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ABSTRACT 

 

Decision Support System (DSS) for Machine Selection: 

A Cost Minimization Model. (May 2009) 

Mayra I. Méndez Piñero, B.S., University of Puerto Rico at Mayaguez;  

M.S., University of Puerto Rico at Mayaguez 

Chair of Advisory Committee: Dr. César O. Malavé 

 

Within any manufacturing environment, the selection of the production or 

assembly machines is part of the day to day responsibilities of management. This is 

especially true when there are multiple types of machines that can be used to perform 

each assembly or manufacturing process. As a result, it is critical to find the optimal way 

to select machines when there are multiple related assembly machines available. The 

objective of this research is to develop and present a model that can provide guidance to 

management when making machine selection decisions of parallel, non-identical, related 

electronics assembly machines. A model driven Decision Support System (DSS) is used 

to solve the problem with the emphasis in optimizing available resources, minimizing 

production disruption, thus minimizing cost. The variables that affect electronics product 

costs are considered in detail. The first part of the Decision Support System was 

developed using Microsoft Excel as an interactive tool. The second part was developed 

through mathematical modeling with AMPL9 mathematical programming language and 

the solver CPLEX90 as the optimization tools. 
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The mathematical model minimizes total cost of all products using a similar logic 

as the shortest processing time (SPT) scheduling rule. This model balances machine 

workload up to an allowed imbalance factor. The model also considers the impact on the 

product cost when expediting production. Different scenarios were studied during the 

sensitivity analysis, including varying the amount of assembled products, the quantity of 

machines at each assembly process, the imbalance factor, and the coefficient of variation 

(CV) of the assembly processes.  

The results show that the higher the CV, the total cost of all products assembled 

increased due to the complexity of balancing machine workload for a large number of 

products. Also, when the number of machines increased, given a constant number of 

products, the total cost of all products assembled increased because it is more difficult to 

keep the machines balanced. Similar results were obtained when a tighter imbalance 

factor was used. 
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CHAPTER I 

  INTRODUCTION 

 

1.1. Motivation 

Every manufacturing firm needs to have reliable estimates of the cost of each 

product they make. A “good product cost estimate” is the basic information that 

management use together with sales prices when calculating their earnings. 

Understanding the differences in each of their products and the processes or machines 

used to manufacture or assembly them, the company is in a better position to precisely 

calculate their profitability. Considering the lack of detailed cost estimates and cost 

models within the manufacturing assembly companies, this research examines detailed 

cost estimates of the products assembled with the purpose of minimizing total cost of 

assemblies. This cost model represents an excellent tool in helping the companies to 

understand where their earnings are coming from (or how the products’ costs are being 

generated). The cost model considers all aspects of product assembly and the resultant 

cost impacts. 

 The main contribution of this research is related with the level of detail 

considered when estimating the costs of the products because it includes each of the 

components of a product’s variable costs. This cost model can be a useful tool during 

budget preparation, short-term production planning, and in a continuous basis focusing  

 

 
This dissertation follows the style of International Journal of Production Economics. 
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on cost improvement. Currently, many manufacturing firms do not delve into sufficient 

detail when calculating cost (i.e. indirect costs) because it is very time consuming, thus 

expensive. As many researchers agree:  

“Traditional accounting systems allocate overhead as a percentage of direct labor 

hours and/or machine hours. As the volume of the product increases by 10%, the 

manufacturing overhead increases by 10%; this is assuming that the direct labor hours 

and machine hours increase proportionally. While this method of allocation is simple 

and fast, it does not reflect accurately on the actual product cost” (Ong, 1995; Dhavale, 

1990; Miller et al., 1985; Cooper et al., 1988).   

The model developed in this research directly helps in this kind of situations. 

This research is an extension of Méndez’(2001) previous research, but now focusing on 

using a model-driven decision support system tool on the assembly processes of printed 

circuit boards (PCB) with the ultimate objective of minimizing total cost. 

 

1.2. Problem Description 

Considering the cost of the available alternatives is the way most commonly used 

to make a decision when assembly companies are dealing with machine selection within 

each assembly process. To facilitate this repetitive task, a cost model is developed 

following some basic assumptions: (1) an electronic product consists essentially of a 

printed circuit board (PCB) with electronics components soldered to it following a series 

of sequential steps, and (2) the cost of the electronic products is calculated assuming 

typical and generic assembly sequence and processes (refer to Figure 1.1). 
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Figure 1.1. Assembly Processes Flowchart (Mendez, 2001; Clark, 1985) 
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Figure 1.1 Continued 
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Crama et al. (2002) considered a generic assembly process which “consists in 

placing (inserting, mounting) a number of electronic components of prespecified types at 

prespecified locations on a bare board. Several hundred components of a few distinct 

types (resistors, capacitors, transistors, integrated circuits, etc.) may be placed on each 

board”. As pointed out by Ong (1995) on his cost estimate using an activity-based 

approach, “there will, however, be variations among different manufacturers and it is not 

appropriate here to describe all the processing steps but to have a general process flow 

which can then be used for our cost estimation”. 

In each step of the assembly sequence, resources are consumed, hence cost is 

incurred. The variables that affect each assembly process are identified and considered in 

the machines’ selection problem based on how they influence product cost. It was 

critical during the progress of this research to understand how to estimate the cost and 

how resources are consumed during the assembly processes. Figures 1.2 and 1.3 present 

diagrams showing the cost model general concept and the consumption of resources, 

respectively. 

The problem considered in this research includes the coefficient of variation 

(CV) as the measurement of the expected process variability because it is inherent in all 

manufacturing or assembly processes or systems. Being able to manage process 

variability may have a big impact on the effectiveness of the manufacturing process. As 

explained by Hopp and Spearman (2001), variability (or “the quality of nonuniformity of 

a class of entities”) is associated with randomness (related to probability), but not 

identical. The process time (and setup times) variability is considered in this research 
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and is measured based on the processes relative variability, for which the CV is used 

considering the standard deviation and the mean of these randomly generated times; 

CV=
σ

μ
.  In this research, process variability is classified based on its CV value as low 

variability (CV < 0.75), moderate variability (0.75 ≤ CV < 1.33), and high variability 

(CV ≥ 1.33) (Hopp et al., 2001). 

 

 

 

 

 

 

 

 

Figure 1.2. Cost Model Diagram (Mendez, 2001) 

 

 

 

 

 

 

 

 

Figure 1.3. Resources Consumption Diagram (Mendez, 2001) 
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1.3. Organization of Dissertation 

This dissertation is divided in chapters pertaining to each part of the research. 

This chapter (CHAPTER I) includes the motivation for the research, the description of 

the problem and the review of the relevant literature. The remaining of the dissertation is 

organized as follows: 

 CHAPTER II – Presents the development of the basic cost model using 

Microsoft Excel to estimate the cost of one product at a time selecting the 

machine with the minimum cost at each assembly process. 

 CHAPTER III – Presents the development of the expanded models to 

optimize the total cost of all products assembled. The mathematical 

model was programmed with AMPL mathematical programming 

language and CPLEX was used as the solver. 

 CHAPTER IV – Discusses the analysis of results and the sensitivity 

analyses. Different scenarios were generated by changing the amount of 

products, quantity of machines, imbalance factors allowed in machine 

workload balance, and coefficient of variation of the assembly processes. 

 CHAPTER V – The last chapter summarizes this research, presents the 

conclusions and the recommendations for future research. 

  

1.4. Literature Review 

The scope of this research includes model driven Decision Support Systems, 

mathematical modeling as an optimization tool, and cost modeling of electronics 
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products. As a result, it was important to perform an extensive review of literature 

concerning these areas. This section is divided based on relevant literature of the 

following major areas: (1) use and application of Decision Support Systems (DSS) in 

general; (2) use and application of mathematical modeling on assignment problems; (3) 

cost modeling and time reduction models for electronics products.  

A Decision Support System can be defined as an interactive information system 

that supports business and organizational decision-making activities by compiling useful 

information from raw data, documents, personal knowledge, and/or business models to 

identify and solve problems and make decisions. Power and Sharda (2007) explained 

that “a model-driven Decision Support System includes computerized systems that use 

accounting and financial models, representational models, and/or optimization models to 

assist in decision-making”. Model-driven DSS has been used since the late 1960s 

(Power, 2003) as a management decision system and the first dissertation research using 

this methodology was presented by Scott Morton in 1967. 

Some of the Decision Support Systems reviewed were models where minimizing 

costs was not necessarily the main objective. A DSS related to electronics products was 

proposed by Sandborn (2005) with the purpose of generating a model to determine the 

predictability of the reliability of electronics for scheduled maintenance concepts. Other 

authors, such as Sundararajan et al. (1998) developed a model to determine optimum 

production scenario based on the tradeoffs between service levels, costs, inventories, 

changeovers, and capacity. This model presented an application for a food processing 

industry where they mentioned minimizing cost as part of the challenge but the specifics 
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on how the cost was calculated were not presented. A Decision Support System that has 

been created to be used as a concurrent decision making tool was developed by 

Forgionne and Kohli (1996) with hospitals as their domain environment. This Decision 

Support System was created with the purpose of comparing it with a Management 

Support System were cost was not considered. Pillai (1990) developed another Decision 

Support System to identify and select alternatives that provide the highest manufacturing 

improvements and cost effectiveness. This work was performed for Intel and one of the 

areas it focused was in providing a baseline for a unit cost analysis. A cost model was 

developed using Intel’s format due to their familiarity with it. This model did not include 

any additional detail on how to calculate the cost of the products and was used mainly to 

calculate the ROI (return on investment) of the alternatives considered.  

Mathematical modeling or mathematical functions which present the end result 

of an operations research model where alternatives, restrictions, and an objective 

criterion are considered (Taha, 1997), has been used to solve problems in decision 

making as well. Pentico (2007) presented a survey of assignment problems where two or 

more sets are to be optimally matched. Within the models for multi-dimensional 

problems Gilbert and Hofstra (1988) mentioned the axial three-dimensional assignment 

problem considering jobs, workers, and machines as the three dimensions to match. 

Another authors, Gavish and Pirkul (1991) developed a mathematical model and 

heuristics procedures for the generalized assignment problem with multi-resources. 

These authors included cost on their mathematical models by being part of the objective 

functions, but it was presented as a parameter without any detail on its calculation. 
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LeBlanc et al. (1999) presented an extension of the multi-resource generalized 

assignment problem by splitting batches of products, while considering the effect of 

setup times and costs. LeBlanc’s research differentiated from the others because the 

setup costs were considered independently of the total cost. Besides that, the other 

components of the total cost were not analyzed on detail.  

There is another kind of generalized assignment problem that has been studied 

considering bottlenecks where capacity limitations have been included as part of the 

constraints. Some authors such as Mazzola and Neebe (1988) and Garfinkel (1971) 

included cost as a parameter on the objective functions without further details, while 

Geetha and Vartak (1994) did not consider cost at all on the models they proposed. 

Mathematical modeling considering workload balancing of parallel identical machines 

was presented by Rajakumar et al. (2004) where the researchers were looking to 

maximize production output optimizing overall performance. Ammons et al. (1997) 

presented a mathematical model to solve the problem of balancing workload in printed 

circuit cards assembly but the focus was to balance component placement times and 

setup times across the machines. 

While reviewing literature on cost modeling for electronics products, Hillier and 

Brandeau (2001) can be mentioned as the ones who considered an operation assignment 

problem for a printed circuit board assembly process with the primary objective of 

minimizing total manufacturing cost, and a secondary objective of balancing machine 

workloads.  They developed a binary integer program and a heuristic to solve the 

problem. These scholars considered the manufacturing cost “to be the expected total 
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amount of time required to produce all of the boards during the planning horizon”. The 

main difference of Hillier and Brandeau work and the problem presented in this research 

is that they used identical assembly machines which implies that machine assignment at 

each assembly process was not required. It also means that the machine workload 

balance was done for all processes and not at each assembly process. Rajkumar and 

Narendran (1998) developed a heuristic for sequencing printed circuit board assembly to 

minimize setup times. Ong (1995) used Activity-Based Costing (ABC) in the early 

concept stage of design to estimate manufacturing costs of a printed circuit board 

assembly. This model provided details of how the product cost was calculated during the 

design of the product. On a previous research effort, Méndez (2001) developed an 

extremely detailed cost model for power electronics assemblies. Specifically the cost 

model was used for the fabrication of the boards and for new electronics’ assemblies. 

Méndez cost model was designed for the manufacturing companies to thoroughly 

understand their new products’ cost. It did not consider assigning machines and the 

objective of minimizing costs; it was a tool to estimate the cost of new products.  

Concluding the review of the literature, models were not found that while 

optimizing (minimizing) total cost, designing a decision support system, and/or 

developing a cost model were able to calculate the cost of the products with significant 

detail. The models where cost was thoroughly analyzed used Activity-Based Costing 

(ABC) as the accounting system to allocate their costs (Ong, 1995) or were applicable to 

assembly processes of new products and not necessarily applicable to existing products 

with the purpose of minimizing products’ costs (Mendez, 2001). 
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1.5. Summary 

In this introductory chapter the motivation of this research was explained as well 

as the description of the problem studied. Review of literature on DSS, mathematical 

modeling for assignment problems, and cost modeling for electronics products followed 

confirming the need for further research. The explanation of the basic cost model is 

presented on the next chapter. 

 

  



  13 

CHAPTER II 

DEVELOPMENT OF THE BASIC MODEL 

 

2.1. Introduction 

This chapter describes the basic model for cost minimization of one product at a 

time for the machine selection problem. In this basic model, the total cost of only one 

product is considered to allow the researcher to delve into the details of cost estimating 

before complicating the model. This scenario considers the ten assembly processes for 

electronics products presented on Figure 1 and three parallel, non-identical, related 

machines per assembly process. The purpose of this simplified scenario is to show how 

the total cost of an assembled product can be calculated while being minimized at the 

same time. 

The assumptions of the model are mentioned below. The details of the model 

development with the required equations to calculate the cost are explained. Interactive 

displays from Microsoft Excel that are used to solve the cost model are shown.   

 

2.2. Assumptions 

 The number and names of the assembly processes, and the machine quantities 

are given. 

 The capacity in machine hours per period of each machine is given. 
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 Average direct labor employees’ hourly salary is given. Direct labor 

employees quantity and direct labor employees average percent in each 

assembly process are generated by the uniform distribution. 

 Average support personnel yearly salary is given. Support personnel quantity 

and the average percent of time in each assembly process are generated by 

the uniform distribution. 

 Product demand per year is known and generated using the uniform 

distribution. 

 Units per batch are generated by the uniform distribution. 

 Cycle times (including handling times, processing times, setup times, and 

waiting times) are generated using the normal distribution.  

 Product components quantities and costs, and consumable materials 

quantities and costs are generated with the uniform distribution. 

 Mean-time-to failure and mean-time-to-repair are generated by the uniform 

distribution.  

 Units of utilities consumed and utilities costs are generated by the uniform 

distribution. 

 

The exponential and beta distributions are more commonly used to generate 

random times for parameters such as mean-time-to-failure and mean-time-to-repair, but 

for the purpose of this research the uniform distribution will suffice. The reason to use 
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the uniform distribution is that these parameters have minimum impact on the total cost 

of the product. 

 

2.3. Model Development 

The different costs that affect the assembly of the electronics products are 

analyzed when developing the cost model. The necessary details (especially with the 

indirect costs) are considered to ensure the cost presented is accurate.  

The cost model essentially calculates direct labor cost, materials cost and 

overhead or indirect costs. The sum of these main cost classifications give us the total 

cost of the product (Horngren et al., 2003; Castillo, 1998). When calculating product 

cost, it is important to clarify which accounting system this research supports. There are 

two main accounting systems that can be used to calculate product cost for a given 

period: absorption (or full) costing and variable (or direct) costing (Hilton, 1999). The 

basic difference between them lies in the treatment of the fixed manufacturing overhead 

costs. With absorption costing, these costs are included in the product cost that flow 

through the manufacturing accounts, treating them as inventoriable costs (costs incurred 

to purchase or manufacture goods). With variable costing, the fixed manufacturing 

overhead costs are not included as a product cost on the manufacturing accounts since 

they are treated as period costs (costs that are expensed during the time period in which 

they are incurred) (Hilton, 1999). 

Variable costing accounting system is used when developing this cost model 

because the Decision Support System (DSS) developed during this research with the cost 
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model is to be used as a short-term decision making tool. Absorption costing considers 

capital investments; therefore it is more related to the capacity to produce than the actual 

production of specific units (Horngren et al., 2003). Another advantage of using variable 

costing is that it dovetails much more closely than absorption costing with any 

operational analyses that require a separation between fixed and variable costs (Hilton, 

1999). One of these tools used by managers to plan and control business operations is 

Cost-Volume-Profit (CVP) analysis (Horngren et al., 2003; Hilton, 1999). When 

performing a CVP analysis, changes in costs and volume level are examined as well as 

their resulting effects on net income (Kinney et al., 2006). 

 

2.3.1. Mathematical Equations for the Microsoft Excel Model 

Using Microsoft Excel, an easy-to-use interactive model is created to calculate 

the cost of a given product. Required data is identified and mathematical equations are 

formulated for each one of the cost classifications identified on the previous chapter 

(direct labor, product components and consumable materials, machines maintenance, 

support personnel, and utilities consumption). The following notation presented in 

alphabetical order is used throughout the Microsoft Excel model: 

a index for product components, a = {1, 2, 3, 4, 5} 

b index for consumable materials, b = {1, 2} 

x index for product 

j index for processes, j = {PE, LM, DR, PC, SR, TP, SP, TT, PO, PP} 

k index for machines, k = {1, 2, 3} 
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s index for support personnel, s = {ENG, QUAL, OTHER} 

u index for utilities, u = {WATER, ELEC, GAS} 

 

2.3.1.1. Direct Labor Cost per Product 

To calculate direct labor cost per product, processing times and setup times of 

each product at each process and machines are used. Hopp and Spearman (2001) define 

process time and setup time as follows: “process time is the time jobs are actually being 

worked on at the station” and “setup time is the time a job spends waiting for the station 

to be setup” (setup refers to the preparation of a machine for the product to be processed 

or assembled). The quantity of direct labor employees, the percent of time direct labor 

employees are assigned to each process and machine and the average direct labor 

employee salary per hour are considered. 

The following notation is used for the data required to calculate the direct labor 

cost per unit for each assembled product: 

#DLjk quantity of direct labor employees assigned to machine k on process j 

%DLjk  average percent of time dedicated to machine k in process j 

$DL average salary per hour for direct labor employees 

PTxjk process time of product x in process j and machine k 

SUxjk setup time of product x in process j and machine k 

  

The mathematical equation for the direct labor cost per unit of each product 

(LCx) is shown in equation 2.1. 
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LCx=  SUxjk+PTxjk ×#DLjk×%DLjk ×$DL                                       ∀ j,k                 (2.1) 

 

2.3.1.2. Material Cost per Product 

Product components required and their costs, and consumable materials required 

and their costs are used to calculate the material cost per unit of each product. Product 

components are the parts that need to be inserted on the PCBs. Consumable materials are 

materials that are used at workstations but do not become part of the product sold (Hopp 

et al., 2001). Some examples presented by Méndez (2001) are: components tape, solder 

paste, adhesive glue, protection tape, flux, solder, alcohol, additives, etc. 

The following notation is used for the data required to calculate the material cost 

per unit for each assembled product: 

CMx consumable materials cost per unit for product x 

CMxjb quantity of each consumable material b required at process j 

$CMb cost of each consumable material b 

CPx product components cost per unit for product x 

CPxja quantity of each product component a required at process j 

$CPa cost of each product component a 

 

The mathematical equation for the material cost per unit of each product (MCx) is 

shown in equation 2.2. 
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MCx=CPx+CMx=  CPxja×$CPa +  CMxjb×$CMb 

b

               ∀ a,b,j              (2.2)

a

 

 

2.3.1.3. Overhead Cost per Product 

To calculate the overhead cost per product, all indirect variable costs are 

considered in detail. Indirect costs are the ones that cannot be traced to a cost object in 

an economically feasible or cost-effective way (Horngren et al., 2003; Kinney et al., 

2006). Variable cost is a cost that varies in total in direct proportion to changes in 

activity; it is a constant amount per unit (Kinney et al., 2006). For management to have a 

useful tool to use during their decision making process, overhead cost is divided into 

support personnel cost, utilities consumption cost, and machine maintenance cost. 

Support personnel cost per product is an allocation of the salaries paid to the support 

personnel assigned to the assembly processes. The allocation of the utilities consumption 

cost takes into consideration the utilities consumed at each assembly process based on 

the level of production assembled at each process. Machine maintenance cost is an 

allocation of the total machine maintenance cost during the accounting period to each 

machine within each assembly process based on the production level.  

To calculate the three components of the overhead cost, the following data is 

required: total time (for this research, total time represents cycle time considering 

variability) that the products are on the assembly line and process time per product at 

each process and machine; quantity of support personnel assign to the assembly 

processes, the average percent of time they dedicate to each process and their average 
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yearly salary; units of each utility consumed and their cost per unit; total machine 

maintenance cost incurred and machine utilization based on machine hours run.  

The following notation is used when calculating each component of the overhead 

cost per product: 

MMx machine maintenance cost allocated to product x 

SPx support personnel cost allocated to product x 

UCx utilities consumption cost allocated to product x 

 

The following notation is used for the data required to calculate the overhead cost 

per unit for each assembled product: 

HRS worked hours per worked week 

$MM total machine maintenance cost incurred  

PTxjk process time of product x in process j and machine k 

SPs quantity of support personnel s assigned to the assembly processes 

%SPx average percent of time of support personnel in product x 

$SP average yearly salary of support personnel 

SUbh setup time per batch of product 

SUxjk setup time of product x in process j and machine k 

TTx total time of product x 

UCu units of each utility u consumed  

$UCu average cost per unit of each utility u 

UNbhx units per batch of product 
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WKS worked weeks per year 

 

The mathematical equation for the overhead cost per unit of each product (OHx) 

is shown in equation 2.3. 

 

OHx=SPx+UCx+MMx                                                                                                             (2.3)                                                                  

=   SPs×%SPx 

s

×TTx×
$SP

WKS×HRS
 

+   UC𝑢×$UCu 

u

×PTxjk                                                                              ∀ 𝑗, 𝑘 

+
$MM

 2×HRS 
× PTxjk+SUxjk                                                                     ∀ 𝑗, 𝑘   

 

SUxjk=
SUbh

UNbhx

                                                                                                           2.4  

 

To calculate the setup time per product used in equation 2.3, setup time per batch 

and units per batch are used in equation 2.4. In order to make the calculations included 

in equation 2.3, additional mathematical equations are needed to calculate total time per 

product. Total time per product is calculated using cycle time per product and 

availability of the machines. Cycle time per product as defined by Hopp and Spearman 

(2001) (and applicable to this research) is calculated adding handling time, waiting time, 

setup time, and process time of each product. Handling time refers to the time it takes to 

move the in process product between assembly processes; waiting time is the time a 
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product has to wait to start an assembly process; setup time and process time were 

defined in section 2.3.1.1. Availability of a machine reflects a proportion between mean-

time-to failure and mean-time-to repair (Hopp et al., 2001). 

The following notation is required for the equations for total time per product, 

cycle time per product, and availability of each machine: 

HTxj handling time of product x to process j 

MTTFjk mean-time-to failure of machine k from process j 

MTTRjk mean-time-to repair machine k from process j 

PTxjk process time of product x in process j and machine k 

SUxjk setup time of product x in process j and machine k 

WTxjk waiting time of product x to start process j in machine k 

 

The mathematical equations for total time per product (TTx), cycle time per 

product per unit of each product (CTx), and availability of machines (AVjk) are shown in 

equations 2.5, 2.6, and 2.7. 

 

TTx=
CTx

AVjk

                                                                                                                   (2.5) 

CTx=SUxjk+HTxj+WTxjk+PTxjk                                                                                  (2.6) 

AVjk=
MTTFjk

MTTFjk+MTTRjk

                                                                                             (2.7) 
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2.3.1.4. Total Cost per Product 

The total cost per product (TCx) is calculated by adding the direct labor cost per 

product (LCx), the material cost per product (MCx), and the overhead cost per product 

(OHx), as shown in equation 2.8. The Microsoft Excel model uses the total cost per 

product equation as the objective to be minimized when selecting machines per 

assembly process for the given product. 

  

TCx=LCx+MCx+OHx                                                                                                          (2.8)   

 

2.3.2. Microsoft Excel Model 

The Microsoft Excel model is to provide an interactive easy-to-use tool for 

management during the short-term decision making process. To facilitate its use, this 

model gives the user different options (refer to Appendix A for details). The first screen 

on the Microsoft Excel model presents the main menu with the options to go to the data 

sheet to enter or revise data, or to go to the calculations and results sheet to see results 

(refer to Figure 2.1). When the user chooses to go to the data sheet, the Excel macro 

directs the worksheet to the data sheet (see Figure 2.2). If the user wants to go over the 

calculations and results, the Excel macro directs the worksheet to the calculations and 

results sheet (see Figures 2.3 and 2.4). 
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Figure 2.1. Microsoft Excel Model Main Menu 

 

 

 

Figure 2.2. Microsoft Excel Model Data Sheet 

CALCULATIONS AND RESULTS

DATA SHEET

Data required

Variable Description Units Value

CMxjb Consumable material b required in process j Number Array

$CMb Cost of consumable material b $/unit Array

CPxja Component a required in process j Number Array

$CPa Cost of component a $/unit Array

Dyr Total annual demand Units/year 11,575              

$DL Average direct labor cost per hour $/hour 8.50$                

%DLjk % of time direct employee work on machine k in process j % Array

#DLjk Quantity of direct employees working on machine k  in process j Number Array

HRS Worked hours per week Hours/week 40                     

HTxj Handling or moving time of product x  from previous process to process j Hours/unit Array

MH Machine hours available per week Hours/week 80                     

$MM Total machines maintenance cost $/month 1,000$              

MTTFjk Mean-time-to-failure of machine k  in process j Hours Array

MTTRjk Mean-time-to-repair of machine k  in process j Hours Array

PTxjk Process time on product x  of machine k  in process j Hours/unit Array

SPs Support personnel s Number Array

%SPx % of time on product x  by support personnel s % Array

$SP Cost of support personnel per year $/year 60,000$            

Subh Setup time per batch of product x Hours/batch Array

UCu Utilities consumption u  per product Units Array

$UCu Cost of utilities consumption u $/unit Array

UNbhx Total units of product x  per batch Units/batch 1,000                

WKS Worked weeks per year Weeks/year 50                     

CMxjb

$CMb

CPxja

$CPa

%DLjk

#DLjk

HTxj

MTTFjk

MTTRjk

PTxjk

SPs

%SPx

SUbh

UCu

$UCu

Back to Main Menu
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Using the calculations and results sheet, the total cost for product x can be 

obtained with all the details related to the cost components. Direct labor cost, material 

cost, and overhead costs per product are calculated independently and their summation 

represents the total cost per product for a single product. On the summarized results 

(refer to Figure 2.4), the total cost of the product is easily identified. 

 

 

 

Figure 2.3. Microsoft Excel Model Calculations and Results Worksheet 

 

 

 

Figure 2.4. Microsoft Excel Model Calculations and Results Worksheet (Summarized) 

 

Process
Machine 

ID

Setup 

time 

(SU xjk )

Handling 

time 

(HT xj )

Waiting 

time 

(WT xjk )

Process 

time 

(PT xjk )

Labor  

cost      

(LC x )

Material 

cost 

(MC x )

Overhead 

cost    

(OH x ) 

Product 

cost    

(PC x )

Min (PC x )

PE1 0.0008 0.3916 0.0001  $   0.0026  $      21.33  $      80.09 

PE2 0.00088 0.3971 0.0001  $   0.0083  $        9.63  $      68.40 

PE3 0.00082 0.2836 0.0001  $   0.0052  $        6.84  $      65.61 

LM1 0.00077 0.2800 0.0001  $   0.0049  $      23.79  $    103.45 

LM2 0.00082 0.3952 0.0001  $   0.0026  $        9.61  $      89.26 

LM3 0.00071 0.3547 0.0019  $   0.0074  $        9.22  $      88.87 

To calculate cost of product x

0.4978

0.7268

Patterning 

(etching) 

(PE)

 $          88.87 

 $          65.61 

Lamination 

(LM)

 $ 58.76 

 $ 79.65 

Back to Main Menu Back to Data Sheet

Through-hole 

(THT)
PO1 0.00085 0.3669 0.0001  $   0.0081  $      27.46  $    109.38 

Surface-mount 

(SMT) 
PO2 0.00087 0.3713 0.2642  $   1.5021  $      92.81  $    176.22 

PO3 0.00081 0.3989 0.0001  $   0.0077  $        9.67  $      91.59 

PP1 0.00089 0.3772 2.6608  $   7.5414  $    871.36  $    949.44 

PP2 0.00089 0.3864 0.0123  $   0.0374  $      13.23  $      83.81 

PP3 0.00083 0.3952 0.0001  $   0.0053  $        9.52  $      80.06 

781.31$     

 $ 81.91 

 $ 70.54 

Protection & 

packaging 

(PP)

 $          91.59 

 $          80.06 

Populating 

(PO)

0.7979

0.7976



  26 

2.4. Summary 

This chapter presents the basic model to calculate the total cost per product for a 

single electronic product. The model presented minimizes the total cost by assigning the 

product to the minimum cost machine at each assembly process. The direct labor, 

material and overhead costs per product are also calculated and shown on the results.  

If the user of the model presented needs to minimize the total cost of more than 

one product, a mathematical model will apply to optimize the total cost of all products. 

The next chapter presents a mathematical model to optimize the total cost of all products 

assembled in a given period of time. 
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CHAPTER III 

DEVELOPMENT OF THE EXPANDED MODELS 

 

3.1. Introduction 

This chapter explains the expanded models for cost minimization of products 

assembled for the machine selection problem. Integer linear programming is used to 

model the problem with the objective of minimizing total cost. The mathematical model 

has multiple equations for each cost component of the total cost of all products 

assembled. An optimization model is capable of assigning multiple products to the 

minimum cost machine at each assembly process given some specific constraints. 

The assumptions for these models are mentioned on the next section of this 

chapter. The details of the integer linear program follow the assumptions section. 

Production planning rules such as expediting production, which refers to moving a due 

date for a product (or customer) to an earlier date or time (Hopp et al., 2001) and 

machine workload balance, which refers to maximize or increase machine utilization 

(Hopp et al., 2001) are considered creating a more realistic environment while allowing 

the user to keep the same ultimate objective of assigning machines to products while 

minimizing total cost. 

 

3.2. Assumptions 

Most of the assumptions considered for the basic model also apply to the 

expanded models. These assumptions are mentioned below and are revised if applicable. 
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Additional assumptions needed for these optimization models are added. Assumptions 

are divided into deterministic or probabilistic depending on the nature of the data 

required. 

 Assumptions for deterministic parameters: 

o The number of the assembly processes, the machine quantities, and the 

number of products assembled are given. 

o The capacity in machine hours per period of each machine is given. 

o Average direct labor employees’ hourly salary is given.  

o Average support personnel yearly salary is given.  

 

 Assumptions for probabilistic parameters: 

o Direct labor employees quantity and direct labor employees average 

percent in each assembly process are generated by the uniform 

distribution. 

o Support personnel quantity and the average percent of time in each 

assembly process are generated by the uniform distribution. 

o Products demand is known and generated by the uniform distribution. 

o Units per batch for each product are generated by the uniform 

distribution. 

o Cycle times (including handling times, processing times, setup times, and 

waiting times) are generated using the normal distribution. The left-
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truncated normal distribution is used with a minimum allowed time of 

zero. 

o Product components quantities and costs, and consumable materials 

quantities and costs are generated by the uniform distribution. 

o Mean-time-to failure and mean-time-to-repair are generated by the 

uniform distribution. 

o Units of utilities consumed and utilities costs are generated by the 

uniform distribution. 

 

 General assumptions: 

o All times are used or calculated in hours. 

o Calculations are done considering a week as the period of time for 

production; the objective value represents a week worth of production.  

 

The exponential and beta distributions are more commonly used to generate 

random times for parameters such as mean-time-to-failure and mean-time-to-repair, but 

for the purpose of this research the uniform distribution will suffice. The reason to use 

the uniform distribution is that these parameters have minimum impact on the total cost 

of all assembled products. 
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3.3. Model Development 

An integer linear program (ILP) is developed with the objective of minimizing 

the total cost of all products assembled as an optimization tool. This total cost of all 

products includes different cost components such as direct labor cost, material cost, and 

overhead cost. AMPL9 (Fourer et al., 2003) is used for the mathematical programming 

and ILOG CPLEX90 as the solver of the model. 

For the mathematical model, the cost equations developed for the basic model in 

Chapter II are used to calculate the costs, but they are extended to consider multiple 

subscripts (products, processes, and machines) for the parameters when applicable. The 

same logic used on Chapter II to develop a cost model based on variable costing 

accounting system is used for the mathematical model. This mathematical model is a 

powerful tool when compared to the Microsoft Excel model because it is able to show 

the user to which machine type at each assembly process should each product be 

assigned to minimize the total cost of all products assembled.   

 

3.3.1. Integer Linear Programming Model (ILP) 

The mathematical model used to solve the problem presented in this research is 

an integer linear program. An integer linear program can be defined as a linear program 

in which the variables are restricted to integer or discrete values (Taha, 1997). The 

nature of the problem researched, allowed the model to be solved based on binary values 

(i.e., 0 or 1) of the decision variables which make the program a binary linear program.  
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The following notation in alphabetical order is used throughout the mathematical 

models presented in this chapter for the indexes and the corresponding sets: 

a index for product components, a 𝜖 A 

b index for consumable materials, b 𝜖 B 

i index for products, i 𝜖 I 

j index for processes, j 𝜖 J 

k  index for machines, k 𝜖 K 

s index for support personnel, s 𝜖 S 

u index for utilities, u 𝜖 U 

 

The following notation is used throughout the mathematical models presented in 

this chapter for the parameters considered in the formulation: 

 Parameters with a single data value: 

DLc average salary per hour of direct labor employees 

HRS worked hours per week 

MMc total machine maintenance cost per week 

N number of products assembled during a given period of time 

SPc average salary of support personnel per year 

WKS working weeks per year  

MHjk machine hours available on machine k in process j 

 

 Parameters with random values generated using probability distributions: 
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CMijb consumable material b for product i in process j 

CMcb cost per unit of consumable material b 

CPija product component a for product i in process j 

CPca cost per unit of product component a 

DLpj average percent of time direct labor employees work in process j 

DLqj quantity of direct labor employees assigned to process j 

Dyri demand per year of product i 

HTij handling or moving time of product i from previous process to process j 

MTTFjk mean-time-to-failure of machine k in process j 

MTTRjk mean-time-to-repair of machine k in process j  

PTijk process time of product i in process j and machine k 

SPpj average percent of time of support personnel in process j 

SPqs quantity of support personnel s 

SUbijk machine setup time per batch of product i in process j and machine k  

Ubi units per batch of product i 

UCcu cost per unit of utility u 

UCqjku units of utility u consumed by machine k in process j 

WTijk waiting time of product i in process j and machine k 

 

 Computed parameters: 

AVjk availability of machine k in process j 

Cijk total cost of product i in process j and machine k 
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CTijk cycle time of product i in process j and machine k 

Lijk labor cost of product i in process j and machine k 

Mijk material cost of product i in process j and machine k 

MMijk machine maintenance cost per product i in process j and machine k 

MUijk maximum machine utilization for product i at process j and machine k 

Oijk overhead cost of product i in process j and machine k 

SCijk machine setup cost of product i in process j and machine k 

SPijk support personnel cost for product i in process j and machine k 

SUijk machine setup time of product i in process j and machine k 

TTijk total time on the assembly line of product i in process j and machine k  

UCijk utilities consumption cost of product i in process j and machine k 

 

The decision variables are defined as follows: 

 Xijk =  
1   if product i is assigned to process j and machine k,

0   otherwise.                                                                
  

 

The ILP mathematical model is expressed with the objective function and 

constraints that follow. The mathematical equations for the parameters that need to be 

calculated are also shown below. 

 

Minimize Z=   CijkXijk

k∈Kj∈Ji∈I

                                                        ∀ i, j, k              3.1  

subject to 
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 Xijk

i∈I

≤ N                                                                                          ∀ j,k                 (3.2) 

 Xijk

k∈K

=1                                                                                          ∀ i,j                   (3.3) 

  MUijkXijk 

i∈I

≤ MHjk                                                                       ∀ j,k                  (3.4) 

Xijk= 0,1                                                                                           ∀ i,j,k                  (3.5)  

 

In the formulation, equation (3.1) is the objective function to minimize the total 

cost of all assembled products. The first constraint (3.2) states that each product i can be 

assigned to each process j and machine k only once. In constraint (3.3), it is specified 

that each product i is assigned to only one machine k in each process j. Constraint (3.4) 

shows that available machine hours for product i in process j and machine k cannot be 

exceeded. The last constraint (3.5) defines the decision variables as binary. 

When analyzing the capacity constraint (refer to equation 3.4), an additional 

mathematical expression is needed to calculate machine utilization; this is shown in 

equation 3.4a. 

 

MUijk= PTijk+SUijk ×
Dyr

i

WKS
                                                                 ∀ i,j,k               (3.4a) 

 

 Additional mathematical equations are required to go into the details of the cost 

components when calculating the total cost per product (Cijk). These equations are 

presented next grouped by the cost component they affect. 
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The following mathematical equations are used to calculate direct labor cost per 

product. They consider setup times (based on setup per batch of products) and 

processing times, direct labor employees and direct labor average wages per hour. 

 

Lijk=PTijk × DLq
j
 × DLp

j
 × DLc + SCijk                                          ∀ i,j,k               (3.6) 

SCijk=SUijk × DLq
j
 × DLp

j
 × DLc                                                   ∀ i,j,k               (3.7)

 

SUijk=
SUbijk

Ubi
                                                                                        ∀ i,j,k               (3.8)

   

Equation (3.6) calculates the labor cost per product considering process time per 

product, quantity of direct labor employees, the percentage of time they worked at each 

process, the average rate per hour for direct labor employees, and the setup cost per 

product. On equation (3.7) the setup cost per product is calculated using setup time per 

product, quantity of direct labor employees, the percentage of time they worked at each 

process, and the average rate per hour for direct labor employees. The purpose of 

equation (3.8) is to convert the setup time per batch into setup time per product. 

The following mathematical equation is used to calculate material cost per 

product (refer to equation 3.9). It includes the cost of the required product components 

by considering the units used of each product component and the components cost per 

unit. It also includes the cost per product of the consumable materials by considering the 

units required of each consumable material and the consumable materials cost per unit. 
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Mijk=  CPija×CPca 

a∈A

+   CMijb×CMcb         

b∈B

                           ∀ i,j,k               (3.9)  

 

The following mathematical equations are used to calculate overhead cost per 

product. These equations calculate variable support personnel cost per product, utilities 

consumption cost per product, and machine maintenance cost per product.  

 

 
Oijk=SPijk+UCijk+MMijk                                                                   ∀ i,j,k               (3.10)

 

SPijk=  SPq
s
×SPp

j
 

s∈S

×TTijk×
SPc

WKS×HRS
                                    ∀ i,j,k               (3.11)

 

TTijk=
CTijk

AVjk

                                                                                        ∀ i,j,k               (3.12)

 

CTijk=SUijk+HTij+WTijk+PTijk                                                         ∀ i,j,k               (3.13)

 

AVjk=
MTTFjk

MTTFjk+MTTRjk

                                                                    ∀ j,k                 (3.14) 

UCijk=  UCq
jku

×UCcu ×PTijk

u∈U

                                                   ∀ i,j,k              (3.15) 

MMijk=
MMc

 2 × 𝐻𝑅𝑆 
× SUijk+PTijk                                                    ∀ i,j,k              (3.16) 

 

In the formulation for overhead cost per product, equation (3.10) summarizes the 

variable indirect costs by adding support personnel cost per product, utilities 

consumption cost per product, and machine maintenance cost per product. The support 

personnel cost per product equation (3.11) considers the quantity of support personnel 
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with the percentage of time worked at each process, the total time products are in the 

assembly line and the average weekly support personnel salary. Equation (3.12) 

calculates the total time products are in the assembly line by considering the cycle time 

per product and the availability of the machines. The cycle time is calculated on equation 

(3.13) by adding setup time, handling time, waiting time, and process time of each 

product at each process and machine. The equation for the availability of the machines 

(3.14) considers a ratio between the mean-time-to-failure and mean-time-to repair of the 

each machine. The utilities consumption cost per product in equation (3.15) is calculated 

based on units of utilities consumed and its cost per unit, and the process time per 

product. The total machine maintenance expenses are allocated to each product based on 

the process time per product and the setup time per product. These are used to calculate 

the machine maintenance cost per product in equation (3.16). 

The mathematical equation to calculate total cost for all products based on direct 

labor cost (Lijk), material cost (Mijk), and overhead cost (Oijk) is next (refer to equation 

3.17). It considers the required weekly demand of each product to be assembled: 

 

Cijk= Lijk+Mijk+Oijk ×
Dyr

i

WKS
                                                             ∀ i,j,k                3.17  

      

3.3.1.1. ILP Solving Methodology 

AMPL9 mathematical programming language with CPLEX90 as the solver is 

used to solve the mathematical model explained in the previous section. AMPL9 uses 

the branch and bound (B&B) algorithm to solve ILP problems. The B&B algorithm is 
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one of the two most commonly used methods to solve ILP problems (the other one is the 

cutting plane method) and it is more successful (Taha, 1997) computationally speaking.  

The logic behind the ILP algorithms as explained by Taha (1997) is to begin by 

relaxing the binary variables to the continuous range [0, 1]. This result in a regular linear 

programming (LP) problem, which is solved first to identify an optimum based on the 

continuous range for the decision variable. Then, constraints are added to iteratively 

modify the LP solution until an optimum extreme point that satisfies the integer 

requirements is found.  

The optimum obtained when the LP is solved is equivalent to the bounding part 

of the B&B algorithm, and the sub-problems created when the optimum solution is not 

an integer is the branching part of the algorithm. The analogy to the problem presented 

in this research is that with the bounding part, an upper bound is found for the 

minimization problem, and the branching is done with values zero and one for the 

decision variables. 

A series of different sets of data is used to solve the mathematical model with the 

purpose of verifying the applicability of the model as a decision tool under different 

scenarios. The scenarios are based on a moderate process variability using the coefficient 

of variation (CV), different number of assembly machines at each process, and different 

amounts of assembled products. When analyzing the scenarios, the objective of the ILP 

model (minimize total cost of all products assembled) can be compared. The scenarios 

considered are presented in Table 3.1. The combination of the selected scenarios makes 

a total of nine sets of runs of the mathematical model. 
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Table 3.1- Scenarios to Solve the ILP Model 

CV – Moderate = 0.9 

Machines Products 

4 10 100 1000 

7 10 100 1000 

10 10 100 1000 

 

 

These mathematical models are increasing their size in terms of variables and 

constraints as the number of products and machines increase. Table 3.2 summarizes the 

size of these ILP models for each selected scenario mentioned in Table 3.1. 

 

 
Table 3.2 - Sizes of the ILP Models 

MCV = 0.9 

   

Products 

Machines per 

Process 

Number of 

Variables 

Number of 

Constraints 

10 4  400 180 

7  700 240 

10  1000 300 

100 4  4000 1080 

7  7000 1140 

10  10000 1200 

1000 4  40000 10080 

7  70000 10140 

10  100000 10200 
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Considering that some models are fairly large, a time limit of 3600 seconds is 

used with the solver. Since the solver checks the remaining time at only certain points 

while the logic of the model is being followed, it could run over the established time 

limit. For the purpose of this research, solutions obtained up to 25% over the time limit 

(up to 3900 seconds) are considered optimum if a feasible solution is found. 

 

3.3.2. Integer Linear Programming Model with Expediting (ILPx) 

Considering the reality of a manufacturing environment, there are a lot of times 

when a priority may be assigned to some products. This could be for different reasons 

but in most cases the priority is determined by management based on the company’s 

relationship with the customers. Among the reasons to prioritize production are the 

customer orders that were not finished during the previous period of time (i.e., week), 

commonly called backlogs. Backlogs create production disruption because the 

production planned for the current period of time has to be adjusted to accommodate and 

prioritize these products. Another common reason to prioritize production could be 

established by management based on customers that need their products to be shipped 

first and are willing to pay a premium on the price if applicable. A third reason to 

prioritize production is when a product is harder to be assembled (not necessarily related 

to time) and management can decide to finish them first because production can be run 

smoothly after that. 

For any of the reasons mentioned above or any other reason management might 

have to give priorities to some products, the concept called expediting production is now 
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considered in the mathematical model presented in section 3.3.1. This new model is 

called ILPx. It is included in the model by considering the impact on the total cost of the 

products assembled. Specifically, the direct labor cost will increase when special 

treatment is given to a product. Material cost is not affected since demand is not 

changed, and overhead cost is not affected either because the same support is received 

from the support personnel, the machine maintenance cost does not change, and the 

products still consumed the same units of utilities. 

The following parameters are added to the mathematical model to include 

expediting production: 

EXPi expedite condition to determine products i to be expedited 

EXP% percentage of increase in direct labor cost when expediting 

Following the logic use during the development of the mathematical model, EXPi 

is generated using a uniform (binary) distribution, where 1 means product needs to be 

expedited and 0 means otherwise. The EXP% factor is given by management. 

Equation (3.6), used to calculate direct labor cost per product (Lijk) is now 

replaced by equations (3.6) and (3.6a) to consider expediting cost. Equation 3.6 is used if 

EXPi = 0 (product i do not need to be expedited), while equation 3.6a is to be used when 

products need to be expedited, EXPi = 1. 

 

Lijk=PTijk×DLq
j
×DLp

j
×DLc+SCijk                                                   ∀ i,j,k               (3.6) 

Lijk=

                        

 PTijk×DLq
j
×DLp

j
×DLc+SCijk × 1+EXP%                           ∀ i,j,k               (3.6a) 
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The total cost of products assembled under the expediting scenarios is calculated 

the same way (with equation 3.17), but choosing the applicable equation to represent the 

direct labor cost per product from equations 3.6 and 3.6a. 

The same scenarios selected to evaluate the ILP model (refer to Table 3.1) are 

going to be used to solve the ILPx model. Therefore, these ILPx models have the same 

sizes as the ILP models (refer to Table 3.2) for each scenario. The solving methodology 

explained in section 3.3.1.1 for the ILP model, also applies for the ILPx model. 

 

3.3.3. Integer Linear Programming Model with Machine Workload Balance 

(ILPb) 

Another important situation in assembly environments when selecting machines 

to assemble each product at each assembly process, is maintaining machine workload 

balanced. The machine workload balance problem is studied with the idea in mind of 

creating additional realistic environments for the machine selection problem while 

keeping the objective of minimizing total cost. 

Machine workload balance can be defined as distributing the available workload 

among the available machines as equally as possible (Rajakumar et al., 2004). It has the 

purpose of improving machine utilization by distributing the scheduled production as 

much as possible among the available machines. As a result, when machine workload is 

balanced, waiting times between processes might be minimized. Another impact of 

balancing machine workload is less work-in-process inventory, the goods or product 

between adjacent processes (Silver et al., 1998). If waiting times are lower, there will be 
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less accumulation of inventory between processes. Due to natural process variability and 

the variation in processing times, obtaining a perfect machine workload balance is not 

easily achievable.  

Balancing machine workload within an assembly line can be also beneficial 

when we consider machine maintenance. There is a direct relationship between machine 

maintenance needed, the amount of time the machines are run, and the machine 

maintenance cost. This applies to both preventive and corrective maintenance. When 

machine workload balance is improved, preventive maintenance can be appropriately 

scheduled which can result in an improved machine performance and availability (as 

calculated in equation 3.14).  

The machine workload balance is measured by using the hours that machines are 

run at each process to satisfy product demand. A factor to measure the required 

percentage of machine workload balance is now included in the ILP model developed in 

this research (now called ILPb). This factor is based on the maximum imbalance 

percentage allowed at each assembly process by management. 

The following parameters are added to the ILP model presented in section 3.3.1 

to include the machine workload balance problem to the problem previously describe: 

δ  machine workload imbalance factor 

AvgMUjk average machine utilization per process j and machine k  

K  number of machines available per process 
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 The following mathematical equation (3.18) is added to the ILP presented in 

section 3.3.1 to calculate the average machine utilization (in machine hours) of machine 

k in process j. 

 

AvgMU
jk

= MUijk

i∈I

K                                                                      ∀ j,k                 (3.18) 

  

The following constraint is added to the constraints set of the ILP model 

presented in section 3.3.1 to balance the machine workload based on the given 

imbalance factor δ: 

 

AvgMU
jk
 1-δ  ≤   MUijkXijk  ≤  AvgMU

jk
 1+δ                           ∀ j,k

i∈I

                 (3.19) 

 

The total cost of products assembled under the machine workload balance 

scenarios (ILPb model) is calculated the same way (with equation 3.17) as in the ILP 

presented in section 3.3.1, with the only difference been that constraint 3.19 is now 

included. The results given by the ILPb are based on minimizing total cost of products 

assembled with the basic constraints previously explained (equations 3.2 – 3.5) and with 

this additional constraint of machine workload balance (refer to equation 3.19). 

After adding the machine workload balance constraint to the problem previously 

discussed, more scenarios are created to solve the mathematical model. To the scenarios 

presented in Table 3.1, additional scenarios are considered to run the mathematical 
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model under two different values of the imbalance factor δ (40% and 25%). All the 

scenarios are presented in Table 3.3. The combination of the selected scenarios makes a 

total of eighteen sets of runs of the mathematical model. 

The size of the ILPb mathematical models increases from the ILP models due to 

their additional constraints to balance the assembly machines workload.  Table 3.4 

summarizes the size of these ILPb models for each selected scenario mentioned in Table 

3.3. Since the scenarios show two different machine workload imbalance factors, the 

ILPb models need to be run twice, one for each imbalance factor.  

 

 

Table 3.3 - Scenarios to Solve the ILPb Model 

CV – Moderate = 0.9 

Machines 
δ = 0.40 δ = 0.25 

Products Products 

4 10 100 1000 10 100 1000 

7 10 100 1000 10 100 1000 

10 10 100 1000 10 100 1000 

 

 

The solution methodology explained on section 3.3.1.1 for the ILP model, also 

used for the ILPx model, applies to the ILPb models as well. This solution methodology 

with the B&B algorithm is now used for the different scenarios presented in Table 3.3. 
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Table 3.4 - Sizes of the ILPb Models 

MCV = 0.9 

   

Products 

Machines per 

Process 

Number of 

Variables 

Number of 

Constraints 

10 4  400 240 

7  700 280 

10  1000 340 

100 4  4000 1120 

7  7000 1180 

10  10000 1240 

1000 4  40000 10120 

7  70000 10180 

10  100000 10240 

 

 

3.4. Summary 

This chapter presents the integer linear program to minimize the total cost of all 

electronic products assembled during a given production period of a week. This is 

achieved by choosing the minimum cost available machine at each assembly process. 

The direct labor, material and overhead costs per product are also calculated and shown 

on detail.   

In this chapter, two expanded ILP models are also explained; one to include 

expediting production (ILPx), and the other one to include machine workload balance 

(ILPb). The next chapter presents the analysis of results and sensitivity analyses. 

  



  47 

CHAPTER IV 

ANALYSIS OF RESULTS 

 

4.1. Introduction 

This chapter presents the results obtained after running the models explained in 

Chapter III. First, results are presented for the ILP explained in section 3.3.1. Then, the 

results for both expanded models are presented. The ILPx model is explained in section 

3.3.2, and the ILPb model is explained in section 3.3.3. 

The results of the ILP model are presented for the scenarios considering a 

moderate coefficient of variation, different machine quantities per assembly process, and 

different number of products assembled as shown in Table 3.1. The results for the ILPx 

model are also presented for the scenarios shown in Table 3.1. The scenarios presented 

in Table 3.2 are used to show the results of the ILPb model. 

 

4.2. Results for the ILP Model 

The results obtained on the runs of the ILP model are shown for the objective 

function - total cost, and for key parameters that help in the decision making process 

such as: average machine utilization and average machine workload imbalance. These 

results are presented by number of machines, number of products, and the process 

variability (using the CV). 
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The results related to how the AMPL9/CPLEX90 performed are presented based 

on the iterations required by each scenario and the run time. These are also presented by 

number of machines and by number of products. 

 

 

Table 4.1 - Results for the ILP Model 

MCV = 0.9 

      

Products Machines 

Total 

Cost 

($M) 

Avg. 

Machine 

Utilization 

Avg. 

Workload 

Imbalance 

Solver 

Iterations 

Run time 

(sec.) 

10 4 1,850 35.26 50.62% 101 10.31 

7 3,843 33.10 55.59% 124 16.81 

10 4,590 24.60 68.09% 109 13.38 

100 4 1,611 32.43 51.59% 1000 21.47 

7 2,946 26.47 64.19% 1000 36.57 

10 4,229 23.13 69.79% 1000 71.90 

1000 4 1,642 35.01 48.31% 10000 83.68 

7 2,973 29.68 59.94% 10000 1430.17 

10 4,237 25.99 65.91% 10000 5102.06

 

 

 

From the results on Table 4.1, it can be seen that when the amount of products or 

machines increase, the average machine workload imbalance also increases while the 

average machine utilization tends to decrease. This is because the required machine 

hours are distributed between more machines creating higher machine workload 

imbalances in average, and lowering the average machine utilization as well. The total 

cost of all products assembled increases when the number of machines per process 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit.  
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increases with the same amount of products assembled, but there is no relation if the 

number of products assembled changes. This is because the higher the amount of 

products to assemble, the lower the expected demand per product which may or may not 

result in an increase in total cost. Increasing the number of products creates a more 

complicated model because balancing machine workload will require that more 

iterations will be analyzed which can also result in more time to solve. When the number 

of products increases; it does not mean that the total cost has to increase because the 

model continues to look for an optimum (minimization) solution.  

From the information on Table 4.1 it can be explained the impact on the total 

cost that varying the number of products and machines has. The total cost for 10 

products under the four machines scenario is $1,850k and for 1000 products under the 

same scenario is $1,642k. At the same time, this cost for 10 products and ten machines is 

$4,590k and for 1000 products and ten machines is $4,237k. These results were not 

expected by the researcher since usually more products mean higher total cost. This is an 

important finding to understand that what determine how total cost is affected is the 

complexity of the model and how the constraints reflect it. 

Results obtained from the runs of the ILP model also show the range of machine 

utilization among the machines used per process. These are shown in Table 4.2. It can be 

seen that these ranges varies from 16.71 to 47.37 for the 10 products scenarios, from 

18.22 to 36.16 for the 100 products scenarios, and from 23.29 to 38.29 for the 1000 

products scenarios. The ranges of the minimum and maximum machine hours vary from 

16 to 24 hours on the 10 products scenarios to between 6 and 7 hours on the 1000 
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products scenarios; the higher the amount of products, the more consistent the machine 

utilization is. It is important to review the results considering these machine utilization 

ranges because when the minimum and maximum values are too distant, the average 

does not have necessarily reflect the reality of the process. 

 

 

Table 4.2 - Machine Utilization Ranges for the ILP Model 

 

 

 

 

 

 

 

 

 

 

 

4.3. Results for the ILPx Model 

The results presented for the ILPx model are in the same format as the results for 

the ILP model. For each combination of number of assembled products and number of 

machines per assembly process, the total cost, the average machine utilization and the 

average machine workload imbalance are shown. The results related to the performance 

MCV = 0.9 

   

Products Machines 

Min Average 

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4 23.59 47.37 

7 25.96 41.31 

10 16.71 33.17 

100 4 28.37 36.16 

7 22.55 28.84 

10 18.22 26.93 

1000 4 31.56 38.29 

7 25.68 33.03 

10 23.29 29.55 
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of the mathematical programming language and the solver (AMPL9 and CPLEX90) are 

included as well. 

Analyzing the results found for the ILPx model, it can be seen that the trends on 

the results are very similar to the ones obtained with the ILP model. From Table 4.3, it 

can be seen that the total cost for 10 products under the four machines scenario is 

$1,566k and for 1000 products under the same scenario is $1,522k. At the same time, 

this cost for 10 products and ten machines is $4,047k and for 1000 products and ten 

machines is $3,926k. Table 4.4 shows that the ranges of the minimum and maximum 

average machine hours vary from 14 to 18 hours on the 10 products scenarios to between 

5 and 6 hours on the 1000 products scenarios. 

 

 

Table 4.3 - Results for the ILPx Model 

MCV = 0.9 

      

Products Machines 

Total 

Cost 

($M) 

Avg. 

Machine 

Utilization 

Avg. 

Workload 

Imbalance 

Solver 

Iterations 

Run time 

(sec.) 

10 4 1,566  35.95 48.50% 103 27.88 

7 2,771  26.45 64.45% 108 28.14 

10 4,047  19.27 75.13% 107 28.66 

100 4 1,737  34.94 47.85% 1000 5.27 

7 3,162  29.52 59.90% 1000 45.66 

10 4,497  25.18 66.98% 1000 81.12 

1000 4 1,522  32.06 52.66% 10000 93.98 

7 2,743  25.92 64.94% 10000 1640.98 

10 3,946  22.39 70.65% 10000 5758.20

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.4 - Machine Utilization Ranges for the ILPx Model 

MCV = 0.9 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  27.76 45.46 

7  19.39 37.41 

10  12.58 26.56 

100 4  31.32 39.94 

7  23.38 33.06 

10  18.67 29.53 

1000 4  29.68 34.64 

7  22.93 28.58 

10  19.82 25.77 

 

 

In general, the average machine utilization has a tendency to be lower on the 

ILPx model when compare to the ILP model due to the additional complexity added to 

the ILPx model to consider expediting production (refer to Figure 4.1). Meanwhile, the 

average machine workload imbalance has a tendency to be higher than the ILP model for 

the same reason (refer to Figure 4.2). 
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Figure 4.1. Average Machine Utilization - MCV (ILP & ILPx) 

 

 

 

Figure 4.2. Average Machine Workload Imbalance - MCV (ILP & ILPx) 
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4.4. Results for the ILPb Model 

The results presented for the ILPb model follow the same format as the results 

for the ILP model, but considering the scenarios for the different values of the machine 

workload imbalance factor. The total cost, the average machine utilization and the 

average machine workload imbalance are shown for the different combinations of 

number of assembled products and number of machines per assembly process. The 

performance of AMPL9 with CPLEX90 is included by showing the iterations and the 

B&B nodes generated at each run. 

The results included on Table 4.5 for the ILPb model with δ = 40% indicate that 

for the machine workload balance model, the higher the number of machines, the higher 

the machine utilization given the same number of products (refer to Figure 4.3). As 

expected, the average workload imbalance is almost constant given that the model has 

constraints to balance machine workload (refer to Figure 4.4). The total cost, when 

evaluated at each scenario, has the tendency to increase when balancing machine 

workload. This is because the machines chosen at each process for each product will not 

necessarily be the minimum cost ones to satisfy the machine workload balance 

constraint. As can be seen in Figure 4.5, this is not the case for the 10 products scenarios.  
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Table 4.5 - Results for the ILPb Model with δ=40% 

MCV = 0.9 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 1,598  47.63 30.73% 

7 3,050  53.36 27.02% 

10 Infeasible - - 

100 4 1,637  40.39 39.68% 

7 3,058  44.91 39.30% 

10 4,479  47.12 38.78% 

1000 4 1,655  40.67 39.93% 

7 3,052 44.26 39.91% 

10 5,257 45.90 39.84% 

 

 

 

Figure 4.3. Average Machine Utilization - MCV (ILP & ILPb; δ=40%) 
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Figure 4.4. Average Machine Workload Imbalance - MCV (ILP & ILPb; δ=40%) 

 

 

 

Figure 4.5. Total Cost - MCV (ILP & ILPb; δ=40%) 
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When analyzing the performance of the solver (refer to Table 4.6), the amount of 

iterations and B&B nodes increased significantly as the size of the model increased. The 

algorithm was not able to find an optimum solution for three of the scenarios (identified 

by *) within the time limit of 3600 seconds. The scenario of 10 products with ten 

machines was determined to be infeasible after only 14 seconds. This is mainly due to 

the complexity of assigning products to machine while balancing within the given range 

with δ = 40%. 

 

 

Table 4.6 - Solver Results for the ILPb Model with δ=40% 

MCV = 0.9  

   

Products Machines 

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 4 1326 299 7.56 

7 708 3 13.62 

10 - - 14.45 

100 4 2360392 279079 3605.30 

7 3101127 256375 10821.90

 

10 2812860 236941 18031.20
* 

1000 4 65721 11000 1480.18 

7 184764 19141 8733.54
* 

10  224815 13049 3615.53  

 

 

 

Table 4.7 shows the ranges of the minimum and maximum average machine 

hours when δ = 40%. These values vary from 12 to 14 hours for the 10 products 

scenarios, and from 1 to 2 hours for the 1000 products scenarios. As the results in Table 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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4.5, the higher the number of machines, given the same amount of products, the higher 

the machine utilization. 

  

 

Table 4.7 - Machine Utilization Ranges for the ILPb Model with δ=40% 

MCV = 0.9 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  41.77 56.15 

7  46.54 58.88 

10  - - 

100 4  39.27 41.87 

7  43.87 47.08 

10  46.16 48.36 

1000 4  39.78 41.38 

7  43.26 44.66 

10  45.50 46.26 

 

 

 

The results for the ILPb model with an imbalance factor of 25% are included on 

Tables 4.8 – 4.10. The same effects in total cost, average machine utilization, and 

average machine workload imbalance are observed as in the ILPb model with 40% 

imbalance factor (refer to Figures 4.6, 4.7, and 4.8). 
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Table 4.8 - Results for the ILPb Model with δ=25% 

MCV = 0.9 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 1,637  55.23 19.46% 

7 3,218  63.06 16.48% 

10 Infeasible - - 

100 4 1,701  50.99 24.63% 

7 3,165  55.74 24.28% 

10 4,662  58.12 23.84% 

1000 4 1,701  50.98 24.94% 

7 2,719 55.50 24.86% 

10 5,414 57.44 24.88% 

 

 

 

Figure 4.6. Average Machine Utilization - MCV (ILP & ILPb; δ=40% & 25%) 
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Figure 4.7. Average Machine Workload Imbalance – MCV(ILP & ILPb; δ=40%&25%) 

 

 

 

Figure 4.8. Total Cost - MCV (ILP & ILPb; δ=40% & 25%) 
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The analysis of the performance of the solver (refer to Table 4.9) shows that only 

the scenarios with 10 products and four or seven machines and the one with 1000 

products and seven machines can find an optimum solution within the time limit of 3600 

seconds. Once again, the 10 products with ten machines scenario is infeasible. The 

solver was able to find feasible solutions for the scenarios with 100 and the others with 

1000 products even when it went over the established time limit. 

 

 

Table 4.9 - Solver Results for the ILPb Model with δ=25% 

MCV = 0.9 

Products  Machines  

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 4  87344 10935 12.87 

7  1102 21 14.23 

10  - - 14.65 

100 4  2938354 390010 7220.37

 

7  3159529 334801 14429.40
* 

10  2504534 256000 21634.30
* 

1000 4  165138 38231  5108.80
* 

7  216681 19164 3611.50 

10  415624 10484  12092.60
* 

 

 

The ranges of the minimum and maximum average machine hours used when δ = 

25% are shown on Table 4.10. These are 15 to 19 hours for the 10 products feasible 

scenarios, and 1 to 2 hours for the 1000 products scenarios showing once again, the 

machine utilization increasing when the number of machines increases. 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.10 - Machine Utilization Ranges for the ILPb Model with δ = 25% 

MCV = 0.9 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  47.27 65.90 

7  56.00 70.60 

10  - - 

100 4  47.16 53.49 

7  54.68 56.91 

10  54.83 60.39 

1000 4  50.35 51.55 

7  54.94 55.99 

10  57.17 57.89 

 

 

4.5. Sensitivity Analyses 

To understand in detail the behavior of the different mathematical models studied 

during the course of this research, sensitivity analyses can be done. At the same time, 

these analyses create more realistic environment that can closely relate to real electronics 

assemblies companies. Due to the importance of controlling the process variability at 

any manufacturing plant, the sensitivity analyses should be done by varying the 

coefficient of variation (CV). In specific, additional scenarios can be created if low CV 

(LCV) and high CV (HCV) are considered. As explained by Hopp and Spearman, low 

variability is when CV < 0.75, moderate variability is when 0.75 ≤ CV < 1.33, and high 

variability is when CV ≥ 1.33 (Hopp et al., 2001). 

The sensitivity analyses are going to be done adding scenarios with a LCV of 

0.4, and a HCV of 1.4 to the ILP and ILPb models. The ILPx model will not be 
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compared as part of the sensitivity analyses because its behavior is similar to the ILP 

model. The additional scenarios increase the total runs of the mathematical model to 

twenty seven for the ILP model, and to fifty four for the ILPb model. Tables 4.11 and 

4.12 summarize the scenarios for the sensitivity analyses. 

 

 

Table 4.11 - Scenarios of the ILP Model for the Sensitivity Analyses 

CV Machines Products 

0.4 4 10 100 1000 

7 10 100 1000 

10 10 100 1000 

0.9 4 10 100 1000 

7 10 100 1000 

10 10 100 1000 

1.4 4 10 100 1000 

7 10 100 1000 

10 10 100 1000 

 

 

The results of the sensitivity analyses runs are shown on Tables 4.13 and 4.14 for 

the ILP model with LCV, and on Tables 4.15 and 4.16 for the ILP model with HCV. The 

scenario of 1000 products with ten machines was the only one of the ILP model that had 

to be run over the time limit to obtain a feasible solution when considering a LCV (refer 

to Table 4.13). The same scenario needed more time to find a feasible solution when 

using a HCV (refer to Table 4.15). 
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Table 4.12 - Scenarios of the ILPb Model for the Sensitivity Analyses 

CV Machines 
δ = 0.40 δ = 0.25 

Products Products 

0.4 4 10 100 1000 10 100 1000 

7 10 100 1000 10 100 1000 

10 10 100 1000 10 100 1000 

0.9 4 10 100 1000 10 100 1000 

7 10 100 1000 10 100 1000 

10 10 100 1000 10 100 1000 

1.4 4 10 100 1000 10 100 1000 

7 10 100 1000 10 100 1000 

10 10 100 1000 10 100 1000 

 

 

Table 4.13 - Results for the ILP Model with LCV 

LCV = 0.4 

      

Products Machines 

Total 

Cost 

($M) 

Avg. 

Machine 

Utilization 

Avg. 

Workload 

Imbalance 

Solver 

Iterations 

Run time 

(sec.) 

10 4 1,619  38.50 38.27% 101 23.63 

7 2,971  36.07 44.94% 121 23.82 

10 4,318  33.74 50.08% 144 24.21 

100 4 1,514  39.78 30.82% 1000 6.38 

7 2,763  38.32 38.22% 1000 19.60 

10 3,986  35.88 44.45% 1001 52.50 

1000 4 1,480  41.79 25.17% 10000 144.51 

7 2,693  39.50 35.06% 10000 1526.30 

10 3,856  37.36 40.59% 10000 4840.12

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.14 - Machine Utilization Ranges for the ILP Model with LCV 

LCV = 0.4 

   

Products Machines 

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4 30.23 53.69 

7 27.67 44.97 

10 27.84 47.06 

100 4 35.70 44.59 

7 34.12 44.65 

10 30.57 41.76 

1000 4 38.87 44.08 

7 35.18 41.70 

10 33.88 40.17 

 

 

Table 4.15 - Results for the ILP Model with HCV 

HCV = 1.4 

      

Products Machines 

Total 

Cost 

($M) 

Avg. 

Machine 

Utilization 

Avg. 

Workload 

Imbalance 

Solver 

Iterations 

Run time 

(sec.) 

10 4 1,631  39.29 54.95% 113 8.44 

7 2,869  27.04 70.84% 104 8.72 

10 4,114  26.30 72.33% 109 9.25 

100 4 1,552  36.41 57.88% 1000 4.23 

7 2,766  27.61 70.55% 1000 21.33 

10 3,972  23.33 76.28% 1000 60.91 

1000 4 1,622  38.17 56.26% 10000 169.69 

7 2,899  29.56 68.75% 10000 2082.19 

10 4,140  25.30 74.12% 10000 6599.96

 

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.16 - Machine Utilization Ranges for the ILP Model with HCV 

HCV = 1.4 

   

Products Machines 

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4 16.69 52.51 

7 18.52 38.44 

10 16.23 34.03 

100 4 32.13 41.79 

7 23.65 31.00 

10 20.80 26.95 

1000 4 35.03 42.70 

7 26.03 34.98 

10 21.96 30.05 

 

 

Tables 4.17, 4.18, and 4.19 include the results of the sensitivity analyses for the 

ILPb model with LCV and δ = 40%. Similar results are presented on Tables 4.20, 4.21, 

and 4.22 for the ILPb model with δ = 25%. 

When running the ILPb model with δ = 40% and a LCV, there were two 

scenarios that ran over the time limit to find a feasible solution; 100 products with seven 

and ten machines (refer to Table 4.18). With a LCV and δ = 25%, there were three 

scenarios that ran over the time limit and were able to find feasible solutions; 100 

products with seven machines, and 1000 products with seven and ten machines (refer to 

Table 4.21). For the scenario with 100 products and ten machines, the solver was not 

able to find an integer feasible solution even when running during 4528 seconds through 

over four millions of iterations and almost four hundred thousand B&B nodes analyzed 

(refer to Tables 4.20 and 4.21).  
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Table 4.17 - Results for the ILPb Model with LCV and δ=40% 

LCV = 0.4 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 1,642  42.31 26.19% 

7 3,153  50.06 22.70% 

10 4,557  52.84 18.91% 

100 4 1,516  39.85 28.97% 

7 2,778  38.90 36.53% 

10 4,014  39.69 36.73% 

1000 4 1,480  41.80 25.15% 

7 2,684  39.69 34.69% 

10 4,405  38.44 38.84% 

 

 

Table 4.18 - Solver Results for the ILPb Model with LCV and δ=40% 

LCV = 0.4 

Products 

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 343 22 30.44 

723 62 31.32 

601 0 38.45 

100 1740 0 15.50 

4562486 162870 7442.89

 

3549392 145127 14722.90
* 

1000 16015 0 80.92 

22059 0 3031.31 

136920 7000 2304.27 

 

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.19 - Machine Utilization Ranges for the ILPb Model with LCV and δ=40% 

LCV = 0.4 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  36.37 51.86 

7  43.98 55.31 

10  48.63 55.68 

100 4  35.99 44.85 

7  37.21 42.52 

10  37.23 44.38 

1000 4  38.87 44.08 

7  36.57 42.08 

10  37.59 40.76 

 

 

Table 4.20 - Results for the ILPb Model with LCV and δ=25% 

LCV = 0.4 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 1,678  48.48 15.30% 

7 3,235  55.39 13.17% 

10 4,817  59.44 13.36% 

100 4 1,524  42.79 23.90% 

7 2,840  46.57 24.20% 

10  No solution

 - -  

1000 4 1,486  42.58 23.66% 

7 2,710  45.59 24.88% 

10 4,478  47.27 24.78% 

 

 

 

                                                 

 No integer feasible solution was found by the solver within the established time limit. 
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Table 4.21 - Solver Results for the ILPb Model with LCV and δ=25% 

LCV = 0.4 

Products Machines 

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 4 1260 166 30.82 

7 3862 571 32.02 

10 788 0 41.44 

100 4 3222683 223423 3607.78 

7 3390492 308321 11087.20

 

10 4733138 382381 4528.37
 

1000 4 38617 2000 1302.38 

7 536531 40998 7654.19
* 

10 602878 13009 4512.08
* 

 

 

Table 4.22 - Machine Utilization Ranges for the ILPb Model with LCV and δ=25% 

LCV = 0.4 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  42.88 54.00 

7  51.12 59.66 

10  51.72 62.89 

100 4  41.23 44.35 

7  45.94 47.42 

10   -  - 

1000 4  41.52 43.90 

7  45.24 45.96 

10  47.00 47.57 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 

 No integer feasible solution was found by the solver within the established time limit. 
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The results for the sensitivity analyses for the ILPb model with HCV and δ = 

40% are presented on Tables 4.23, 4.24, and 4.25. Using δ = 25%, generated results are 

shown on Tables 4.26, 4.27, and 4.28. It can be seen on Tables 4.23 and 4.24 that the 

scenarios with 10 products, a HCV, and δ = 40% were not feasible and the solver 

determined that in less than twenty-one seconds for each scenario. Table 4.24 shows that 

for four of the scenarios, optimum solutions were not found within the time limit, but 

feasible solutions were obtained instead. 

 

 

Table 4.23 - Results for the ILPb Model with HCV and δ=40% 

HCV = 1.4 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 Infeasible - - 

7 Infeasible - - 

10 Infeasible - - 

100 4 1,610 52.22 39.55% 

7 3,010 57.40 39.46% 

10 4,407 59.98 38.82% 

1000 4 1,673 52.41 39.96% 

7 3,118  56.70 39.89% 

10 4,517  58.92 39.83% 
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Table 4.24 - Solver Results for the ILPb Model with HCV and δ=40% 

HCV = 1.4 

Products Machines 

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 4 177 0 1.33 

7 0 0 2.41 

10 0 0 20.11 

100 4 2989214 397287 3628.74 

7 3050901 334436 10849.60

 

10 2681919 234221 18090.50
* 

1000 4 160295 26541 3609.13 

7 174827 15441 10828.70
* 

10 200681 11088 18049.90
* 

 

 

Table 4.25 - Machine Utilization Ranges for the ILPb Model with HCV and δ=40% 

HCV = 1.4 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  - - 

7  - - 

10  - - 

100 4  50.61 53.94 

7  55.33 60.86 

10  58.27 61.76 

1000 4   51.90 52.96 

7   56.46 57.24 

10   58.27 59.41 

 

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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Table 4.26 - Results for the ILPb Model with HCV and δ=25% 

HCV = 1.4 

    

Products Machines 

Total Cost 

($M) 

Avg. Machine 

Utilization 

Avg. Workload 

Imbalance 

10 4 Infeasible - - 

7 Infeasible - - 

10 Infeasible - - 

100 4 1,687 65.31 24.72% 

7 3,141 70.25 24.36% 

10 Infeasible - - 

1000 4 1,745  65.06 24.95% 

7 3,275  71.00 24.88% 

10 4,748 73.31 24.80% 

 

 

Table 4.26 shows that when considering a HCV and δ = 25%, the 10 products 

scenarios are infeasible (same as when δ = 40%) and it was quickly determined by 

AMPL9/CPLEX90, in less than twenty-two seconds for each scenario (refer to Table 

4.27). There is another scenario under the same considerations; 100 products and ten 

machines, that was found infeasible by the solver as well, but it took over 18000 

seconds. In addition, for five scenarios the solver was able to find feasible solutions 

within the established time limit. These scenarios are for 100 products with four and 

seven machines, and all of the 1000 products scenarios. 
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Table 4.27 - Solver Results for the ILPb Model with HCV and δ=25% 

HCV = 1.4 

Products Machines 

Solver 

Iterations 

B&B 

Nodes 

Run time 

(sec.) 

10 4  - - 1.77 

7  - - 3.33 

10  - - 21.56 

100 4 3126767 382000  7231.43

 

7 2994235 336366  14482.30
* 

10 2181 0 18092.00  

1000 4 168787 32623 7222.81
* 

7 309168 15461 14437.70
* 

10 271590 11362 24672.50
* 

 

 

Table 4.28 - Machine Utilization Ranges for the ILPb Model with HCV and δ=25% 

HCV = 1.4 

   

Products  Machines  

Min Average          

Machine 

Utilization 

Max Average 

Machine 

Utilization 

10 4  - - 

7  - - 

10  - - 

100 4  62.47 68.09 

7  66.92 73.41 

10  - - 

1000 4  63.20 66.49 

7  70.10 71.50 

10  72.65 73.88 

 

 

 

                                                 

 This result is not optimum, it represents the best bound from the B&B algorithm at the time limit. 
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4.5.1. Comparison of Results from the Sensitivity Analyses 

Graphs are generated combining different scenarios to compare the results from 

the sensitivity analyses. This helps to understand the behavior of the models and how the 

different variables considered may affect the results. Considering the process variability, 

analyzed in this research based on the coefficient of variation (CV), as the main factor to 

do sensitivity analyses, the comparison of the results are being made by presenting them 

for each level of CV within each mathematical model developed. 

The following graphs (refer to Figures 4.9, 4.10, and 4.11) show the average 

machine utilization under each level of CV for the ILP, ILPb with δ = 40%, and ILPb 

with δ = 25%, respectively. 

 

 

 

 Figure 4.9. Average Machine Utilization – ILP Model  
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It can be seen on Figure 4.9 that the highest average machine utilizations for each 

combination of number of products and number of machines are obtained with the LCV. 

Also, the lower the number of machines, the higher the average machine utilization will 

be disregarding the number of products or the level of the CV. When comparing MCV 

and HCV, there are no significant differences in the average machine utilization given 

the same combination of number of products and machines.  

Under the ILPb model scenarios with δ = 40% (refer to Figure 4.10), the higher 

the CV, the higher the average machine utilization for each combination of number of 

products and machines. Again, when comparing MCV and HCV, there are no significant 

differences in the average machine utilization given the same combination of number of 

products and machines. The missing points on the graphs represent infeasible scenarios. 

 

 

 

Figure 4.10. Average Machine Utilization – ILPb Model; δ=40% 
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Analyzing the ILPb model with δ = 25% (refer to Figure 4.11), the higher the 

CV, the higher the average machine utilization for each combination of number of 

products and number of machines. On this model, due to the imbalance factor being 

more restrict, there is a noticeable difference on the average machine utilization between 

MCV and HCV resulting in higher numbers for the HCV. The missing points on the 

graphs also represent infeasible scenarios. 

 

 

 

Figure 4.11. Average Machine Utilization – ILPb Model; δ=25% 

  

 

The next variable to compare is the average machine workload imbalance.  

Figures 4.12, 4.13, and 4.14 show these comparisons for each level of CV for the ILP, 

ILPb with δ = 40%, and ILPb with δ = 25%, respectively. 
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Figure 4.12. Average Machine Workload Imbalance - ILP Model 
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the machine workload imbalance is noticeable lower than the maximum allowed. The 

missing points are again related to infeasible scenarios. 

 

 

 

Figure 4.13. Average Machine Workload Imbalance - ILPb Model; δ=40% 
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Figure 4.14. Average Machine Workload Imbalance - ILPb Model; δ=25% 
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Figure 4.15. Total Cost – ILP Model 

 

 

When analyzing the total cost for the ILPb models (refer to Figures 4.16 and 

4.17), it also shows that the higher the level of the CV and the higher the number of 

machines for each scenario keeping the number of products constant, the higher the total 

cost of assembling all products. Again, the reasoning about having the same number of 

machines, but changing the amounts of products assembled also applies for these 

models. There is one obvious exception when there are 1000 products assembled with 

ten machines per assembly process because the total cost is significantly higher under 

the MCV scenarios for both imbalance factors (δ = 40% & 25%). 

 

 

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

4 7 10 4 7 10 4 7 10

Number of machines

Total cost

ILP model

LCV MCV HCV

10 products                100 products                1000 products



  81 

 

Figure 4.16. Total Cost – ILPb Model; δ=40% 

 

 

 

Figure 4.17.  Total Cost – ILPb Model; δ=25% 
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4.6. Summary 

This chapter includes the results of the runs of all models: ILP, ILPx, and ILPb. 

These results are presented on tables including total cost, average, minimum, and 

maximum machine utilization, and average machine workload balance for each 

identified scenario combining different number of assembly machines and different 

amounts of assembled products. Results presenting the performance of the mathematical 

programming language and the solver are also presented in tables for each identified 

scenario. 

A series of sensitivity analyses were performed for the ILP and ILPb models 

where additional levels of process variability (using CV) were considered on the 

scenarios analyzed. Graphs were generated for the comparison of the additional 

scenarios and analyses of these results were discussed. 

The next chapter is presents a summary of the research with its conclusions. It 

also includes recommendation for future research. 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND FUTURE RESEARCH 

 

5.1. Introduction 

This chapter summarizes the problem presented in this research of optimizing 

machine selection in an electronics assembly environment. The methodology used to 

solve the problem for each integer linear programming model is explained. The results 

obtained are discussed for the selected scenarios. Recommendations of the applicability 

of the developed models are also included while discussing the conclusions of this work. 

The opportunities for future research are mentioned and explained based on the 

researcher’s knowledge and experience. 

 

5.2. Summary of Research 

A model driven Decision Support System (DSS) was developed to solve the 

problem described in Chapter I with the emphasis in optimizing available resources, 

minimizing production disruption, thus minimizing cost. The variables that affect the 

costs of the assembly of electronics products were considered in detail and used while 

developing the cost model under the premises of variable costing accounting system.  

The first model of the Decision Support System was developed using Microsoft 

Excel as an interactive tool to estimate the cost of a single electronic product assembly. 

This basic model for one product was created in Microsoft Excel due to its practical and 
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common use among most businesses (refer to Chapter II). It uses macros to facilitate 

entering the required data and to do the calculations needed (refer to Appendix A).  

Mathematical modeling was used for the optimization model of all products 

assembled using AMPL9 as the mathematical programming language and CPLEX90 as 

the solver for the model. Branch and bound (B&B) algorithm is used when solving the 

models with CPLEX90. This model was created to provide an optimization tool for the 

assembly of many products during the same period of time. The mathematical model 

was then enhanced by adding constraints to balance machines workload up to an allowed 

imbalance factor. Another variation of the mathematical model calculates the direct 

labor cost per product in a different way to consider the impact on the product cost when 

expediting production. The mathematical models are discussed on detail in Chapter III. 

Multiple scenarios where identified with different combinations of the amount of 

assembled products, the quantity of machines at each assembly process, and the allowed 

imbalance factor for the assembly machines workload. These scenarios were analyzed 

with the corresponding mathematical model and the results are presented in Chapter IV.  

The analysis of the results obtained showed that the mathematical model 

considering expediting production (ILPx) performs in a similar way as the general model 

(ILP). The higher the number of machines per process, the higher the average machine 

workload imbalance due to having more options (in terms of machines) to assign the 

products at each assembly process. If the variable being changed is the amount of 

products, then the higher it is, the more consistent the machine utilization is among all 

assembly processes and machines. The ILPx model has slightly higher average machine 
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workload imbalance and slightly lower machine utilization in general than the ILP 

model because of its additional complexity. 

Due to the nature of the ILPb models which have constraints to balance machine 

workload at each assembly process, the results were as expected in the sense that the 

average machine utilization increases when the amount of products assembled also 

increases while keeping the average machine workload imbalance almost constant. This 

is the opposite of the results obtained with the ILP and ILPx models.  

Sensitivity analyses were performed to understand the behavior of the 

mathematical models (ILP and ILPb) under additional scenarios. These scenarios were 

created by changing the coefficient of variation (CV) of the assembly processes. Since 

the analysis of results was done using a moderate coefficient of variation (MCV), for the 

sensitivity analyses low and high coefficients of variation (LCV and HCV) were used. 

Results from the sensitivity analyses show that when evaluating the ILP model with 

LCV and HCV only for one scenario (1000 products with ten machines) the solver was 

not able to find an optimum solution within the established time limit, but feasible 

integer solutions were found in less than two hours. For all other scenarios, optimum 

solutions were found as fast as in four seconds and in no more than thirty-five minutes. 

No noticeable differences were found in the performance of the ILP model under the 

MCV and HCV considerations. 

The results of the sensitivity analyses for the ILPb models show that when 

considering a LCV with δ = 40% or 25%, there was only one scenario (100 products 

with ten machines and δ = 25%) where the solver was not able to find an integer feasible 
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solution within the time limit, but the scenario was not recognized as infeasible by 

AMPL9/CPLEX90. There were some scenarios for which the solver found feasible (not 

optimum) solutions within the established time limit. These scenarios are the ones with 

100 products and seven or ten machines when δ = 40%; and the ones with 100 products 

and seven machines or 1000 products and seven or ten machines when δ = 25%. The 

results for the HCV show that all scenarios with 10 products were found infeasible by 

the solver for both levels of the imbalance factor (δ = 40% and 25%). The only other 

infeasible scenario was with 100 products and ten machines given a δ = 25%. There 

were many scenarios that found feasible (not optimum) solutions within the established 

time limit. These scenarios are the ones with 100 or 1000 products and seven or ten 

machines when δ = 40%, and the ones with 100 or 1000 products and any number of 

machines when δ = 25% (with the exception of 100 products and ten machines that is 

mentioned above). 

 

5.3. Conclusions 

While looking for the best way to select machines when there are multiple related 

assembly machines available, minimizing the total cost (or using the SPT rule) of 

assembling all products proved to be an appropriate method. The main difference in the 

execution of the ILP and ILPb mathematical models lies on how they choose the 

assembly machines at each assembly process for the demanded products. The ILP model 

always assign the minimum cost (minimum time as well) available machine at each 

assembly process unless there is no capacity (machine hours) left for the given period of 
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time. The ILPb does not necessarily assign the minimum cost available machine to be 

able to balance the machines workload within each assembly process up to the selected 

imbalance factor. Therefore, the ILPb model requires more machine hours in average 

than the ILP model to assembly the same amount of product demand. This is how the 

average machine utilization increased when running the ILPb model while the average 

machine workload balance decreased.  As a result, usually the total cost of assembling 

all products is higher with the ILPb model than with the ILP model given other variables 

are kept constant.  

Analyzing the total cost of all products assembled, since there is not a significant 

difference, the ILPb model is recommended over the ILP model. The average difference 

in total cost fluctuates between 5 and 10% when comparing the ILPb versus the ILP 

model depending on the level of the CV. Between the two levels of the imbalance 

factors studied (δ = 40% and 25%), the average difference in total cost goes from 2 to 

5%. For this reason, the mathematical model considering δ = 25% is highly 

recommended because it provides for a better machine workload balance. 

Even for the more restricted scenarios, the ILPb model when running with 

AMPL9/CPLEX90 is able to find feasible solutions. There can be scenarios that need 

over four millions iterations to be solved and over three hundred B&B nodes to be 

analyzed within a time range of five to seven hours. As expected, the higher the level of 

the CV, the higher the average total cost of all products assembled, and the higher the 

average machine utilization will be when using the ILPb model with any of the 
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imbalance factors identified. The scenarios varying the CV were presented for the 

purpose of relating to more realistic scenarios in an electronics assemblies environment.  

 

5.4. Future Research 

There are some options that have been considered by the researcher to expand the 

use of the integer linear programs developed during the course of this research. These 

options have two main purposes: to improve the mathematical models presented in this 

research considering the same domain, electronics products assemblies; and to extend 

the applicability of these integer linear programs to other manufacturing scenarios. 

When focusing on the electronics assembly environment, the following are some 

opportunities to create optimization models with more applications: 

 To apply additional production planning or production scheduling rules to the 

mathematical models presented in this research. One of these methodologies is to 

consider the bottleneck assembly process, the one who takes more time on the 

assembly line. The problem of emphasizing on the bottleneck process can be 

included in the mathematical model by adding additional constraints. It would be 

crucial to understand the applicability of considering the bottleneck process in a 

mathematical model like the ones presented in this research to guarantee a significant 

contribution to the existing literature. The problem of bottleneck process has been 

studied by many researchers and therefore, our contribution would be related to 

include it in a mathematical model where cost is calculated in a very detailed manner 

and the objective is to minimize it. 
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 As explained at the beginning of this dissertation, the variable costing accounting 

system was used to develop the cost models explained. An additional research focus 

can be to develop this kind of mathematical model but considering a full or 

absorption costing accounting system for long-term decision making. There could be 

a different group of users for this kind of minimization model; the ones looking into 

strategic planning and long term planning in an electronics assembly environment. If 

a full costing accounting system is used, the major changes to the mathematical 

model created during this research would be on the way the overhead costs are 

calculated. In this research, only the variable manufacturing overhead costs were 

considered when developing the cost model. Under a full costing accounting system, 

the fixed manufacturing overhead costs would have to be considered as well.  

 Another alternative for future research is the development of heuristics procedures to 

solve the ILPb models discussed in this research. These procedures would help to 

solve the scenarios where too many constraints are included making the solving time 

to increase extraordinarily. In specific, these heuristics procedures could have the 

purpose to solve those scenarios where an integer feasible solution was found within 

five to seven hours, but to obtain an optimum solution may have taken an 

undetermined amount of time. 

With the focus on extending the applicability of these integer linear programs to 

other manufacturing scenarios, the following are some opportunities to be considered: 

 To study the differences on how are the costs (mainly overhead costs) generated 

under different manufacturing or assembly environments and apply these differences 
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to the mathematical models developed in this research. The differences identified 

could affect the way the parameters used to calculate the total cost of all products are 

computed, or they could have an effect on the required data and/or the way it is 

generated. Another possible impact would be on the constraints identified for the 

mathematical model since these can be the same, but most probably, it could imply 

that additional (or different) constraints may be needed.  

 The heuristic procedures and the bottleneck considerations mentioned above can be 

analyzed for different manufacturing environments as well and determine its 

applicability. 
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APPENDIX A 

MICROSOFT EXCEL MODEL 

 

In this appendix, the logic used to create the Microsoft Excel Model is explained 

in detail and the different worksheets used are included. The purpose of this model is to 

estimate the cost of assembly a given electronic product and use that information when 

selecting a machine to assign the product at each assembly process based on the 

minimum cost of assembly. The model considers direct labor cost, material cost, and 

overhead cost to calculate the total cost per unit. 

To use this model, the user can start by selecting on the main worksheet (refer to 

Figure A.1) to go to the data sheet or to the calculations and results worksheet. When 

using the model for the first time to estimate the cost of assembly a particular product, 

the user should select the data sheet to be able to identify which data is required. This 

cost model works with macros to facilitate the data entry.  

 

 

 

Figure A.1. Microsoft Excel model main menu 

CALCULATIONS AND RESULTS

DATA SHEET
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In the data sheet (refer to Figure A.2), the user will enter the required information 

for the parameters that require a single value (identified on light yellow). If the data 

needs to be entered in an array format, the user will click on each named button 

(identified on bright yellow) to be redirected to where the data can be entered (refer to 

Figure A.3). There are many of these data values that are generated using probability 

distributions. For these parameters, the user has the option to change the distribution 

values or enter different data values on the spaces available.  

 

 

 

Figure A.2. Microsoft Excel model data sheet 

Data required

Variable Description Units Value

CMj Consumable material j Number Array

$CMj Cost of consumable material j $/unit Array

CPi Component i Number Array

$CPi Cost of component i $/unit Array

Dyr Total annual demand Units/year 10,258              

$DL Average direct labor cost per hour $/hour 8.50$                

%DLjk % of time direct employee work on machine k in process j % Array

#DLjk Quantity of direct employees working on machine k  in process j Number Array

HRS Worked hours per year Hours/year 2,000                

HTxp Handling or moving time of product x  from previous process to process p Hours/unit Array

MH Machine hours available per week Hours/week 80                     

$MM Total machines maintenance cost $/month 20,000$            

MTTFpm Mean-time-to-failure of machine m  in process p Hours Array

MTTRpm Mean-time-to-repair of machine m  in process p Hours Array

PTxpm Process time on product x  of machine m  in process p Hours/unit Array

SPk Support personnel k Number Array

%SPx % of time on product x  by support personnel k % Array

$SPyr Cost of support personnel per year $/year 60,000$            

SUxpm Setup time per batch of product x Hours/batch Array

UCu Utilities consumption u  per product Units Array

$UCu Cost of utilities consumption u $/unit Array

UN(bh)x Total units of product x  per batch Units/batch 1,000                

WKS Worked weeks per year Weeks/year 50                     

CMj

$CMj

CPi

$CPi

%DLjk

#DLjk

HTxp

MTTFpm

MTTRpm

PTxpm

SPk

%SPx

SUxpm

UCu

$UCu

Back to Main Menu
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Figure A.3. Microsoft Excel model arrays data sheet 

SU(bh)
Setup time per batch of product x  on process j and machine k

ROUNDUP(NORMDIST(RAND(),0.5,0.45,FALSE),4)

1 2 3

1 0.6403 0.7287 0.8792

2 0.8149 0.4836 0.8727

3 0.8862 0.6725 0.5791

4 0.6631 0.5367 0.5772

5 0.7807 0.6706 0.5201

6 0.6602 0.6574 0.8687

7 0.6287 0.5437 0.4873

8 0.5046 0.7037 0.8824

9 0.8732 0.7173 0.8699

10 0.8862 0.5860 0.5271

PTxjk
Process time of product x  on process j and machine k 

ROUNDUP(NORMDIST(RAND(),0.1,0.09,FALSE),4)

1 2 3

1 0.0587 2.4184 0.0001

2 0.0013 2.8468 0.0001

3 0.0315 0.0001 0.0001

4 0.0001 0.0001 0.9304

5 0.0498 0.0001 2.8049

6 0.0001 0.0006 0.0001

7 3.6259 0.7274 0.0001

8 2.5839 0.2390 0.0001

9 0.0001 0.0001 0.0001

10 2.7147 0.0005 0.0001

WTxjk
Time that product x  has to wait to start a process j on machine k 

ROUNDUP(NORMDIST(RAND(),1,1,FALSE),4)

1 2 3

1 0.3887 0.3971 0.3283

2 0.2882 0.3637 0.2988

3 0.2629 0.3654 0.3730

4 0.2863 0.3647 0.3289

5 0.3957 0.3769 0.3903

6 0.3988 0.3844 0.2974

7 0.3984 0.3902 0.3112

8 0.3988 0.3920 0.3333

9 0.3253 0.3839 0.3831

10 0.3555 0.3746 0.3990

Machines
P

ro
c
e

s
s

Machines

P
ro

c
e

s
s

Machines

P
ro

c
e

s
s

Back to Main Menu

Back to Main Menu

Back to Main Menu

Back to Data Sheet

Back to Data Sheet

Back to Data Sheet
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Figure A.3 Continued 

MTTFjk
Mean time to failure (or reliability) of machine k  in process j

RANDBETWEEN(75,150)

1 2 3

1 119 137 85

2 129 146 97

3 90 81 104

4 113 104 100

5 125 76 135

6 129 120 80

7 83 127 148

8 115 147 81

9 75 75 112

10 141 80 128

MTTRjk
Mean time to repair (or availability) of machine k  in process j

RANDBETWEEN(1,3)

1 2 3

1 1.0 1.0 1.0

2 2.0 1.0 2.0

3 2.0 3.0 1.0

4 3.0 1.0 2.0

5 2.0 2.0 3.0

6 2.0 1.0 2.0

7 3.0 3.0 3.0

8 3.0 1.0 1.0

9 3.0 3.0 1.0

10 1.0 3.0 3.0

#DLjk
Quantity of direct employees working on machine k in process j

RANDBETWEEN(1,3)

1 2 3

1 1 1 2

2 2 3 2

3 3 3 2

4 1 2 1

5 3 3 2

6 1 1 2

7 1 1 1

8 1 3 1

9 2 3 3

10 2 2 3

P
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e
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s

P
ro

c
e
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s

Machines

Machines
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ro

c
e
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s

Machines

Back to Main Menu

Back to Main Menu

Back to Main Menu

Back to Data Sheet

Back to Data Sheet

Back to Data Sheet

Back to Data Sheet
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Figure A.3 Continued 

 

%DLjk
% of time direct employee work on machine k in process j

1 2 3

1 0.33 0.33 0.33

2 0.33 0.33 0.33

3 0.33 0.33 0.33

4 0.33 0.33 0.33

5 0.33 0.33 0.33

6 0.33 0.33 0.33

7 0.33 0.33 0.33

8 0.33 0.33 0.33

9 0.33 0.33 0.33

10 0.33 0.33 0.33

CPxja
product component a  for product x  in process j

RANDBETWEEN(0,50)

1 2 3 4 5

1 24 39 9 2 24

2 9 15 10 2 37

3 44 21 44 44 18

4 34 6 28 26 50

5 47 30 7 40 24

6 11 12 21 13 47

7 26 47 17 15 27

8 39 32 23 2 23

9 49 3 6 36 40

10 42 50 7 19 29

CMxjb
consumable material b  for product x  in process j

RANDBETWEEN(0,15)

Consumable material

1 2

1 6 6

2 15 4

3 4 2

4 9 5

5 9 12

6 2 8

7 11 14

8 1 2

9 14 12

10 0 6
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e
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Components
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Machines
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Figure A.3 Continued 

 

HTxj
Handling or moving time of product x  from previous process to process j

ROUNDUP(NORMDIST(RAND(),0.5,0.5,FALSE),4)

1 0.6379

2 0.7979

3 0.7563

4 0.6853

5 0.7920

6 0.7446

7 0.7976

8 0.6255

9 0.7961

10 0.7918

SP k , %SP x Support personnel k  (quantity), % of time on product x  by support personnel k

INT(RANDBETWEEN(1,3)

RAND()*0.15

k SP k %SP x SP k  x %SP x

1 2 3% 0.058073191

2 1 1% 0.005589787

3 3 8% 0.243870367

4 1 7% 0.069981782

5 3 3% 0.080877099

UCu, $UCu
Utilities consumption u  per product (units), Cost of utilities consumption u ($/unit)

INT(RANDBETWEEN(10,300))

RAND()*0.1

u UC u $UC u UC u  x $UC u

1 46 0.0981$      4.51$             

2 218 0.0457$      9.97$             

3 230 0.0674$      15.50$           

$CPa
cost per unit of product component a 

ROUNDUP(RAND()*0.50,2)

1 2 3 4 5

0.32 0.40 0.31 0.37 0.31

$CMb
cost per unit of product component a 

ROUNDUP(RAND(),2)

Consumable material

1 2

0.09 0.11
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Once all required data is entered, the user will choose the calculations and results 

worksheet (refer to Figure A.4) by going first to the main menu worksheet and selecting 

the option for calculations and results. On this worksheet the user is going to be able to 

review the estimate of the cost in detail for each one of the cost components mentioned 

above, and for the total cost as well. The user will also be able to see which machine was 

assigned at each assembly process which in a real manufacturing or assembly 

environment would mean the selected production sequence for the given product. 

 



 

 

 

 

Figure A.4. Microsoft Excel model calculations and results worksheet 

Process
Machine 

ID

Setup 

time 

(SU xjk )

Handling 

time 

(HT xj )

Waiting 

time 

(WT xjk )

Process 

time 

(PT xjk )

Cycle 

time  

(CT x )

Availability

Total 

time 

(TT x )

Labor cost 

(LC x )

Prod 

comp 

cost 

(CP x )

Cons. 

materials 

cost 

(CM x )

Material 

cost 

(MC x )

Support 

personnel

cost 

(SP x )

Utilities 

consumption 

cost      

(UC x )

Machine 

maintenance 

cost     

(MM x )

Overhead 

cost 

(OH x ) 

Product 

cost 

(PC x )

Min (PC x ) 

(LC and OH)

PE1 0.00049 0.3738 0.0001 1.0123 97% 1.0480  $   0.0050  $  0.2882  $      0.0030  $      0.0059  $     0.30  $  35.75 

PE2 0.00083 0.3904 0.0028 0.3940 97% 0.4067  $   0.0308  $  0.1119  $      0.0840  $      0.0363  $     0.23  $  35.71 

PE3 0.00088 0.2702 0.0001 0.2712 97% 0.2788  $   0.0028  $  0.0767  $      0.0030  $      0.0098  $     0.09  $  35.54 

LM1 0.00088 0.3987 2.4852 3.6827 98% 3.7407  $ 14.0878  $  1.0288  $    74.5174  $    24.8608  $ 100.41  $140.47 

LM2 0.00083 0.3713 0.0001 0.3722 99% 0.3774  $   0.0053  $  0.1038  $      0.0030  $      0.0093  $     0.12  $  26.10 

LM3 0.00076 0.3797 0.0001 0.3806 97% 0.3926  $   0.0049  $  0.1080  $      0.0030  $      0.0086  $     0.12  $  26.10 

DR1 0.00066 0.3959 2.7793 3.9322 97% 4.0550  $   7.8765  $  1.1153  $    83.3358  $    27.7996  $ 112.25  $178.69 

DR2 0.00073 0.2614 0.0001 0.2622 99% 0.2654  $   0.0024  $  0.0730  $      0.0030  $      0.0083  $     0.08  $  58.65 

DR3 0.00078 0.3563 0.0001 0.3572 97% 0.3698  $   0.0075  $  0.1017  $      0.0030  $      0.0088  $     0.11  $  58.68 

PC1 0.00081 0.3099 0.0001 0.9961 98% 1.0184  $   0.0077  $  0.2801  $      0.0030  $      0.0091  $     0.29  $  48.74 

PC2 0.00084 0.3250 4.3957 4.7215 98% 4.8132  $ 24.9137  $  1.3238  $  131.8027  $    43.9654  $ 177.09  $250.45 

PC3 0.00059 0.3922 0.0001 0.3929 98% 0.4015  $   0.0019  $  0.1104  $      0.0030  $      0.0069  $     0.12  $  48.56 

SR1 0.00081 0.3986 1.5565 2.7479 98% 2.8040  $ 13.2371  $  0.7712  $    46.6708  $    15.5731  $   63.02  $129.83 

SR2 0.00073 0.3799 4.2466 4.6272 98% 4.7459  $ 36.1023  $  1.3053  $  127.3320  $    42.4733  $ 171.11  $260.79 

SR3 0.00088 0.3775 0.0001 0.3785 99% 0.3815  $   0.0028  $  0.1049  $      0.0030  $      0.0098  $     0.12  $  53.70 

TP1 0.00075 0.3808 0.0001 1.1263 98% 1.1450  $   0.0072  $  0.3149  $      0.0030  $      0.0085  $     0.33  $  35.60 

TP2 0.00062 0.3983 0.0001 0.3990 98% 0.4058  $   0.0061  $  0.1116  $      0.0030  $      0.0072  $     0.12  $  35.40 

TP3 0.00056 0.3709 2.6323 3.0038 98% 3.0744  $   7.4598  $  0.8456  $    78.9281  $    26.3286  $ 106.10  $148.83 

SP1 0.00089 0.2505 0.2078 1.2568 99% 1.2664  $   1.7738  $  0.3483  $      6.2308  $      2.0869  $     8.67  $  59.28 

SP2 0.00072 0.3443 0.0001 0.3451 99% 0.3476  $   0.0070  $  0.0956  $      0.0030  $      0.0082  $     0.11  $  48.95 

SP3 0.00058 0.3825 0.0004 0.3835 97% 0.3966  $   0.0028  $  0.1091  $      0.0120  $      0.0098  $     0.13  $  48.97 

TG1 0.00053 0.3943 0.0010 1.0213 99% 1.0348  $   0.0087  $  0.2846  $      0.0300  $      0.0153  $     0.33  $  40.93 

TG2 0.00071 0.3964 4.2941 4.6912 98% 4.8029  $ 36.5059  $  1.3210  $  128.7563  $    42.9481  $ 173.03  $250.12 

TG3 0.00077 0.2512 4.2941 4.5461 98% 4.6543  $ 12.1688  $  1.2801  $  128.7563  $    42.9487  $ 172.99  $225.74 

PO1 0.00084 0.2872 0.0003 1.0844 98% 1.1078  $   0.0064  $  0.3047  $      0.0090  $      0.0114  $     0.33  $  47.37 

PO2 0.00049 0.3987 4.2047 4.6039 99% 4.6687  $ 11.9147  $  1.2841  $  126.0756  $    42.0519  $ 169.41  $228.37 

PO3 0.00052 0.3857 3.4099 3.7961 97% 3.9135  $ 28.9886  $  1.0764  $  102.2440  $    34.1042  $ 137.42  $213.45 

PP1 0.00087 0.2921 4.3219 5.4067 99% 5.4525  $ 36.7435  $  1.4996  $  129.5898  $    43.2277  $ 174.32  $263.35 

PP2 0.00067 0.3990 0.0001 0.3998 98% 0.4089  $   0.0044  $  0.1125  $      0.0030  $      0.0077  $     0.12  $  52.42 

PP3 0.00083 0.3761 0.0001 0.3770 97% 0.3868  $   0.0026  $  0.1064  $      0.0030  $      0.0093  $     0.12  $  52.41 

447.62$     

 $  44.46  $    2.58  $ 47.04 

 $  51.63  $    0.66  $ 52.29 

 $  46.31  $    2.53  $ 48.84 

 $  40.28  $    0.31  $ 40.59 

 $  51.45  $    2.13  $ 53.58 

 $  34.21  $    1.06  $ 35.27 

 $          35.54 

Lamination 

(LM)

Drilling    

(DR)

Plating & 

coating   

(PC)

 $  34.25  $    1.20  $ 35.45 

 $  24.19  $    1.79  $ 25.98 

 $  57.98  $    0.58  $ 58.56 

 $  47.08  $    1.36 

Protection & 

packaging 

(PP)

 $          26.10 

 $          58.65 

 $          48.56 

 $          53.70 

 $          35.40 

 $          48.95 

 $          40.93 

 $          47.37 

 $          52.41 

Solder 

Resist   (SR)

Tin plating 

(TP)

Screen 

printing   

(SP)

Testing   

(TT)

Populating 

(PO)

 $ 48.44 

To calculate cost of product x

0.6379

0.7979

0.7563

0.6853

Patterning 

(etching) 

(PE)

0.7918

0.7920

0.7446

0.7976

0.6255

0.7961

Back to Main Menu Back to Data Sheet

1
0
2
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APPENDIX B 

FILES FOR AMPL9 

 

In this Appendix, the files used to solve the different mathematical models are 

included. The files required by AMPL9 with CPLEX90 are: the model (.mod) files, the 

data (.dat) files, and the script (.scs) files. This Appendix is divided for each integer 

linear program. 

 

1. The ILP Model 

The model file used for the integer linear program is included next, followed by 

the data file, and the scripts used to include all the required commands needed to solve 

the ILP model. The script file shown is for the 10 products scenarios. If running the 

model with 100 or 1000 products, the script file needs the instruction “let lastprod := 

10;” to be adjusted to reflect the corresponding number of products, 100 or 1000.  

 

Decision Support System - Mathematical Model (.mod file) 

 

set J;                   # processes 

set S;                   # support personnel 

set U;                   # utilities 

set A;                   # product components 

set B;                   # consumable materials     

 

# Parameters: 

 

param first integer;  # first product/machine number 

param lastprod >= first integer; # last product number 

param lastmach >= first integer;  # last machine number 

set I := first..lastprod;  # products 

set K := first..lastmach; # machine types 

param DLc >= 0.0;        # average direct labor employees salary per hour 

param HRS >= 0.0;        # scheduled machine hours per week
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param MMc >= 0.0;  # total machine maintenance cost per week 

param SPc >= 0.0;  # average cost of support personnel per year 

param WKS >= 0;  # scheduled weeks per year 

 

# Parameters with random values generated in script file: 

 

param Dyr {I}; # total annual demand for each product i 

param HT {I,J}; # handling or moving time of product i from previous process to process j 

param PT {I,J,K}; # process time of product i at process j and machine k 

param SUb {I,J,K}; # machine setup time per batch for product i at process j and machine k 

param WT {I,J,K}; # waiting time of product i at process j in machine k 

 

# Parameters with random values: 

 

param CM {i in I, j in J, b in B} := round(Uniform(0,15)); 

# consumable material b needed for product i in process j 

 

param CMc {b in B} := Uniform(0.5,1.0); 

# cost per unit of consumable material b 

 

param CP {i in I, j in J, a in A} := round(Uniform(0,50));    

# component a needed for product i in process j 

 

param CPc {a in A} := Uniform(0.10,0.50); 

# cost per unit of component a 

 

param DLq {j in J} := round(Uniform(1,3));       

# quantity of direct employees working in process j 

 

param DLp {j in J}  := Uniform(0.30,0.50);    

# average percent of time direct employee work in process j 

 

param MH {j in J, k in K} default 80; 

# machine hours available per week for machine k in process j 

 

param MTTF {j in J, k in K} >= 0.0 := round(Uniform(75,150));   

# mean-time-to-failure of machine k in process j 

 

param MTTR {j in J, k in K} >= 0.0 := Uniform(0.50,1.50);   

# mean-time-to-repair of machine k in process j 

 

param SPp {j in J} := Uniform(0.05,0.15);   

# average percent of time of support personnel in process j 

 

param SPq {s in S} := round(Uniform(1,3)); 

#quantity of support personnel s 

 

param Ub {i in I} := round(Uniform(500,1500));   

# units per batch of product i 

 

param UCc {u in U} := Uniform(0.05,0.10); 

# cost of utility u per unit 
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param UCq {j in J, k in K, u in U} := Uniform(10,300);   

# units of utility u consumed by machine k in process j 

 

# Computed parameters: 

 

# To calculate the machine setup time per unit for product i at process j and machine k 

param SU {i in I, j in J, k in K} := SUb[i,j,k] / Ub[i];  

 

# To calculate maximum machine utilization for product i at process j and machine k 

param MUtil {i in I, j in J, k in K} := (PT[i,j,k] + SU[i,j,k]) * (Dyr[i]/WKS); 

 

# To calculate average machine utilization per process for each product i and machine k 

param AvgMUtil {j in J, k in K} := (sum {i in I} MUtil[i,j,k]) / card (K); 

 

# To calculate average machine utilization per process 

param TAvgMUtil {j in J} := (sum {k in K} AvgMUtil[j,k]) / card (K); 

 

# To calculate the cycle time of product i at process j and machine k 

param CT {i in I, j in J, k in K} := SU[i,j,k] + HT[i,j] + WT[i,j,k] + PT[i,j,k];  

 

# To calculate the availability of machine k in process j 

param AV {j in J, k in K} := MTTF[j,k] / (MTTF[j,k] + MTTR[j,k]);   

 

# To calculate the total time of product i at process j and machine k 

param TT {i in I, j in J, k in K} := CT[i,j,k] / AV[j,k];  

 

# To calculate the machine setup cost for product i at process j and machine k 

param SC {i in I, j in J, k in K} := SU[i,j,k] * DLq[j] * DLp[j] * DLc;  

 

# To calculate the direct labor cost for product i at process j and machine k 

param L {i in I, j in J, k in K} := PT[i,j,k] * DLq[j] * DLp[j] * DLc + SC[i,j,k];   

 

# To calculate the materials cost for product i at process j and machine k 

param M {i in I, j in J, k in K} := sum {a in A} (CP[i,j,a] * CPc[a]) + sum {b in B} (CM[i,j,b] * CMc[b]);  

 

# To calculate the support personnel cost for process j 

param SP {i in I, j in J, k in K} := sum {s in S} (SPq[s] * SPp[j]) * TT[i,j,k] * (SPc / (WKS * HRS)); 

 

# To calculate the utilities cost for product i at process j and machine k 

param UC {i in I, j in J, k in K} := sum {u in U} (UCq[j,k,u] * UCc[u]) * PT[i,j,k];  

 

# To calculate the machine maintenance cost for product i at process j and machine k  

param MM {i in I, j in J, k in K} := MMc / HRS * (SU[i,j,k] + PT[i,j,k]); 

 

# To calculate the overhead cost for product i at process j and machine k 

param O {i in I, j in J, k in K} := SP[i,j,k] + UC[i,j,k] + MM[i,j,k];  

 

# To calculate the cost of product i at process j and machine k 

param C {i in I, j in J, k in K} := (L[i,j,k] + M[i,j,k] + O[i,j,k]) * (Dyr[i] / WKS) > 0.0;  

 

# Decision variables: 

  

var X {I,J,K} binary;     # to assign product i to process j and machine k 
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# Objective function - to minimize total cost of all products assembled 

 

minimize Total_cost:  

 sum {i in I, j in J, k in K} (C[i,j,k] * X[i,j,k]); 

 

 

# Constraints: 

 

# (1) Each product i can be assigned to each process j and machine k only once. 

 

subject to AssignProduct {j in J, k in K}:  

 sum {i in I} X[i,j,k] <= card(I); 

 

# (2) Each product i is assigned to only one machine k at each process j. 

 

subject to AssignMachine {i in I, j in J}: 

 sum {k in K} X[i,j,k] = 1; 

 

# (3) To make sure available machine hours for product i at process j and machine k are not exceeded. 

 

subject to Capacity {j in J, k in K}: 

 sum {i in I} (MUtil[i,j,k] * X[i,j,k]) <= MH[j,k]; 

 

 

Decision Support System - Data file 

 

set J := PE LM DR PC SR TP SP TT PO PP; # processes 

set S := ENG QUAL OTHER ;        # support personnel 

set U := WATER ELEC GAS ;   # utilities 

set A := 1 2 3 4 5 ;       # product components 

set B := 1 2 ;             # consumable materials     

 

# Parameters without subscripts: 

 

param DLc := 8.50; 

param HRS := 80; 

param MMc := 10000; 

param SPc := 60000; 

param WKS := 50; 

 

 

###         Script file for DSS.mod and DSS.dat   

###     

###         SCENARIO: PRODUCTS = 10, 100, 1000 

###           MACHINES = 4, 7 & 10 

### 

###         Coefficient of Variation = 0.9 (MCV) 

### 

###         W/O Machine Workload Balance                   

 

option log_file 'DSS.tmp'; 
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model DSS.mod; 

data DSS.dat; 

 

option presolve 0; 

option solution_precision 4; 

option solver cplexamp; 

 

let first := 1; 

let lastmach := 1; 

let lastprod := 10; 

 

for {1..3} { 

       let lastmach := lastmach + 3;        

 

 for {i in I} { 

       if lastmach = 4 then let Dyr[i] := round(Uniform(100000,120000) / card(I)); 

       else  

       if lastmach = 7 then let Dyr[i] := round(Uniform(200000,220000) / card(I)); 

        else  

   let Dyr[i] := round(Uniform(300000,320000) / card(I)); 

 } 

 

 for {i in I, j in J} { 

       repeat { 

        let HT[i,j] := Normal(0.50,0.50);   

     if HT[i,j] <= 0 then continue; 

       } while HT[i,j] <= 0; 

 } 

 

    for {i in I, j in J, k in K} { 

       repeat { 

     let PT[i,j,k] := Normal(0.10,0.09);   

     if PT[i,j,k] <= 0 then continue; 

       } while PT[i,j,k] <= 0; 

 } 

 

   for {i in I, j in J, k in K} { 

       repeat { 

     let SUb[i,j,k] := Normal(0.50,0.70);   

     if SUb[i,j,k] <= 0 then continue; 

       } while SUb[i,j,k] <= 0; 

 } 

 

 for {i in I, j in J, k in K} { 

       repeat { 

     let WT[i,j,k] := Normal(1,1);   

     if WT[i,j,k] <= 0 then continue; 

       } while WT[i,j,k] <= 0; 

 } 

 

 option cplex_options 'bestbound timelimit 3600'; 

 solve; 
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 display lastprod; 

 display lastmach;   

  

 display _ampl_elapsed_time; 

 display _total_solve_elapsed_time; 

 display Total_cost; 

       

 display {j in J} (sum {k in K, i in I} (MUtil[i,j,k] * X[i,j,k])) / card (K); 

      

 display sum {j in J} (((sum {k in K, i in I} (MUtil[i,j,k] * X[i,j,k])) / card (K))) / card (J); 

  

display sum {j in J} (sum {k in K} (abs (sum {i in I} MUtil[i,j,k] * X[i,j,k] - TAvgMUtil[j]) / 

TAvgMUtil[j]) / card (K)) / card (J); 

} 

 

 

2. The ILPx Model 

The model and the data files used for the integer linear program with the 

expediting production option are the same as the ILP model with only a few differences. 

The script file to be used is the same, and as mentioned above, the number of products 

has to be changed depending on the amount of products assembled.  

On the model file, the following parameters are added: 

param EXPcost > 0.0;   # cost of expediting production (in percentage) 

param EXP {i in I} := round(Uniform01()); # to determine which products will be expedited 
 

The direct labor cost per product is calculated in a different way considering 

expediting production. Therefore, on the ILP model file, the parameter used to calculate 

direct labor cost per product must be substituted by: 

# To calculate the direct labor cost for product i at process j and machine k 

param L {i in I, j in J, k in K} := if EXP[i] = 0 then PT[i,j,k] * DLq[j] * DLp[j] * DLc + SC 

 

On the data file for the ILPx, a parameter value is added:  

param EXPcost := 0.25;. 
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3. The ILPb Model 

The model and the data files used for the integer linear program with the 

expediting production option are the same as the ILP model with only two differences on 

the model file.  

On the model file, the following parameter and constraint are added: 

param delta >= 0.0;  # machine workload imbalance factor 

 

# (4) To balance machine utilization based on a given imbalance factor. 

subject to MachineUtilization {j in J, k in K}: 

      AvgMUtil[j,k] * (1 - delta) <= sum {i in I} (MUtil[i,j,k] * X[i,j,k]) <= AvgMUtil[j,k] * (1 + delta); 

 

The script file to be used is basically the same with the addition of the following 

“for loop” after the “for loop” of the machines. As mentioned above, the number of 

products has to be changed depending on the amount of products assembled. 

let delta := 0.55; 

 

for {1..2} { 

let delta := delta - 0.15; 

}. 
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