equation (5.105)) vs. the 

moisture percentage of the MBB when it is hauled.  This curve is similar to the data in 

the previous figure for the number of required trucks. Again, there seems to be no 

significant difference in fuel consumption between hauling manure with 10% moisture 

and hauling manure with 70% moisture.  In fact, there seems to be a slight minimum in 

fuel consumption at approximately 50% moisture.  However, fuel consumption does 

increase dramatically if the moisture content is above 85 or 90%.  It should also be noted 

that these calculations do not take into account any difference in fuel economy for 

vehicles hauling heavier loads when the manure has higher moisture content, but the 

aerodynamics and mechanics of the vehicle usually have a greater influence on fuel 

economy than the haul weight. 

Moreover, there are other factors, aside from the number of vehicles required and 

the fuel consumption that may affect the decision of when to transport the manure.  

Power plant operators may have reservations to the idea of accepting wet, as-received 
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MBB and drying it at or near the plant due to odor, health, and environmental issues.  

Also loading and unloading times, as well as the general ease of handling the MBB 

when it is wet instead of dried, will certainly play into the decision making.  Composting 

and outdoor drying can reduce the MBB’s moisture content to an equilibrium value 

between 20 and 30%.  However, natural composting and drying without external heat 

may not be able to produce enough dried biomass to consistently supply a co-

combustion operation at a large coal-plant.  This may be especially true for reburn 

systems, which would require at least 10% of the plant’s heat rate to be supplied by 

biomass reburn fuel, although, biomass storage or stockpiling operations may be a 

solution.  For the base case run of the economics calculations, which will be discussed 

later in this section, manure will be assumed to be dried with natural gas before transport 

to the power plant.  During sensitivity analysis, cases where it is not necessary to dry 

MBB with fossil fuel combustion will also be considered. 

Other aspects can affect the transportation cost of hauling MBB to power plants.  

Figure 6.16 is a graph of total diesel fuel consumption vs. the distance between the 

animal feeding operations supplying the MBB and the power plant for the same general 

conditions described above.  Biomass moisture percentage was set at 20%.  The number 

of trucks that would be required to transport all of the biomass is also indicated.  As 

expected, both the fuel consumption and the number of trucks that must be utilized 

increase when the biomass must be hauled greater distances.  These calculations were 

also conducted for different trailer volumes:  30.6 m3 (40 yd3), 19.11 m3 (25 yd3), and 

11.47 m3 (15 yd3) trailers. 
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Figure 6.16 Total diesel fuel consumption and number of trucks required vs. biomass transport distance 

and trailer volume 
 

One other major factor in determining the expense of transporting MBB from 

animal feeding operations to power plants is the time spent hauling the manure.  Large 

electric utility coal-fired boilers generally run constantly; 24 hours per day, 365 days per 

year; as they provide the base load of the electrical grid.  These power plants only make 

scheduled stops in operation for maintenance and up-grades.  However, the 

transportation system that supplies MBB to the power plants may not run constantly, and 

may only run a small fraction of each day or each year.  Figure 6.17 is a plot of the 

number of trucks required vs. the number of hours spent hauling manure each day and 

the number of days per year spent hauling.  Again, the same other conditions were 

assumed for this plot as in the previous figures.  One interesting result from this plot is 

that there seems to be a greater difference between hauling for one 8-hour shift and two 

8-hour shifts (i.e. 16 hours) versus the difference between hauling for two shifts and 

three 8-hour shifts (i.e. 24 hours per day).  This larger margin between these three 

hauling schedules is probably due to the fact that in the calculations, the total annual 

amount of MBB required and the volume of each truck are fixed.  Thus, in some cases 
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for the shorter hauling schedules, some of the trucks at the end of the schedule may be 

hauling below their capacity. 

 

0

2

4

6

8

10

12

14

16

18

20

22

24

75 100 125 150 175 200 225 250 275 300 325 350 375
hauling days per year

N
um

be
r o

f T
ru

ck
s 

R
eq

ui
re

d

76,330 dry metric tons per year
Transportation distance = 50 km

Biomass with 20% moisture
Truck trailer volume = 30.6 m3

Avg. truck speed = 80 km/hr

Hauling schedule 
(hours per day)

8

16

24

 
Figure 6.17 Number of trucks required for hauling MBB vs. hauling schedule and annual number of 

hauling days 
 

6.3. Economics of Manure-based Biomass Combustion in Large-scale Coal-fired 

Power Plants 

The equations presented in the modeling section of this paper were integrated 

into three large computer spreadsheet programs:  one for computing the overall 

economics of co-firing coal with MBB at an existing coal plant, another for the overall 

economics of reburning coal with MBB, and a third for computing the general 

performance of a small-scale system operating at a concentrated animal feeding 

operation.  These spreadsheet programs were useful tools for studying the feasibility and 

cost of utilizing MBB in combustion systems.  They were also used for parametric 

studies to determine the limiting factors that may reduce the success of manure biomass 
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combustion.  First, in this part of the dissertation, the results of the co-fire model will be 

discussed, followed by the reburn model. 

 

6.3.1. Co-firing 

An outline of the co-fire model is presented in Figure 6.18.  The program can be 

divided into three main computing blocks:  (1) for estimating the fueling, emissions and 

costs when burning coal alone, before any co-firing, (2) for computing the same costs 

when co-firing coal with biomass plus any addition O&M, transporting and drying costs, 

and (3) for comparing the two operating conditions with an economic analysis. 
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Figure 6.18 Flow diagram of computer spreadsheet model for coal/manure-based biomass co-firing 

system on an exiting coal-fired power plant 
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6.3.1.1. Base case inputs and results 

To demonstrate the usage of the economic spreadsheet model for co-firing, some 

base case input parameters were chosen.  Most of these parameters are best guess values 

taken from research and literature review.  This set of inputs acted as a reference point 

for parametric study and sensitivity analysis.  Table 6.3 through Table 6.7 are lists of all 

base case input parameters pertinent to modeling the installation and the operation of the 

MBB co-firing system.  However, these base case inputs are not set.  These numbers can 

and should be changed to accommodate different situations and facilities.  In fact, 

variations of many of these input parameters were made to study the sensitivity of the 

overall net present worth and annualized cost.  This discussion will follow a brief review 

of the base case findings. 
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Table 6.3 Base case input parameters for coal-fired power plant operating conditions and emissions 
Input Value (unit) Source Notes 

Plant capacity 300 MWe   
Heat rate 10,290 kJth/kWhe 

(9750 Btu/kWh) 
 About 35% plant efficiency, average for 

most coal-fired power plants 

Capacity factor 80%   
Operating hoursa 8760 hr/yr  1 year = 8760 hours.  Non-stop utility 

operation. 
Primary fuel WYPRB coal (TAMU, 2006) See Table 2.2, Moisture percentage for 

coal when fired is 30% 
Boiler type Tangentially-fired   
Coal cost $38.58/metric ton (EIA, 2007d) As delivered cost for WY Powder River 

Basin Sub-bituminous coal in Texas. 
Farmer’s asking 
price for MBB 

$0/dry metric ton  For the base case, the MBB will be 
assumed to be free of charge. 

CO2 price $3.85/metric ton (RGGI, 2008) Slightly higher than the clearing price of 
CO2 allowances at the September 2008 
auction of the Regional Greenhouse Gas 
Initiative. 

SOx credit/allowance $970/metric ton (SCAQMD, 2007) Average annual price for Compliance 
Year 2005. 

Ash sale price $27.56/metric ton (Robl, 1997) Range: $27.56 - 33.07/metric ton 
Ash disposal cost $33.07/metric ton (ACAA, 2006) Range: $22.05 - 44.09/metric ton.  

Landfill tipping fees for non-hazardous 
waste. 

Percentage of ash 
soldb 

20% (Robl, 1997) For coal, 61% of solid byproduct is fly 
ash which can be sold for outside use.  
On average, only 11% of solid byproduct 
is sold. 

aFor base case, reburn, SCR and SNCR systems are assumed to operate during all plant operating hours 
bFor base case run, ash sold during reburning is the same, by mass, as that sold when only primary controls are used 
Note: metric tons = 1,000 kg = 1.1 ton  
 

 



 252

Table 6.4 Base case input parameters for co-firing and SOx controls 
Input Value (unit) Source Notes 

Co-fired fuel LADB (Sweeten et al, 2006) See Table 2.5 
Co-firing Rate 5% (by mass) (DOE, 2004), 

(USEPA, 2007c) 
Range: 2 - 15%.  Generally power plants 
greater than 500 MW capacity co-fire at 
2% biomass.  Plants with capacities 
between 201 and 500 MW co-fire at 
10% biomass. And smaller plants, less 
than or equal to 200 MW co-fire at 15% 
biomass. 

Co-fire capital cost Variable, See Notes (USEPA, 2007c) If capacity of power plant is >500 MWe, 
then $109/kWe supplied by biomass.  If 
capacity is 201 - 500 MWe, then 
$218/kWe.  If capacity is <200 MWe, 
then $251/kWe. 

Co-fire fixed O&M $7.63/kW supplied by 
the co-fired fuel per 

year 

(USEPA, 2007c) Does not include transportation costs of 
biomass if co-firing rate is larger than 
the standard rate.  For example, if a 500 
MW plant has a co-firing rate greater 
than 2%, then additional transportation 
costs must be added to the total O&M 
costs since more biomass is required to 
satisfy the desired co-firing rate.  In the 
case of manure-based biomass, this does 
not include drying costs. 

SOx control Flue gas 
desulphurization 

system is installed 

  

SOx reduction 
efficiencya 

95% (USEPA, 2004) Typical for Limestone Forced Oxidation 
(LSFO), which can reduce SOx down to 
about 0.06 lb SOx/MMBtu and is 
applicable to plants with greater than 100 
MW capacities 

aFor the base case run, the SOx reduction efficiency during co-firing is assumed to be the same, by percent, as the reduction efficiency 
during normal operations when only coal is burned. 
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Table 6.5 Base case input parameters for manure-based biomass drying system 
Input Value (unit) Source Notes 

Biomass moisture 
percentage before 
drying 

60% (Carlin, 2005) Typical for partially composted 
separated dairy biomass solids from 
flushing system 

Biomass moisture 
percentage after 
drying 

20% (Annamalai et al., 
2003a), (Annamalai et 

al., 2005) 

Approximate moisture percentage of 
biomass during co-firing and reburn 
experiments 

The biomass is dried 
before it is 
transported to the 
power plant 

--  The biomass can possibly be dried at 
the power plant by using waste heat 
from the combustion processes at the 
plant.  However, this may increase the 
cost of transporting the biomass and it 
may not be allowable to have as 
received manure biomass at the power 
plant.  

Capacity of single 
biomass dryer 

2 metric tons 
(2.2046 tons) 

 Smaller scale dryer such as those 
discussed by Brammer et al. (2002) 

Height of drying 
chamber 

0.5 m (1.64 ft) (Brammer et al, 2002)  

Width of drying 
chamber 

0.5 m (1.64 ft) (Brammer et al, 2002)  

Number of drying 
days 

300 days/yr  Approximately 6 days per week, minus 
holidays 

Drying schedule 20 hrs/day  2 1/2 eight hour shifts 
Dryer operators 0.4 employees/dryer  Employees operate loaders and 

maintain the dryers 
Number of loaders 0.2 loaders/dryer (GSNet.com, 2007) 3.86 - 4.63 m3 (5 - 6 yd3) capacity per 

loader.  Loaders carry biomass from 
dryer to transport vehicles.  Capital cost 
of each loader is about $200,000. 

Characteristic particle 
size of manure 

2.18 mm (0.09 inches) (Houkum, 1974) Characteristic size for Rosin-Rammler 
distribution of low moisture beef cattle 
biomass particles 

Temperature of 
biomass entering the 
dryer 

25 °C (77 °F)  Same as ambient air temperature, see 
next item 

Ambient air 
temperature 

25 °C (77 °F)  Annual average day time temperature 
for central Texas 

Ambient relative 
humidity 

50%  Annual average day time relative 
humidity for central Texas 

Temperature of air 
exiting the dryer 

107 °C (224 °F) (Rodriguez et al., 
1998) 

Can be, at most, 195 °C (383 °F) before 
rapid de-volatilization occurs.  
Moreover, at drying temperatures over 
100 °C (212 °F), drying times should 
also be limited to less than five minutes 
to preserve the biomass's heating value.

Relative humidity of 
air exiting the dryer 

20%   
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Input Value (unit) Source Notes 
Air temperature 
difference in dryer 

30 °C (54 °F)  Difference between temperature of air 
entering and exiting the drying 
chamber.  Generally determined by the 
air flow through the dryer. 

Boiler pressure 345 kPa (gage) 
(50 psig) 

 Capital cost of each boiler is 
approximately $44/(kg/hr) or 
$20/(lb/hr) of steam production 

Boiler efficiency 85%   
Labor cost for dryer 
operators 

$15/hr   

Cost of electricity $0.09/kWhe (EIA, 2007e) Average retail price for 2006 
commercial consumers 

Natural gas price $7.36/GJ 
($7.76/MMBtu) 

(EIA, 2007b) Average 2006 price for electricity 
producers 

Land requirement 4 hectares per drying 
site 

 Note: 1 hectare = 10,000 m2.  It was 
estimated that one drying site of this 
size could house 5 dryers 

Land cost $12,350/hectare 
($5,000/acre) 

 This cost may also include general 
overhead costs such as small office 
buildings and parking lots at the drying 
sites. 

Extra storage 
structures 

four 30.6 m3 storage 
trailers 

 122.3 m3 (160 yd3) of total extra 
biomass storage (about 2 days extra 
capacity) in case of inclement weather. 

 

 

 

Table 6.5, continued 
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Table 6.6 Base case input parameters for manure-based biomass transportation system 
Input Value (unit) Source Notes 

Loading & unloading 
times 

25 min each (USEPA, 2001)  

Average distance 
between plant and 
animal feeding 
operations 

80 km (50 miles)  This distance should be an average 
distance weighted by the amount of 
biomass from each animal feeding 
operation contributing to the power 
plant's fueling 

Number of hauling 
days 

300 days/yr  Approximately 6 days per week, minus 
holidays 

Hauling schedule 16 hrs/day  2 eight hour shifts 
Truck capacity 30 m3 (40 yd3) (GSNet.com, 2007) 30 m3 (40 yd3) trailers cost roughly 

$40,000 each, and the truck tractors 
hauling the trailers cost approximately 
$150,000 each. 

Truck maintenance $0.31/km 
($0.50/mile) 

(USEPA, 2001)  

Labor cost for biomass 
haulers 

$15/hr   

Diesel fuel price $0.79/liter ($3.00/gal)   

Average truck speed 80.5 km/hr (50 mph) (Krishnan et al., 2005)Fuel economy for the hauling vehicles 
was assumed to be 3.4 km/liter (8 mpg)

Rated truck horse 
power 

373 kW (500 hp) (Peterbilt.com, 2009)  

Truck load factor 70% (Krishnan et al., 2005) 
Truck SCR cost $3,120/yr (Krishnan et al., 2005)Includes O&M and annualized capital 

costs.  SCR can meet 74.5 g/GJ 
(0.2 g/bhp hr) NOx levels; 2007 
standards 
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Table 6.7 Base case economics input parameters 
Input Value (unit) Source Notes 

Book Life 30 years (USEPA, 2004) Balance sheet for corporate financing 
structure for environmental retrofits 

Real (non-inflated) 
Discount Rate 

5.30% (USEPA, 2006) " 

Inflation Rate 4.00%   
Capital Charge Rate 12.10% (USEPA, 2006) Balance sheet for corporate financing 

structure for environmental retrofits 
Tax Rate 34.00% (Turner, 2001) Omnibus Reconciliation Act of 1993:  

Marginal tax rate for taxable incomes 
between $335,000 and $10,000,000 

Assumed annual rates of price escalation based on data from the US Bureau of Labor Statistics from 
1998 to 2007 

Transport vehicles 0.00% (US Bureau of Labor 
Statistics, 2008) 

Estimated from the combined average 
annual rate of price increase for truck 
tractors and trailers between 1998 and 
2007 (computed from Producer Price 
Commodity Indexes).  Truck trailers 
increased in price by about 2.66% 
annually, but truck tractors decreased in 
value by about 0.73% between 1998 and 
2007. 

Dryers 3.90% (US Bureau of Labor 
Statistics, 2008) 

Estimated from the average annual rate 
of price increase for industrial food 
production machinery (e.g. dryers) 
between 1998 and 2007 (computed from 
Producer Price Commodity Indexes) 

Coal 3.77% (US Bureau of Labor 
Statistics, 2008) 

Estimated from the average annual rate 
of price increase for bituminous coal 
and lignite between 1998 and 2007 
(computed from Producer Price 
Commodity Indexes) 

Natural gas 5.00%  The prices of natural gas and propane 
have increased by about 10% and 20% 
annually, respectively on average, from 
1998 to 2007.  The assumed values are 
more optimistic because such high 
annual price increases would certainly 
make any co-fire or reburn project 
economically unfeasible if prices were 
to increase at these rates throughout the 
life of the project. 

Propane 5.00%  " 
Electricity 3.71% (US Bureau of Labor 

Statistics, 2008) 
Estimated from the average annual rate 
of price increase for industrial electrical 
power between 1998 and 2007 
(computed from Producer Price 
Commodity Indexes) 
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Input Value (unit) Source Notes 
Diesel fuel 5.00%  The price of diesel has increased by 

20% annually, on average from 1998 to 
2007.  The assumed value of 5% is 
more optimistic because such a high 
annual price increase would make 
transporting biomass unfeasible if the 
price were to increase at this rate 
throughout the life of the project.  
Moreover, the rate computed from the 
Producer Price Commodity Indexes is 
somewhat skewed due to the large price 
increase of oil and petroleum products 
in 2007. 

Labor 1.50% (US Bureau of Labor 
Statistics, 2008) 

 

CO2 allowances 5.25% (Sekar et al., 2005) The estimated annual increase of the 
value of CO2 under the proposed 
McCain-Libermann bill of 2003 

SO2 allowances 4.00% (SCAQMD, 2007)  

Ash sales 1.00%   
Ash disposal (tipping 
fees) 

1.00%   

 

 

 

Table 6.7, continued 
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From the base case inputs, a resulting reference run was completed.  The base 

case results for fueling and emission rates for a 300 MWe coal-fired power plant, before 

any co-fire or reburn system is implemented, are summarized in Table 6.8.  These rates 

may be compared to those in Table 6.9 for fueling and emissions when the same power 

plant is fueled with a 95:5 blend (by mass) of coal and MBB.  The annual energy 

consumption was found to increase by about 259,000 GJ per year when co-firing with 

MBB.  This includes the energy consumed by drying equipment and transportation 

vehicles.  The heat energy released by the MBB when burned at the power plant (i.e. 

794,800 GJ/yr in Table 6.9) was found to be 535,000 GJ more than the energy needed to 

dry it and transport it to the plant. 

 
Table 6.8 Base case fueling and emissions results for a 300 
MWe coal plant operating before any co-firing or reburning 
system is installed 

    

Coal only 
(burned with primary 

NOx controls and FGD) 
GJ/yr 21,625,812Fueling rate 
metric ton/yr 1,137,322
g/GJ 93,497CO2 emission 
metric ton/yr 2,021,983
g/GJ 15SO2 emission 
metric ton/yr 324
g/GJ 3,093Ash emission 
metric ton/yr 66,897
g/GJ 84

NOx emission 
metric ton/yr 1,822

 

Total CO2 emissions when co-firing with MBB, including carbon emissions from 

biomass drying and transportation, were found to be 58,600 metric tons per year less 

than CO2 emissions before implementing co-firing.  However, this estimate assumes that 

all of the electricity used to run the dryer’s fans was generated completely from coal 

combustion.  Moreover, SO2 emissions were found to increase slightly when co-firing, 

but this is mostly because a flue gas desulphurization system was assumed to be installed 

whether MBB was being burned or not.  Otherwise, higher sulfur contents in the 

biomass compared to the Wyoming sub-bituminous coal may have been more of a 



 259

factor.  Finally, ash emissions were found to increase by about 10% when co-firing with 

only 5% MBB under the base case run, even though the MBB was of the low-ash 

variety. 

 
Table 6.9 Base case fueling and emissions results for a 300 MWe coal plant operating while co-firing 
manure-based biomass (5% by mass) 
Number of drying sites 1      
Number of dryers (each 
rated at 2 dry metric 
tons/hr) 

5 

     
Number of dryer operators 2      
Total hectares required for 
drying site(s) 

4 
     

Total extra storage trailers 4           
Number of hauling vehicles 
required (30.6 m3 each) 

3 
     

Number of cows required 
(6.35 dry kg/cow/day) 

21,000 
          

    
Primary fuel 

(coal) 
Co-fired fuel 

(MBB) 

Dryers 
(natural 

gas) 

Dryers 
(electricity for 

fans)a 

Hauling 
vehicles 
(diesel) Total 

GJ/yr 20,831,030 794,782 213,423 36,931 9,091 21,885,256Fueling rate 
metric ton/yr 1,095,524 57,693 4,268 2,169 189 n/a
g/GJ 90,063 3,681 55,005 93,497 64,290 n/aCO2 

emission metric ton/yr 1,947,672 79,655 11,709 3,453 584 1,963,418b

g/GJ 14.43 1.23 n/a n/a n/a n/aSO2 
emission metric ton/yr 312 27 n/a n/a n/a 338

g/GJ 2,980 426 n/a n/a n/a n/aAsh 
production metric ton/yr 64,439 9,220 n/a n/a n/a 73,659
aElectricity for fan operation is assumed to come entirely from coal.  Fueling and emission rates are for the equivalent amount of coal 
required to produce the electricity in a power plant with an overall efficiency of 35%. 
bExcluding CO2 emissions from renewable fuels such as the MBB co-fired fuel 
 

Yet economically, co-firing coal and MBB was found to be 2.3% more expensive 

than burning coal alone, under base case assumptions.  A list of cost components at 

Year 1 and the overall sum of these costs and revenues for both firing coal alone and 

burning coal with MBB under the base case assumptions are juxtaposed in Table 6.10.  

The major increase in cost of co-firing MBB comes from the variable O&M increase, 

largely due to biomass drying operations.  However, this is partly offset by combined 

(coal and biomass) fuel delivery savings of about $990,000.  Yet, increased fixed O&M 

cost and $223,700 more in ash disposal costs (even when the co-fire rate is only 5%, by 
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mass) make co-firing coal with MBB more expensive, at Year 1, under base case 

assumptions. 

 
Table 6.10 Comparison of base case Year 1 costs for power plant operation before and 
during manure-based biomass co-firing (300 MWe plant, 5% biomass by mass) 

Year 1 Costs 
Coal Combustion

only
Co-firing Coal with 

Biomass
Fixed O&M Cost 0 67,261 

Variable O&M Costa 0 2,155,166 
Biomass Delivery Cost 0 620,100 

Coal Delivery Cost 43,878,448 42,265,847 
CO2 Penalty 7,800,913 7,574,966 
SO2 Penalty 314,864 329,081 

Ash Revenue (368,704) (368,601)
Ash Disposal Cost 1,769,781 1,993,493 

Annualized Capital Cost 0 594,887 
TOTAL COST (w/o capital) 53,395,301 54,637,314 
aFor MBB, variable O&M includes the cost of drying the biomass 

 

In order to compute the net present worth (NPW) (equation (5.298)) of a MBB 

co-fire implementation project, the cash flows throughout the life of the project must be 

computed.  This analysis requires knowledge of the discount (non-inflated) rate, inflation 

rate, price escalation rates, and the project life.  The base case values of these parameters 

are listed in Table 6.7.  Usually an economically attractive project would generate annual 

revenue in order to payoff the initial investment of the project.  In the case of the co-fire 

project, the hope is that avoided CO2 emission costs (allowances, taxes, avoided 

sequestering and/or storage costs) and avoided coal fueling costs will overrule the 

additional costs of drying and transporting the biomass, grinding and burning the 

biomass at the plant, and the cost of disposing ash emitted when burning MBB.  

However, at least for the base case run, this payoff was found not to occur.  The total 

operating cost (or revenue) at year one can be computed by taking the difference of the 

total costs listed in Table 6.10 (i.e. $54,600,000 – $53,400,000 = $1,200,000).  Even 

though the value of carbon and the price of coal were assumed to escalate annually by 

5.25% and 3.77%, respectively; the price of natural gas, electricity, and diesel fuel, 
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which are all necessary to supply the biomass under the base case assumptions, escalate 

as well at similar rates. 

Thus, the operating cost of the co-fire project only grows throughout the project 

life without any return, as can be seen in Figure 6.19.  The discounted values of the 

operating costs are also displayed in present dollars.  The total initial investment of the 

project was found to be $5.9 million dollars.  After adding the discounted operating costs 

throughout the project, the 30-year NPW for the base case run was found to be negative 

$22.6 million (i.e. net present cost).  Distributing this NPW evenly through all 30 years 

with equation (5.299) showed that the annualized cost of co-firing would be $2.30 

million per year.  With equation (5.300), the specific CO2 reduction cost was found to be 

$35.68/ton CO2.  Dividing the annualized cost by the electricity output of the plant 

(equation (5.301)) showed that co-firing coal with MBB would cost 0.11 ¢/kWhe. 
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Figure 6.19 Overall cash flows for the base case run of the manure-based biomass co-fire economics 

model 
 

These results will act as the base case for the remainder of this discussion on the 

economics of co-firing coal and MBB.  Each parameter will be varied while holding all 
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other parameters fixed at their respective base values.  Some of the more significant 

parameters such as transport distance and diesel price will be discussed presently; 

however, in Appendix C a full sensitivity analysis of the NPW for all base case values is 

presented. 

 

6.3.1.2. Biomass and coal fueling 

The amount of MBB burned along with the coal can greatly influence the overall 

cost of the system.  However, whether an increase in co-fire rate will increase or lower 

the overall cost may not be intuitively clear, since transport and drying costs will go up, 

but revenue from avoided CO2 and avoided coal will also increase.  Yet in Figure 6.20, 

drying and transport cost seem to dominate even at higher co-fire rates.  The annualized 

cost of the co-fire system rises steadily with higher co-fire rates. 
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Figure 6.20 Biomass drying and transportation cost and annualized cost/revenue of biomass co-fire 

system vs. the biomass co-fire rate 
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Figure 6.21 Fueling rates for Wyoming sub-bituminous coal and low-ash dairy biomass vs. co-fire rate 

 

The MBB displaces some of the coal that must be purchased by the plant 

operator as seen in Figure 6.21; although, the overall fuel mass injected into the boiler 

increases with higher co-fire rates.  For this reason, the profitability of co-firing coal 

with MBB is extremely sensitive to the price of the displaced coal as may be seen in 

Figure 6.22.  If the coal is inexpensive, then there is little economic return on its 

displacement.  This may be particularly troublesome when co-firing MBB in a plant that 

exclusively fires relatively cheap sub-bituminous or lignite coals from nearby mines.  

However, displacing higher rank, more expensive coals or even lower rank coals that 

must be transported long distances to the plant that consumes them may provide a better 

situation for MBB combustion.  Coals obtained from underground mines also tend to be 

more expensive than coals taken from surface mining.  The base case year 1 value of 

coal was $38.58/metric ton ($35/ton), but if the value of coal at year 1 were to be 

$60.63/metric ton ($55/ton), then the annualized cost would drop by 56%. 
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Figure 6.22 Annualized cost/revenue and net present worth vs. year 1 coal price 

 

For the base case, the MBB was assumed to be given to the power plant facility 

free of charge by the farmer; however, if this is not the case, then the additional cost of 

buying manure from animal farm operators will adversely affect the NPW of the co-fire 

system, as can be seen in Figure 6.23.  A MBB price of $10/dry metric ton can decrease 

the NPW of co-firing by 29%, if the price is also assumed to escalate by 3% annually. 
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Figure 6.23 Annualized cost/revenue and net present worth vs. year 1 farmer’s asking price for manure 

 

6.3.1.3. CO2, SOx, and ash emissions 

Changes in fueling also bring changes in the plant’s emissions.  Since co-firing 

with MBB was assumed not to significantly affect NOx emissions for this study 

(although some current experimentation at the Texas A&M Coal and Biomass 

Laboratory on co-firing manure with coal in a low-NOx burner may prove otherwise), 

the primary source of revenue for co-firing must come from avoided CO2 emissions.  If 

the dollar value placed on CO2 is large enough from taxes, cap and trade policies, or 

capture and sequestering operations, then the overall worth of a co-firing installation 

project may prove to be acceptable.  Figure 6.24 is a plot of annualized cost and net 

present worth against the year 1 dollar value of a metric ton of CO2.  At the base case 

value of $3.85/metric ton ($3.50/ton), the net present worth and annualized value are 

decidedly negative, making a co-firing retrofit project economically undesirable.  

However, if all other base values remain the same, and the value of CO2 were to increase 

to about $25/metric ton, then a break even point may be met.  CO2 values higher than 
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$25/metric ton would make the investment of co-firing with MBB in an existing coal 

plant profitable. 
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Figure 6.24 Annualized cost/revenue and net present worth vs. the value of CO2 

 

Another way to view the relationship between the value of CO2 and the net 

present worth of the system is to divide the annualized cost/revenue by the total 

reduction of nonrenewable CO2 from co-firing with MBB (equation (5.300)).  Thus, a 

dollar per metric ton value can be obtained that is representative of every aspect of 

installing and operating a co-fire system.  This value can then be compared to the going 

market value of CO2.  This comparison is illustrated in Figure 6.25.  The plot can be 

divided into three different sections.  If the specific CO2 reduction value falls under 

Section 1, then the cost of reducing CO2 through co-firing with MBB is more expensive 

than simply paying the market value of CO2.  If the results from the co-fire model fall 

under Section 2, then the cost of reducing CO2 through co-firing is less than the market 

value.  Finally, in extremely fortunate cases, the specific cost of reducing CO2 by co-

firing with MBB could under Section 3, which suggests that co-firing with MBB would 
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be even more profitable than selling CO2 allowances; hence the going market value 

would be considered too low. 

The plot was also generated at different CO2 escalation rates.  If the price of CO2 

is expected to increase throughout the life of the co-firing project, then co-firing with 

MBB would become more profitable.  The base case escalation rate of CO2 was 5.25%.  

At this rate, a year-1 CO2 value of over $17/metric ton would be considered enough to 

stimulate a profitable MBB co-firing project at an existing power plant. 
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Figure 6.25 Specific CO2 reduction cost/revenue vs. the value of CO2 

 

Another emission that can affect the profitability of a co-firing project is SO2.  

However, the significance of sulfur depends on two issues:  (1) the amount of sulfur 

contained in the MBB compared to the coal this being replaced and (2) whether or not 

there is a flue gas desulphurization (FGD) system installed at the power plant.  The 

effect these two issues have on the annualized cost of co-firing coal with MBB is 

illustrated in Figure 6.26.  From Table 2.5, the amount of sulfur in low-ash dairy 

biomass can be found to be 32.6 kg/GJ, whereas Wyoming sub-bituminous coal contains 
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13.5 kg/GJ, from Table 2.2.  Therefore, when substituting Wyoming coal with low-ash 

dairy biomass, having a FGD system reduces the annualized cost by about 17%.  On the 

other hand, Texas lignite contains about 42.2 kg sulfur/GJ.  Not having a FGD seems to 

actually benefit a MBB co-fire system if the biomass were to replace Texas lignite.  

However, usually power plants that burn low-sulfur coals such as Wyoming sub-

bituminous do not have FGD systems, whereas many plants that burn Texas lignite do 

have FGD systems to reduce SO2 emissions post combustion. 
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Figure 6.26 Effect of flue gas desulphurization on the annualized cost/revenue of co-firing manure-based 

biomass with coal 
 

Moreover, the price of the coal is usually related to the amount of sulfur it 

contains.  For example, Wyoming sub-bituminous coal is transported long distances to 

power plants in Texas such as Tolk Station, Harrington, and WA Parish because those 

plants do not have FGD (USEPA, 2007a).  These long transport distances make 

Wyoming sub-bituminous coal expensive, at least in Texas.  However, any dollar 

savings from replacing the Wyoming coal with MBB might be partly overruled by the 

additional cost of SO2 emissions from burning manure instead of low-sulfur coal. 
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Another emission that will certainly be detrimental to co-firing with MBB is ash.  

Ash in MBB is a drag on the co-firing system (or reburning system) at every level.  Ash 

adds to transportation costs as it means moving more mass for less energy content.  Ash 

is also a heat sink during drying, making drying high ash biomass slightly more 

expensive than drying low ash biomass.  Most significantly, ash adds to the O&M cost 

of co-firing because it must be removed from the power plant and then sold or disposed 

of off site.  Figure 6.27 is a diagram of ash emission from coal and biomass for different 

co-fire rates when Wyoming coal is replaced by low-ash biomass.  Figure 6.28 is a 

similar graph for Texas lignite replacement with low-ash biomass, and Figure 6.29 is for 

Texas lignite replacement with high-ash feedlot biomass. 
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Figure 6.27 Ash emission vs. co-fire rate when replacing Wyoming sub-bituminous coal with low-ash 

dairy biomass 
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Figure 6.28 Ash emission vs. co-fire rate when replacing Texas lignite with low-ash dairy biomass 
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Figure 6.29 Ash emission vs. co-fire rate when replacing Texas lignite with high-ash feedlot biomass 
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Just as with sulfur, the significance of ash content on the profitability of co-firing 

with MBB is heavily dependant on the amount of ash in the MBB relative the ash 

content in the coal it is replacing.  If low ash MBB replaces the relatively low ash 

Wyoming coal, ash emissions would increase from 7.64 metric tons/hr to 8.41 metric 

tons/hr (about 10%) when co-firing 5% biomass.  However, if low-ash MBB were to 

replace lignite, which is higher in ash than Wyoming coal, at the same 5% rate, ash 

emission would increase from 19.76 metric tons/hr to 20.13 metric tons/hr (only about 

1.9%).   

These high ash emissions are troubling, given that studies by Megel et al. (2006 

and 2007) reported that manure ash was not suitable as a cement replacement on its own.  

However, it is not clear if the same problems would occur when manure is fired with 

coal, as would be the case with co-firing MBB.  Also, manure ash may be utilized in 

other ways, as discussed previously.  The responsibility of finding local markets and 

buyers for the ash produced by MBB would probably fall on plant operators and 

managers. 

 

6.3.1.4. Biomass drying and transporting 

In order to co-fire coal with MBB at an existing power plant, some important 

logistical issues should be considered.  An important logistical parameter was found to 

be the average distance between the plant and the animal feeding operations that supply 

the biomass.  The power plant should be near or in a geographical area of high 

agricultural biomass density.  Figure 6.30 is an illustration of how power plant facilities 

and possible supply regions of MBB fuel can be matched.  Goodrich et al. (2007) 

studied manure production rates and precise rural transportation routes between coal 

plants and feeding operations in Texas. 
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Figure 6.30 Matching coal-fired power plants and areas with high agricultural biomass densities, adapted 

from (Virtus Energy Research Associates, 1995) and (Western Region Ash Group, 2006) 
 

The importance of logistics can be seen further in Figure 6.31 and Figure 6.32.  

These figures depict the co-firing O&M (grinding and other associated costs of burning 

biomass at the plant), the transportation O&M, the drying O&M, and the respective 

capital costs versus the distance to the feeding operations.  Drying MBB was found to be 

the dominate O&M cost.  However, if the average distance between the plant and the 

feeding operations that supply it were to be over 160 km (100 miles), then transportation 

costs would become as significant.  For longer transport distances, the number of 

possible round trips to and from the feeding operations that hauling vehicles must make 

per day decreases.  Hence, more trucks must be purchased for longer distances to 

adequately maintain the desired co-fire rate. 
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Figure 6.31 Manure-based biomass co-fire O&M cost components vs. distance between plant and animal 

feeding operations 
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Figure 6.32 Manure-based biomass co-fire capital cost components vs. distance between plant and animal 

feeding operations 
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Figure 6.33 is a plot of annualized cost and net present worth against MBB 

transportation distance.  If the cost of drying biomass were less significant, the 

transportation distance could be the deciding factor of whether co-firing with MBB was 

profitable or not.  The most effective MBB transport systems should be closely knit 

networks of animal feeding operations surrounding one or two coal plants in areas within 

a 160 km (100 mile) radius.  Short transport distances would also allow some flexibility 

to some of the other base case input parameters such as coal cost and ash disposal cost.  

Moreover, it may be possible to use ash from coal and biomass combustion to pave more 

feed yards in nearby feedlots which would increase the amount of low-ash feedlot 

biomass available for reburning facilities and other combustion processes.  Currently, the 

only realistic CB feedstock would have to come from free stall dairies with composted 

manure-based bedding and flushing systems.  For many cases, there may simply not be 

enough low-ash biomass near the plant to sustain a co-fire rate of more than a few 

percent. 
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Figure 6.33 Annualized cost/revenue and net present worth vs. manure-based biomass transport distance 
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Yet for shorter transportation distances, the O&M cost of co-firing is dominated 

by the cost of drying the biomass.  For the base case run of the co-firing model, drying 

constitutes 76% of the total cost.  Of this cost, 73% is due to purchasing natural gas for 

generating steam for the biomass dryers.  Another 15% is due to running the dryers’ 

fans.  Moreover, if the biomass must be dried before being sent to the power plant, 

natural gas is probably the cheapest fuel to use.  Both propane and electric driers would 

probably be more expensive.  Figure 6.34 is a plot of annualized cost against natural gas 

price and annual escalation of gas price.  If natural gas was free, or not needed, to dry the 

biomass, then a break even point for the cost of co-firing would be reached, that is if all 

other base case values remained the same.  If the price of natural gas is too high, or if the 

escalation is expected to be high, then a profitable scenario may be out of reach. 
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Figure 6.34 Annualized cost/revenue vs. natural gas price 

 

However, there may not always be a need to use expensive conventional fuels to 

dry MBB.  If power plant operators are willing to receive wet MBB, then waste heat 
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from coal combustion could be used to dry the biomass instead natural gas.  Or if the 

MBB is from a more arid region where the relative humidity is low, the moisture content 

of the biomass, when harvested, might be low enough to forgo any drying at all.  

According to Heflin (2008), the moisture percentage of scraped feedlot biomass 

collected in the Texas Panhandle is rarely over 30%, as harvested, even after heavy 

rainfall.  This is particularly true for low-ash solids from paved feedlots.  Figure 6.35 is a 

graph of overall delivery cost for Texas lignite, Wyoming sub-bituminous, and low-ash 

dairy biomass at three drying scenarios.  The first scenario is such that the biomass is 

dried using natural gas, just like the base case.  The overall as-delivered cost of the 

biomass for this case is $3.95/GJ ($4.16/MMBtu), over twice the price of Wyoming sub-

bituminous.  If the MBB is transported to the power plant and then dried with waste 

heat, then the delivery price of the biomass was found to drop by 55%.  If the biomass is 

inherently dry, say less than 30% moisture, and no additional drying is required, then the 

delivery price drops by 81% to $0.76/GJ ($0.80/MMBtu), which is actually cheaper than 

the Wyoming and Texas lignite coals. 
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Figure 6.35 Overall fuel costs for coals and low-ash dairy biomass at different drying requirements 
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Yet, as stated before, currently the greatest supply of low-ash MBB may be from 

dairies with flushing systems or perhaps from indoor swine farms.  Separated solid 

manure from these facilities would probably be high in moisture and require drying 

before combustion.  Most scraped manure from feedlots and open dairy lots is high in 

ash since most of these lots are unpaved. 

For the base case 300 MW power plant, if each cow, on average, were to produce 

6.35 dry kg of manure per day (14 lb/cow/day), then about 21,000 dairy cows would be 

required to sustain a co-fire rate of 5% (by mass).  The Bosque and Leon River 

Watersheds in north central Texas have about 150,000 dairy cows in over 150 dairies.  

Therefore, one 300 MWe plant would require approximately 14% of all cattle manure 

produced by these farms.  Hence, the availability of suitable, low-ash MBB, as well as 

the coordination between farmers, centralized composting facilities, and plant operators 

easily come into question when trying to apply this low heat value biomass to large 

electric boilers. 
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Figure 6.36 Number of trucks and dryers and manure-based biomass fueling rate vs. power plant capacity 



 278

 

To handle these issues, several methods such as storage and reserve stockpiles of 

ready-to-fire MBB can be kept near the power plant.  In Figure 6.36, the number of 

required trucks and dryers are plotted against power plant capacity.  A 500 MWe plant 

would require at least 8 two-metric ton conveyor belt dryers where as a 100 MWe plant 

would only require 2 dryers.  Concentrating research and development of animal 

biomass utilization on smaller, more dispersed power facilities may be more helpful.  

Power plants with 50 to 100 MWe capacities would seem to be the best candidates for 

co-firing coal with MBB. 

 

6.3.2. Reburning 

Modeling a MBB reburn system is very similar to the previous model for co-

firing.  The main difference is NOx emissions.  The revenue generated from avoided 

NOx emissions adds another dimension to the analysis, and in theory makes a MBB 

reburn system more profitable than a simple co-firing operation.  However, reburn 

systems require anywhere between 10 and 20% reburn fuel (in this case, biomass) on a 

heat basis.  For the case of replacing Wyoming sub-bituminous coal with low-ash dairy 

biomass at 20% moisture, this range is equivalent to about 13 and 26% by mass, which 

is far greater than the 5% co-fire rate discussed for the base case in the previous section. 

An outline of the reburn computational model is presented in Figure 6.37.  The 

layout of the program is similar to the co-firing model, except that baseline NOx levels 

must be computed both for cases with primary NOx controls and without primary 

controls.  Then, NOx emission reductions can be computed for secondary controls such 

as reburning, SCR, and SNCR.  The biomass drying and transportation sections of the 

model are left relatively unchanged, except for the fact that more biomass must be dried, 

transported, and processed at the power plant. 
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Figure 6.37 Flow diagram of computer spreadsheet model for reburning coal with manure-based biomass 

in an exiting coal-fired power plant along with comparisons to SCR and SNCR systems 
 

6.3.2.1. Base case inputs and results 

All base case inputs will remain the same for the reburning discussion except for 

those listed in Table 6.11.  For the base case, the 300 MWe coal power plant will be 

equipped with a primary NOx controller (low-NOx burner with closed coupled over fire 

air) capable of lowering NOx levels to 84.2 g/GJ (0.196 lb/MMBtu).  The secondary NOx 

controls such as MBB reburning and SCR will be installed and operated along with the 

primary controls.  The reburn model can be set up so that the coal is reburned with MBB 

without any primary controls present; however for this discussion, since low-NOx 

burners, over fire air and other primary controllers are presently installed in most 

existing coal plants, the secondary technologies will add to the NOx reductions already 
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achieved by the primary controls.  Thus, all dollar savings for NOx are acquired for 

reductions from the 84.2 g/GJ level. 

 
Table 6.11 Additional base case inputs for reburning coal with manure-based biomass 

Input Value (unit) Source Notes 
Primary NOx control Low-NOx coal and air 

nozzles with closed-
coupled OFA 

 See primary control NOx level 
(next item) 

Primary NOx control 
level 

84.23 g/GJ 
(0.1959 lb/MMBtu) 

(Srivastava, 2005) about 50% average reduction 
efficiency for these primary 
controls when burning sub-
bituminous coals 

Reburn fuel LADB (Sweeten et al, 2006) See Table 2.5 
Heat contribution from 
reburn fuel 

10%  Range: 10 – 30% 

Reburn NOx control 
level 

25.9 g/GJ 
(0.06 lb/MMBtu) 

(Colmegna et al, 2007), 
(Oh, et al., 2008), 

(Annamalai et al., 2005) 

 

Reburn capital cost $35/kWe (Zamansky et al., 2000)  
Reburn fixed O&M $1.07/kWe yr (Biewald, et al., 2000), 

(USEPA, 1998) 
Scaled for different plant 
capacities and firing cattle 
biomass 

SCR NOx control level 25.9 g/GJ 
(0.06 lb/MMBtu) 

(USEPA, 2004) >90% reduction, but current 
commercial systems are usually 
limited to 25.9 g/GJ 

SNCR NOx control 
level 

64.6 g/GJ 
(0.15 lb/MMBtu) 

(Srivastava, 2005) ~35% reduction for larger coal 
plants 

NOx credit/allowance $2,590/metric ton 
reduced 

(SCAQMD, 2007) Average annual price for 
Compliance Year 2005.  
Assume credits gained for 
reductions beyond primary 
control levels 

NOx allowances 4.50% (SCAQMD, 2007)   
 

For the reburn base case, the reburn fuel was pure low-ash dairy biomass, which 

contributed 10% of the power plants overall heat rate (about 13% by mass).  The reburn 

model can be setup so that blends of coal and MBB can be the reburn fuel; however, 

according to Oh et al. (2008) and Annamalai et al. (2005), the greatest NOx reductions 

are achieved when pure biomass is used as the reburn fuel.  Manure-based biomass 

reburning and SCR were presumed to achieve the same NOx level of 25.9 g/GJ 



 281

(0.06 lb/MMBtu), whereas SNCR was assumed to only achieve a level of 64.6 g/GJ 

(0.15 lb/MMBtu). Both SCR and SNCR use ammonia or urea as reagents, which do not 

contribute to the overall heat rate of the power plant; therefore, coal consumption and 

other emissions aside from NOx are presumed to be the same for SCR and SNCR as for 

the case of burning pure coal alone. 

Just as with the co-fire model, the base case inputs for reburning were used to 

generate a reference run of the reburn model.  The base case results for fueling and 

emission rates for burning coal alone with primary NOx controls are listed in Table 6.8.  

These rates may be compared to those in Table 6.12 for fueling and emissions when 

reburning coal with MBB.  Again, the total annual fueling (energy) consumption was 

found to be about 709,000 GJ more per year when reburning with MBB.  This increase 

in total fueling is almost three times that for the co-firing base case.  Yet this is 

predominantly due to the fact that more diesel and natural gas are required to prepare 

enough biomass for reburning.  The heat energy released by the MBB in the reburn zone 

of the boiler burner (i.e. 2.16 million GJ/yr in Table 6.12) was found to be 1.46 million 

GJ more than the energy needed to dry and transport it to the plant.  However, this may 

not be the case if transportation distances were greater, or if more biomass was required 

to obtain desired NOx levels. 
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Table 6.12 Base case fueling and emissions results for a 300 MWe coal plant operating while reburning 
coal with manure-based biomass (10% by heat) 
Number of drying sites 2      
Number of dryers (each 
rated at 2 dry metric 
tons/hr) 

12 

     
Number of dryer operators 5      
Total hectares required for 
drying site(s) 

8 
     

Total extra storage trailers 8           
Number of hauling vehicles 
required (30.6 m3 each) 

8 
          

Number of cows required 
(7.7 dry kg/cow/day) 

47,000 

          

    
Primary fuel 

(coal) 
Reburn fuel 

(MBB) 

Dryers 
(natural 

gas) 

Dryers 
(electricity 
for fans)a 

Hauling 
vehicles 
(diesel) Total 

GJ/yr 19,463,231 2,163,816 582,264 100,510 24,800 22,334,620Fueling rate 
metric ton/yr 1,023,590 157,400 11,644 5,046 515 n/a
g/GJ 84,147 10,043 55,005 93,497 64,290 n/aCO2 

emission metric ton/yr 1,819,785 217,316 31,944 9,398 1,594 1,862,721b

g/GJ 13.48 3.34 n/a n/a n/a n/aSO2 
emission metric ton/yr 291 72 n/a n/a n/a 364

g/GJ 2,784 1,162 n/a n/a n/a n/aAsh 
production metric ton/yr 60,208 25,154 n/a n/a n/a 85,361

g/GJ 26 n/a n/a n/a 74,501 n/aNOx 
emission metric ton/yr 557 n/a n/a n/a 2 559
aElectricity for fan operation is assumed to come entirely from coal.  Fueling and emission rates are for the equivalent amount of coal 
required to produce the electricity in a power plant with an overall efficiency of 35%. 
bExcluding CO2 emissions from renewable fuels such as the MBB reburn fuel 
 

Total CO2 emissions for reburning, including carbon emissions from MBB 

drying and transportation, were found to be 159,000 metric tons/yr less than emissions 

for primary control operation only.  Again, since much more biomass would be required 

for reburning than the 5% (by mass) for the co-fire base case, CO2 reduction was almost 

3 times as much as carbon reduction from co-firing.  However, ash emissions greatly 

increased for the MBB reburn system under the base case run by 27.6%.  Lastly, since 

the hauling vehicles were assumed to meet 2007 NOx standards with catalytic converter 

systems, the NOx emitted by the vehicles only inhibited MBB reburn NOx reductions by 
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about two metric tons/year, compared to a 1,260 metric ton/year reduction beyond 

primary control levels. 

Despite the increase in ash emissions, economically, the MBB reburn system was 

found to be only 0.61% more expensive for the first year than operating with primary 

controls alone, under base case assumptions.  The full list of cost components and the 

overall annualized results for the four possible NOx reduction scenarios are compared in 

Table 6.13.  The major increase in overall cost for the MBB reburn system, was found 

again to come from the variable O&M increase, largely due to biomass drying 

operations.  However, this increase was offset by combined (coal and biomass) fuel 

delivery savings of $2.70 million/yr, avoided CO2 penalty of $615,000/yr, and $3.71 

million/yr in additional NOx credits (or savings). 

 
Table 6.13 Comparison of base case Year 1 costs of selected NOx control technology arrangements 
(300 MWe plant, 10% biomass by heat for reburn case) 

Year 1 Costs 
Primary control

only

Primary control
+ manure-based 
biomass reburn

Primary 
control
+ SCR

Primary 
control

+ SNCR
Fixed O&M Cost 63,000 506,995 272,657 119,664 

Variable O&M Costa 56,765 5,876,452 1,433,709 2,118,293 
Biomass Delivery Cost 0 1,691,040 0 0 

Coal Delivery Cost 43,878,448 39,488,099 43,878,448 43,878,448 
NOx Creditsb 0 (3,271,151) (3,275,800) (1,106,857)
CO2 Penalty 7,800,913 7,186,025 7,800,913 7,800,913 
SO2 Penalty 314,864 353,717 314,864 314,864 

Ash Revenue (368,704) (368,550) (368,704) (368,704)
Ash Disposal Cost 1,769,781 2,380,425 1,769,781 1,769,781 

Annualized Capital Cost 531,647 2,735,890 4,481,734 1,007,622 
TOTAL COST (w/o capital) 53,515,066 53,843,052 51,825,867 54,526,402 
aFor MBB, variable O&M includes the cost of drying the biomass 
bNOx credits are assumed to be earned for all reductions beyond those obtained from primary controls 
 

Compared to the other secondary control options, MBB reburning was found to 

be more expensive than SCR, yet cheaper than SNCR.  In fact, SCR was found to be 

about 3.2% cheaper for the year 1 total cost, than sole primary control operation.  

However, SCR was found to have the highest annualized capital cost, mostly due to the 

catalyst installation, which can constitute up to 20% of the initial investment of this type 
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of control system (Mussatti et al., 2000b).  SNCR was found to have the most expensive 

year 1 total cost mostly due to a poorer NOx level than that achieved by either MBB 

reburning or SCR.  Since SCR and MBB reburning were assumed to have similar NOx 

reductions, the comparisons made in this section will mostly be made between these two. 

The same discount, inflation, and escalation rates, as well as project life, were 

assumed for the reburn model.  The overall cash flow diagram for the base case run of 

the MBB reburn model is presented in Figure 6.38.  The overall operating income begins 

as a net cost from years 1 through 7, but as the combined escalation of coal, CO2 and 

NOx prices overtakes that of natural gas, electricity, and other prices and costs, the 

operating income becomes positive after year 7.  However, after adjusting the operating 

income for depreciation of capital, a net positive income is not seen until after year 23, 

thus income tax does not become a factor until this time.  The major difference in this 

analysis compared to simple co-firing is the dollar savings from avoided NOx emissions.  

Despite the requirement of larger amounts of MBB, along with more trucks and dryers 

needed to process it, the net present worth of the MBB reburn system, under base case 

assumptions, was found to be negative $19.1 million (i.e. net present cost), which is a 

slightly lower cost than for the simpler co-firing case discussed earlier.  However, the 

NOx credits are still not enough to achieve a positive net present worth or a payback 

under base case assumptions. 
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Figure 6.38 Overall cash flows for the base case run of the manure-based biomass reburn economics 

model 
 

On the other hand, the total operating income for SCR was found to be positive 

throughout the 30 year life of the project, as can be seen in Figure 6.39.  Yet, the net 

present worth of the SCR system, for the base case, was still found to be slightly 

negative at minus $4.6 million.  The simple payback period, which does not account for 

the time value of money, was found to be about eight and half years and the rate of 

return for SCR at the base case was found to be 8.2%.  The main reason for the relative 

success of SCR compared to MBB reburning at the base case is due to the fact that the 

same NOx reductions can be achieved with SCR without having to pay high variable 

O&M costs of importing MBB.  However, in the remaining part of this section, the net 

present worth of the MBB reburn system will be monitored for variations of certain base 

values to determine if reburning with MBB could ever be as profitable as SCR, or 

justifiable as a NOx reduction technology on an exiting coal-fired power plant with 

primary NOx controllers.  A full sensitivity analysis for MBB reburning may be found in 

Appendix D. 
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Figure 6.39 Overall cash flows for the base case run of the SCR economics model 

 

6.3.2.2. Biomass and coal fueling 

The overall negative net present worth for MBB reburning was mostly attributed 

to the relative expense of importing biomass, with an inferior heat value, to meet a set 

percentage of the plant’s heat rate (for the base case, 10% by heat).  Since the ammonia, 

urea, or other reagents imported for SCR do not add to the fueling of the plant, O&M 

costs for this competing technology can stay relatively low for the same targeted NOx 

level.  If MBB reburn systems are ever to be installed in coal plants, plant operators and 

engineers must find a perfect balance between lowering the biomass contribution to the 

heat rate, saving on coal, and still maintaining targeted NOx levels.  In Figure 6.40, the 

rise in MBB drying and transport O&M can be seen as more of the plant’s heat rate is 

supplied by the biomass reburn fuel.  Also, the annualized costs of MBB reburning 

steadily increases with greater biomass reburn contributions. 
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Figure 6.40 Drying and transport O&M costs and annualized cost/revenue vs. percentage of plant’s heat 

rate supplied by manure-based biomass reburn fuel 
 

The displacement of coal by the biomass is even more significant during 

reburning.  The decrease of coal consumption, along with the overall increase in total 

fuel injection into the power plant can be seen in Figure 6.41 for different heat rate 

contributions from the biomass.  Moreover, the significance of coal price is displayed in 

Figure 6.42.  If the price of coal were to increase to $50/metric ton for the first year of 

the project, then the net present worth and annualized cost of the reburn system would be 

the same as SCR’s. 
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Figure 6.41 Fueling rates of Wyoming sub-bituminous coal and low-ash dairy biomass vs. percentage of 

plant’s heat rate supplied by the biomass reburn fuel 
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Figure 6.42 Annualized cost/revenue and net present worth of manure-based biomass reburning and SCR 

vs. coal price 
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6.3.2.3. CO2, NOx, SOx, and ash emissions 

Carbon emissions affect the net present worth of the MBB reburn system just like 

avoided coal costs.  An increase in the value of CO2 improves the profitability of a MBB 

reburn system tremendously, perhaps more than any other parameter other than the 

dollar value of NOx.  A CO2 value beginning at $12/metric ton would make reburning 

coal with MBB economically competitive to SCR.  See Figure 6.43. 
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Figure 6.43 Annualized cost/revenue and net present worth vs. the value of CO2 

 

A similar plot is shown in Figure 6.44 for the dollar value of NOx.  If the 

escalation rate of the dollar value of NOx remains the same as the base value, 4.5%, then 

SCR reaches an economic break even point at a year 1 NOx value of a little less than 

$3,000/metric ton, whereas MBB reburning would require a year 1 value of about 

$4,000/metric ton. 
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Figure 6.44 Annualized cost/revenue for both MBB reburning and SCR vs. the value of NOx 

 

Yet more importantly, the profitability of MBB reburning was found to be very 

sensitive to the effectiveness of the primary NOx control technology already installed at 

the power plant.  On top of competing with SCR, MBB reburning must also compete 

with these existing low-NOx burners and over fire air.  Figure 6.45 is a plot of 

annualized cost against the NOx level achieved by primary controls.  In many instances, 

coal-fired power plants have already installed very effective low-NOx burners that can 

achieve levels as low as 60.2 g/GJ (0.14 lb/MMBtu) (Srivastava et al, 2005).  For these 

plants, gaining enough revenue from NOx credits to payoff the capital of drying and 

transporting biomass reburn fuel would be difficult. 
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Figure 6.45 Annualized cost/revenue vs. NOx levels achieved by primary NOx controllers 

 

Moreover, the success of a MBB reburn system can also be tested against the 

going value of NOx, just as co-fire systems were tested against the current value of CO2.  

Figure 6.46 is a similar plot to Figure 6.25, only for NOx values.  At an escalation rate of 

4.5%, a current NOx value of $2,500/metric ton would justify a MBB reburn system if 

this standard were to be used.  However, reburning would still not be as attractive as 

SCR. 
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Figure 6.46 Specific NOx reduction cost/revenue for manure-based biomass reburning vs. the value of 

NOx 
 

Emissions of SO2 (Figure 6.47) and ash (Figure 6.48) were found to affect a 

reburn system in much the same way as they would a co-fire system.  Supplying 10% of 

the heat rate through MBB reburning was found to increase ash production from 7.6 

metric tons/hr (when burning coal only) to 9.7 metric tons/hr (about a 28% increase).  If 

the heat contribution from biomass reburn fuel were to be higher at 20%, the ash level 

would exceed 11.8 metric tons/hr, with almost half of the ash coming from the MBB 

reburn fuel.  Again, the high ash emissions are troubling, given the studies on the 

salability of manure ash by Megel et al. (2006 and 2007). 

 



 293

(5.0)

(4.5)

(4.0)

(3.5)

(3.0)

(2.5)

(2.0)

(1.5)

(1.0)

(0.5)

0.0
with flue gas desulphurization
system (95% SO2 reduction)

no flue gas desulphurization system

A
nn

ua
liz

ed
 C

os
t (

m
ill

io
n 

$/
ye

ar
)

WY Sub-bituminous with Low-ash dairy biomass TX Lignite with Low-ash dairy biomass

35% increase

14% decrease

Year 1 Coal Prices:
WY Sub-bituminous = $38.58/metric ton
TX Lignite = $19.84/metric ton
Note:  Prices escalate annually by 3.77%

 
Figure 6.47 The effect of sulfur emissions on annualized cost during reburning 
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Figure 6.48 Ash emission vs. heat rate supplied by biomass reburn fuel for Wyoming sub-bituminous coal 

being replaced by low-ash dairy biomass 
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6.3.2.4. Biomass drying and transporting 

The same discussion about MBB drying and transporting can be made for 

reburning as was done for co-firing.  Since the only change for the drying and 

transportation sections of the economics model was the amount of biomass required for 

reburning, the trends during sensitivity analysis remain largely the same.  However, the 

relationship of parameters, such as transport distance, to reburning’s competitiveness to 

SCR should be noted.  For example, in Figure 6.49, MBB reburning was found to have a 

similar net present worth if transport distances were shorter than 20 km (12 miles), 

despite the same high natural gas fueling costs involved with drying the biomass. 
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Figure 6.49 Annualized cost and net present worth of both reburning and SCR vs. manure-based biomass 

transport distance 
 

During co-firing operations, the plant operator is free to burn coal with any 

fraction of MBB, so long as the combustion can be maintained and there is an adequate 

supply of co-fire fuel.  However, with reburning, the amount of reburn fuel that is 

required is essentially fixed due to the desired NOx emission levels.  According to Oh et 



 295

al. (2008), lower amounts of reburn fuel will hinder NOx reductions.  Thus, the problem 

of finding enough low-ash biomass suitable for burning in a power plant may be an even 

greater challenge for reburning.  For the base case 300 MW power plant, about 57,000 

dairy cows, each producing about 6.35 dry kg of manure per day would be required to 

supply the reburn facility if the biomass reburn fuel supplied 10% of the overall heat 

rate.  This amount of manure is roughly 38% of all the manure produced in the Bosque 

and Leon River Watersheds in Texas.  So, even though the economics models presented 

for this research predict that MBB reburning would be a better investment than MBB co-

firing, the feasibility of reburning coal with MBB is seemingly more doubtful. 
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Figure 6.50 Number of required trucks and dryers and biomass fueling rate vs. plant capacity 

 

In Figure 6.50, the number of trucks and dryers required to supply the biomass 

reburn fuel are plotted against power plant capacity.  A 500 MW plant would require at 

least 20 two-metric ton/hr conveyor belt dryers where as a 100 MW plant would only 

require 4 dryers.  Once again, the applicability of MBB reburn technology may be 

limited to smaller sized power plants.  As state and federal governments decide how to 
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increase the overall electrical power capacity in the country, instead of constructing 

extremely large power plants dependant on nonrenewable (although readily available) 

fossil fuels, steps ought to be made to construct a greater number of smaller plants.  

These new plants can be strategically placed near areas with higher concentrations of 

agricultural biomass to promote reburning and co-firing coal with carbon neutral 

feedstock, such as MBB.  Infrastructure such as smaller sized power plants could curb 

NOx and CO2 emissions, boost rural economies, minimize the environmental load from 

large concentrated animal feeding operations, and develop stronger business ties 

between the agriculture and energy sectors of the US. 

 

6.4. Combustion at Smaller-scale, On-the-farm Systems 

However, if energy producers find that utilizing manure-based biomass in 

existing coal-fired power plants is simply not feasible, then perhaps the biomass would 

be better utilized in smaller scale combustion systems installed on or near the animal 

feeding operations themselves.  A conceptual design of a combustion system capable of 

handling high moisture MBB from free stall dairy barns or indoor piggeries with manure 

flushing systems was discussed in great detail in Section 5.5.1.  Mass and energy 

balances were conducted to predict the combustion system’s effectiveness at incinerating 

the manure and the amount of steam that can be generated for use as a thermal 

commodity for operations at or near the feeding operation. 

 

6.4.1. Base Run 

The base case parameters chosen for the small-scale combustion system are listed 

in Table 6.14.  Suppose the combustion system is installed at a 500-cow dairy with each 

cow excreting about 8 dry kg of manure per day.  The manure from all 500 animals is 

flushed from the free stall housing to the solid separator and is 95% moisture when it 

reaches the separator.  The fire-tube boiler produces saturated steam at 300 kPa(gage).  
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Ten percent, preheated excess air is used to burn the dried manure solids.  The base case 

parameters for the dryer are similar to those discussed earlier in Section 6.1. 

The equations for the combustion model were, once again, compiled into a 

computer spreadsheet program.  The resulting mass flows and temperatures at each point 

in the system for the base run are shown in Figure 6.51.  The spreadsheet program 

helped tremendously in visualizing the mass flows of the system during parametric 

analyses. 

 
Table 6.14 Base case values for modeling the small-scale 
on-the-farm MBB combustion system 

Parameter Base Value (unit) 
Moisture percentage of flushed 
manure 

95% 

Type of biomass low-ash dairy biomass, 
20% ash, (dry basis)c 

No extra fuel -- 
Number of animals 500 
Manure production 7.73 dry kg/cow/day 
Moisture percentage of separated 
solids 

80% 

Percent solids remaining in the 
separated wastewater 

3% 

Desired moisture percentage of 
dried solidsa 

20% 

Excess air percentage  20% 
Pre-heated combustion airb Yes 
Boiler pressure 300 kPa,gage 
Stack temperature 420K 
Moisture percentage of remaining 
solids from boiler (blowdown 
solids) 

70% 

aPlease see Table 6.2 for base case values for rotary dryer 
bHeat exchanger for pre-heating air is 99% effective 
cFor base run, all ash is assumed to exit the combustion system as bottom ash 
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Overall System Results:  Mass Flow (kg/s) and Temperature (K)
Dry air 0.2177
Moisture 0.0021 Steam 0.2090
Temp 298 Temp 417

Dry exhaust 0.2312
Moisture 0.0124 Steam 0.0124 Moisture 0.0218

Solids 0.0131 Temp 417 Temp 417 Temp 420
Moisture 0.4229
Temp 298

Solids 0.0106
Moisture 0.3426
Temp 298

Solids 0.0237
Moisture 0.7655
Temp 298 Vapor 0.1010

Temp 385
Steam 0.0964

Solids 0.0447 Temp 417
Moisture 0.8496 Dry air 0.2177
Temp 298 Moisture 0.0021

Temp 416
Solids 0.0316
Moisture 0.1089
Temp 298

Ash 0.0063
Solids 0.0210 Temp 1,900
Moisture 0.0842 Moisture 0.0964 Solids 0.0316
Temp 298 Temp 417 Moisture 0.0079

Temp 370 Extra fuel 0.0000
Boiler Press. 300 kPa (gage) Moisture 0.0000
Flame Temp 1,900 K Temp 298

Solids 0.0106
Moisture 0.0247
Temp 417

Solids 
Separator

Pump

Air Pre-
heater

 
Figure 6.51 Sample output from computer spreadsheet model of small-scale on-the-farm manure biomass 

combustion system 
 

For the base case, the system was found to produce 753 kg/hr of steam that 

would be available for thermal processes at or near the farm.  The adiabatic flame 

temperature was found to be 1900 K and the corrected boiler efficiency 

(equation (5.244)) was found to be 82%.  The disposal efficiency was found to be about 

50% during the base case run when the only fuel that was burned was the dried separated 

MBB solids.  This disposal efficiency (equation (5.245)) is much improved from the 

34% reported by Carlin (2005) and Carlin et al. (2007a).  This improvement is attributed 

mostly to the drying of the separated solids and the pre-heating of combustion air in this 

revised system.  However, as was discussed by Carlin et al., since the moisture of the 

flushed solids was so high, at 95%, obtaining disposal efficiency close to 100% was not 

possible without the help of additional fuel.  Aside from the additions of drying and pre-

heating, the analysis of the system is much improved from these earlier studies.  Carlin 

et al. estimated that the water leaving the solid separator was pure water and that the 

remaining solids in the boiler water were negligible.  Thus the boiler efficiency was not 

adjusted for the possibility of having more solids remaining in the separated wastewater 

stream.  Moreover, constant specific heats of combustion gases and dry combustion air 
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were also assumed under the earlier studies.  Here both those assumptions were not 

made. 

The system can be scaled for different sized animal feeding operations and for 

different manure excretion rates per animal, as can be seen in Figure 6.52. 
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Figure 6.52 Usable steam produced from combustion system vs. number of animals housed at the feeding 

operation 
 

The steam production, boiler efficiency and disposal efficiency can vary greatly 

when the base values are altered.  The following discussion will be of parametric studies 

in which some of the base values were changed in order to view the sensitivity of the 

steam production, disposal efficiency and other important parameters. 

 

6.4.2. Flushing Systems and Solids Separation 

First, the performance of the combustion system is greatly dependant on how 

much moisture is in the flushed manure to begin with.  The amount of wastewater that 

cannot be incinerated by the combustion system can increase greatly if the moisture 
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percentage of the flushed manure approaches 99%.  See Figure 6.53.  Not only is the 

load on the boiler greater, but the amount of fuel is depleted when the flushed moisture 

percentage is extremely high. 
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Figure 6.53 Usable steam, remaining wastewater, and disposal efficiency vs. moisture percentage of the 

flushed manure 
 

The effectiveness of the combustion system is also dependant on the ability of 

the solid separator to screen out solids from the flushed stream.  Figure 6.54 is a 

representation of how steam production and disposal efficiency change with increasing 

moisture percentage of the separated solids.  Although the steam production decreases 

for wetter separated solids, the disposal efficiency actually increases.  This is because the 

rotary dryer must consume more steam and transfer more heat to the separated solids in 

order to dry them to the desired moisture percentage of 20%.  So, less steam is available 

for external use.  However, essentially more of the wastewater is exiting the system at 

the vapor exhaust valve of the rotary dryer (point 11 in Figure 5.17) and less is being 

sent to the boiler.  This may indicate that the rotary dryer is more effective at removing 
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moisture from the solids than the steam tube boiler, since the net effect is greater 

disposal efficiency. 
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Figure 6.54 Disposal efficiency and steam production vs. moisture content of the separated MBB solids 

 

The solids remaining in the flushed manure are mostly detrimental to the boiler 

efficiency.  When more solids enter the drying chamber at point 8, more heat from the 

combustion goes to heating up these remaining solids, which are eventually sent back to 

the dryer, but the heat energy used to bring them to the steam temperature is essentially 

wasted.  Thus, having more solids in the boiler water is detrimental to both boiler 

efficiency and the disposal efficiency as can be seen in Figure 6.55. 
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Figure 6.55 Boiler and disposal efficiency vs. the amount of solids remaining in the wastewater after the 

solid separator 
 

6.4.3. Effect of Drying Solids Before Combustion 

Drying the manure separated solids before combustion was the most significant 

addition to the small-scale system discussed by Carlin (2005).  Figure 6.56 shows how 

drying the solids can improve flame temperature and increase the amount of wastewater 

that is vaporized in the boiler.  Although the dryer must consume more steam to dry the 

manure to lower moisture percentages, the overall amount of steam that is generated in 

the boiler increases, causing a net increase in usable steam for external thermal 

processes.  See Figure 6.57. 
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Figure 6.56 Adiabatic flame temperature and wastewater mass flow vs. moisture percentage of the dried 

solids 
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Figure 6.57 Steam production and use vs. moisture percentage of the dried solids 
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6.4.4. Combustion of Dried Biomass Solids 

The addition of combustion air preheating was not quite as significant as drying, 

but still made some difference to the boiler and disposal efficiencies as can be seen in 

Figure 6.58.  The effects of pre-heating the air are really limited by the steam 

temperature (and thus the boiler pressure, if the steam is saturated).  The effectiveness of 

the heat exchanger heating the air was assumed to be 99% for the base case run.  This 

assumption provides the hottest air possible for the combustion as the air cannot exceed 

the steam temperature due to the Second Law of Thermodynamics. 
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Figure 6.58 Effects of preheating combustion air 

 

However, the pre-heating of combustion air did have a peculiar effect on both 

boiler efficiency (Figure 6.59) and disposal efficiency (Figure 6.60).  At lower stack 

temperatures, both of these efficiencies actually increased with excess air percentage.  

Typically, both efficiencies drop with excess air percentage; however, due to the way 
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they were defined for this study, the heat energy added to the combustion air is seen as 

an addition to the system.  However, at higher stack temperatures, the efficiencies were 

found to drop with excess air percentage as usual. 
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Figure 6.59 Boiler efficiency vs. excess air percentage and stack temperature 
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Figure 6.60 Disposal efficiency vs. excess air percentage and stack temperature 

 

As has been the case throughout this study of MBB combustion, the ash content 

in the biomass fuel is detrimental to the system in every aspect.  Figure 6.61 is a graph of 

flame temperature, steam production, and steam consumption plotted against the ash 

percentage of the biomass.  Figure 6.62 is a plot of disposal efficiency and the remaining 

amount of wastewater against ash percentage.  If the manure biomass has an ash content 

of 40%, disposal efficiency drops to about 35%, which negates the improvements 

obtained from drying solids and pre-heating air. 
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Figure 6.61 Flame temperature, Steam production, and steam usage vs. ash percentage in the MBB solids 
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Figure 6.62 The effect of ash percentage in the MBB solids on disposal efficiency 
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6.4.5. Operation of Fire-tube Boiler 

The greatest design issue of the conceptualized combustion system is the fire-

tube boiler, which must accept heat from the combustion of a low grade fuel (MBB) and 

vaporize wastewater that many times can be heavy in impurities and solid material that 

would otherwise be used to further fuel the boiler’s burner.  The mechanical design of 

the boiler, as well as other design issues such as fowling and scaling of the fire-tube, are 

unfortunately not covered here.  These issues are left to future work. 

However, one parameter pertaining to the operation of the boiler can be 

investigated, and that is the degree to which the remaining solids and impurities in the 

boiler water (wastewater) are dried in the boiler’s chamber.  Figure 6.63 is a plot of 

usable steam and the disposal efficiency against the moisture percentage of the 

remaining solids (or the blow down solids).  If the remaining solids leave the boiler high 

in moisture, then a lesser amount of wastewater was converted to steam.  Thus, the 

amount of usable steam decreases.  However, once again, the disposal efficiency was 

found to increase as the remaining solids are returned to the dryer, and the wastewater is 

eventually vaporized there instead of the boiler.  This finding suggests that if disposal 

efficiency is the only important parameter, the operator of this system may be better 

served to simply produce just enough steam to run the dryer and vaporize as much of the 

wastewater in the dryer as possible.  However, doing this (i.e. allowing the moisture 

percentage of the blow down solids to be left high) would greatly reduce the amount of 

usable steam produced by the boiler. 
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Figure 6.63 Steam production and disposal efficiency vs. moisture percentage of boiler blow down solids 
 

6.4.6. Additional Fueling for Complete Wastewater Disposal 

For high moisture flushed systems, all of the wastewater drained from the free 

stall barn cannot be incinerated if the only fuel that is used to generate heat energy is the 

separated MBB solids.  In order to completely incinerate the waste coming from the 

barn, additional fuel must be burned in the furnace or gasifier.  Figure 6.64 is a plot of 

disposal efficiency against a growing amount of additional fuel injection into the boiler 

burner.  Methane, propane, and Texas lignite were modeled, but there did not seem to be 

much difference between these fuels as far as disposal efficiency.  Due to the way 

disposal efficiency was defined in equation (5.245), an efficiency of 100% can never be 

obtained because there will always be some ash from the biomass combustion 

remaining.  However, for all fuels modeled, the maximum disposal efficiency was found 

to be obtained when the additional fuel was about 18 to 20% of the total fuel burned. 
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Figure 6.64 The effect of additional fueling on the disposal efficiency 

 

6.4.7. Economic Estimations for Small-scale Manure-based Biomass Systems 

The discussion of economics for small-scale MBB combustion systems will not 

be covered as extensively here as the economics for large-scale co-fire and reburning 

projects on existing coal-fired power plants.  However, the results of the modeling 

equations suggested in the literature review and presented in Section 5.6.6 will be shown 

here.  Under the base case input parameters, the capital cost of the rotary dryer was 

found to be about $1 million.  If the combustor in the conceptualized model is assumed 

to be a gasifier and subsequent producer gas burner, then the capital investment cost of a 

gasifier capable of handling the amount of manure from a 500-cow farm was found to be 

$924,000.  The air pre-heater was found to be about $11,000 when the overall heat 

transfer coefficient was set at 3.5 kJ/s m2 K. 

The circumstance of how these investments would be paid off depends greatly on 

the procedures of the animal feeding operation before the combustion system is installed.  

The Elimanure System discussed earlier in Section 3.2 was said to be profitable partly 
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because the animal farm was transporting many gallons of liquid wastewater off the farm 

before the installation of the disposal system.  The avoided cost of hauling manure plus 

the profits from electricity generation were claimed to be enough to pay off the 

$4.5 million investment and have a 3.5 year simple payback period. 

This scenario can be roughly tested for the conceptual system presented here.  

Keeping with the same input parameters in Table 6.14, suppose that a 500-cow dairy 

hauls all of its liquid manure, at 95% moisture, 50 km (about 30 miles) off site.  

Moreover, assume that the animal farm, or a nearby business, can somehow use the 

steam generated in the fire-tube boiler and avoid having to pay a fueling cost (for 

example propane) to generate the steam.  If the conceptualized MBB combustion system 

is installed it will save on manure transportation costs and generate revenue from the 

sale or avoided fueling cost of the steam.  Also assume that a solid separator is already 

available at the dairy and that the boiler runs continuously every day of the year.  

Perhaps the greatest unknown is the capital cost of the fire-tube boiler, but for now, 

assume that it will cost $1 million just like the dryer.  The total capital cost of the system 

is then about $2.9 million for a system disposing waste from 500 animals.  The 

Elimanure System was said to be $4.5 million for a 4,000-head animal farm which 

included dairy cows, horses, and pigs (Skill Associates, 2005), (Caldwell, 2008). 

The results of this base case run are presented in Table 6.15.  The combustion 

system was found to save the animal feeding operation $137,000 per year, even without 

the use of additional fuel to completely incinerate the wastewater.  The manure 

transportation equations discussed in Section 5.2.2 were used here to estimate the cost of 

hauling manure (both before and after installation of the combustion system) and the 

resulting ash from the combustion.  The labor cost was computed such that 1.5 workers 

were operating the combustion system at $15 per hour; that is, there was always one or 

two workers monitoring and maintaining the combustion system throughout the year. 
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Table 6.15 Base case run for the economics of the small-scale 
MBB combustion system when no additional fuel is burned 

Cash flows before installation  
Hauling liquid manure--labor (37,655)
Hauling liquid manure--diesel (20,654)

TOTAL ($/yr) (58,309)
Cash Flows after installation  

Fixed O&M of system (118,300)
Hauling remaining liquid manure--labor (18,403)

Hauling remaining manure--diesel (10,094)
Hauling ash--labor (255)
Hauling ash--diesel (140)

Fuel Savings from boiler 423,470 
Labor for system operation (197,213)

System extra fuel (propane) cost 0 
TOTAL ($/yr) 79,066 
ANNUAL SAVINGS 137,375 
Total capital cost of the system ($) 2,957,506 
Simple Payback (years) 21.53 

 

The payback for this base run was found to be 21 ½ years, which is usually 

unacceptable for a small scale project such as this.  However, suppose that additional 

propane is injected into the burner so that all of the wastewater and MBB from the dairy 

is incinerated.  This was the case for the Elimanure System as well.  These results are 

presented in Table 6.16.  For this case, the payback period was found to be only four 

year, much more comparable to the 3.5 payback period for the Elimanure System. 
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Table 6.16 Economic results for the small-scale MBB combustion 
system when additional fuel is used to completely vaporize all 
waste from the animal feeding operation 

Cash flows before installation  
Hauling liquid manure--labor (37,655)
Hauling liquid manure--diesel (20,654)

TOTAL ($/yr) (58,309)
Cash Flows after installation  

Fixed O&M of system (137,221)
Hauling remaining liquid manure--labor 0 

Hauling remaining manure--diesel 0 
Hauling ash--labor (340)
Hauling ash--diesel (186)

Fuel Savings from boiler 1,129,805 
Labor for system operation (197,213)

System extra fuel (propane) cost (400,885)
TOTAL ($/yr) 794,845 
ANNUAL SAVINGS 853,154 
Total capital cost of the system ($) 3,430,537 
Simple Payback 4.02 

 

However, these findings are all dependant the presumptions and estimations that 

were made, none of which is probably more significant than the capital cost of the fire-

tube boiler, as can be seen in Figure 6.65. 
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Figure 6.65 Simple payback period vs. the capital investment of the fire-tube boiler of the small-scale 

MBB combustion system 
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7. SUMMARY AND CONCLUSIONS 

7.1. Drying and Transportation 

The discussion of the biomass drying and transportation models can be 

summarized with the following main points. 

1. Increasing air temperature in a conveyor belt dryer lowers the heat consumption 

(and hence the fuel consumption) of the dryer, but only to a certain extent.  The 

main factor that affects the heat consumption for a fixed mass flow of manure-

based biomass (MBB) of a fixed desired moisture percentage is the air flow rate. 

2. A drying model for conveyor belt dryers based on an empirical drying constant, 

was chosen for integration into subsequent economics models over a more 

textbook model based on a mass transfer number.  This choice was mostly based 

on the inability of the transfer model to describe situations where the product had a 

small characteristic particle size, such as MBB’s at 2.18 mm.  For small particle 

sizes, the transfer number model predicted high mass transfer rates and hence small 

conveyor belt areas and high air flow rates, which probably gave erroneous results. 

3. The fuel consumption of biomass dryers was found to be one of the most 

significant factors when preparing MBB for co-combustion at large scale coal-fired 

power plants.  The fuel consumption was found to be similar for both conveyor 

belt and rotary steam-tube dryers. 

4. Surprisingly, MBB transportation costs were not significantly affected by the 

moisture content of the manure until the moisture percentage was 80% or greater.  

This was found to be the case because low-moisture MBB is less dense than high-

moisture biomass.  Unless dried manure is compressed so that its density is 

artificially increased, more hauling vehicles will be required to transport it.  

However, at moisture percentages above 80%, the additional mass of water in the 

biomass overtakes any variation in density.  The optimum moisture percentage to 

transport manure, based on diesel consumption of the hauling vehicles, was found 

to be about 50%. 
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7.2. Economics of Co-firing 

Co-firing MBB in large coal-fired power plants can be profitable, but a lot has to 

happen.  The manure must be low in ash, coal prices must be high, CO2 values must be 

high and expected to escalate, and the use of high-grade fuels such as natural gas during 

drying operations should be avoided.  The following points summarize the discussion of 

co-firing coal with MBB. 

1. A base case run of the MBB co-fire economics model for a MBB co-fire system 

installed on an existing 300-MWe coal-fired power plant burning a 95:5 blend of 

coal to biomass showed that overall fuel energy consumption (including coal, 

biomass, diesel fuel, natural gas for drying, and electricity) would increase by 

259 GJ/yr. 

2. Burning a 95:5 blend of coal to low-ash MBB was found to lower CO2 emissions 

by 58,600 tons/year (this value was calculated when accounting for CO2 emitted 

during drying and transporting of MBB to the coal plant). 

3. However, ash production from the plant was found to increase by 10% when 

burning a 95:5 blend, even when low-ash biomass was fired. 

4. From base case parameters, an overall net present cost of $22.6 million was 

computed for the co-fire system at the 300-MWe power plant.  Operating income 

was never positive throughout the 30-year life of the co-fire project, causing zero 

return on investment, at least for the base case run.  The most significant cost that 

hindered the profitability of the co-fire project was the cost of natural gas needed 

to fuel biomass dryers that could reduce the MBB’s moisture content from 60% 

to 20%. 

5. However, a higher value on avoided nonrenewable CO2 emissions could overrule 

exorbitant costs of drying and transporting the MBB to power plants.  A CO2 

value of $17/metric ton was found to be enough for the MBB co-fire project to 

reach an economic break even point. 
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6. The price of coal was also found to be significant to the overall profitability of 

the co-fire project.  Since the biomass partly displaces the coal burned at the 

power plant, more expensive coal was found to lead to greater savings. 

7. Although monetary compensation for the MBB would certainly benefit the 

owner of the animal feeding operation, a payment for obtaining biomass from 

farms could significantly decrease the profitability of a co-fire system.  A MBB 

price of $10/dry metric ton can decrease the NPW of co-firing by 29%, if the 

price is also assumed to escalate by 3% annually. 

8. Depending on the relative sulfur content of the MBB compared to the coal it is 

replacing, SO2 emissions can become a significant factor in the economics of the 

co-firing project, especially if a flue gas desulphurization system is not installed 

at the coal plant.  Sulfur is a greater detriment to the profitability when the 

biomass must replace a coal with very low sulfur content, such as Wyoming sub-

bituminous coal. 

9. Ash in MBB is a drag on the co-firing system (or reburning system) at every 

level.  Ash adds to transportation costs as it means moving more mass for less 

energy content.  Ash is also a heat sink during drying, making drying high ash 

biomass slightly more expensive than drying low ash biomass.  Most 

significantly, ash adds to the O&M cost of co-firing because it must be removed 

from the power plant and then sold or disposed of off site. 

10. For the base case run of the co-firing model, drying constituted 76% of the total 

cost.  Of this cost, 73% was due to purchasing natural gas for generating steam 

for the biomass dryers.  Another 15% was due to running the dryers’ fans. 

11. If scraped MBB can be both low in ash and low in moisture due to dry weather 

and low relative humidity, the ability to use MBB as a co-fire fuel at coal-fired 

power plants greatly increases. 

12. Due to the low amount of suitable low-ash MBB, simply finding enough biomass 

to satisfy desired co-fire rates or required reburn rates for co-combustion projects 

at large coal-fired power plants may be challenging. 
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7.3. Economics of Reburning 

The discussion on reburning coal with MBB in large coal-fired power plants can 

be summarized by the following three points. 

1. Emitting NOx is expensive.  Therefore, a retrofit project in which coal is 

reburned with MBB (10% heat rate supplied by MBB) to reduce NOx emissions 

can theoretically be more profitable than a co-fire project.  However, the problem 

of finding enough suitable low-ash biomass becomes even more problematic for 

reburn systems because in order for NOx reductions to be maintained, 10 to 25% 

of the plant’s heat rate must be satisfied by the reburn fuel, and the highest 

reductions have been found to occur when the reburn fuel is pure MBB. 

2. Under base case assumptions the net present cost of a MBB reburn project for an 

existing 300-MWe coal-fired power plant was found to be $19.1 million.  

Comparatively, a selective catalytic reduction (SCR) project for a similar sized 

power plant with the same base case assumptions was found to be $4.6 million. 

3. If the value of NOx were to escalate annually at 4.5%, a current NOx value over 

$2500/metric ton would justify installing a MBB reburn system.  However, a 

reburn project would not be more justified, at least economically, than an SCR 

retrofit.  In order for MBB reburning to be more profitable than SCR, a CO2 tax 

or avoided cost of over $10/metric ton would be needed if the value of CO2 was 

expected to escalate at 5.25% annually 

 

7.4. On-the-farm Combustion 

Given the high cost of transporting and preparing MBB for combustion in large 

scale coal plants, as well as the lack of available low-ash biomass, burning MBB in 

smaller scale combustion facilities on or near animal feeding operations may be 

preferable at this time.  The discussion of small scale on-the-farm combustion of MBB 

may be summarized with the following main points. 

1. A base case run of a mathematical model describing a small-scale, on-the-farm 

MBB combustion system that can completely incinerate high moisture (over 
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90%) manure biomass was completed.  In the conceptualized model, liquid 

manure is sent to a solid separator where the separated solids are dried and then 

burned.  The remaining wastewater is sent to a fire-tube boiler and vaporized to 

produce steam that can then be consumed by the dryer or a combustion air pre-

heater.  Some remaining steam can also be used for external thermal processes on 

or near the farm to make the system profitable. 

2. The conceptualized MBB combustion system, under base assumptions, could 

potentially incinerate about 50% of all the high moisture manure waste 

emanating from a 500-cow dairy, while producing over 750 kg/hr of 300 kPa(gage) 

saturated steam that could be used for external thermal processes. 

3. The ability of the solid separator to strain solids out of the wastewater was found 

to be critical, as remaining solids in the wastewater reduce the boiler efficiency 

and ability of the combustion system to vaporize the wastewater. 

4. Drying separated solids and pre-heating combustion air greatly improve the 

efficiency of the MBB combustion system and increase the amount of usable 

steam that can be produced. 

5. Higher ash contents in the MBB solids (greater than 30% on a dry basis) were 

found to be detrimental to the performance of the small-scale combustion system. 

6. Interestingly, the results from the parametric study of the small-scale MBB 

combustion system seem to suggest that the rotary steam-tube dryer removes 

moisture from the manure waste stream more effectively than the fire-tube boiler. 

7. Co-firing the dried MBB separated solids with 20% natural gas, propane, or coal 

can generate enough heat to completely incinerate all of the wastewater from the 

animal feeding operation. 

8. If all of the steam produced by the small-scale MBB combustion system were to 

bring revenue to the animal feeding operation either by avoided fueling cost or 

by sales, the conceptualized MBB combustion system has the potential to be a 

profitable venture. 
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8. SUGGESTED FUTURE WORK 

From the results of the present modeling study of the feasibility and economics 

of utilizing MBB in combustion systems, the following items are highly suggested as 

tasks for future work. 

1. Mercury emissions may also affect the economics of MBB co-fire and reburn 

facilities installed at existing coal-fired power plants.  The USEPA’s Integrated 

Planning Model does model mercury emission reductions from activated carbon 

injection and from co-benefits from other secondary emission controllers such flue 

gas desulphurization systems.  Future modeling of co-fire and reburn economics 

should take mercury into account as well. 

2. When investigations into NOx emissions during the co-firing of coal and MBB 

with low-NOx burners are complete, the economic impacts of NOx emissions 

should be added to the overall economic analysis for co-firing, as was done for 

reburning. 

3. Moreover, the economics discussion for large scale MBB combustion in existing 

coal-fired power plants has concentrated on the economic benefits to the power 

plant facility, yet there are numerous benefits to farmers and others in the 

agricultural sector.  Removing large quantities of manure from concentrated animal 

feeding operations decreases the possibility of phosphorus overloading and 

subsequent soil and water pollution by reducing the required capacity of manure 

storage structures such as anaerobic lagoons.  Future work should also include 

investigations into the regional benefits such as job creation and rural economic 

development related to manure-based biomass combustion. 

4. Other costs and benefits can be added to the overall economics model.  For 

example, tax incentives and renewable energy credits can also be put forward to 

improve the economic outlook of burning MBB in large-scale settings. 

5. The economic analysis presented here can also be extended to forecast the viability 

and profitability of thermal energy conversion of other biomass fuels such as 
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municipal solid waste, human fecal-based waste, plant or crop-based waste, other 

animal wastes, and various other agricultural-based residues and wastes. 

6. If the small-scale conceptualized combustion model for MBB is to ever become 

reality, then the detailed design of the fire-tube boiler must be undertaken.  This 

research may involve experimentation into the degree and difficulty of scaling 

from vaporized liquid manure.  Similar evaporators and distillers have been 

developed and used for many years, however, to the author’s knowledge, there has 

not been a machine that pressurizes liquid manure and then vaporizes it while 

removing remaining solids and residue. 

7. A more detailed study of the possible uses of steam produced from small-scale 

combustion systems at animal farms may also be undertaken in the future.  

Possible uses of steam, or other thermal commodities, may include electrical power 

generation, animal feed production from steam flaking mills, hot water generation 

for dairies, space heating in operations located in northern states, etc. 

8. As concentrated animal feeding operations continue to grow in size in the US, and 

in other parts of the world, more situations may arise where incineration of the 

manure-based waste from these facilities becomes more critical.  Future work on 

this subject could center on investigating new possible applications of MBB 

combustion on or near the farm.  Making manure combustion systems standard on 

new animal feeding operations could allow for further industrialization and 

automation of the American Agricultural system.  On-the-farm manure combustion 

may also extend the operating life of concentrated animal feeding operations which 

are sometimes limited by sludge buildup in anaerobic treatment lagoons. 
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APPENDIX A 

NOMENCLATURES 

a Height of drying chamber m 
A Area m2 
%A Ash percentage % 
AMBB Wetted surface area of MBB particles m2/m3 
at,0 Application thickness at conveyor belt entrance m 
B Transfer number or mass transfer driving force - 
c Specific heat kJ/kg K 
c  Specific heat on a mole basis kJ/kmol K 
C Carbon kmol/100 kg of as 

received fuel 
ccr Capital charge rate % 
CD Drag coefficient - 
%CF Capacity factor, fraction of power plant’s electrical 

production capacity 
% 

Ctruck Hauling capacity per truck kg/truck 
CV Control volume - 
d Diameter m 
D Inner diameter of rotary dryer’s drum m 
D Deprecation $ 
D Mass diffusion coefficient m2/s 
D̂  Average distance between power plant and animal 

feeding operations 
km 

DAFk Dry-ash free fraction of species k kg k/kg of dry ash 
free fuel 

dc Characteristic dimension or particle size m 
dmm Mass mean diameter m 
dp Particle size m 
DR Discount rate % 
DR* Non-inflated (real) discount rate % 
E&  Electricity consumption kWe 
E Emission metric tons/year or 

metric tons/hour 
%EA Excess air percentage % 
EI Emission index g/kg fuel 
ER Equivalence ratio:  >1 indicates fuel rich, <1 

indicates fuel lean, =1 indicates stoichiometric 
mixture of fuel and combustion air 

- 

f Inflation rate % 
f ′  Friction factor - 
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F&  Fueling rate kJ/s 
%FA Percentage of solid byproduct of combustion that is 

fly ash 
% 

%FC Fixed carbon percentage % 
MBBF&  Volumetric feed rate of manure-based biomass m3/s per m2 of 

dryer cross section 
FO&M Fixed operation and maintenance - 
%FS Fixed solids percentage % 
g Mass transfer conductance coefficient kg/m2 s 
g* Mass transfer conductance for a small transfer rate kg/m2 s 
g  Gibbs free energy kJ/kmol 
gc Gravitational acceleration constant, 9.81 m/s2 
h Enthalpy kJ/kg 
h Convective heat transfer coefficient W/m2 k 
h  Enthalpy on molar basis kJ/kmol 
H Hydrogen kmol/100 kg of as 

received fuel 
H Power plant heat rate kJth/kWhe 
hf Heat fraction - 
HHV Higher (gross) heat value kJ/kg 
HS Hauling schedule hour/day 

mj  Colburn j factor for mass transfer - 
k Thermal conductivity W/m K 
K Equilibrium constant - 
km Empirical drying constant 1/s 
l Length m 
%L Load factor of haling vehicle % 
L Emission level kg/GJ or g/GJ 
m Mass flow kg/100 kg of as 

received fuel 
m&  Time rate of mass flow kg/s 
%M Moisture percentage % 
M&  Annual mass requirement kg/year 
mf Mass fraction on a wet basis kg/kg total mass 
MW Molecular weight kg/kmol 
n Indication of the project year or the project year - 
N Number - 
N Nitrogen kmol/100 kg of as 

received fuel 
Ndrum Angular velocity of rotary dryer’s drum rpm 
nk Number of kmoles of species k in producer gas kmol/100 kg as 

received fuel 
Nk Number of kmoles of species k kmol/100 kg of as 
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received fuel 
NPC Net present cost, negative net present worth $present 
NPV Net present value, positive net present worth $present 
NPW Net present worth $present 
ntubes Number of steam tubes in rotary dryer - 
Nu Nusselt number - 
O Oxygen kmol/100 kg of as 

received fuel 
O&M Operation and maintenance - 
OH Annual operation hours hour/year 
P Pressure Pa 
P Electric capacity of power plant MWe 
ppm Parts per million - 
Pr Prandtl number - 
Q Heat transfer kJ/100 kg as 

received fuel 
Q&  Time rate of heat transfer kJ/s 
R Drying rate kg water/kg 

biomass/s 
R  Ideal gas constant, 8.314 kJ/kmol K 
R Emission reduction metric ton/year 
%R Emission reduction percentage % 
rD Depreciation rate % 
Re Reynolds number - 
ROR Rate of return - 
ŝ  Average truck speed km/hr 
S Sulfur kmol/100 kg of as 

received fuel 
SAR Steam-air ratio - 
Sc Schmidt number - 
SCR Selective catalytic reduction - 
SD Diagonal spacing between steam tubes m 
Sh Sherwood number - 
SL Spacing between steam tubes in inner ring m 
SNCR Selective non-catalytic reduction - 
ST Spacing between inner ring and outer ring m 
Stm Mass transfer Stanton number - 
t Time s 
T Temperature K 
U Velocity m/s 
UHX Overall heat transfer coefficient kJ/s m2 K 
V Velocity m/s 
V  Volume m3 
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VMBB,t Terminal velocity of MBB particle m/s 
VO&M Variable operation and maintenance - 
%VS Volatile solids percentage % 
w Width m 
y Mole fraction kmol of 

species/total kmol 
Y Mole fraction - 
z Axial coordinate of rotary dryer m 
z′  Transition point from heating zone to drying zone in 

rotary dryer 
m 

 
Greek Symbols 
α Capital cost of primary NOx control for 300 MWe 

power plant 
$/kWe 

α Thermal diffusivity m2/s 
α Tilt angle of rotary drum radians or degrees 
β Fixed O&M cost of primary NOx control for 

300 MWe power plant 
$/kWe year 

γ Variable O&M cost of primary NOx control for 
300 MWe power plant 

$/kWhe 

δ Capital cost of secondary NOx control for 300 MWe 
power plant 

$/kWe 

Δ Indicates a change of a parameter - 
ε Fixed O&M cost of secondary NOx control for 

300 MWe power plant 
$/kWe year 

ε Porosity or void volume divided by the volume of 
the bulk solid 

- 

εprice Price escalation rate - 
ζ Variable O&M cost of primary NOx control for 

300 MWe power plant 
$/kWhe 

η Reburn system capital cost $/kWe 
ηboiler Boiler efficiency - 
ηdisposal Disposal efficiency - 
ηplant Power plant efficiency - 
θ Fixed O&M cost of co-firing or reburning $/kWe year 
θ Volumetric moisture content - 
κ Location of inner ring of steam tubes as a fraction of 

the drum’s radius 
- 

λ Location of outer ring of steam tubes as a fraction of 
the drum’s radius 

- 

μ Viscosity kg/m s 
ν Stoichiometric amount of species in chemical 

balance equation 
kmol 

ξ Empirical constant for holdup equation - 
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π Pi:  the ratio of a circle’s circumference to its 
diameter, 3.14 

- 

ρ Density kg/m3 
ρ′  Application load on conveyor belt kg/m2 
φ  Relative humidity - 
χ Holdup:  fraction of drum’s volume full of biomass - 
ψ Sphericity factor:  =1 when a perfect sphere - 
ω Moisture content on a dry basis kg/kg dry matter 
 
Subscripts 
0 Initial or ambient point 
∞ Indication of the free stream flow, usually for air 
a Pertaining to air, especially at the exit of the drying chamber 
ac Pertaining to the air entering the drying chamber 
air Pertaining to air 
am Pertaining to the mixture of ambient air and recycled air 
annum Value of the parameter for the entire year 
ash Pertaining to ash content in fuel 
atm Atmospheric 
belt Pertaining to a dryer’s conveyor belt 
blend Pertaining to the fuel blend of coal and biomass or biomass and extra fuel 
boiler Pertaining to the boiler in the drying system or in the small-scale 

combustion system 
bottom Pertaining to bottom ash 
capacity Maximum value of a parameter, especially for dryers and trucks 
chamber Pertaining to the drying chamber 
coal Pertaining to the coal burned in the primary burn zone 
co-fire Pertaining to the emission level during co-firing 
comb Combustion 
dc Pertaining to the characteristic length of a particle 
diesel Pertaining to the diesel consumption of the hauling vehicles 
dry Parameter on a dry basis 
dryer Pertaining to the dryer or the drying system 
E Equilibrium point 
EF Extra fuel 
f Indication of enthalpy of formation 
fans Pertaining to the fans or blower of the dryers 
FC Fixed carbon content in fuel 
fg Indication of the latent heat of vaporization 
flame Pertaining to the flame temperature 
fly Pertaining to fly ash 
fuel Pertaining to the fueling of dryers and hauling vehicles 
fw Feed water 
g Indication of the saturation point or pertaining to the gas phase 
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(g) Gas phase 
gasifier Pertaining to the gasifier 
H2O Water or liquid moisture in fuel 
HX Pertaining to the heat exchanger 
i Indication of a geometric point in a diagram or a system 
j-v Interaction between the steam jacket and entrained vapor of rotary dryer 
k Indication of species in chemical reaction or chemical balance equation 
l Pertaining to the length of a conveyor belt 
(l) Liquid phase 
load Pertaining to the loading of biomass into the hauling vehicles 
MBB Pertaining to manure-based biomass 
MBB-v Interaction between the biomass and the entrained vapor in rotary dryer 
p Constant pressure 
p Particle 
PF Primary fuel 
plant Pertaining to the power plant 
primary Pertaining to the emission level achieved by primary controls 
reburn Pertaining to the emission level achieved by reburning 
ref Reference 
RF Reburn fuel 
s Indication of a point very near the surface of a particle 
sat Saturation 
SCR Pertaining to the emission level achieved by using SCR 
SNCR Pertaining to the emission level achieved by using SNCR 
st Saturation point, steam, liquid or saturated mixture 
stack Pertaining to the stack temperature 
standard Pertaining to a standard emission level or measuring point 
steam Pertaining to steam 
t Indication of thermal enthalpy 
trip Pertaining to the trips or the time spent hauling biomass to power plants 
trucks Pertaining to hauling vehicles 
tubes Pertaining to the steam tubes in the rotary dryer 
t-v Interaction between the steam tubes and entrained vapor in rotary dryer 
uncontrolled Pertaining to the uncontrolled emission level 
unload Pertaining to the unloading of biomass into the hauling vehicles 
vapor Pertaining to the entrained vapor in the rotary dryer 
VS Volatile solids content in fuel 
w Water or liquid moisture 
wb Wet bulb 
ww Wastewater 
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APPENDIX B 

SOME HELPFUL EQUATIONS FOR MODELING THE PROPERTIES OF AIR 

WATER AND STEAM IN BOILING AND DRYING PROCESSES 

The following equations and algorithms may be helpful for computing properties 

of air, liquid water, and steam when modeling drying processes and boilers.  Most of 

these equations can be found in a review paper by Pakowski et al. (1991), but the 

equations used for modeling in the present study will be reproduced here.  Pakowski et 

al. also presented alternative equations for the following properties and compared each 

of them for computing time and accuracy.  Equation Chapter 1 Section 2 

The saturation pressure of water or steam can be computed with the Antoine 

equation. 

 
( )

3816.44133.322 exp 18.3036
46.13gP

T
⎡ ⎤

= ∗ −⎢ ⎥
−⎢ ⎥⎣ ⎦

 (B.1) 

where Pg is in Pa and the temperature, T, is in degrees K.  If the partial pressure of water 

vapor in air is required, then T will be the dry-bulb air temperature, Ta, and Pg will be 

multiplied by the relative humidity of the moist air, aφ .  However, if saturated steam is 

being produced in a boiler, and the pressure is known, then equation (B.1) may be solved 

for T to compute the saturation temperature of the steam, Tst. 

The latent heat of vaporization of water can be computed in terms of Tst with the 

following 5th order polynomial equation. 
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 (B.2) 

2 ,
stT

H O fghΔ  is in kJ/kg and Tst is in degrees K. 

The density of steam or water vapor can be computed with the virial equation, 

which is a modification of the ideal gas law. 
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where, 
2
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and 3
2

1343.4493
vapor

C B
T
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.  The molecular weight of water, 
2H OMW , is 18.02.  vaporρ  

is in kg/m3, P is in kPa, and Tvapor is in degrees K.  The ideal gas constant, R  is 

8.314 kJ/kmol K. 

The specific heat of vapor at low pressures, close to atmospheric pressure, may 

be computed with the following polynomial equation. 

 
2

,

3

1.883 0.1674 3 0.8439 6

0.26967 9
p vapor vapor vapor

vapor

c e T e T

e T

= − − ∗ + − ∗

− − ∗
 (B.4) 

,p vaporc  is in kJ/kg K and Tvapor is in degrees K.  This equation is valid for temperatures 

between 293 and 1473 K. 

The enthalpy of saturated steam may be computed with the following 4th order 

polynomial equation. 

 
( ) ( )

( ) ( )

2

3 4

2496.4 2.26541 273.15 7.34808 3 273.15

3.38602 5 273.15 8.40676 8 273.15

sat steam st st

st st

h T e T

e T e T

= + ∗ − − − ∗ −

+ − ∗ − − − ∗ −
 (B.5) 

Here, hsat steam is in kJ/kg and Tst is in degrees K. 

The enthalpy of low pressure (near atmospheric pressure), super heated water 

vapor can be computed from the value of ,p vaporc  computed in equation (B.4). 

 ,2501.6vapor p vapor vaporh c T= +  (B.6) 

The viscosity of low pressure superheated water vapor may be computed with the 

following expression. 
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 7263.4511 0.4219836243 80.4 10
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vapor
vapor

T
μ −⎡ ⎤⎛ ⎞
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 (B.7) 

where vaporμ  is in N s/m2 and Tvapor is in K. 

Moreover, the heat conductivity of low pressure super heated water vapor may be 

computed with the following equation. 
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where vapork  is in W/m K and Tvapor is in K.  This equation is valid for temperatures 

between 373 and 973 K. 

The density of air can be computed with a similar modification to the ideal gas 

law as the density of steam. 

 ( )
air

air
a

MW P
RT BP

ρ ∗
=

−
 (B.9) 

Here, 3

1 10.0407 13.116 1.2 5
a a

B e
T T
⎛ ⎞ ⎛ ⎞

= − + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  The molecular weight of air is 28.97, 

airρ  is in kg/m3, Ta is in K, and P is in kPa. 

Finally, the specific heat of air may be estimated with the following 3rd order 

polynomial equation. 
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,

2 3

1.00926 4.04033 5 273.15

6.17596 7 273.15 4.09723 10 273.15

p air a

a a

c e T

e T e T

= − − ∗ −

+ − ∗ − − − ∗ −
 (B.10) 

,p airc  is in kJ/kg K and Ta is in K. 

The wet bulb temperature of moist air may be computed with the following 

algorithm.  For a known air temperature (dry-bulb temperature), Ta, and a known relative 

humidity, aφ , the computation can begin by computing the absolute humidity of the 

moist air: 
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Next, the total enthalpy of the air can be computed: 

 ( )2 ( ) 2 ( )

0
, , ,g ga p a a a f H O p H O ah c T h c Tω= + +  

The wet bulb temperature is the temperature that the air would be if enough 

moisture was added to the air, adiabatically, to reach the saturation point.  Thus, the 

enthalpy ha and the enthalpy at the saturation point, hsat, must be equal. 

 a sath h=  

 ( ) ( )2 ( ) 2 ( ) 2 ( ) 2 ( )

0 0
, , , , , ,g g g gp a a a f H O p H O a p a wb sat f H O p H O wbc T h c T c T h c Tω ω+ + = + +  (B.11) 

where, 
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The wet bulb temperature, Twb, can be computed by iterating equation (B.11). 
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APPENDIX C 

A FULL SENSITIVITY ANALYSIS OF THE NET PRESENT WORTH OF A 

MANURE-BASED BIOMASS CO-FIRE SYSTEM 

The net present worth (NPW) of a MBB co-fire system installed on an existing 

300-MWe coal-fired power plant was found to be -$22.6 million (i.e. overall net cost).  

The base case input parameters used to arrive at this NPW are listed in Table 6.3 through 

Table 6.7.  The following graphs are plotted such that the percent difference of the NPW 

from the base value of -$22.6 million may be read from the vertical axis and the percent 

difference of each input parameter may be read from the horizontal axis.  As each 

parameter was varied, all other parameters were assumed to remain at their base values. 
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APPENDIX D 

A FULL SENSITIVITY ANALYSIS OF THE NET PRESENT WORTH OF A 

MANURE-BASED BIOMASS REBURN SYSTEM 

The net present worth (NPW) of a MBB reburn system installed on an existing 

300-MWe coal-fired power plant was found to be -$19.1 million (i.e. overall net cost).  

The base case input parameters used to arrive at this NPW are listed in Table 6.3 through 

Table 6.7 and Table 6.11.  The following graphs are plotted such that the percent 

difference of the NPW from the base value of -$19.1 million may be read from the 

vertical axis and the percent difference of each input parameter may be read from the 

horizontal axis.  As each parameter was varied, all other parameters were assumed to 

remain at their base values. 
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