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ABSTRACT 

Analysis of Binding Affinity in Drug Design Based on an Ab-initio Approach.  

(May 2009) 

Pablo Felix Salazar Zarzosa, B.S., University of Piura, Peru 

Chair of Advisory Committee: Dr. Jorge Seminario 

 

 Computational methods are a convenient resource to solve drawbacks of drug 

research such as high cost, time-consumption, and high risk of failure. In order to get an 

optimum search of new drugs we need to design a rational approach to analyze the 

molecular forces that govern the interactions between the drugs and their target 

molecules. The objective of this project is to get an understanding of the interactions 

between drugs and proteins at the molecular level. The interaction energy, when protein 

and drugs react, has two components: non-covalent and covalent. The former accounts 

for the ionic interactions, the later accounts for electron transfer between the reactants. 

We study each energy component using the most popular analysis tools in computational 

chemistry such as docking scoring, molecular dynamics fluctuations, electron density 

change, molecular electrostatic potential (MEP), density of states projections, and the 

transmission function. 

We propose the probability of transfer of electrons (transmission function) 

between reactants in protein-drug complexes as an alternative tool for molecular 

recognition and as a direct correlator to the binding affinity.  The quadratic correlation 

that exists between the electron transfer rate and the electronic coupling strength of the 
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reactants allow a clear distinguishability between ligands. Thus, in order to analyze the 

binding affinity between the reactants, a calculation of the electronic coupling between 

them is more suitable than an overall energetic analysis such as free reaction energy. 
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1. INTRODUCTION 

 

1.1 REALITY OF DRUG RESEARCH 

 

 

The discovery of new drugs is one of the most challenging and exciting tasks in 

science. For example, the average cost out-of-pocket per new drug (linking both the cost 

of unsuccessful drugs and the ones that obtained marketing approval) in 2000 was $401 

million. Capitalizing over the time expended in the project of about 12 years (average 

time to get a drug to the market), at a rate of 11%, the amount rises to $800 millions 1. 

Comparing the costs over the last 20 years, as shown in figure 1, there is an increase in 

the total cost at an annual rate of 7.4% above the general price inflation. There are 

several hypotheses for the increase in the clinical test cost: the focus on treatments for 

chronic and degenerative diseases that are generally more expensive; and the increase of 

investigated drugs turning in larger and longer recruits of patients at higher costs. Notice 

that, the slow increasing rate cost in the preclinical tests is mainly because of new 

computerized discovery technologies such as high throughput screening (HTS) and 

combinatorial chemistry.  

 
Figure 1: Estimated cost of drugs ( Ref 1) showing the slower increase rate of 
preclinical than clinical tests because of the use of computerized methods. 

 

This thesis follows the style of Journal of Physical Chemistry A.  
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1.2  COMPUTER AIDED DRUG DESIGN 

 

 

Efforts, mainly from pharmaceutical companies, for reducing the costs and 

increasing efficiency of new drugs have made of computational and molecular modeling 

methods a key step in the drug discovery pipeline as shown in figure 2. 

 

Figure 2: Drug discovery pipeline vs Computer aided drug design2. Applications of 
computational methods in the drug design process. 

 

Computational chemistry and molecular modeling play an important role in the 

drug discovery process allowing a rational approach for the development of new 

potential drugs 3.  The first step in the drug discovery process is the target identification 

of an enzyme, protein or DNA sequence related to the dysfunction. The conventional 

approach for target identification consists of the comparison of functional genomics 

from normal and abnormal human’s tissues. Using computational bioinformatics tools, 

we identify the protein that is transcript in the abnormal gene code. Another approach is 

the reverse docking: an existing drug with known activity is docked it against a protein 

database; the protein hits go through a homologous analysis to find similar proteins. 

Finally, the relation of the heat proteins with the disease is validated using experimental 

procedures. 
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The next stage is the lead discovery and optimization.  Here the first step is the 

use of combinatorial chemistry and high-throughput screening (HTS) to screen many 

thousands of biologically active compounds in a short time. The improvement of library 

strategies, design principles, scaffold design, solid-phase methods and a new approach 

called dynamic combinatorial chemistry make of combinatorial chemistry a powerful 

tool for researchers. But, combinatorial chemistry also gives rise to a large number of 

compounds that are not suitable for synthesis as drug molecules. Therefore, the analysis 

of large dataset of drugs needs an efficient method for the discrimination of the ligands, 

resulting in lower number of potential leads. The method also has to be able to 

recognize, optimize and find new drug compounds by predicting, rationalizing and 

estimating their properties.  

In the next stage of the drug discovery process, we distinguish two cases when 

the three-dimensional structure of the target protein is not available and when is known.  

In the first class known as ligand-based drug design, one tries to relate electronic and 

structural properties with the known activities of the training test of drugs. As an 

example we have the comparative molecular field analysis (CoMFA) 4, in which the 

activity of known set of molecules is correlated with a steric and electrostatic field 

generated along the molecule.  In order to generate the field, we have to align the 

molecule in a 3-dimensional space following a suitable criteria such as maximizing the 

steric overlap following pharmacophore theories 5,6, or basing on automated field fit 

methods 7. Even though the results are promising, the strong dependence of CoMFA on 

the quality of the alignment rule makes the results unstable. In the line of ligand-based 

drug design, several quantum mechanics studies have been also reported 8,9.  

When the three-dimensional structure of the target protein is known, the analysis 

of the receptor-ligand interactions is directly done through parametric relations of 

electrostatic, van der Waals, hydrogen bond, aromatic and hydrophobic interactions.  
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Computational techniques to predict drug-likeness properties such as absorption, 

distribution, metabolism, excretion and toxicity (ADMET) have been developed as well. 

This technique, made of regression equations and/or neural networks trained on 

experimental data, reduces the costs of late stage preclinical and clinical trials. 

 

 

1.3  PROBLEM STATEMENT 

 

 

Computer aid drug design (CADD) is a combined procedure from theoretical and 

experimental aspects of established sciences as biochemistry, biophysics, chemistry, and 

computer science. In the first stages of CADD of the drug discovery process, 

combinatorial chemistry has made available large libraries of potential ligands for a high 

throughput screening (HTS), but yielding a large number of active compounds 

unsuitable for chemical synthesis10. To reduce the number of active compounds and 

increase the effectiveness of the drugs we need a rational protocol procedure based on 

first-principles that maximizes the chances of finding, discrimination and optimization of 

new drugs. In structure based drug design, inexpensive and fast docking algorithms 

based on scoring functions derived from force fields are used for a static search of the 

conformational orientation of the ligands inside of the active site of the receptor 

molecule. The search goes until an energetic minimum system is found. Having the total 

energy as a parameter, the set of ligands are ranked.  

The many degrees of freedom of protein-drugs systems make the search of a 

global minimum in the potential energy surface of the receptor-ligand complex a big 

task. And it turns out to be more complicated since the nuclei fluctuations of the 

reactants, due to thermal and vibrational energies, help to overcome several barriers of 

their complex potential energy surface.  Furthermore, thermal and vibrational energies 

strongly influence thermodynamic properties such as free energy, which is 

conventionally related to the binding affinity of the ligand-receptor. To overcome the 
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nuclei fluctuations problem, molecular dynamics and Monte Carlo methodologies 11,12, 

computationally more expensive than docking scoring, and free energy perturbation and 

thermodynamic integration techniques 13 are used in the determination of the free energy 

of the reactants. But the accuracy of the free energy calculations (based on force fields 

parameters) is insufficient to estimate slight energy differences of the ranked drugs. 

Therefore, the correlation of the free energy with the binding affinity lacks of reliability. 

Instead of calculating the free energy, one could also analyze the binding affinity based 

on qualitative properties such as fluctuation distances between the protein and the ligand, 

or root mean square deviations of the ligands over the trajectory. 

Any improvement on the Docking scoring or the MD approaches comes from ab-

initio calculations and experimental information. Thus, we need a model for the analysis 

of binding affinity based on ab-initio methods that help us to explain and quantify the 

structural and interaction features in a distinguishable and accurate manner. First 

principles methods solve not only all the nuclear motions: thermal, vibrational and 

orientational fluctuations; they also consider the electronic structure in an explicit 

manner. At least in the reactive site, we will have a chemical accuracy of the multiple 

interactions concerned, such as electrostatic forces, hydrogen bonding, Van der Waals 

interactions and bonded interactions.  

Among all quantum chemistry techniques, density functional theory (DFT) 

provides the best compromise between accuracy and cost. The applications of DFT in 

the study of protein-ligand interactions are wide 14-17. Common analysis at this level of 

theory is based on the study of molecular orbitals, binding energies, molecular 

electrostatic potentials, density of states projections and structural conformations of 

biomolecular complexes. But the quadratic relationship between the electronic coupling 

strength and the rate of electron transfer motivate us to emphasize the study of the 

electron transfer as a correlator to the binding affinity.  

The breakpoint of the study of electron transfer rates starts in the earlier 80’s 

with the Nobel Prize winner Rudolph A. Marcus and his document “Electron transfer in 
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chemistry and biology”. Since then, further study of electron transfer in biological 

context has been done 18 along with computational approaches 19. 

The nature of our variable is based on the electron transfer in biological 

processes. Even though the functions of electron transfer in protein-ligand complexes are 

not well understood yet, almost all the biological processes go along a series of transfer 

of electrons until a determined function is accomplished.  In some way, nature must 

discriminate between ligands according to the transfer rate of electrons in order to make 

it specific and efficient.  

The physical basis of the interaction energy relies on fundamental variational 

principles that govern the chemical reactivity. The interaction energy is decomposed in 

two complementary components: the electron transfer and the electrostatic contribution. 

The first is associated with the covalent bonding and is described by the variational 

principle with respect to the electron density: for the two compounds (receptor and 

ligand) interact, a rearrangement of the electron density, mainly in the interface, must 

occur until the energy of the complex is minimized. The electrostatic contribution is 

associated with uncovalent bonding and is explained by the variational principle with 

respect to the external potential: for two reactants come together, a rearrangement of the 

nuclei and charges must occur until the energy of the complex is minimized.  

We propose the following protocol: solving the nuclear motion problem without 

considering the electronic part using Docking and Molecular Dynamics methods. Then 

we solve the electronic wavefunction using ab-initio approaches and calculate the 

protein-drug electronic coupling.  
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1.4  APPROACH TO SOLVE THE PROBLEM 

 

 

Relying on variational principles implies a calculation based on first principles 

theories, but the simulation would result impractical for large protein-ligand systems in 

terms of computational costs.  

In order to facilitate the search of an energy minimum configuration, we use the 

Born-Oppenheimer approximation: as electrons move much faster than the nuclei, the 

electrons are considered moving in a potential created by fixed nuclei. Thus, we separate 

the configuration problem in two, one for the nuclei and the other for the electrons. We 

use force field based methods to approach the solution of the nuclei without considering 

the electrons explicitly. Then, we fix the new configuration of the atoms, and try to solve 

the electronic part by using a self-consistent calculation. 

The protocol proposed to solve the nuclei motion starts with a docking 

calculation. Knowing the 3D configuration of the target molecule and of the different 

drugs, we try to find, by scoring functions, a minimum orientational mode of the ligand 

in the active site of the receptor. We add explicitly solvent molecules (water) to the best 

ranked configuration from the DOCK results. After that, we start the molecular 

dynamics simulation. We make a minimization by steps: first we minimize the solvent 

molecules with the ligand and the receptor fixed; then we unfix all the hydrogen from 

the receptor and the ligand, keeping also free the solvent molecules; and finally we let 

free all atoms of the system. After the minimization, we heat the system quasi-

adiabatically until 298K and then, we equilibrate the system at constant pressure of 1 

atm. and 298K. By this procedure we try to not denaturalize the conformation previously 

obtained from the DOCK results and reach a conformation under living conditions. 

For the electronic part, we approximate the analysis to be local.  Therefore, for an 

ab-initio studio we restrict the calculation to a certain region of the active site, and we 

make a self-consistent field calculation using the density functional theory (DFT) 

approach. Instead of solving the wavefunction, as in standard ab-initio methods, DFT 



8 
 

 

yields the electron density energy of a polyatomic system from its atomic structure, 

based in the existence of a one to one relation between the electron density and its 

external potential. The Hamiltonian and overlap matrices are solved and used to 

calculate the electron transfer rate between the reactants. 

Finally, we create large libraries with the electron transfer behaviors between 

several combinations of common functional fragments of drugs and all the known amino 

acids, and use them as new tools for molecular recognition. The libraries with electron 

transfer behaviors can be used at every step of the drug design.  When the structure of 

the target molecule is not known (ligand-based drug design), we make use of the known 

activity of the drugs and correlate it with any structural or electronic property of them, 

this procedure is known as Quantitative Structure Activity Relationship (QSAR).  The 

created libraries will serve as a resource for new relationships. In Structure Based Drug 

Design (SBDD), when the protein is known in a 3D configuration, we could include the 

libraries to create new scoring functions for the search of conformational orientations of 

the drug inside of the active site.  And obviously in De Novo design (the optimization 

and creation of new drugs), the electron transfer characteristics would be a new variable 

to be included in the evolutionary algorithms general used in the growing fragment by 

fragment of the drug. 
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2. METHODS 

 

2.1  BINDING AFFINITY AND THE HSAB PRINCIPLE 

 

 

Binding affinity is a constant that estimates the tendency of two systems 

(generally one in much larger concentrations than the other) to dissociate, usually 

defined as the inverse of the dissociation constant:  

[C]
[P][L]

=dK  ... eq. 1 

 
where [P], [L], [C] mean concentrations of the protein, ligand and the complex 

respectively. Clearly, as the concentration of the complex (protein and ligand bonded) 

increases, the dissociation constant goes down and the binding affinity high.  

We should notice that a major property in drug research is the activity of the 

drug, defined as the concentration needed to activate or inactivate a specific target 

molecule. How do we estimate the binding affinity from computational chemistry?  

Many statements to predict the tendency of the reactions has been proposed over 

the last 30 years. After definition of electronegativity, by Parr 20, as the desire of a 

molecule to accept electrons, or strictly speaking, the energy needed/obtained to 

remove/add an amount of electron density at space r; the principle of electronegative 

equalization came up, in which the energy is minimized only if the electronegativity (the 

negative of the chemical potential) is equalized. Thus, the same tendency in many 

similar ways such as in acid-base reactions, donor-acceptors, oxidation-reduction were 

proposed 21,22. The electronegativity, χ, is then the variation of the energy with respect to 

the electron density, as in eq. 2, and it is also the negative of the chemical potential, µ. 

µ−=








δρ
ρδ

−≡χ
)(
)(

)(
r

E
r

 
... eq. 2 

One approximation of the electronic chemical potential, µ, is to relate it to the 

electron affinity, A, and ionization potential, I 
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2
)( AI +

−≈µ
 

... eq. 3 

   

As the first derivative of the energy with respect to the electron density is 

important, the second derivative should be as well, as proposed by Parr 20. Defined as 

chemical hardness, the second derivative of the energy with respect to the number of 

electrons can  be approximated as well in terms of electron affinity, A, and ionization 

potential, I: 

≈−≈








δ
δ

≡η AI
N

E
2

2

 ... eq. 4 

The Hard Soft Acid Base principle states that hard acids tend to associate with 

hard bases and soft bases tend to associate with soft acids. Its basis relies in the two 

components of the interaction energy and their relationships to the chemical potential 

and hardness.   

The first component is due to the electron transfer when the two reactants come 

together; they go through changes in the electron density between the reactants lowering 

the energy until the chemical potential is equalized,    

)(2
)( 2

BA

AB
etE

η+η
µ−µ

−=∆  ... eq. 5 

here Bµ , Aµ , Aη  and Bη  denote the chemical potential and the hardness of the 

acid and the base involved in the reaction; and oµ  is the chemical potential after the 

reaction.  At similar strengths of chemical potential, the electron transfer is proportional 

to the softness (inverse of the hardness), explaining the tendency of soft molecules to 

react each other.  

The second component corresponds to the non-bonded interactions. Once the 

chemical potential is equalized the system goes through changes in the external potential 

at a constant chemical potential as expressed by:   
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)( BA

BA
qq rr

qq
E

+
=∆  ... eq. 6 

expressing the energy that stabilizes the system of two opposite charges when they 

approach to each other. For hard reagents, which generally are highly charged, electron 

transfer becomes unimportant the electrostatic interaction dominates in the system. 

Another change in the reaction is the polarization of the pseudo acids and bases, 

which lowers the energy by:  

4

2

4

2

)(2
)(

)(2
)(

BA

BA

BA

AB
pol rr

q
rr

q
E

+
α

−
+

α
−=∆   ... eq. 7 

αA and αB mean the polarizability of the reactants. But induced charges are only present 

when highly charged molecules react, that is, when electrostatic interactions are present 

as well. Quantitativily the former one is dominant, so generally the polarizability term in 

neglected. 

It is also possible quantify, in the same terminology, the non-bonded interactions 

of neutral or small charged components. Those kinds of interactions are called the 

London dispersion interaction: 

 6)(2
3

BA

BA

BA

BA
London rr

E
+
αα

ε+ε
εε

−=∆  ... eq. 8 

iε  represents the average excitation energy of the molecule. From the previous 

approximation ( )( HOMO-LUMO≈η ), the chemical hardness is approximately equal 

to the first excitation energy: 

6)(2
3

BA

BA

BA

BA
London rr

E
+
αα

η+η
ηη

−=∆  ... eq. 9 

It can be proved (not shown here) that the hardness is inversely proportional to 

the radius of the active site of interaction and to the polarizability coefficient, but in 

different degrees. From that follows that:  

7

4

6

2

)(
)(

2
3

BA

BA

r

London
c

c
E

η+η
ηη

−=∆ α  ... eq. 10 
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2.2 ELECTRON TRANSFER THEORY 

 

 

Classical theory of long distance electron transfer reactions between reactants, in 

which the interaction of the relevant electronic orbitals is weak, is described by the 

Fermi’s golden rule (equation 11). According to the Fermi’s rule the first order rate 

constant is proportional to the square of the coupling, HAB, of the wavefunctions of the 

reactants:  

FCHk AB *
2 2

h

π
=  ... eq. 11 

The second term FC is the “Franck-Condon” factor, which is a sum of products 

of overlap integrals of the vibrational and solvational wavefunctions of the reactants 

with those of the products suitably weighted by density of nuclear states.  is the 

reduced Planck constant equal to 6.58211899×10−16 eV·s.  

The separation of the two components (electrons and nuclei) is allowed by the 

Franck-Condon principle: since the electrons transferred are light particles, during the 

actual electron transfer the nuclei do not have time to change their positions, and then 

the transfer occurs only at near nuclear configurations for which the total potential 

energy of the reactants is equal to the products.  

A simplified example of a one-dimensional potential energy profile is given in 

figure 3. The electron transfer only occurs at the intersection of those two curves. In 

order for the reactants to reach it, thermal, vibrational and orientational coordinates are 

needed. The probability of going from the reactants (pink curve) to the products (blue 

curve) surface depends on a number of factors such as the extent of coupling of the 

electronic orbitals of the two reactants and their electronic motion.   



 

Figure 3: Potential energy surface of reactants and products. Starting from the 
minimum of the reactants surface, thermal fluct
intersection where electron transfer 

 
Figure 3: Potential energy surface of reactants and products. Starting from the 
minimum of the reactants surface, thermal fluctuations take the system to the 
intersection where electron transfer takes place and the complex is formed.
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Figure 3: Potential energy surface of reactants and products. Starting from the 
uations take the system to the 
and the complex is formed. 
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2.3  DOCKING 

 

 

Molecular docking is the prediction and ranking of the conformational complex 

structure as a result of the chemical reaction of a given ligand and a receptor of known 

structure.  

There are two main issues in protein-ligand docking. The first is the functions 

that are going to score or rank every conformation. The second is the search algorithm 

between all positions and orientations, thus yielding huge number degrees of freedom. If 

the algorithm searches the best conformation going through all the degrees of freedom 

(with some conformation exceptions like the structure of a benzene ring for example), 

we call it a systematic algorithm. Sometimes it also uses a likelihood function, generated 

either by Monte Carlo methods or genetic algorithms in order to converge faster to a 

minimal conformation. 

Different approaches in the score functions have been developed such as force 

fields that parameterize the movement of the atomic centers by potential functions 23,24; 

empirical scoring functions that calibrate the receptor-ligand interactions based on 

complexes of known affinity 25-27; or statistical potentials based on the distribution of 

distances between atoms 28-30. 

Furthermore two characteristics of proteins are also important. One is the 

flexibility: x-ray structure shows that the ligands are buried or covered by the protein 

between 70 to 100 percent of their surface area. And the other is the solvation: it has 

been proved that the entropic effects of the water medium are crucial in the 

conformation and affinity of the complexes. The flexibility is solved by increasing the 

degrees of freedom of the atoms in the active site; on the other hand, the solvation is 

compensated implicitly in the score functions.   
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2.4  MOLECULAR DYNAMICS 

 

 

Molecular dynamics can serve as a search algorithm to explore the 

conformational space, and then use random snapshots of the complexes of the MD 

simulation as initial conformations for the docking scoring. Also, the rigid and flexible 

part of the receptor can be explored by MD and then, restrict the docking search 

algorithm to the most flexible section in order to reduce the degrees of freedom. 

After the docking process, MD can be used to relax the entire system; include the 

solvent molecules in an explicit manner; and compute, although it is highly expensive, 

the binding free energy. The computation of the free energy can be done either by free 

energy perturbation methods which are highly accurate but its constrained to similar 

ligands for a consensus comparison; or by linear integration energy methods where more 

empirical data are used, thus loosing accuracy. 

Since at this stage the objective is still a discrimination of the ligands, a 

qualitative analysis is still relevant. One type of analysis is looking at the atomic position 

fluctuations of the ligand inside of the active site, or the bond distance changes along the 

simulation. The basic correlation here is: the less flexible the more stable. The number 

and distribution of the H-bonding and ionic bonding between the reactants is also an 

indicator of the stability. The accessible surface area of the ligand in the active site is 

correlated with the flexibility as well.   
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2.5  AB-INITIO: ELECTRON DENSITY CHANGE 

 

 

One method to solve the Schrödinger equation: 

Ψ=Ψ++=Ψ EVVTH eeext )(
^^^^

 ... eq. 12 

where 
^

H  is the Hamiltonian operator for a system of nuclei and electrons. The 

Hamiltonian operator is composed of three contributions; 
^

T  is the operator for the 

electron kinetic energy contribution, ��ext is the operator for the potential energy of the 

electrons in the external field generated by the nuclei and, ��ee is the operator for the 

energy of all the electron-electron interactions. In Density Functional Theory (DFT), the 

wavefunction, Ψ , is dependent of the three spatial coordinates and the spin of every 

electron, thus the wavefunction is a function of 4N variables (N is the number of 

electrons).  The Schrödinger equation is solved using DFT, which is based on the 

Hohenberg-Kohn-Sham theorems 31,32; using the electron density ρ as a variable, which 

dependent on only three variables (three coordinates in 3D space).  

The total energy is 

xcext Vrdrd
rr

rre
drrrVTE +

−

ρρ
+ρ+ρ=ρ ∫∫

→→

→→

→→
→→

'
|'|

)()(
2

)()()()(
'2

 ... eq. 13 

where the electron-electron interactions have been decomposed in two components (the 

last two terms of equation 13). The first of those (the integral term) accounts for the by 

the columbic repulsion energy of the electrons. This integrand (also called Hartree term) 

depends only on the local electron density through the entire space and it represents the 

potential energy induced by the repulsion of the electrons at distance | '
→→

− rr | over the 

entire space. The second term is the so called exchange and correlation energy that 

accounts for the rest of the electron-electron interactions; the exchange is a non-local 

contribution that arises from the antisymmetric nature of the wavefunction. The 
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correlation term, instead, accounts for the effect of Coulomb correlation upon many-

electron wavefunction. It is important to notice that the exchange and correlation term 

includes also the contribution of the kinetic energy arising from the electron-electron 

interactions; in other words, the kinetic energy difference from the total system and a 

non-interacting system.  

The electron density for a closed shell system is written as a sum of squared one-

electron wave-functions,  

∑
→

ψ=ρ
N

i
i rr 2|)(|2)(  ... eq. 14 

The one-electron wave-function solutions are expanded as a linear combination 

of atomic-like orbitals kφ :  

∑
→→

φ=ψ
k

kiki rcr )()(  ... eq. 15 

where the ikc  are eigenvectors coefficients corresponding to the linear expansion of the 

one-electron wave function, iψ , in atomic orbitals.  

The first Hohenberg-Kohn theorem states that external potential extV  is uniquely 

determined by the electron density. Then, since the Hartree term and the exchange and 

correlation terms depend on the electron density, ρ, and in turn the electron density 

corresponds to a unique N-electron Hamiltonian; the solution is obtained iteratively. The 

solution of the Kohn-Sham equation starts with a guess of the electron density, which is 

built using semiempirical approaches, and then the Kohn-Shan matrix and a first 

eigenfunction solution are calculated. The new eigenfunction yields a new electron 

density and so on. The process is repeated until the total energy is minimized within 

certain threshold.  

The electron density allows us to estimate any property of the nuclei-electrons 

system. Qualitatively, we can estimate the strength of the bond using the electron 

density. In any electron transfer reaction, even in outer-sphere or weak coupled, a 

change of the electron density from the most negative electrostatic molecule to the most 
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positive occurs forming a covalent bond, even though the bond is still weak. Then the 

total amount of charge density transferred is proportional to the strength of the bond.  

 

 

2.6  AB-INITIO: MOLECULAR ELECTROSTATIC POTENTIAL (MEP) 

 

 

The electrostatic potential )r(V
→

 due to the nuclei and electrons of a molecule at 

a point r in the space is defined by  

∑ ∫ →→

→→

→

→

−

ρ
−

−
=

A
A

A

|r'r|

'rd)'r(

|rR|

Z
)r(V  ... eq. 16 

where ZA is the charge on nucleus A, located at RA, and )'(
→

ρ r is the electron density at 

any point '
→

r . The first component is a positive contribution from the nuclei, ZA and the 

second is a negative contribution from all the electrons (integral covers the whole space), 

thus the net potential is positive, zero or negative, depending on which contribution is 

the more dominant33. Negative regions are more likely to be attacked by an electrophile 

(positively charged) species.   The preference depends, on the value of the negative 

potential. Some negative regions are due to the π-orbitals of unsaturated molecules such 

as those from benzene rings, heteroatoms fragment of an amino acid with carbonyl lone 

pairs.  
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2.7  AB-INITIO: DENSITY OF STATES PROJECTIONS 

 

 

The density of states (DOS) spectra represents the occupancy distribution of 

electrons along the energy states. According to the tight binding theory, a narrow band 

of the DOS is an indicator of the small coupling between the valance states (the states of 

the reagents responsible for the reaction), meaning a more reactive system34. The 

explanation is that electrons can exist only at quantized energy levels, and the 

accumulation of electrons at a specific energy is only possible at a non-interactive 

system. For example, the DOS of the surface atoms of a cluster shows a narrow and 

sharp peak instead of the broad band DOS of the bulk atoms of the same cluster. A high 

coordination number of the atoms in the bulk cluster broads the distribution of the 

energy levels. It follows that a change from a narrow to a broad peak after the reaction 

indicates a strong chemisorption between the reactants (protein and drug).   

Also, a downshift in energy of the valance states after the interaction means a 

strong chemisorption, since the electrons are trying to go to more stable states.  

 

 

2.8  AB-INITIO: TRANSMISSION FUNCTION 

 

 

Starting from the Marcus theory, a model of the current-voltage behavior adapted 

for a donor-bridge-acceptor system is described by the Landauer formula 35 (the full 

mathematical derivation can be found elsewhere 36). The current of electrons with energy 

between E and E + dE is determined by, 

∫
∞

∞−

−= dEVEfVEfVET
h
e

VI )],(),()[,(
2

)( 2211  ... eq. 17 

where T(E,V) is the transmission coefficient (probability per transport channel), fi(E) is 

the Fermi-Dirac distribution and Vi is the bias voltage.  



20 
 

 

In molecular junctions, the transmission function T is calculated using the 

Green’s function approach: 

)()( +ΓΓ= MM GGTraceET  ... eq. 18 

Γ  represents the coupling protein-drug: 

][ ++ ττ−ττ=Γ ggi  ... eq. 19 

where ττ+g  is a Hermitian conjugate self-energy matrix to describe the coupling 

between the reactants. MG describes the retarded Green function of the drug molecule 

affected by the protein.  

From quantum chemical calculations we can approximate these functions into 

matrix forms. We use a partitioned Hamiltonian in atomic basis to describe the retarded 

Green function: 
1

1

1

0

0

)(G

−

−
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−










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


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

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




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



2221

21

1211

GGG
GGG

GGG

M

MMM

M

 ... eq. 20 

g represents the protein, as it was a substrate, and again τ describe the protein-drug 

coupling. Hc is the Hamiltonian of the isolated drug and E is the electron energy. 

 

Solving the inverse we find that GM is equal to: 
1]2[ −+ ττ−−= gHEG cM  ... eq. 21 

We assign the components of the inverse of GM to the submatrices of the 

partitioned KS Hamiltonian, which in turn depends of a linear combination of atomic 

like orbitals: 

















=

PPDP

DPDDDP

PPDP

KS

HHH
HHH

HHH

H  ... eq. 22 

where the subscripts P and D refer to the protein and the drug, respectively. 

Then HDD is assigned to Hc, HPD to τ and HDP to τ*. Furthermore, it has to be 

noticed that the real KS Hamiltonian matrix solved is of the form: 
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Ψ=Ψ eSH KS  ... eq. 23 

instead of: 

Ψ=Ψ EH  ... eq. 24 

where S is the overlap matrix and e are the eigenvalues, then the corresponding 

transformation has to be done in order to these matrices to be Hermitians. 

Full detailed of the methodology to calculate the transmission function, but in a 

sense of molecular conduction in nano-junctions, can be found in ref. 37-39 and it has 

been implemented in the GENIP program 40-43. 
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3. TEST CASES 

 

3.1 OXIDATION AND REDUCTION AFFINITIES ON CATALYTIC SURFACES 

 

 

As preliminary results, we test the use of the electron transfer as a correlator for 

binding affinity. We build junctions based on known electro-catalytic interactions such 

as hydrogen oxidation and oxygen reduction in platinum surfaces. The results of this 

work were also published in our previous paper44. The systems, as shown in figure 4, are 

made of a bulk of glycine amino acids (green surface) that will resemble the biological 

environment. The bulks end up in platinum or palladium terminals. Between the 

terminals we have the test ligands, oxygen and hydrogen dimmer. Even though these 

systems are not so similar to real cases, both share a common characteristic: the electron 

transfer in the active site. To calculate the electron transfer characteristics, showing it in 

an I-V behavior, the procedure differs slightly from the proposed in section 1.4.  

The GENIP program estimates the current-voltage behavior using the bulk of 

glycine as source of electrons. The terminals are either the platinum or palladium atoms. 

The flux of electrons goes from terminal to terminal through the bridge molecules that 

are either the oxygen or hydrogen dimmer. As stated before, a higher current correlates 

with a stronger reactivity between the compounds. 

      
Figure 4: Picture of the test junction Pseudo protein (green) - Platinum (blue) – O2 
(red) - Platinum-Pseudo protein. Similar tests were constructed by replacing the O2 

with H2 and platinum with palladium  
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A 

 
B 

Figure 5: I-V curves for A: G-Pt-HH-Pt-G with H2 dissociated (blue) and H2 
bonded (pink) showing higher current for H2 bonded, B: G-Pt-OO-Pt-G with O2 

dissociated (green) and O2 bounded (red) showing higher current for O2 
dissociated, C: G-Pd-OO-Pd-G (green) and G-Pt-OO-Pt-G (maroon) showing 

higher current for palladium. 
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C 

Figure 5 Continued 
 

The results in figure 5 are correlated with experimental tendencies.  The current-

voltage curve for the platinum-hydrogen interactions (figure 5A) shows a higher a 

current when the hydrogen dimmer is bonded rather than when it is dissociated. On the 

other hand, the platinum-oxygen curve (figure 5B) shows the opposite trend: a higher 

current when the oxygen is dissociated than when is bonded. The behavior corresponds 

with experimental formation of hydroxides on the platinum surfaces, due to the high 

affinity for oxygen dissociated.  

Differential experimental heats of oxygen absorption on platinum surfaces 

(figure 6) show a down peak at oxygen saturation: thermal desorption spectra has shown 

that the energy of adsorption of oxygen dissociated on platinum surface is about 340 

kJ/mol, and about 40 kJ/mol for oxygen molecular. According to figure 6, the oxygen is 

presented in a dissociative manner on the platinum surface at the beginning of the 

adsorption. Only when the metal surface is saturated of oxygen, the molecular oxygen is 

adsorbed.  
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Figure 6: Differential heats of oxygen adsorption on 0.5 and 1 wt% Pt/TiO2 

measured at 30 degrees Celsius45. This shows that the adsorption of oxygen in the 
platinum surface is in a dissociative manner until the surface is saturated 

 

Another comparison between different catalytic surfaces is done by replacing the 

platinum atoms with palladium (figure 5C). The I-V results show what is known: a 

higher affinity or reactivity for platinum surfaces than for palladium.  

 



 

3.2 PIM-1 KINASE: IMPORTANCE, KNOWN 

We test our protocol 

important mediators of cytokine signaling pathways in hematopoietic cells, and they 

contribute to the progression of certain leukemias and solid tumors. 

well-known drugs active to the PIM

(http://www.bindingdb.org

bisindolylmaleimides (BIM)

identified as very potent inhibitors of PIM

charges in the specificity of the protein

test set of drugs by protonating each 

shown that going from the zwitterion to the protonated state of a histidine

located in the active site can totally change the 

drug on the test we have a similar one protonated in its most positively spot.

 

Figure 7: Structures of known drugs for the PIM
Staurosporine (C28H

 

We also do a characterization of the active site that 

different interactions protein

active site shows a negative charge in the bottom due the presence of Aspartic acid (Asp) 

and Glutamic acid (Glu) making ionic interaction

: IMPORTANCE, KNOWN DRUGS, ACTIVE SITE

 

 

We test our protocol with the PIM-1 kinase. PIM kinases are emerging as 

important mediators of cytokine signaling pathways in hematopoietic cells, and they 

contribute to the progression of certain leukemias and solid tumors. We test three

active to the PIM-1 kinase reported in BindingDB webpage 

http://www.bindingdb.org).  These drugs (figure 7) are a family of 

bisindolylmaleimides (BIM)46 based on the nonspecific kinase inhibitor “Staurosporine

identified as very potent inhibitors of PIM-1 kinase. Furthermore, the effect of the 

charges in the specificity of the protein-ligand complexes motivates us to 

protonating each one of the original set. For example, it has been 

shown that going from the zwitterion to the protonated state of a histidine

located in the active site can totally change the activity of a certain protein.

drug on the test we have a similar one protonated in its most positively spot.

   

: Structures of known drugs for the PIM-I kinase. From left to right: 
H26N4O3), BIM-8 (C24H22N4O2), BIM-11 (C27H

do a characterization of the active site that helps us to recognize the 

protein-drug responsible for the binding affinity (see figure 

active site shows a negative charge in the bottom due the presence of Aspartic acid (Asp) 

and Glutamic acid (Glu) making ionic interactions with the drug.  This force is balanced 

26 
 

DRUGS, ACTIVE SITE 

kinases are emerging as 

important mediators of cytokine signaling pathways in hematopoietic cells, and they 

We test three of 

gDB webpage 

) are a family of 

Staurosporine”, 

the effect of the 

ligand complexes motivates us to create another 

or example, it has been 

shown that going from the zwitterion to the protonated state of a histidine amino acid 

of a certain protein. So for every 

drug on the test we have a similar one protonated in its most positively spot.   

 

From left to right: 
H26N4O2) 

us to recognize the 

(see figure 8). The 

active site shows a negative charge in the bottom due the presence of Aspartic acid (Asp) 

with the drug.  This force is balanced 

http://www.bindingdb.org/
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with positive amino acids on the top, such as Lysine (Lys) and Arganine (Arg); and also 

with hydrophobic interactions between the rings of the drugs and the hydrophobic amino 

acids. We approximate the reaction between the protein and the drugs to be local, so for 

a further ab-initio analysis, we restrict the system to consider the atoms within a radius 

of 5.0 A from the drugs.   

 
Figure 8: Imaging 47of the characterization of the active site of PIM-I kinase 

showing a dominant number of negative amino acids on one side of the active site 
and positive and hydrophobic on the other. 
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4. RESULTS 

 

4.1 DOCKING CALCULATION 

 

 

Receptor preparation: PIM-1 kinase crystal structures were obtained from the 

Protein Data Bank (http://www.rcsb.org).  Further modification of the structure was not 

needed.  Hydrogen atoms were then added to the entire receptor. Gasteiger charges were 

computed by ANTECHAMBER 48 and added using the USCF Chimera program47. 

Ligand preparation: Ligands were prepared from crystal structures reported in 

BindingDB webpage (http://www.bindingdb.org).  Bond and atom types were checked, 

and hydrogens were added. Gasteiger charges were calculated for all ligands.  

Molecular docking: Docking of the three complexes (figure 9A) was performed 

using DOCK 6.0.0 49 and its accessory programs.  DMS (dot molecular surface) tool 50 

was used to create a molecular surface of the receptor.  The Sphgen program49 was then 

used to create a set of spheres orthogonal to the molecular surface of the protein. The 

resulting file was edited to include only spheres within a cutoff distance of 10.0 Å from 

the ligand (figure 9B).  This distance was sufficient to include the entire active site.  

Scoring and bump grids were then generated using GRID 51. Contact and energy scores 

were calculated using the AMBER99 parameter force field with an energy cutoff 

distance of 9A and a van der Waals repulsive exponent of 12. All other parameters were 

left as their defaults.  

The conformational search goes through the spheres center method. The center of 

the spheres represents the possible positions of the center of the atoms of the ligand. 

Depending of the search algorithm the ligand goes through several combinations of 

positions until finds a conformation with the lowest energy.  
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  A      B 

Figure 9: Imaging 47 of A) PIM-I Kinase (magenta), an oncogene-encoded 
serine/threonine kinase primarily expressed in hematopoietic and germ cell lines 
showing the active site with its ligand (blue). B) Schematic picture of the modeling 

of the active site by the sphere centers method. 
 

 

 

Table 1: Enthalpy of formation of known drugs obtained from the DOCK program, 
and experimental values. Also a test of the results has been done for the Protonated 
states of the drugs showing indeed higher contributions of the electrostatic 
interaction, and similar values for the VDW contribution. 

Contribution (kJ/mol) 
Staurosporine BIM-8 BIM-11 

Neutral Protonated Neutral Protonated Neutral Protonated 

VDW contribution  -52.6 -40.4 -29.5 -28.9 -34.5 -37.6 

Elect. contribution  -3.5 -9.8 -5.1 -21.4 -0.5 -11.1 

TOTAL  -54.1 -50.2 -34.6 -50.2 -35.0 -48.7 

Exp. enthalpy of 

formation  -33.8 

 

-41.3 

 

-13.7 

 

Exp. free energy  -48.0  -43.0  -35.5  

 

The results of Table 1 show that at least the trend of the experimental free energy 

is barely followed by the docking calculations. 
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4.2 MOLECULAR DYNAMICS SIMULATION 

 

 

After the docking scoring calculation, we take the best scored conformation of 

the receptor-ligand complex (the one with the lowest energy). We use the Perl script to 

generate the force field parameter file of the unknown atoms of the drugs based on the 

GAFF force field. At the same time, the Perl script adds water atoms into the system. 

Then we start minimizing the water molecules and keeping all the others atoms of the 

receptor-ligand fixed. At this step, the minimization is of 1000 steps and we consider the 

Van der Waals and electrostatic interactions of the atoms separated by three bonds with 

a cutoff of 8 A. A second consequent minimization is done keeping unfixed all the 

hydrogens atoms of the system along with the water molecules for 10000 steps as well, 

and considering the VDW and columbic interactions the atoms separated by two bonds. 

Finally, we minimize the system for 25000 steps let them free all the atoms. Then, we 

heat the system very slowly with an increment of 0.001 K for every time step (1 fs.) until 

298K. After that we equilibrate the system for 50 ps with 1 fs time step, at 1 atm. and 

298K with a rescale of the temperature every 10 fs. 

We do a qualitative analysis of the fluctuations of the drugs in the active site 

(figure 10 and 11), basing in the statement: “the less flexible, the stronger the binding”. 

We calculate the RMSD fluctuation of the heat atoms (C, O and N) of the drugs along a 

short range of time after the equilibration stage. The fluctuations shown in figure 10 

determine that staurosporine is the most stable drug. In specific, the order of stability is 

staurosporine > BIM-11 > BIM-8. Instead, the protonated set of drugs shows a slight 

different trend (figure 11): staurosporine > BIM-8 > BIM-11 



 

Figure 10: RMSD fluctuations of the heat atoms of the neutral set of drugs in the 
active site along the equilibration

 

A. Staurosporine (Mean: 0.21) 

 

B. BIM-8 (Mean: 0.30) 

 

C. BIM-11(Mean: 0.28) 

uctuations of the heat atoms of the neutral set of drugs in the 
active site along the equilibration step. Their fluctuations are correlated with the 

free energy of the reaction. 
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uctuations of the heat atoms of the neutral set of drugs in the 
step. Their fluctuations are correlated with the 



 

      

Figure 11: RMSD fluctuations of the heat atoms of the protonated set of drugs in 
the active site showing the sensitivity of the syste

 

 

A. Staurosporine (Mean: 0.22) 

 

B. BIM-8 (Mean: 0.34) 

 

C. BIM-11(Mean: 0.37) 

RMSD fluctuations of the heat atoms of the protonated set of drugs in 
showing the sensitivity of the system to a change of charges.
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RMSD fluctuations of the heat atoms of the protonated set of drugs in 
m to a change of charges. 
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4.3 AB-INITIO: ELECTRONIC BINDING ENERGY AND THE HSAB 

PRINCIPLE RESULTS 

 

 

After the molecular dynamics simulation, we take the “average conformation” of 

the system and restrict it to consider only the atoms in the active site (a radius of 5 A 

with respect to the drug). “The average conformation” is made up of the average 

cartesian coordinates of the atoms during a short range of time after the equilibration 

stage. The conformation at the equilibration stage accounts for the changes in the 

position of the nuclei due to the thermal energy. Reducing the system to consider only 

the active site allows to use more expensive method/basis set in the ab-initio approach. 

In order to account for the non-bonded interactions that are usually overestimated by 

conventional DFT methods like B3PW91, we use a novel DFT-like functional M05-2X 

that uses a different proportion of the Hartree-Fock exchange potential. All the ab-initio 

calculations in this project has been done using Gaussian 0352. 

  

Table 2: Electronic binding energy and driving force energy.   

Energy (eV) 
Staurosporine BIM-8 BIM-11 

Neutral Protonated Neutral Protonated Neutral Protonated 

Reorganization 

energy  3.35 

9.94 

0.91 

6.35 

1.72 

9.88 

Driving force  0.57 4.18 0.04 1.18 1.37 4.39 

 

We define as the electronic binding energy to the energy difference associated to 

the redistribution of the electrons in the reaction of the drug and protein. The 

redistribution of the electrons is determined by the self-consistent calculation of the 

Schrödinger equation (eq. 12). The electron density, ρ, experience iterative changes until 

the total energy of the system (eq. 13) reaches a minimum. 
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 In order to calculate the electronic binding energy, we calculate the energy of the 

complex with an ab-initio approach and compare it to the energy of the reactants alone, 

but maintaining the geometry as they are in the complex. Table 2 shows the electronic 

binding energy for all cases. At the redistribution of the electrons during the reaction, we 

have to recognize the two interaction energy components. One associated to the 

equalization of the chemical potential forming bonds, and the other involved in the 

electrostatic interaction due to the polarization of the charges.  

The driving force energy is a renamed variable of the electron transfer 

contribution described before (Section 2.1). Having two components at different 

chemical potentials, a movement of the electron density from the high to low potential 

must occur in order to equalize the chemical potential. The transfer of charges represents 

a decrease of the electrostatic interaction. In my opinion, it is impossible from eq. 5 to 

predict the energy related to the change of electron density since it does not consider the 

properties of the final product. Instead, if the trend determined by the energy change of 

eq. 5 is followed, this energy change estimates the ionic character of the interaction 

before the reaction instead, that is, a sort of potential to the reaction due to the columbic 

charges.  
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4.4  AB-INITIO: ELECTRON DENSITY CHANGE 

 

 

As stated before (section 2.4), a higher charge transfer from the most negative to 

the most positive electrostatic molecule translates in a stronger bond. The calculated 

total charge transfer using the Mulliken population analysis is shown in Table 3. 

  

Table 3: Total charge transfer from the protein to the drugs (neutral/protonated). 
Staurosporine BIM-8 BIM-11 

-0.5/-0.9 -1.1/-0.4 -0.1/-0.3 

 

In order to observe the local changes at every point of the active site, we have 

projected the electron density change in a 3-D feature. As shown in figure 13, the 

electron density change in the drug has two distinguishable regions, one will accumulate 

electrons (blue surfaces) coming from negative amino acids (and other regions of the 

drug), and the other will show depletion of electrons (red surfaces) that goes either to 

other regions of the drugs or to electrostatic positive regions of the protein. The overall 

of blue surfaces minus red surfaces will mean the total electron density transfer. 

A. Stau
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4.5  AB-INITIO: MOLECULAR ELECTROSTATIC POTENTIAL (MEP) 

 

 

Analogously we present the 3-D feature of the molecular electrostatic potential of 

the final complexes (Figure 13). The MEP helps us to identify spots where the 

electrostatic interaction is strong in the entire space of the active site. Notice that in 

BIM-11, we had to go to higher isodensity surfaces to ensure a MEP with similar 

characteristics as in Staurosporine and BIM-8. The reason is that Staurosporine and 

BIM-8 has, from the electron density change results, a stronger electrostatic interaction 

than BIM-11(or weaker covalent bonding). Then, their electrons are more condensed in 

their nuclei. Thus going to higher isodensity surfaces means calculate the MEP at closer 

distances from the radius, compensating its higher condensation of electrons. 
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4.6  AB-INITIO: DENSITY OF STATES (DOS) PROJECTIONS 

 

 

There are two characteristics to look up in the DOS projections that dictate the 

reactivity of the protein and their drugs. In short, the change from narrow to broad bands 

close to the Fermi level is a consequence of the strong chemisorption of the drug in the 

protein due to the stronger coupling between the valance states. Furthermore, a shift of 

the bands to more stable energy levels (shift to the left) is proportional to the strength of 

the chemisorption.  

The DOS projections for each set of drugs, neutral and protonated, are shown in 

figure 14 and 15, respectively (shaded curves are the projection of the protein before the 

reaction and light curves are after the reaction). The combination of the two features of 

the DOS ranks the reactivity of every drug, following a similar trend determined by the 

electronic binding energy. staurosporine and BIM-8 does not show a change in their 

sharpness. Instead, they show downshifts in the energy of the bands. A greater shift in 

the case of staurosporine, compared to BIM-8, accounts for its greater electronic binding 

energy. Instead, BIM-11 shows a change into more wide bands but the increase in 

reactivity is diminished by an upshift of the energy of the bands. In the protonated set, 

all the reactions have almost the same downshift to more stable energy levels. But 

Staurosporine and BIM-11 have changes to more broad bands, accounting for higher 

electronic binding energies.  
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A. Protein affected by Staurosporine (neutral) 

 

B. Protein affected by BIM-8 (neutral) 

 
C. Protein affected by BIM-11 (neutral) 

Figure 14: Density of States projections of the protein PIM-1 Kinase before 
(shaded curves) and after the reaction (light curves) with the neutral drugs. 
Change to broad curves and downshifts in energy mean the strength of the 

chemisorptions 
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A. Protein affected by Staurosporine (protonated) 

 

B. Protein affected by BIM-8 (protonated) 

 
C. Protein affected by BIM-11 (protonated) 

Figure 15: Density of States projections of the protein PIM-1 Kinase before 
(shaded curves) and after the reaction (light curves) with the protonated 

drugs. Change to broad curves and downshifts in energy mean the strength 
of the chemisorptions 
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4.7  AB-INITIO: TRANSMISSION FUNCTION 
 

 

The transmission functions dictate the probability of electron transport between 

donor and acceptors and, at the same time, is an estimation of the electronic coupling 

between the reactants. Actually the transmission is proportional to the square of the 

electronic coupling, making of the transmission function a variable sensitive to any 

change in the interactions of the reagents. There are several approaches to calculate the 

electronic coupling, but so far, no one has applied the Landauer approach to biological 

systems like we did. And the reason may be because the Landauer approach is based on 

molecular junctions. But looking at their derivation, the Landauer approach started with 

the same Marcus definition of the transfer rate of electrons. Figure 16 shows the results 

for both sets (a different scaling factor for each set has been applied in the calculation of 

the transmission, then comparison between the two graphs is not reliable), the high peak 

in the transmission of Staurosporine is a consequence of its strong covalent interaction; 

and also similar peaks of BIM-11 and Staurosporine in the protonated cases account for 

their similar strength of coupling.    

  

 
Figure 16: Transmission functions for the neutral set (left) and for the protonated 

set of drugs (right). Higher peaks mean higher rate transfer of electrons. 
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5.  CONCLUSIONS 

 

 

 We have tested the most relevant computational chemistry techniques towards a 

fully understanding of the molecular interactions in biological systems like protein-

ligand interactions.  

In order to find a best correlation of the binding affinity with some electronic, 

thermodynamic or conformational property; we have analyzed the components of the 

interaction energy involved in the reaction, mainly, through an ab-initio approach. 

We have proposed a protocol to analyze protein-drug systems by starting from 

docking calculation and molecular dynamics in order to take into account the nuclei 

fluctuations at natural conditions. Then we did a local study using first principles to 

account for the interactions of electrons, keeping fixed the nuclei (based on the Frank-

Condon principle and/or the Born-Oppenheimer approximation). 

We use the PIM-1 Kinase, responsible for diseases such as leukemia, and their 

known active drugs in order to test the analysis tools. The small difference in free energy 

makes of the discrimination of the drugs hard to do. Further molecular dynamics 

simulations are needed, but at this point where no electrons are treated explicitly, only 

qualitative analysis like RMSD fluctuations is done. The results show a better agreement 

with their respective experimental free energy 

Then, we restrict the ab-initio studio to the active site of the protein since it is 

believed that any chemical reaction would have to be local. We calculated their 

electronic binding energies and we used the electron density change and molecular 

electrostatic potential to analyze the covalent and ionic interactions, respectively. A 

higher electron density change between the PIM-1 Kinase and their drugs corresponded 

to a stronger covalent bond. On the other hand, localized spots of electrostatic potential 

(positive and negative) are representation of strong ionic interactions. 

We analyzed the chemisorption of the drugs by looking up the density of states 

projections of the protein before and after the interaction. We extrapolated the 
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conclusions from the tight binding theory, based on metal surfaces, and apply them to 

biological systems. The results are in agreement with the electronic binding energies. 

For example, the protonated set of drugs showed a higher effect in the downshift of the 

energy levels of the protein (shift towards more stable energies). Even more, 

Staurosporine and BIM-11 of the protonated set showed a change to broad bands due to 

a stronger chemisorption, accounting for higher electronic binding energies with respect 

to BIM-8. 

Finally, we proposed a methodology based on the Landauer approach to calculate 

the electronic coupling which in turn will represent the transfer rate of electrons. The 

results showed that Staurosporine (neutral) accounts for the highest rate validating their 

lowest experimental free energy.  

The combined analysis of the computational chemistry techniques used in this 

project gives us a better insight of the different molecular interactions in protein-ligand 

complexes, and furthermore it let us be able to distinguish their different interaction 

components.  
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