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ABSTRACT

Automata Groups. (May 2009)

Yevgen Muntyan, B.A., M.A.S., Kiev Taras Shevchenko University

Co–Chairs of Advisory Committee: R. Grigorchuk
V. Nekrashevych

This dissertation is devoted to the groups generated by automata. The first

part of the dissertation deals with L-presentations for such groups. We describe the

sufficient condition for an essentially free automaton group to have an L-presentation.

We also find the L-presentation for several other groups generated by three-state

automata, and we describe the defining relations in the Grigorchuk groups Gω. In

case when the sequence ω is almost periodic these relations provide an L-presentation

for the group Gω. We also describe defining relations in the series of groups which

contain Grigorchuk-Erschler group and the group of iterated monodromies of the

polynomial z2 + i.

The second part of the dissertation considers groups generated by 3-state au-

tomata over the alphabet of 2 letters and 2-state automata over the 3-letter alpha-

bet. We continue the classification work started by the research group at Texas A&M

University ([BGK+07a, BGK+07b]) and further reduce the number of pairwise non-

isomorphic groups generated by 3-state automata over the 2-letter alphabet. We also

study the groups generated by 2-state automata over the 3-letter alphabet and obtain

a number of classification results for this class of group.
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CHAPTER I

INTRODUCTION

Groups generated by automata (or simply automata groups) were introduced and

studied by V.M. Glushkov and his students in 1960’s [Glu61]. In his original pa-

per V.M. Glushkov conjectured that automata groups may have relation to Burnside

Problem. This was later confirmed by S.V. Aleshin (1972), V.I. Sushchansky (1979),

R.I. Grigorchuk (1980), N.D. Gupta and S. Sidki (1983), who constructed finite au-

tomata which generate infinite torsion groups [Ale72, Sus79, Gri80, GS83]. Later

R.I. Grigorchuk proved that the groups he constructed have intermediate growth be-

tween polynomial and exponential, providing a solution to Milnor Problem [Mil68] on

intermediate growth and Day Problem [Day57] on amenability. These developments

pushed the study of groups of automata in many directions: analysis [Gri84, Ers04],

geometry [BGN03], probability [BV05, Ers04, AV05], dynamics [BG00], formal lan-

guages [HR06], etc.

This dissertation is devoted to several aspects of combinatorial theory of groups

generated by finite automata. The class of groups generated by finite automata is

extremely rich, filled with numerous groups with different remarkable properties, and

is still largely unexplored. Examples of groups from this class are finite groups, free

groups, free products of finite groups, linear groups GLn(Z) and GLn(Zm), as well as

groups with exotic properties mentioned above.

One important class of automata groups is the class of contracting self-similar

groups, which have nice algorithmic and geometric properties. For example, the

strong contracting properties of Grigorchuk groups were used to prove that they have

The journal model is Algebra and Discrete Mathematics.
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intermediate growth and as for today it is essentially the only known method to

get upper estimates on the growth function of a group. A large class of contracting

self-similar groups is represented by iterated monodromy groups of sub-hyperbolic

rational functions [Nek05] which stand as an important link between combinatorial

group theory and complex holomorphic dynamics. Contracting property is essen-

tial in computing L-presentations of groups, to which we devote a chapter of this

dissertation.

Another important class of automata groups is the class of groups with branch

structure. Branch groups arise as one of the three [Gri00] possible types of just-infinite

groups (infinite groups for which all proper homomorphic images are finite). They

also provide examples of minimal groups [GW04]. Class of branch groups contains

groups with many extraordinary properties mentioned above, in particular the first

Grigorchuk group G belongs to the class.

An important property of known so far branch groups is that they are not finitely

presented. It is proved for regular branch groups, and it is believed to be true for

all branch groups. On the other hand, it is often (always for regular branch groups)

possible to find a recursive infinite presentation for such groups (L-presentations and

endomorphic presentations) [BGv03]. We find L-presentations for several important

groups and series of groups, and we study the conditions when it is possible to find

such a presentation from the structure of the automaton which generates a group.

The second part of the dissertation considers the problem of classification of

groups generated by 3-state automata over the alphabet of 2 letters and 2-state au-

tomata over the 3-letter alphabet. We continue the classification work started by the

research group at Texas A&M University ([BGK+07a, BGK+07b]) and lay a founda-

tion for analogous study of the groups generated by 2-state automata over the 3-letter

alphabet. In our classification work we extensively used the AutomGrp computer al-
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gebra package developed at Texas A&M University [MS]. This package provides

basic facilities for computations in groups generated by finite automata, as well as

implementation of several important algorithms such as word problem algorithm and

detecting whether the group is contracting. The package has been deposited to the

repository of packages for the computer algebra system GAP [GAP], and is freely

available for download at http://www.gap-system.org.

We refer the reader to [GNS00] for basic definitions and facts about automata

groups.
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CHAPTER II

L-PRESENTATIONS

As it was mentioned, many important examples of automata groups are not finitely

presented, yet they have a finitely-defined recursive presentation, called L-presentation.

Definition II.1. L-presentation of a group G is a presentation G = 〈X|R〉 where

the set of defining relations R can be written as

R =

∞⋃

n=0

φn(R0),

for some endomorphism φ of the free group F (X) and a finite set of the base relations

R0 ⊂ F (Z).

First example of an L-presentation was that of the Grigorchuk group found by

I. Lysionok in 1985.

Theorem II.2 (Lysionok [Lys85]). Grigorchuk group G has the presentation

G =

〈

a, b, c, d

∣
∣
∣
∣
∣
∣
∣

a2 = b2 = c2 = d2 = bcd = 1,

w4
n = (wnwn+1)

4 = 1, n ≥ 0

〉

, (2.1)

where (wn)n≥0 is the sequence of words defined inductively by w0 = ad and wn+1 =

φ(wn), and the mapping φ is defined by

φ(a) = aca, φ(b) = d, φ(c) = b, φ(d) = c.

Remark II.3. The presentation (2.1) is not an L-presentation in the sense of the

definition II.1 but it is easy to see that its set of defining relations coincides (after

cyclical reduction) with that of the following L-presentation:

G ∼=
〈
a, b, c, d|φn(a2), φn(bcd), φn((ad)4), φn((adacac)4), n ≥ 0

〉
. (2.2)
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The definition II.1 could be naturally generalized to include cases similar to (2.1) but

it is not necessary for our purposes.

Later R.I. Grigorchuk used this presentation to construct the example of a

finitely presented amenable but not elementary amenable group ([Gri98]). Thus L-

presentations, in addition to helping describe the algebraic structure of the group,

allow us to construct an embedding of the group into a finitely presented group.

Another example of an L-presentation is that of the iterated monodromy group

of the polynomial z2 + i.

Theorem II.4 (Grigorchuk, Savchuk, Sunik [GSŠ07]). Iterated monodromy group of

the polynomial z2 + i has the L-presentation

G =

〈

a, b, c

∣
∣
∣
∣
∣
∣
∣

φn(a2), φn((ac)4), φn([c, ab]2), φn([c, bab]2),

φn([c, ababa]2), φn([c, ababab]2), φn([c, bababab]2), n ≥ 0

〉

,

where the mapping φ is defined by

φ(a) = b, φ(b) = c, φ(c) = aba.

Natural question is: when is it possible to find and how to find a presentation

of the group generated by the given finite automaton, and when does the group

generated by the finite automaton have an L-presentation? The groups mentioned

above are contracting, which is a sufficient condition for the branch word problem

algorithm to work. On the other hand, there are known examples of L-presentations

for non-contracting groups, for example the Lamplighter group, which possesses a

weaker property: an element which represents identity transformation necessarily has

1 as its states at some level of the tree. We study other examples of automata for

which the branch word problem algorithm works and find the conditions under which

it is possible to obtain an L-presentation for the group using word substitutions which
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arise from the automaton structure.

A. Definitions and notations

Let G = 〈a1, . . . , an〉 be a self-similar group of automorphisms of the tree Td generated

by the automaton

A :







a1 = (w11, . . . , w1d)π1,

. . .

an = (wn1, . . . , wnd)πn,

(2.3)

where πi ∈ Sd, i = 1, . . . , n, aij ∈ {a1, . . . , an}, and wij are group words over the

alphabet {a1, . . . , an}. Automaton A naturally induces an action of the free group

F = F (a1, . . . , an) on the tree Td, as well as the homomorphism ΨA from the group

F to the wreath product F ≀ Sd defined by

Ψ :







a1 → (w11, . . . , w1d)π1,

. . .

an → (wn1, . . . , wnd)πn.

(2.4)

We will call this homomorphism the wreath recursion corresponding to the automaton

A. It is easy to see that the wreath recursion ΨA agrees with the canonical projection

P of the group F onto the group G, i.e. the following holds.

Proposition II.5. Let P : F ∋ ai → ai ∈ G be the canonical projection of the group

F onto the group G, and P ′ : F ≀ Sd → G ≀ Sd be the homomorphism induced by the

projection P . Then the following is a commutative diagram of group homomorphisms

F

P

��

ΨA // F ≀ Sd

P ′

��

G
ψ

// G ≀ Sd

(2.5)
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where ψ : G ∋ ai → (wi1, . . . , wid)πi ∈ G ≀Sd is the embedding induced by the automa-

ton A.

Proof. Obviously aPψi = aΨAP
′

i , therefore homomorphisms Pψ and ΨAP
′ coincide

since F is a free group.

The notion of a wreath recursion may be extended to certain intermediate factor

groups of the group F of which G is a factor group. Let Ω be the kernel of the

homomorphism P , and R be a normal subgroup of the group F such that R⊳Ω⊳F .

Then we have the group Γ = F/R and a pair of the canonical projections PF,Γ : F →

Γ, PΓ,G : Γ→ G which make the following diagram commutative.

F

PF,Γ

��

P // G

Γ
PΓ,G

??
~

~
~

~
~

~
~

~

Definition II.6. We call such a group Γ a covering group for the group G if the

wreath recursion (2.3) is well-defined for Γ, i.e. if the map Ψ : {a1, . . . , an} → Γ ≀ Sd

defined on the generators {a1, . . . , an} of the group Γ by the rules (2.4)

Ψ :







a1 → (w11, . . . , w1d)π1,

. . .

an → (wn1, . . . , wnd)πn.

extends to a homomorphism Γ→ Γ ≀ Sd which makes the following diagram commu-

tative,

F

ΨA

��

PF,Γ
// Γ

Ψ
��

PΓ,G
// G

ψ

��
F ≀ Sd

P ′
F,Γ

// Γ ≀ Sd
P ′

Γ,G

// G ≀ Sd

where P ′
F,Γ, P ′

Γ,G are homomorphisms induced by PF,Γ, PΓ,G respectively. P ′
F,ΓP

′
Γ,G =

P ′.
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The map Ψ in this case is called the wreath recursion for the group Γ. We call

the pair (Γ,Ψ) a wreath recursion as well.

Remark II.7. The condition of the definition II.6 is equivalent to

ΨA(R) < R× · · · × R.

Obviously, the whole free group F is a covering group for G (R = 1), and G is a

covering group for itself (R = Ω).

Remark II.8. If Γ = F/R is a finitely presented group then to check whether it is

a covering group for G it is sufficient to check that ΨA(r) ∈ R × · · · × R for every

defining relation r of the group Γ.

Map Ψ induces a homomorphism Γ ≀ Sd → (Γ ≀ Sd) ≀ Sd = Γ ≀ Sd ≀ Sd which in

turn induces a homomorphism Ψ2 : Γ → Γ ≀ Sd ≀ Sd, and we obtain a sequence of

homomorphisms

Ψk : Γ→ Γ ≀ Sd ≀ · · · ≀ Sd
︸ ︷︷ ︸

k

, k ≥ 1,

with the kernels

Ωk = ker Ψk.

Obviously, Ωk ⊂ Ωk+1 and we can consider the limit of this sequence

Ω∞ =
⋃

k≥1

Ωk.

The group Γ∞ = Γ/Ω∞ is again a covering group for the group G, and it does or does

not coincide with the group G, which depends on whether the wreath recursion (Γ,Ψ)

has property BA, which is a weaker analog of the contracting property [GNS00].

Definition II.9. A wreath recursion (Γ,Ψ) has property BA if the following con-

dition holds: for any w ∈ F such that P (w) = 1 there exists integer k such that
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Ψk(PF,Γ(w)) = (1, 1, . . . , 1).

Example II.10. Lamplighter group [GŻ01]. Let L be the Lamplighter group

generated by the automaton

a = (a, b)σ,

b = (a, b),
(2.6)

and F = F (a, b) be the free two-generated group. Then the wreath recursion ΨL :

F → F ≀ S2 induced by (2.6) has property BA.

It is easy to see that if Γ has property BA then

Ω =
〈
R,P−1

F,Γ(Ω∞)
〉
,

i.e. the set of defining relations of the group G can be obtained as the union of the

set of the defining relations of the group Γ and the set of the elements which generate

the groups Ωk. In other words, if R = 〈ri, i ∈ I〉
F , Ωk = 〈ukj, j ∈ Jk〉

Γ then

G =
〈
a1, . . . , an|ri, i ∈ I, u

′
kj, k ≥ 1, j ∈ Jk

〉
,

where u′kj is a representative of the set P−1
F,Γ(ukj). Therefore, to find a presentation of

the group G, it is enough to find a suitable covering group Γ with property BA and

the generators of the groups Ωk.

The group Γ acts on the tree Td (maybe not faithfully), therefore it is natural

to consider stabilizers of levels and vertices in the group Γ and the wreath products

Γ ≀ Sd ≀ . . . ≀ Sd. We have

Ω1 = {g ∈ Γ|Ψ(g) = (1, . . . , 1)} ,

therefore Ω1 coincides with the kernel of the restriction ΨH of the homomorphism Ψ
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onto the subgroup

H = StΓ(1) = Ψ−1(StΓ≀Sd
(1)) = {g ∈ Γ|Ψ(g) = (g1, . . . , gd)} ,

and since StΓ≀Sd
(1) is isomorphic to the direct product Γd, ΨH may be viewed as a

homomorphism from H to Γd, and the kernel of ΨH coincides with Ω1.

If the group G acts on the binary tree, then ΨH(H) is a subgroup of the direct

product of two copies of the free group Fn. In our study an important role is played

by Mihailova normal form for such subgroups [Mih58]:

Definition II.11. Let Fn be the free group with free generators {a1, . . . , an}, and H

be a subgroup of the direct product Fn × Fn. A Mihailova normal form of the group

H is a system of generators {s1, . . . , sn, u1, . . . , um} of H such that

s1 = (a1, α(a1)),

. . .

sn = (an, α(an)),

u1 = (1, v1),

. . .

um = (1, vm),

(2.7)

where m ≥ 0, vi ∈ Fn \ {1} , i = 1, . . . , m, and α is an automorphism of the group Fn.

Obviously not every subgroup of Fn×Fn has a Mihailova normal form, a necessary

condition for that is that the images of the canonical projections of the group H

onto the components of the product Fn × Fn coincide with the group Fn. On the

other hand, Mihailova normal form may not be unique when it exists, even modulo

automorphisms of the free group Fn.

Even though the classic definition of Mihailova normal form concerns only free

groups, it can be useful for any group G, and we will use the following natural
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definition:

Definition II.12. Let G be a group with non-trivial generators {a1, . . . , an}, and H

be a subgroup of the direct product G × G. A Mihailova normal form of the group

H is a system of generators {s1, . . . , sn, u1, . . . , um} of H such that

s1 = (a1, α(a1)),

. . .

sn = (an, α(an)),

u1 = (1, v1),

. . .

um = (1, vm),

(2.8)

where m ≥ 0, vi ∈ G \ {1} , i = 1, . . . , m, and α is an automorphism of the group G.

Remark II.13. Let Fn and H be as in the definition II.11, G = 〈a1, . . . , an〉, and H ′

be the image of the group H under the canonical homomorphism Fn × Fn → G×G.

If the automorphism α from (2.7) induces an automorphism of the group G then the

Mihailova normal form (2.7) corresponds to the Mihailova normal form (2.8) of the

group H ′.

Definition II.14. Diagonal of a direct product of two copies of a group G is the set

∆(G×G) = {(g, g)|g ∈ G} .

If α is an automorphism of the group G then the α-diagonal is the set

∆α(G×G) = {(g, α(g))|g ∈ G} .

Remark II.15. Elements s1, . . . , sn in (2.8) generate the α-diagonal ∆α(G×G) ∼= G,

and if m = 0 then H ∼= G.



12

B. Essentially free groups

Let G = 〈a1, . . . , an〉 be the self-similar group generated by the automaton (2.3), F

be the free group with generators a1, . . . , an, and H = St(F,Ψ)(1). Suppose that the

group H is generated by the set {s1, . . . , sn, u1, . . . , um} such that

Ψ(s1) = (a1, α(a1)),

· · ·

Ψ(sn) = (an, α(an)),

Ψ(u1) = (1, 1),

· · ·

Ψ(um) = (1, 1),

(2.9)

where α is an automorphism of the group F . Then

Ω1 = 〈u1, . . . , um〉
F . (2.10)

Let φ be the endomorphism of the group F defined by

φ :







a1 → s1,

. . .

an → sn,

(2.11)

H is obviously invariant under φ and for any g ∈ H we have

Ψ(φ(g)) = (g, α(g)). (2.12)

Lemma II.16. If the subgroups Ωk are invariant under the action of the automor-

phism α then

Ωk+1 = 〈Ωk, φ(Ωk)〉
F =

〈
φi(uj), i = 0, 1, . . . , k, j = 1, . . . , m

〉F
.
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Proof. Induction on k. Let k ≥ 1. From (2.12) it follows that φ(Ωk) ⊂ Ωk × Ωk ⊂

Ωk+1, and hence Ωk+1 ⊃ 〈Ωk, φ(Ωk)〉
F . On the other hand, if g =∈ Ωk+1 then Ψ(g) =

(g1, g2) for some g1, g2 ∈ Ωk. g ∈ H , therefore g is a product of the elements si modulo

Ω1 and hence Ψ(g) = (g1, α(g1)) and g = φ(g1) modulo Ω1, so g ∈ 〈φ(Ωk),Ω1〉
F .

Subgroups Ωk are normal in the group F , hence the condition of the Lemma II.16

is equivalent to the following:

∀k > 0 : α(φk−1(ui)) ∈ Ωk. (2.13)

Therefore, the following proposition holds.

Proposition II.17. Suppose that for the group G the wreath recursion (F,Ψ) has

the property BA, and it satisfies (2.9) and (2.13). Then the mapping φ from (2.11)

provides an L-presentation for the group G:

G =
〈
a1, . . . , an|φ

k(ui), k ≥ 0, i = 1, . . . , m
〉
.

Proof. From above it follows that
〈
φk(ui), k ≥ 0, i = 1, . . . , m

〉F
= Ω∞, and since

(F,Ψ) has property BA, we have Ω∞ = Ω, i.e.
{
φk(ui), k ≥ 0, i = 1, . . . , m

}
is a set

of defining relations of the group G.

Proving inclusions (2.13) requires calculations in normal subgroups of a free

group, which are hard in general. Instead, it may be enough to perform calculations

in the group G itself. For the substitution φ to work, it is necessary that φk(ui) =

α(φk(ui)) = 1 in the group G. This property is essential:

Theorem II.18. Suppose φk(ui) = α(φk(ui)) = 1 in the group G, and let Γ∞ be the

group defined by generators and relations

Γ∞ =
〈
a1, . . . , an|φ

k(ui) = α(φk(ui)) = 1, k ≥ 0, i = 1, . . . , m
〉
.
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Then

(i) Group Γ∞ is a covering group for the group G, i.e. the wreath recursion (2.4)

induces a homomorphism Γ∞ → Γ∞ ≀ S2.

(ii) If Γ∞ has the property BA then Γ∞
∼= G.

Proof. (i) follows from the definition of Γ∞ and (2.13). Γ∞ = F/Ω∞, therefore if Γ∞

has the property BA then Ω∞ = Ω and Γ∞ = G.

By definition if Γ is a covering group for the group G (in particular if Γ is F ) and

it has property BA then the group Γ∞ also has property BA and the condition (ii) of

the theorem II.18 is satisfied, therefore we need not actually perform any calculations

(which would be very hard, if not impossible) in the group Γ∞ to use the theorem II.18

and the following holds.

Theorem II.19. Suppose that the following conditions hold for the group G and the

covering group Γ.

(i) φk(ui) = α(φk(ui)) = 1 in the group G,

(ii) R ⊂ Ω∞, where R is the kernel of the canonical homomorphism of the group F

onto the group Γ,

(iii) Γ has the property BA.

Then G has the L-presentation

G ∼=
〈
a1, . . . , an|φ

k(ui) = 1, i = 1, . . . , m, k ≥ 0
〉
, (2.14)

and α induces an automorphism of the group G.

Proof. Follows from theorem II.18. Condition (ii) ensures that the group Γ covers

Γ∞ and hence Γ∞ has property BA.
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C. Grigorchuk groups Gω

Let us consider the family of Grigorchuk groups Gω [Gri83]. For every sequence

ω = (ω1, ω2, . . .) ∈ {0, 1, 2}
N the group Gω is generated by the tree automorphisms

aω, bω, cω, dω which are defined recursively as follows:

aω = (1, 1)σ,

bω = (aε1ω′ , bω′),

cω = (aε2ω′ , cω′),

dω = (aε3ω′ , dω′),

(2.15)

where ω′ = (ω2, ω3, . . .) is the shift of the sequence ω, and εi ∈ {0, 1} depend on ω1:

(ε1, ε2, ε3) = (1, 1, 0) if ω1 = 0,

(ε1, ε2, ε3) = (1, 0, 1) if ω1 = 1,

(ε1, ε2, ε3) = (0, 1, 1) if ω1 = 2.

Remark II.20. The first digit in the sequence ω corresponds to the letter x from b, c, d

such that xω = (1, xω′), and we can identify digits 0, 1, 2 with the letters d, c, b (in this

order). We will use letters b, c, d as elements of the sequences ω when it is convenient,

for instance we may say ω = dddd . . . instead of ω = 0000 . . ..

It is easy to see that the automorphism a = aω = σ does not depend on ω, so

axω = (1, 1)σ,

bdω = (a, bω), bcω = (a, bω), bbω = (1, bω),

cdω = (a, cω), ccω = (1, cω), cbω = (a, cω),

ddω = (1, dω), dcω = (a, dω), dbω = (a, dω).

(2.16)
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We may write it in the following way:

axω = (1, 1)σ

xxω = (1, xω),

yxω = (a, yω),

zxω = (a, zω),

where {x, y, z} = {b, c, d}.

Obviously, a2
ω = b2ω = c2ω = d2

ω = 1 for any ω. It is also easy to see that bωcω = dω.

If the sequence ω is constant, e.g. if ω = 000 . . ., then

bω = (a, bω),

cω = (a, cω) = bω,

dω = (1, dω) = 1,

in which case the group Gω = 〈a, b〉 ∼= D∞, and groups Gω1ω2...ωkω are subgroups of

a wreath product D∞ ≀ S2 ≀ · · · ≀ S2, which is a finite extension of a direct product of

multiple copies of the group D∞. We will not consider the case of almost constant

sequences ω in the sequel, i.e. we will assume that for any n ∈ N there is n′ > n such

that ωn′ 6= ωn.

Assuming the sequence ω is not almost constant, we have that elements bω,

cω, dω are of order 2, and they generate elementary 2-group of order 4. Moreover,

wreath recursion (2.16) implies that (axω)
4 = 1 where x ∈ {b, c, d} is such that

xω = (1, xω′), and there is y ∈ {b, c, d} \ {x} such that 4 < |ayω| = 2k < ∞,

|azω| > |ayω|, z ∈ {b, c, d} \ {x, y}, y corresponds to the first ωk not equal to ω1. In

other words, if ω = xx . . . x
︸ ︷︷ ︸

n

y . . . for some {x, y, z} = {b, c, d} then

Γω =
〈

a, x, y, z|a2 = x2 = y2 = z2 = xyz = 1, (ax)4 = 1, (ay)2n+1

= 1
〉

. (2.17)
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azω in this case has finite order if and only if ω contains a letter corresponding to z,

otherwise we obtain zω = (a, zω) and |azω| = ∞. Note that az always have infinite

order in the group Γω, regardless of the order of the element azω in Gω. (We could add

the relator (az)|azω | to (2.17) but it would only make calculations more complicated).

Proposition II.21. Let ω ∈ {b, c, d}N is not almost constant. Then for some

{x, y, z} = {b, c, d} and n > 2 exactly one of the following holds.

(i) ω = xx . . . xy
︸ ︷︷ ︸

n

. . .. Then

Γω =
〈

a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)2n+1

= 1
〉

,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āx̄)4 = (āȳ)2n

= 1
〉
,

(ii) ω = xy . . . yx
︸ ︷︷ ︸

n

. . .. Then

Γω =
〈
a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)8 = 1

〉
,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āȳ)4 = (āx̄)2n

= 1
〉
,

(iii) ω = xy . . . yz
︸ ︷︷ ︸

n

. . .. Then

Γω =
〈
a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)8 = 1

〉
,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āȳ)4 = (āz̄)2n

= 1
〉
.

Map Ψω from the set of generators of Γω to Γω′ ≀ S2 defined by

Ψω(a) = (1, 1)σ,

Ψω(x) = (1, x̄),

Ψω(y) = (ā, ȳ),

Ψω(z) = (ā, z̄),
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extends to a homomorphism Ψω : Γω → Γω′ ≀ S2.

Proof. The first part follows directly from the definition of the groups Γω. To prove

that Ψω is a homomorphism we need to show that the defining relators in the group

Γω are mapped to the trivial element of the group Γω′.

In all three cases we have

Ψω(a)
2 = ((1, 1)σ)2 = (1, 1),

Ψω(x)
2 = (1, x̄2) = (1, 1),

Ψω(y)
2 = (ā2, ȳ2) = (1, 1),

Ψω(z)
2 = (ā2, z̄2) = (1, 1),

Ψω(x)Ψω(y)Ψω(z) = (ā2, x̄ȳz̄) = (1, 1),

(Ψω(a)Ψω(x))
4 = (σ(1, x̄))4 = (x̄2, x̄2) = (1, 1).

For the last relator we have

(i) (Ψω(a)Ψω(y))
2n+1

= (σ(ā, ȳ))2n+1
= ((āȳ)2n

, (ȳā)2n

) = (1, 1),

(ii) (Ψω(a)Ψω(y))
8 = (σ(ā, ȳ))8 = ((āȳ)4, (ȳā)4) = (1, 1),

(iii) (Ψω(a)Ψω(y))
8 = (σ(ā, ȳ))8 = ((āȳ)4, (ȳā)4) = (1, 1).

We will find recursive presentations for Gω using approach similar to that used

in the section D. First we will find subgroups Ωω = ker Ψω, then we will describe a

substitution φω which lifts Ωω
1 to Ωω′

2 , and then we will prove that obtained Ωω
k indeed

provide us with a representation for the group Gω. The sets Ωω
k and substitutions

φω will be defined recursively via Ωω′

k , and we will not be able to obtain explicit

representations for groups Gω in general (which is clear given that the sequence ω
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may not be possible to describe), but we will obtain an L-presentation for the case

of periodic sequences ω, as well as we will have a way to obtain those for the case of

almost periodic sequences.

1. Base relations: Ω1

Without loss of generality, let us assume that ω starts with one or more zeroes and

then a two:

ω = 0ω′ = 0 . . . 02 . . . . (2.18)

Let us denote aω, bω, cω, dω by a, b, c, d, and bω′ , cω′ , dω′ by ā, b̄, c̄, d̄ respectively. Also,

let Ḡ = Gω′ =
〈
ā, b̄, c̄, d̄

〉
, Γ = Γω, Γ̄ = Γω′, and let Ψ = Ψω and Ψ̄ = Ψω′ .

Let us find Ω1 = ker Ψ. As in the section D we have

ker Ψ < H = 〈b, c, d, aba, aca, ada〉 < Γ,

and

Ψ(H) ∼=
〈
(ā, b̄), (ā, c̄), (1, d̄), (b̄, ā), (c̄, ā), (d̄, 1)

〉
< Γ̄× Γ̄.

We have

K = D ×D < Ψ(H),

where D =
〈
d̄
〉Γ̄

, and Ψ(H) is isomorphic to the semidirect product

Ψ(H) ∼= A⋉K, (2.19)

where A =
〈
(ā, b̄), (b̄, ā)

〉
= 〈(ā, c̄), (c̄, ā)〉 is a dihedral group Dmin{|āb̄|,|āc̄|} (at least

one of |āb̄|, |āc̄| is not ∞). According to (2.10), Ω1 is generated as a normal subgroup

of the group Γ by the preimages of the defining relators of the group Ψ(H), so we need

to find a presentation for the group Ψ(H), and for that we need to find a presentation

for the group D.
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By assumption (2.18), we have |āb̄| < |āc̄|, in particular 4 ≤ |āb̄| <∞. Then

A =
〈
(ā, b̄), (b̄, ā)

〉
∼= D2n ,

D =
〈
d̄
〉Γ̄

=
〈
d̄x|x ∈ Γ̄

〉
=

〈
d̄x|x ∈

〈
ā, b̄

〉〉

|āb̄| = 2n for some n ≥ 2 and b̄d̄ = d̄b̄, therefore

D = 〈d̄x|x ∈ {t1 = 1, t2 = ā, t3 = āb̄, t4 = āb̄ā, t5 = āb̄āb̄, . . . , t2n = āb̄ . . . āb̄ā
︸ ︷︷ ︸

2n−1

}〉.

Let

ξi = d̄ti, i = 1, . . . , 2n,

then the group D has representation

D =
〈
ξ1, . . . , ξ2n|RD, ξ

2
i , i = 1, . . . , 2n

〉
,

where RD is some set of additional relations, which depends on the group Γ̄.

K = D×D =
〈

ξ̂1, . . . , ξ̂2n, ξ̃1, . . . , ξ̃2n|ξ̂2
i = ξ̃2

j = [ξ̂i, ξ̃j] = r̂ = r̃ = 1, 1 ≤ i, j ≤ 4, r ∈ R
〉

,

(2.20)

where

ξ̂i = (ξi, 1), ξ̃j = (1, ξj),

r̂ = (r, 1) = r(ξ̂i), r̃ = (1, r) = r(ξ̃i) for r = r(ξi) ∈ RD.
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Let x = (ā, b̄), y = (b̄, ā). We have

ξā2k−1 = ξ2k, k = 1, . . . , 2n−1

ξ b̄2k = ξ2k+1, k = 1, . . . , 2n−1 − 1,

ξ b̄1 = ξ1, ξ
b̄
2n = ξ2n,

ξ̂xi = (ξāi , 1), ξ̂yi = (ξ b̄i , 1),

ξ̃yi = (1, ξāi ), ξ̃
x
i = (1, ξ b̄i ),

therefore x and y act as permutations

π = (1, 2)(3, 4) . . . (2n − 1, 2n),

ρ = (2, 3)(4, 5) . . . (2n − 2, 2n − 1)
(2.21)

on the sets
{

ξ̂i

}

and
{

ξ̃i

}

:

ξ̂xi = ξ̂π(i), ξ̃
x
i = ξ̂ρ(i),

ξ̂yi = ξ̂ρ(i), ξ̃
y
i = ξ̂π(i),

(2.22)

Therefore, defining relations of the group Ψ(H) are those from (2.20) and (2.22).

Equations (2.19), (2.20), (2.22) show that the group Ψ(H) is generated by ξ̂1, ξ̃1, x, y,

and its defining relations are

R =
{

x2, y2, (xy)2n

, ξ̂2
1 , ξ̃

2
1, [ξ̂i, ξ̃j], r̂, r̃|1 ≤ i, j,≤ 2n, r ∈ RD, z1, z2 ∈ 〈x, y〉

}

.

Now, Ω1 = 〈Ψ−1(R)〉
Γ
. As a representative of the class Ψ−1(r), r ∈ R we can choose

ψ(r) where ψ : F (x, y, ξ̂1, ξ̃1)→ F = F (a, b, c, d) is defined by

ψ :







x → b,

y → ba,

ξ̂1 → da,

ξ̃1 → d = ψ(ξ̂1)
a,

(2.23)
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(i.e. we choose simplest representatives according to (2.16)). It follows from (2.22),

(2.21), (2.23) that

{ψ(ξ̂i)|i = 1, . . . , 2n} = {daz|z ∈ 〈b, ba〉} ,

and

{ψ(ξ̃i)|i = 1, . . . , 2n} = {dz|z ∈ 〈b, ba〉} .

Hence, we have

Ω1 = 〈ψ(R)〉Γ = 〈[daz1 , dz2], ψ(r̂), ψ(r̃)|r ∈ RD, z1, z2 ∈ 〈b, b
a〉〉Γ . (2.24)

Since z1 and z2 are independent and

[daz1 , dz2] = [daz1z
−1
2 , d]z2,

[daz, d] = (z−1adazd)2 = [az, d]2,

(2.24) can be written as

Ω1 =
〈
[d, az]2, ψ(r̂)|r ∈ RD, z ∈ 〈b, b

a〉
〉Γω

. (2.25)

We have (ab)2n+1
= 1, therefore group 〈b, ba〉 is a subgroup of index 2 in the dihedral

group 〈a, b〉 which consists of reduced words which contain an even number of letter

a:

〈b, ba〉 = {1, b, aba, baba, abab, . . .} ,

so the set a 〈b, ba〉 consists of all reduced words in 〈a, b〉 which contain an odd number

of letter a:

a 〈b, ba〉 = {a, ab, ba, bab, ababa, . . .} .

We also have that for any z ∈ Γ

[d, bz] = ddbz = ddz = [d, z],
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[d, zb] = [d, z]b,

and

[d, a]2 = (da)4 = 1,

therefore the set of relations of the form [d, az]2 in (2.25) can be reduced to the set

U1 =
{
[d, a(ba)2k]2 = (da(ba)2k)4, k = 1, . . . , 2n−1 − 1

}
.

Let us find the set RD now. We have to consider two cases. One is when (ād̄)4 = 1

and another one is when (āb̄)4 = 1. These correspond to ω = 00 . . . and ω = 02 . . ..

(I) |ād̄| = 4

We have ω = 00 . . . 02
︸ ︷︷ ︸

n

. . ., d̄ = (1, d̃), |āb̄| = 2n, n > 2, and

Γ =
〈

a, b, c, d|a2 = b2 = c2 = d2 = bcd = (ad)4 = (ab)2n+1

= 1
〉

,

Γ̄ =
〈
ā, b̄, c̄, d̄|ā2 = b̄2 = c̄2 = d̄2 = b̄c̄d̄ = (ād̄)4 = (āb̄)2n

= 1
〉
.

D =
〈
d̄
〉Γ̄

=
〈
ξi = d̄ηi, i = 1, . . . , 2n

〉
,

where

η2k−1 = (āb̄)k,

η2k = (āb̄)kā, k = 1, . . . , 2n−1,

and its relations, apart from ξ2
i = 1, are

RD = { (ξ1ξ3)
2, (ξ3ξ5)

2, . . . , (ξ2n−3ξ2n−1)
2,

(ξ2ξ4)
2, (ξ4ξ6)

2, . . . , (ξ2n−2ξ2n)2,

(ξ1ξ2)
2, (ξ2n−1ξ2n)2}.



24

According to (2.21), (2.22),

ξ̂2k+1 = ξ̂xy2k−1, k = 1, . . . , 2n−1 − 1,

ξ̂2k+2 = ξ̂yx2k , k = 1, . . . , 2n−1 − 1,

therefore ψ(RD) gives us the following relations in the group Ψ(H):

(ξ̂2k−1ξ̂2k+1)
2 = (ξ̂

(xy)k−1

1 ξ̂
(xy)k+1

1 )2 ∼ (ξ̂1ξ̂
xy
1 )2 → (dadabb

a

)2 = (dadababa)2 ∼

(ddabab)2 = (ddaba)2 = (daba)4,

(ξ̂2kξ̂2k+2)
2 = (ξ̂

(yx)k−1

2 ξ̂
(yx)k+1

2 )2 ∼ (ξ̂2ξ̂
yx
2 )2 → (dabaabb

ab)2 = (dabdababab)2 ∼ (ddabab)2,

(ξ̂1ξ̂2)
2 = (ξ̂1ξ̂

x
1 )→ (dadab)2 ∼ (ddaba)2,

(ξ̂2n−1ξ̂2n)2 = (ξ̂2n−1ξ̂
x
2n−1)

2 = (ξ̂
(xy)2

n−1
−1

1 ξ̂
(xy)2

n−1
−1x

1 )2 → (da(bb
a)2

n−1
−1
da(bb

a)2
n−1

−1b)2 =

(da(ba)
2n

−2
da(ba)

2n
−2b)2 = (da(ba)

2n
−2
d(ab)2

n
−1

)2 ∼ (dd(ab)2
n
−1(ab)2

n
−2a)2 =

(dd(ab)2
n+1

−3a)2 = (ddbabab)2 = (ddabab)2 ∼ (ddaba)2,

and hence the formula (2.25) becomes

Ω1 =
〈
(daba)4, (da(ba)2k)4, k = 1, . . . , 2n−1 − 1

〉Γ
.

(II) |ād̄| > 4

In this case |āb̄| = 4, i.e. b̄ = (1, b̃), and formula (2.25) becomes

Ω1 =
〈
(dababa)4, ψ(r̂)|r ∈ RD

〉Γω
.

We have two cases: ād̄ has finite order, i.e. |ād̄| = 2m for some m > 2, or ād̄

has infinite order.

(IIa) |ād̄| <∞
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We have ω = 02 . . . 20
︸ ︷︷ ︸

m

, |ād̄| = 2m, m > 2, and

Γ =
〈
a, b, c, d|a2 = b2 = c2 = d2 = bcd = (ab)8 = (ad)4 = 1

〉
,

Γ̄ =
〈
ā, b̄, c̄, d̄|ā2 = b̄2 = c̄2 = d̄2 = b̄c̄d̄ = (āb̄)4 = (ād̄)2m

= 1
〉
,

RD =
{

(ξ1ξ2)
2m−1

, (ξ1ξ3)
2m−1

, (ξ2ξ4)
2m−1

, (ξ3ξ4)
2m−1

}

.

According to (2.21), (2.22), (2.23),

ψ(ξ̂1ξ̂2) = dadab ∼ ddaba = [d, aba] = (daba)2,

ψ(ξ̂1ξ̂3) = dadababa ∼ ddabab = [d, abab] ∼ [d, aba],

ψ(ξ̂2ξ̂4) = dabdababab ∼ ddabab ∼ [d, aba],

ψ(ξ̂3ξ̂4) = dababadababab ∼ ddabababababa = ddbabab = [d, babab] ∼ [d, baba] = [d, aba],

so

Ω1 =
〈
(dababa)4, (daba)2m〉Γω

.

(IIb) |ād̄| =∞

Then ω = 02 . . . 21
︸ ︷︷ ︸

m

, |āc̄| = 2m, m > 2,

Γ =
〈
a, b, c, d|a2 = b2 = c2 = d2 = bcd = (ad)4 = (ab)8 = 1

〉
,

Γ̄ =
〈
ā, b̄, c̄, d̄|ā2 = b̄2 = c̄2 = d̄2 = b̄c̄d̄ = (āb̄)4 = (āc̄)2m

= 1
〉
,

and

RD =
{

(ξ1ξ2ξ4ξ3)
2m−2

}

.

According to (2.21), (2.22),

ψ(ξ1ξ2ξ4ξ3) = dadabdabababdababa = adabadabbababadabababababadababa =

adabadbabadbababdababa ∼ (caba)4,
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so

Ω1 =
〈
(dababa)4, (caba)2m〉Γω

.

Let us summarize the results of the calculations above.

Proposition II.22. Let ω ∈ {b, c, d}N (see Proposition II.21). Then for some

{x, y, z} = {b, c, d} and n > 2 exactly one of the following holds.

(i) ω = xx . . . xy
︸ ︷︷ ︸

n

. . .. Then Ωω
1 =

〈
(xaya)4, (xa(ya)2k)4, k = 1, . . . , 2n−1 − 1

〉Γω
.

(ii) ω = xy . . . yx
︸ ︷︷ ︸

n

. . .. Then Ωω
1 =

〈
(xayaya)4, (xaya)2n〉Γω

.

(iii) ω = xy . . . yz
︸ ︷︷ ︸

n

. . .. Then Ωω
1 =

〈
(xayaya)4, (zaya)2n〉Γω

.

In all three cases the group Ωω
1 contains element (xayaya)4.

2. Substitutions φω

Let the sequence ω start with x ∈ {b, c, d}: ω = xω′. Then the map Ψω acts as

follows:

x→ (1, x̄), axa→ (x̄, 1),

y → (ā, ȳ), aya→ (ȳ, ā),

z → (ā, z̄), aza→ (z̄, ā).

(2.26)

Let the map φω : F (ā, b̄, c̄, d̄)→ F (a, b, c, d) be defined by

φω(x̄) = x (−→ (1, x̄)),

φω(ȳ) = y (−→ (ā, ȳ)),

φω(z̄) = z (−→ (ā, z̄)),

φω(ā) = aya (−→ (ȳ, ā)).

Proposition II.23. φω(Ω
ω′

1 ) = Ωω
2 and Ψω(Ω

ω
2 ) = Ωω′

1 × Ωω′

1 .
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Proof. Let U = φω(Ω
ω′

1 ). Obviously, Ωω
2 = Ψ−1

ω (Ωω′

1 × Ωω′

1 ). Together with any

element (1, g), g ∈ Γω′ the group Ψω(Γω) contains the element (g, 1), and it follows

from (2.26) that together with any element (1, g), g ∈ Γω′ the group Ψω(Γω) contains

the subgroup (1, 〈g〉Γω′ ). Therefore, it is enough to prove that U contains all elements

(1, u), u ∈ Ωω′

1 , and this is true if and only if U contains all elements (1, ui) where ui

are generators of the subgroup Ωω′

1 as a normal subgroup: Ωω′

1 = 〈ui, i = 1, . . . , k〉Γω′ ,

i.e. the generators from Proposition II.22.

By construction, the second coordinate of Ψω(φω(u)) in Γω′ × Γω′ equals u, and

it is enough to check that the first coordinate is the identity element. In other words,

we need to check that φ′
ω(ui) = 1, where φ′

ω is defined by

φ′
ω(x̄) = 1,

φ′
ω(ȳ) = ā,

φ′
ω(z̄) = ā,

φ′
ω(ā) = ȳ.

As before, we have three possible cases.

(i) ω = xx . . . xy
︸ ︷︷ ︸

n

. . ., n > 2. Then

Γω =
〈

a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)2n+1

= 1
〉

,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āx̄)4 = (āȳ)2n

= 1
〉
.

(ia) n > 3. Then

Ωω′

1 =
〈
(x̄āȳā)4, (x̄ā(ȳā)2k)4, k = 1, . . . , 2n−2 − 1

〉Γω′

,

φ′
ω((x̄āȳā)

4) = (ȳāȳ)4 = 1,

φ′
ω((x̄ā(ȳā)

2k)4) = (ȳ(āȳ)2k)4 = (ȳ(āȳ)k

)4 = 1.
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(ib) n = 3, ω = xxy . . . yx
︸ ︷︷ ︸

m

. . ., m > 2. Then

Ωω′

1 =
〈
(x̄āȳāȳā)4, (x̄āȳā)2m〉Γω′

.

φ′
ω((x̄āȳāȳā)

4) = (ȳāȳāȳ)4 = 1,

φ′
ω((x̄āȳā)

2m

) = (ȳāȳ)2m

= 1.

(ic) n = 3, ω = xxy . . . yz
︸ ︷︷ ︸

m

. . ., m > 2. Then

Ωω′

1 =
〈
(x̄āȳāȳā)4, (z̄āȳā)2m〉Γω

.

φ′
ω((x̄āȳāȳā)

4) = (ȳāȳāȳ)4 = 1,

φ′
ω((z̄āȳā)

2m

) = (āȳāȳ)2m

= (āȳ)2m+1

= 1 (m ≥ 3 and (āȳ)8 = 1),

(ii) ω = xy . . . yx
︸ ︷︷ ︸

n

. . .. Then

Γω =
〈
a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)8 = 1

〉
,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āȳ)4 = (āx̄)2n

= 1
〉
.

(iia) n > 3. Then

Ωω′

1 =
〈
(ȳāx̄ā)4, (ȳā(x̄ā)2k)4, k = 1, . . . , 2n−2 − 1

〉Γω′

,

φ′
ω((ȳāx̄ā)

4) = (āȳȳ)4 = 1,

φ′
ω((ȳā(x̄ā)

2k)4) = (āȳ(ȳ)2k)4 = (āȳ)4 = 1.

(iib) n = 3, ω = x yx . . . xy
︸ ︷︷ ︸

m

. . .. Then

Ωω′

1 =
〈
(ȳāx̄āx̄ā)4, (ȳāx̄ā)2m〉Γω′

,
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φ′
ω((ȳāx̄āx̄ā)

4) = (āȳȳȳ)4 = (āȳ)4 = 1,

φ′
ω((ȳāx̄ā)

2m

) = (āȳȳ)2m

= 1.

(iic) n = 3, ω = x yx . . . xz
︸ ︷︷ ︸

m

. . .. Then

Ωω′

1 =
〈
(ȳāx̄āx̄ā)4, (z̄āx̄ā)2m〉Γω′

,

φ′
ω((ȳāx̄āx̄ā)

4) = (āȳȳȳ)4 = (āȳ)4 = 1,

φ′
ω((z̄āx̄ā)

2m

) = (āȳȳ)4 = 1.

(iii) ω = xy . . . yz
︸ ︷︷ ︸

n

. . .. Then

Γω =
〈
a, x, y, z|a2 = x2 = y2 = z2 = xyz = (ax)4 = (ay)8 = 1

〉
,

Γω′ =
〈
ā, x̄, ȳ, z̄|ā2 = x̄2 = ȳ2 = z̄2 = x̄ȳz̄ = (āȳ)4 = (āz̄)2n

= 1
〉
.

(iiia) n > 3. Then

Ωω′

1 =
〈
(ȳāz̄ā)4, (ȳā(z̄ā)2k)4, k = 1, . . . , 2n−2 − 1

〉Γω′

,

φ′
ω((ȳāz̄ā)

4) = (āȳāȳ)4 = (āȳ)8 = 1,

φ′
ω((ȳā(z̄ā)

2k)4) = (āȳ(āȳ)2k)4 = (āȳ)8k+4 = 1.

(iiib) n = 3, ω = x yz . . . zy
︸ ︷︷ ︸

m

. . .. Then

Ωω′

1 =
〈
(ȳāz̄āz̄ā)4, (ȳāz̄ā)2m〉Γω′

,

φ′
ω((ȳāz̄āz̄ā)

4) = (āȳāȳāȳ)4 = (āȳ)12 = 1,

φ′
ω((ȳāz̄ā)

2m

) = (āȳāȳ)2m

= (āȳ)2m+1

= 1.
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(iiic) n = 3, ω = x yz . . . zx
︸ ︷︷ ︸

m

. . .. Then

Ωω′

1 =
〈
(ȳāz̄āz̄ā)4, (x̄āz̄ā)2m〉Γω′

,

φ′
ω((ȳāz̄āz̄ā)

4) = (āȳāȳāȳ)4 = (āȳ)12 = 1,

φ′
ω((x̄āz̄ā)

2m

) = (ȳāȳ)2m

= 1.

Theorem II.24. Substitution rules φω constructed above provide recursive presenta-

tions for groups Gω with non-almost-constant ω. Namely,

Gω
∼=

〈

a, b, c, d|
∞⋃

k=1

Uω
k

〉

, (2.27)

where Uω
1 is as described in the Proposition II.22, and consequent sets of relators Uω

k

are obtained recursively by the rule

Uω
k+1 = φω(U

ω′

k ). (2.28)

All groups Gω with non-almost-constant ω are infinitely presented.

Proof. Proof is straightforward induction on k. Case k = 1 is the proposition II.21,

and k > 1 is done in the same way as in the section D. Let us show that the groups

Gω have the property analogous to property BA of self-similar groups. Namely, we

need to prove that if an element g ∈ Γω represents the trivial element in the group

Gω then Ψω
k (g) = 1 for some k ≥ 0. For this it is enough to prove that any word of

the length l ≥ 2 contracts to strictly shorter words on the next level. That follows
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from the following simple equalities.

Ψ(aωbω) = (bω′ , βω′)σ,

Ψ(aωcω) = (cω′ , γω′)σ,

Ψ(aωdω) = (dω′, δω′)σ,

Ψ(bωaω) = (βω′ , bω′)σ,

Ψ(cωaω) = (γω′ , cω′)σ,

Ψ(dωaω) = (δω′ , dω′)σ,

a2
ω = b2ω = c2ω = d2

ω = 1,

bωcω = cωbω = dω,

cωdω = dωcω = bω,

bωdω = dωbω = cω,

where β, γ, δ are 1 or a′ω.

D. Grigorchuk-Erschler group and IMG(z2 + i)

Consider the following two automata.

A1 :







a = (1, 1)σ,

b = (a, c),

c = (1, b),

A2 :







a = (1, 1)σ,

b = (c, a),

c = (1, b).

The automaton A1 generates the Grigorchuk-Erschler group [Ers04], and the

automaton A2 generates the group isomorphic to the group of iterated monodromies

of the complex polynomial z2+i [GSŠ07]. L-presentation of the group IMG(z2+i) was
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found in the cited paper, and here we will find the L-presentation of the Grigorchuk-

Erschler group. Moreover, we will find recursively defined presentations for the whole

family of groups to which the above two groups belong.

Let Λ be the set of all infinite sequences of digits {1, 2},

Λ = {1, 2}ω = {λ = (λ1λ2 . . . )|λi = 1, 2, i = 1, 2, . . .} ,

To each sequence λ = (λ1λ2λ3 . . . ) ∈ Λ we assign the group Kλ < Aut T2 gener-

ated by the elements aλ, bλ, cλ, which are defined recursively by

aλ = (1, 1)σ,

bλ = (xλ′ , yλ′),

cλ = (1, bλ′),

where x = c, y = a if λ1 = 1 and x = a, y = c if λ1 = 2, and λ′ is the tail of the

sequence λ: λ′ = (λ2λ3 . . . ). In other words, we have

a1λ′ = (1, 1)σ,

b1λ′ = (cλ′ , aλ′),

c1λ′ = (1, bλ′),

a2λ′ = (1, 1)σ,

b2λ′ = (aλ′, cλ′),

c2λ′ = (1, bλ′).

(2.29)

It is easy to see that the group K222... is the Grigorchuk-Erschler group, and K111...

is IMG(z2 + i).

For any λ ∈ Λ we have the following:

a2
λ = b2λ = c2λ = (aλcλ)

4 = 1,

therefore every group Kλ is a factor group of the group

Γ =
〈
a, b, c|a2 = b2 = c2 = (ac)4 = 1

〉
.

Group Γ is a covering group for each group Kλ, i.e. for every λ ∈ Λ the map



33

ΨΓ,λ : Γ→ Γ ≀ S2 defined by

ΨΓ,λ(a) = (1, 1)σ,

ΨΓ,λ(b) = (x, y),

ΨΓ,λ(c) = (1, b),

extends to a homomorphism. Indeed, if F is the free group with generators a, b, c and

Γ = F/R, R = 〈a2, b2, c2, (ac)4〉
F
, then we have

ΨΓ,λ(a2) = (1, 1),

ΨΓ,λ(b2) = (x2, y2),

ΨΓ,λ(c2) = (1, b2),

ΨΓ,λ((ac)4) = (b2, b2),

and hence ΨΓ,λ(R) ⊂ R ×R.

As we will see below, in one special case we need to use the more restricted

covering group. Namely, let λ = 2222 . . . . Then in the group Kλ we have (bc)2 =

(1, (cb)2), (cb)2 = (1, (bc)2), i.e. (bc)2 = 1, and we will see that this relation is required

for our wreath recursion to have the property BA. Let Γ′ be the group Γ with this

extra relation added, i.e.

Γ′ =
〈
a, b, c|a2 = b2 = c2 = (ac)4 = (bc)2 = 1

〉
,

and let ΨΓ,Γ′

be the map from Γ to Γ′ ≀ S2 defined by

ΨΓ,Γ′

(a) = (1, 1)σ,

ΨΓ,Γ′

(b) = (c, a),

ΨΓ,Γ′

(c) = (1, b),
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and let ΨΓ′

: Γ′ → Γ′ be the analogous map defined for the group Γ′:

ΨΓ′

(a) = (1, 1)σ,

ΨΓ′

(b) = (a, c),

ΨΓ′

(c) = (1, b),

(Γ,ΨΓ,Γ′

) and (Γ′,ΨΓ′

) are wreath recursions. Indeed, the calculations for these

are the same as above for the group Γ, and the only relator we have to check is (bc)2:

ΨΓ′

((bc)2) = (1, (cb)2) = (1, 1) in Γ′.

So, as with the Grigorchuk groups Gω, let us define for every λ the covering

group Γλ and the wreath recursion map Ψλ : Γλ → Γλ′ ≀ S2:

Γλ =







Γ′ if λ = 222 . . . ,

Γ otherwise ,

Ψλ :







a → (1, 1)σ,

b → (x, y),

c → (1, b),

By above, (Γλ,Ψ
λ) are wreath recursions, and for every λ we obtain a series of

maps Ψλ
n : Γλ → Γλ(n) ≀ S2 ≀ · · · ≀ S2 (where λ(n) denotes n-th iteration of the shift of

the sequence λ).

To find the presentations for the groups Kλ, we will proceed in several steps.

First we will find the kernels Ωλ
1 of the maps Ψλ, then we will show that consequent

sets of relations Ωλ
k+1 can be obtained from Ωλ

k using appropriate substitutions πλ,

and finally we will show that the sets Ωλ
k indeed provide the presentation for the group

Kλ.
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1. Calculation of Ωλ
1

In this subsection we fix λ ∈ Λ and use the notations Ψ and Ωk instead of Ψλ and Ωλ
k

when it is convenient. Let Ω1 = Ωλ
1 be the kernel of the homomorphism Ψ = Ψλ:

Ω1 = ker Ψ = {g ∈ Γλ|Ψ(g) = (1, 1)} .

We have two possible cases, depending on the first digit of the sequence λ.

Ψλ(a) = (1, 1)σ,

and

Ψ1λ′ :







b → (c, a)

c → (1, b)
,Ψ2λ′ :







b → (a, c)

c → (1, b)
.

Let H = StΓ(1). Let us describe the group Ψ(H). Since Ω1 < H , Ω1 is generated

as a normal subgroup by the preimages of the relators of the group Ψ(H). H is

generated by the elements b, c, ba, ca.

Ψ(H) = 〈(a, c), (c, a), (1, b), (b, 1)〉 < Γλ′ × Γλ′.

Hence we get

B ×B E Ψ(H),

where B = 〈b〉Γλ′ . Furthermore, Ψ(H)/B × B ∼= 〈(a, c), (c, a)〉 ∼= D4 (regardless of

whether the group Γλ′ is the group Γ or Γ′). Therefore

Ψ(H) ∼= (B × B) ⋊D4.

Let us find the representation of the group B. We have two possibilities. First,

λ′ = 222 . . . and Γλ′ = Γ′ = 〈a, b, c|a2 = b2 = c2 = (bc)2 = (ac)4 = 1〉, and the second,

when λ′ 6= 222 . . . and Γλ′ = Γ = 〈a, b, c|a2 = b2 = c2 = (ac)4 = 1〉. Let us consider
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these two cases separately.

(I) λ′ 6= 222 . . . .

Let

ξz = bz, z ∈ D = 〈a, c〉 ∼= D4.

Obviously B is generated by the elements ξz, z ∈ D. Γ = 〈b〉 ∗D, hence B is a

free product of the subgroups of order 2 generated by the elements ξz, i.e.

B =
〈
ξz|ξ

2
z = 1

〉

z∈D
.

Therefore B × B is generated by the elements ξ̃z = (ξz, 1) and ξ̂z = (1, ξz),

z ∈ D, and its presentation is

B ×B =
〈

ξ̃z, ξ̂t|ξ̃
2
z = ξ̂2

t = [ξ̃z, ξ̂t] = 1
〉

z,t∈D
.

The action of the group D4 generated by the elements x = (a, c) and y = (c, a)

on the group B × B is defined as follows:

ξ̃xz = (ξz, 1)(a,c) = (bza, 1) = (ξza, 1) = ξ̃za,

ξ̃yz = (ξz, 1)(c,a) = (bzc, 1) = (ξzc, 1) = ξ̃zc,
(2.30)

and

ξ̂xt = (1, ξt)
(a,c) = (1, btc) = (1, ξtc) = ξ̂tc,

ξ̂yt = (1, ξt)
(c,a) = (1, bta) = (1, ξta) = ξ̂ta.

(2.31)

Relations (2.30) and (2.31) show that Ψ(H) =
〈

ξ̃1, ξ̂1, x, y
〉

and its presentation

is

Ψ(H) =

〈

ξ̃1, ξ̂1, x, y

∣
∣
∣
∣
∣
∣
∣

ξ̃2
1 = ξ̂2

1 = x2 = y2 = (xy)4 = 1,

[ξ̃p1 , ξ̂
q
1] = 1, p, q ∈ 〈x, y〉

〉

(2.32)

(II) λ′ = 222 . . . .
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The group B has the following presentation:

B =
〈
ξ1, ξa, ξac, ξaca|ξ

2
z = 1, z ∈ {1, a, ac, aca}

〉
,

where ξz = bz . Therefore B × B is generated by the elements ξ̃z = (ξz, 1) and

ξ̂z = (1, ξz), z ∈ {1, a, ac, aca}, and its presentation is

B ×B =
〈

ξ̃z, ξ̂t|ξ̃
2
z = ξ̂2

t = [ξ̃z, ξ̂t] = 1
〉

z,t∈{1,a,ac,aca}
.

The action of the group D4 generated by the elements x = (a, c) and y = (c, a)

on the group B × B is defined as follows:

ξ̃xz = (ξz, 1)(a,c) = (bza, 1) = (ξza, 1) = ξ̃za,

ξ̃yz = (ξz, 1)(c,a) = (bzc, 1) = (ξzc, 1) = ξ̃zc,
(2.33)

and

ξ̂xt = (1, ξt)
(a,c) = (1, btc) = (1, ξtc) = ξ̂tc,

ξ̂yt = (1, ξt)
(c,a) = (1, bta) = (1, ξta) = ξ̂ta.

(2.34)

We have

bc = b,

baca·c = bcaca = baca,

and therefore x and y act on the set
{

ξ̃z, ξ̂t

}

as the following permutations:

x = (ξ̃1, ξ̃a)(ξ̃ac, ξ̃aca)(ξ̂a, ξ̂ac),

y = (ξ̃a, ξ̃ac)(ξ̂1, ξ̂a)(ξ̂ac, ξ̂aca).

As in the case λ′ 6= 222 . . . , relations (2.33) and (2.34) show that Ψ(H) =
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〈

ξ̃1, ξ̂1, x, y
〉

and its presentation is

Ψ(H) =

〈

ξ̃1, ξ̂1, x, y

∣
∣
∣
∣
∣
∣
∣

ξ̃2
1 = ξ̂2

1 = x2 = y2 = (xy)4 = 1,

[ξ̃p1 , ξ̂
q
1] = 1, p, q ∈ 〈x, y〉

〉

(2.35)

The kernel of Ψ is generated as a normal subgroup by preimages of the relators

in Ψ(H). We have

Ψ(c) = ξ̂1,Ψ(aca) = ξ̃1, (2.36)

and

Ψ(aba) = x,Ψ(b) = y (2.37)

or

Ψ(b) = x,Ψ(aba) = y (2.38)

if λ1 = 1 or λ1 = 2 respectively.

• If λ1 = 1, then Ψ(aba) = x,Ψ(b) = y. We have

x2 ← (aba)2 = 1, y2 ← b2 = 1, (xy)4 ← (abab)4 = (ab)8.

• If λ1 = 2, then Ψ(b) = x,Ψ(aba) = y. We have

x2 ← b2 = 1, y2← (aba)2 = 1, (xy)4 ← (baba)4 = (ba)8.

In either case we obtain the single relator w1 = (ab)8 from the relators x2, y2, (xy)4.

The relators ξ̃2
1 , ξ̂

2
1 give us c2 and (aca)2, therefore all remaining generators of the

group Ω1 come from the relators

[ξ̃p1 , ξ̂
q
1], p, q ∈ 〈x, y〉 . (2.39)

From (2.36, 2.37, 2.38) we obtain that modulo conjugation and taking inverses all
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generators of Ω1 obtained from (2.39) are

[c, cta], t ∈ 〈b, aba〉 . (2.40)

c is an involution, hence we have [c, cv] = (ccv)2 = [c, v]2. Also, we can use the fact

that w1 = (ab)8 ∈ Ω1 and therefore we obtain

Ω1 =
〈
(ab)8, [c, a]2, [c, ta]2|t ∈ 〈b, aba〉

〉Γ
=

〈
(ab)8, [c, ab]2, [c, ba]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababa]2, [c, bababab]2

〉Γ
.

Now,

[c, a]2 = (ca)4 = 1,

[c, ba] = cabcba ∼ bacabc = (cbacab)−1 = [c, ab]−1,

[c, bababa] = cabababcbababa ∼ bababacabababc = (cbababacababab)−1 = [c, ababab]−1,

therefore we get Ω1 = 〈U1〉
Γ where

U1 =
{
(ab)8, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
.

2. Ωλ
k

Let us find the substitution φλ which transforms Ωλ
k to Ωλ

k+1. From (2.29) we have

λ1 = 1

Ψ(b) = (c, a),

Ψ(c) = (1, b),

Ψ(ba) = (a, c),

λ1 = 2

Ψ(ba) = (c, a),

Ψ(c) = (1, b),

Ψ(b) = (a, c),
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so it is natural to put

φ1λ′ :







a→ b,

b→ c,

c→ aba,

φ2λ′ :







a→ aba,

b→ c,

c→ b.

Obviously, Ψ(φλ(w)) = (w′, w) where w′ is an element of the group 〈aλ′ , cλ′〉. Now,

for any w ∈ Uλ
1 the element w′ is a homomorphic image of w, and therefore it is a

fourth power or a square of a commutator. In either case w′ will be trivial because

〈aλ′ , cλ′〉 ∼= D4. Therefore, we have Ψ(φλ(U
λ
1 )) ⊂ 1 × Ωλ′

1 ⊂ Ψ(Ωλ
2). Group Ωλ

2 is

normal in Γλ, hence Ψ(Ωλ
2) = Ψ((Ωλ

2)
a) ⊃ Ωλ′

1 × 1, and hence Ψ(Ωλ
2) ⊃ Ωλ′

1 ×Ωλ′

1 . On

the other hand, Ψ(Ωλ
2) ⊂ Ωλ′

1 × Ωλ′

1 by definition, hence Ψ(Ωλ
2) = Ωλ′

1 × Ωλ′

1 and

Ωλ
2 =

〈

ker Ψ,Ψ−1(Ωλ′

1 × Ωλ′

1 )
〉Γλ

=
〈
Uλ

1 , φλ(U
λ
1 )

〉Γλ .

Using induction on n we obtain in the similar way that

Ωλ
n =

〈
Uλ

1 , U
λ
2 , . . . , U

λ
n

〉Γλ ,

where Uλ
k are defined recursively by

Uλ
k+1 = φλ(U

λ′

k ), k ≥ 1,

Uλ
1 = U =

{
(ab)8, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
.

Let us show that if an element of Γλ represents a trivial element of the group Kλ

then it is mapped to the trivial element by Ψλ
k for some k ≥ 1. For this it is enough

to show that for any word g ∈ Γλ such that |g| ≥ 2 there exists k ≥ 1 such that all

sections of g on the level k will be strictly shorter then the word g. Let us consider
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the second level. We have

Ψ(a) = (1, 1)σ

Ψ(b) = (c, a)

Ψ(c) = (1, b)

if λ = 1λ′,

Ψ(a) = (1, 1)σ

Ψ(b) = (a, c)

Ψ(c) = (1, b)

if λ = 2λ′,

hence

• If λ = 11λ
′′

then

Ψ2(a) = (1, 1, 1, 1)(13)(24),

Ψ2(b) = (1, b, 1, 1)(34),

Ψ2(c) = (1, 1, c, a),

Ψ2(a
2) = 1,Ψ2(b

2) = 1,Ψ2(c
2) = 1,

Ψ2(ab) = (1, 1, 1, b)(1423),

Ψ2(ba) = (1, b, 1, 1)(1324),

Ψ2(ac) = (c, a, 1, 1)(13)(24),

Ψ2(ca) = (1, 1, c, a)(13)(24),

Ψ2(bc) = (1, b, a, c)(34),

Ψ2(cb) = (1, b, c, a)(34),

• If λ = 12λ
′′

then

Ψ2(a) = (1, 1, 1, 1)(13)(24),

Ψ2(b) = (1, b, 1, 1)(34),

Ψ2(c) = (1, 1, a, c),

Ψ2(a
2) = 1,Ψ2(b

2) = 1,Ψ2(c
2) = 1,
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Ψ2(ab) = (1, 1, 1, b)(1423),

Ψ2(ba) = (1, b, 1, 1)(1324),

Ψ2(ac) = (a, c, 1, 1)(13)(24),

Ψ2(ca) = (1, 1, a, c)(13)(24),

Ψ2(bc) = (1, b, c, a)(34),

Ψ2(cb) = (1, b, a, c)(34),

• If λ = 21λ
′′

then

Ψ2(a) = (1, 1, 1, 1)(13)(24),

Ψ2(b) = (1, 1, 1, b)(12),

Ψ2(c) = (1, 1, c, a),

Ψ2(a
2) = 1,Ψ2(b

2) = 1,Ψ2(c
2) = 1,

Ψ2(ab) = (1, b, 1, 1)(1324),

Ψ2(ba) = (1, 1, 1, b)(1423),

Ψ2(ac) = (c, a, 1, 1)(13)(24),

Ψ2(ca) = (1, 1, c, a)(13)(24),

Ψ2(bc) = (1, 1, c, ba)(12),

Ψ2(cb) = (1, 1, c, ab)(12),

• If λ = 22λ
′′

then

Ψ2(a) = (1, 1, 1, 1)(13)(24),

Ψ2(b) = (1, 1, 1, b)(12),

Ψ2(c) = (1, 1, a, c),

Ψ2(a
2) = 1,Ψ2(b

2) = 1,Ψ2(c
2) = 1,
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Ψ2(ab) = (1, b, 1, 1)(1324),

Ψ2(ba) = (1, 1, 1, b)(1423),

Ψ2(ac) = (a, c, 1, 1)(13)(24),

Ψ2(ca) = (1, 1, a, c)(13)(24),

Ψ2(bc) = (1, 1, a, bc)(12),

Ψ2(cb) = (1, 1, a, cb)(12),

Now, if λ does not start with two 2’s, then the sections of g on the third level

will be shorter than g (worst case is the pairs bc and cb when λ = 21 . . . , when ab and

ba from the second level contract to a single letter on the next level). Moreover, if

λ 6= 2 then the sections of g will necessarily become shorter on the level k + 2 where

k is the first occurrence of 1 in the sequence λ. The only case when the shortening

doesn’t happen is when λ = 222 . . . , but in that case we can add bc to the system of

generators and obtain the following:

Ψ2(a · bc) = (a, bc, 1, 1)(1324),

Ψ2(b · bc) = c = (1, 1, a, c),

Ψ2(c · bc) = b = (1, 1, 1, b)(12),

Ψ2(bc · a) = (1, 1, a, bc)(1423),

Ψ2(bc · b) = c = (1, 1, a, c),

Ψ2(bc · c) = b = (1, 1, 1, b)(12),

i.e. contraction happens on the second level.

Therefore, we obtain

Theorem II.25.

Kλ ∼=

〈

a, b, c|

∞⋃

k=1

Uλ
k

〉

,
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where

Uλ
1 =

{
a2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}

for λ 6= 222 . . . , and

U222...
1 =

{
a2, (bc)2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
,

and

Uλ
k+1 = φλ(U

λ′

k ), k ≥ 1,

and the endomorphisms φλ of the free group F (a, b, c) are defined as follows,

φ1λ′ :







a→ b,

b→ c,

c→ aba,

φ2λ′ :







a→ aba,

b→ c,

c→ b.

Proof. Above we obtained

Uλ
1 =

{
a2, b2, c2, (ac)4, (ab)8, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}

for λ 6= 222 . . . , and

U222...
1 =

{
a2, b2, c2, (bc)2, (ac)4, (ab)8, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
.

We can reduce these sets by eliminating b2, c2, and (ab)8 because

φ1λ′(a
2) = b2, φ1λ′(b

2) = c2,

φ1λ′((ac)
4) = (baba)4 = (ba)8 = ((ab)8)−1,

φ2λ′(a
2) = ab2a, φ2λ′(b

2) = c2,

φ2λ′((ac)
4) = (abab)4 = (ab)8.
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Corollary II.26. The group IMG(z2 + i) has the following L-presentation:

IMG(z2 + i) ∼=
〈
a, b, c|φk(r), k ≥ 0, r ∈ R

〉
,

where

R =
{
a2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
,

and the endomorphism φ is defined by

φ :







a→ b,

b→ c,

c→ aba.

This presentation coincides with that found in [GSŠ07].

Corollary II.27. The Grigorchuk-Erschler group GE has the following L-presentation:

GE ∼=
〈
a, b, c|φk(r), k ≥ 0, r ∈ R

〉
,

where

R =
{
a2, (bc)2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
,

and the endomorphism φ is defined by

φ :







a→ aba,

b→ c,

c→ b.
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E. One four-state group

Let G be the group generated by the automaton







a = σ,

b = (b, c),

c = (1, a).

Theorem II.28. Group G has the following L-presentation:

G ∼= 〈a, b, c|φn(r), r ∈ R, n ≥ 0〉 ,

where

R = {a2, (ac)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2},

and φ is given by

φ :







a→ c,

b→ aba,

c→ b.

Proof. We have the following in the group G:

a2 = b2 = c2 = (ac)4 = 1,

therefore group G is a factor group of the group

Γ =
〈
a, b, c|a2 = b2 = c2 = (ac)4 = 1

〉
.
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Group Γ is a covering group for the group G, i.e. the map Ψ : Γ→ Γ ≀ S2 defined by

Ψ(a) = (1, 1)σ,

Ψ(b) = (b, c),

Ψ(c) = (1, a),

extends to a homomorphism. Indeed, if F is the free group with generators a, b, c and

Γ = F/R, R = 〈a2, b2, c2, (ac)4〉
F
, then

Ψ(a2) = (1, 1),

Ψ(b2) = (b2, c2),

Ψ(c2) = (1, a2),

Ψ((ac)4) = (a2, a2),

and hence Ψ(R) ⊂ R ×R.

Let us find the presentation for the groups G. Let Ω1 be the kernel of the

homomorphism Ψ:

Ω1 = ker Ψ = {g ∈ Γ|Ψ(g) = (1, 1)} .

We have

Ψ :







a → (1, 1)σ,

b → (b, c)

c → (1, a)

.

Let H = StΓ(1) = 〈b, c, ba, ca〉. Then Ψ(c) = (1, a) and Ψ(b) = (b, c) respectively,

and

Ψ(H) = 〈(b, c), (c, b), (1, a), (a, 1)〉 < Γ× Γ.

Hence we get

A×AE Ψ(H),
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where A = 〈a〉Γ. Furthermore, Ψ(H)/A× A ∼= 〈(b, c), (c, b)〉 ∼= D∞. Therefore

Ψ(H) ∼= (A×A) ⋊D∞.

Let us find the representation of the group A. Γ ∼= 〈a, c〉 ∗ 〈b〉, therefore A is a free

product of its subgroups Ax =
{

gx|g ∈ 〈a〉〈a,c〉
}

for all x ∈ BC where BC ⊂ 〈b, c〉

is the set of all elements of the group 〈b, c〉 which do not start with c. Hence its

presentation is

A ∼=
〈
ξk, ηk, k = 0, 1, 2, . . . |ξ2

k = η2
k = (ξkηk)

2 = 1, k = 0, 1, 2, . . .
〉
,

where ξ0 = ξ = a, η0 = η = cac, αk = α{γk} = αγk , γ2k = (bc)k, γ2k+1 = (bc)kb, and

A× A ∼=

〈

ξ̃k, η̃k, ξ̂m, η̂m, k,m = 0, 1, 2, . . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ̃2
k = η̃2

k = (ξ̃kη̃k)
2 = 1,

ξ̂2
m = η̂2

m = (ξ̂mη̂m)2 = 1,

[∗̃k, ∗̂m] = 1, k,m = 0, 1, 2, . . .

〉

,

where α̃k = (αk, 1), α̂m = (1, αm), α ∈ {ξ, η}. Let us compute the action of the group

〈(b, c), (c, b)〉 on A×A. Let x = (b, c) and y = (c, b). Then

α̃xk = (αk, 1)(b,c) = (αbk, 1) = (αγkb, 1) = α̃{γkb},

α̃yk = (αk, 1)(c,b) = (αck, 1),

α̂xk = (1, αk)
(b,c) = (1, αck),

α̂yk = (1, αk)
(c,b) = (1, αbk) = (1, αγkb) = α̂{γkb}.

If k ≥ 1 then αc2k = αc
{(bc)k}

= α2k−1; ξ
c
0 = ξc = ac = η0, hence x and y act on the sets

{

ξ̃k, η̃k, k ≥ 0
}

and
{

ξ̂k, η̂k, k ≥ 0
}

as the following permutations of order 2:

. . . ↔ η3 η2 ↔ η1 η0 ↔ ξ0 ξ1 ↔ ξ2 ξ3 . . .

. . . η3 ↔ η2 η1 ↔ η0 ξ0 ↔ ξ1 ξ2 ↔ ξ3 . . .
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Therefore, the group Ψ(H) is generated by the elements x, y, ξ̃0, η̃0, ξ̂0, η̂0 and its

presentation is

Ψ(H) ∼=

〈

x, y, ξ̃0, η̃0, ξ̂0, η̂0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

x2 = y2 = 1,

ξ̃2
0 = η̃2

0 = (ξ̃0η̃0)
2 = 1, ξ̂2

0 = η̂2
0 = (ξ̂0η̂0)

2 = 1,

[∗̃k, ∗̂m] = 0, k,m ≥ 0

〉

.

(2.41)

Group Ω1 is generated as a normal subgroup of the group Γ by the preimages of the

relators of the group Ψ(H). We have

b→ (b, c) = x,

aba→ (c, b) = y,

aca→ (a, 1) = ξ̃0,

c→ (1, a) = ξ̂0.

From (2.41) we obtain

x2
 b2 = 1,

y2
 (aba)2 = 1,

ξ̃2
0  (aca)2 = 1,

η̃2
0  ((aca)aba)2 = 1,

(ξ̃0η̃0)
2

 (acaabaacaaba)2 = (acba)4 ∼ (bc)4,

ξ̂2
0  c2 = 1,

η̂2
0  (cb)2 = 1,

(ξ̂0η̂0)
2

 (cbcb)2 ∼ (bc)4.
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Now let us look at the commutators in (2.41). We have

x  b,

y  aba,

ξ̃{w(x,y)}  (ca)w(b,aba)=caw(b,aba)

,

η̃{w(x,y)}  (cba)w(b,aba) = caw
′(b,aba),

ξ̂{v(x,y)}  cv(aba,b),

η̂{v(x,y)}  (cb)v(aba,b) = cv
′(b,aba),

therefore we obtain the following:

Ω1 =
〈
(bc)4, [caz, ct]|z, t ∈ 〈b, aba〉

〉Γ
.

As in the previous subsection, we have Ω1 = 〈U1〉
Γ where

U1 =
{
(bc)4, [c, ab]2, [c, bab]2, [c, ababa]2, [c, ababab]2, [c, bababab]2

}
.

Now let us find the substitution φ which transforms Ωk to Ωk+1. We have

Ψ(c) = (1, a),

Ψ(ba) = (c, b),

Ψ(b) = (b, c),

so it is natural to define

φ :







a→ c,

b→ aba,

c→ b.

(bc)4 = 1 in G, therefore Ψ(φ(U1)) ⊂ 1× Ω1 and Ψ(φ(Ω1)) = Ω1 × Ω1. As above, we

obtain that Ωn =
〈
φk(U1), k = 0, 1, . . . , n− 1

〉
. All we have left to prove is that the
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wreath recursion (Γ,Ψ) has property BA. Indeed, we have

Ψ2(a) = (1, 1, 1, 1)(13)(24),

Ψ2(b) = (b, c, 1, a),

Ψ2(c) = (1, 1, 1, 1)(34),

hence

Ψ2(ab) = (1, a, b, c)(13)(24),

Ψ2(ac) = (1, 1, 1, 1)(1423),

Ψ2(ba) = (b, c, 1, a)(13)(24),

Ψ2(bc) = (b, c, 1, a)(34),

Ψ2(ca) = (1, 1, 1, 1)(1324),

Ψ2(cb) = (b, c, a, 1)(34),

i.e. any element of the group Γ is going to be contracted to the elements {1, a, b, c} on

some level of the tree. Since no elements from {a, b, c} are trivial in G, any element

of the group Γ which represents the trivial element of the group G is necessarily

contracted to 1s on some level of the tree, i.e. the wreath recursion (Γ,Ψ) does have

property BA.
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CHAPTER III

CLASSIFICATION OF GROUPS GENERATED BY SMALL AUTOMATA

A fundamental problem of the theory of automata groups is the connection between

the structure of an automaton and the properties of the group it generates. As we

could see, finite automata generate very different groups, from finite abelian groups

to free groups and groups of intermediate growth. But even small automata (i.e.

automata with a small number of states) provide a huge number of groups with vastly

different properties. It is natural to study groups generated by small automata, which

often are elementary building blocks of bigger groups. Two important characteristics

of a finite automaton are its number of states n and the cardinality d of the alphabet,

and the pair (n, d) is a natural measure of complexity of the automaton.

Automata groups of complexity (2, 2) have been described in [GNS00], there are

only six groups in the class, namely, the trivial group, Z2, Z×Z, Z, the infinite dihedral

group D∞, and the lamplighter group Z ≀Z2. The situation drastically changes when

the complexity increases: (3, 2) groups, which were studied by the research group at

Texas A&M University [BGK+07a, BGK+07b], include groups as simple as abelian

2-groups, free abelian groups Z and Z
2, and as complex groups as the Basilica group

[GŻ02], iterated monodromy groups of several complex rational functions, Baumslag-

Solitar groups BS(1, 3) and BS(1,−3) [Bv06], and a free non-abelian group with 3

generators [VV07].

We continue the work on the classification of the groups in the (3, 2) class. We

further reduce the number of possible non-isomorphic groups generated by (3, 2) au-

tomata, and establish some connections between the groups in the class. Another

part of our research is the studying groups in the class (2, 3), which is a non-binary

analog of the class (3, 2), i.e. the class of minimal “interesting” automata over the
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alphabet with more than two letters.
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A. Groups of complexity (3, 2)

Theorem III.1. There are no more than 115 pairwise non-isomorphic groups in the

class of (3, 2) groups.

Theorem III.2. Group generated by the automaton

a = (c, c)σ,

b = (a, b),

c = (b, a)

is a free product of its cyclic groups generated by a, b, and c.

Proposition III.3. The group G2193 generated by the automaton

a = (c, b)σ,

b = (a, a)σ,

c = (a, a),

contains the Lamplighter group as a subgroup of index 2.

Proof. Let

x = ca−1, y = ab−1, z = a−1c, t = b−1a,

s = (s, s)σ,

K = 〈x, z〉,

P = 〈x, y, z, t〉 = 〈x, z, σ〉 = 〈K, σ〉 = 〈x, s〉 = 〈x, z, s〉 = 〈K, s〉,

then

x = (y, x−1)σ,

y = (x, y−1),

z = (t, z−1)σ,

t = (t−1, z),
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and

s = x2zy ∈ G, σ = xy ∈ G,

K⊳P
2
⊳ G,

|x| = |y| = |z| = |t| =∞,

P is the normal subgroup of elements of length 2 in G.

〈x, y〉 = 〈x, σ〉 and 〈z, t〉 = 〈z, σ〉 are lamplighters, and they are conjugated in G

by element s:

xs = z−1, ys = t−1.

a4 = b4 = c4 = (xz)2 = 1,

b2 = c2,

We have the following:

[su, sv] = 1, u, v ∈ K,

[σu, σv] = 1, u, v ∈ K,

i.e. P is a lamplighter. K is the subgroup of index 2 in the lamplighter group P ,

which corresponds to the set of even-number lamp configurations.

Proposition III.4. G957
∼= G939

Proof. We have bc−2 = (bc−2, ca−2), ca−2 = (ca−1c−1, ca−2), ca−1c−1 = (ca−2, ca−1c−1)σ,

which is an automaton equivalent to automaton 939. bc−2, ca−2, and ca−1c−1 generate

the whole group G957, therefore G957
∼= G939.

Proposition III.5. G966
∼= G740

Proof. We have ab−1a = (a, a), a = (c, a)(1, 2), c = (c, a), which is an automaton
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equivalent to automaton 740. ab−1a, a, and c generate the whole group G966, therefore

G966
∼= G740.

Proposition III.6. G741 = G2199

Proof. We have the following wreath recursions: a = (c, a)σ, b = (b, a), c = (a, a) in

G741, and a = (c, a)σ, b = (b, a)σ, c = (a, a) in G2199. Obviously states a and c are the

same in these two automata, so they are subautomata of the following:

a = (c, a)σ, c = (a, a), b1 = (b1, a), b2 = (b2, a)σ,

where b1 is the element b in G741, and b2 is b in G2199. b1b2 = a−1, therefore G741 and

G2199 coincide as subgroups of the group of automorphisms of the binary tree.

Proposition III.7. G2361
∼= G939

Proof. We have ca−1b = (c, ca−1b), c = (c, a), a = (c, a)σ, which is an automaton

equivalent to automaton 939. ca−1b, c, and a generate the whole groupG2361, therefore

G2361
∼= G939.

Proposition III.8. G2365
∼= G939

Proof. We have a−1c−1b = (c−1, a−1c−1b), c−1 = (c−1, a−1), a−1 = (c−1, a−1)σ, which

is an automaton equivalent to automaton 939. a−1c−1b, c−1, and a−1 generate the

whole group G2365, therefore G2365
∼= G939.

Proposition III.9. G2395
∼= G937

Proof. We have cb−1a = (cb−1a, ac−1a), ac−1a = (a, ac−1a), a = (a, a)σ, which is

an automaton equivalent to automaton 937. cb−1a, ac−1a, and a generate the whole

group G2395, therefore G2395
∼= G937.

Proposition III.10. G2401
∼= G920
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Proof. We have c−1ab−1 = (c−1ac−1, c−1ab−1), c−1ac−1 = (c−1, c−1ac−1)σ, c−1 =

(c−1, c−1ac−1), which is an automaton equivalent to the automaton 920. c−1ab−1,

c−1ac−1, and c−1 generate the whole group G2401, therefore G2401
∼= G920.

B. Groups of complexity (2, 3)

Let us consider the groups generated by automata with two states a, b over the al-

phabet with three letters {1, 2, 3}. We will use the terminology analogous to that

from [BGK+07a, BGK+07b]. Let us describe first the numeration system.

Given automaton A with the set of states {a, b} over 3-letter alphabet X =

{1, 2, 3}

A :







a = (a1, a2, a3)π,

b = (b1, b2, b3)ρ,

we can assign to it the unique tuple (a1, a2, a3, b1, b2, b3, π, ρ). By arranging these in

some order, we obtain the ordering on the set of all three-state automata over the

two-letter alphabet. Here we use the ordering analogous to that used in [BGK+07a,

BGK+07b]. Namely, we say that (a1, a2, a3, b1, b2, b3, π, ρ) < (a′1, a
′
2, a

′
3, b

′
1, b

′
2, b

′
3, π

′, ρ′)

if (ρ, π, b3, b2, b1, a3, a2, a1) <lex (ρ′, π′, b′3, b
′
2, b

′
1, a

′
3, a

′
2, a

′
1), where <lex is the lexico-

graphic ordering induced by a < b and the following ordering on the symmetric group

S3: () < (12) < (13) < (23) < (123) < (132) (the latter is arbitrary, we only want

() < (12) to be consistent with the classification of the (3, 2) groups). In this way we
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obtain the following ordering on the set of (2, 3) automata:

A1 : a = (a, a, a), b = (a, a, a),

A2 : a = (b, a, a), b = (a, a, a),

A3 : a = (a, b, a), b = (a, a, a),

A4 : a = (b, b, a), b = (a, a, a),

. . .

A64 : a = (b, b, b), b = (b, b, b),

A65 : a = (a, a, a)(12), b = (a, a, a),

. . .

A2304 : a = (b, b, b)(132), b = (b, b, b)(132).

As with (3, 2) groups, we eliminate isomorphic automata, and we also elimi-

nate reducible automata (which are necessarily one-state automata generating trivial

group, S2, or S3). Let Mn be the group generated by the automaton number n in

the class (2, 3).

Theorem III.11.

• There are 139 non-isomorphic non-reducible automata with two states on the

alphabet with three letters. 30 of them generate finite groups, 108 generate

infinite groups, and it is unknown whetherM675 is finite (it is probably infinite).

• The finite groups generated by (2, 3) automata are: 1, D6, S3×C3, S3×S3, S3,

Z2, Z2 × Z2, Z3, Z3 × Z3.

• Infinite abelian groups in the class are Z and Z
2.

• There are no more than 78 non-isomorphic infinite non-abelian groups generated

by automata in the class (2, 3). Among them there is the Lamplighter group and

the infinite dihedral group D∞.
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• There are no infinite torsion groups in the class of (2, 3) groups. There are no

non-abelian free groups in the class of (2, 3) groups.

Proof of this theorem consists of studying every individual automaton from the

list, below we provide the proofs of non-trivial facts for automata which do not gener-

ate finite groups. Significant part of the information we obtained was produced using

the AutomGrp package [MS] for computer algebra system GAP , developed by the

author and his fellow graduate student Dmytro Savchuk.

• Automaton 66:

Group M66 is abelian. Image of the canonical projection onto Aut T2 is the

infinite cyclic group generated by the automaton

α = (β, α)(12), β = (α, α).

In this group we have α2β = 1, therefore only possible relations in the group

M66 are of the form a2kbk = 1, but then

a2kbk = (ab, ab, a2)k(ak, ak, ak) = (a2kbk, a2kbk, a3k) = 1,

and ak = 1 which is possible only when k = 0. ThereforeM66 is a two-generated

free abelian group.

• Automaton 70:

Similar to 66. The same projection, the difference is at the third coordinate: if

a2kbk = 1 then

a2kbk = (ab, ab, b2)k(ak, ak, ak) = (a2kbk, a2kbk, akb2k) = 1,

and akb2k = 1 which is possible only when k = 0. Therefore M70 is a two-

generated free abelian group.
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• Automaton 73:

Image of the canonical homomorphism into Aut T2 is the infinite dihedral group

generated by

a = (a, a)σ

b = (b, a)
,

therefore M73 is infinite, and hence it is D∞, since it is generated by two

involutions.

• Automaton 74:

Image of the canonical homomorphism into Aut T2 is the lamplighter group L

generated by

a = (b, a)σ

b = (b, a)
,

and M74 satisfies the defining relations of the group L: let σ = b−1a = (12),

then

σ2 = 1,

(σbnσb−n)2 = (anb−n, bna−n, 1)2 = 1

(it is trivial because it is so in the lamplighter, and on the third coordinate we

have 1 in all states of the resulting automaton). Therefore, it is the lamplighter

group.

It is not contracting because of the third coordinate: an = (·, ·, an)(12)n, and a

has infinite order.

• Automaton 76:

Same as 73.

• Automaton 77:
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Same as 73.

• Automaton 78:

Similar to 74. The only difference is that in the relations the third coordinate

is not identity (but still is trivial, which is easy to see).

It is not contracting because of the third coordinate: an = (·, ·, bn)(12)n, bn =

(·, ·, an).

• Automaton 80:

Same as 73.

• Automaton 90:

Group M90 is abelian. Image of the canonical projection onto Aut T2 is the

infinite cyclic group generated by the adding machine

t = (1, t)(12).

Therefore the only possible relations in the group M66 are of the form bk = 1,

but then

bk = (bk, bk, ak) = 1

and ak = 1, which is possible only when k = 0. Therefore M90 is a two-

generated free abelian group.

• Automaton 94:

Same as 90.

• Automaton 98:

Same as 90.

• Automaton 102:
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Similar to 66. The same projection, the difference is at the third coordinate: if

a2kbk = 1 then

a2kbk = (ab, ab, b2)k(ak, ak, bk) = (a2kbk, a2kbk, b3k) = 1,

and b3k = 1 which is possible only when k = 0. Therefore M102 is a two-

generated free abelian group.

• Automaton 105:

Same as 73.

• Automaton 106:

Same as 78.

• Automaton 108:

Same as 73.

• Automaton 109:

Same as 73.

• Automaton 110:

Same as 74.

• Automaton 112:

Same as 73.

• Automaton 260:

a and b have infinite order - proof is straightforward computations using the

fact that the group is abelian.

• Automaton 268:

For x = b−1aba−1ba−1b−1a = (1, a−1bab−1ab−1, a−1b) the commutator [[x, xa], xa
−1

]
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is a relator for the groupM268.

Let x = ab−1. Then x = (x−1, x−1, x)(1, 2, 3), x3 = (x−1, x−1, x−1), and there-

fore x has infinite order.

• Automaton 270:

For x = a−1ba−2b2 = (1, b−1a, b−2a2) the commutator [[x, xa], xa
−1

] is a relator

for the groupM270.

Let x = ab−1. Then x = (x−1, 1, 1)(1, 2, 3), x3 = (x−1, x−1, x−1), and therefore

x has infinite order.

• Automaton 282:

For x = bab−1a−1 = (1, ba−1, a2b−1a−1) the commutator [[x, xa], xa
−1

] is a relator

for the groupM282.

a−1b = (1, 1, a−1b)(132), therefore a−1b has infinite order.

• Automaton 283:

For x = a−1b−1a2ba−2bab−1 = (1, a−1b−1abab−1a−1bab−1, b−1aba−1ba−1) the com-

mutator [[x, xa], xa
−1

] is a relator for the groupM283.

a−1b = (1, a−1b, 1)(132), therefore a−1b has infinite order.

• Automaton 288:

a−1b = (b−1a, 1, 1)(132), therefore a−1b has infinite order.

• Automaton 514:

For x = b3a−2b−1 = (1, a2b−1a−1, a3b−1a−2) the commutator [[x, xa], xb] is a

relator for the groupM514.

a−1b = (1, 1, b−1a)(132) = (1, 1, (a−1b)−1)(132), therefore a−1b has infinite or-

der.



64

• Automaton 515:

It is infinite, and it is generated by two involutions, hence it is D∞.

• Automaton 516:

For x = ab2a−1b−2 = (ba2b−1a−2, ba2b−1a−2, 1) the commutator [[x, xa], xab] is a

relator for the groupM516.

a−1b = (1, b−1a, b−1a)(132) = (1, (a−1b)−1, (a−1b)−1)(132), therefore a−1b has

infinite order.

• Automaton 518:

We have x = (x−1, 1, x−1)(132) where x = ab. Then x3 = (x−2, x−2, x−2),

x−2 = (x, x, x)(123), therefore x has infinite order, andM518 is D∞.

• Automaton 521:

a−1b = (1, 1, a−1b)(132), therefore a−1b has infinite order.

• Automaton 524:

For x = a2b−2 = (1, ba−1, aba−2) the commutator [[x, xa], xb] is a relator for the

groupM524.

a−1b = (1, b−1a, 1)(132) = (1, (a−1b)−1, 1)(132), therefore a−1b has infinite or-

der.

• Automaton 526:

For x = ba2b−1ab−2a−1 = (1, aba−2, ab2a−1ba−1b−2) the commutator [[x, xa], xb]

is a relator for the groupM526.

a−1b = (b−1a, 1, 1)(132) = ((a−1b)−1, 1, 1)(132), therefore a−1b has infinite or-

der.
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• Automaton 527:

Dual group ofM527 is spherically transitive, and for any k > 0 there is a word

w of length k in 〈a, b〉 such that w 6= 1 in M527. Therefore the semigroup

generated by a, b is free, in particular a and b have infinite order.

M527 is not contracting because an = (·, bn, ·)(13)n and bn = (·, ·, an)(12)n and

a and b have infinite order.

For x = a−1b we have x = (x−1, x−1, x)(132), x3 = (x−1, x−1, x−1), therefore x

has infinite order.

• Automaton 537:

Same as 518.

• Automaton 538:

For x = ab2a−1ba−2b−1 = (1, ab2a−1ba−1b−2, aba−2) the commutator [[x, xa], xb]

is a relator for the groupM538.

a−1b = (1, a−1b, 1)(132), therefore a−1b has infinite order.

• Automaton 539:

We have x = (1, 1, x)(132) where x = ab. x has infinite order, and therefore

M539 is D∞.

• Automaton 545:

Same as 539.

• Automaton 550:

We have x = (1, 1, x−1)(132) where x = ab. x has infinite order, and therefore

M550 is D∞.
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• Automaton 554:

For x = a2b−2 = (1, a2b−1a−1, ab−1) the commutator [[x, xa], xb] is a relator for

the groupM554.

a−1b = (a−1b, 1, 1)(132), therefore a−1b has infinite order.

• Automaton 557:

a−1b = (1, 1, a−1b)(132), therefore a−1b has infinite order.

• Automaton 643:

For x = a−1ba−1b = (b−1a, 1, b−1a) the commutator [[x, xa], xb] is a relator for

the groupM643.

• Automaton 644:

For x = b2ab−2a−1 = (a2ba−2b−1, a2ba−2b−1, 1) the commutator [[x, xa], xa
−1

] is

a relator for the groupM644.

• Automaton 655:

Free semigroup and non-contracting - same as 527.

• Automaton 666:

For x = b3a−1b−1a−1 = (1, b3a−3, a2b−1a−1) the commutator [[x, xa], xa
−1

] is a

relator for the groupM666.

• Automaton 676:

Free semigroup - same as 527.

b2 = (a2, a2, b2) and b has infinite order, thereforeM676 is not contracting.

• Automaton 679:

For x = a−1ba−1b = (b−1a, 1, b−1a) the commutator [[x, xa], xa
−1

] is a relator for

the groupM679.
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• Automaton 683:

Free semigroup - same as 527.

b2 = (ba, ab, b2) and b has infinite order, thereforeM683 is not contracting.

• Automaton 690:

Free semigroup - same as 527.

b2 = (ab, ba, b2) and b has infinite order, thereforeM690 is not contracting.

• Automaton 703:

M703 is generated by two involutions b and a−1b and it is infinite. Therefore

M703 is the infinite dihedral group.

• Automaton 1858:

For x = ab−1aba−2 = (1, a2b−1a−1, ba−1) the commutator [[x, xa], xa
−1

] is a rela-

tor for the groupM1858.

• Automaton 1860:

For x = b−1a2ba−2 = (1, a−1ba2b−2, a−1b2ab−1a−1) the commutator [[x, xa], xa
−1

]

is a relator for the groupM1860.
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CHAPTER IV

CONCLUSION

In the first part of the dissertation we described the sufficient condition for an es-

sentially free automaton group to have an L-presentation, suitable for actual com-

putations in finite automata groups. We found the L-presentation for several groups

generated by three-state automata, and we described the defining relations in the

Grigorchuk groups Gω and in the series of groups which contain Grigorchuk-Erschler

group and the group of iterated monodromies of the polynomial z2 + i. In case

when these groups are generated by finite automata, the relations found constitute

L-presentations.

In the second part of the dissertation we made further progress in the classifica-

tion of the groups generated by 3-state automata acting on binary trees, and we laid

the foundation for the classification of the groups generated by 2-state automata over

the 3-letter alphabet. This is a part of the classification work of the research group

at Texas A&M University.
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[GŻ01] Rostislav I. Grigorchuk and Andrzej Żuk. The lamplighter group as
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[GŻ02] Rostislav I. Grigorchuk and Andrzej Żuk. On a torsion-free weakly
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APPENDIX A

(2, 3) AUTOMATA

Here we provide the information about each (potentially) infinite group from the

class (2, 3). We identify the group, specify whether it is finite, abelian, contracting,

self-replicating, and torsion-free when it is known, otherwise we omit these data or

list “?”. For some groups we also provide additional data, such as short relations or

short elements of infinite order. Also, for every group we provide the histograms of

spectra of the discrete Laplace operator on Schreier graphs on the sixth level of the

tree T3.
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Automaton number 66

a = (b, a, a)(12)

b = (a, a, a)

Group: Z
2

Abelian: yes

Finite: no

Contracting: ?

Self-replicating: no

Torsion-free: yes

a b2, 3

1, 2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

Automaton number 73

a = (a, a, a)(12)

b = (b, a, a)

Group: D∞

Abelian: no

Finite: no

Contracting: yes

Self-replicating: no

a b1, 2, 3 1
2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500
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Automaton number 74

a = (b, a, a)(12)

b = (b, a, a)

Group: Lamplighter

Abelian: no

Finite: no

Contracting: no

Self-replicating: no

a b2, 3 1

2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

800

900

Automaton number 258

a = (b, a, a)(123)

b = (a, a, a)

Group: Z

Abelian: yes

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: yes

Notes: a3b = 1

a b2, 3

1, 2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50
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Automaton number 265

a = (a, a, a)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Notes: |ab| =∞

a b1, 2, 3 1
2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700

Automaton number 266

a = (b, a, a)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

a b2, 3 1

2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18
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Automaton number 267

a = (a, b, a)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

a b1, 3 1

2, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Automaton number 268

a = (b, b, a)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: no relations of length

≤ 7, not free, |ab−1| =∞

a b3 1

2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18
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Automaton number 270

a = (b, a, b)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |ab−1| =∞

a b2 1

2, 3

1, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

Automaton number 272

a = (b, b, b)(123)

b = (b, a, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

Notes: not 〈a〉 ∗ 〈b〉

a b 1

2, 3

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700
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Automaton number 281

a = (a, a, a)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

Notes: not 〈a〉 ∗ 〈b〉

a b1, 2, 3 1, 2
3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

Automaton number 282

a = (b, a, a)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3 1, 2

3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
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Automaton number 283

a = (a, b, a)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b1, 3 1, 2

3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

Automaton number 284

a = (b, b, a)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b3 1, 2

3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35
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Automaton number 287

a = (a, b, b)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b1 1, 2

3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

Automaton number 288

a = (b, b, b)(123)

b = (b, b, a)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |ab| = ∞,

|a−1b| =∞

a b 1, 2

3

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600



82

Automaton number 514

a = (b, a, a)(13)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3

1, 2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

Automaton number 516

a = (b, b, a)(13)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b3

1, 2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14
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Automaton number 521

a = (a, a, a)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 1
2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Automaton number 522

a = (b, a, a)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b2, 3 1

2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80
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Automaton number 523

a = (a, b, a)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b1, 3 1

2, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

Automaton number 524

a = (b, b, a)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b3 1

2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60
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Automaton number 525

a = (a, a, b)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b1, 2 1

2, 3

3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

Automaton number 526

a = (b, a, b)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2 1

2, 3

1, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15
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Automaton number 527

a = (a, b, b)(13)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: free semigroup,

|a−1b| =∞

a b1 1

2, 3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

Automaton number 538

a = (b, a, a)(13)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3 1, 2

3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16



87

Automaton number 546

a = (b, a, a)(13)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b2, 3 3

1, 2

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20

Automaton number 553

a = (a, a, a)(13)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b1, 2, 3 1, 3
2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20
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Automaton number 554

a = (b, a, a)(13)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3 1, 3

2

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

Automaton number 557

a = (a, a, b)(13)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2 1, 3

2

3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70
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Automaton number 642

a = (b, a, a)(123)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b2, 3

1, 2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Automaton number 643

a = (a, b, a)(123)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b1, 3

1, 2, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
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Automaton number 644

a = (b, b, a)(123)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b3

1, 2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

Automaton number 647

a = (a, b, b)(123)

b = (a, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: no

Torsion-free: ?

Notes: |a−4b4| =∞

a b1

1, 2, 3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20



91

Automaton number 649

a = (a, a, a)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b1, 2, 3 1
2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80

90

Automaton number 650

a = (b, a, a)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b2, 3 1

2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25



92

Automaton number 651

a = (a, b, a)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b1| =∞

a b1, 3 1

2, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

Automaton number 652

a = (b, b, a)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b1| =∞

a b3 1

2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18
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Automaton number 655

a = (a, b, b)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: ?

Torsion-free: ?

Notes: free semigroup

a b1 1

2, 3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

Automaton number 656

a = (b, b, b)(123)

b = (b, a, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: ?

Torsion-free: ?

Notes: |a−3b3| =∞

a b 1

2, 3

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20
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Automaton number 657

a = (a, a, a)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 2
1, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

Automaton number 658

a = (b, a, a)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b2, 3 2

1, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20
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Automaton number 659

a = (a, b, a)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b1, 3 2

1, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Automaton number 660

a = (b, b, a)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b3 2

1, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50
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Automaton number 663

a = (a, b, b)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1 2

1, 3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

Automaton number 664

a = (b, b, b)(123)

b = (a, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b 2

1, 3

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18
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Automaton number 665

a = (a, a, a)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 1, 2
3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160

180

Automaton number 666

a = (b, a, a)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3 1, 2

3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20



98

Automaton number 667

a = (a, b, a)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b1, 3 1, 2

3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Automaton number 668

a = (b, b, a)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: no

Torsion: ?

Torsion-free: ?

a b3 1, 2

3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25
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Automaton number 671

a = (a, b, b)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1 1, 2

3

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

Automaton number 672

a = (b, b, b)(123)

b = (b, b, a)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b 1, 2

3

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

140

160
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Automaton number 673

a = (a, a, a)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 3
1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

Automaton number 674

a = (b, a, a)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b2, 3 3

1, 2

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16
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Automaton number 675

a = (a, b, a)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: ?

Contracting: ?

Self-replicating: no

Torsion: ?

Torsion-free: ?

a b1, 3 3

1, 2

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20

Automaton number 676

a = (b, b, a)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: free semigroup

a b3 3

1, 2

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50
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Automaton number 679

a = (a, b, b)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b1 3

1, 2

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

Automaton number 680

a = (b, b, b)(123)

b = (a, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b 3

1, 2

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80
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Automaton number 681

a = (a, a, a)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 1, 3
2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Automaton number 682

a = (b, a, a)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b2, 3 1, 3

2

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
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Automaton number 683

a = (a, b, a)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: yes

Torsion-free: ?

Notes: free semigroup,

|a−2b2| =∞

a b1, 3 1, 3

2

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Automaton number 684

a = (b, b, a)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b3 1, 3

2

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40
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Automaton number 687

a = (a, b, b)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1 1, 3

2

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

Automaton number 688

a = (b, b, b)(123)

b = (b, a, b)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b 1, 3

2

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100
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Automaton number 689

a = (a, a, a)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: no

Torsion-free: ?

Notes: |a−3b3| =∞

a b1, 2, 3 2, 3
1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

Automaton number 690

a = (b, a, a)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: no

Self-replicating: ?

Torsion-free: ?

Notes: free semigroup

a b2, 3 2, 3

1

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500
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Automaton number 691

a = (a, b, a)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 3 2, 3

1

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

Automaton number 692

a = (b, b, a)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b3 2, 3

1

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16
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Automaton number 695

a = (a, b, b)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b1 2, 3

1

2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

40

Automaton number 696

a = (b, b, b)(123)

b = (a, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−2b2| =∞

a b 2, 3

1

1, 2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60
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Automaton number 699

a = (a, b, a)(123)

b = (b, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 3 1, 2, 32

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

Automaton number 700

a = (b, b, a)(123)

b = (b, b, b)(12)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b3 1, 2, 3
1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

80
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Automaton number 1858

a = (b, a, a)(132)

b = (a, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: not free, |a−1b| =∞

a b2, 3

1, 2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

Automaton number 1860

a = (b, b, a)(132)

b = (a, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

Notes: not free

a b3

1, 2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

12

14

16

18

20
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Automaton number 1865

a = (a, a, a)(132)

b = (b, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: yes

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 2, 3 1
2, 3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

Automaton number 1866

a = (b, a, a)(132)

b = (b, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b2, 3 1

2, 3

1

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60
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Automaton number 1867

a = (a, b, a)(132)

b = (b, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: ?

Torsion-free: ?

Notes: |a−6b6| =∞

a b1, 3 1

2, 3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

Automaton number 1868

a = (b, b, a)(132)

b = (b, a, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b3 1

2, 3

1, 2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70
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Automaton number 1881

a = (a, a, a)(132)

b = (b, b, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion: ?

Torsion-free: ?

a b1, 2, 3 1, 2
3

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

Automaton number 1883

a = (a, b, a)(132)

b = (b, b, a)(123)

Group:

Abelian: no

Finite: no

Contracting: ?

Self-replicating: yes

Torsion-free: ?

Notes: |a−1b| =∞

a b1, 3 1, 2

3

2

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70
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