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ABSTRACT

Thermomechanical Characterization and Modeling

of Shape Memory Polymers. (May 2009)

Brent Louis Volk, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

This work focuses on the thermomechanical characterization and constitutive

model calibration of shape memory polymers (SMPs). These polymers have the abil-

ity to recover seemingly permanent large deformations under the appropriate ther-

momechanical load path. In this work, a contribution is made to both existing ex-

perimental and modeling efforts. First, an experimental investigation is conducted

which subjects SMPs to a thermomechanical load path that includes varying the value

of applied deformations and temperature rates. Specifically, SMPs are deformed to

tensile extensions of 10% to 100% at temperature rates varying from 1◦C/min to

5◦C/min, and the complete shape recovery profile is captured. The results from this

experimental investigation show that the SMP in question can recover approximately

95% of the value of the applied deformation, independent of the temperature rate

during the test.

The data obtained in the experimental investigation are then used to calibrate,

in one-dimension, two constitutive models which have been developed to describe

and predict the material response of SMPs. The models include a model in terms of

general deformation gradients, thus making it capable of handling large deformations.

In addition, the data are used to calibrate a linearized version of the constitutive

model for small deformations. The material properties required for calibrating the

constitutive models are derived from portions of the experimental results, and the

model is then used to predict the shape memory effect for an SMP undergoing various
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levels of deformation. The model predictions are shown to match well with the

experimental data.
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CHAPTER I

INTRODUCTION

Shape memory polymers (SMPs) are polymers capable of recovering an applied de-

formation through thermal, optical, and/or electrical actuation. SMPs represent a

relatively new class of shape memory materials, which also include shape memory

alloys (SMAs) and shape memory ceramics. Shape memory materials have been

heavily researched, developed, and utilized in a wide range of applications, including

cutting-edge technologies in the aerospace, medical, and oil exploration industries

[1, 2, 3].

Although both SMPs and SMAs have the ability to recover an apparently per-

manent deformation, SMPs possess the unique ability to recover extensions of up to

400% [4]. In addition, SMPs are lightweight, inexpensive, and possess excellent man-

ufacturability characteristics as compared to SMAs, but typically have stiffness and

strength values two to three orders of magnitude lower than their metal counterparts

[5, 6, 7, 8, 9, 10]. Considering these characteristics, SMPs present a viable solution

for applications, such as space and biomedical, which demand large deformations at

reduced force levels. Other possible applications for shape memory polymers include

biodegradable sutures, repairable automobile skins, satellites and deployable space

systems [6, 9, 11]. An example of a potential application is the concept of a morphing

wing using active materials. Such an application was investigated by Toensmeir, in

which the morphing wings were expected to adjust the surface area based on the cur-

rent flight conditions, with a possible area increase of 300%. In this project, SMPs and

composites using a shape memory polymer as the matrix material were considered as

The journal model is International Journal of Engineering Science.
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possible choices for the skin of the wing [12].

Additional research efforts have focused on increasing the naturally low stiffness

and low recovery stress of SMPs by developing composites, many of which incorporate

shape memory polymer as the matrix material [11, 13, 14, 15, 16]. Related efforts by

Manzo and Garcia [17] as well as McKnight and Henry [18, 19] have attempted to

incorporate SMPs in applications with other shape memory materials, such as SMAs,

to develop morphing or reconfigurable structures which have a variable stiffness. For

example, Manzo and Garcia proposed a tri-phase composite material which included

both SMAs and SMPs. By controlling the temperature of the individual phases,

particularly that of the SMP, the effective stiffness of the composite was changed.

Additionally, McKnight and Henry proposed the use of SMPs in reconfigurable cel-

lular and morphing wing structures. The use of SMPs allowed for variable stiffness

structure capable of undergoing large deformations.

A. Shape Memory Effect

The shape memory effect (SME) is the ability for shape memory materials to recover

a seemingly permanent applied deformation through thermal cycling. Depending

on the structure of the molecular chains in the shape memory polymer, the SME

is triggered by heating through either the glass transition temperature (Tg) or the

melting temperature (Tm). The SMPs of interest in this work are chemically cross-

linked thermosets for which the cross-linked regions maintain the permanent shape of

the polymer. In these SMPs, the glass transition temperature serves as the transition

temperature necessary for shape recovery.

At temperatures above Tg, the polymer is in the rubber (active) phase, and the

stiffness is lower than when the material is at a temperature below Tg. Consequently,
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large scale deformations are possible for a SMP in the rubber phase as the polymer

chains are able to move and stretch easier due to the relatively low stiffness. On the

other hand, when the temperature T < Tg and the polymer is in the glass (frozen)

phase, large-scale motions are prevented due to the increased stiffness of the poly-

mer. As a result, only small, elastic motions are possible. Furthermore, a material

which undergoes deformation in the rubber phase can be ‘frozen’ by maintaining the

deformation while cooling to the glass phase. Once in the glass phase, the polymers

affected by the deformation process are frozen indefinitely until subsequent heating.

The complete thermomechanical cycle allowing for the shape memory effect is

summarized in the following steps. Additionally, Fig. 1 presents the thermomechani-

cal cycle in strain-stress-temperature space and relates it to the schematic molecular

representation of the shape memory effect.

1. Deform the SMP at T > Tg (rubber phase) to the desired value of deformation.

By loading in the rubber phase, large deformations (strains) can be generated

as the molecular chains are stretched. The entropy of the system is reduced due

to the imposed deformation.

2. Hold the deformation constant, and cool to below Tg. The deformation is stored

as the stiff glass phase prevents the molecular chains from moving, and the new

configuration is termed the ‘temporary shape.’

3. Unload the specimen at T < Tg (glass phase) to a predetermined stress level

(i.e. zero stress). The decrease in strain due to elastic unloading in the glass

phase is often negligible.

4. Hold the stress level constant, and heat the material to above Tg. The molecular

chains are free to move, and the polymer returns to the original, permanent
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shape - a state of higher entropy than the temporary shape.

Tlow Tg Thigh

Temperature

St
re
ss

D

C

B

A

1

3 2

4

εpre

Permanent Shape

Loading

Cooling

Temporary Shape

Unloading

Heating

Fig. 1. Thermomechanical Cycle for Shape Memory Effect in SMPs

B. Literature Review

1. Experimental Efforts

With the ability to recover seemingly permanent large deformations, shape mem-

ory polymers have been the focus of a wide range of experimental research efforts,

particularly over the previous decade, as researchers attempt to better understand

the material response and capabilities. Although a broad scope of research efforts

have been and continue to be performed involving SMPs, this section focuses on the

research efforts present in the literature which are relevant to the research in this
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work.

Initial experimental efforts by Tobushi et al. provided data from small deforma-

tion experiments, with applied extensions of 2%, 4%, and 10% [7]. The tests inves-

tigated the stress-strain relationship of thin film, polyurethane SMPs. The results

obtained during this experimental investigation represented one of the first attempts

to capture the entire shape memory effect of SMPs. In particular, the stress due to

constrained cooling and the shape recovery upon subsequent heating was noted for

the three different values of applied extension.

Additional efforts by Tobushi et al. involved deforming the thin films to exten-

sions of 20% and 100% [8]. The thermomechanical response of specimens loaded at

different temperatures was captured. In addition, the stress-strain relationship upon

loading was observed to be nonlinear for extensions greater than approximately 20%.

The preliminary cyclic effects on the shape recovery were investigated, and a shift

in the stress-strain-temperature results was noted for subsequent thermomechanical

cycles. In particular, the accumulated amount of irrecoverable deformation continued

to increase for each of the ten thermomechanical cycles, and Tobushi noted that the

SMPs recovered approximately 98% of the applied deformation during each thermo-

mechanical cycle.

Extensive efforts were also conducted by Liu et al. on the thermomechanical

behavior of SMPs for small deformations [5]. These experiments characterized dog-

bone shaped specimens, and the data was subsequently used to calibrate and validate

the proposed constitutive model. The experiments performed by Liu not only aimed

to obtain the material properties above and below the glass transition temperature,

but also characterize the thermomechanical response when deformed to a range of

values, up to 9% in magnitude, of applied tensile and compressive strains. In these

experiments, both the stress increase due to constrained cooling and the nonlinear
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strain-temperature relationship during zero load recovery were captured and observed

to occur in a smooth, nonlinear manner.

Recent experimental efforts have shifted from the characterization of the response

due to small deformations to the large deformation response of SMPs processed in a

dogbone shape. For instance, Baer et al. [20] tested polyurethane SMP specimens to

tensile extensions of 20% and 100% for use in medical applications. In these exper-

iments, the SMP recovered approximately 90% of the applied deformation, and the

effects of cyclic deformation at a range of temperatures were investigated. The results

from the cyclic deformation study indicated the greatest shift in material response

from the first cycle to the second cycle with an apparent training, or stabilization in

material response, occurring from the second to fifth cycles.

Additionally, Atli et al. thermomechanically characterized SMPs for applied ten-

sile strains up to 75% for dogbone specimens[21]. The experiments performed by Atli

are similar in principle to those presented in this work such that the same VeriflexTM

shape memory polymer is used and subjected to a similar thermomechanical load

path. Due to experimental apparatus limitations, however, the complete shape re-

covery profile during heating was not captured by Atli.

2. Modeling Efforts

A number of modeling research efforts have attempted to predict the shape memory

behavior in SMPs observed experimentally. Most existing models, however, have

focused on the response of the material due to small deformations (≤+/- 10% nominal

strain).

For instance, early one-dimensional modeling efforts by Tobushi and Bhattacharyya

represented SMPs as a discrete spring-dashpot system [7, 22, 23]. In some of the first

proposed models, Tobushi incorporates thermal expansion, viscoelasticity, and non-
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linear elastic terms. Another model incorporating the viscoelastic response of SMPs

when subjected to small deformations was proposed by Hong et al. [24]. In the study

by Hong, the relaxation modulus was obtained at various temperatures, and was

used as input to the model. A more recent rheological model has been developed by

Srinivasa and Gosh [25], which also uses a spring-dashpot analogy based on a Gibbs

potential approach. This model derives the state equations from the equations of

motion and subsequently solves the resulting differential equations for the state of

the material. Although the aforementioned models present a useful physical analogy

to the deformation mechanisms in the material, many fail to meet the desired accu-

racy of the material response and often do not present a very general framework for

arbitrary thermomechanical deformations.

In a model proposed by Rao [26], the shape memory behavior was approached

from and related to the formation of the crystalline phase of the polymer. Specif-

ically, the model incorporated variables which accounted for the rubber phase, the

semicrystalline phase, the crystallization process, and the melting process. The model

proposed that the formation of the crystalline phase ‘stored’ the deformation, and

the subsequent ‘melting’ of the crystalline phase returned the material to its original

shape.

Another model which predicted the small deformation material response was

proposed by Liu et al. [5]. This model additively decomposes the strain into thermal,

elastic, and stored components and utilizes two internal variables - namely the frozen

volume fraction and the stored strain - to describe the evolution of the microstructure.

The model assumes that deformation which is in the material is then ‘frozen’ and thus

contributes to the term accounting for the stored strain. Upon subsequent heating,

the stored deformation is then released, and the material returns to its original,

permanent shape.
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More recently, a three-dimensional SMP constitutive model has been developed

by Chen and Lagoudas which can account for the nonlinear material response due

to large deformations [27, 28]. This model, proposed on the framework of thermoe-

lasticity, adapts similar concepts to the model proposed by Liu et al. such that it

incorporates the concepts of stored strain and a frozen volume fraction. The con-

stitutive equation proposed by this model, in its general form, can be interpreted as

essentially a rule of mixtures with contributions due to deformations in the frozen

and active phase as well as a contribution due to deformations which are frozen upon

cooling. Additionally, Chen and Lagoudas linearized this model and then used small

deformation data produced by Liu and Gall to calibrate the model and analyze its

validity. The large deformation model, however, remained previously uncalibrated

due to the lack of sufficient data.

C. Research Objectives and Outline of Research

The review of the literature and state of the current research in SMPs indicates there

is significant opportunity for furthering both the experimental and modeling body

of knowledge in the field. For instance, there have been few successful experimental

efforts which captured the large deformation response of shape memory polymers.

As such, the first objective of the research in this work is to perform a thorough

experimental investigation of the large deformation shape memory effect in SMPs.

This effort will use an advanced visual-photographic strain measurement device and

is intended to be one of the first to capture the entire shape recovery profile for large

values of applied deformation.

The experiments presented in this work aim to expand on the knowledge about

SMPs previously observed by Tobushi, Liu, Atli, and others by investigating a rela-
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tively large range of applied deformations as well as temperature rates, as applied to

the commercially available VeriflexTM . The material is subjected to a series of tensile

tests for applied extensions of 10%, 25%, 50%, and 100% under temperature rates

ranging from 1◦C/min to 5◦C/min. It is important to note that extension, or nomi-

nal strain, is defined and used hereafter as the change in the length of the material

divided by the initial length. Additionally, the stress referred to in the experimental

portion of this work is the first Piola-Kirchoff stress which is defined by the applied

load divided by the initial cross-sectional area.

In addition to the experimental objectives, the other primary objective of this

research is to use to large deformation data obtained experimentally to calibrate

a large deformation constitutive model for SMPs. While many models have been

calibrated for small deformations, there exists no models which have been calibrated

which can accurately describe the large deformation response of these active materials.

As a result, this work will calibrate the Chen and Lagoudas constitutive model in

one-dimension. The successful calibration of this model will represent the first step

toward implementing such a model into a more general, finite-element framework for

the analysis and optimization of complex structures in which SMPs are to be used.

In Chapter II, the details of the thermomechanical tests are presented. First, the

experimental setup, including the 3-D Vision Image Correlation (VIC 3D) system,

a visual-photographic apparatus used to measure the distributed two-dimensional

strain field, is presented. Specifically, the method used to prepare the specimens,

the parameters of the shape memory effect (SME) thermomechanical load path, and

the test matrix is presented. The results from the thermomechanical tests are then

presented and analyzed to determine the influence on the material response due to

increasing applied deformation and temperature rates.

In Chapter III, the constitutive models developed by Chen and Lagoudas are
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calibrated using the data obtained in Chapter II. First, the constitutive model lin-

earized for infinitesimal strains is calibrated using the data from the 10% applied

extension case, and the model is used to predict the material response for values of

strain of 25%, 50%, and 100%. These predictions are empirically compared to the

experimental results for extensions of the same magnitude. Next, the general consti-

tutive model capable of handling large deformations is calibrated using data from the

25% extension experiments. Assuming a neo-Hookean material undergoing uniaxial

deformation, the model is simplified to an equation for the axial stretch of the ma-

terial. The model is then used to predict the material response for stretch values of

1.25, 1.50, and 2.0 and compared to the experimental results.
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CHAPTER II

THERMOMECHANICAL CHARACTERIZATION OF THE SHAPE MEMORY

EFFECT OF A SHAPE MEMORY POLYMER

A general introduction to shape memory polymers (SMPs) and the shape memory

effect (SME) was provided in Chapter I. In the current chapter, the thermomechan-

ical experimental investigation of the shape memory effect of a SMP is presented.

The experimental procedures, including the material used, experimental setup, and

test matrix are presented. The results are then analyzed to gain a better understand-

ing of the material behavior and the manner in which it is affected by changes in

experimental parameters.

A. Experimental Procedures

This section presents the experimental procedures necessary to test the SMP spec-

imens. Included is the procedures is the preparation of the specimens for use with

a visual strain measurement system. The details of this strain measurement system

and the other components of the experimental apparatus are presented. In addition,

the experiments performed in this study are outlined in the form of a text matrix.

1. Specimen Type and Preparation

The shape memory polymer used for testing was the commercially available VeriflexTM

produced by Cornerstone Research Group, Inc.(CRG). VeriflexTM is a thermoset,

polystyrene-based SMP whose exact composition has been retained by CRG. The

material was received in the form of 0.6 m x 0.6 m (24.0 in x 24.0 in) pre-cured

sheets. In this work, the focus was on the shape memory effect under tensile load-

ing, and the size of the specimens was adapted from the ASTM D638 Standard Test
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Method for the Tensile Properties of Plastics [29].

The resulting samples were in a dogbone shape with a 57.0 mm (2.25 in) gauge

length and a 12.7 mm x 3.2 mm (0.50 in x 0.125 in) cross-sectional area in the

gauge region. The total length of the specimens was 114.0 mm (4.50 in). Figure 2a

presents a schematic of a shape memory polymer dogbone specimen. A water jet

cutting procedure, performed at NASA Langley Research Center, was used to cut the

specimens from the bulk material. Small regions of local damage were seen at the

end of the specimen which coincided with where the water jet started and finished

cutting. The concentrations, however, were relatively small in size and at the edge

furthest from the gauge region; thus, these regions were assumed to have no impact

on the material response as observed within the gauge area.

After the specimens were processed to the desired specifications, they were then

prepared for thermomechanical characterization using the Vision Image Correlation

(VIC) 3D system - an optical strain measurement system. The VIC 3D system

requires a high-contrast ‘speckled’ pattern on the surface of the gauge area. This

pattern is photographed at each time step and then processed in such a way to

calculate the displacements and strains of the material. Because the specimens were

transparent in nature, a white base coat was first applied to the specimens. Then, a

random, black speckled pattern was applied and resulted in a contrast sufficient for the

system to correlate images. Figure 2b presents a specimen ready for experimentation

using the VIC system.

The material was received, processed, and stored until testing at room temper-

ature and at atmospheric pressure. The specimens were tested over a period of two

years with no noticeable change in shape recovery behavior. This observation implies

the material is not significantly affected by changing atmospheric conditions or envi-

ronmental aging on this time scale. Furthermore, each specimen was only subjected
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to a single thermomechanical cycle. As such, the results presented in this work repre-

sent the behavior of pristine specimens, and may not be representative of a ‘trained’

material for use as an actuator.

57.0

12.7 114.0

Dimensions 
are in mm

(a) Specimen Dimen-
sions

(b) Painted
Specimen

Fig. 2. Shape Memory Polymer Specimens

2. Experimental Setup

All of the thermomechanical experiments presented in this work were performed in

the Materials Research Laboratory at NASA Langley Research Center. The tests

were conducted on a vertically positioned electromechanical, screw-driven MTS R©

Alliance RT-1 test frame accessorised with a MTS R© 1000 N load cell and a pair of

MTS R© 2000 N pneumatic grips equipped with 25.4 mm x 25.4 mm (1.0 in x 1.0 in)

serrated grip faces. The grip pressure of the pneumatic grips was set to 80 kPa as to

neither yield the specimen in the grip region or allow slipping of the material.
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In addition, the characterization of the SMPs performed in this work required

a complex, multi-step temperature profile and a controlled temperature rate. Con-

sequently, the experimental setup included a Thermcraft R© temperature chamber

featuring forced convection heating and liquid nitrogen cooling with an integrated

PID controller. The temperature range of the chamber is (-)73◦C to 315◦C - limits

well beyond the necessary temperature range for the tests in this work. In addi-

tion, the temperature controller was linked to the software governing the mechanical

movement of the test frame. This connection allowed the thermal and mechanical

profiles to be interconnected and required less real-time control by the operator. The

temperature was measured by a thermocouple placed near the gauge region of the

SMP and the measured value was assumed to be representative of the temperature

of the material in the gauge region. Figure 3a shows the entire experimental setup,

and Fig. 3b presents a view of a specimen inside the pneumatic grips.

Due to the low elastic modulus of the shape memory polymer at high temper-

atures, a non-contact strain measurement technique was utilized to ensure that no

interference of specimen motion occurred. Specifically, the displacement of the ma-

terial was measured and recorded using the VIC 3D strain measurement technique.

Developed by Correlated Solutions, Inc., the VIC 3D system records a picture of the

specimen with the aforementioned painted pattern in the reference configuration and

then takes a picture of the specimen throughout the experiment at a specified time

interval. The system then calculates the displacement of each material point in the

current configuration with respect to the reference configuration and subsequently

calculates the full-field, two-dimensional strain measurements.
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Cameras

Oven

(a) Complete Testing Apparatus

Grips

Specimen

(b) Interior of Furnace

Fig. 3. Experimental Setup

3. Test Matrix and Experimental Parameters

The purpose of the experimental effort in this study is to characterize the SMP

material behavior, particularly the shape memory effect, and how it is affected by

variations in the experimental parameters. In this work, two experimental parame-

ters were changed - the value of the total applied deformation (extension) and the

temperature rate (TR), where the temperature rate refers to the cooling and heating

rate in steps 2 and 4 of Fig. 1, respectively. SMP specimens were deformed to values

of extension of 10%, 25%, 50%, and 100% during the first step in Fig. 1. This range

of extensions captures not only the relatively small deformation response (10% exten-

sion) but also the large deformation response up to 100% extension. Additionally, the
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temperature rates were increased from 1◦C/min to 5◦C/min to determine the effects

on the total amount of recoverable deformation. The matrix in Table I presents the

tests performed on the shape memory polymers.

The experiments followed the thermomechanical cycle outlined in Fig. 1. First,

the specimen was placed in the temperature chamber at room temperature. After

placement of the specimen in the grips, the temperature was increased from room

temperature to approximately 30 degrees above Tg while maintaining zero load on the

specimen. As noted in the literature and verified by TMA experiments, the transition

from the glass phase to the rubber phase occurs over a range of temperatures, rather

than at an individual temperature Tg [6]. For the Veriflex R© shape memory polymer,

the Tg is calculated from the TMA results in Fig. 4 to be approximately 60◦C, with

complete transformation occurring near 85◦C. As a result, the specimen is heated,

at a constant temperature rate, to 90◦C to ensure the specimen is completely in the

rubber phase. The temperature value of 90◦C was also observed by Atli et al. to be a

sufficiently high temperature to observe negligible difference in material response in

the rubber phase [21]. It is also observed that the transformation to the glass phase

during cooling is complete at approximately 40◦C.

After thermal equilibrium is achieved, the specimen is loaded at a strain rate

of 0.025 (mm/mm)/min to the predetermined value of extension. This strain rate

corresponds to a nominal displacement rate of 1.425 mm/min - a value within the

standards posed by ASTM D638 which recommends a displacement rate in the range

of 1 mm/min to 50 mm/min [29]. The deformation is then held constant and the

specimen is cooled, at a constant temperature rate, to room temperature (25◦C),

thus ensuring complete transformation to the glass phase. The constraint disallowing

thermal contraction results in a stress increase, which is subsequently unloaded to

the predetermined recovery load after cooling is complete. In these experiments, the
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Fig. 4. Thermomechanical Analyzer Results Indicating a Glass Transition Tempera-

ture of 60◦C

load is chosen to be zero, neglecting gravity. Finally, zero load is maintained on the

specimen, and the temperature is again raised, at a constant temperature rate, to

90◦C to induce shape recovery.

B. Results

Although an extensive set of tests was performed on SMP specimens, only a repre-

sentative set of results is presented in this work. These results are intended to be

sufficient to adequately portray the sensitivity of the material behavior with respect

to changes in thermomechanical parameters such as the value of the total applied

extension and temperature rate. The omitted results are denoted by the asterisk (*)

in Table I.
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Table I. Shape Memory Polymer Test Matrix. Tests with Full Results Not Presented

Denoted by “*”

Test Case
Applied

Extension
Heating/Cooling 

Rate (°C/min)
Recovery 

Temperature (°C)
Recovery 

Stress (MPa)
Recovery 
Extension

Constant Stress 
Recovery

10% 1*, 2, 3, 5* T = Tg + 30 (~90°C) σ = 0

Output
25% 1, 2, 3, 5 T = Tg + 30 (~90°C) σ = 0

50% 2, 3*, 5* T = Tg + 30 (~90°C) σ = 0

100% 2 T = Tg + 30 (~90°C) σ = 0

1. 10% Applied Extension Experiment and Comparison to SME

Thermomechanical Cycle

To begin, consider the result presented in Fig. 5, in which a SMP specimen is deformed

to an extension of 10%. The temperature rate for the experiment was 3◦C/min. The

experiment begins with the specimen at room temperature at which the SMP is below

the glass transition temperature and consequently in the glass phase. Due to the fact

that the thermomechanical cycle presented in Fig. 1 has the material in the rubber

phase as the reference configuration, the first step is heating the specimen to 90◦C

at 3◦C/min such that the reference configuration coincides with point ‘A’ in Fig. 1.

During this heating process, zero load is maintained on the specimen, allowing the

material to thermally expand without constraint. Upon the temperature passing the

glass transition temperature Tg, and thus and entering the rubber phase, a larger

amount of thermal expansion is observed as a result the larger coefficient of thermal

expansion of the material in the rubber phase. Consistent with the value calculated

in the TMA results in Fig. 4, the glass transition temperature during heating is

approximately 60◦C during the initial heating.
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Fig. 5. Results from Experiment with 10% Applied Extension and a Temperature Rate
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After the temperature chamber has reached equilibrium at the end of the heating

segment, denoted ‘A’ on the plot, the thermomechanical cycle follows the steps A-

>B->C->D outlined in Fig. 1. From A to B, the temperature is held constant at

90◦C and the specimen is loaded at a strain rate of 0.025 (mm/mm)/min to the

predetermined extension value of 10%.

From B to C, the deformation is held constant and the specimen is cooled to

25◦C at a temperature rate of 3◦C/min. During this cooling process, the material

transitions from the rubber phase to the glass phase. Due to the constraint disallowing
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thermal contraction during cooling, the stress increases with a larger stress increase

noted due to further cooling below Tg as a result of the higher stiffness of the material

in the glass phase. The qualitative trend of the stress increase during cooling to time

C is consistent with that seen in literature by Liu et al. [5]. It is observed, however,

that although the cooling has ceased at point C, the stress continues to increase. This

increase is due to continued cooling of the system, particularly the pneumatic grips

and extension rods. As the system continues to cool until thermal equilibrium at room

temperature, the components of the experimental setup undergo thermal contraction

which induces further deformation in the material that fails to be corrected by the

PID control of the test frame. Figure 6 plots the stress increase as a function of the

extension from the time C up to the time when the stress ceases to increase. This

figure implies a linear stress-extension relationship during this time with the modulus

(543 MPa) of the same order of magnitude as the calculated elastic modulus of the

glass phase (1081 MPa).

A dwell period is used to allow the system to reach equilibrium, and then the load

induced by the constrained cooling is removed - denoted by the time D. The elastic

strain due to unloading is negligible compared to the total applied deformation in this

work. After unloading, the furnace is opened, and the specimen is released from the

bottom grip and allowed to hang freely from the top grip. This release of the bottom

constraint ensures the specimen is allowed to recover under zero load conditions,

neglecting gravity. Then, the furnace is closed, the specimen is again heated at

a temperature rate of 3◦C/min to 90◦C, and the nonlinear extension-temperature

relationship is observed. The shape recovery of the material begins at the time when

the temperature exceeds the glass transition temperature, which is again observed to

be approximately 60◦C. At the end of the heating segment, nearly all of the applied

deformation has been recovered as the final, irrecoverable extension is 0.5%.



21

y = 543.24x - 51.604

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0.096 0.0965 0.097 0.0975 0.098 0.0985

Str
es

s (
MP

a)

Extension (mm/mm)
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2. Repeatability of Experiments

Tests were performed with the same experimental parameters on two additional pris-

tine specimens. In particular, the temperature rate was 3◦C/min and the total applied

extension was 10%. Overlaying the results from these two tests with the data from

the experiment in the previous section, Fig. 7a presents the extension profiles on the

same time scale for all three experiments. In addition, Figs. 7b and 7c present the

stress and temperature profiles, respectively.
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At the end of loading, the total extension of each specimen is between 9.8% and

10.0%, and the irrecoverable strain at the end of the experiment ranges from 0.3% to

0.5%. The glass transition temperature is approximately the same temperature for

each experiment, as represented by the inflection points in the stretch curves during

the initial and recovery heating processes. Furthermore, the stress profiles are nearly

identical with a peak stress during cooling of approximately 1.75 MPa. These figures

help confirm the repeatability of the thermomechanical experiments performed in this

work when subjected to the same experimental parameters.

3. Influence of Increasing Applied Extension

Figures 8a - 8c present the results for experiments in which extensions of 10%, 50%,

and 100% with a heating rate of 2◦C/min are applied to pristine specimens. The

three values of extension are chosen such that the results of the experiments with not

only the smallest and largest values but also an intermediate value can be compared.

The stress, extension, and temperature profiles are presented together as a function

of time for each value of extension, and the steps in the thermomechanical profiles

again correlate with the SME load path presented in Fig. 1. This section focuses on

individual segments of the thermomechanical load path and discusses the differences

observed in the material response due to increasing the value of the total applied

extension.
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a. Stress-Extension Relationship During Loading Above Tg

The stress-extension relationship for the 10%, 50%, and 100% extension experiments

is presented in Fig. 9a with Fig. 9b focusing on the stress-extension relationship

during loading. Analyzing the data, the stress-extension relationship appears linear

for small values of extension. At values of extension greater than approximately 25-

30%, however, the stress-extension relationship becomes nonlinear, denoted by the

decreasing tangent modulus. Additionally, during loading to 100% extension, a local

peak is observed in the stress at approximately 70% extension after which the stress-

extension curve continues to decrease in slope. This peak may be related to polymer

chain movements and alignments within the specimen, or the peak may be related

to localized yielding in the paint on the surface of the specimen. Due to the fact

that only one experiment was successfully performed for an extension value of 100%,

additional experiments are necessary to determine the repeatability of the peak and

to determine its cause.

b. Stress Increase Due to Constrained Cooling

The stress as a result of cooling at constant deformation is presented in Fig. 10 for all

values of applied extension - 10%, 25%, 50%, and 100%. Not included in the previous

discussion, the data from the 25% extension experiment is presented in this section

to assist in establishing a correlation between increasing applied extension and the

amount of stress increase upon cooling. In Fig. 10, the stress at the beginning of the

cooling (90◦C) is offset to zero for each case, such that only the increase in stress due

to cooling is compared. The stress increases by a larger quantity upon further cooling

below the glass transition temperature due to the higher stiffness of the material in

the glass phase.
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It is observed that the change in the stress from the beginning of cooling to the

end of cooling increases from the 10% test (0.3 MPa) to the 25% test (0.9 MPa)

to the 50% test (1.3 MPa) and then decreases for the 100% experiment (1.1 MPa).

Such a trend suggests a possibility that the stress increase is due not only to the

constraint disallowing thermal contraction, but also due to another process related to

the physical process of the phase transition. The fact that the stress increase is not

as large for the 100% strain experiment may be a consequence of the local peak noted

during the loading segment. Additional experiments are recommended to determine

the stochastic variation in the stress increase for the 100% extension case.

c. Shape Recovery Behavior During Heating at Zero Load

The extension-temperature relationship for the 10%, 50%, and 100% extension exper-

iments is presented in Fig. 11. In this figure, the results are presented for experiments

with the same temperature rate of 2◦C/min. The boundary condition on the speci-

men in each experiment is the load is zero in the axial direction, neglecting gravity,

and is enforced by allowing the specimen to hang freely from the top grip with no

constraint due to the bottom grip. In Fig. 11, the shape recovery begins at the same

temperature for each specimen (approximately 60◦C). It is also observed that the rate

of change of the extension during recovery is greater with increasing values of applied

extension, for which the 10% extension experiment displays a relatively gradual shape

recovery and the 100% extension experiment exhibits a more rapid shape recovery.

In other words, a larger amount of the applied extension is recovered during an equal

amount of time to heat the specimen (equal temperature rate between experiments).
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4. Influence of Experimental Parameters on the Total Amount of Recoverable

Deformation

Figures 12a - 12c present a series of experimental results in which the value of the

applied extension is held constant at 25% and the temperature rate is varied from

1◦C/min to 5◦C/min. Analysis of these figures, presented in Table II, indicates that

a change in the temperature rate does not affect the amount of recoverable extension

when calculated as a percentage of the total applied extension. In this table, a

comparison is presented for the amount of recoverable deformation for the 25% applied

extension experiments with temperature rates of 1◦C/min, 3◦C/min, and 5◦C/min

are presented. In each experiment, an extension of approximately 27% was applied

to the specimen. At the end of the recovery process, the material has recovered
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approximately 97% of the value of the applied extension (e.g., approximately 26% of

the original 27% applied extension).

Table II. Effect of Increasing Temperature Rate on the Percentage of Recoverable

Extension/Applied Extension

Temperature Rate
Applied Extension 1°C/min 3°C/min 5°C/min

25% 97.4% 97.8% 97.4%

Similar data was obtained as a result of testing SMP specimens for other values

of applied extension and temperature rates, as noted in the test matrix in Table I.

For all experiments, little variation was seen in the amount of recoverable extension

as a percentage of the total applied extension. Figure 13 provides a comparison of the

amount of recoverable deformation for all values of applied extension tested at differ-

ent temperature rate values. In this figure, it is noted that the SMPs, independent

of the temperature rate used during the thermomechanical cycle, recovered approxi-

mately 95% of the value of the total applied deformation. Additionally, because the

irrecoverable deformation is a constant percentage for all values of temperature rate,

it is concluded that the material does not undergo any significant viscoplastic (creep)

deformation at this time scale. The irrecoverable deformation, however, may be a

result of polymer chain entanglements or similar interactions which occur during the

thermomechanical cycle. An investigation of the cyclic response of the material would

provide insight as to whether this irrecoverable deformation plateaus or continues to

increase with additional thermomechanical cycles.
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C. Conclusions

An experimental investigation of the shape memory effect in a particular shape mem-

ory polymer was conducted. As part of the experimental efforts, a complex experi-

mental apparatus was assembled at NASA Langley Research Center. The apparatus

included a visual strain measurement system formally referred to as the VIC 3D sys-

tem. SMP specimens were processed into dogbone specimens and the gauge area was

painted with a white and black speckled pattern. The tests followed the SME ther-

momechanical cycle presented in Fig. 1, and focused strictly on the material response

due to applied tensile deformations. Furthermore, the effects of increasing applied

extension and temperature rate were evaluated.
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Experiments with extensions of 10%, 25%, 50%, and 100% and temperature

rates of 1◦C/min to 5◦C/min were performed on pristine shape memory polymer

specimens, and the complete shape recovery profile was captured for all values of

applied deformation. In analyzing the results, it was noted that the stress-extension

relationship during loading is approximately linear for values of extension less than

25% after which the relationship becomes nonlinear as the value of the tangent mod-

ulus decreases. In addition, the amount of stress increase during constrained cooling

is observed to increase as a function of increasing applied extension with the excep-

tion of the 100% extension case. This exception may be explained by the peak noted

during loading at an extension of approximately 70%, where localized yielding of

the surface paint or other polymer chain motions have occurred. Furthermore, the

shape recovery was analyzed at zero load for all experiments. For a given tempera-

ture rate, the recovery not only begins at the same temperature but also finishes in

the same amount of time. Finally, the temperature rate is shown to have negligible

impact on the total amount of recoverable deformation as each specimen recovered

approximately 95% of the value of the applied deformation.
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CHAPTER III

MODEL CALIBRATION

A general introduction to shape memory polymers (SMPs) and the shape memory

effect (SME) was provided in Chapter I. Additionally, Chapter I reviewed a series

of models that have been proposed in attempts to describe the material response of

SMPs. In Chapter II, a detailed experimental investigation of the thermomechani-

cal behavior of a particular SMP was performed, and this chapter uses the data to

calibrate two constitutive models developed to predict the material behavior. As a

preliminary step to calibrating the general Chen and Lagoudas constitutive model,

the calibration of the model as linearized for small deformations is performed. Sub-

sequently, using a similar procedure for determining the calibration parameters, the

general constitutive model is calibrated for large uniaxial deformations.

A. Description of the Chen and Lagoudas Constitutive Model

The model calibrated in this work is a constitutive model developed by Chen and

Lagoudas [27]. This model is proposed on the basis of nonlinear thermoelasticity, and

is thermodynamically formulated based on the Gibb’s free energy function. Through

assuming a thermoelastic material, the deformation of the material is assumed to be

composed only of thermal and elastic contributions. As a result, the deformation

gradient is assumed to be a function of the (first) Piola-Kirchoff stress S and the

absolute temperature θ.

The model is developed around the physical assumption that the shape memory

polymer undergoes phase transformation through a series of nucleations. In other

words, it is assumed that individual material particles transform from the frozen

(glass) phase to the active (rubber) phase and vice versa until the entire material has
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transformed into a single phase. As a result, the constitutive equations for particles

in a single phase are first proposed. In proposing these equations, a deformation

gradient F̂a is proposed for a particle with a reference configuration in the active

phase that subsequently undergoes deformation while remaining purely in the active

phase. Similarly, a deformation gradient F̂f is proposed for a particle with a reference

configuration in the frozen phase and for which deformation occurs in the frozen phase.

For a particle which has an active reference configuration, is frozen, and undergoes

subsequent deformation in the frozen phase, the deformation gradient is assumed

to be continuous at the glass transition temperature and the resulting deformation

gradient is written in the form of F̂f F̃, where F̃ is the term resulting from enforcing

continuity at Tg [27]. A summary of the proposed deformation gradients for the

various reference and deformed configurations is provided in Table III.

Table III. Deformation Gradients for Material Particles with Various Reference and

Deformed Configurations

Reference Configuration Deformed Configuration Deformation 
Gradient

Active phase Active phase

Frozen phase Frozen phase

Active phase Frozen phase

ˆ ( , )f θF S

ˆ ( , )a θF S

ˆ ( , )f θF S F�

The shape memory polymer is then assumed to be a ‘composite’ of material

particles in the active and frozen phases, and the constitutive equation describing

the material behavior is presented in Eq. (3.1). This equation, derived from an

integral over the volume of the individual particles, is observed to take the form
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of a mixture, or composite, of the deformation gradients in the active and frozen

phases, with an additional contribution from deformations in the active phase which

are subsequently frozen. The term accounting for the portion of the material in the

frozen phase is the frozen volume fraction φ(θ) which is assumed to be only a function

of temperature. Two assumptions are made in proposing the constitutive equation

for the SMP material, specifically: (1), the deformation must be continuous during

cooling, and (2) the deformation stored in the material during the freezing process is

completely recovered upon subsequent heating through the same range of temperature

values.

F(t) = [1− φ(θ(t))]F̂a(S(t), θ(t))

+

∫ t

0

F̂f (S(t), θ(t))F̂−1
f (S(τ), θ(τ))F̂a(S(τ), θ(τ))φ′(θ(τ))θ̃′(τ)dτ

(3.1)

Another component of the proposed model is the idea of a ‘net cooling history,’

denoted in Eq. (3.1) by θ̃(τ). This concept, a consequence of assumption (2), replaces

a series of heating and cooling segments with a monotonically decreasing temperature

profile, where τ is the last time at which the material experienced the temperature

θ. In other words, it serves as a ‘memory’ term for recalling the state of the material

when it previously experienced a particular temperature.

B. Calibration of the Constitutive Model as Linearized for Small Deformations

To compare with existing experimental data, Chen and Lagoudas linearized the gen-

eral thermoelastic constitutive model, in particular Eq. (3.1), for small deforma-

tions [28]. The highlights of the derivation, exhausted in the literature by Chen

and Lagoudas, will be presented first in this section. After the key equations are

noted, the assumptions used to calibrate the model, the differences in the calibration

method compared to that of Chen and Lagoudas, and the results of the calibration
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and subsequent model predictions are presented.

1. Derivation of Linearized Model

In deriving the linearized constitutive model, the deformation of the material was

assumed to be represented by the infinitesimal strain. This tensor, denoted E, is

related to the deformation gradient F by Eq. (3.2), where I is the identity tensor.

E =
1

2
(F + FT )− I (3.2)

Using this relationship, the deformation gradients Fa and Ff are expressed in

terms of the infinitesimal strain tensors for the active and frozen phases, respectively,

which are subsequently decomposed into the thermal and elastic contributions, as

seen in Eq. (3.3).

1

2
[F̂a(S, θ) + F̂T

a (S, θ)]− I = Êa(S, θ) = Et
a(θ) + Ma(θ)[S]

1

2
[F̂f (S, θ) + F̂T

f (S, θ)]− I = Êf (S, θ) = Et
f (θ) + Mf (θ)[S]

(3.3)

where Ma and Mf are the elastic compliance tensors in the active and frozen phases

and Et
a and Et

f are the thermal strain tensors, respectively. Taking the first order

approximation of Eq. (3.1) and using the assumption that the deformation gradient

is close to the identity tensor for small deformations, the multiplicative deformation

gradient terms in the integral of Eq. (3.1) are reduced to additive terms and Eq. (3.1)

is simplified to Eq. (3.4)

F(t) = [1− φ(θ(t))]F̂a(S(t), θ(t)) + φ(θ(t))F̂f (S(t), θ(t))

+

∫ t

0

[F̂a(S(t), θ(t))− F̂f (S(τ), θ(τ))]φ′(θ(τ))θ̃′(τ)dτ
(3.4)

Substituting the relationships in Eqs. (3.2) and (3.3) into Eq. (3.4), the consti-

tutive equation written in terms of the infinitesimal strain is obtained in Eq. (3.5).
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This equation becomes the foundation for calibrating the model for one-dimensional

deformations.

E(t) = [1− φ(θ(t))][Êt
a(θ(t)) + Ma(θ(t))[S(t)]] + φ(θ(t))[Êt

f (θ(t)) + Mf (θ(t))[S(t)]]

+

∫ t

0

[Êt
a(θ(τ)) + Ma(θ(τ))[S(τ)]− Êt

f (θ(τ))−Mf (θ(τ))[S(τ)]]φ′(θ(τ))θ̃′(τ)dτ

(3.5)

The constitutive equation in Eq. (3.5) assumes the axial strain component can

be fully described by the thermal and elastic contributions in both the active and

the frozen phases, as well as the thermal and elastic deformations which are stored

during the freezing process. The mixture of the active and frozen phases is accounted

for via the frozen volume fraction φ(θ).

2. Assumptions Made in Calibrating the Model

Several assumptions were made in calibrating the constitutive equation for the small

deformation of SMPs presented in Eq. (3.5). First, it was assumed that SMP behaved

as an isotropic, linear elastic material. The compliance tensors Ma(θ) and Ma(θ) are

then represented by Eq. (3.6).

Ma(θ)[S] =
1

Ea(θ)
[[1 + νa(θ)]S− νa(θ)(trS)I]

Mf (θ)[S] =
1

Ef (θ)
[[1 + νf (θ)]S− νf (θ)(trS)I]

(3.6)

where Ea, Ef , νa, and νf are the elastic moduli of the active and frozen phases and

the Poisson’s ratios of the active and frozen phases, respectively. The thermal strain

tensors Et
a(θ) and Et

f (θ) can be written for isotropic materials in terms of a scalar

thermal strain quantity as represented in Eq. (3.7).

Et
a(θ) = εt

a(θ)I

Et
f (θ) = εt

f (θ)I

(3.7)
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In calibrating the small deformation model, it is assumed that the first Piola-

Kirchoff stress S can be approximated by the Cauchy Stress σ. Such an assumption

is generally reasonable for small deformations where it is assumed the cross-sectional

area of the material changes negligibly as a result of the applied load. To predict the

experimental results obtained in Chapter II, it is assumed that the SMP material is

undergoing uniaxial tension. Consequently, the only non-zero component of the stress

tensor is σ11 = σ(t), and the infinitesimal strain tensor reduces to Eq. (3.8), where

ε(t) and εl(t) are the axial and lateral strain components, respectively.

E(t) =




ε(t) 0 0

0 εl(t) 0

0 0 εl(t)




(3.8)

Using the assumption on the stress state of the material in combination with

Eqs. (3.5), (3.6), (3.7), and (3.8), the axial strain component can be written in its

entirety in the form of Eq. (3.9).

ε(t) = [1− φ(θ(t))][εt
a(θ(t)) +

σ(t)

Ea(θ(t))
] + φ(θ(t))[εt

f (θ(t)) +
σ(t)

Ef (θ(t))
]

+

∫ t

0

[εt
a(θ(τ))− εt

f (θ(τ))− σ(τ)

Ea(θ(τ))
+

σ(τ)

Ef (θ(τ))
]φ′(θ(τ))θ̃′(τ)dτ

(3.9)

Assuming the material has a constant coefficient of thermal expansion (CTE) in

each of the active and frozen phases, the thermal strain terms are rewritten in the

form of Eq. (3.10).

εt
a(θ(t)) = αa∆θ(t)

εt
f (θ(t)) = αf∆θ(t)

(3.10)

where αa and αf are the CTEs of the active and frozen phases, respectively, and

∆θ(t) is the change in absolute temperature from the reference configuration. Hence,

for a given stress profile σ(t), the two coefficients of thermal expansion αa and αf ,
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the elastic moduli of the active and frozen phases Ea(θ) and Ef (θ), and the frozen

volume fraction φ(θ) are the five calibration parameters required to fully calibrate

the axial strain equation in Eq. (3.9) of an isotropic, linear elastic SMP undergoing

small, uniaxial deformations.

3. Determination of Calibration Parameters from Experimental Data

Analyzing the results from the experimental investigation performed in Chapter II,

it is noted that four of the five calibration parameters can be directly calculated from

portions of the experimental results, and the fifth parameter can be realized as a nor-

malization of a function obtained in the results. The experiments with the smallest

value of applied extension(10%) in Chapter II are used to calibrate the small defor-

mation model, where it has been assumed that the extension of the material obtained

experimentally is approximately equal to the axial component of the infinitesimal

strain in the constitutive model. As such, the coefficients of thermal expansion for

the frozen and active phases are calculated from the extension-temperature curve dur-

ing the initial heating. In this segment of the test, the load is maintained at zero, and

the extension-temperature curve infers a linear relationship in each of the active and

frozen phases which are separated by a phase transition region. Figure 14 presents the

initial heating curve from a representative 10% applied extension experiment. From

the slopes of the linear regions, αa = 5.2 ∗ 10−4/◦C and αf = 0.75 ∗ 10−4/◦C.

Additionally, the material is assumed to be completely in the active phase when

loading to the predetermined value of applied deformation. As a result, the elastic

moduli for the active phase Ea is simply the slope of the stress-extension curve during

loading. After the material is cooled to room temperature at a constant deformation,

the load induced during the cooling process specimen is then unloaded. Assuming

the material is purely in the frozen phase during this unloading process, the slope
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of the resultant stress-extension curve is the elastic moduli of the frozen phase Ef .

Figures 15 (a) and (b) present the portions of the loading and unloading curves,

respectively, from a representative 10% applied extension experiment, from which Ea

and Ef are calculated to be 0.33 MPa and 1081 MPa, respectively. In this work, the

elastic moduli is assumed to be independent of the temperature a material in either

the active and frozen phases; thus, the functional dependence on temperature in the

constitutive equations will be suppressed.

By obtaining αa, αf , Ea, and Ef , four of the necessary five calibration parameters

are determined. The fifth calibration requirement, the frozen volume fraction φ(θ),

can be assumed to be related to the shape recovery profile during heating. When

heating at zero stress, the elastic terms in Eq. (3.9) are zero. Further, by neglecting

the thermal expansion, the only remaining term is the integral term. This term im-
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sults

plies the shape recovery of the material during heating is dictated by the change in

the frozen volume fraction at each temperature φ′(θ). Specifically, the deformation

which was ‘frozen’ upon cooling is ‘restored’ upon heating at a rate proportional to

the change in the frozen volume fraction with respect to temperature. As a result,

this work assumes the frozen volume fraction φ(θ) is a normalization of the maxi-

mum recoverable extension during the recovery heating ε(θ). Figures 16 (a) and (b)

present the shape recovery during heating and the resulting frozen volume fraction,

respectively. Consistent with the assumption that all deformation which was ‘frozen’

is subsequently recovered upon heating, the frozen volume fraction is normalized to

a scale of zero to one. A summary of the calibration requirements and the corre-

sponding values as calculated from 10% experimental data is presented in Table IV.

This method used to obtain the calibration parameters differs from the method
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implemented in the literature by Chen and Lagoudas, for which it was assumed that

the calibration functions could not be independently obtained for a given set of ex-

perimental results. As such, a series of mathematical manipulations were presented

which in part reduced to the stress increase during cooling and the strain recovery

during heating as combinations of the calibration requirements. Although the method

used by Chen and Lagoudas presents an innovative way of combining parameters and

using the experimental curves, it lacks a physical intuition of how the calibration

parameters relate to physical quantities.

4. Axial Strain Constitutive Equation as Applied to SME Thermomechanical Load

Path

The determination of the calibration requirements allows for the prediction of the

material behavior as a result of general uniaxial strain-stress-temperature profiles.
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Table IV. Calibration Parameters Derived from 10% Applied Extension Experimental

Data

Parameter Value
Active phase coefficient of 

thermal expansion (αa)
5.2*10-4/°C

Frozen phase coefficient of 
thermal expansion (αf)

0.75*10-4/°C

Active phase elastic 
modulus (Ea)

0.33 MPa

Frozen phase elastic 
modulus (Ef)

1081 MPa

Frozen volume 
fraction (       ) f(ε(θ))

The focus of this work, however, is to predict and compare the response due to the

specific thermomechanical load path described in Chapters I and II. As a result, this

section reduces Eq. (3.9) to a series of equations for each step in the load path which

can be easily implemented in MATLAB R©.

Revisiting Eq. (3.9) and considering the first step of the thermomechanical path,

the integral term of the equation can be eliminated. This term is eliminated due to

the fact that the temperature is held constant during loading, and thus θ̃′(τ) = 0.

In addition, the thermal strain terms are equal to zero as no change in temperature

is occurring. The equation for the first step is then written as Eq. (3.11), which

can be interpreted as a rule of mixtures formulation for the elastic strains due to

the contributions from the fraction of the material in the active and frozen phases,

respectively. In implementing this equation, the stress profile calculated assuming

linear elastic loading for the predetermined strain value is provided as input. Then,
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the values of strain are predicted as output for the range of stress values from zero

to the calculated final stress.

ε(t) = [1− φ(θ(t))]
σ(t)

Ea

+ φ(θ(t))
σ(t)

Ef

(3.11)

In the second step, the temperature is assumed to decrease in a monotone man-

ner, and Eq. (3.9) is rewritten in terms of temperature in Eq. (3.12).

ε(θ) = [1− φ(θ)][εt
a(θ) +

σ(θ

Ea

] + φ(θ)[εt
f (θ) +

σ(θ)

Ef

]

+

∫ θ

θ0

[εt
a(ζ)− εt

f (ζ)− σ(ζ)

Ea

+
σ(ζ)

Ef

]φ′(ζ)dζ

(3.12)

where the integral variable ζ represents the intermediate temperatures during cooling.

In this step, the deformation is held constant and the material is cooled to below the

glass transition temperature to ‘freeze’ the material in its temporary shape. The

deformation (strain) to be held constant is provided as input and the stress increase

as a function of temperature is the output. Differentiating Eq. (3.12) with respect

to temperature and invoking the fundamental theorem of calculus on the integral

term, the equation can be rewritten as an ordinary differential equation for stress as

a function of temperature in Eq. (3.13).

0 = [1− φ(θ)]αa + φ(θ)αf + [
1− φ(θ)

Ea

+
φ(θ)

Ef

]
dσ(θ)

dθ
(3.13)

where the relationships for the thermal strains εt
a(θ) = αa(θ− θ0) and εt

f (θ) = αf (θ−
θ0) have been used and θ0 represents the temperature at the beginning of the cooling

phase. Rearranging Eq. (3.13) for the derivative of stress with respect to temperature

σ́(θ) results in Eq. (3.14).
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dσ́(θ)

dθ
= − [1− φ(θ)]αa + φ(θ)αf

[1−φ(θ)
Ea

+ φ(θ)
Ef

]
(3.14)

The result obtained in Eq. (3.14) is an ordinary differential equation for which

all of the terms on the right hand side are known calibration parameters, and the

stress at the end of loading in step 1 is in the initial condition.

In the third step of the thermomechanical load path, the temperature is held

constant at T < Tg, and the material is unloaded to a predetermined recovery stress.

In this work, this stress was chosen to be equal to zero. As a consequence of the

constant temperature during this step, the integral term in Eq. (3.9) is reduced to

include only the contribution from cooling in the second step. As a result, Eq. (3.9)

reduces to the form presented in Eq. (3.15), where θ(t) = θ2 and θ2 is a constant

temperature in the frozen phase.

ε(t) = [1− φ(θ2)][ε
t
a(θ2) +

σ(t

Ea

] + φ(θ2)[ε
t
f (θ2) +

σ(t)

Ef

]

+

∫ θ2

θ0

[εt
a(ζ)− εt

f (ζ)− σ(ζ)

Ea

+
σ(ζ)

Ef

]φ′(ζ)dζ

(3.15)

where the integral term in Eq. (3.15) is replaced using the relationship in Eq. (3.16)

for the strain at the end of the cooling segment. Consequently, Eq. (3.15) is simplified

to Eq. (3.17).

εpre = ε(θ2) = [1− φ(θ2))][ε
t
a(θ2) +

σ(θ2)

Ea

] + φ(θ2)[ε
t
f (θ2) +

σ(θ2)

Ef

]

+

∫ θ2

θ0

[εt
a(ζ)− εt

f (ζ)− σ(ζ)

Ea

+
σ(ζ)

Ef

]φ′(ζ)dζ

(3.16)

ε(t) = εpre + [
1− φ(θ2)

Ea

+
φ(θ2)

Ef

][σ(t)− σ(θ2)] (3.17)

where εpre is the predetermined applied strain to which the material was loaded in the

first step of the thermomechanical path. The strain in the third step of the load path
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in Eq. (3.17) is again interpreted as a rule of mixtures, with the contribution due to

the frozen phase defined by the frozen volume fraction evaluated at the temperature

at which unloading occurs.

During the fourth and final step, the load is maintained at a value of zero, and

the temperature is raised to T > Tg to induce shape recovery in the material. With

the applied stress σ(t) = 0, Eq. (3.9) reduces to Eq. (3.18).

ε(t) = [1− φ(θ(t))]εt
a(θ(t)) + φ(θ(t))εt

f (θ(t))

+

∫ t

0

[εt
a(θ(τ))− εt

f (θ(τ)) +
σ(τ)

Ea

− σ(τ)

Ef

]φ′(θ(τ))θ̃′(τ)dτ
(3.18)

Recalling the assumption that the temperature is constant in the first and third

steps, the contributions to the integral term for these steps are zero, and Eq. (3.18)

is rewritten as Eq. (3.19) for a monotonically increasing temperature profile.

έ(θ) = [1− φ(θ)]εt
a(θ) + φ(θ)εt

f (θ)

+

∫ θ

θ0

[εt
a(ζ)− εt

f (ζ) +
σ́(ζ)

Ea

− σ́(ζ)

Ef

]φ′(ζ)dζ
(3.19)

where the strain as a function of temperature έ(θ) is the unknown quantity, and the

values of the stress at the intermediate temperatures ζ are known from the output

during the second step (cooling at constant deformation), and σ́(θ) is the value of

the stress of the material when last at the temperature ζ. Differentiating Eq. (3.19)

with respect to temperature eliminates the integral term and results in an ordinary

differential equation for the function έ(θ) in Eq. (3.20). The measure of stress σ́(θ) is

recalled the cooling process in second step, and the initial condition for the differential

equation is the strain at the end of unloading.

dέ(θ)

dθ
= [1− φ(θ)]αa + φ(θ)αf + [

1

Ea

− 1

Ef

]φ′(θ)σ́(θ) (3.20)
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The following four equations summarize the main equations, specifically Eqs. (3.11),

(3.14), (3.17), and (3.20), obtained for each step of the load path in question, respec-

tively.

ε(t) = [1− φ(θ(t))]
σ(t)

Ea

+ φ(θ(t))
σ(t)

Ef

dσ́(θ)

dθ
= − [1− φ(θ)]αa + φ(θ)αf

[1−φ(θ)
Ea

+ φ(θ)
Ef

]

ε(t) = εpre + [
1− φ(θ2)

Ea

+
φ(θ2)

Ef

][σ(t)− σ(θ2)]

dέ(θ)

dθ
= [1− φ(θ)]αa + φ(θ)αf + [

1

Ea

− 1

Ef

]φ′(θ)σ́(θ)

5. Prediction of Experimental Load Path and Discussion

Using the values of the calibration parameters previously obtained in Table IV,

Eqs. (3.11), (3.14), (3.17), and (3.20) are numerically implemented in MATLAB R©,

and predictions are made for different values of applied strain in one-dimensional load-

ing. The files used to implement the constitutive model linearized for small, uniaxial

deformations are available in Appendix A.

The constitutive model is first used to predict the shape memory effect in 1-D

of the SMP for 10% applied tensile strain. Figure 17 presents, in a similar fashion

to Fig. 1 in Chapter I, the strain-stress-temperature profile for the entire thermome-

chanical load path. This figure compares the prediction with the actual experimental

data. As used for all such plots, the solid lines represents the model prediction, and

the discrete points represent actual experimental data obtained in Chapter II. Ex-

amining this figure, the model prediction matches well with the experimental data.
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Figure 18 focuses on the stress-strain behavior for the complete load path. The

model prediction again agrees well with the experimental data. In particular, the

assumption of a linear elastic response is observed to be reasonable for this mate-

rial undergoing this value of deformation, and the peak value of the stress during

constrained cooling is near that observed experimentally.

In addition, Fig. 19 presents the stress-temperature data. A stress increase is ob-

served at the maximum temperature due to loading the material to the predetermined

strain value. Upon cooling at a constant deformation, a second stress increase is ob-

served. The model prediction agrees well with the experimental data for the stress

increase. In particular, comparing model prediction and the experimental data, the

slopes of the stress-temperature curves are nearly identical for temperatures outside

of the transition region.
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Fig. 18. Stress-Strain Prediction for SME with 10% Applied Tensile Strain
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Fig. 19. Stress-Temperature Prediction for SME with 10% Applied Tensile Strain
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A difference in the slope of the stress-temperature relationship, however, is noted

in the transition region. This difference, as well as the difference in the final stress

value during this cooling process, may be attributed to the constraint of the test

frame, as discussed in Chapter II, which imposed slight elastic deformation on the

specimen while attempting to maintain a constant value of deformation. Also, the

model does not account for differences in the glass transition behavior due to thermal

cycling at non-zero values of stress.

Figure 20 presents the strain-temperature data for the 10% applied strain exper-

iment. Of particular importance in this figure is the strain recovery upon heating the

material at zero stress. It is observed that the model prediction agrees well qualita-

tively with the data produced experimentally. Specifically, the strain recovery begins

at approximately the same temperature, and occurs in a similar nonlinear strain vs.

temperature manner. These observations, however, were expected as the frozen vol-

ume fraction was assumed to be a normalization of this strain recovery behavior. On

the other hand, the model prediction does not account for the irrecoverable strain

at the end of heating. This difference is due to the assumption made during model

development that all of the deformation ‘frozen’ in the material is recovered upon

subsequent heating. Furthermore, the value of the stress during cooling consistently

takes a higher value for the predicted stress. Because the predicted value of stress is

then used to calculate the amount of strain recovered during heating, a larger value

of strain is ‘stored’ in the material and subsequently recovered upon heating.

In addition to predicting the 10% applied strain experiment, the model was

used to predict the material response for the 25%, 50%, and 100% applied strain

cases. Although 10% borders on the limit of what is generally considered a ‘small

deformation,’ the other three values are well out of the range of what is classically

accepted as a small deformation. As such, the assumptions of the infinitesimal strain
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Fig. 20. Strain-Temperature Prediction for SME with 10% Applied Tensile Strain

tensor and the Cauchy stress tensor are no longer valid as representative measures of

the state of the material. It is noted that the model prediction of the 25%, 50%, and

100% applied strain cases presents an empirical prediction of the material response

and the experimental ‘strain’ used for comparison is actually the extension of the

material.

Figure 21 presents the three-dimensional strain-stress-temperature predictions

for all considered values of applied strain, including the 10% case previously consid-

ered. From this figure, the model prediction agrees empirically with the experimental

data. In addition, Figs. 22 and 23 present the stress-strain and stress-temperature re-

lationships for the entire experimental path, respectively. As noted in Chapter II, the

stress-strain relationship becomes nonlinear when loading to larger values of applied

strain in the active phase. The calibration of the small deformation model, however,

assumes a linear elastic material such that the nonlinear deviation, although rela-

tively small, is not captured for the larger values of applied strain. In addition, the
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stress-temperature prediction in Fig. 23 shows good qualitative agreement with exper-

imental data. The sources of error discussed in the 10% case, such as the constraint

of the experimental apparatus, the non-zero stress during glass transformation, etc.,

still exist for the prediction of the 25%, 50% and 100% cases and likely contribute to

the differences between the predictions and the experimental data.
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Fig. 21. Strain-Stress-Temperature Prediction for 10%, 25%, 50%, and 100% Applied

Tensile Strain

Finally, Fig. 24 presents the strain-temperature predictions for each of the four

cases. In this figure, the strain recovery behavior at zero load is considered. It is noted

that the model predicts the strain recovery to follow a similar qualitative nonlinear

strain vs. temperature profile and finish upon heating through the same range of

temperatures. Due to the fact that the model does not capture irrecoverable strain

and thermal expansion is neglected for this step, the model prediction again does not

completely match the experimental results.
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Fig. 22. Stress-Strain Prediction for 10%, 25%, 50%, and 100% Applied Tensile Strain
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C. Calibration of the Constitutive Model for Large Deformations

After being used to calibrate the linearized Chen and Lagoudas model for small, uni-

axial deformations of SMPs, the experimental data was then used to calibrate the

original Chen and Lagoudas model which accounts for general deformation gradi-

ents that are capable of handling large deformations. The calibration of this model

provides a means to predict the large deformation response of SMPs observed exper-

imentally on a more accurate and consistent basis. The method used to reduce the

constitutive equations to a useable form will be the method proposed by Chen and

Lagoudas [27]. After presenting the necessary equations and assumptions, the results

of the model calibration and predictions will be presented.

In calibrating the model for the large deformations of SMPs, Eq. (3.1) is recalled
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and presented again as Eq. (3.21). This equation represents the constitutive equa-

tion for a SMP undergoing general deformations and includes contributions due to

deformations in the active and frozen phases as well as deformations occurring in the

active phase which are subsequently stored upon cooling to the frozen phase.

F(t) = [1− φ(θ(t))]F̂a(S(t), θ(t))

+

∫ t

0

F̂f (S(t), θ(t))F̂−1
f (S(τ), θ(τ))F̂a(S(τ), θ(τ))φ′(θ(τ))θ̃′(τ)dτ

(3.21)

1. Assumption of a Neo-Hookean Material

To reduce the constitutive equation in Eq. (3.21) to a form consisting of measurable

quantities, such as stress, etc., assumptions must be made corresponding to the ma-

terial behavior. In this work, following the method proposed by Chen and Lagoudas,

the material is assumed to behave as a neo-Hookean material. A neo-Hookean model

is frequently used for the modeling of rubber-like materials which are incompressible

when deformed. This assumption is deemed reasonable for SMPs due to the rubber-

like material response when in the active phase - the phase in which relatively large

deformations are typically considered.

The constitutive equation for a neo-Hookean material as related to a general

deformation gradient is presented in Eq. (3.22), where S is the first Piola-Kirchoff

stress, p is the hydrostatic pressure required to maintain incompressibility, µ(θ) is

the shear modulus, and ν(θ) is the ratio of the volume at a current temperature to

the volume at the reference temperature [27, 30]. In this work, the shear modulus

µ(θ) as a function of temperature is not obtained for the entire temperature range of

the experiment but instead at two discrete temperatures, specifically the loading and

the unloading temperatures. In addition, it is assumed that the volume ratio ν(θ)

is unity for deformations occurring to a material at a constant temperature in either
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the active or the frozen phase. It is shown later that the functional dependence of the

shear modulus on temperature (and thus, the stretch of the material) can be related

to terms obtained in the calibration of the constitutive model for small deformations.

S = −pF−T + µ(θ)F

detF = ν(θ)

(3.22)

To relate measurable experimental quantities to the constitutive equation pro-

posed in Eq. (3.21), the tensors S and F are decomposed via the polar decomposition

theorem as shown in Eq. (3.23), where Q and R are proper orthogonal tensors (rota-

tion tensors) and T and U are positive definite, symmetric tensors.

S = QT

F = RU

(3.23)

Substituting Eq. (3.23) into Eq. (3.22) results in the equation shown in Eq. (3.24).

QT = −pRU−T + µ(θ)RU

detRU = detRdetU = detU = ν(θ)

(3.24)

Assuming Q = R such that the stress is aligned with the imposed deformation,

Eq. (3.24) reduces to the form of Eq. (3.25).

T = −pU−T + µ(θ)U

detU = ν(θ)

(3.25)

where Eq. (3.25) implies that T and U have the same eigenvectors. It is then possible

to use the spectral decomposition to decompose the tensors T and U into the form

of Eq. (3.26), where si and λi are the principal stresses and stretches, respectively.
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T =
3∑

i=1

siei ⊗ ei

U =
3∑

i=1

λiei ⊗ ei

(3.26)

Substituting the spectral decomposition presented in Eq. (3.26) into the tensorial

equation presented in Eq. (3.25) results in Eq. (3.27).

si = −pλ−1
i + µ(θ)λi, i = 1, 2, 3

λ1λ2λ3 = ν(θ)

(3.27)

The equations presented in Eq. (3.27) relate the first Piola-Kirchoff stress to

the stretch in a neo-Hookean material. This relationship is subsequently used in

conjunction with Eq. (3.21) to develop an equation for the axial stretch in a material

undergoing uniaxial deformations.

2. Constitutive Equation as Applied to SME with Uniaxial Tension

The experiments in Chapter II applied a uniaxial tension to a series of shape memory

polymer specimens. To model the material response due to this type of deformation,

this section will derive from Eqs. (3.21) and (3.27) the constitutive equation for the

axial stretch of a material undergoing such a uniaxial stress state. To begin, the

only nonzero stress component for uniaxial tension is s1 = s(t) while s2 = s3 = 0,

where s(t) is the stress profile for a given experiment. Substituting this relationship

into Eq. (3.27) and eliminating the hydrostatic pressure p yields the relationship in

Eq. (3.28) for the components of the stretch tensor.

λ1 = λ

λ2 = λ3 =

√
ν(θ)

λ

(3.28)
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where λ is the stretch in the direction of the applied stress, which is quantified by

Eq. (3.29), and it is recalled that µ(θ), ν(θ), and s are the shear modulus, volume

ratio, and Piola-Kirchoff stress, respectively.

µ(θ)(λ− ν(θ)

λ2
) = s (3.29)

Furthermore, by assuming R = I (no rotation) in the polar decomposition pre-

sented in Eq. (3.23), the deformation gradient F is represented by a diagonal matrix

in Eq. (3.30) whose values are equal to the principal values of the right stretch tensor

U.

F =




λ 0 0

0
√

ν(θ)
λ

0

0 0
√

ν(θ)
λ




(3.30)

Through defining an equation of the form of Eq. (3.29) for each the active and

the frozen phase in the form of Eq. (3.31), it is possible to construct the active and

frozen phase deformation gradients Fa and Ff as shown in Eq. (3.32).

µa(θ)(λa − νa(θ)

λ2
a

) = s

µf (θ)(λf − νf (θ)

λ2
f

) = s

(3.31)

Fa =




λa 0 0

0
√

νa(θ)
λa

0

0 0
√

νa(θ)
λa




Ff =




λf 0 0

0
√

νf (θ)

λf
0

0 0
√

νf (θ)

λf




(3.32)
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These deformation gradients are substituted into Eq. (3.21), and the constitutive

equation for the axial component of the deformation gradient is reduced to an equation

for the axial stretch of the material as shown in Eq. (3.33).

λ(t) = [1− φ(θ(t))]λa(s(t), θ(t))

+

∫ t

0

λf (s(t), θ(t))λa(s(τ), θ(τ))

λf (s(τ), θ(τ))
φ′(θ(τ))θ̃′(τ)dτ

(3.33)

Assuming the stretches in each phase take the form of Eq. (3.31), then five func-

tions need to be calibrated to fully describe the axial stretch of a material undergoing

uniaxial tension as presented by Eq. (3.33). Those five functions are φ(θ), µa(θ),

µf (θ), νa(θ), and νf (θ), or the frozen volume fraction, the shear moduli in the active

and frozen phases, and the volume ratios in the active and frozen phases, respectively.

3. Determination of Calibration Parameters

In comparing the calibration functions with the results of the experimental investi-

gation performed in Chapter II, it is noted that all of the five calibration functions

can be either be directly related to or considered to be a function of measurable

experimental quantities.

In particular, the values of the volume ratios νa and νf can be deduced from mea-

surements of the deformations in the axial and transverse directions during uniaxial

tension or from constraints due to assuming a neo-Hookean material. The experi-

mental investigation presented in Chapter II includes data from loading the material

at a high temperature and a low temperature, during which the Poisson’s ratio is

measured experimentally in the active and frozen phases, respectively. Figures 25 (a)

and (b) present the Poisson’s ratio for small values of axial extension occurring in the

active and frozen phases, respectively. From these figures, the Poisson’s ratio is shown

to be 0.4 for T = 25◦C in the frozen phase and 0.5 for T = 90◦C in the active phase.
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Recalling the assumption of a neo-Hookean material for the behavior of a material in

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.0 2.0 4.0 6.0 8.0

Po
iss

on
's 

Ra
tio

Axial Extension (%)

νa = 0.5

(a) Active Phase

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00 0.05 0.10 0.15

Po
iss

on
's 

Ra
tio

Axial Extension (%)

νf = 0.4

(b) Frozen Phase

Fig. 25. Poisson’s Ratios for Shape Memory Polymer

each phase, however, implies an incompressibility constraint for a material deformed

at a constant temperature. As such, the values of the volume ratios νa and νf are

taken to be unity for deformations occurring at high and low temperatures during

loading and unloading, respectively. While the Poisson’s ratio for the active phase is

consistent with that of an incompressible material, the ratio for the frozen phase is

not equal to the value of 0.5 dictated by the incompressibility assumption. Noting

that relatively large deformations for the particular thermomechanical cycle generally

occur in the active phase, and allowing for simplicity of the model calibration, the

assumption that a material behaves like a neo-Hookean material in both the active

and frozen phases is maintained.

It is noted that no information on the relationship of the parameters with respect

to a change in temperature is obtained or assumed, as dictated by the constitutive
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model. The function dependence of these parameters will be addressed later, with the

stretch values as a function of temperature related to quantities previously obtained

in calibrating the small deformation model.

Furthermore, by assuming the SMP in question is an isotropic material, the shear

modulus in each phase can be related to the elastic modulus and the Poisson’s ratios

through Eq. (3.34) at the discrete temperatures for which E(θ) and ν(θ) are available.

µa(θ) =
Ea

2(1 + νa(θ))

µf (θ) =
Ef

2(1 + νf (θ))

(3.34)

where Ea and Ef are the elastic moduli in each phase, and νa(θ) and νf (θ) are the

Poisson’s ratios which are assumed to be 0.5 as previously discussed for the active

and frozen phases, respectively. For the large deformation model, values of the tensile

modulus are calculated from the 25% extension experiments, which corresponds to

a stretch equal to 1.25, and are averaged with the previously presented values from

the 10% extension experiments. Similar to the small deformation calibration, the

elastic moduli for each phase are calculated from the loading in the active phase and

unloading in the frozen phase, which are presented in Figs. 26 (a) and (b) respectively.

The frozen volume fraction is again assumed to be a function of the shape re-

covery profile upon heating at zero load. Specifically, the frozen volume fraction φ(θ)

is assumed to be the extension recovery profile ε(θ) normalized by the maximum

amount of recoverable deformation. Figure 27 (a) presents the shape recovery profile

for the experiment with an extension of 25%, and Fig. 27 (b) presents the function

for the frozen volume fraction. Due to the fact that the material is assumed to be

completely in the frozen and active phases at beginning and end of heating, respec-

tively, the frozen volume fraction is normalized such that the upper and lower bounds

of the function are 1 and 0, respectively.
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After determining the function for φ(θ), all of the necessary calibration require-

ments have been assumed and/or calculated. It is noted that, although the param-

eters were calibrated using extension data, the numbers are consistent for use with

the model which is developed in terms of stretch which is equal to the extension plus

one (undeformed state implies stretch = 1), and thus represents a uniform shift in the

data that does not affect the slopes or normalization. A summary of the calibration

requirements and the corresponding values is presented in Table V.

Table V. Necessary Calibration Parameters for the Large Deformation Constitutive

Model

Parameter Value
Active phase 

volume ratio (va(θ=90°C)) 1

Frozen phase 
volume ratio (vf(θ=25°C)) 1

Active phase 
shear modulus (μa(θ=90°C)) 0.12 MPa

Frozen phase 
shear modulus (μf(θ=25°C)) 433 MPa

Frozen volume 
fraction (       ) f(ε(θ))

It is noted that the shear modulus µ(θ) encompasses the elastic modulus E

presented in calibrating the small deformation model. In addition, the volume ratios

ν are assumed to be unity for deformations occurring at a constant temperature,

but the temperature dependence of ν encompasses the thermal expansion coefficients

in the small deformation model. As a result, the calibration requirements for the

large deformation model are simply functions of the calibration requirements for the
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small deformation model. The difference originates from the different form of the

constitutive equations posed for each model.

4. Reduction of Large Deformation Model for Small Deformations

The large deformation model has been posed, through the neo-Hookean assumption,

in terms of stretches, shear moduli, and volume ratios. As such, each of the active

and frozen phases were assumed to have the material response described through

Eq. (3.35).

µ(θ)(λ− ν(θ)

λ2
) = s

µ(θ)

λ2
(λ3 − ν(θ)) = s

(3.35)

Where, due to the incompressibility assumption, the shear modulus is rewritten

through Eq. (3.36)

µ(θ) =
E(θ)

2(1 + ν)
=

E(θ)

3
(3.36)

In reducing the equation for small, uniaxial deformations, it is assumed that

the axial stretch component can be written in terms of the axial component of the

infinitesimal strain tensor through Eq. 3.37.

λ = (1 + ε) (3.37)

In addition, it is noted that the volume ratio can be written in terms of the

coefficients of thermal expansion (recall the assumption that mechanical deformations

do not change the volume). As such, the volume ratio for an isotropic material with

an unit reference volume is written as Eq. (3.38), where the higher order terms have

been neglected.

ν(θ) = (1 + α∆θ)3 ≈ (1 + 3α∆θ) (3.38)

Using Eq. (3.37) and neglecting the higher order terms of ε for small deforma-
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tions, Eq. (3.35) reduces to Eq. (3.39).

E(θ)

3λ2
((1 + ε)3 − (1 + 3α∆θ)) = s

E(θ)

3λ2
(1 + 3ε− (1 + 3α∆θ)) = s

E(θ)

3λ2
(3ε− 3α∆θ) = s

(3.39)

Invoking another assumption that λ is close to 1 for small deformations, and thus

λ2 is near 1, Eq. (3.39) reduces to Eq. (3.40).

E(θ)(ε− α∆θ) = s (3.40)

Recalling the assumption that the first Piola-Kirchoff stress can be approximated

by the Cauchy stress for small deformations, Eq. (3.40) reduces to the familiar linear

thermoelastic relationship for isotropic materials, where ε represents the elastic strain

component and α∆θ represents the thermal strain.

E(θ)(ε− α∆θ) = σ (3.41)

The reduction of the model reinforces the notion that the small deformation

model and large deformation model are equivalent, particularly for small deforma-

tions. The large deformation model, in a simplistic approach, is essentially the small

deformation model without the nonlinear strain terms neglected. As such, the small

deformation model is incapable of capturing the nonlinear stress-strain relationship

in loading to large deformations. This notion was previously presented in the large

deformation predictions produced using the small deformation model. An additional

observation is that the calibration requirements of the two models in Table IV and

Table V are not independent as the shear moduli and volume ratios can be rewritten

in terms of the elastic moduli and coefficients of thermal expansion as previously

discussed.
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5. Axial Stretch Equation as Applied to the SME Thermomechanical Load Path

After all of the calibration parameters required to describe the axial stretch of a SMP

are determined, the equations for each step of the shape memory effect thermome-

chanical load path are simplified from Eq. (3.33). These equations are presented in

such a manner as to be convenient for one-dimensional numerical implementation in

MATLAB R©.

In the first step of the thermomechanical load path, the material is at a constant

temperature in the active phase and is loaded to the predetermined value of defor-

mation (stretch). Applying these conditions to the axial stretch equation derived in

Eq. (3.33), the integral term of the equation is eliminated due to the fact that the

constant temperature infers θ̃′(τ) = 0. Furthermore, the assumption that the mate-

rial is completely in the active phase during loading infers the frozen volume fraction

φ(θ) = 0. Consequently, the axial stretch equation in Eq. (3.33) reduces to Eq. (3.42)

which, as expected, equates the axial stretch of the material to the value of the axial

stretch due to loading purely in the active phase.

λ(t) = λa(s(t), θ(t)) (3.42)

In the second step, the temperature is assumed to be monotone decreasing during

the cooling step, and the net cooling history θ̃(τ) reduces to θ(τ), where θ(τ) is the

cooling profile measured during the experiment. Using the assumption of constant

deformation in this step in addition to the integral term equal to zero for 0 ≤ t ≤ t1,

the axial stretch equation reduces to Eq. (3.43).

λ(t) = λ1 = [1− φ(θ(t))]λa(s(t), θ(t))

+

∫ t

t1

λf (s(t), θ(t))λa(s(τ), θ(τ))

λf (s(τ), θ(τ))
φ′(θ(τ))θ′(τ)dτ

(3.43)



67

where the stress as a function of temperature ś(θ) is the unknown quantity. Differ-

entiating Eq. (3.43) is thus differentiated with respect to time results in Eq. (3.44)

with the left hand side is equal to zero due to the constant stretch during this step.

0 = [1− φ(θ(t))]
d

dt
λa(s(t), θ(t))

+
d

dt
[λf (s(t), θ(t))]λ

−1
f (s(t), θ(t))[λ1 − [1− φ(θ(t))]λa(s(t), θ(t))]

(3.44)

Expanding the time derivatives and treating the stress s as a function of the

temperature θ, eliminates the functional dependence on time from Eq. (3.44) and

reduces the equation to Eq. (3.45).

0 = [1− φ(θ)]{ ∂

∂s
λa(s, θ)[

dś

dθ
] +

∂

∂θ
λa(s, θ)}

+ { ∂

∂s
λf (s, θ)[

dś

dθ
] +

∂

∂θ
λf (s, θ)}λ−1

f (s, θ)[λ1 − [1− φ(θ(t))]λa(s, θ)]

(3.45)

which is an ordinary differential equation for the stress as a function of temperature.

To solve this equation, the quantities ∂
∂s

λa(s, θ),
∂
∂s

λf (s, θ),
∂
∂θ

λa(s, θ), and ∂
∂θ

λf (s, θ)

must be known. These parameters represent the change in axial stretches due to

changes in stress and temperature, respectively. Although explicit analytical func-

tions could be obtained for the change in axial stretch with respect to temperature

( ∂
∂s

λa(s, θ) and ∂
∂s

λf (s, θ)) from Eq. (3.29), measurements performed in this work do

not explicitly provide the change in the volume ratio and shear modulus with re-

spect to temperature. Consequently, these quantities are assumed to reduce to the

coefficients of thermal expansion calibrated as part of the small deformation model.

∂

∂θ
λa(s, θ) = αa = 5.2 ∗ 10−4/◦C

∂

∂θ
λf (s, θ) = αf = 0.75 ∗ 10−4/◦C

(3.46)
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Furthermore, rather than working with the cubic function for the stretch-stress

relationship, the terms ∂
∂s

λa(s, θ) and ∂
∂s

λf (s, θ) are approached in a different manner.

First, it is assumed that little deformation occurs in the frozen phase, and thus the

stretch can be approximated by a linear relationship with respect to temperature

and is related to the elastic modulus in the frozen phase Ef previously calibrated.

In addition, the stretch-stress relationship in the active phase is approximated by

an exponential function to capture the nonlinear behavior for large deformations.

The resulting approximations for the derivatives of the stretch λ with respect to the

temperature θ are presented in Eq. (3.47).

∂

∂s
λa(s, θ) = 2.5e− 006 ∗ e2.5e−006∗s[MPa−1]

∂

∂s
λf (s, θ) =

1

Ef

= 7.69e− 10[MPa−1]
(3.47)

In the third step of the thermomechanical load path, the stress generated due to

the constrained cooling process is released. During this step, the temperature is held

constant at a value θ2 such that the contribution in Eq. (3.9) to the integral term

from t2 ≤ t ≤ t3 is zero, and the axial stretch equation reduces to Eq. (3.48).

λ(t) = [1− φ(θ(t2))]λa(s(t), θ2)

+

∫ t2

t1

λf (s(t), θ2)λa(s(τ), θ(τ))

λf (s(τ), θ(τ))
φ′(θ(τ))θ′(τ)dτ

(3.48)

Using the equations derived during the second step of the experimental path, the

integral term in Eq. (3.48) is replaced and the equation is rewritten in the form of

Eq. (3.49).

λ(t) = [1− φ(θ(t2))]λa(s(t), θ2)

+ λf (s(t), θ2)λ
−1
f (s2, θ2)[λ1 − [1− φ(θ2)λa(s2, θ2)]]

(3.49)

where s2 is the stress at the end of the constrained cooling and λ1 is the constant
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value of the axial stretch maintained during the cooling step. Assuming the material is

completely in the frozen phase at the low temperature infers φ(θ2) = 1, and Eq. (3.49)

reduces to Eq. (3.50).

λ(t) = λf (s(t), θ2)λ
−1
f (s2, θ2)λ1 (3.50)

The fourth and final step involves heating the material while maintaining a con-

stant load. In this work, the load is zero, neglecting gravity. Assuming the tempera-

ture is monotone increasing during this step, the axial stretch equation in Eq. (3.33)

is rewritten as Eq. (3.51).

λ(θ) = [1− φ(θ)]λa(0, θ)

+

∫ θ

θ0

λf (0, ζ)λa(s(ζ), ζ)

λf (s(ζ), ζ)
φ′(ζ)dζ

(3.51)

where the integral variable ζ is used to represent the intermediate temperatures during

heating, and θ0 is the original temperature of the material at which the material was in

the reference configuration. The stretch as a function of temperature during the final

heating is the unknown quantity in this equation. As such, Eq. (3.51) is differentiated

with respect to temperature to eliminate the integral term, resulting in Eq. (3.52).

dλ́

dθ
= −φ′(θ)λa(0, θ) + [1− φ(θ)]

dλa

dθ
+λf (0, θ)λ

−1
f (ś(θ))λa(ś(θ))φ

′(θ) (3.52)

Equation (3.52) defines an ordinary differential equation for the stretch of the

material as a function of temperature λ́(θ) where ś(θ) is the stress of the material

when it last experienced the temperature θ. In other words, for this load path,

ś(θ) is the stress of the material at temperature θ during the constrained cooling,

and λ−1
f (ś(θ)) and λa(ś(θ)) are the values of the axial stretches in each phase as
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evaluated at this stress. To simplify Eq. (3.52), it is assumed that the stretches

due to thermal expansion λa(0, θ) and λf (0, θ) are approximately equal to one (small

values of extension), and that the derivative of the stretch in the active phase with

respect to temperature dλa

dθ
is again assumed to be the thermal expansion coefficient

of the active phase αa. Using these assumptions, Eq. (3.52) reduces to Eq. (3.53).

dλ

dθ
= −φ′(θ) + [1− φ(θ)]αa + λ−1

f (ś(θ))λa(ś(θ))φ
′(θ) (3.53)

The derivation of Eq. (3.53) completes the set of equations needed to predict

the shape memory effect observed in the experimental investigation of Chapter II.

These equations, namely Eqs. (3.42), (3.45), (3.50), and (3.53), are summarized in

the following four equations.

λ(t) = λa(s(t), θ(t))

0 = [1− φ(θ)]{ ∂

∂s
λa(s, θ)[

ds

dθ
] +

∂

∂θ
λa(s, θ)}

+ { ∂

∂s
λf (s, θ)[

ds

dθ
] +

∂

∂θ
λf (s, θ)}λ−1

f (s, θ)λ1 − [1− φ(θ(t))]λa(s, θ)

λ(t) = λf (s(t), θ2)λ
−1
f (s2, θ2)λ1

dλ

dθ
= −φ′(θ) + [1− φ(θ)]αa + λ−1

f (ś(θ))λa(ś(θ))φ
′(θ)

Numerically implementing these equations in MATLAB R© and using the values

of the calibration parameters presented in Table V, predictions are made for different

values of applied stretch. The files used to implement the constitutive equations are

provided in Appendix B.
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6. Prediction of Experimental Load Path and Discussion

After calibrating the necessary parameters to implement Eqs. (3.42), (3.45), (3.50),

and (3.53) for the shape memory effect thermomechanical cycle, the model was used

to predict the material response for the shape memory effect with 10% extension.

The results were compared to the model prediction of the small deformation model

in Fig. 28. A slight difference is seen in the shape recovery segment of the thermome-

chanical load path. This difference is due to the slight variations in the frozen volume

fraction, as the function for the two models was calibrated from experiments with

different values of applied deformation. Overall, the model predictions are nearly

identical for small values of applied deformation. This comparison is expected as a

neo-Hookean model is generally considered an adaptation of linear elastic material

response for large deformations.
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Fig. 28. Comparison of Stretch-Stress-Temperature Predictions for SME with 10% Ap-

plied Tensile Extension
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In addition to the 10% extension case, the model was used to predict the SME

response for a SMP assumed to behave as a neo-Hookean material for axial stretch

values of 1.25, 1.5, and 2.0. These stretch values can be directly related to the

experiments performed in Chapter II with respective extensions of 25%, 50%, and

100%. In particular, the stretch of a material is defined as the ratio of the current

length of the material to the original length, or is one (1) plus the value of the

extension.

The constitutive model is first used to predict the shape memory effect in one-

dimension for a material subjected to a value of stretch equal to 1.25. Figure 29

presents the stretch-stress-temperature profile for the entire thermomechanical load

path. Similar to the predictions obtained from implementing the model for small

deformations, the three-dimensional plot in the figure is analogous to the thermo-

mechanical cycle presented in Fig. 1. In this figure, the model prediction matches

well with that of the experimental data, and the following figures focus on particular

relationships of the state of the material to provide more insight as to the accuracy

of the comparison. In this figure and all such figures, the solid lines again represents

the model predictions while the discrete points represent actual experimental data

obtained in Chapter II.

Figure 30 presents the stress-stretch data for the case of stretch equal to 1.25.

The model prediction matches well with the experimental data, and the prediction

captures the nonlinear stress-stretch relationship at relatively larger values of applied

stretch. This nonlinearity is both observed experimentally and expected to be cap-

tured by the model prediction due to the nonlinear equations for the stress in terms

of the stretch presented in Eq. (3.29). Furthermore, Fig. 30 shows good agreement

for the stress increase during cooling while maintaining a constant value of stretch.
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Fig. 29. Stretch-Stress-Temperature Prediction for SME with Stretch Equal to 1.25
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Fig. 30. Stress-Stretch Prediction for SME with Stretch Equal to 1.25
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Figure 31 presents the stress-temperature results for the model prediction and the

corresponding experimental data. From this figure, it is observed that in general, the

prediction matches well with experimental data both qualitatively and quantitatively.

Specifically, the stress increase due to the constrained cooling has good agreement.

A key observation is that the onset of the glass transition predicted by the model

matches well with the experimental data as denoted by the more rapid increase in

stress during the constrained cooling process. In addition, the final stress at the end

of cooling is nearly identical for the model prediction compared to that observed in

the experimental data. The stress profiles, however, are not identical in part due to

the effects of the kinematic constraint on the material which is possibly affecting the

glass transition behavior which is calibrated from the strain recovery profile at zero

load. Nonetheless, the model prediction matches well with the experimental data

during this step of the thermomechanical load path.
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Fig. 31. Stress-Temperature Prediction for SME with Stretch Equal to 1.25
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The final figure for the 1.25 stretch case is the stretch-temperature plot presented

in Fig. 32. Although half of the thermomechanical load path involves constant tem-

perature segments which contribute little to the comparison, a key component in this

figure is the shape recovery profile upon heating at zero load. It is again observed that

the model prediction has reasonable agreement with the experimental data. In par-

ticular, the qualitative nonlinear stretch recovery profile with respect to temperature

is observed, and the shape recovery begins at approximately the same temperature

for both the prediction and the experimental data. This agreement is expected as

the frozen volume fraction, the parameter which ‘dictates’ the shape recovery dur-

ing heating, is calibrated from this experimentally-obtained stretch recovery profile.

There is a difference in the final value of the stretch, however, due to the fact that

the model is developed on the assumption that all ‘frozen’ deformation is recovered

upon subsequent heating through the same temperature range and consequently does

not account for the experimentally observed irrecoverable deformation. Additionally,

similar to the predictions of the linearized model, the values of stretch obtain a value

less than 1.0 (undeformed state) near the end of recovery. This observation is due

to ‘extra’ deformation stored during cooling as a result of the stress predicted by the

model lying above that of the experimental data. Thus, when the stress from this

step is recalled during heating, the model predicts a larger amount of recovery.

In addition to predicting the material response for the case with stretch equal

to 1.25, the model was used to predict the material response when the stretch was

increased to values of 1.5 and 2.0 for which the corresponding extensions were 50%

and 100%, respectively. Unlike the predictions for these values of extensions by the

linearized model, the predictions made by the large deformation model for the corre-

sponding values of stretch present more than just an empirical prediction. Specifically,

the calculated stretches are theoretically consistent in representing entire deformation
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Fig. 32. Stretch-Temperature Prediction for SME with Stretch Equal to 1.25

of the body undergoing uniaxial tension. For instance, if desired (but not performed

in this work), the axial component of the Green strain or other finite deformation

measure could be calculated from the value of the axial stretch.

Figures 33 and 34 presents the complete, three-dimensional stretch-stress-

temperature profiles for the cases with stretch equal to 1.5 and 2.0, respectively, with

the experimental data plotted for purposes of comparison. It is again observed that

the model prediction has reasonable agreement with the experimental data for both

values of applied extension, and the following figures focus on particular relationships

in the data to present a more thorough comparison.
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Fig. 33. Stretch-Stress-Temperature Prediction for SME with Stretch Equal to 1.5
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Fig. 34. Stretch-Stress-Temperature Prediction for SME with Stretch Equal to 2.0



78

Figure 35 presents the stress-stretch prediction for the two load cases. Examining

Fig. 35, reasonable agreement is seen for the stress profiles with increasing stretch.

One feature not captured by the model is the local stress peak observed at a stretch

of approximately 1.7 in the experiment when loading to the stretch value of 2.0. This

local peak results in an upward shift in the stress which is also not captured by

the model prediction. On the other hand, the nonlinear trend of the stress-stretch

profile during loading is captured qualitatively well by the model predictions. It is

important to note that even very small fluctuations (even 10kPa) in the value of the

calibrated elastic modulus, and thus the shear modulus, of the active phase can result

in significant shifts in the model prediction. This strong dependence on the moduli

of the material in the active phase likely contributes to the slight differences between

the model prediction and the experimental data, for which individual specimens may

exhibit slightly different material properties.
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Fig. 35. Stress-Stretch Prediction for SME with Stretch Equal to 1.5 and 2.0
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Figure 36 presents the stress-temperature prediction compared to the experi-

mental results for the two load cases. The stress-temperature profile predicted by

the model for an axial stretch value equal to 1.5 not only closely follows the profile

observed in the experimental data, but the predicted final value is also very near

that observed experimentally. The load case where the stretch is equal to 2.0 also

exhibits good qualitative agreement but not as good of quantitative agreement. In

particular, the stress increase predicted by the model is larger than that observed in

the data. This discrepancy may be attributed to the discussion in Chapter II where

some inelastic phenomena may be present in the material as related to the peak ob-

served during loading, and these inelastic effects may have affected the ability of the

material to sustain as high of stresses upon cooling.
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Fig. 36. Stress-Temperature Prediction for SME with Stretch Equal to 1.5 and 2.0

Finally, Fig. 37 provides the stretch-temperature prediction for the two load

cases. The key component in this such figure is the shape recovery upon heating
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at zero load, depicted by the qualitative nonlinear stretch-temperature profile. The

model prediction shows good agreement with experimental data, but does not capture

the irrecoverable deformation which remains in the material at the end of heating.

Additionally, the stretch obtains a value less than 1.0 during recovery for the same

reason as the case with stretch equal to 1.25, where additional deformation is recovered

due to the discrepancies in the stress prediction during cooling. Furthermore, it is

observed that similar to the experimental observations in Chapter II, the rate of

strain recovery due to a constant temperature rate increases with increasing values

of deformation.
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Fig. 37. Stretch-Temperature Prediction for SME with Stretch Equal to 1.5 and 2.0

D. Conclusions

In this work, the experimental data obtained in Chapter II was used to calibrate two

constitutive models aimed at describing the shape memory effect in shape memory
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polymers. The models, proposed by Chen and Lagoudas, were the general, large de-

formation model as well as the small deformation model obtained through linearizing

of the large deformation model. The one-dimensional constitutive equations were

then numerically implemented in MATLAB R© for the shape memory effect thermo-

mechanical cycle presented in Fig. 1.

The small deformation model assumed infinitesimal strains, Cauchy stress, and

an isotropic, linear elastic material. The integral term in Eq. (3.1) containing defor-

mation gradients multiplied together was reduced via a first order approximation to

an additive decomposition of the deformations due to the active and frozen phases,

and the deformation in the active phase subsequently frozen upon cooling. This work

calibrated the model in one-dimension for the axial component of the infinitesimal

strain tensor. The resulting calibration requirements, namely the frozen volume frac-

tion, the elastic moduli the active and frozen phases, and the thermal expansion

coefficients in the active and frozen phases, were calculated from the experimental

data obtained in Chapter II and summarized in Table IV. The data from the 10%

applied strain (extension) experiment was used to calibrate the material properties,

and the model was subsequently used to predict the shape memory effect for 10%,

25%, 50%, and 100% applied strain. While the model predicted reasonable agreement

for the thermomechanical load path for each value of applied strain, it was noted that

the predictions for larger values of applied strain were essentially empirical predic-

tions for the extension of the material because materials undergoing relatively larger

values of applied extension can no longer have the state of the material accurately

represented by the infinitesimal strain tensor.

In addition, the large deformation model was calibrated using the experimental

data obtained in Chapter II, and the material was assumed to behave as an isotropic,

neo-Hookean material in that it was assumed that the material was incompressible for
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any deformations occurring at a constant temperature. Using this neo-Hookean as-

sumption, the constitutive equation proposed by Chen and Lagoudas in Eq. (3.1) was

reduced to a one-dimensional constitutive equation for the axial stretch of the SMP.

The resulting constitutive equation again needed five calibration functions which were

assumed to be functions of temperature, namely the frozen volume fraction, the shear

moduli in the active and frozen phases, and the volume ratios in the active and frozen

phases. The data from the experiments with stretch equal to 1.25 (25% extension)

was used to calibrate the constitutive equations but only provided the shear moduli

and volume ratios for the material at two discrete temperatures - namely the high and

low temperatures at which loading and unloading occurred, respectively. As a result,

assumptions were made that for each phase, the derivative of the stretch (a function

of the shear moduli and volume ratio) with respect to temperature was approximated

as the coefficient of thermal expansion previously calibrated for the small deformation

model. After calibrating the necessary functions, the model was used to predict the

stretch-stress-temperature profiles for uniaxial stretches of 1.25, 1.5, and 2.0. The

model predictions agreed well with the experimental data, but failed to capture the

irrecoverable deformations at the end of the recovery heating as well as the stress

peak during load to a stretch of 2.0. The first difference is due to the assumption

made during model development that the material recovers all of the deformation

which is frozen upon subsequent heating, and the second difference may be due to

yielding or other inelastic phenomena occurring in the material.

In conclusion, the constitutive models developed by Chen and Lagoudas were

successfully calibrated with and used to predict the experimental data obtained in

Chapter II. The model predictions agreed well with the corresponding experimental

data, and present the first attempt to calibrate a large deformation model for shape

memory polymers. The model predictions not only help validate the development of
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the model, but also the experimental procedures used in characterizing the SMPs.
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CHAPTER IV

CONCLUSIONS

In this work, a thermomechanical experimental investigation of the shape memory

effect in a particular shape memory polymer was conducted. Tests were performed

on the VeriflexTM shape memory polymer developed by Cornerstone Research Group,

Inc., and followed the thermomechanical cycle for the SME in shape memory poly-

mers presented in Fig. 1 focusing strictly on the material response due to tensile

deformations. This experimental investigation involved the use of a complex experi-

mental apparatus at NASA Langley Research Center that included an optical strain

measurement technique named the VIC 3-D system that was capable of capturing

large deformations and subsequently calculating the full-field strain measurements in

two dimensions.

Experiments with tensile extensions of 10%, 25%, 50%, and 100% and tempera-

ture rates of 1◦C/min to 5◦C/min were performed on pristine shape memory polymer

specimens. The material was observed to recover approximately 95% of the applied

deformation under zero load recovery conditions during the first actuation cycle. In

addition, the amount of recoverable deformation was negligibly influenced by vari-

ations in the temperature rate used during the experiment. The results produced

in this experimental investigation also represent one of the first known efforts to

capture the complete shape recovery profile for dogbone specimens undergoing large

deformations.

In addition, two constitutive models were reduced to a form for the axial de-

formation component during uniaxial tension, and then calibrated with and used

to predict the response of the material observed experimentally. The models, pro-

posed by Chen and Lagoudas, were the general large deformation model as well as the
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small deformation model obtained through linearizing of the large deformation model.

The one-dimensional constitutive equations were then numerically implemented in

MATLAB R© to predict the SME of the Veriflex R© SMP.

The calibration of the small deformation model assumed infinitesimal strains,

approximation of the Piola-Kirchoff stress as the Cauchy stress, and an isotropic,

linear elastic material. The calibration requirements, namely the frozen volume frac-

tion, the elastic moduli in each phase, and the thermal expansion coefficients in each

phase, were calculated from the 10% extension experimental data. The model was

then used to predict the shape memory effect for extensions of 10%, 25%, 50%, and

100%. Although the model predicted reasonable agreement for the thermomechanical

load path for each value of applied strain, it is noted that the predictions for larger

values of applied strain were essentially empirical predictions of the extension of the

material as materials undergoing such large values of deformation can no longer have

the state of the material accurately represented by the infinitesimal strain tensor and

the Cauchy stress tensor.

The large deformation model was then calibrated in one-dimension using the

experimental data obtained in Chapter II. In this work, the material was assumed

to behave as an isotropic, neo-Hookean material. Using this assumption, the three-

dimensional constitutive equation proposed by Chen and Lagoudas was reduced to a

one-dimensional constitutive equation for the axial stretch in the SMP. The resulting

constitutive equation needed five calibration functions, namely the frozen volume frac-

tion, the shear moduli in each phase, and the volume ratios in each phase, all of which

were assumed to be functions of temperature. These functions were either calibrated

from the experimental data with stretch equal to 1.25 (25% applied extension) or as-

sumptions were made as to the value of terms when sufficient experimental data was

not available. After calibrating the required functions, the model was used to predict
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the stretch-stress-temperature profiles for large deformations including stretch values

of 1.25, 1.5, and 2.0 which corresponded to the experimental data for extensions of

25%, 50%, and 100%. The model predictions agreed well with the experimental data

and also captured the nonlinear stress-stretch behavior which was not captured by

the small deformation model.

In both the small deformation and large deformation models, the predictions

matched well with the experimental data, but did not capture the irrecoverable de-

formations at the end of the recovery heating. This difference is due to the assumption

made during model development that the material recovers all of the ‘frozen’ defor-

mation upon subsequent heating. In fact, the models predict too much shape recovery

due to the inaccuracies of the stress prediction during cooling which is used to dictate

the stored (and hence, recovered) deformation.

In summary, a complex thermomechanical characterization on a particular shape

memory polymer was performed which represented one of the first known efforts

to capture the complete shape recovery profile for dogbone specimens. Using this

data, two constitutive models proposed by Chen and Lagoudas were successfully

calibrated with and used to predict the experimental data obtained in Chapter II.

The model predictions agreed well with the corresponding experimental data, and

present the first attempt to calibrate the large deformation model proposed by Chen

and Lagoudas for shape memory polymers. Good agreement between the model

predictions and the experimental results not only help validate the development of

the model but also the experimental procedures used in characterizing the SMPs.

This work helps provide a foundation for future numerical implementation in a finite

element software, such as ABAQUS R©, to aid in designing applications using SMPs

and predicting the material response due to complex thermomechanical loading on

non-trivial structures.
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APPENDIX A

MATLAB FILES FOR ONE-DIMENSIONAL NUMERICAL IMPLEMENTATION

OF SMALL DEFORMATION MODEL

%%%%%%%%%%%%%%%%%%%%%% MAIN SOURCE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Brent Volk
%%%%% Calibration of Shape Memory Polymer
%%%%% Model developed by Dr. Chen & Dr. Lagoudas

%%%%% SMP Thermomechanical cycle includes:
%%%%% (1) Apply strain to material in rubber phase
%%%%% (2) Hold strain constant and cool material to below Tg
%%%%% (3) Unload specimen
%%%%% (4) Heat specimen under zero load for shape recovery

%%%%% Clearing the workspace
clc;
clear;

%%%%% SETTING THE GLOBAL VARIABLES (allows use by all functions)
%%%%% Variables include: Elastic moduli, coefficients of thermal expansion,
%%%%% frozen volume fraction, and the temperature and stress during cooling
%%%%% which are used to "recover" the strain upon heating
global E_a
global E_f
global alpha_a
global alpha_f
global CALIBRATIONPHI
global CALIBRATIONTEMP
global Temperature_during_cooling
global Stress_during_cooling

%%%%% Setting the values of the calibration requirements
E_a = 0.33e006;
E_f = 1081e006;
alpha_a = 5.2e-004;
alpha_f = 0.75e-004;
[CALIBRATIONPHI CALIBRATIONTEMP] = Calibrationdata_25perc;
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%%%%% Setting test parameters, including maximum and minimum temperatures,
%%%%% and stress under which the material is allowed to recover
Temperature_maximum = 362;
Temperature_minimum = 298;
Cooling_increment = -1;
Heating_increment = 1;
RecoveryStress = 0;

%%%%% Setting the value of the desired applied strain, and inputting the
%%%%% corresponding experimental data for comparison

Applied_Strain = 0.098;
[ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...

ReducedActualdata10Perc_2;

% Applied_Strain = 0.265;
% [ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
% ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
% ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
% ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
% ReducedActualdata25Perc;

% Applied_Strain = 0.525;
% [ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
% ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
% ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
% ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
% ReducedActualdata50Perc;

% Applied_Strain = 1.07;
% [ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
% ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
% ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
% ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
% ReducedActualdata100Perc;

%%%%% STEP 1 - Apply deformation to material while in rubber phase

%%%%% Predicting the final stress for the desired applied strain.
%%%%% The final stress is calculated assuming linear elastic behavior.
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Final_Stress = E_a*Applied_Strain;
Stress_during_loading = linspace(0, Final_Stress);

%%%%% Setting the temperature during loading to the maximum temperature.
Temperature_during_loading = Temperature_maximum.*...

(ones(size(Stress_during_loading)));

%%%%% Initializing the strain vector during loading
Strain_during_loading = zeros(size(Stress_during_loading));

%%%%% Calculating the strain during loading.
for i = 1:1:length(Stress_during_loading)

curr_phi = GetPhi(Temperature_during_loading(i));
Strain_during_loading(i) = (1-curr_phi)*(Stress_during_loading(i)/E_a)...

+ curr_phi*(Stress_during_loading(i) / E_f);
end

%%%%% STEP 2 - Cool material to below Tg while maintaining deformation

%%%%% Setting the temperature during cooling from the max temperature to
%%%%% the minimum temperature at an arbitrary cooling increment.
Decreasing_Temperature = ...

(Temperature_maximum:Cooling_increment:Temperature_minimum);

%%%%% Solving the ODE for stress as a function of temperature. The function
%%%%% arguments are the desired cooling temperature span as well as the
%%%%% starting stress(initial condition). The starting stress is taken
%%%%% to be the stress value at the end of the loading segment.
[Temperature_during_cooling Stress_during_cooling] = ...

ode23(’Cooling_ode_withBrentdata’, Decreasing_Temperature, ...
Stress_during_loading(length(Stress_during_loading)));

%%%%% The strain during cooling is taken to be a constant, with a value of
%%%%% that at the end of the loading in Step 1.
Strain_during_cooling=Strain_during_loading(length(Strain_during_loading))...

.*(ones(size(Temperature_during_cooling)));

%%%%% STEP 3 - Unload the material at a constant temperature
%%%%% in the glass phase (T < Tg)

%%%%% Setting the stress during unloading from the stress at the end of
%%%%% cooling to the desired recovery stress.
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Stress_during_unloading = linspace(Stress_during_cooling...
(length(Stress_during_cooling)),RecoveryStress);

%%%%% Setting the temperature during unloading to the minimum temperature.
Temperature_during_unloading = Temperature_minimum.*...

(ones(size(Stress_during_unloading)));

%%%%% Determining the frozen volume fraction at the desired unloading temp.
unload_phi = GetPhi(Temperature_minimum);

%%%%% Calculating the values of strain during the unloading process.
Strain_during_unloading=Strain_during_cooling(length(Strain_during_cooling))...

+ ((1-unload_phi)/E_a + unload_phi/E_f)*(Stress_during_unloading - ...
Stress_during_cooling(length(Stress_during_cooling)));

%%%%% STEP 4 - Heat the material to T < Tg to allow strain recovery.
%%%%% Assumes material recovers completely upon heating.

%%%%% Setting the temperature during heating from the min temperature to
%%%%% the maximum temperature at an arbitrary cooling increment.
Increasing_Temperature = ...

Temperature_minimum:Heating_increment:Temperature_maximum;

%%%%% Solving the ODE for strain recovery as a function of temperature.
%%%%% The function arguments are the desired heating temperature span as
%%%%% well as the strain at the end of unloading (initial
%%%%% condition).
[Temperature_during_recovery Strain_during_recovery] = ...

ode23(’Heating_ode_withBrentdata’, Increasing_Temperature, ...
Strain_during_unloading(length(Strain_during_unloading)));

%%%%% The stress during recoveyr is taken to be a constant, with a value of
%%%%% the desired recovery stress previously defined.
Stress_during_recovery = RecoveryStress.*...

(ones(size(Temperature_during_recovery)));

%%%%% Creating plots
%%%%% Setting the parameters of the figures
set(0,’defaultaxesfontsize’,20);
set(0,’defaultaxesfontname’,’calibri’);
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%%%%% Plotting the Stress vs. Temperature
figure(1);
plot(Temperature_during_loading, Stress_during_loading, ’k’, ...

ActualLoadingTemperature, ActualLoadingStress, ’ko’, ...
Temperature_during_cooling, Stress_during_cooling, ’k’, ...
ActualCoolingTemperature, ActualCoolingStress,’ko’, ...
Temperature_during_unloading, Stress_during_unloading, ’k’, ...
ActualUnloadingTemperature, ActualUnloadingStress,’ko’, ...
Temperature_during_recovery, Stress_during_recovery,’k’, ...
ActualRecoveryTemperature, ActualRecoveryStress,’ko’, ’LineWidth’,2);

hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Strain vs. Temperature
figure(2);
plot(Temperature_during_loading, Strain_during_loading, ’k’, ...

ActualLoadingTemperature, ActualLoadingStrain, ’ko’, ...
Temperature_during_cooling, Strain_during_cooling, ’k’, ...
ActualCoolingTemperature, ActualCoolingStrain,’ko’, ...
Temperature_during_unloading, Strain_during_unloading, ’k’, ...
ActualUnloadingTemperature, ActualUnloadingStrain,’ko’, ...
Temperature_during_recovery, Strain_during_recovery,’k’, ...
ActualRecoveryTemperature, ActualRecoveryStrain,’ko’, ’LineWidth’,2);

hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Strain (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Stress vs. Strain
figure(3);
plot(Strain_during_loading, Stress_during_loading, ’k’, ...

ActualLoadingStrain, ActualLoadingStress, ’ko’, ...
Strain_during_cooling, Stress_during_cooling, ’k’, ...
ActualCoolingStrain, ActualCoolingStress,’ko’, ...
Strain_during_unloading, Stress_during_unloading, ’k’, ...
ActualUnloadingStrain, ActualUnloadingStress,’ko’, ...
Strain_during_recovery, Stress_during_recovery,’k’, ...
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ActualRecoveryStrain, ActualRecoveryStress,’ko’, ’LineWidth’,2);
hold on

xlabel(’Strain (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Stress-Strain-Temperature Profile in 3-D
figure(4);
plot3(Temperature_during_loading, Strain_during_loading,...

Stress_during_loading, ’k’, ...
ActualLoadingTemperature, ActualLoadingStrain,...
ActualLoadingStress, ’ko’, ...

Temperature_during_cooling, Strain_during_cooling,...
Stress_during_cooling, ’k’, ...

ActualCoolingTemperature, ActualCoolingStrain, ...
ActualCoolingStress,’ko’, ...

Temperature_during_unloading, Strain_during_unloading,...
Stress_during_unloading, ’k’, ...

ActualUnloadingTemperature, ActualUnloadingStrain, ...
ActualUnloadingStress, ’ko’, ...

Temperature_during_recovery, Strain_during_recovery,...
Stress_during_recovery, ’k’, ...

ActualRecoveryTemperature, ActualRecoveryStrain, ...
ActualRecoveryStress, ’ko’, ’LineWidth’,2);

hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Strain (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
zlabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on



97

%%%%%%%%%%%%%%%%%%%%%% COOLING ODE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Function to solve for the stress increase with respect to a change
%%%%% in temperature while maintaining constant deformation
function dydT = Cooling_ode_withBrentdata (T2, y)

%%%%% Initializing the global variables (material properties).
global E_a
global E_f
global alpha_a
global alpha_f

%%%%% Getting the frozen volume fraction for each increment of temperature.
curr_phi = GetPhi(T2);

%%%%% Setting the expression of the ODE for the stress w.r.t. temperature.
dydT = -((1-curr_phi)*alpha_a + curr_phi*alpha_f) / ...

((1-curr_phi)/E_a + curr_phi/E_f);
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%%%%%%%%%%%%%%%%%%%%%% HEATING ODE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Function to obtain the ODE for the strain recovery with respect
%%%%% to a change in temperature while maintaining constant stress
function dydT = Heating_ode_withBrentdata (T4, y)

%%%%% Initializing the global variables (material properties).
global alpha_a
global alpha_f
global E_a
global E_f
global CALIBRATIONPHI
global CALIBRATIONTEMP

%%%%% Initializing the temperature and stress the material experienced
%%%%% during constrained cooling.
global Temperature_during_cooling
global Stress_during_cooling

%%%%% Getting the frozen volume fraction for each increment of temperature.
heat_phi = GetPhi(T4);

%%%%% Numerically differentiating the frozen volume fraction w.r.t.
%%%%% temperature.
dp = diff(CALIBRATIONPHI);
dp(length(dp)+1) = dp(length(dp));
dT = diff(CALIBRATIONTEMP);
dT(length(dT)+1) = dT(length(dT));
dpdT = dp./dT;

%%%%% Interpolating for the derivative of the frozen volume fraction at the
%%%%% current temperature the stress of the material when last at the
%%%%% current temperature.
dphi = interp1(CALIBRATIONTEMP, dpdT, T4);
Stress = interp1(Temperature_during_cooling, Stress_during_cooling,T4);

%%%%% Setting the expression of the ODE for the strain w.r.t. temperature.
dydT = (1-heat_phi)*alpha_a + heat_phi*alpha_f + ...

(1/E_a + 1/E_f)*dphi*Stress;
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APPENDIX B

MATLAB FILES FOR ONE-DIMENSIONAL NUMERICAL IMPLEMENTATION

OF LARGE DEFORMATION MODEL

%%%%%%%%%%%%%%%%%%%%%% MAIN SOURCE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Brent Volk
%%%%% Calibration of Shape Memory Polymer
%%%%% Large Deformation Model developed by Dr. Chen & Dr. Lagoudas

%%%%% SMP Thermomechanical cycle includes:
%%%%% (1) Apply strain to material in rubber phase
%%%%% (2) Hold strain constant and cool material to below Tg
%%%%% (3) Unload specimen
%%%%% (4) Heat specimen under zero load for shape recovery

%%%%% Clearing the workspace
clc;
clear;

%%%%% SETTING THE GLOBAL VARIABLES (allows use by all functions)
%%%%% Variables include: elastic moduli, coefficients of thermal expansion,
%%%%% shear moduli, Poissons ratios, volume ratios
%%%%% frozen volume fraction, the equations used to calculate the
%%%%% stretches in each phase, and values of the state of the material
%%%%% during certain portions of the experiment (allows for shape
%%%%% "recovery).
global E_a
global E_f

global alpha_a
global alpha_f

global Rubber_shearmod
global Glass_shearmod

global Rubber_poissons
global Glass_poissons
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global Rubber_vf
global Glass_vf

global CALIBRATIONPHI
global CALIBRATIONTEMP

global lambda_a
global lambda_f

global Stretch_1
global Stress_during_cooling
global Temperature_during_cooling

%%%%% Setting the values of the calibration requirements
E_a = 0.365e006;
E_f = 1081e006;
alpha_a = 1.3e-004;
alpha_f = 0.65e-004;

Rubber_modulus = E_a;
Rubber_poissons = 0.5;
Rubber_vf = 1;
Rubber_shearmod = Rubber_modulus/(2*(1+Rubber_poissons));

Glass_modulus = E_f;
Glass_poissons = 0.5;
Glass_vf = 1;
Glass_shearmod = Glass_modulus/(2*(1+Glass_poissons));

[CALIBRATIONPHI CALIBRATIONTEMP] = Calibrationdata_25perc;

%%%%% Setting test parameters, including maximum and minimum temperatures,
%%%%% and stress under which the material is allowed to recover
Temperature_maximum = 362;
Temperature_minimum = 298;
Cooling_increment = -1;
Heating_increment = 1;
RecoveryStress = 0;

%%%%% Setting the value of the desired applied strain, and inputting the
%%%%% corresponding experimental data for comparison

Applied_Extension = 0.265;
[ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
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ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
ReducedActualdata25Perc;

% Applied_Extension = 0.525;
% [ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
% ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
% ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
% ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
% ReducedActualdata50Perc;

% Applied_Extension = 1.07;
% [ActualLoadingStress ActualLoadingTemperature ActualLoadingStrain ...
% ActualCoolingStress ActualCoolingTemperature ActualCoolingStrain ...
% ActualUnloadingStress ActualUnloadingStrain ActualUnloadingTemperature ...
% ActualRecoveryStrain ActualRecoveryTemperature ActualRecoveryStress] = ...
% ReducedActualdata100Perc;

ActualLoadingStretch = ActualLoadingStrain + 1;
ActualCoolingStretch = ActualCoolingStrain + 1;
ActualUnloadingStretch = ActualUnloadingStrain + 1;
ActualRecoveryStretch = ActualRecoveryStrain + 1;

%%%%%Creating the symbolic equations for the stretches (deformation
%%%%%gradients) in the active and frozen phases.
syms s la ma va lf mf vf

eq1 = sym(’ma*(la - va/la^2) - s’);
lambda_a = solve(eq1, la);
lambda_a = lambda_a(1);

eq2 = sym(’mf*(lf - vf/lf^2) - s’);
lambda_f = solve(eq2, lf);
lambda_f = lambda_f(1);

%%%%% STEP 1 - Apply deformation (stretch) to material while in active phase

%%%%% Setting the stretch vector from 1 (underformed) to the desired
%%%%% deformation previously defined.
Stretch_during_loading = linspace(1,(1+Applied_Extension));

%%%%% Setting the temperature during loading to the maximum temperature.
Temperature_during_loading = Temperature_maximum.*...
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(ones(size(Stretch_during_loading)));

%%%%% Initializing the stress vector during loading
Stress_during_loading = zeros(1,length(Stretch_during_loading));

%%%%% Calculating the stress during loading corresponding to the values
%%%%% of stretch.
for i = 1:1:length(Stretch_during_loading)

Stress_during_loading(i) = Rubber_shearmod*(Stretch_during_loading(i) ...
- Rubber_vf/(Stretch_during_loading(i)^2));

end

%%%%% Storing the value of the stretch at the end of the loading process.
Stretch_1 = Stretch_during_loading(length(Stretch_during_loading));

%%%%%STEP 2 - Cool material to below Tg while maintaining deformation

%%%%% Setting the temperature during cooling from the max temperature to
%%%%% the minimum temperature at an arbitrary cooling increment.
Decreasing_Temperature = ...

(Temperature_maximum:Cooling_increment:Temperature_minimum);

%%%%% Solving the ODE for stress as a function of temperature. The function
%%%%% arguments are the desired cooling temperature span as well as the
%%%%% starting stress(initial condition). The starting stress is taken
%%%%% to be the stress value at the end of the loading segment.
[Temperature_during_cooling Stress_during_cooling] = ...

ode23(’Cooling_ode_withBrentdata’, Decreasing_Temperature, ...
Stress_during_loading(length(Stress_during_loading)));

%%%%% The stretch during cooling is taken to be a constant, with a value of
%%%%% that at the end of the loading in Step 1.
Stretch_during_cooling = Stretch_1.*(ones(size(Temperature_during_cooling)));

%%%%% Storing the value of the stress and temperature at the end of
%%%%% the cooling process.
S_2 = Stress_during_cooling(length(Stress_during_cooling));
T_2 = Temperature_during_cooling(length(Temperature_during_cooling));

%%%%% STEP 3 - Unload the material at a constant temperature
%%%%% in the glass phase (T < Tg)
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%%%%% Setting the stress during unloading from the stress at the end of
%%%%% cooling to the desired recovery stress.
Stress_during_unloading = linspace(S_2, RecoveryStress);

%%%%% Setting the temperature during unloading to the minimum temperature.
Temperature_during_unloading = T_2.*(ones(size(Stress_during_unloading)));

%%%%% Calculating the values of the stretch in each phase at the end of
%%%%% the cooling process
lf_2 = subs(lambda_f, {mf, vf, s}, {Glass_shearmod, Glass_vf, S_2});
la_2 = subs(lambda_a, {ma, va, s}, {Rubber_shearmod, Rubber_vf, S_2});

%%%%% Initializing the stretch vector during unloading
Stretch_during_unloading = zeros(1, length(Stress_during_unloading));

%%%%% Calculating the stretch during unloading.
for i = 1:1:length(Stress_during_unloading)
%%%%% Determining the frozen volume fraction at the desired unloading temp.

curr_phi = GetPhi(Temperature_during_unloading(i));

%%%%% Calculating the stretch of the material if purely in either phase.
curr_la = subs(lambda_a, {ma, va, s}, {Rubber_shearmod, Rubber_vf, ...

Stress_during_unloading(i)});
curr_lf = subs(lambda_f, {mf, vf, s}, {Glass_shearmod, Glass_vf, ...

Stress_during_unloading(i)});

%%%%% Calculating the stretch of the material as related by the frozen
%%%%% volume fraction

Stretch_during_unloading(i) = (1-curr_phi)*curr_la + curr_lf*(1/lf_2)*...
(Stretch_1 - (1-curr_phi)*la_2);

end

%%%%% STEP 4 - Heat the material to T < Tg to allow shape recovery.
%%%%% Assumes material recovers completely upon heating.

%%%%% Setting the temperature during heating from the min temperature to
%%%%% the maximum temperature at an arbitrary cooling increment.
Increasing_Temperature = ...

Temperature_minimum:Heating_increment:Temperature_maximum;

%%%%% Solving the ODE for stretch recovery as a function of temperature.
%%%%% The function arguments are the desired heating temperature span as
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%%%%% well as the stretch at the end of unloading (initial
%%%%% condition).
[Temperature_during_recovery Stretch_during_recovery] = ...

ode23(’Heating_ode_withBrentdata’, Increasing_Temperature, ...
Stretch_during_unloading(length(Stretch_during_unloading)));

%%%%% The stress during recoveyr is taken to be a constant, with a value of
%%%%% the desired recovery stress previously defined.
Stress_during_recovery = RecoveryStress.*...

(ones(size(Temperature_during_recovery)));

%%%%% Creating plots
%%%%% Setting the parameters of the figures
set(0,’defaultaxesfontsize’,20);
set(0,’defaultaxesfontname’,’calibri’);

%%%%% Plotting the Stress vs. Temperature
figure(1);
plot(Temperature_during_loading, Stress_during_loading, ’k’, ...

ActualLoadingTemperature, ActualLoadingStress, ’ko’, ...
Temperature_during_cooling, Stress_during_cooling, ’k’, ...
ActualCoolingTemperature, ActualCoolingStress,’ko’, ...
Temperature_during_unloading, Stress_during_unloading, ’k’, ...
ActualUnloadingTemperature, ActualUnloadingStress,’ko’, ...
Temperature_during_recovery, Stress_during_recovery,’k’, ...
ActualRecoveryTemperature, ActualRecoveryStress,’ko’, ’LineWidth’,2);

hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Stretch vs. Temperature
figure(2);
plot(Temperature_during_loading, Stretch_during_loading, ’k’, ...

ActualLoadingTemperature, ActualLoadingStretch, ’ko’, ...
Temperature_during_cooling, Stretch_during_cooling, ’k’, ...
ActualCoolingTemperature, ActualCoolingStretch,’ko’, ...
Temperature_during_unloading, Stretch_during_unloading, ’k’, ...
ActualUnloadingTemperature, ActualUnloadingStretch,’ko’, ...
Temperature_during_recovery, Stretch_during_recovery,’k’, ...
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ActualRecoveryTemperature, ActualRecoveryStretch,’ko’, ’LineWidth’,2);
hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stretch (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Stress vs. Stretch
figure(3);
plot(Stretch_during_loading, Stress_during_loading, ’k’, ...

ActualLoadingStretch, ActualLoadingStress, ’ko’, ...
Stretch_during_cooling, Stress_during_cooling, ’k’, ...
ActualCoolingStretch, ActualCoolingStress,’ko’, ...
Stretch_during_unloading, Stress_during_unloading, ’k’, ...
ActualUnloadingStretch, ActualUnloadingStress,’ko’, ...
Stretch_during_recovery, Stress_during_recovery,’k’, ...
ActualRecoveryStretch, ActualRecoveryStress,’ko’, ’LineWidth’,2);

hold on

xlabel(’Stretch (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on

%%%%% Plotting the Stress-Stretch-Temperature Profile in 3-D
figure(4);
plot3(Temperature_during_loading, Stretch_during_loading,...

Stress_during_loading, ’k’, ...
ActualLoadingTemperature, ActualLoadingStretch,...
ActualLoadingStress, ’ko’, ...

Temperature_during_cooling, Stretch_during_cooling,...
Stress_during_cooling, ’k’, ...

ActualCoolingTemperature, ActualCoolingStretch, ...
ActualCoolingStress,’ko’, ...

Temperature_during_unloading, Stretch_during_unloading,...
Stress_during_unloading, ’k’, ...

ActualUnloadingTemperature, ActualUnloadingStretch, ...
ActualUnloadingStress, ’ko’, ...

Temperature_during_recovery, Stretch_during_recovery,...
Stress_during_recovery, ’k’, ...

ActualRecoveryTemperature, ActualRecoveryStretch, ...
ActualRecoveryStress, ’ko’, ’LineWidth’,2);



106

hold on

xlabel(’Temperature (K)’,’fontsize’,24, ’FontName’,’arial’)
ylabel(’Stretch (mm/mm)’,’fontsize’,24, ’FontName’,’arial’)
zlabel(’Stress (Pa)’,’fontsize’,24, ’FontName’,’arial’)
legend(’Model Prediction’, ’Experimental Data’)
grid on
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%%%%%%%%%%%%%%%%%%%%%% COOLING ODE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Function to solve for the stress increase with respect to a change
%%%%% in temperature while maintaining constant deformation
function dydT = Cooling_ode_withBrentdata (T2, y)

%%%%% Initializing the global variables: material properties and
%%%%% equations for the stretch in each phase.
global E_f

global alpha_a
global alpha_f

global Rubber_shearmod
global Glass_shearmod

global Rubber_vf
global Glass_vf

global lambda_a
global lambda_f

%%%%% Recalling the stretch at the end of the loading segment
global Stretch_1

syms s ma va mf vf

%%%%% Getting the frozen volume fraction for each increment of temperature.
curr_phi = GetPhi(T2);

%%%%% Setting the change in stretch w.r.t. change in temperature to be
%%%%% the coefficients of thermal expansion.
dla_dtemp = alpha_a;
dlf_dtemp = alpha_f;

%%%%% Setting the value for the change in stretch w.r.t. a change in
%%%%% stress. Frozen phase is assumed to be the inverse of the elastic
%%%%% moduli and the active phase is taken to be a curve fit of the loading
%%%%% curve in the active phase.
dlf_ds = 1/E_f;
dla_ds = 2.5e-006*exp(2.5e-006*y);

%%%%% Calculating the stretch in each material phase.
la = subs(lambda_a, {ma, va, s}, {Rubber_shearmod, Rubber_vf, y});
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lf = subs(lambda_f, {mf, vf, s}, {Glass_shearmod, Glass_vf, y});

%%%%% Setting the expression of the ODE for the stress w.r.t. temperature.
dydT = ((1-curr_phi)*dla_dtemp + dlf_dtemp*(1/lf)*(Stretch_1 - ...

(1-curr_phi)*la))/(-(1-curr_phi)*dla_ds - dlf_ds*(1/lf)*...
(Stretch_1-(1-curr_phi)*la));
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%%%%%%%%%%%%%%%%%%%%%% HEATING ODE CODE %%%%%%%%%%%%%%%%%%%%%%

%%%%% Function to obtain the ODE for the stretch recovery with respect
%%%%% to a change in temperature while maintaining constant stress
function dydT = Heating_ode_withBrentdata (T4, y)

%%%%% Initializing the global variables: material properties and the
%%%%% equations to solve for the stretch in each phase.

global alpha_a

global Rubber_vf
global Glass_vf

global Rubber_shearmod
global Glass_shearmod

global CALIBRATIONPHI
global CALIBRATIONTEMP

global lambda_a
global lambda_f

%%%%% Recalling the values of the temperature and stress the material
%%%%% experienced during cooling
global Temperature_during_cooling
global Stress_during_cooling

syms s ma va mf vf

%%%%% Getting the frozen volume fraction for each increment of temperature.
heat_phi = GetPhi(T4);

%%%%% Numerically differentiating the frozen volume fraction w.r.t.
%%%%% temperature.
dp = diff(CALIBRATIONPHI);
dp(length(dp)+1) = dp(length(dp));
dT = diff(CALIBRATIONTEMP);
dT(length(dT)+1) = dT(length(dT));
dpdT = dp./dT;

%%%%% Interpolating for the derivative of the frozen volume fraction at the
%%%%% current temperature the stress of the material when last at the
%%%%% current temperature.
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dphi = interp1(CALIBRATIONTEMP, dpdT, T4);
Stress = interp1(Temperature_during_cooling, Stress_during_cooling,T4);

%%%%% Caclculating the stretch of the material in each phase due to the
%%%%% stress of the material when last at the current temperature (during
%%%%% cooling).
la = subs(lambda_a, {ma, va, s}, {Rubber_shearmod, Rubber_vf, Stress});
lf = subs(lambda_f, {mf, vf, s}, {Glass_shearmod, Glass_vf, Stress});

%%%%% Setting the expression of the ODE for the stretch w.r.t. temperature.
dydT = -dphi + (1-heat_phi)*alpha_a + (1/lf)*la*dphi;
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