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ABSTRACT

Adaptive Mesh Refinement Solution Techniques

for the Multigroup SN Transport Equation

Using a Higher-Order Discontinuous Finite Element Method. (May 2009)

Yaqi Wang, B.S., Tsinghua University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Jean C. Ragusa

In this dissertation, we develop Adaptive Mesh Refinement (AMR) techniques

for the steady-state multigroup SN neutron transport equation using a higher-order

Discontinuous Galerkin Finite Element Method (DGFEM). We propose two error es-

timations, a projection-based estimator and a jump-based indicator, both of which

are shown to reliably drive the spatial discretization error down using h-type AMR.

Algorithms to treat the mesh irregularity resulting from the local refinement are

implemented in a matrix-free fashion. The DGFEM spatial discretization scheme

employed in this research allows the easy use of adapted meshes and can, therefore,

follow the physics tightly by generating group-dependent adapted meshes. Indeed,

the spatial discretization error is controlled with AMR for the entire multigroup SN -

transport simulation, resulting in group-dependent AMR meshes. The computing

efforts, both in memory and CPU-time, are significantly reduced. While the conver-

gence rates obtained using uniform mesh refinement are limited by the singularity

index of transport solution (3/2 when the solution is continuous, 1/2 when it is dis-

continuous), the convergence rates achieved with mesh adaptivity are superior. The

accuracy in the AMR solution reaches a level where the solution angular error (or ray

effects) are highlighted by the mesh adaptivity process. The superiority of higher-

order calculations based on a matrix-free scheme is verified on modern computing



iv

architectures.

A stable symmetric positive definite Diffusion Synthetic Acceleration (DSA)

scheme is devised for the DGFEM-discretized transport equation using a variational

argument. The Modified Interior Penalty (MIP) diffusion form used to accelerate the

SN transport solves has been obtained directly from the DGFEM variational form of

the SN equations. This MIP form is stable and compatible with AMR meshes. Be-

cause this MIP form is based on a DGFEM formulation as well, it avoids the costly

continuity requirements of continuous finite elements. It has been used as a precon-

ditioner for both the standard source iteration and the GMRes solution technique

employed when solving the transport equation. The variational argument used in

devising transport acceleration schemes is a powerful tool for obtaining transport-

conforming diffusion schemes.

xuthus, a 2-D AMR transport code implementing these findings, has been de-

veloped for unstructured triangular meshes.
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CHAPTER I

INTRODUCTION

A. Purpose

The use of Adaptive Mesh Refinement (AMR) techniques [1, 2, 3, 4, 5, 6] has become

widespread in many science & engineering disciplines over the last decade or so. In

this dissertation, we present advances in AMR for the steady-state multi-group dis-

crete ordinates (SN) transport equation with applications to neutron transport. This

study is an effort to improve numerical simulations related to the linear Boltzmann,

the integro-differential transport equation governing the phase-space distribution of

neutral and charged particles interacting with a background medium. Solving the

transport equation is of high importance and interest in many fields, and, could have

numerous applications in science & engineering applications, such as nuclear reactor

analysis [7], computed tomography [8], weather forecast [9], etc. It is important to

note that solving for the particle distribution requires a discretization of the phase-

space, which consists of the physical space and velocity space, or equivalently physical

space, direction space and energy space. The objective of this dissertation is to apply

spatial AMR techniques to the transport equation, using higher-order approximations

on unstructured grids. In the following paragraphs, we illustrate the needs for this

work and present the various topics discussed in the following chapters.

With AMR, not only can the discretization error be controlled, but the compu-

tational effort can also be reduced significantly. The basic idea of AMR is illustrated

in Fig. I-1. The AMR procedure starts with a given initial mesh, which is usually

The journal model is Nuclear Science and Engineering.
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Fig. I-1. Principle of mesh adaptation.

coarse and can be determined simply by using material regions for instance. Gener-

ating the initial mesh does not require any knowledge about the physics, although

it may be preferable to use a more sophisticated tool such as a mesh generator to

create a initial mesh with better topological regularity. Then, a numerical solution is

pursued with any adequate transport solver on this initial mesh. Once a numerical

solution is available, the relative error distribution can be estimated in an a posteri-

ori fashion, i.e., using the current numerical solution to obtain/generate information

related to the spatial distribution of the numerical error. This technique is known

as a posteriori error estimation. If the global error can be estimated accurately, the

procedure can be terminated when the global error is smaller than a user-prescribed

tolerance. Otherwise, the AMR procedure is usually terminated when the prescribed

number of AMR iterations has been reached. Assessing the global error accurately

may not be as important as obtaining a spatial distribution in terms of the relative

error in order to reduce the number of spatial unknowns as much as possible. Once
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the error distribution has been determined, a simple bulk-error-chasing strategy is

performed, in which a fraction of cells whose errors are relatively large (i.e., above

a certain threshold) is refined. This refined mesh is set as the new current mesh

and the next cycle of mesh refinement proceeds until the prescribed tolerance for the

discretization error is satisfied or the maximum number of cycles has been reached.

In summary, AMR wraps mesh iterations around the traditional transport solver to

drive the mesh adaptation.

The success of AMR depends on the following three facts:

1. The number of unknowns associated with the adapted mesh is orders of mag-

nitude smaller than the one of a uniform mesh because

• The smoothness of the solution is not uniform and uniform refinement may

be overkill and

• Engineering practice may not need a very accurate solution throughout the

entire domain but only the precise knowledge of some quantities of interest,

i.e., functionals of the solution over a small portion of the phase-space (this

adaptivity technique is usually referred to as goal-oriented AMR) [10, 11].

2. The simple bulk-error-chasing strategy can deliver adapted meshes fairly close

to the “optimal” mesh using a hierarchy of nested meshes referenced by their

levels of refinement with respect to the initial mesh.

3. The relative error distribution of a mesh can be obtained with a posteriori

techniques employing the current numerical solution on the mesh.

Because the number of unknowns associated with an adapted mesh is orders of mag-

nitude smaller than the number of unknowns for a uniform mesh yielding about the
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same required accuracy, the total computational time of the whole AMR procedure

is typically smaller than the time needed for one calculation on a uniform fine mesh.

The memory usage is reduced significantly as well.

We expect to control the spatial discretization error for the steady-state multi-

group SN neutron transport equations by devising a practical AMR technique for it.

We believe once this is accomplished, it will shed some light on how to further ap-

ply AMR with respect to other phase-space variables, i.e., angular, energy and time

variables. The computational effort using AMR is also expected to be reduced sig-

nificantly so that analyzing large, realistic, multi-dimensional problems (simulations

once impossible with uniform meshes) can be actively pursued.

B. Brief Background on the SN Multigroup Neutron Transport

The present work deals with stationary SN multigroup neutron transport because this

contains the essence of all particle transport phenomena: the integro-differential na-

ture of the PDE. Dealing with time variable and other kinds of particles [12] [13] [14]

are important and challenging aspects as well, although they are not the focus of this

research.

1. The Multigroup Procedure for the Energy Variable

The multigroup approximation will be employed to discretize the energy variable,

mostly because it is the only widely used scheme in deterministic transport methods.

With the multigroup approximation, one first breaks up the entire energy range into

intervals or energy groups. The neutron transport equation is then integrated over

each energy group in order to define appropriate average values of the various cross

sections characterizing each group. After an assumed intra-group spectrum is used to

compute these multigroup cross sections, a set of coupled multigroup equations are
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formed. This procedure is explained in Appendix C.

Researchers have spent tremendous effort providing evaluated nuclear data li-

braries and updating them regularly. Currently, there are three major neutron data

libraries: ENDF/B (Evaluated Nuclear Data File) [15], JENDL (Japanese Evalu-

ated Nuclear Data Library) [16], and JEFF (the Joint Evaluated Fission and Fusion

project) [17]. All energy-dependent data are stored in the internationally adopted

format (ENDF-6) maintained by CSEWG (the Cross Section Evaluation Working

Group) [18]. Covariance data are gradually put into the libraries to indicate the un-

certainty of the data. Benchmark integral effect and separate effect experiments have

been performed to validate the libraries and the transport codes employing them [19].

Existing codes such as NJOY [20] and AMPX [21] in SCALE [22] are used to

process the continuous cross section data from the nuclear data library into the multi-

group cross sections. Physical phenomena are properly accounted for, such as elastic

and inelastic scattering, resonance self-shielding, Doppler effect to account for the

thermal motion of the background nuclei, thermal equilibrium, etc.

There are data uncertainties associated with point-wise cross sections due to

the experimental uncertainties and nuclear model uncertainties. In addition, the

multigroup cross section process itself introduces additional uncertainties due to the

presumed intra-group energy spectrum. How to evaluate these uncertainties is still

an open problem [23] which will not be addressed in this dissertation. In this study,

multigroup cross sections are assumed to be accurate. The propagation of the data

uncertainties on the solution accuracy [24], which should eventually be used to control

the termination of the AMR process, is not considered here.
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2. Discrete Ordinates (SN) Process for Angular Discretization

We will use the discrete ordinates method (SN) for the angular discretization of the

transport equation. In the SN method, an angular quadrature set is chosen to evaluate

all angular integrals and to solve the transport equation along the predetermined

quadrature directions. The SN method is a collocation discretization scheme, unlike

a modal expansion scheme such as the PN [25] or the Simplified PN (SPN) [26]

methods. When using the SN technique, the transport equation can

1. either be solved along a set of given trajectories (where a trajectory is a line

determined by an entry point on the inflow boundary and a given direction

of the angular quadrature set) throughout the entire computational domain,

leading to the method of Characteristics or Long Characteristics [27],

2. or be solved from a mesh cell located on the inflow boundary, with radia-

tion being followed inwards across all downwind (downstream) mesh cells. In

this cell-by-cell approach, which we have adopted, the “short” Characteris-

tics method and the Discontinuous Galerkin Finite Element Method (DGFEM)

[28, 29, 30, 31, 32] are two widely used spatial discretization schemes.

In the cell-by-cell approach, an efficient procedure called “the transport sweep”

is used to invert the streaming+total collision operator of the transport equation in

a matrix-free fashion. Situations where solving one task (i.e., solving for radiation

in a given cell for a given direction) can only be done after another task has been

completed and vice versa, may exist. These situations are called cycles; cycles can

be broken with the introduction of the significant angular flux variables and do not

affect the matrix-free sweep. The details about the significant angular fluxes will be

discussed in Chapter II. SN methods have a long history that traces back to the

1950’s [33] and are still widely in use nowadays. Nonetheless, SN methods suffer
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from ray effects [34], which could be resolved in the future using angular adaptivity.

Currently, the ray effects are mitigated using first-collision source approaches [35, 36].

Since angular discretization is not the focus of this study, we refer the reader to the

references cited later for additional details.

C. Approach for Applying AMR to the SN Multigroup Transport Equa-

tion and Brief Literature Review

We have developed a methodology to perform AMR for the multigroup SN transport

solver using a higher-order DGFEM on hp-type unstructured meshes. In the following

paragraphs, we briefly present four key aspects of this research and put them in

context; these are:

1. higher-order DGFEMs: their current usage in the neutron transport community;

2. AMR on hp-type unstructured meshes with transport sweeps;

3. the a posteriori error estimators available for the transport equation;

4. the need to develop a methodology capable of performing Diffusion Synthetic

Accelerations (DSA), especially on AMR unstructured meshes.

Some considerations regarding code development will also be provided. The following

chapter will provide details on these aspects. Because the main subject in this research

focuses on method development, the higher level of complexity in 3-D geometries will

not be considered. We will deal with 2-D geometries in our implementation. The

methodology and lessons on implementation learned in this work can be applied in

3-D.
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1. Higher-Order Discontinuous Galerkin Finite Element Methods

The DGFEM is one of many various types of spatial discretization schemes for the

first-order transport equation. Other spatial schemes for different forms (first-order,

second-order, and integral) of the transport equation, including finite difference/vol-

ume methods, collision probability methods, long characteristic and short character-

istic methods [37, 25, 31, 27, 33, 38, 39], will not be considered here. DGFEM is

widely used to spatially discretize the discrete ordinates SN transport equation. The

method was originally derived for neutron/photon transport problems in the early

1970’s [28, 29]. For instance, the computer code TRIPLET of Reed and Hill [40]

used a DGFEM for 2-D regular triangular meshes with various polynomial order ap-

proximations. A few years later, the TRIDENT code for 2D multigroup triangular

mesh SN transport was released [41, 42, 43], but only employed linear basis functions.

Similarly, most of the recent work related to the DGFEM discretization of the trans-

port equation on unstructured meshes has been carried out using linear DGFEMs

[31, 32, 44]. Even though the original work of Reed and Hill was not restricted to

order-1 spatial representations, we note that there has not been much research carried

out for higher-order finite element transport so far. Nonetheless, in other disciplines,

e.g., fluid dynamics, where hyperbolic conservation laws are also present the devel-

opment of higher-order DGFEM has significantly progressed, and it is important to

bring and test these improvements for applications within the nuclear science and

engineering community.

2. AMR on Unstructured Meshes

Unstructured meshes are widely used, allowing for the discretization of complicated

geometries. The main feature of unstructured meshes is that the locations and con-
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nections of all of the cells are described explicitly so that cells can be distributed freely.

Unstructured meshes are naturally employed by hp-type AMR, where a local element

can be refined either through cell sub-divisions (h-refinement) or by increasing the

polynomial order of the approximation (p-refinement). h-refinement is appropriate

for solutions with singularities, while p-refinement is good for smooth solutions. Their

combination, the hp-type AMR, allows for the mesh to follow the physics tightly, re-

ducing the number of unknowns significantly. hp-type meshes are easily supported in

DGFEM, even for multi-dimensional geometries, thanks to the discontinuous nature

of the numerical approximation. In DGFEM, continuity of the numerical solution is

not required across elements, allowing for different levels of refinement in two adja-

cent elements. Likewise, the polynomial approximation across two elements can be

arbitrary using a DGFEM. Continuous finite element approaches would require that

the numerical solution be continuous, which adds a significant level of difficulty for

hp-AMR meshes. Fig. I-2 shows an example of an unstructured mesh for a single fuel

cell (rod+clad+moderator).

We will use triangular hp-type unstructured meshes in this study.

hp-type AMR emerged in the late 1980’s [45, 46] and required the resolution

of several formidable problems for an effective implementation: new data structures,

efficient linear solvers, effective local error estimators. Applying hp-type AMR for

hyperbolic equations, e.g., in Computational Fluid Dynamics, is an ongoing very

active research field [47, 48, 49, 50]. In recent years, h-type and p-type AMR have

been investigated for transport or diffusion calculations [51, 52, 53, 54, 55]. hp-

type refinement can deliver exponential convergence for elliptic problems while h-type

refinement only has algebraic convergence for the multigroup diffusion problem [56].

Investigating the performance of hp-type mesh refinement for the multigroup SN

equation is a very new and interesting topic.
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 Fuel cell  Cladding  Coolant

(a) Regular mesh (without hanging
nodes)

 Fuel cell  Cladding  Coolant

(b) Irregular mesh (with hanging
nodes)

Fig. I-2. Example of unstructured meshes.

Finally, subdividing an element into smaller elements requires the ability to mod-

ify the element-by-element solution procedure (transport sweeps) to account for the

presence of newly created cells in the domain. This is a straightforward issue, dis-

cussed in Chapter IV.

3. A posteriori Error Estimates

The a posteriori error estimation drives the AMR procedure by providing a measure

of the local error based on the current numerical solution, i.e., a posteriori . The

effectiveness of the a posteriori error estimates, i.e., the accuracy of the calculated

error distribution and global error in some norm, is the key for the control of the

discretization error. The development of a posteriori error estimators was reviewed

in [57, 58], mostly for elliptic equations. Error estimators for the transport equation,

and more generally for hyperbolic equations, are still under development. Currently,

the state-of-the-art in the mathematical sciences regarding a posteriori error estima-
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tors for hyperbolic equations rely on the use of an adjoint solution used as a weighting

function in the derivation of the local error quantities [59, 60]. In SN transport prob-

lems, this would require solving the problem in the reverse directions and retaining

the direct and adjoint angular fluxes, which can be very costly. Instead, researchers

have had recourses to semi-heuristical error indicators to drive the AMR procedure for

transport problems. In [51], the gradient of the solution is employed to drive AMR for

the radiation transport component in 2-D Cartesian geometries for one-group (one-

frequency) equations; this estimator is known to be fairly accurate for low-order (e.g.,

first-order step) schemes but is overly conservative for higher-order schemes. A similar

multiple-grid technique, with error estimation based on the gradient of the numerical

solution, is also used by several other authors for photon transport applications; see,

for instance [61, 62, 63]. In [64], a local refinement (cell-based AMR) technique is

described for SN transport, where the value of the neutron MFP (Mean-Free-Path)

in a given cell is employed as a mesh refinement criterion. While this approach takes

into account the size of potential internal layers at a given location in the domain, it

does not account for the actual smoothness of the solution at these locations and is,

therefore, far from optimal; for example, in optically thick media, the solution may

well be approximated by a smooth spatial representation on coarse meshes despite the

large optical size of the mesh. Hartmann and Leicht have monitored the inter-element

jumps in the DGFEM solution [65, 66] since it was observed that the magnitude of

these jumps diminished with refinement.

4. Diffusion Synthetic Acceleration

Diffusion Synthetic Acceleration, or DSA, is a very important part of any transport

solver when dealing with highly diffusive media. For such media, the traditional

Richardon iteration or Source Iteration (SI) is ineffective and preconditioning needs



12

to be performed in order to run simulations in reasonable CPU time. This precon-

ditioner step can be of various natures, as described in the review article by Adams

and Larsen [67], but the most popular choice consists in employing a diffusion solver

to accelerate the transport solver in highly diffusive problems. Unfortunately, the

discretized diffusion equations for the preconditioning step cannot be derived inde-

pendently of the discretized transport equation for the preconditioning to be effective

or even stable. For unstructured mesh DGFEM transport solvers in multi-dimensions,

obtaining an effective and stable DSA scheme is an open and arduous problem. Al-

though the modified-four-step (M4S) scheme [68][69] works well in 1-D, it suffers

instability in 2-D unstructured meshes unless the cell size is either very large or

small in terms of MFP. On the other hand, the “fully consistent” DSA scheme [70]

is stable but not computationally effective due to the fact that a complicated mixed

hybrid DGFEM for the P1 equation needs to be solved at each Source Iteration. Two

essential questions regarding DSA still persist:

• Does an unconditionally stable and effective DSA scheme exist in the case of

unstructured meshes for which cell sizes may greatly vary, in the case of highly

anisotropic scattering, and in the case of high-aspect ratio (sliver) cells?

• Can the resulting diffusion equation be solved efficiently, i.e., is the computing

time spent in DSA comparable with the time spent in transport sweeps?

In this work, we have derived DSA equations which satisfy the vast majority of

these needs.

5. Method and Code Development Aspects

In this research, xuthus, a reusable production code (as opposed to a mock up code),

has been written to solve the SN multigroup transport equation with spatial AMR. A
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significant effort has been placed on both the quality of the code and on the methods

themselves. The advantages of such a decision include: full control on the code

implementation, which is currently almost impossible by using third-party libraries,

and the personal satisfaction gained by putting a piece of software into production.

Additionally, the developed code could be re-used for research activities in the future,

including adaptivity for coupled electron-photon transport, for example. Therefore, in

collaboration with the Nuclear Science and Technology Division (NSTD) of Oak Ridge

National Laboratory (ORNL), this new transport solver has been planned to be put

into a developmental version of SCALE [22], with the ultimate goal of releasing it as

a new module within the TRITON lattice physics sequence [71], thus providing users

an alternative to NEWT [72], the 2-D SN module currently used within TRITON.

Our initial objectives in the development of this new transport solver as a module in

SCALE are:

• to implement arbitrary higher-order spatial shape functions in the DGFEM

framework, where, as in the Extended Step Characteristic solver of NEWT, the

scattering and fission source is assumed spatially constant in each polygonal

element,

• to gain additional flexibility and robustness by having two distinct solvers,

• to control the spatial discretization error with a user-prescribed tolerance with

AMR, and

• to extend SCALE on potential applications beyond traditional nuclear reactor

fuel assembly calculations, including shielding or inverse problems.

Parallel domain decomposition has also been implemented in xuthus, using MPI

(Message Passing Interface) to take the advantage of the development of supercom-
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puters and to handle extremely large problems.

D. Organization of the Dissertation

The Chapters of this dissertation are organized as follows.

In Chapter II, we present the higher-order DGFEM for the multigroup SN equa-

tion, investigate its convergence properties, and draw conclusions as to whether there

is a need for higher-order methods in radiation transport using SN solvers. The

motivation behind using higher-order schemes for SN transport calculations will be

demonstrated with some sample problems.

In Chapter III we present our new DSA schemes obtained rigorously from the

DGFEM SN transport variational form. Both the stability and effectiveness issues of

these DSA schemes are studied.

The h-type AMR for transport is presented in Chapter IV. Two different a pos-

teriori error estimations have been devised for the multigroup SN transport equation

with DGFEM: a projection-based error estimator and a jump-based error indicator.

The mesh coupling algorithm to deal with mesh irregularity (different levels of re-

finement in a computational domain) is presented. The issue of adaptivity in the

context of multigroup equations is also presented and our technique to resolve this

is explained. Convergence studies of h-type AMR are performed to demonstrate the

validity of the approach. Finally, highly diffusive cases are presented to test our DSA

schemes on AMR meshes.

Chapter V provides some implementation details regarding our new 2-D trans-

port solver xuthus, such as its development history, data structure, matrix-free

scheme, MPI parallelism with the domain decomposition, integration process into

SCALE, etc.

Finally, we draw some conclusions and give recommendations for future devel-



15

opments in Chapter VI.

The detailed literature reviews, numerical results and conclusions related to each

specific topic are distributed among Chapters II, III and IV.

Additional material, such as different forms of the transport equation, the deriva-

tion of the multigroup SN transport equation and its iterative solver, the DGFEM for

the transport equation in purely absorbing media, the Mathematica notebook file used

to obtain all the local matrices, etc., are appended for completeness in Appendices A

through F.
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CHAPTER II

HIGHER-ORDER DISCONTINUOUS GALERKIN FINITE ELEMENT

METHOD FOR THE MULTIGROUP SN EQUATIONS

A. Review of Higher-Order DGFEM and Application to the Multigroup

SN Equations

The Discontinuous Galerkin Finite Element Method (DGFEM) has been widely used

to discretize in space hyperbolic partial differential equations (e.g., conservation laws)

due to the relative simplicity of the scheme and its similarity with the Finite Volume

Method; indeed, the lowest order of DGFEM is a Finite Volume method. In the

transport community, predominantly linear DGFEM (i.e., DGFEM with linear shape

functions) has been employed to solve the discrete ordinates SN transport equation.

The DGFEM was originally derived for neutron/photon transport problems in the

early 1970’s [28, 29]. For instance, in the computer code TRIPLET of Reed and Hill

[40], the method was presented for 2-D regular triangular meshes with various polyno-

mial order approximations. A few years later, the TRIDENT code for 2-D multigroup

triangular mesh SN transport was released [41, 42, 43]; TRIDENT was only based on

a linear DGFEM method, which we denote hereafter by DGFEM(1). Similarly, most

of the recent work related to the DGFEM discretization of the transport equation on

unstructured meshes has been carried out using DGFEM(1). For instance, a linear

function representation has been used for 3-D unstructured tetrahedral meshes in [31]

and [32] and a trilinear representation for 3-D hexahedral meshes in [31]. These works

have led to the creation of the DGFEM(1)-based Attila code [44], developed by Los

Alamos National Laboratory and later Transpire company. Even though the original

work of Reed and Hill was not restricted to order-1 spatial representations, we note
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that there has not been much research carried out for higher-order finite element so-

lution of the neutron transport equation so far. Several reasons can be put forth to

explain this:

1. In the TRIPLET code manual, Reed and Hill recommended the use of “linear

finite elements for problems where the computational time was a significant

consideration”; furthermore, their higher-order basis functions used Lagrange

polynomials based on equally-spaced points. Instead, we use a hierarchical

basis, which allows for simpler coupling between AMR mesh cells, see Section B

on higher-order hierarchical basis functions in this chapter and Section 5 in

Chapter IV for further details on cell coupling with AMR;

2. Subsequently, the TRIDENT code was developed, employing only linear finite

elements; the more recent works by McGhee, Wareing, Morel, and Warsa in-

herited the legacy of these seminal works with respect to their choice of linear

spatial representation, focusing on the accuracy in the thick diffusive limit and

on the robustness of the spatial discretization.

Nonetheless, in other disciplines, e.g., fluid dynamics, where hyperbolic conserva-

tion laws are also present, the development of higher-order DGFEM has significantly

progressed. Higher-order basis functions for triangular meshes based on Jacobi poly-

nomials have been derived and accurate solutions using higher-order functions can be

obtained in fewer mesh cells (see [73, 74, 75, 4, 5, 4]). It is important to bring and

test these improvements for applications within the nuclear science and engineering

community.

The case for higher-order methods can be made based on (i) the higher enhanced

convergence rates (i.e., better accuracy in the solutions) and (ii) on the fact that the

solution time for higher-order methods may virtually come for free on modern com-
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puter architectures. Today’s computational bottleneck for neutron transport is pre-

dominantly memory-access related, and low-order spatial discretizations may require

more elements in a computational domain, i.e., more solves of a small linear system,

than higher-order approximations. We recall here that in SN transport sweeps, one

needs only to solve a small linear system, obtained by sweeping the mesh element by

element. For linear finite elements on triangles, this system is of size 3×3, potentially

leaving processors starved for data to compute, whereas higher-order approximations

yield larger elementary systems, of size N×N , with N(p) = (p+1)(p+2)/2 and where

p is the polynomial order, thus providing more data to the CPU per solve. Therefore,

a logical alternative to circumvent a memory-access constrained environment is to

provide the CPU more data to compute at a single time by employing higher-order

spatial representations.

Furthermore, another significant reason to consider higher polynomials is related

to the fact that a DGFEM of order p, hereafter denoted by DGFEM(p), can yield

convergence rates of order q = min(p + 1, r) for hyperbolic equations, where r is

the solution regularity. Lesaint and Raviart, in 1974 [29], demonstrated that the

convergence rate was p; later, Richter improved the theoretical result for topologically

regular meshes to p+1 [76]. That is, the error term is of the form Chq, with C being

a proportionality constant and h the typical mesh size.

The convergence of various spatial discretizations of the discrete ordinate trans-

port equations has been the focus of many papers for over four decades. Earlier

work mostly dealt with Finite Difference (FD) approximations (diamond differences,

weighted diamond differences) (see, for instance, [77, 78, 79, 80, 81]). In [77, 78],

Madsen established the stability and second-order convergence of a class of finite

differences approximations (the diamond difference method of Carlson and weighted

central differences) in a L2-discrete norm. Madsen’s proof required that the exact
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solution possessed bounded third partial derivatives [77]. As noted by Arkuszewski

[82] and Larsen [83], such conditions are seldom verified in realistic problems, where

singular characteristics are present. This triggered several numerical studies of the

convergence of FD schemes, typically in simple 1-D or 2-D configurations; see, for

instance, [84, 83]. Larsen provided convergences rates of the numerical solutions in

L1, L2, and L∞ norms for various mesh refinements; in the 1-D case [84], these rates,

measured in any norm, showed second-order convergence, whereas in 2-D, the rates

depended on the norm utilized and were fractional powers of the mesh size. More

recently, Azmy [85] numerically investigated the convergence rates of weighted Dia-

mond Differences, nodal, and characteristics methods, using a variation of a test case

proposed earlier by Larsen. The nodal and characteristics methods tested included

constant, linear, and quadratic spatial approximations.

In this research, we implemented a DGFEM(p) for polynomial orders up to 4,

tested it on several benchmark problems, and report the findings in terms of accuracy

(convergence) as a function of both the total number of unknowns and the CPU time.

Our choice of higher-order basis function consists of hierarchical functions. Such a set

of functions is obtained by nesting the basis functions set, such that all lower-degree

bases are included in the higher-degree bases. Such sets have attractive features,

e.g., better conditioning properties [86] and ease of implementation, including nested

elementary matrices and simple procedures to obtain edge values for inter-element

communications. For instance, hierarchical bases have been used by [87] and [56] for

multigroup diffusion applications. We studied the convergence properties of DGFEM

applied to neutron transport for various orders of spatial approximation (from p = 1

to p = 4), and we compare the observed numerical rates with theoretical results.

The outline of this chapter is as follows. In Section B, we present the higher-

order DGFEM for the multigroup SN transport equation. We first give the variational
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form with the upwind scheme, the definition of higher-order shape functions and the

theoretical convergence rate for transport calculations. In Section C, we present the

matrix-free transport sweep and the iterative solver based on it with both the Source

Iteration (SI) and GMRes. Details on dealing with the sweeping cycles are explained

with the introduction of the so-called Significant Angular Fluxes (SAF). In Section D,

we present the results of higher-order transport calculations. Both the convergence

rate with the uniform refinement and the grind time in the matrix-free transport

sweep are presented. Finally, conclusions are provided in Section E.

B. DGFEM for the Multi-Group SN Transport Equation

1. Multigroup SN Transport Equations

The multigroup SN transport equation is presented in detail in Appendix C. For the

completeness, it is reproduced here. Given an angular quadrature set
{

Ωm, wm

}
m=1,...M

consisting ofM directions 
Ωm and weights wm, and a total number ofG energy groups,

the steady-state multigroup SN transport equation in one direction indexed by m,

for one group g, written for an open convex spatial domain D with boundary ∂D is,

(

Ωm · 
∇+ σt,g

)
Ψm,g(
r) =

G∑
g′=1

Na∑
n=0

2n+ 1

4π
σg′→g

s,n (
r)
n∑

k=−n

Φg′
n,k(
r)Yn,k(
Ωm)

+
χg

4π

G∑
g′=1

νσf,g′(
r)Φg′(
r) + Sext
m,g(
r) for 
r ∈ D

(2.1)

with the general boundary condition

Ψm,g(
rb) = Ψinc
m,g(
rb) +

G∑
g′=1

∑
�Ωm′ ·�nb>0

βg′→g
m′→m(
rb)Ψm′,g′(
rb) (2.2)

for 
rb ∈ ∂D−
m =

{
∂D, 
Ωm · 
nb < 0

}
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Symbols used in the above equation are standard in textbooks and journals; their

meanings are listed below for completeness:


r position variable [cm]

D ∈ Rd open convex spatial domain of dimension d

∂D boundary of spatial domain D

nb = 
n(
rb) outward unit normal vector on boundary ∂D

Ωm unit vector for a steaming direction m in the angular quadrature set

m index of streaming directions, from 1 to M

g index of energy groups, from 1 to G

Angular fluxes and flux moments variables are given by:

Ψm,g(
r) = Ψg(
r, 
Ωm) neutron angular flux [ n
cm2·ster·s ]

Φg(
r) = Φg
0,0(
r) =

∑M
m=1 wmΨm,g neutron scalar flux [ n

cm2·s ]

Φg
n,k(
r) =

∑M
m=1wmYn,k(
Ωm)Ψm,g neutron flux moments [ n

cm2·s ]

Yn,k(
Ω) spherical harmonics functions defined with Eq. (C.29) and Eq. (C.39)
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The other terms are:

Sext
m,g(
r) = Sext

g (
r, 
Ωm) external source [ n
cm2·ster·s ]

σt,g(
r) macroscopic total cross section[cm−1]

σg′→g
s,n (
r) =

∫ 1

−1
dμ σg′→g

s (
r, μ)Pn(μ) macroscopic scattering cross section [cm−1]

Na truncation order of the PN approximation, see Section A of

Appendix C for more details

νσf,g(
r) fission cross section times the average number of neutrons emitted

per fission [cm−1]

χg(
r) neutron fission spectrum

Ψinc
m,g(
rb) non-homogeneous incoming angular flux on boundary [ n

cm2·ster·s ]

βg′→g
m′→m(
rb) boundary albedo, its definition depends on the quadrature set,

also refer to the Eq. (C.28).

The multigroup equation is solved with the iterative solver presented in Section B

of Appendix C, in which a sequence of one-group problems are solved. In addition,

in the case of an eigenvalue problem, an additional (outer) iteration loop is added

to update the eigenvalue estimate after each multigroup solve. For brevity’s sake, it

is suitable to solely present the spatial discretization and AMR technique method in

the one-group case. The one-group SN equation is,

(

Ωm · 
∇+ σt(
r)

)
Ψm(
r) =

N∑
n=0

2n+ 1

4π

n∑
k=−n

Yn,k(
Ωm) [σs,n(
r)Φn,k(
r) +Qn,k(
r)]

for 
r ∈ D (2.3)

where the source terms (inscattering source, external source, fission source) have

been lumped into a single source term Q(
r, 
Ω) which has already been expanded on

a spherical harmonics basis to yields the source moments Qn,k(
r) in Eq. (2.3).
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The general boundary condition for the one-group case is:

Ψm(
rb) = Ψinc
m (
rb) +

∑
�Ωm′ ·�nb>0

βm′→m(
rb)Ψm′(
rb) (2.4)

for 
rb ∈ ∂D−
m =

{
∂D, 
Ωm · 
nb < 0

}
If there are only Dirichlet-type and reflecting boundaries, the boundary condition

can be written as

Ψm(
rb) =

⎧⎪⎨⎪⎩ Ψinc
m (
rb), 
rb ∈ ∂Dd

Ψm′(
rb), 
rb ∈ ∂Dr
(2.5)

for 
rb ∈ ∂D−
m

where ∂D = ∂Dd ∪ ∂Dr, and the reflecting direction is given by


Ωm′ = 
Ωm − 2(
Ωm · 
nb)
nb (2.6)

We suppose the angular quadrature set is designed to satisfy the following two

conditions regarding any outward unit normal vector on reflecting boundaries ∂Dr:

1. ∀m = 1, · · · ,M , the reflected direction 
Ωm′ is also in the quadrature set for any

location on ∂Dr.

2. the weights of the incident and reflected directions must be equal, i.e., wm =

wm′ , m = 1, · · · ,M

This is usually not an issue when reflecting boundaries are on the x, y, z axes. Never-

theless, even the reflecting boundaries are not perpendicular or parallel to these axes,

for example, in the case of a 2-D hexagon fuel assembly with reflecting boundaries on

all six sides, a proper angular quadrature set can still be chosen to meet the above

two conditions (e.g., product quadrature set for hexagonal fuel lattices).
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2. Local Weighted-Residual Formula and DGFEM

We consider the DGFEM for one angular direction 
Ωm and one spatial element K

of an unstructured mesh Th, such that the union of the all elements fully covers

D, i.e.,
⋃

K∈Th
K = D. We denote the local polynomial function space as V (K) =

{all polynomials on K of degree equal to or lesser than pK}. The dimension of this

local space is determined by the polynomial order pK . Note that all the polynomial

orders {pK , K ∈ Th} do not have to be the same for all elements. We then multiply

the transport equation Eq. (2.3) with a test function Ψ∗
m ∈ V (K) and integrate it over

element K. After integrating by parts the streaming term (
Ωm · 
∇) and employing

the upwind scheme for the flux values on the upwind boundary of K, we obtain the

Galerkin weighted-residual formula for a given angular direction 
Ωm:

Find Ψm ∈ V (K), such that ∀Ψ∗
m ∈ V (K),(

Ψm, (−
Ωm · 
∇+ σt)Ψ
∗
m

)
K

+
〈
Ψ−

m,Ψ
∗−
m

〉
∂K+ −

〈
Ψ−

m,Ψ
∗+
m

〉
∂K−\∂D

− 〈Ψinc
m ,Ψ∗+

m

〉
∂K−∩∂Dd −

〈
Ψ+

m′ ,Ψ
∗+
m

〉
∂K−∩∂Dr

=
Na∑
n=0

n∑
k=−n

2n + 1

4π
Yn,k(
Ωm)

(
σs,nΦn,k +Qn,k,Ψ

∗
m

)
K

(2.7)

where ∂K− is the inflow boundary, ∂K+ is the outflow boundary. The traces f+ and

f− are defined with respect to the particle direction 
Ωm, i.e., on an inflow boundary,

f+ (resp. f−) is the value of f taken from within element K (resp. from the upwind

neighbor) and on an outflow boundary, f+ (resp. f−) is the value of f taken from the

downwind neighbor (resp. from within element K). These definitions are expressed



25

as follows:

Ψ+
m ≡ lim

s→0+
Ψm(
r + s
Ωm) (2.8)

Ψ−
m ≡ lim

s→0−
Ψm(
r + s
Ωm) (2.9)

(f, g)K ≡
∫

K

f g d
r (2.10)

〈f, g〉e ≡
∫

e

|
Ωm · 
n(
r)|f g ds (2.11)

∂K+ =
{

r ∈ ∂K : 
n(
r) · 
Ωm ≥ 0

}
(2.12)

∂K− =
{

r ∈ ∂K : 
n(
r) · 
Ωm < 0

}
(2.13)


n is the outward unit normal vector of element K, e represent any edge (or face in

3-D) of K. Note that (i) in the case of straight element boundaries, the quantity


Ωm · 
n(
r) can be factored out of the boundary integrals and that (ii) Φn,k ∈ V (K)

because Ψm ∈ V (K). This is a Galerkin scheme because the function space in which

the solution is sought is also the function space of the test functions.

It needs to be pointed out that while the test functions on the edges are always

taken from within the element, the primal functions on the edges are taken based on

the upwind (upstream) with respect to the streaming direction; thus, for outgoing

edges, the angular flux is taken from within the element K whereas for incoming

edges, its value is taken from the upwind neighbor element, leading to the so-called

upwind scheme.

This weighted-residual formula states that once we know the solution values on

the upwind elements, we can solve the local system for the flux value within element

K. The local balance is conserved, i.e., the total collision in the element is equal to

the total source, including the scattering and external source, plus the net in-leakage

through the upwind sides minus the net out-leakage through the downwind sides.

This simple upwind scheme is the essence of DGFEM; for fluid conservation laws,
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a more complicated treatment of the numerical fluxes on the inter-element edges is

performed.

Finally, for completeness we also provide another (more common) variant for the

weighted-residual formula. The formula below and its associated definitions are only

given here because they are widely used in numerical fluid flows and would help a

reader familiar with that notation understand the notation we have chosen.

Find Ψm ∈ V (K), such that ∀Ψ∗
m ∈ V (K),(

Ψm, (−
Ωm · 
∇+ σt)Ψ
∗
m

)
K

+
〈
Ψ+

m,Ψ
∗+
m

〉
∂K+ −

〈
Ψ−

m,Ψ
∗+
m

〉
∂K−\∂D

− 〈Ψinc
m ,Ψ∗+

m

〉
∂K−∩∂Dd −

〈
Ψ+

m′ ,Ψ
∗+
m

〉
∂K−∩∂Dr

=

Na∑
n=0

n∑
k=−n

2n+ 1

4π
Yn,k(
Ωm)

(
σs,nΦn,k +Qn,k,Ψ

∗
m

)
K

(2.14)

where ∂K− is the inflow boundary, ∂K+ is the outflow boundary, f+ denotes the

restriction (trace) of the function f taken from within the element K, and f− rep-

resents the restriction of the function f taken from the neighboring element of K.

These definitions are expressed as follows:

u = sgn
(

n(
r) · 
Ωm

)
= +1 for outflow, or − 1 for inflow (2.15)

Ψ±
m ≡ lim

s→0±
Ψm(
r − u s 
Ωm) (2.16)

The differences between the two notations are related to the definitions of the

numerical “traces”. The advantage of Eq. (2.14) is that the + sign always denotes

the value taken from within element K, be it for an inflow or outflow boundary,

whereas this is not the case in Eq. (2.7). Again, Eqs. (2.14) through (2.16) will not

be employed further here and have been given for completeness only.
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3. Variational Form

Integrating by parts the streaming term of the local formula once again, multiply-

ing the result with the angular weight wm and summing over all elements and all

directions, we obtain the variational form for the one-group SN equation:

M∑
m=1

wm

[(
(
Ωm · 
∇+ σt)Ψm,Ψ

∗
m

)
D +

〈
[[Ψm]],Ψ∗+

m

〉
Ei

h

]
+

M∑
m=1

wm 〈Ψm,Ψ
∗
m〉∂D−

m
−

M∑
m=1

wm 〈Ψm′ ,Ψ∗
m〉∂Dr−

m

=
M∑

m=1

wm

Na∑
n=0

n∑
k=−n

2n+ 1

4π
Yn,k(
Ωm)

(
σs,nΦn,k +Qn,k,Ψ

∗
m

)
K

+

M∑
m=1

wm

〈
Ψinc

m ,Ψ∗
m

〉
∂Dd−

m
(2.17)

with the following definitions

[[Ψm]] = Ψ+
m −Ψ−

m (2.18)

(f, g)D ≡
∑

K∈Th

(f, g)K (2.19)

〈f, g〉Ei
h
≡

∑
e∈Ei

h

〈f, g〉e , (2.20)

where Ei
h = ∪K∈Th

∂K\∂D is the set of all interior edges (more generally, the dimen-

sion of the interior edges is d − 1 for a computational domain of dimension d). For

simplicity, we have dropped the ± superscript for the angular fluxes appearing in the

boundary terms later because the angular fluxes inside the domain are always used.

More detailed derivations regarding DGFEM for the first-order equation can be found

in Section B of Appendix B. If we change the sequence of summation over directions
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and summation over elements for the boundary terms, we obtain, after some algebra:

Find Ψm ∈W h
D, m = 1, · · · ,M such that:

b(Ψ,Ψ∗)−
∑

e∈∂Dr

∑
�Ωm·�nb<0

wm 〈Ψm′,Ψ∗
m〉e −

N∑
n=0

n∑
k=−n

2n+ 1

4π

(
σs,nΦn,k,Φ

∗
n,k

)
D = l(Ψ∗)

(2.21)

∀Ψ∗
m ∈W h

D, m = 1, · · · ,M

where the bilinear and linear forms are

b(Ψ,Ψ∗) =

M∑
m=1

wm

(
(
Ωm · 
∇+ σt)Ψm,Ψ

∗
m

)
D +

M∑
m=1

wm

〈
[[Ψm]],Ψ∗+

m

〉
Ei

h

+
∑
e∈∂D

∑
�Ωm·�nb<0

wm 〈Ψm,Ψ
∗
m〉e (2.22)

l(Ψ∗) =

N∑
n=0

n∑
k=−n

2n+ 1

4π

(
Qn,k,Φ

∗
n,k

)
D +

∑
e∈∂Dd

∑
�Ωm·�nb<0

wm

〈
Ψinc

m ,Ψ∗
m

〉
e

(2.23)

and W h
D = {Ψ ∈ L2(D); Ψ|K ∈ V (K), ∀K ∈ Th} is the function space in which the

solution is sought. Note that the functions in this space may not be continuous

across the interior edges. There are three terms on the left-hand-side of Eq. (2.21):

the streaming operators from M simple transport (e.g., one direction) equations

b(Ψm,Ψ
∗
m), the reflecting-boundary term and the scattering term. For notational

simplicity, we define the following bilinear form,

a(Ψ,Ψ∗) = b(Ψ,Ψ∗)−
∑

e∈∂Dr

∑
�Ωm·�nb<0

wm 〈Ψm′,Ψ∗
m〉e−

N∑
n=0

n∑
k=−n

2n+ 1

4π

(
σs,nΦn,k,Φ

∗
n,k

)
D

(2.24)

The variational form for the multigroup SN transport equation can be found in Sec-

tion C of Appendix C.
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With the same procedure, we obtain the variational form for the adjoint equation.

Find Ψ∗
m ∈W h

D, m = 1, · · · ,M such that:

b∗(Ψ,Ψ∗)−
∑

e∈∂Dr

∑
�Ωm·�nb>0

wm 〈Ψm,Ψ
∗
m′〉e −

N∑
n=0

n∑
k=−n

2n+ 1

4π

(
Φn,k, σs,nΦ∗

n,k

)
D = l∗(Ψ)

(2.25)

∀Ψm ∈W h
D, m = 1, · · · ,M

where

b∗(Ψ,Ψ∗) =

M∑
m=1

wm

(
Ψm, (−
Ωm · 
∇+ σt)Ψ

∗
m

)
D −

M∑
m=1

wm

〈
Ψ−

m, [[Ψ
∗
m]]
〉

Ei
h

+
∑
e∈∂D

∑
�Ωm·�nb>0

wm 〈Ψm,Ψ
∗
m〉e (2.26)

l∗(Ψ) =

N∑
n=0

n∑
k=−n

2n+ 1

4π

(
Φn,k, Q

∗
n,k

)
D +

∑
e∈∂Dd

∑
�Ωm·�nb>0

wm

〈
Ψm,Ψ

∗inc
m

〉
e

(2.27)

In Section B of Appendix B, we prove that b(Ψm,Ψ
∗
m) = b∗(Ψm,Ψ

∗
m). Furthermore, it

is easy to note that the scattering terms are self adjoint. Finally, if the quadrature set

is properly designed, the reflecting terms are also self-adjoint. So the bilinear forms

for the primal equation and the adjoint equation are the same, i.e., a(Ψm,Ψ
∗
m) =

a∗(Ψm,Ψ
∗
m).

The only difference between the spatially discretized bilinear form a(Ψm,Ψ
∗
m)

and the form stemming from the continuous one-group SN equation is the additional

jump term on all interior edges. It is easy to see that this term vanishes in the

continuous case, i.e., jumps along the streaming directions are zero. So we have the

Galerkin orthogonality (the jumps in the exact solution are zero)

a(Ψ−Ψexact,Ψ
∗) = 0, ∀Ψ∗

m ∈W h
D, m = 1, · · · ,M (2.28)
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Because of the positive definiteness of the form a, i.e.,

a(Ψ,Ψ) > 0 (2.29)

we can define a so-called DG-norm

‖|Ψ|‖DG = a(Ψ,Ψ) (2.30)

Although we do not have to write down the variational form to solve the SN

equation with DGFEM, it is very useful for the study of theoretical convergence. It

has been proved that with the uniform polynomial order, i.e., pK = p, ∀K ∈ Th [88]

‖|Ψ−Ψexact|‖DG ≤ C
hq

(p+ 1)q
(2.31)

where q = min(p + 1/2, 1) for continuous transport solution, or q = min(p + 1/2, 0)

if discontinuities are present in the transport solution. h is the maximum diameter

of all elements, which is fixed for a given mesh. C is a constant independent of the

mesh. It can be proved the convergence holds also for the scalar flux measured in the

L2-norm,

‖Φ− Φexact‖2 ≤ C
hq+ 1

2

(p+ 1)q
(2.32)

The variational form derived here will be employed to obtain conforming precondi-

tioners for the DSA schemes, in Chapter III.

4. Higher-Order Shape Functions

A good choice of shape functions is important for an easy and efficient implementation

of higher-order DGFEM. Over the course of the last decade, higher-order and spectral

finite elements have enjoyed many theoretical and applied developments; for instance,
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in the computational fluid dynamics field, several novel computer code systems are

based on DGFEM [75, 89, 90] and several authors describe basis function options for

higher-order finite elements [5, 91, 4].

We have in mind the subsequent development of a mesh adaptive hp-code, where

the mesh can either be locally subdivided (h-refinement) or the polynomial order

can be locally increased (p-refinement). In such applications, the use of hierarchical

basis functions has been shown to allow for an efficient implementation and a flexible

polynomial order selection (in neutron diffusion codes, hierarchical functions have

been employed for 2-D quadrilateral elements in [87, 56].) Hierarchical bases are

sets of functions where bases of lower-order are successively nested in higher degree

bases. Thus, an increase in the polynomial order means only adding new functions

to the current set, not re-establishing a whole new set as would be the case with

the traditional Lagrange polynomial bases. As a result, an elementary matrix for a

polynomial approximation of order p contains, embedded in it, the matrices of order

p− 1, p− 2, · · · , 2, and 1, as shown on Fig. II-1 for p = 4.

Fig. II-1. Hierarchical structure of elementary matrices.

The nested feature of the elementary matrices can be exploited for calculations

where the polynomial order is not held constant throughout the domain. Even for
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a constant polynomial order, hierarchical sets are attractive: they possess better

condition numbers [5, 92, 86] and provide a simple representation of the solution

on any edge; this latter point is important for inter-element communication in the

upwinding procedure. In this chapter, we implemented and analyzed the convergence

properties of hierarchical basis functions for 2-D unstructured geometries meshed with

triangular elements. We assume the cross sections are constant per element. The

unstructured meshes shown in the result sections are generated with the Triangle

mesh generator [93]. Before providing the definition of the basis functions used, we

need to note that the basis functions are typically not written for any element K

of the physical geometry but for a reference element, obtained after applying an

affine transformation that maps a physical element onto the reference element F−1
K .

Here, the reference element is the triangle K̂, with the three vertices V1 = (−1,−1),

V2 = (1,−1) and V3 = (−1, 1); K̂ is defined as follows:

K̂ =
{
ξ1, ξ2 ∈ R2; − 1 < ξ1, ξ2 ; ξ1 + ξ2 < 0

}
(2.33)

where we have introduced the reference coordinate system ξ1, ξ2. The reference tri-

angle is shown in Fig. II-2.

The local ordering follows four rules, illustrated in Fig. II-2 and given below

1. the three vertices are numbered counter-clockwise.

2. edge 1 is the edge opposite of vertex 1 starting from vertex 2.

3. edge 2 is the edge opposite of vertex 2 starting from vertex 3.

4. edge 3 is the edge opposite of vertex 3 starting from vertex 1.

The linear (first-order) basis functions associated with three vertices are the
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E
dge 2

1

α3

α2

Edge 3

ξ1

ξ2

(−1, −1)

(−1, 1)

1

3

(1, −1)2

(0, 0) Edge
 1

α

Fig. II-2. Reference triangular element.

standard ones:

b̂1(ξ1, ξ2) = −ξ1 + ξ2
2

(2.34)

b̂2(ξ1, ξ2) =
ξ1 + 1

2
(2.35)

b̂3(ξ1, ξ2) =
ξ2 + 1

2
(2.36)

The ̂ symbol denotes that the functions are defined on the reference element K̂.

If the coordinates of the physical element K are (x1, y1), (x2, y2) and (x3, y3).

Then, the affine transformation from the reference coordinate system to the physical

coordinate system is⎡⎢⎣x
y

⎤⎥⎦ = b̂1(ξ1, ξ2)

⎡⎢⎣−1

−1

⎤⎥⎦+ b̂2(ξ1, ξ2)

⎡⎢⎣ 1

−1

⎤⎥⎦+ b̂3(ξ1, ξ2)

⎡⎢⎣−1

1

⎤⎥⎦ (2.37)

=
1

2

⎡⎢⎣x2 + x3

y2 + y3

⎤⎥⎦+
1

2

⎡⎢⎣x2 − x1 x3 − x1

y2 − y1 y3 − y1

⎤⎥⎦
⎡⎢⎣ξ1
ξ2

⎤⎥⎦ (2.38)
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which can be written in matrix form as

x = F (ξ) = x0 + Jξ (2.39)

where J is the Jacobian matrix of the transformation. The determinant of J is half of

the triangle area. Since the vertices are numbered counter clock-wise, the determinant

is always positive.

The higher-order functions consist of edge functions (functions that are non-

zero only on one of the edges) and interior functions (functions that are zero on all

three edges). For a basis of order p, there are p − 1 edge functions per edge and

(p − 1)(p − 2)/2 interior functions. Therefore, the total number of shape functions,

and thus of unknowns per triangle, is given by N(p) = (p + 1)(p + 2)/2. We have

followed the definition by Solin and Sherwin [5, 4] for the hierarchical basis functions.

For edge 1, linking vertices V2 and V3, we have

b̂N(k−1)+1(ξ1, ξ2) = b̂2(ξ1, ξ2)̂b3(ξ1, ξ2)φk−2

(
2ξ1 + ξ2 + 1

2

)
for 2 ≤ k ≤ p (2.40)

For edge 2, linking vertices V3 and V1, we have

b̂N(k−1)+2(ξ1, ξ2) = b̂3(ξ1, ξ2)̂b1(ξ1, ξ2)φk−2

(
ξ2 − ξ1

2

)
for 2 ≤ k ≤ p (2.41)

For edge 3, linking vertices V1 and V2, we have

b̂N(k−1)+3(ξ1, ξ2) = b̂1(ξ1, ξ2)̂b2(ξ1, ξ2)φk−2

(
−ξ1 + 2ξ2 + 1

2

)
for 2 ≤ k ≤ p (2.42)
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Finally, the interior functions are given by

b̂N(n1+n2)+n1+3(ξ1, ξ2) = b̂1(ξ1, ξ2)̂b2(ξ1, ξ2)̂b3(ξ1, ξ2)×

φn1−1

(
2ξ1 + ξ2 + 1

2

)
)φn2−1

(
−ξ1 + 2ξ2 + 1

2

)
for 1 ≤ n1, n2 n1 + n2 ≤ p− 1 (2.43)

We note that edge (resp. interior) functions only appear for p > 1 (resp. p > 2).

The kernel functions φk(z) (k ≥ 0) are given in terms of the 1-D Lobatto polynomials

Lk+2(x) of order k + 2 defined on the [−1,+1] interval:

φk(z) =
Lk+2(z)

L1(z)L2(z)
, k ≥ 0 (2.44)

The shape functions on a physical element K are obtained as follows

bK = b̂pK
◦ F−1

K (2.45)

where b̂p = col(b̂j) and p is the polynomial order of element K. For notational

simplicity, we shall drop the subscript K.

The angular flux is, therefore, expanded on the set of local spatial shape functions

bj of order p,

Ψm(
r) =

N(p)∑
j=1

bj(
r)Ψm,j = bTΨm (2.46)

with Ψm = col(Ψm,j) the vector of angular flux unknowns on cell K in direction m.

An arbitrary test function can also be expanded as

Ψ∗
m(
r) =

N(p)∑
j=1

bj(
r)Ψ
∗
m,j = bT Ψ∗

m = Ψ∗T
m b (2.47)

where Ψ∗
m = col(Ψ∗

m,j). Now we are ready to compute each elementary matrix on

the reference triangle via a mapping from K to K̂.
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a. Streaming Matrix

Let us first consider the cell integral of the streaming term −(Ψm, 
Ωm · 
∇Ψ∗
m)K from

Eq. (2.7). We define the streaming matrix as

Gm = −
∫

K

(∇xb)
Ωm bT dxdy (2.48)

where ∇x = [∂x, ∂y] is the usual gradient operator in the physical space, and the

cosine directors of 
Ωm = [Ωm,x,Ωm,y]
T are Ωm,x = 
Ωm · 
ex and Ωm,y = 
Ωm · 
ey. The

gradient operator is defined as a row vector so that the expression can be understood

as normal matrix multiplications. We define ∇ξ as the gradient in the reference space,

with the local mapping from Eq. (2.38),

∇ξ() = ∇x()J (2.49)

∇x() = ∇ξ()J
−1 (2.50)

The streaming matrix is bolded to indicate it depends on the shape of the element. We

will use this notational rule as default for all elementary matrices that depend on the

shape of the physical element. In the next section, we will see that the reference mass

matrix is unbolded because it is shape-independent. With the change of variables

theorem, we obtain

Gm =

∫
K̂

∇ξb̂(ξ1, ξ2)
[
−J−1 · 
Ωm det (J)

]
b̂

T
(ξ1, ξ2) dξ1dξ2 (2.51)

We define orientations of three edges of the triangle as,

tm,i =

Ωm · 
niLi

6
, i = 1, · · · , 3 (2.52)

where Li are lengths of the edges. Note that

tm,1 + tm,2 + tm,3 ≡ 0 (2.53)
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and that

−J−1 · 
Ωm det (J) = 3

⎡⎢⎣tm,2

tm,3

⎤⎥⎦ (2.54)

For simplicity, we only present Gm for p = 2. Gm with arbitrary polynomial

orders can be generated from the Mathematica notebook given in Appendix F.⎡⎢⎢⎣
[

tm,1 tm,1 tm,1

tm,2 tm,2 tm,2

tm,3 tm,3 tm,3

]
−

√
6

4

[
tm,1 tm,1 tm,1

tm,2 tm,2 tm,2

tm,3 tm,3 tm,3

]
√

6
4

[
tm,3−tm,2 tm,3−tm,1 tm,3

tm,1 tm,1−tm,3 tm,1−tm,2

tm,2−tm,3 tm,2 tm,2−tm,1

]
− 3

10

[
2tm,3 tm,3−tm,1 tm,3−tm,2

tm,1−tm,3 2tm,1 tm,1−tm,2

tm,2−tm,3 tm,2−tm,1 2tm,2

]
⎤⎥⎥⎦

The streaming matrix is not symmetric and has units of length. With the stream-

ing matrix, the streaming term

−(Ψm, 
Ωm · 
∇Ψ∗
m)K = Ψ∗T

m GmΨm (2.55)

where Ψm and Ψ∗
m are the local angular flux vector and the test function vector.

b. Mass Matrix

For the collision term (σtΨm,Ψ
∗
m)K , we define reference mass matrix

M = 6

∫
K̂

b̂(ξ1, ξ2) b̂
T
(ξ1, ξ2) dξ1dξ2, (2.56)

and the local mass matrix is equal to

σt,K

∫
K

bbT dxdy = σt,K
det (J)

6
M =

σt,KA

12
M (2.57)

with A the triangle area.
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The reference mass matrix M, up to order 4, is given below⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 −2
√

6
5

−√
6

5
−2

√
6

5

√
2
5

3
0

−
√

2
5

3
2
5

√
2
7

5
11

30
√

14

√
2
7

5
2

7
√

15
−2

7
√

15

1 2 1 −2
√

6
5

−2
√

6
5

−√
6

5

−
√

2
5

3

√
2
5

3
0 2

5

√
2
7

5

√
2
7

5
11

30
√

14
0 2

7
√

15

1 1 2 −√
6

5
−2

√
6

5
−2

√
6

5
0

−
√

2
5

3

√
2
5

3
2
5

11
30

√
14

√
2
7

5

√
2
7

5
−2

7
√

15
0

−2
√

6
5

−2
√

6
5

−√
6

5
4
5

2
5

2
5

0 −2
7
√

15
2

7
√

15
−4

√
6

35
−13

20
√

21
−13

40
√

21
−13

40
√

21
−1

7
√

10
0

−√
6

5
−2

√
6

5
−2

√
6

5
2
5

4
5

2
5

2
7
√

15
0 −2

7
√

15
−4

√
6

35
−13

40
√

21
−13

20
√

21
−13

40
√

21
1

7
√

10
−1

7
√

10

−2
√

6
5

−√
6

5
−2

√
6

5
2
5

2
5

4
5

−2
7
√

15
2

7
√

15
0 −4

√
6

35
−13

40
√

21
−13

40
√

21
−13

20
√

21
0 1

7
√

10√
2
5

3

−
√

2
5

3
0 0 2

7
√

15
−2

7
√

15
1
7

− 1
21

− 1
21

0 0 1
24

√
35

−1
24

√
35

1
21

√
6

−
√

2
3

21

0

√
2
5

3

−
√

2
5

3
−2

7
√

15
0 2

7
√

15
− 1

21
1
7

− 1
21

0 −1
24

√
35

0 1
24

√
35

1
21

√
6

1
21

√
6

−
√

2
5

3
0

√
2
5

3
2

7
√

15
−2

7
√

15
0 − 1

21
− 1

21
1
7

0 1
24

√
35

−1
24

√
35

0
−
√

2
3

21
1

21
√

6

2
5

2
5

2
5

−4
√

6
35

−4
√

6
35

−4
√

6
35

0 0 0 6
35

√
7
2

30

√
7
2

30

√
7
2

30
0 0√

2
7

5

√
2
7

5
11

30
√

14
−13

20
√

21
−13

40
√

21
−13

40
√

21
0 −1

24
√

35
1

24
√

35

√
7
2

30
3
40

13
480

13
480

1
12

√
210

0

11
30

√
14

√
2
7

5

√
2
7

5
−13

40
√

21
−13

20
√

21
−13

40
√

21
1

24
√

35
0 −1

24
√

35

√
7
2

30
13
480

3
40

13
480

−1
12

√
210

1
12

√
210√

2
7

5
11

30
√

14

√
2
7

5
−13

40
√

21
−13

40
√

21
−13

20
√

21
−1

24
√

35
1

24
√

35
0

√
7
2

30
13
480

13
480

3
40

0 −1
12

√
210

2
7
√

15
0 −2

7
√

15
−1

7
√

10
1

7
√

10
0 1

21
√

6
1

21
√

6

−
√

2
3

21
0 1

12
√

210
−1

12
√

210
0 2

105
− 1

105

−2
7
√

15
2

7
√

15
0 0 −1

7
√

10
1

7
√

10

−
√

2
3

21
1

21
√

6
1

21
√

6
0 0 1

12
√

210
−1

12
√

210
− 1

105
2

105

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
M is symmetric positive definite.

c. Type-1 Edge Matrix

We now consider the edge integral terms. We first define local mapping for three

edges:

ξ1 = (−s, s)

ξ2 = (−1,−s)

ξ3 = (s,−1)

(2.58)
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We then define the type-1 edge matrix (denoted by the superscript 1) for any of the

three edges denoted by the edge subscript index i,

E1
i = 3

∫ 1

−1

b̂(ξi)b̂
T (ξi) ds (2.59)

We call this the type-1 edge matrix because additional types will be introduced

for the DGFEM formulation of the diffusion equation, in Chapter III. For the edge

matrices, the affine transformation is simply a one-dimensional mapping from both

extremities of the edge onto the interval [−1; +1]. The determinant of the 1-D Jaco-

bian matrix for the three edges i = 1, 2, 3, is half of the edge length.

The edge terms in the local system

Hm,i = tm,iE
1
i , i = 1, 2, 3 (2.60)

where tm,i are the three local orientations defined in the previous subsection. The
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three type-1 edge matrices are

E1
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 −
√

3
2

0 0 1√
10

0 0 0 0 0 0 0

0 1 2 0 −
√

3
2

0 0 − 1√
10

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −
√

3
2

−
√

3
2

0 6
5

0 0 0 0 0 0
−
√

3
7

5
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1√

10
− 1√

10
0 0 0 0 2

7
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0
−
√

3
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0 0 0 0 0 0 2

15
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E1
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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√
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√
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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√
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that the definition of our basis functions allows for an easy access to the edge

values, regardless of the chosen polynomial order; indeed, the flux on any edge is

obtained by using the two non-zero linear basis functions on that edge and all the

edge bubble functions for that edge. This is the reason why most of the entries in

these three matrices are zero. This is particularly useful to efficiently compute the
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upwinding contributions for any polynomial order and is an attractive feature for

subsequent mesh adaptivity developments using a matrix-free scheme. If we select

and extract rows and columns corresponding to the vertex and edge shape functions

for a given edge, the 1-D reference mass matrix will be obtained. More details will

be given in Chapter IV.

’K e
i

jK

Fig. II-3. Interior edge definition: recall that for element K, the local edge ID is i

because its opposite vertex is labeled i.

We conclude this section by describing the edge coupling in the upwind scheme.

For now, let us assume that mesh is conforming (no local refinement), i.e., there is

only one neighboring element on one side of any element. We define the coupling

matrices for an interior edge showed in Fig. II-3 as

E1C
i,j = 3

∫ 1

−1

b̂(ξi)bT (−ξj)ds (2.61)

where j is the local edge ID of the upwind element K ′ that shares edge i of element

K. Note that E1C
i,i is not equal to E1

i because both elements are numbered counter-

clock wise and we need to rotate the upwind solution vector to align it with the local

solution vector on the common edge, i.e., we add a minus sign on ξj in equation
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Eq. (2.61). One example for the type-1 edge coupling matrix is given below,

E1C
3,3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can note a few sign changes with matrix E1

3 due to the change in edge orientation.

Therefore, the upwind coupling matrices are

Hi,K ′ = tm,iE
1C
i,j(K ′) (2.62)

with j(K ′) the local edge ID of the upwind element K ′.

d. Assembly Procedure for a Small Local Transport System

Considering three elements I, II and III in the domain shown in Fig. II-4. The local

transport system matrix for element I, A(K=I), is given by the streaming matrix, the

mass matrix, the two downwind matrix

A(K=I) = −G(K=I)
m +

(σtA)(K=I)

12
M + t

(K=I)
m,1 E1

1 + t
(K=I)
m,2 E1

2

and the right-hand-side term l(K=I) contains the volumetric (scattering+external)

source and the upwind contribution

l(K=I) = t
(K=I)
m,3 E1

3Ψ
(K=I)
m′ +

Na∑
n=0

n∑
k=−n

2n+ 1

4π
Yn,k(
Ωm)

M

12
[A(σs,nΦn,k + Qn,k)]

(K=I)
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Fig. II-4. Sample transport domain.

Note that for the reflecting boundary, we use E1 instead of E1C because we obtain

the angular flux in the reflecting outgoing direction m′ on the element itself.

The local transport system for element II is:

A(K=II) = −G(K=II)
m +

(σtA)(K=II)

12
M + t

(K=II)
m,2 E1

2

l(K=II) = t
(K=II)
m,3 E1C

3,1Ψ
(K=I)
m +

Na∑
n=0

n∑
k=−n

2n+ 1

4π
Yn,k(
Ωm)

M

12
[A(σs,nΦn,k + Qn,k)]

(K=II)

Note that edge 2 is the upwind vacuum boundary, its contribution on the right hand

side is zero. The local system of element III is:

A(K=III) =−G(K=III)
m +

(σtA)(K=III)

12
M + t

(K=III)
m,3 E1

3

l(K=III) =t
(K=III)
m,2 E1C

2,2Ψ
(K=IV)
m + t

(K=III)
m,1 E1C

1,1Ψ
(K=V)
m +

Na∑
n=0

n∑
k=−n

2n+ 1

4π
Yn,k(
Ωm)

M

12
[A(σs,nΦn,k + Qn,k)]

(K=III)

Note that there are two upwind elements which are all inside the domain.
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The local system matrices are simply assembled from templates of reference

matrices (no numerical integration is used). This local system is of size N(p) =

(p+1)(p+2)
2

and is always invertible. We have employed a simple Gaussian Elimination

algorithm for the element solve, customizing it for each polynomial order by unrolling

explicitly the loops. As we have proved in Section B of Appendix B,

Gm + GT
m =

3∑
i=1

tm,iE
1
i (2.63)

C. Solution Procedure

1. Transport Sweeps: A Matrix-Free Inversion of the Streaming+Total

Collision Operator

For 2-D triangular meshes, there are no dependencies in the graph of the sweep. So

,if we appropriately order all the tasks for all directions, the global matrix L resulting

from the bilinear form b(Ψ,Ψ∗) of Eq. (2.22) has a block lower-triangular structure.

Such orderings of all elements are obviously direction-dependent. A simple ordering

algorithm will be presented in Chapter V. As a result, the global matrix L is never

formed for the transport calculations. But instead a proper sweeping through the

elements K is prescribed so as to only invert the local systems for each element,

knowing the inflow values from the upwind neighbors. In that sense, the transport

sweeps are characterized as being performed in a matrix-free fashion.

Matrix-free schemes are preferable because:

• Today’s computational bottleneck for neutron transport is fetching data from

memory storage. Although matrices resulting from DGFEM are sparse, they

are still significantly larger than the solution vectors.

• The iterative solver does not need the matrix explicitly, but only requires the
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action of a matrix-vector product.

• A matrix-vector operation can be split into local operations on a single element.

With properly designed higher-order shape functions, flops of local operations

can be reduced further by investigating the structure of the local matrices as

we will see in next sub-section.

• Matrix-free schemes favor the higher-order calculations as we explained in the

introduction part.

The matrix-free scheme for the DGFEM diffusion problem and its implementation

will be addressed in the next two chapters.

More generally, cycles can be present for 2-D quadrilateral and 3-D hexahedral

and tetrahedral meshes (regardless of boundary conditions). In these cases, the L

matrix is not strictly lower-triangular but the solution algorithms usually retain the

sweeping process by splitting the matrix into a lower-triangular part and a strictly

upper triangular part. We will discuss this in details in Sec. 3.

2. Source Iteration (SI)

In the preceding section, we avoided discussing the fact that the unknowns are present

on both the left-hand-side (as angular fluxes) and on the right-hand-side (as flux

moments). This section addresses this question and presents the popular Source

Iteration method employed to iteratively solve the discretized transport equations.

With an appropriate numbering of the angular flux and flux moment unknowns

into the Ψ solution vector for the angular fluxes and Φ for the flux moments, we can



46

represent the discretized transport equation in the following matrix form:

LΨ−MΣΦ = Q

Φ = DΨ

(2.64)

where L is the transport matrix from the streaming and the total collision term, Σ is

the scattering mass matrix which operates on the flux moments, M is the moment-to-

direction matrix, D is the direction-to-moment matrix. Here we use the directional

external source Q for a more general expression rather than using the external source

moments. It needs to be pointed that the spatial mass matrix associated with the

scattering cross section can be applied on the flux moments before the evaluation

of the directional scattering source. The dimensions of L are the number of spatial

degrees of freedom times the number of directions, (Ndof ×M)2; in a discontinuous

method, the number of degrees of freedom is simply the number of elements Nel times

the number of unknowns per element, i.e., Ndof = Nel × N(p), assuming a uniform

polynomial order is employed. The dimensions of Σ are (Ndof × Nmom)2, where

Nmom is the number of moments employed in the spherical harmonics expansion of

the angular fluxes; Nmom is equal to (Na+1)(Na+2)
2

in 2-D and equal to (Na + 1)2 in

3-D for standard angular quadratures (as opposed to hybrid Galerkin quadratures

for instance). D is of dimension (Ndof × Nmom) × (Ndof ×M); M is of dimension

(Ndof ×M) × (Ndof × Nmom). Usually, the number of flux moments is smaller than

number of streaming directions M , and we can recast the problem in terms of flux

moments: [
I−DL−1MΣ

]
Φ = DL−1Q (2.65)

L can be inverted using a transport sweeps, direction by direction. A complete

transport sweep requires Nel ×M local solves.

One simple technique to invert Eq. (2.65) is the scattering Source Iteration (SI),
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also known as Richardson iteration, where, given a previous guess for the flux mo-

ments, a complete transport sweep is performed to obtain a new angular flux, and

thus new flux moments as follows:

Ψ(�+1) = L−1M
[
ΣΦ(�) + Q

]
(2.66)

Φ(�+1) = DΨ(�+1) (2.67)

SI is guaranteed to converge (with some additional precautions in the case of highly

forward peaked scattering) but can be excessively slow for highly diffusive media. SI

can be accelerated (Preconditioned Richardson iteration), through a DSA scheme for

instance, which will be presented in Chapter III. SI is terminated when the following

criterion is satisfied: ∥∥Φ(�+1) − Φ(�)
∥∥

‖Φ(�+1)‖ ≤ tolsource (2.68)

Each source iteration contains one transport sweep. During a transport sweep,

we calculate the local source, solve the local system and update the local flux mo-

ments. No global matrices are assembled explicitly. Because the total number of flux

moments is usually much smaller than the number of sweeping directions, we discard

the angular fluxes which are no longer needed after each local solve, and only keep

angular fluxes present in the sweeping front (to compute the upwind contributions).

By doing this, significant memory savings are achieved.

3. Significant Angular Fluxes

The previous section alluded to the cases when cycles can be present in a transport

sweep. A simple example of cycles is given in Fig. II-5a, where opposing edges of the

domain are both reflecting edges.

Even though there are no cycles for tirangular 2-D geometries, cycles can be ob-
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Fig. II-5. Cycles for the transport sweep.

tained in 2-D when employing quadrilaterals if their shapes are not properly designed,

as shown in Fig. II-5b.

The presence of cycles in the transport sweeps will result in matrix L no longer

being block lower-triangular. In order to retain the sweeping process, we first split L

matrix as follows

L = L− L (2.69)

where L is block lower-triangular and L is strictly block upper-triangular (i.e., with

all diagonal block matrices being zero.) We then select all angular fluxes which have

at least one non-zero element in the corresponding columns of L and denote them

as Significant Angular Fluxes, i.e., angular fluxes that must be kept and stored in

between cycles. Extracting the Significant Angular Fluxes (SAF) can be written as

ΨSAF = NΨ (2.70)

If the length of the SAF vector is NSAF, the dimension of matrix N is NSAF ×
(Ndof × M). Note that NSAF is generally significantly smaller than (Ndof × M),

provided that a decent sweep ordering algorithm is employed. NNT is an identity
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matrix with dimension of NSAF. Note that

LΨ = LNTNΨ = LNTΨSAF (2.71)

Now we have

LΨ = LΨ− LΨ = LΨ− LNTΨSAF −MΣΦ = Q (2.72)

Moving the SAF components to right-hand-side yields

Φ = DL−1
[
LNTΨSAF + MΣΦ + Q

]
ΨSAF = NL−1

[
LNTΨSAF + MΣΦ + Q

] (2.73)

We obtain a linear system in which the unknowns are the flux moments and the SAF.⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦ =

⎡⎢⎣DL−1MΣ DL−1LNT

NL−1MΣ NL−1LNT

⎤⎥⎦
⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦+

⎡⎢⎣D

N

⎤⎥⎦L−1Q (2.74)

or ⎡⎢⎣I−DL−1MΣ −DL−1LNT

−NL−1MΣ I−NL−1LNT

⎤⎥⎦
⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦ =

⎡⎢⎣D

N

⎤⎥⎦L−1Q (2.75)

Now one transport sweep will update not only the flux moments, but also the

SAF. The SI process is:⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦
(�+1)

=

⎡⎢⎣DL−1MΣ DL−1LNT

NL−1MΣ NL−1LNT

⎤⎥⎦
⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦
(�)

+

⎡⎢⎣D

N

⎤⎥⎦L−1Q (2.76)

So, simply by appending the SAF to the flux moment unknowns, we can still employ

SI with the efficient matrix-free transport sweeps. We still use Eq. (2.68) to determine

the convergence.

We can always break the proper sweeping order and artificially start the transport

sweep on some tasks. Then, the angular fluxes associated with these tasks will be
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labeled as significant. This situation happens when we parallelize the transport sweeps

using domain decomposition with MPI and always start the transport sweeps on the

sub-domain interfaces as illustrated in Fig. II-6 (synchronous start or Parallel Block

Jacobi method).

P4

Ωm

P1

P2 P3

Fig. II-6. Domain decomposition with synchronous communication.

Finally, note that we can merge Eq. (2.65) and Eq. (2.75) to obtain a simpler

and more general expression:

(I−T)x = b (2.77)

If there are no SAF, then

T = DL−1MΣ (2.78)

x = Φ (2.79)

b = DL−1Q (2.80)
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and we recover the simpler SI procedure. Otherwise we have:

T =

⎡⎢⎣DL−1MΣ DL−1LNT

NL−1MΣ NL−1LNT

⎤⎥⎦ (2.81)

x =

⎡⎢⎣ Φ

ΨSAF

⎤⎥⎦ (2.82)

b =

⎡⎢⎣D

N

⎤⎥⎦L−1Q (2.83)

We point out that this splitting may increase the number of iterations [31, 32].

4. GMRes Solver

SI (or Richardson iteration) is not the only technique available to solve the global

linear system formed by the discretized SN transport equations. Since matrix (I−T)

is not symmetric, we naturally have recourse to a GMRes technique [94]. With freely

available quality open-source GMRes packages employing reverse communication (i.e.,

without the need to provide the global matrix, but just its action on a Krylov vec-

tor) [95], we can solve the linear system arising from the discretization of the linear

transport equation by providing the following four operations:

1. Construct the right-hand-side b:

We need one transport sweep to construct the right-hand-side b with Eq. (2.80)

or Eq. (2.83). This right-hand-side has the physical significance of the uncollided

flux due to the presence of an external volumetric source or incident radiation

(Dirichlet boundary conditions).

2. Provide the action of matrix (I−T) on a vector:
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This matrix, without SAF, is I−DL−1MΣ. With SAF, it is⎡⎢⎣I−DL−1MΣ −DL−1LNT

−NL−1MΣ I−NL−1LNT

⎤⎥⎦ .
The matrix-vector product is simply equal to original vector of flux moments and

SAF supplied, minus the updated flux moments and SAF after one transport

sweep.

3. Determine convergence:

The convergence criterion used in the GMRes solver is such that the norm of

the normalized residual is smaller than a prescribed tolerance:

‖b− [I−T]x‖2
‖x‖2

≤ tolsource (2.84)

4. Provide a preconditioner:

This step is optional. We will see in Chapter III that DSA can be employed as

a preconditioner in the context of GMRes, see also [96].

Details on the GMRes algorithm will not be discussed here but can be found

in [96]. We have employed the GMRes solver developed by CERFACS, which can be

obtained at: http://www.cerfacs.fr/algor/.

D. Numerical Results

We propose four test cases: two source-driven problem and two eigenproblems. The

angular quadrature used is the S8 level symmetric quadrature from the NEWT code

of the SCALE package [72], unless otherwise noted.
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Fig. II-7. Geometry of the IAEA-EIR-2 benchmark.

1. One-Group Source Problem: The EIR-2 Benchmark

The definition (geometry and cross section data) of this problem can be found in

several publications [97] [98]; it is commonly referred to as the “Stepanek problem”

or the IAEA-EIR-2 problem. It consists of two source regions (regions #1 and 3)

and two absorbing regions (regions #2 and 4). These four regions are arranged

in a checkerboard fashion and are surrounded by region #5, see Fig. II-7. Both

the external source and the scattering cross section are isotropic. Vacuum boundary

conditions are applied. Various unstructured meshes were obtained using the Triangle

mesh generator by employing different maximum element area constraints.
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A total of seven meshes were created, with the following maximum triangle areas,

in cm2: 60, 30, 15, 5, 2, and 1, resulting in meshes having 20, 206, 431, 869, 2553,

6441, and 12893 elements, respectively. Fig. II-8 shows meshes #1, 2, 6, 7. Fig. II-

9 presents the convergence rate for the reaction rate in region #3, as a function

of the number of (scalar flux) unknowns. For unstructured meshes, plotting the

convergence rate as a function of mesh size is delicate because the element mesh size

is not uniform. Nonetheless, in this case, it is common practice to graph convergence

rates as a function of the total number of elements in a mesh. Since the total number

of elements in a mesh, Nelem, is proportional to the square of the typical element size,

or h ∝
√
Nel, the slopes inferred from the loglog graphs simply have to be multiplied

by 2 to retrieve the convergence rates as a function of the mesh size. Another, yet

similar, option consists in graphing the convergence rates as a function of the number

of unknowns, Ndof . In DGFEM, there is a simple relation between Ndof and Nel when

the homogeneous polynomial order is employed: namely, for triangular meshes with

basis functions of order p, we have Ndof = (p+1)(p+2)
2

Nel; we have chosen this latter

plotting convention because (i) the estimation of the convergence rates is not affected

and (ii) such a convention accounts for the different memory requirements incurred by

different polynomial orders. We can note that the various polynomial approximations

in DGFEM converge at different rates; Table II-I provides the convergence rates seen

on Fig. II-9, as well as the convergence rates in terms of mesh size. These values are

in good agreement with the theoretical expected rates of p + 1 (for smooth enough

solutions). For the same mesh, we also observe that the proportionality constant in the

error term decreases as the order p is increased, and that these gains are diminishing

as p increases. Clearly, DGFEM(1) has the poorest accuracy than any other methods.

Fig. II-10 provides the loglog plot of the error versus CPU time, for region #2. A

linear approximation requires about 10 times longer than a quadratic approximation
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(a) mesh #1 (b) mesh #2

(c) mesh #3 (d) mesh #4

Fig. II-8. EIR-2 benchmark meshes.
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Fig. II-9. EIR-2 benchmark: Convergence rates for the average flux in region #3

as a function of the number of unknowns, approximations DGFEM(1) through

DGFEM(4).
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Fig. II-10. EIR-2 benchmark: Convergence rates for the average flux in region #2

as a function of CPU time, approximations DGFEM(1) through DGFEM(4).
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Table II-I. EIR-2 benchmark: Convergence rates.

p convergence of rate in N convergence rate in h

1 1.12 2.24

2 1.47 2.94

3 1.84 3.68

4 2.14 4.28

in order to reach an error below 1%. The approximation p = 3 provides also some

benefits over the quadratic approximation for higher accuracy. Finally, using p = 4

does not provide much CPU gain versus p = 3 for a given accuracy.

2. Four-Group Eigenproblem: The KNK Fast Reactor Benchmark

This benchmark problem, documented by Takeda [99], is a model of the KNK-II fast

reactor core. The geometry, an hexagonal lattice, is given in Fig. II-11. The 4-group

cross-sections can be found in [99] and are also listed in Table II-II.

The 2-D version of this problem has been recently used by [100] and [101] for

nodal SN methods; we present here the results related to the rodded case. The domain

is meshed by subdividing every hexagon into six triangles, resulting in the coarsest

mesh utilized here. Finer meshes were obtained by regularly subdividing every tri-

angle into four smaller triangles. Four refinements in the initial mesh were used,

thus, each hexagon was treated with either 6, 24, 96, 384, 1536 triangles. Table II-

III presents the error, provided in pcm (per cent mille 10−5), in the keff eigenvalue

for various polynomial orders and uniform refinement levels. The reference keff was

obtained with p = 4 and 1536 triangles per hexagon.
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Fig. II-11. Geometry of the Takeda benchmark and initial triangular mesh.
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Table II-II. Takeda benchmark: Material properties.

g σt,g σ
g→1
s,0 σ

g→2
s,0 σ

g→3
s,0 σ

g→4
s,0 νσf,g χg

TEST ZONE
1 1.24526E-01 1.05964E-01 1.12738E-02 1.46192E-04 9.62178E-07 1.79043E-02 0.908564
2 2.01025E-01 0.00000E-00 1.89370E-01 3.64847E-03 1.06888E-06 1.59961E-02 0.087307
3 2.86599E-01 0.00000E-00 0.00000E-00 2.70207E-01 1.80479E-03 2.40856E-02 0.004129
4 3.68772E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.18960E-01 7.33104E-02 0.000000
DRIVER WITHOUT MODERATOR
1 1.40226E-01 1.19887E-01 1.30790E-02 1.59938E-04 1.07166E-06 1.59878E-02 0.908564
2 2.28245E-01 0.00000E-00 2.15213E-01 4.00117E-03 1.82716E-06 1.64446E-02 0.087307
3 3.25806E-01 0.00000E-00 0.00000E-00 3.06885E-01 1.67341E-03 2.71541E-02 0.004129
4 4.18327E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.60906E-01 8.45807E-02 0.000000
DRIVER WITH MODERATOR
1 1.41428E-01 1.14337E-01 2.09664E-02 1.39132E-03 6.10281E-05 1.01663E-02 0.908564
2 2.45394E-01 0.00000E-00 2.12006E-01 2.67269E-02 1.08186E-03 9.46359E-03 0.087307
3 3.98255E-01 0.00000E-00 0.00000E-00 3.52093E-01 3.29030E-02 1.87325E-02 0.004129
4 4.35990E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.70872E-01 8.25335E-02 0.000000
REFLECTOR WITHOUT MODERATOR
1 1.59346E-01 1.47969E-01 1.06607E-02 2.49956E-04 1.82565E-06 - -
2 2.16355E-01 0.00000E-00 2.10410E-01 5.46711E-03 1.00157E-06 - -
3 3.48692E-01 0.00000E-00 0.00000E-00 3.42085E-01 5.36879E-03 - -
4 6.24249E-01 0.00000E-00 0.00000E-00 0.00000E-00 6.19306E-01 - -
REFLECTOR WITH MODERATOR
1 1.39164E-01 1.05911E-01 2.96485E-02 3.06502E-03 1.41697E-04 - -
2 2.46993E-01 0.00000E-00 1.84820E-01 5.91780E-02 2.69229E-03 - -
3 4.52425E-01 0.00000E-00 0.00000E-00 3.73072E-01 7.81326E-02 - -
4 5.36256E-01 0.00000E-00 0.00000E-00 0.00000E-00 5.12103E-01 - -
KNK-1 REFLECTOR
1 1.51644E-01 1.38427E-01 1.23901E-02 3.66930E-04 1.69036E-06 - -
2 1.42382E-01 0.00000E-00 1.37502E-01 4.41927E-03 1.63280E-06 - -
3 1.65132E-01 0.00000E-00 0.00000E-00 1.60722E-01 3.33075E-03 - -
4 8.04845E-01 0.00000E-00 0.00000E-00 0.00000E-00 7.98932E-01 - -
SODIUM STEEL ZONE
1 9.65097E-02 8.83550E-02 7.73409E-03 1.94719E-04 8.89615E-07 - -
2 9.87095E-02 0.00000E-00 9.52493E-02 3.22568E-03 7.98494E-07 - -
3 1.34200E-01 0.00000E-00 0.00000E-00 1.30756E-01 2.90481E-03 - -
4 4.12670E-01 0.00000E-00 0.00000E-00 0.00000E-00 4.09632E-01 - -
CONTROL ROD
1 1.39085E-01 1.17722E-01 1.26066E-02 1.33314E-04 1.08839E-06 - -
2 2.28152E-01 0.00000E-00 1.94699E-01 4.32219E-03 1.85491E-07 - -
3 3.18806E-01 0.00000E-00 0.00000E-00 2.44352E-01 3.68781E-04 - -
4 6.27366E-01 0.00000E-00 0.00000E-00 0.00000E-00 3.14816E-01 - -
CONTROL ROD FOLLOWER = STEEL
1 9.83638E-02 9.06050E-02 7.42377E-03 1.18163E-04 8.25890E-07 - -
2 1.35140E-01 0.00000E-00 1.30581E-01 4.35250E-03 3.41675E-07 - -
3 2.24749E-01 0.00000E-00 0.00000E-00 2.19547E-01 4.64594E-03 - -
4 2.83117E-01 0.00000E-00 0.00000E-00 0.00000E-00 2.80707E-01 - -

Table II-III. Takeda benchmark: Error in the keff, in pcm, approximations

DGFEM(1) through DGFEM(4), initial mesh and four uniformly refined meshes.

p 6 triangles 24 triangles 96 triangles 384 triangles 1536 triangles

1 355.161 68.200 12.620 2.166 0.342

2 11.534 2.489 0.364 0.042 0.004

3 2.534 0.336 0.037 0.004 0.0004

4 0.602 0.070 0.010 0.001 ref. keff = 1.0108202
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Again, the convergence of the linear DGFEM seems relatively poor compared to

higher-order approximations; it takes about four levels of uniform refinement for the

linear approximation to yield the same accuracy of the fourth order method on the

initial mesh or the cubic method on the once-refined mesh. This is also illustrated

in Fig. II-12, where the convergence in keff is plotted as a function of the CPU time.

In Fig. II-12, we note again the comparable effectiveness of the cubic and fourth

order method, suggesting that approximations with orders greater than 4 may not be

cost-effective in terms of CPU time.
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Fig. II-12. Takeda benchmark: Convergence rates in the keff as a function of CPU

time, approximations DGFEM(1) through DGFEM(4).

We also compared the detailed spatial solutions by graphing a 1-D cut throughout

the geometry; this cut is represented by the AB line in Fig. II-11. Fig. II-13 provides

the values along the AB line for the four polynomial orders as well as the first two
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meshes (6 triangles/hexagon and 24 triangles/hexagon). The reference values are

taken from a fourth order calculation, using 1536 triangles per hexagon. We note

that on the initial mesh (6 triangles/hexagon), there is a good agreement for p ≥ 3

and for the next once-refined mesh, a good agreement is achieved starting at p ≥ 2,

and, again, the linear solution shows the poorest results.

3. Seven-Group Eigen-problem: The UOX/MOX C5G7 Benchmark

This third test is the 2-D version of the UOX/MOX C5G7 benchmark, where the

fuel pins are represented by cylinders (a homogenization of the fuel and its cladding)

surrounded by water. The geometry consists of four 17x17 fuel assemblies, each

composed of 264 fuel pins and 25 water holes. These fuel assemblies are surrounded

by a homogeneous reflector (water), resulting in a mini-core geometry of 3x3 fuel

assembly, see [102] for the complete description of the geometry and the cross section

data. In our triangularization, each fuel pin is approximated by a regular dodecagon

(12-sided polygon) whose side is such that the area of the fuel pin is preserved (a

“conservation of fuel” principle). The resulting mesh, containing 39,633 elements, is

shown in Fig. II-14. A Gauss-Chebyshev product quadrature (with 4 polar angles

and 16 azimuthal angles per quadrant) is used. The keff using a linear approximation

is 1.18641(47), whereas the cubic approximation yields 1.18641(90); the published

reference value, obtained from a Monte Carlo calculation is 1.18655(0), [103]. Fig. II-

15 provides the 1-D cross-sectional cut of the flux along from the main diagonal

(from point (0,0) to point (64.26,64.26)), for groups 1 and 7 using the p = 1 and

p = 3 methods. Even though the keff is well approximate using linear finite elements

on this fine mesh, some discernible discrepancies in the local flux values can still be

seen in Fig. II-15 for DGFEM(1) when compared to DGFEM(3).

Scalar fluxes of group 1 and group 7 are showed in Fig. II-16 with the 2-D
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(b) Once-refined mesh.

Fig. II-13. Takeda benchmark: Flux values along line AB for group #4, approxima-

tions DGFEM(1) through DGFEM(4).
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pseudo-color plots.

Fig. II-14. Mesh used for the C5G7 benchmark.
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Fig. II-15. C5G7 benchmark: Flux values along the main diagonal (0,0)-

(64.26,64.26), approximations DGFEM(1) and DGFEM(3).
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(a) Group #1

(b) Group #7

Fig. II-16. C5G7 benchmark: Scalar fluxes.
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4. Convergence Studies with a Simple Homogeneous Square Problem

Additional convergence results related to higher-order DGFEM are presented in this

section. These test cases are inspired by Larsen’s and Azmy’s work [83, 85]. A square

domain containing a homogeneous material is modeled. The total cross section, σt, is

1 cm−1. We considered the cases of a pure absorber (σs,0 = 0 cm−1) and a scattering

medium (σs,0 = 0.5 cm−1). Seven different square widths W were employed: 1, 5, 10,

20, 40, 60, and 100 cm, resulting in optical thicknesses ranging from 1 to 100 mean-

free-paths (MFP). No volumetric external sources are present. Spatially uniform

incident beam fluxes are applied either on the left face (Ψinc(x = 0, y) = 1) or on

both left and bottom (Ψinc(x = 0, y) = Ψinc(x, y = 0) = 1) faces simultaneously. We

considered two incident directions: a direction with exactly a 45-degree angle with

respect to the axes and another direction with an angle of about 18.444 degrees with

respect to the x-axis (an S4 angular quadrature is used in these tests; its directions

form angles of 18.444..., 45, and 71.556... degrees with respect to the x-axis in the

first quadrant). The use of a 45-degree angle in a square domain makes it particularly

easy to align the mesh with the singularity (incident beam direction stemming from

the domain corner). The use of the other direction (∼18.444... degrees) serves as a

test case in which the mesh is not aligned with the incident boundary fluxes. When

the flux is incident only on the left face, we should expect a more abrupt transition

across the characteristic line separating the illuminated portion of the domain from

the non-illuminated one (the flux is discontinuous in the case of a pure absorber).

For an incoming flux, of equal value, incident on both the left and bottom faces, the

flux inside the domain will present less singularities (in this case, the flux is indeed

continuous inside the domain, even for a pure absorber medium).

We propose to analyze the effect of singularities in the transport solution on
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DGFEM(p) for (a) fluxes incident on one or two adjacent faces, (b) with meshes

aligned or not with the incident direction, (c) for materials with or without scatter-

ing, (d) in configurations of various optical thicknesses, (e) on sequences of uniformly

refined structured and unstructured meshes. Convergence results and some discus-

sions are provided for these various cases. The initial structured and unstructured

meshes are given on Fig. II-17 (left panes). After three uniform refinements, the

meshes are graphed on Fig. II-17 (right panes). We have chosen to uniformly refine

the original meshes, rather than re-generating new meshes with a smaller triangle

area constraint. As we will see from the results, having grids with triangles of various

sizes does not affect the convergence rates.

a. Flux Incident on the Left Face, Pure Absorber Case

A left-incident beam is applied on the domain geometry. The transport solution in the

domain is singular (with discontinuity) along the characteristic line emanating from

the bottom-left corner in the direction of the incident particles. Mathematically, the

transport solution is in the H1/2−ε(D) space.

For a 45-degree incident flux, the meshes employed are perfectly aligned with

the discontinuity of the transport solution. The convergence rates for DGFEM(1)

through DGFEM(4), measured in the L2 norm, are plotted in Fig. II-18 (structured

meshes aligned with the 45-degree singularity) and Fig. II-19 (unstructured meshes

aligned with the 45-degree singularity). The plots are provided for domains of optical

thicknesses of 1, 10, 40, and 100 MFP. We can clearly see that the DGFEM(p) method

is converging at the theoretical rate of p + 1. In this case where the mesh is aligned

with the singularity, the DGFEM “does not see” the lack of regularity of the solution.

We repeated these calculations but, this time, we employed an ∼18-degree inci-
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(a) Structured mesh

(b) Unstructured mesh

Fig. II-17. Initial and three-time-refined meshes, (left column: initial meshes, right

column: three-time-refined meshes).



70

0 0.5 1 1.5 2 2.5 3 3.5
−12

−10

−8

−6

−4

−2

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 1 mfp

1
2

 

 

1

3
1

4

1

5

p=1
slope=2
p=2
slope=3
p=3
slope=4
p=4
slope=5

0 0.5 1 1.5 2 2.5 3 3.5
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 10 mfp

1

2

 

 

1

3

1

4

1

5

p=1
slope=2
p=2
slope=3
p=3
slope=4
p=4
slope=5

0 0.5 1 1.5 2 2.5 3 3.5
−8

−7

−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 40 mfp

1

2

 

 

1

3

1

4

1

5

p=1
slope=2
p=2
slope=3
p=3
slope=4
p=4
slope=5

0 0.5 1 1.5 2 2.5 3 3.5
−7

−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 100 mfp

1

2

 

 

1

3

1

4

1

5

p=1
slope=2
p=2
slope=3
p=3
slope=4
p=4
slope=5

Fig. II-18. Convergence rates: pure absorber case with 45◦ left-face incidence, struc-

tured mesh aligned with incident beam, domain size = 1 (top left), 10 (top right), 40

(bottom left), and 100 (bottom right) MFP.
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Fig. II-19. Convergence rates: pure absorber case with 45◦ left-face incidence, un-

structured mesh aligned with incident beam, domain size = 1 (top left), 10 (top right),

40 (bottom left), and 100 (bottom right) MFP.



72

dent beam (i.e., the meshes are not aligned with the transport solution singularity).

Fig. II-20 provides the convergence rates for the structured grids (domain thicknesses

of 1, 10, 40, and 100 MFP) and Fig. II-21 gives the convergence rates for the un-

structured grids (domain thicknesses of 1, 10, 40, and 100 MFP). We note that for

optically thin domains (and thus optically thin meshes), the convergence rate is dic-

tated by the regularity of the transport solution, i.e., all convergence slopes are equal

to 1/2. For thicker domains, higher convergence rates are observed as long as the

mesh width remains greater than the mean-free-path. In this case, we observe a pre-

asymptotic region where the convergence rates tend to the higher theoretical value of

p + 1 without quite attaining that value. When mesh widths become optically thin,

the regularity of the solution once again limits the convergence to a slope of 1/2.

We also note that, in any case, the error is always lower for higher polynomial

orders. Thus, even if no enhanced convergence rates are observed, it may still be

advantageous to use higher-order polynomials in order to have smaller error values.

b. Flux Incident on Both the Left and Bottom Faces, Pure Absorber

Case

Two incident beams, of identical direction and intensity, are now applied to both the

left and bottom faces. In this case, the transport solution is continuous inside the

domain and belongs to the H3/2−ε(D) space. When using a 45-degree incident beam

(i.e., grids are aligned with the singularity), we recover results identical to the above

one-beam case (Section a), when meshes were aligned with the discontinuity. For

brevity, we do not show any convergence plots for the case with alignment in this

section but only state the conclusions: regardless of the domain or meshes optical

thickness, DGFEM(p) converges at rate of p+ 1 measured in the standard L2 norm,

with lower absolute errors as the polynomial order is increased.
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Fig. II-20. Convergence rates: pure absorber case with ∼18◦ left-face incidence,

structured mesh not aligned with incident beam, domain size = 1 (top left), 10 (top

right), 40 (bottom left), and 100 (bottom right) MFP.
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Fig. II-21. Convergence rates: pure absorber case with ∼18◦ left-face incidence,

unstructured mesh not aligned with incident beam, domain size = 1 (top left), 10

(top right), 40 (bottom left), and 100 (bottom right) MFP.
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In the case of an ∼18-degree incident beam, the meshes are no longer aligned

with the singularity of the transport solution, but due to the higher regularity of the

transport solution (which is now continuous), a convergence rate of 3/2 is achieved.

As noted previously, for optically thick meshes (coarser meshes), the convergence rate

is higher than the 3/2 value imposed by the solution regularity and is dependent upon

p; for p = 1, 2, 3, the convergence rates observed tend to the value of p+ 1; for p = 4,

the regularity of the solution prevented the rate to fully reach a value of 5. As the

meshes are refined, the convergence rates tend towards the asymptotic limit of 3/2,

regardless of the polynomial bases used. Fig. II-22 gives the convergence rates for the

structured grids (domain thicknesses of 1, 10, 40, and 100 MFP). Fig. II-23 shows

the rates for the unstructured grid for a domain of 100 MFP-thick, and rates almost

equal to p+ 1 are observed for intermediate mesh sizes.

c. Flux Incident on the Left Face, Scatterer Material Case

In the case of a scatterer material, it is well known that the SN transport solution

will present singularities originating from the corners of the domain in each discrete

ordinate direction [104]. It is of great practical interest to investigate how DGFEM(p)

converges in this case, as many applications include scattering. We once again used

the above-mentioned S4 quadrature.

In this first series of tests, the incident beam is aligned along the 45-degree

direction. When meshes are aligned with the incident particles, convergence rates

obtained ranged from (i) a polynomial-order dependent value (close to but less than

p+1) for optically thick meshes (in the pre-asymptotic range) to (ii) 3/2 for optically

thin meshes. Again, it is not unexpected to fall short of the p + 1 rate for coarse

cells, as the theoretical results holds in the asymptotic limit (i.e., as the mesh size

tends towards 0). Here, in the asymptotic region, the rate is limited by the regularity



76

0 0.5 1 1.5 2 2.5 3 3.5
−7

−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 1 mfp

1

3/2

p=1
p=2
p=3
p=4
slope

0 0.5 1 1.5 2 2.5 3 3.5
−7

−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 10 mfp

1

3/2p=1
p=2
p=3
p=4
slope

0 0.5 1 1.5 2 2.5 3 3.5
−6

−5

−4

−3

−2

−1

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 40 mfp

1

3/2

p=1
p=2
p=3
p=4
slope

0 0.5 1 1.5 2 2.5 3 3.5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

|Log of the mesh size h|

Lo
g 

of
 th

e 
er

ro
r

Domain size = 100 mfp

1

3/2

p=1
p=2
p=3
p=4
slope

Fig. II-22. Convergence rates: pure absorber case with ∼18◦ (left+bottom)-face

incidence, structured mesh not aligned with incident beam, domain size = 1 (top

left), 10 (top right), 40 (bottom left), and 100 (bottom right) MFP.
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Fig. II-23. Convergence rates: pure absorber case with ∼18◦ (left+bottom)-face

incidence, unstructured mesh not aligned with incident beam, domain size = 100

MFP.
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of the solution and the rates graphed in Fig. II-24 shows the transitions from the

higher-order convergence rate region (coarser meshes) to a convergence rate of 3/2

(finer/optically thin meshes). These figures are for unstructured meshes. Similar

results, not presented here for brevity, were obtained for structured meshes. In the

bottom right graph of Fig. II-24 (domain size = 100 MFP), the asymptotic slope of

3/2 and the pre-asymptotic slopes of p+ 1 are shown.
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Fig. II-24. Convergence rates: scatterer case with 45◦ left-face incidence, unstruc-

tured mesh aligned with incident beam, domain size = 1 (top left), 10 (top right), 40

(bottom left), and 100 (bottom right) MFP.
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For a beam incident at an angle of ∼18 degrees, we have again the case where the

meshes are not aligned with the singularity of the transport solution. The observed

convergence rates varied from a polynomial-order dependent high value to a regularity

imposed rate of 1/2 (see Fig. II-25 ).
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Fig. II-25. Convergence rates: scatterer case with ∼18◦ left-face incidence, unstruc-

tured mesh not aligned with incident beam, domain size = 1 (top left), 10 (top right),

40 (bottom left), and 100 (bottom right) MFP.
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d. Flux Incident on the Left Face, Scatterer Material Case with Partial

Mesh Alignment

(a) The bottom-left corner only (b) The bottom-left and top-left
corners

Fig. II-26. Meshes partially aligned with singularities.

The requirement of having a mesh fully aligned with the singularities may seem

a severe obstacle in general, and for adaptive mesh refinement in particular. Recog-

nizing that mesh adaptation has been successfully applied in other engineering fields

with hyperbolic equations [105], we propose a simple test, where the domain contains

meshes that are partially aligned with the singularity (Fig. II-26). We use the scat-

terer test case of Section c, where the asymptotic convergence rate is 3/2 for meshes

fully aligned with the singularity and 1/2 for unaligned meshes (see Figs. II-24 and II-

25). In Section c, we have also noted that before reaching their asymptotic rates, rates

close to p+1 can be attained. We now compare these previous results with the results

obtained with partially aligned meshes and shown in Fig. II-26. In Fig. II-26 (left),

the mesh is aligned with the 3 singularities (one per ordinate) present at the lower left
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corner. In Fig. II-26 (right), the mesh is also aligned with the 3 singularities present

at the upper left corner. For conciseness, we only show the mesh that is the input

data for the Triangle mesh generator. We also generated meshes partially aligned

with the singularities of all four corners.

We first carried out tests where singularities are partially meshed for the bottom

left corner only. For very thin domains, rates of 1/2 are reached; the mesh alignment is

too short (optically thin domain) to recover a higher convergence rate. Nonetheless,

the errors obtained with the partially aligned meshes are smaller by a factor 3 to

5 compared with the case where the mesh is not aligned with the singularity (see

Fig. II-27). For domains greater than 10 MFP (see top right and bottom left graphs

on Fig. II-27), the asymptotic rate is now 3/2, which is a vast improvement over the

1/2 rate for unaligned meshes. The magnitude of the error has also been further

decreased by two orders of magnitude, in comparison with the unaligned case.

When tests were repeated in which the singularities were partially meshed for

both lower-left and upper-left corners, the observed asymptotic rates for thin domains

were 3/2 (as compared to 1/2 previously). Thus, taking into account singularities from

both corners allowed us to recover the maximum regularity-constrained theoretical

rate. For thicker domains (greater than 20 MFP), the partial meshing of the singu-

larities is enough to recover convergence rates of p + 1, i.e., the results are no longer

constrained by the solution regularity. We present the results for a 40-MFP thick

domain. The accuracy gains range from about 0.5 (p = 1) to almost 2 (p = 4) orders

of magnitude (see bottom right graph on Fig. II-27). This is particularly noteworthy

when considering the potential for adaptive mesh computations in transport. As we

have seen in our tests, even if aligning the mesh was not always sufficient to augment

the convergence rate, the magnitude of the error always decreased significantly. At

that stage, and by surveying current practice in other disciplines, we can conjecture
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that accuracy gains can be obtained by resolving, albeit partially, the singularity in

the transport equation.

e. DG Norm Computations

We recalled in the theory Section 3 that the error, measured in the DG norm, con-

verges at a rate that is reduced by 1/2 in comparison to the L2 norm. We briefly

provide numerical results that corroborate these theoretical facts. First, on Fig. II-28,

we show the rates in the case of a pure absorber where the mesh is aligned with the

singularity (domain size = 10 MFP, left graph on Fig. II-28). In the L2 norm, rates

were of p + 1 (see previous results), now we clearly observed rates of p + 1/2. Then,

we tested a pure absorber case, where the mesh does not align with the singularity

(domain size = 100 MFP, right graph on Fig. II-28). In this situation, the theoretical

value of the error in the DG norm is 0, which can be noted in Fig. II-28 (right).
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Fig. II-27. Convergence rates: scatterer case with ∼18◦ left-face incidence, mesh

partially aligned (i) with singularities at the lower-left corner, domain size = 1 MFP

(top-left graph), 10 MFP (top-right graph), 40 MFP (bottom-right graph) and (ii)

singularities at both the bottom-left and upper-left corners (bottom-right graph).
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Fig. II-28. Convergence rates in the DG norm: pure absorber case with 45◦ left-

face incidence, aligned with incident beam, (left: domain size = 10, structured mesh;

right: domain size = 100 MFP, unstructured mesh).

E. Conclusions

We have presented higher-order numerical solutions to the SN transport equation

for unstructured 2D triangular meshes. A Discontinuous Galerkin Finite Element

Method (DGFEM) was employed, with orders up to four. Hierarchical basis functions

were chosen for the spatial representation of the solution. This basis set allows for

an easy implementation of the upwinding procedure for any polynomial order and

is widely used in other engineering disciplines for accurate higher-order solutions .

We have numerically observed that the solutions converge at the theoretical rate of

p + 1, where p is the order of the approximation. Notably, for a given mesh size,

there are always significant gains in accuracy to be obtained from quadratic, cubic,

and quartic approximations with respect to linear DGFEM. In terms of CPU time,

cubic and quartic functions yield about the same accuracy per unit time, suggesting

that, in 2D, the best accuracy/CPU time compromise may be attained for orders 3
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and 4. Our results show that a linear representation of the solution is not optimal

due to the lower convergence rate of the method, and we recommend that at least

second-order functions be employed. Using the above framework, a mesh adaptive

SN transport solver is under development; the use of a DGFEM method will facilitate

the coupling between elements of various refinement levels (in DGFEM, the solution

is not required to be continuous across elements) and the hierarchical basis functions

will allow for simpler inter-element communications.

We have numerically analyzed the convergence properties of Discontinuous Galer-

kin Finite Elements, up to polynomial order 4, for the spatial discretization of the

transport equation. Test cases were carried out with pure absorber media and scat-

terer media, for structured and unstructured triangular meshes. We have verified

theoretical convergence results, namely that, in the L2 norm, the solutions converge

with a rate ofmin(p+1, r), where p is the spatial approximation order and r the trans-

port solution regularity. In the DG norm, the theoretical rate of min(p+1/2, r−1/2)

was recovered. For optically thin meshes, the convergence rate in the L2-norm is al-

ways imposed by the solution regularity (r = 1/2 or 3/2), but for thicker meshes,

rates approaching p + 1 are observed. We note that for optically thick domains, the

error is significantly reduced by the convergence rate in p+ 1 before being limited by

regularity for very fine meshes. In the cases where the meshes are partially aligned

with a few singularities, convergence rates of 3/2 (as opposed to 1/2) can be attained.

When more singularities are properly meshed, convergence at the rate of p + 1 can

be observed.
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CHAPTER III

DIFFUSION SYNTHETIC ACCELERATION SCHEMES FOR HIGH-ORDER

DISCONTINUOUS FINITE ELEMENTS ON LOCALLY REFINED

UNSTRUCTURED MESHES

A. Introduction

In this chapter, we develop and analyze Diffusion Synthetic Acceleration (DSA)

schemes for higher-order discontinuous finite element (DFE) spatial discretizations

of the SN transport equation on 2-D, unstructured, locally refined meshes. The spa-

tial discretization of the SN transport equation on unstructured meshes has been

described in Chapter II.

For problems with highly diffusive materials (i.e., with scattering ratios c =

σs,0/σt close to 1), the standard source iteration (SI) technique can become quite

ineffective due to its slow convergence properties and DSA needs to be employed to

accelerate the convergence of the SI process. It is well established that the spatial

discretization of the DSA equations must be “consistent” with the one used for the

SN transport equations to yield unconditionally stable and effective DSA schemes

[106, 107, 108, 70, 68, 67]. To date, the work by Warsa & Morel [70] regarding

a fully-consistent DSA scheme for linear discontinuous discretizations on tetrahe-

drons is the only fully-consistent example of DSA for general meshes. Their DSA

method was derived by using the zeroth and first angular moment of the discretized

transport equation, resulting in a mixed-diffusion or P1 system of equations, with a

scalar continuity equation and a first moment vector equation. Even though their

scheme achieved full consistency, the overall computational efficiency of their method

only outperformed partially consistent schemes under certain circumstances (e.g., for
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problems that are both highly diffusive and require high angular quadrature order).

Partially consistent DSA schemes have been motivated by the difficulties associated

with the algebraic elimination of the vector unknowns to yield an elliptic diffusion

equations. With partial consistency, it is hoped that the reduction in the scheme’s

complexity outweighs the degradation in its effectiveness. Some partially consistent

schemes have been analyzed for unstructured meshes [70]: the modified-four-step

(M4S) scheme and the Wareing-Larsen-Adams (WLA) scheme. The M4S technique,

though efficient in 1-D slab and 2-D rectangular geometries, was found to be divergent

for 3-D tetrahedral meshes with linear discontinuous elements. The WLA scheme,

based on the solution of a diffusion equation using continuous finite element (CFE)

followed by a discontinuous update carried out cell-by-cell, was found to be stable

and relatively effective, though the effectiveness degraded as the element sizes became

more optically thick and highly diffusive. For the WLA scheme to be used on locally

adapted meshes as obtained, for instance, when using AMR, the CFE diffusion equa-

tion must be solved on meshes containing hanging nodes (i.e., some nodal unknowns

are only present on an element and not on its neighbor, with the consequence that

these unknowns must be constrained in order to keep a numerical approximation

that is continuous across elements). This can be a non-negligible task, especially for

higher-order approximations on unstructured meshes. Some researchers [109] have

presented DSA schemes based on linear DFE for Block-AMR meshes; our approach

here allows for arbitrary mesh structures, arbitrary refinement level, and arbitrary

polynomial order representation.

In our new approach, we have chosen to derive partially-consistent DSA schemes

employing a DFE discretization by directly deriving them from the DFE discretiza-

tion of the SN transport equations. Our scheme belongs to the family of partially-

consistent DSA methods because in our derivation, we only keep the zero-th moment
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of the DFE transport equation and assume that Fick’s law is verified point-wise to

eliminate the current unknowns. We show that the resulting DFE discretization for

the diffusion equation is remarkably similar to the Interior Penalty (IP) stabilization

method for diffusion equations solved using a DFE Method (in the mathematical

literature, such approximation is also referred to as Discontinuous Galerkin Finite

Element Method, or DGFEM). Due to the discontinuous nature of the DGFEM ap-

proximation, it is particularly well suited for meshes arising in AMR calculations, i.e.,

hanging nodes are seamlessly incorporated into the DFE method. This property also

leads to an easy implementation of higher-order test functions and in this work, we

have employed test functions with polynomial orders up to 4.

The outline of this chapter is as follows.In Section B, we derive the DFE diffusion

equation, starting directly from the DFE variational form of SN transport equation.

We link this so-called “conforming” diffusion form we arrive at with the standard IP

DGFEM diffusion form. We label our DFE diffusion forms as “conforming” because

they are derived directly from the SN transport variational form. We also derive

a P1 conforming form and compare with the mixed P1 form from Ref. [70]. We

then present the local matrices obtained from our DFE diffusion form in the case of

higher-order polynomial approximations, and describe how the DFE diffusion equa-

tions are solved in a matrix-free fashion using a preconditioned Conjugate Gradient

(CG) method. (we have chosen SSOR as a preconditioner for CG.) In Section D, we

show how the DFE diffusion forms can be used as DSA preconditioners to accelerate

the SI and GMRes transport solves. In Section E, we perform a Fourier analysis for

the various DSA schemes, for both homogeneous and heterogeneous medium config-

urations. In the “Results” Section F, we compare the spectral radius obtained from

Fourier analysis with numerical estimates of the spectral radius from the xuthus

SN code and discuss the effectiveness and efficiency of DSA for various polynomial
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orders. Finally, conclusions are provided in Section G.

B. Derivation of Discontinuous Finite Element Diffusion Forms

The starting point for the derivation of Discontinuous Finite Element (DFE) diffu-

sion equations is the variational form for the SN transport equation, Eq. (2.21) in

Chapter II. To obtain the conforming diffusion form, we restrict the angular flux

solution and angular test function spaces of a smaller subspace, where their angular

dependence is only linear. Different approximations will lead to either the diffusion

conforming form or the P1 conforming DFE forms. Note that all terms in the equation

will be multiplied by 4π in the following derivation.

1. The Diffusion Conforming Form, DCF

First let us assume a diffusion approximation for the primal and adjoint angular

fluxes,

Ψm =
1

4π
(Φ− 3D
∇Φ · 
Ωm + 9D
Q1 · 
Ωm) (3.1)

Ψ∗
m =

1

4π
(Φ∗ + 3D
∇Φ∗ · 
Ωm) (3.2)

Both the primal and adjoint angular fluxes are linearly anisotropic. We have

used the following Fick’s laws to eliminate the first angular moment (i.e., the net

current) in the above expressions:


J = −D
∇Φ + 3D
Q1 (3.3)


J∗ = D
∇Φ∗ (3.4)

The primal current satisfies a generalized Fick’s law, where the linearly anisotropic
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source is accounted for. We will later see that D will naturally turn out to be the

standard diffusion coefficient; the change in signs between the angular fluxes and the

test functions will make the reduced diffusion system symmetric. The first-angular

moment vector 
Q1 is understood as containing the source term, weighted by the 3

first-order spherical harmonic functions, i.e., 
Q1 = [ Q1,−1 Q1,0 Q1,1 ]. This term

will be important when the anisotropy of scattering is strong. In the following pages,

we derive the DFE diffusion conforming approximation, a reduced form that only

contains the scalar flux as the unknown. The differences between the diffusion ap-

proximation and the P1 approximation will be showed later.

We start the derivation by evaluating the simplest terms in the SN variational

form: the total and scattering reaction terms.

M∑
m=1

4πwm (σtΨm,Ψ
∗
m)D = (σtΦ,Φ

∗)D −
(
3σtD
∇Φ, D
∇Φ∗

)
D

+
(
9σtD
Q1, D
∇Φ∗

)
D

(3.5)

Na∑
n=0

n∑
k=−n

(2n+ 1)
(
σs,nΦn,k,Φ

∗
n,k

)
D = (σs,0Φ,Φ

∗)D −
(
3σs,1D
∇Φ, D
∇Φ∗

)
D

−
(
9σs,1D
Q1, D
∇Φ∗

)
D

(3.6)

Both terms are multiplied with 4π. The following properties of the angular quadrature
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have been used:

M∑
m=1

wm = 4π (3.7)

M∑
m=1

wm

Ωm = 0 (3.8)

M∑
m=1

wm

Ωm


Ωm =
4π

3
I (3.9)

M∑
m=1

wm

Ωm


Ωm

Ωm = 0 (3.10)

and we recall the meaning of (a, b)D =
∑

K(a, b)K =
∑

K

∫
K
d3r ab. Merging these

two terms and defining,

D =
1

3(σt − σs,1)
=

1

3σtr
(3.11)

σa = σt − σs,0, (3.12)

we obtain,

(σaΦ,Φ
∗)D −

(

∇Φ, D
∇Φ∗

)
D

+
(
3 
Q1, D
∇Φ∗

)
D

(3.13)

Before processing the edge terms appearing in the DFE SN variational form, we

introduce the following edge definitions for the scalar flux on the interior edges (similar

definitions for the derivatives of scalar flux on the edges can be inferred from these).

Note the difference in the definition between the edge angular fluxes (where the ±
superscript depended on the lims→0± Ψ(
r + s
Ωm)) and the scalar flux (there are no
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specific directions associated with the scalar flux.)

Φ+ = lim
s→0+

Φ(
r + s
n) (3.14)

Φ− = lim
s→0−

Φ(
r + s
n) (3.15)

[[Φ]] = Φ+ − Φ− (3.16)

{{Φ}} = (Φ+ + Φ−)/2 (3.17)


ne(
r) is a fixed normal unit vector of an edge e. The orientation of 
n on an interior

edge is irrelevant. However, on the boundary edges, this vector must be oriented

outward.

We now analyze the expression resulting from the SN streaming term, when the

primal and test functions are restricted to a linear angular dependence:

M∑
m=1

4πwm

(

Ωm · 
∇Ψm,Ψ

∗
m

)
D

=
(

∇Φ, D
∇Φ∗

)
D
−
(

∇ ·D
∇Φ,Φ∗

)
D

+
(
3
∇ ·D
Q1,Φ

∗
)
D

=
(

∇Φ, D
∇Φ∗

)
D

+
(
D
∇Φ, 
∇Φ∗

)
D

+
(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
D
∇Φ+ · 
n,Φ∗,+

)
Ei

h

−
(
D
∇Φ− · 
n,Φ∗,−

)
Ei

h

−
(
D
∇Φ · 
n,Φ∗

)
∂D

(3.18)

We note that one of the (
∇, 
∇) term will cancel out an identical term in Eq. (3.13).

Also note that integration by parts was applied in the last step of Eq. (3.18). Let us



93

now consider the term related to the interior edges:

M∑
m=1

4πwm

〈
[[Ψm]],Ψ∗+

m

〉
Ei

h
=
∑
e∈Ei

h

M∑
m=1

4πwm|
Ωm · 
ne|
(
[[Ψm]],Ψ∗+

m

)
e

=
∑
e∈Ei

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
�Ωm·�ne>0

wm

4π
|
Ωm · 
ne|(

[[Φ]] − 3[[D
∇Φ]] · 
Ωm + 9[[D
Q1]] · 
Ωm,Φ
∗+ + 3D
∇Φ∗+ · 
Ωm

)
e

− ∑
�Ωm·�ne<0

wm

4π
|
Ωm · 
ne|(

[[Φ]] − 3[[D
∇Φ]] · 
Ωm + 9[[D
Q1]] · 
Ωm,Φ
∗− + 3D
∇Φ∗− · 
Ωm

)
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
∑
e∈Ei

h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
�Ωm·�ne>0

wm

4π
|
Ωm · 
ne|(

[[Φ]] − 3[[D
∇Φ]] · 
Ωm + 9[[D
Q1]] · 
Ωm,Φ
∗+ + 3D
∇Φ∗+ · 
Ωm

)
e

− ∑
�Ωd·�ne>0

wd

4π
|
Ωm · 
ne|(

[[Φ]] + 3[[D
∇Φ]] · 
Ωm − 9[[D
Q1]] · 
Ωm,Φ
∗− − 3D
∇Φ∗− · 
Ωm

)
e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1

4
([[Φ]], [[Φ∗]])Ei

h
+
(
[[Φ]], {{D
∇Φ∗ · 
n}}

)
Ei

h

−
(
[[D
∇Φ · 
n]], {{Φ∗}}

)
Ei

h

− 9

16

(
[[D
∇Φ]], [[D
∇Φ∗]]

)
Ei

h

− 9

16

(
[[D
∇Φ · 
n]], [[D
∇Φ∗ · 
n]]

)
Ei

h

+
(
[[3D
Q1 · 
n]], {{Φ∗}}

)
Ei

h

+
9

16

(
[[3D
Q1]], [[D
∇Φ∗]]

)
Ei

h

+
9

16

(
[[3D
Q1 · 
n]], [[D
∇Φ∗ · 
n]]

)
Ei

h

(3.19)

where we have used the following definition for the edge integral in the context

of the diffusion equation:

(Φ,Φ∗)e =

∫
e

ΦΦ∗ ds (3.20)

(Recall that in the context of the transport equation, the edge integral contains

a |
Ωm · 
ne| term.) We have also employed the following properties of the angular
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quadrature and have assumed that if 
Ωm is in the angular quadrature set, so is −
Ωm.

∑
�Ωm·�n>0

wm|
Ωm · 
n| = π (3.21)

∑
�Ωm·�n>0

wm|
Ωm · 
n|
Ωm =
2π

3

n (3.22)

∑
�Ωm·�n>0

wm|
Ωm · 
n|
Ωm

Ωm =

π

4
(I + 
n
n) (3.23)

Note that 
n
n is a rank-2 tensor. The boundary terms are treated next:∑
e∈∂D

∑
�Ωm·�ne<0

wm

4π
|
Ωm · 
ne|

(
Φ− 3D
∇Φ · 
Ωm + 9D
Q1 · 
Ωm,Φ

∗ + 3D
∇Φ∗ · 
Ωm

)
e
−

∑
e∈∂Dr

∑
�Ωm·�ne<0

wm

4π
|
Ωm · 
ne|

(
Φ− (3D
∇Φ− 9D
Q1) · (
Ωm − 2(
Ωm · 
ne)
ne),Φ

∗ + 3D
∇Φ∗ · 
Ωm

)
e

=
∑

e∈∂Dd

∑
�Ωm·�ne<0

wm

4π
|
Ωm · 
ne|

(
Φ− 3D
∇Φ · 
Ωm + 9D
Q1 · 
Ωm,Φ

∗ + 3D
∇Φ∗ · 
Ωm

)
e
−

∑
e∈∂Dr

∑
�Ωm·�ne<0

wm

4π
|
Ωm · 
ne|

(
2(
Ωm · 
ne)(3D
∇Φ− 9D
Q1) · 
ne,Φ

∗ + 3D
∇Φ∗ · 
Ωm

)
e

=
∑

e∈∂Dd

∑
�Ωm·�ne>0

wm

4π
|
Ωm · 
ne|

(
Φ + 3D
∇Φ · 
Ωm − 9D
Q1 · 
Ωm,Φ

∗ − 3D
∇Φ∗ · 
Ωm

)
e
+

∑
e∈∂Dr

∑
�Ωm·�ne>0

wm

4π
|
Ωm · 
ne|

(
2(
Ωm · 
ne)(3D
∇Φ− 9D
Q1) · 
ne,Φ

∗ − 3D
∇Φ∗ · 
Ωm

)
e

=
1

4
(Φ,Φ∗)∂Dd − 1

2

(
Φ, D
∇Φ∗ · 
n

)
∂Dd

+
1

2

(
D
∇Φ · 
n,Φ∗

)
∂Dd

− 9

16

(
D
∇Φ, D
∇Φ∗

)
∂Dd
− 9

16

(
D
∇Φ · 
n,D
∇Φ∗ · 
n

)
∂Dd

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

+
9

16

(
3D
Q1, D
∇Φ∗

)
∂Dd

+
9

16

(
3D
Q1 · 
n,D
∇Φ∗ · 
n

)
∂Dd

+
(
D
∇Φ · 
n,Φ∗

)
∂Dr
− 9

4

(
D
∇Φ · 
n,D
∇Φ∗ · 
n

)
∂Dr

−
(
3D
Q1 · 
n,Φ∗

)
∂Dr

+
9

4

(
3D
Q1 · 
n,D
∇Φ∗ · 
n

)
∂Dr

(3.24)
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Now, putting all terms in Eqs. (3.13), (3.18), (3.19) and (3.24) together, we obtain

the following diffusion conforming form (DCF):

b (Φ,Φ∗) = l(Φ∗) (3.25)

where the bilinear form is given by:

b (Φ,Φ∗) = (σaΦ,Φ
∗)D −

(

∇Φ, D
∇Φ∗

)
D

+
(
3 
Q1, D
∇Φ∗

)
D

+
(

∇Φ, D
∇Φ∗

)
D

+
(
D
∇Φ, 
∇Φ∗

)
D

+
(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
D
∇Φ+ · 
n,Φ∗,+

)
Ei

h

−
(
D
∇Φ− · 
n,Φ∗,−

)
Ei

h

−
(
D
∇Φ · 
n,Φ∗

)
∂D

+
1

4
([[Φ]], [[Φ∗]])Ei

h
+
(
[[Φ]], {{D
∇Φ∗ · 
n}}

)
Ei

h

−
(
[[D
∇Φ · 
n]], {{Φ∗}}

)
Ei

h

− 9

16

(
[[D
∇Φ]], [[D
∇Φ∗]]

)
Ei

h

− 9

16

(
[[D
∇Φ · 
n]], [[D
∇Φ∗ · 
n]]

)
Ei

h

+
(
[[3D
Q1 · 
n]], {{Φ∗}}

)
Ei

h

+
9

16

(
[[3D
Q1]], [[D
∇Φ∗]]

)
Ei

h

+
9

16

(
[[3D
Q1 · 
n]], [[D
∇Φ∗ · 
n]]

)
Ei

h

+
1

4
(Φ,Φ∗)∂Dd − 1

2

(
Φ, D
∇Φ∗ · 
n

)
∂Dd

+
1

2

(
D
∇Φ · 
n,Φ∗

)
∂Dd

− 9

16

(
D
∇Φ, D
∇Φ∗

)
∂Dd
− 9

16

(
D
∇Φ · 
n,D
∇Φ∗ · 
n

)
∂Dd

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

+
9

16

(
3D
Q1, D
∇Φ∗

)
∂Dd

+
9

16

(
3D
Q1 · 
n,D
∇Φ∗ · 
n

)
∂Dd

+
(
D
∇Φ · 
n,Φ∗

)
∂Dr
− 9

4

(
D
∇Φ · 
n,D
∇Φ∗ · 
n

)
∂Dr

−
(
3D
Q1 · 
n,Φ∗

)
∂Dr

+
9

4

(
3D
Q1 · 
n,D
∇Φ∗ · 
n

)
∂Dr

(3.26)

and the linear functional is:

l(Φ∗) = (Q0,Φ
∗)D +

(

Q1, 3D
∇Φ∗

)
D

+
(
J inc,Φ∗)

∂Dd −
(

Υinc, D
∇Φ∗

)
∂Dd

(3.27)
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and the incident current and the next higher angular odd moment are defined as:

J inc =
∑

�Ωm·�n(�rb)<0

wm|
Ωm · 
n(
rb)|Ψinc
m (3.28)


Υinc = −
∑

�Ωm·�n(�rb)<0

3wm

Ωm|
Ωm · 
n(
rb)|Ψinc

m (3.29)

The once-underlined terms in the bilinear form cancel out and the twice-underlined

terms are merged together into
(
{{D
∇Φ · 
n}}, [[Φ∗]]

)
Ei

h

. Moving the 
Q1 terms into the

linear functional and after some algebra, we obtain the final form of the DCF:

bDCF (Φ,Φ∗) = lDCF (Φ∗) (3.30)

where the bilinear form is

bDCF (Φ,Φ∗) = (σaΦ,Φ
∗)D +

(
D
∇Φ, 
∇Φ∗

)
D

+
1

4
([[Φ]], [[Φ∗]])Ei

h
+ ([[Φ]], {{D∂nΦ∗}})Ei

h
+ ({{D∂nΦ}}, [[Φ∗]])Ei

h

+
1

4
(Φ,Φ∗)∂Dd − 1

2
(Φ, D∂nΦ∗)∂Dd − 1

2
(D∂nΦ,Φ)∂Dd

− 9

16

(
[[D
∇Φ]], [[D
∇Φ∗]]

)
Ei

h

− 9

16
([[D∂nΦ]], [[D∂nΦ∗]])Ei

h

− 9

16

(
D
∇Φ, D
∇Φ∗

)
∂Dd
− 9

16
(D∂nΦ, D∂nΦ∗)∂Dd

−9

4
(D∂nΦ, D∂nΦ∗)∂Dr (3.31)

and the linear form is

lDCF (Φ∗) = (Q0,Φ
∗)D −

(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
J inc,Φ∗)

∂Dd −
(

Υinc, D
∇Φ∗

)
∂Dd

+
(
3{{D
Q1 · 
n}}, [[Φ∗]]

)
Ei

h

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

− 9

16

(
[[3D
Q1]], [[D
∇Φ∗]]

)
Ei

h

− 9

16

(
[[3D
Q1 · 
n]], [[D∂nΦ∗]]

)
Ei

h

− 9

16

(
3D
Q1, D
∇Φ∗

)
∂Dd
− 9

16

(
3D
Q1 · 
n,D∂nΦ∗

)
∂Dd

−9

4

(
3D
Q1 · 
n,D∂nΦ∗

)
∂Dr

(3.32)
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where the normal derivative notation

∂nΦ = 
∇Φ · 
n (3.33)

has been utilized to simplify the notations (
n is arbitrarily fixed for any edge).

We note that the DCF is symmetric but not positive definite. Q0 and 
Q1 are

the volumetric source; J inc and 
Υinc are the non-homogeneous surface source. We

will see in Sec. D that the significant angular flux on the reflecting boundaries will

introduce a non-homogeneous surface source in the DSA calculations. Also note a

non-homogeneous surface source in the DSA equations will be present on a sub-

domain interface when a synchronous solve of all sub-domains is employed (domain

decomposition with MPI); this term will be explained in Chapter V. Had we neglected

the 
Q1 terms in Eq. (3.2) (Fick’s law for the primal variable), all edge terms containing


Q1 in the linear functional should be removed and volumetric 
Q1 term should be

changed to +
(

Q1, 3D
∇Φ∗

)
D
.

All edge-integral terms in the DCF bilinear form are independent on the orien-

tation of the normal unit vector 
n for the interior edges. This can be demonstrated

as follows: if we define 
n on a given edge of an element as the normal unit vector

pointing outwards, i.e., we associate the vector 
n with the local elements, we can

easily see that:

([[Φ]], [[Φ∗]])e = ({{
nΦ}}, {{
nΦ∗}})e

([[Φ]], {{∂nΦ∗}})e = − ({{
nΦ}}, {{
n∂nΦ∗}})e

({{∂nΦ}}, [[Φ∗]])e = − ({{
n∂nΦ}}, {{
nΦ∗}})e(
[[
∇Φ]], [[
∇Φ∗]]

)
e

=
(
{{
n
∇Φ}}, {{
n
∇Φ∗}}

)
e

([[∂nΦ]], [[∂nΦ∗]])e = ({{
n∂nΦ}}, {{
n∂nΦ∗}})e (3.34)
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In the above expressions, swapping 
n for −
n does not modify any of these terms.

2. The Interior Penalty (IP) Diffusion Form and a Variant of It

For comparison purposes, we write here the Interior Penalty (IP) DFE form for the

following continuous diffusion problem:

−
∇·D
∇Φ + σaΦ = Q0 for 
r ∈ D (3.35)

Φ = Φd for 
r ∈ ∂Dd (3.36)

∂nΦ = 0 for 
r ∈ ∂Dr (3.37)

The IP formulation is one of the oldest techniques employed to solve the diffusion

equation with discontinuous approximations across the mesh cells. It was first in-

troduced by Nitsche [110] to weakly enforce Dirichlet boundary conditions on the

boundary. Instead of enforcing that the approximation Φ was equal to the Dirichlet

value Φd at any point on the boundary, Nitsche suggested to enforce the boundary

condition as
∫

∂Dd(Φ−Φd)v, where v is any test function. Subsequently, by extending

Nitsche’s approach to all interior edges (or faces in 3D), the condition on the conti-

nuity of the approximation in between elements can be relaxed and satisfied weakly

using
∫

e
[[Φ]]v, where e is an interior edge and [[Φ]] = Φ+ − Φ− is the inter-element

jump with Φ+, Φ− the edge values in the two elements sharing edge e [111, 112]. The

IP DFE form is given by:

bIP (Φ,Φ∗) = (σaΦ,Φ
∗)D +

(
D
∇Φ, 
∇Φ∗

)
D

+(
κIP

e [[Φ]], [[Φ∗]]
)

Ei
h

+ ([[Φ]], {{D∂nΦ∗}})Ei
h

+ ({{D∂nΦ}}, [[Φ∗]])Ei
h

+
(
2κIP

e Φ,Φ∗)
∂Dd − (Φ, D∂nΦ∗)∂Dd − (D∂nΦ,Φ)∂Dd (3.38)

lIP (Φ∗) = (Q0,Φ
∗)D +

(
2κIP

e Φd,Φ∗)
∂Dd −

(
Φd, D∂nΦ∗)

∂Dd (3.39)
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where the stabilization parameter, κIP
e , is given by:

κIP
e =

⎧⎪⎨⎪⎩
c(p+)

2
D+

h+
⊥

+ c(p−)
2

D−
h−
⊥

on interior edges, i.e., e ∈ Ei
h

c(p) D
h⊥

on boundary edges, i.e., e ∈ ∂D
(3.40)

with c(p) = C p(p+ 1)

C is a constant and should be equal to 1 when no sliver elements are present, to be

safe, we use 2 [113]; p is the polynomial order; D the diffusion coefficient; h⊥ is the

length of the cell orthogonal to edge e, we use h⊥ = 2A
L

, with A the element area and

L the edge length; the + and − signs represent the two sides of an edge. The penalty

coefficient κe makes the bilinear form Symmetric Positive Definite (SPD). There is an

extra 2 coefficient on the three Dirichlet boundary terms for optimum stabilization

[113].

The non-homogeneous surface source on the Dirichlet boundary is determined

by the boundary value Φd in the IP form, which is different from the DCF derived

from the transport equation where the surface source J inc and 
Υinc are irrelevant in

general. However, if we assume the Dirichlet boundary for the transport problem is

non-homogeneous and isotropic, i.e.,

Ψinc
m =

Φd

4π
(3.41)

then, with the Eqs. (3.28) and (3.29), we have (using the previously mentioned quadra-

ture properties):

J inc =
Φd

4
(3.42)


Υinc =
Φd

2

nb = 2J inc
nb (3.43)

It is interesting that when the incoming angular flux is isotropic on the Dirichlet

boundary, there are no boundary layer effects.
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Finally, there are five differences between the DCF and the IP diffusion forms:

1. The penalty coefficient κe in the DCF form is fixed to 1
4
.

2. The additional factor 2 in the boundary stabilization term is absent from the

DCF form.

3. There are two additional edge-terms in the DCF (terms starting with the coef-

ficient 9
16

).

4. There is one additional term for the reflecting boundary (the term starting with

9
4

in Eq. (3.31).)

5. There are no 
Q1 source terms in the IP form and the two non-homogeneous

Dirichlet terms can be obtained by assuming isotropic incoming angular flux

Ψinc = 1
4π

Φd.

As will be clear from the DSA results, neither the DCF nor the IP form are

stable for all optical thicknesses. We have devised a modified IP form, denoted by

MIP, where, among other things, the stabilization parameter is a combination of the

DCF and IP stabilization parameters. In detail, the MIP form can be obtained from

the DCF form by:

1. Modifying the penalty coefficient.

2. Removing the boundary-stabilization factor 2 in the IP form.

3. Dropping all double-derivative terms in the bilinear form and dropping all cor-

responding source terms in the right hand side.

4. Dropping the 
Υinc contribution on the right-hand-side for simplicity.
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We then obtain the MIP form:

bMIP (Φ,Φ∗) = (σaΦ,Φ
∗)D +

(
D
∇Φ, 
∇Φ∗

)
D

+
(
κMIP

e [[Φ]], [[Φ∗]]
)

Ei
h

+ ([[Φ]], {{D∂nΦ∗}})Ei
h

+ ({{D∂nΦ}}, [[Φ∗]])Ei
h

+
(
κMIP

e Φ,Φ∗)
∂Dd −

1

2
(Φ, D∂nΦ∗)∂Dd − 1

2
(D∂nΦ,Φ∗)∂Dd (3.44)

lMIP (Φ∗) = (Q0,Φ
∗)D −

(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
J inc,Φ∗)

∂Dd

+
(
3{{D
Q1 · 
n}}, [[Φ∗]]

)
Ei

h

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

(3.45)

with

κMIP
e = max

(
κIP

e ,
1

4

)
(3.46)

These modifications will be further described in Section F.

Note that the partial current on an edge e separating element K and K ′ is

calculated as follows:

Jout
e = κMIP

e ΦK − 1

2
D∂nΦK (3.47)

J in
e = κMIP

e ΦK ′ − 1

2
D∂nΦK ′ (3.48)

where 
n is oriented from K to K ′. The local balance is still preserved with the in-

leakage and out-leakage calculated with the above equations. The MIP form is also

SPD. Without 
Q1 terms in Eq. (3.2), the right-hand-side of the MIP form will not

have the edge integral terms containing 
Q1 and the volumetric integral term should

be changed to +
(

Q1, 3D
∇Φ∗

)
D
.

3. The P1 Conforming Form

In the derivation of the DCF form, we assume that (i) the primal and dual angular

functions in the SN variational form were limited to be linearly anisotropic and that
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the currents satisfied a Fick’s law. Removing the latter assumption, i.e., using,

Ψm =
1

4π
(Φ + 3 
J · 
Ωm) (3.49)

Ψ∗
m =

1

4π
(Φ∗ + 3 
J∗ · 
Ωm)

we can perform again a similar derivation and arrive at the following P1 conforming

(P1C) scheme:

bP1C(Φ, 
J,Φ∗, 
J∗) = l(Φ∗, 
J∗) (3.50)

with

bP1C(Φ, 
J,Φ∗, 
J∗) = (σaΦ,Φ
∗)D + (3σtr


J, 
J∗)D

+(
∇Φ, 
J∗)D − ( 
J, 
∇Φ∗)D

+
1

4
([[Φ]], [[Φ∗]])Ei

h
+ ([[Φ]], {{ 
J∗ · 
n}})Ei

h
− ({{ 
J · 
n}}, [[Φ∗]])Ei

h

+
9

16
([[ 
J · 
n]], [[ 
J∗ · 
n]])Ei

h
+

9

16
([[ 
J ]], [[ 
J∗]])Ei

h

+
1

4
(Φ,Φ∗)∂Dd +

1

2
(Φ, 
J∗ · 
n)∂Dd − 1

2
( 
J · 
n,Φ∗)∂Dd

+
9

16
( 
J, 
J∗)∂Dd +

9

16
( 
J · 
n, 
J∗ · 
n)∂Dd

+
9

4
( 
J · 
n, 
J∗ · 
n)∂Dr

lP1C(Φ∗, 
J∗) = (Q0,Φ
∗)D + (3 
Q1, 
J

∗)D (3.51)

The P1C form is PD (Positive Definite), i.e., bP1C(Φ, 
J,Φ, 
J) ≥ 0.

4. The Mixed P1 Form from Warsa & Morel

For comparison purposes, we also provide the P1 Mixed variational form (P1M), the

so-called fully consistent DSA scheme from Warsa & Morel [70]. Starting with the
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continuous P1 equations,


∇Φ + 3σtr

J = 3 
Q1


∇ · 
J + σaΦ = Q0 (3.52)

and testing it with discontinuous trial functions, we obtain

(Φb, 
J∗,− · 
n)∂K − (Φ, 
∇ · 
J∗)K + (3σtr

J, 
J∗)K = (3 
Q1, 
J

∗)K

( 
J b · 
n,Φ∗,−)∂K − ( 
J, 
∇Φ∗)K + (σaΦ,Φ
∗)K = (Q0,Φ

∗)K (3.53)

where integration by parts was applied and the numerical traces are uniquely defined

on the edges (here, 
n is oriented outward locally. The numerical terms Φn and 
Jn on

edges will be defined shortly. Summing over all elements K yields

−(Φn, [[ 
J∗ · 
n]])Ei
h

+ (Φn, 
J∗ · 
n)∂D − (Φ, 
∇ · 
J∗)D + (3σtr

J, 
J∗)D = (3 
Q1, 
J

∗)D

(3.54)

−( 
Jn · 
n, [[Φ∗]])Ei
h

+ ( 
Jn · 
n,Φ∗)∂D − ( 
J, 
∇Φ∗)D + (σaΦ,Φ
∗)D = (Q0,Φ

∗)D

(3.55)

The numerical fluxes on interior edges are defined using two outgoing partial currents,

(our notation is used, i.e., 
n is arbitrarily associated with edges.)

J+ =
1

4
Φ+ − 1

2

J+ · 
n (3.56)

J− =
1

4
Φ− +

1

2

J− · 
n (3.57)
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i.e.,

Φn = 2(J+ + J−) = 2(
1

4
Φ+ − 1

2

J+ · 
n +

1

4
Φ− +

1

2

J− · 
n)

= {{Φ}} − [[ 
J · 
n]] (3.58)


Jn · 
n = (J− − J+) = (
1

4
Φ− +

1

2

J− · 
n− 1

4
Φ+ +

1

2

J+ · 
n)

= −1

4
[[Φ]] + {{ 
J · 
n}} (3.59)

Note that the Φn does not depend on the orientation of 
n, while 
Jn ·
n does. We now

define the boundary numerical flux:

On Dirichlet boundaries ∂Dd:

Φn = 2(J+ + J−) = Φd (3.60)


Jn · 
n = (J− − J+) = 2J− − 1

2
Φd (3.61)

On Neumann boundaries ∂Dn:

Φn = 2(J+ + J−) = 2Jnet + 4J− (3.62)


Jn · 
n = (J− − J+) = −Jnet (3.63)

On Robin boundaries ∂Dc:

Φn = 2(J inc + J−) (3.64)


Jn · 
n = (J− − J inc) (3.65)

Substitute the numerical terms into the Eqs. (3.54) and (3.55) and sum these
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two equations together, we obtain

−
(
{{Φ}} − [[ 
J · 
n]], [[ 
J∗ · 
n]]

)
Ei

h

−
(
Φ, 
∇ · 
J∗

)
D

+
(
3σtr


J, 
J∗
)
D

−
(
−1

4
[[Φ]] + {{ 
J · 
n}}, [[Φ∗]]

)
Ei

h

−
(

J, 
∇Φ∗

)
D

+ (σaΦ,Φ
∗)D

+
(
ΦD, 
J∗ · 
n

)
∂Dd

+

(
1

2
Φ + 
J · 
n− 1

2
ΦD,Φ∗

)
∂Dd

+
(
2Jnet + Φ + 2 
J · 
n, 
J∗ · 
n

)
∂Dn
− (Jnet,Φ∗)

∂Dn

+

(
2J inc +

1

2
Φ + 
J · 
n, 
J∗ · 
n

)
∂Dc

+

(
1

4
Φ− +

1

2

J− · 
n− J inc,Φ∗

)
∂Dc

= (Q0,Φ
∗)D +

(
3 
Q1, 
J

∗
)
D

(3.66)

Integrating by parts the term −(Φ, 
∇ · 
J∗)D, we obtain, after some simplifications,

the variational form

bP1M (Φ, 
J,Φ∗, 
J∗) =
(
3σtr


J, 
J∗
)
D
−
(

J, 
∇Φ∗

)
D

+ (σaΦ,Φ
∗)D +

(

∇Φ, 
J∗

)
D

+
1

4
([[Φ]], [[Φ∗]])Ei

h
−
(
{{ 
J · 
n}}, [[Φ∗]]

)
Ei

h

+
(
[[Φ]], {{ 
J∗ · 
n}}

)
Ei

h

+
(
[[ 
J · 
n]], [[ 
J∗ · 
n]]

)
Ei

h

+
1

2
(Φ,Φ∗)∂Dd +

(

J · 
n,Φ∗

)
∂Dd
−
(
Φ, 
J∗ · 
n

)
∂Dd

+2
(

J · 
n, 
J∗ · 
n

)
∂Dn

+
1

4
(Φ,Φ∗)∂Dc +

1

2

(

J · 
n,Φ∗

)
∂Dc
− 1

2

(
Φ, 
J∗ · 
n

)
∂Dc

+
(

J · 
n, 
J∗ · 
n

)
∂Dc

lP1M(Φ∗, 
J∗) =
(
Q0,Φ

∗)D + (3 
Q1, 
J
∗
)
D

+
1

2
(ΦD,Φ∗)∂Dd −

(
ΦD, 
J∗ · 
n

)
∂Dd

+4

(
Jnet,

1

4
Φ∗ − 1

2

J∗ · 
n

)
∂Dn

+4

(
J inc,

1

4
Φ∗ − 1

2

J∗ · 
n

)
∂Dc

(3.67)
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P1M is also PD, which can be easily seen with bP1M(Φ, 
J,Φ, 
J) ≥ 0. The P1C

and P1M forms present a few differences related to edge integrals. On interior edges,

there is an additional term in the P1C form along the x- and y- directions. Also,

the coefficients for these current terms are 9
16

in the P1C form, whereas they are

equal to 1 in the P1M form. Finally, current terms are present on vacuum boundaries

in the P1C form but are absent in the P1M. The current coefficients for reflecting

boundaries are 9
4

in P1C while they are equal to 2 in P1M. Even though the two forms

are relatively similar, significant differences in the spectral radius can be observed for

highly linearly anisotropic scattering problems, see the results in Section F.

So far, we have describe five different forms for the DFE discretization of the

diffusion equation:

1. the standard IP form used in the numerical analysis community;

2. the DCF form, derived from the DFE SN form using a restriction linear in angle

and Fick’s law for the primal and dual functions;

3. a modified IP (MIP) form;

4. a P1C form, derived from the DFE SN form using a restriction linear in angle;

5. a P1M form, derived from the continuous P1 equations.

Unlike the variational form of the transport equation, all these diffusion forms can

be directly used for coding. It also needs to be pointed out that all forms work on

irregular meshes, i.e., meshes with hanging nodes.
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C. Higher-Order Discontinuous Finite Element Method for the Diffusion

Problem

1. Local Matrices

Having defining the various diffusion forms, we provide now the local matrices for

these forms. The mass matrix and type-1 edge matrix are identical to the one used

in the DFE SN form and will not be repeated here. We use the same higher-order

shape functions as in the case of the DFE SN form.

a. Stiffness Matrix

We define the stiffness matrix for the term (D
∇Φ, 
∇Φ∗)K :

S =

∫
K

∇xb∇xb
T dx dy (3.68)

Using a change of variables to map onto the reference element, we obtain

S =

∫
K̂

∇ξb̂
[
J−1J−T det (J)

]∇ξb̂
T dξ1 dξ2 (3.69)

Let us first simplify the
[
J−1J−T det (J)

]
term. We define the following ratio for any

of the three edges of a triangle

ri =
L2

i

4A
, i = 1, 2, 3. (3.70)

Note that the three ratios are not independent; they abide to the following equality

2r1r2 + 2r1r3 + 2r2r3 − r2
1 − r2

2 − r2
3 ≡ 1 (3.71)

We then have

J−1J−T det (J) =

⎡⎢⎣ 2r2 r1 − r2 − r3
r1 − r2 − r3 2r3

⎤⎥⎦ (3.72)



108

and it is easy to prove that

cotα1 = −r1 + r2 + r3

cotα2 = −r2 + r1 + r3

cotα3 = −r3 + r1 + r2

(3.73)

(We want to avoid sliver elements, where the angles are close to zero or π. In case,

these ratios and cot-values could be very large.)

Finally, we have for the stiffness matrix (given below for p = 2)

S =
1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r1 − cotα3 − cotα2
2r1√

6
− cot α3√

6
− cot α2√

6

− cotα3 2r2 − cotα1 − cot α3√
6

2r2√
6

− cot α1√
6

− cotα2 − cotα1 2r3 − cot α2√
6

− cot α1√
6

2r3√
6

2r1√
6

− cot α3√
6

− cot α2√
6

r1 + r2 + r3 − cotα3 − cotα2

− cot α3√
6

2r2√
6

− cot α1√
6

− cotα3 r1 + r2 + r3 − cotα1

− cot α2√
6

− cot α1√
6

2r3√
6

− cotα2 − cotα1 r1 + r2 + r3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Note that local stiffness matrix is symmetric, dimensionless and singular. The local

stiffness matrix is determined by the above-defined ratio for each element K. A

bold letter is used to indicate this element-independence. As an example, when

r1 = r2 = r3 = 1√
3

(i.e., equilateral triangle),

S =
1

2
√

3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 2√
6
− 1√

6
− 1√

6

−1 2 −1 − 1√
6

2√
6
− 1√

6

−1 −1 2 − 1√
6
− 1√

6
2√
6

2√
6
− 1√

6
− 1√

6
3 −1 −1

− 1√
6

2√
6
− 1√

6
−1 3 −1

− 1√
6
− 1√

6
2√
6
−1 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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b. Type-2 Edge Matrix

We have presented the type-1 edge matrix in Chapter II to assemble the local trans-

port problem. This type-1 edge matrix can also be used for the term ([[Φ]], [[Φ∗]])e in

the diffusion system.

For the terms ([[Φ]], {{D∂nΦ∗}})e and ({{D∂nΦ}}, [[Φ∗]])e, we need to define an ad-

ditional edge matrix, the type-2 edge matrix:

E2
i =

∫
∂Ki

(∇xb)
nib
T ds, i = 1, 2, 3

=

∫ 1

−1

∇ξb̂(ξi)

[
J−1
ni

Li

2

]
b̂T (ξi) ds

(3.74)

We note that

J−1
n1L1

2
=

⎡⎢⎣cotα3

cotα2

⎤⎥⎦
J−1
n2L2

2
=

⎡⎢⎣−2r2

cotα1

⎤⎥⎦
J−1
n3L3

2
=

⎡⎢⎣cotα1

−2r3

⎤⎥⎦ ,
(3.75)

and the three type-2 edge matrices (one matrix per edge) are (for p = 2)

E2
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −r1 −r1 2r1√
6

0 0

0 cot α3

2
cot α3

2
− cot α3√

6
0 0

0 cot α2

2
cot α2

2
− cot α2√

6
0 0

0 −2r1+cot α2√
6

−2r1+cot α3√
6

r1 0 0

0 2r1√
6

4r1√
6

−r1 0 0

0 4r1√
6

2r1√
6

−r1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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E2
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cot α3

2
0 cot α3

2
0 − cot α3√

6
0

−r2 0 −r2 0 2r2√
6

0

cot α1

2
0 cot α1

2
0 − cot α1√

6
0

2r2√
6

0 4r2√
6

0 −r2 0

−2r2+cot α1√
6

0 −2r2+cot α3√
6

0 r2 0

4r2√
6

0 2r2√
6

0 −r2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E2
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cot α2

2
cot α2

2
0 0 0 − cot α2√

6

cot α1

2
cot α1

2
0 0 0 − cot α1√

6

−r3 −r3 0 0 0 2r3√
6

2r3√
6

4r3√
6

0 0 0 −r3
4r3√

6
2r3√

6
0 0 0 −r3

−2r3+cot α1√
6

−2r3+cot α2√
6

0 0 0 r3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The type-2 edge matrices E2

i (i = 1, 2, 3) are not symmetric. All ratios ri are evaluated

on the local element K.

’K e
i

jK

Fig. III-1. Interior edge definition: recall that for element K, the local edge ID is i

because its opposite vertex is labeled i.

The type-2 edge coupling matrix for an interior edge showed in the Fig. III-1 is



111

defined as

E2C
K,i,j =

∫ 1

−1

∇ξb̂(ξi)

[
(J−1
ni)KLi

2

]
b̂(−ξj) ds. (3.76)

J−1
ni is evaluated on element K and not its neighbor K ′, which is why we give the

subscript K in E2C
K,i,j. This coupling matrix E2C

K,i,j operates on the solution vector of

the neighboring element K ′.

E2C
K,1,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −r1 −r1 2r1√
6

0 0

0 cot α3

2
cot α3

2
− cot α3√

6
0 0

0 cot α2

2
cot α2

2
− cot α2√

6
0 0

0 −2r1+cot α3√
6

−2r1+cot α2√
6

r1 0 0

0 4r1√
6

2r1√
6

−r1 0 0

0 2r1√
6

4r1√
6

−r1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
All entries that are different from those of E2

1 are underlined. Basically, the

second and the third columns of E2C
K,1,1 are swapped. Also note that all ratios ri are

evaluated on the local element K.

Suppose that the local edge ID in element K ′ is changing from 1 to 2, the coupling

matrix is

E2C
K,1,2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r1 0 −r1 0 2r1√
6

0

cot α3

2
0 cot α3

2
0 − cot α3√

6
0

cot α2

2
0 cot α2

2
0 − cot α2√

6
0

−2r1+cot α2√
6

0 −2r1+cot α3√
6

0 r1 0

2r1√
6

0 4r1√
6

0 −r1 0

4r1√
6

0 2r1√
6

0 −r1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which simply requires to swap columns 2, 3 and 4 of E2C
K,1,1 to columns 3, 1 and 5.

On the other hand, if the local edge ID of the element K is changing from 1 to
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2, the coupling matrix is

E2C
K,2,1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 cot α3

2
cot α3

2
− cot α3√

6
0 0

0 −r2 −r2 2r2√
6

0 0

0 cot α1

2
cot α1

2
− cot α1√

6
0 0

0 2r2√
6

4r2√
6

−r2 0 0

0 −2r2+cot α1√
6

−2r2+cot α3√
6

r2 0 0

0 4r2√
6

2r2√
6

−r2 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

this requires a swap from columns 3, 1 and 5 of E2C
K,2,2 to columns 2, 3 and 4.

As an example, let us consider an interior edge showed in Fig. III-1.

([[Φ]], {{D∂nΦ∗}})e = −(ΦK ′ − ΦK , [D∂nΦ∗]K ′ − [D∂nΦ∗]K)e

= −(Φ∗TDE2
iΦ)K − (Φ∗TDE2

jΦ)K ′

+ (Φ∗TDE2C
i,j )KΦK ′ + (Φ∗TDE2C

j,i )K ′ΦK (3.77)

({{D∂nΦ}}, [[Φ∗]])e = −([D∂nΦ]K ′ − [D∂nΦ]K ,Φ∗
K ′ − Φ∗

K)e

= −(Φ∗TDE2T
i Φ)K − (Φ∗TDE2T

j Φ)K ′

+ Φ∗T
K ′(DE2C,T

i,j Φ)K + Φ∗T
K (DE2C,T

j,i Φ)K ′ (3.78)

If we add these two terms together, we will have four block matrices corresponding

to (K,K), (K,K ′), (K ′, K) and (K ′, K ′). It is easy to see that the block matrices

for (K,K) and (K ′, K ′) are symmetric and the matrix of (K,K ′) is the transpose of

the matrix of (K ′, K).
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c. Type-3 Edge Matrices

For the term ([[D∂nΦ]], [[D∂nΦ∗]])e, we need yet an additional edge matrix (type-3),

defined as follows

E3
i =

Li

2

∫
∂Ki

(∇xb
ni)(∇xb
ni)
T ds, i = 1, 2, 3

=

∫ 1

−1

∇ξb̂(ξi)

[
J−1
niLi

2

(
J−1
niLi

2

)T
]
∇ξb̂

T (ξi) ds

(3.79)

The three local edge matrices are (for p = 2)

E3
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r2
1 −r1 cot α3 −r1 cot α2

√
6r2

1 −√
6r2

1 −√
6r2

1

−r1 cot α3
cot2 α3

2
cot α3 cot α2

2
−

√
6r1 cot α3

2

√
6r1 cot α3

2

√
6r1 cot α3

2

−r1 cot α2
cot α3 cot α2

2
cot2 α2

2
−

√
6r1 cot α2

2

√
6r1 cot α2

2

√
6r1 cot α2

2√
6r2

1 −
√

6r1 cot α3
2

−
√

6r1 cot α2
2

4r2
1 − cot α2 cot α3 r1 cot α2 − 4r2

1 r1 cot α3 − 4r2
1

−√
6r2

1

√
6r1 cot α3

2

√
6r1 cot α2

2
r1 cot α2 − 4r2

1 4r2
1 2r2

1

−√
6r2

1

√
6r1 cot α3

2

√
6r1 cot α2

2
r1 cot α3 − 4r2

1 2r2
1 4r2

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E3
2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cot2 α3
2

−r2 cot α3
cot α1 cot α3

2

√
6r2 cot α3

2
−

√
6r2 cot α3

2

√
6r2 cot α3

2
−r2 cot α3 2r2

2 −r2 cot α1 −√
6r2

2

√
6r2

2 −√
6r2

2
cot α1 cot α3

2
−r2 cot α1

cot2 α1
2

√
6r2 cot α1

2
−

√
6r2 cot α1

2

√
6r2 cot α1

2√
6r2 cot α3

2
−√

6r2
2

√
6r2 cot α1

2
4r2

2 r2 cot α1 − 4r2
2 2r2

2

−
√

6r2 cot α3
2

√
6r2

2 −
√

6r2 cot α1
2

r2 cot α1 − 4r2
2 4r2

2 − cot α1 cot α3 r2 cot α3 − 4r2
2√

6r2 cot α3
2

−√
6r2

2

√
6r2 cot α1

2
2r2

2 r2 cot α3 − 4r2
2 4r2

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E3
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cot2 α2
2

cot α1 cot α2
2

−r3 cot α2

√
6r3 cot α2

2
−

√
6r3 cot α2

2

√
6r3 cot α2

2
cot α1 cot α2

2
cot2 α1

2
−r3 cot α1

√
6r3 cot α1

2

√
6r3 cot α1

2
−

√
6r3 cot α1

2
−r3 cot α2 −r3 cot α1 2r2

3 −√
6r2

3 −√
6r2

3

√
6r2

3√
6r3 cot α2

2

√
6r3 cot α1

2
−√

6r2
3 4r2

3 2r2
3 r3 cot α1 − 4r2

3√
6r3 cot α2

2

√
6r3 cot α1

2
−√

6r2
3 2r2

3 4r2
3 r3 cot α2 − 4r2

3

−
√

6r3 cot α2
2

−
√

6r3 cot α1
2

√
6r2

3 r3 cot α1 − 4r2
3 r3 cot α2 − 4r2

3 4r2
3 − cot α1 cot α2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

As an example, when r1 = r2 = r3 = 1√
3
, we obtain

E3
1 + E3

2 + E3
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
2
−1

2
4√
6
− 2√

6
− 2√

6

−1
2

1 −1
2
− 2√

6
4√
6
− 2√

6

−1
2
−1

2
1 − 2√

6
− 2√

6
4√
6

4√
6
− 2√

6
− 2√

6
11
3

−4
3
−4

3

− 2√
6

4√
6
− 2√

6
−4

3
11
3

−4
3

− 2√
6
− 2√

6
4√
6
−4

3
−4

3
11
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The type-3 edge matrix is symmetric and positive definite.

The type-3 coupling matrix is

E3C
K,i,j =

Li

2

∫
∂Ki

(∇xb
ni)K(∇xb
nj)
T
K ′ ds, i = 1, 2, 3; j = 1, 2, 3

=

∫ 1

−1

∇ξb̂(ξi)

[
(J−1
ni)KLi

2

(
(J−1
nj)K ′Li

2

)T
]
∇ξb̂

T (−ξj) ds

(3.80)

For example, we give E3C
K,1,1,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r1r′1 −r1 cot α′
3 −r1 cot α′

2

√
6r1r′1 −√

6r1r′1 −√
6r1r′1

− cot α3r′1
cot α3 cot α′

3
2

cot α3 cot α′
2

2
−

√
6 cot α3r′

1
2

√
6 cot α3r′

1
2

√
6 cot α3r′

1
2

− cot α2r′1
cot α2 cot α′

3
2

cot α2 cot α′
2

2
−

√
6 cot α2r′

1
2

√
6 cot α2r′

1
2

√
6 cot α2r′

1
2√

6r1r′1 −
√

6r1 cot α′
3

2
−

√
6r1 cot α′

2
2

3r1r′1 − (r2 − r3)(r′2 − r′3) (cot α3 − 4r1)r′1 (cot α2 − 4r1)r′1
−√

6r1r′1
√

6r1 cot α′
3

2

√
6r1 cot α′

2
2

r1(cot α′
3 − 4r′1) 2r1r′1 4r1r′1

−√
6r1r′1

√
6r1 cot α′

3
2

√
6r1 cot α′

2
2

r1(cot α′
2 − 4r′1) 4r1r′1 2r1r′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can see that this coupling matrix differs from the E3
1 matrix not only in the ′

terms evaluated with data from K ′ but also the last two rows and last two columns

are interchanged. Note that E3C
K,1,1 is not equal to E3C

K ′,1,1.

To see how indices i and j affect this matrix definition, let us see E3C
K,1,2 first,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r1 cot α′
3 2r1r′2 −r1 cot α′

1 −√
6r1r′2

√
6r1r′2 −√

6r1r′2
cot α3 cot α′

3
2

− cot α3r′2
cot α3 cot α′

1
2

√
6 cot α3r′

2
2

−
√

6 cot α3r′
2

2

√
6 cot α3r′

2
2

cot α2 cot α′
3

2
− cot α2r′2

cot α2 cot α′
1

2

√
6 cot α2r′

2
2

−
√

6 cot α2r′
2

2

√
6 cot α2r′

2
2

−
√

6r1 cot α′
3

2

√
6r1r′2 −

√
6r1 cot α′

1
2

(cot α2 − 4r1)r′2 3r1r′2 − (r2 − r3)(r′3 − r′1) (cot α3 − 4r1)r′2√
6r1 cot α′

3
2

−√
6r1r′2

√
6r1 cot α′

1
2

4r1r′2 r1(cot α′
1 − 4r′2) 2r1r′2√

6r1 cot α′
3

2
−√

6r1r′2
√

6r1 cot α′
1

2
2r1r′2 r1(cot α′

3 − 4r′2) 4r1r′2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is obtained from E3C
K,1,1 by swapping columns from (1, 2, 3, 4, 5, 6) to (3, 1, 2, 6, 4, 5)

first, then

r′1 → r′2, α′
1 → α′

2

r′2 → r′3, α′
2 → α′

3

r′3 → r′1, α′
3 → α′

1
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Now, let us look at E3C
K,2,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− cot α3r′1
cot α3 cot α′

3
2

cot α3 cot α′
2

2
−

√
6 cot α3r′

1
2

√
6 cot α3r′

1
2

√
6 cot α3r′

1
2

2r2r′1 −r2 cot α′
3 −r2 cot α′

2

√
6r2r′1 −√

6r2r′1 −√
6r2r′1

− cot α1r′1
cot α1 cot α′

3
2

cot α1 cot α′
2

2
−

√
6 cot α1r′

1
2

√
6 cot α1r′

1
2

√
6 cot α1r′

1
2

−√
6r2r′1

√
6r2 cot α′

3
2

√
6r2 cot α′

2
2

r2(cot α′
2 − 4r′1) 4r2r′1 2r2r′1√

6r2r′1 −
√

6r2 cot α′
3

2
−

√
6r2 cot α′

2
2

3r2r′1 − (r3 − r1)(r′2 − r′3) (cot α1 − 4r2)r′1 (cot α3 − 4r2)r′1
−√

6r2r′1
√

6r2 cot α′
3

2

√
6r2 cot α′

2
2

r2(cot α′
3 − 4r′1) 2r2r′1 4r2r′1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

which is obtained from E3C
K,1,1 by swapping rows from (1, 2, 3, 4, 5, 6) to (3, 1, 2, 6, 4, 5)

first, then

r1 → r2, α1 → α2

r2 → r3, α2 → α3

r3 → r1, α3 → α1

d. Type-4 Edge Matrix

For the term
(
[[D
∇Φ]], [[D
∇Φ∗]]

)
e
, we define the type-4 edge matrix as follows

E4
i =

Li

2

∫
∂Ki

∇xb∇xb
T ds, i = 1, 2, 3

=

∫ 1

−1

∇ξb̂(ξi)

[
J−1J−T L

2
i

4

]
∇ξb̂

T (ξi) ds

(3.81)

where,

J−1J−T L
2
i

4
= 2ri

⎡⎢⎣ 2r2 − cotα1

− cotα1 2r3

⎤⎥⎦ (3.82)

The three local matrices are

E4
1 = r1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r1 − cot α3 − cot α2

√
6r1 −√6r1 −√6r1

− cot α3 2r2 − cot α1 −
√

6 cot α3
2

√
6 cot α3

2

√
6 cot α3

2

− cot α2 − cot α1 2r3 −
√

6 cot α2
2

√
6 cot α2

2

√
6 cot α2

2√
6r1 −

√
6 cot α3

2 −
√

6 cot α2
2 2(r1 + r2 + r3) cot α2 − 4r1 cot α3 − 4r1

−√6r1

√
6 cot α3

2

√
6 cot α2

2 cot α2 − 4r1 4r1 2r1

−√6r1

√
6 cot α3

2

√
6 cot α2

2 cot α3 − 4r1 2r1 4r1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
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E4
2 = r2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r2 − cot α3 − cot α2

√
6 cot α3

2 −
√

6 cot α3
2

√
6 cot α3

2

− cot α3 2r2 − cot α1 −√6r2

√
6r2 −√6r2

− cot α2 − cot α1 2r3

√
6 cot α1

2 −
√

6 cot α1
2

√
6 cot α1

2√
6 cot α3

2 −√6r2

√
6 cot α1

2 4r2 cot α1 − 4r2 2r2

−
√

6 cot α3
2

√
6r2 −

√
6 cot α1

2 cot α1 − 4r2 2(r1 + r2 + r3) cot α3 − 4r2√
6 cot α3

2 −√6r2

√
6 cot α1

2 2r2 cot α3 − 4r2 4r2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

E4
3 = r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2r1 − cot α3 − cot α2

√
6 cot α2

2 −
√

6 cot α2
2

√
6 cot α2

2

− cot α3 2r2 − cot α1

√
6 cot α1

2

√
6 cot α1

2 −
√

6 cot α1
2

− cot α2 − cot α1 2r2
3 −√6r3 −√6r3

√
6r3√

6 cot α2
2

√
6 cot α1

2 −√6r3 4r3 2r3 cot α1 − 4r3√
6 cot α2

2

√
6 cot α1

2 −√6r3 2r3 4r3 cot α2 − 4r3

−
√

6 cot α2
2 −

√
6 cot α1

2

√
6r3 cot α1 − 4r3 cot α2 − 4r3 2(r1 + r2 + r3)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
E4

1 differs from E3
1 with three elements underlined in the above matrix.

As an example, when r1 = r2 = r3 = 1√
3
,

E4
1 + E4

2 + E4
3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 −1 4√
6
− 2√

6
− 2√

6

−1 2 −1 − 2√
6

4√
6
− 2√

6

−1 −1 2 − 2√
6
− 2√

6
4√
6

4√
6
− 2√

6
− 2√

6
14
3

−4
3
−4

3

− 2√
6

4√
6
− 2√

6
−4

3
14
3

−4
3

− 2√
6
− 2√

6
4√
6
−4

3
−4

3
14
3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We can see the difference between this summation of edge matrices and that of the

type-3 edge matrices in Eq. (3.80) in the above result.

The type-4 edge-coupling matrix is defined as follows

E4C
K,i,j =

Li

2

∫
∂Ki

(∇xb)K(∇xb
T )K ′ ds, i = 1, 2, 3; j = 1, 2, 3

=

∫ 1

−1

∇ξb̂(ξi)

[
(
J−1Li

2
)K(

J−TLj

2
)K ′

]
∇ξb̂

T (−ξj) ds

(3.83)
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where,

(
J−1Li

2
)K(

J−TLj

2
)K ′ =

LiL
′
j

4AA′

⎡⎢⎣y3 − y1 x1 − x3

y1 − y2 x2 − x1

⎤⎥⎦
⎡⎢⎣y′3 − y′1 y′1 − y′2
x′1 − x′3 x′2 − x′1

⎤⎥⎦ (3.84)

The above equation can be further simplified given the numeral values of the indices

i and j. For example, for i = 2 and j = 2 as showed in Fig. III-2, we obtain with

some additional algebra

(
J−1Li

2

)
K

(
J−TLj

2

)
K ′

= 4

⎡⎢⎣−r2r′2 r2 cot α′
1

2

cot α1r′2
2

−1+cot α1 cot α′
1

4

⎤⎥⎦ (3.85)

K

’α

180−α1
’

α 1

K’

2

1

3 1

2

3

1

Fig. III-2. Element coupling through edge.

So, coupling matrix E4C
K,2,2 is

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1+cot α3 cot α′
3

2 cot α3r′
2

1−cot α3 cot α′
1

2 −
√

6 cot α3r′2
2

√
6 cot α3r′2

2 −
√

6 cot α3r′2
2

r2 cot α′
3 −2r2r′

2 r2 cot α1
√

6r2r′
2 −√

6r2r′
2

√
6r2r′

2

1−cot α1 cot α′
3

2 cot α1r′
2 − 1+cot α1 cot α′

1
2 −

√
6 cot α1r′2

2

√
6 cot α1r′2

2 −
√

6 cot α1r′2
2

−
√

6r2 cot α′
3

2
√

6r2r′
2 −

√
6r2 cot α′

1
2 −2r2r′

2 r2(4r′
2 − cot α′

3) −4r2r′
2√

6r2 cot α′
3

2 −√
6r2r′

2

√
6r2 cot α′

1
2 (4r2 − cot α3)r′

2 1 − 3r2r′
2 + (r1 − r3)(r′

1 − r′
3) (4r2 − cot α1)r′

2

−
√

6r2 cot α′
3

2
√

6r2r′
2 −

√
6r2 cot α′

1
2 −4r2r′

2 r2(4r′
2 − cot α′

1) −2r2r′
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We will not give the matrices for all possible combinations of i and j. Note that all
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these matrices depend on the ratios ri of the two neighboring elements as the case of

the type-3 edge matrices.

2. Local Diffusion System

We use three sample elements shown on Fig. III-3 to demonstrate that how the local

diffusion system is assembled using the above the elementary matrices.

Dirichlet (non−homogeneous)

III

V

II

VII

VII

IV

1

2

1

2

1

2

3

1

2

3

1

1

32

3

3

3

2
3 2

1

N
ew

m
ann (hom

ogeneous)

Fig. III-3. Sample diffusion domain.

We make the following assumptions: the 
Q1 term is zero; the Neumann boundary

condition is homogeneous, i.e., reflecting; the Dirichlet boundary condition is non-

homogeneous with a given Dirichlet scalar flux Φd. Let us suppose the volumetric

source Q0 and the surface scalar flux are properly assembled in vectors Q0 and Φd

(projection operations may be needed if Q0 or Φd are not in the function space of

piece-wise polynomials).
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The DCF local system of element I is:

AI =
(σaA)K=I

12
M + [DS]K=I

+
LK=I

1

24
E1

1 −
1

2

[
D(E2

1 + E2T
1 )
]
K=I
− 9

8

[
D2

L1
(E3

1 + E4
1)

]
K=I

+
LK=I

2

24
E1

2 −
1

2

[
D(E2

2 + E2T
2 )
]
K=I
− 9

8

[
D2

L2
(E3

2 + E4
2)

]
K=I

−9

2

[
D2

L1

E3
3

]
K=I

bI =
1

12
M [AQ0]K=I

+

⎧⎪⎨⎪⎩
LK=I

1

24
E1C

1,3 − 1
2

[
DE2C

K,1,3

]
K=I
− 1

2

[
DE2C,T

K,3,1

]
K=II

+9
8
DK=II

[
D
L1

(E3C
K,1,3 + E4C

K,1,3)
]

K=I

⎫⎪⎬⎪⎭ΦK=II

+

⎧⎪⎨⎪⎩
LK=I

2

24
E1C

2,1 − 1
2

[
DE2C

K,2,1

]
K=I
− 1

2

[
DE2C,T

K,1,2

]
K=IV

+9
8
DK=IV

[
D
L2

(E3C
K,2,1 + E4C

K,2,1)
]

K=I

⎫⎪⎬⎪⎭ΦK=IV

= qK=I + AI,IIΦK=II + AI,IVΦK=IV

In this example, the reflecting boundary condition is homogeneous; thus, there are

no boundary contributions to the right-hand-side of local edge 3.

We will use a local matrix TT
i (i = 1, 2, 3) to fill in zeros in the Dirichlet boundary

source vectors Φd corresponding to all interior shape functions and all shape functions

for the other edges and the shape function for other vertex, so that we can use the

edge matrices to assemble their contributions. The definition of TT
i can be found in

Sec. 5 of Chapter IV.
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The local system of element II is,

AII =
(σaA)K=II

12
M + [DS]K=II

+
LK=II

2

24
E1

2 −
1

2

[
D(E2

2 + E2T
2 )
]
K=II
− 9

8

[
D2

L2
(E3

2 + E4
2)

]
K=II

+
LK=II

3

24
E1

3 −
1

2

[
D(E2

3 + E2T
3 )
]
K=II
− 9

8

[
D2

L3
(E3

3 + E4
3)

]
K=II

+
LK=II

1

24
E1

1 −
1

2

[
D(E2

1 + E2T
1 )
]
K=II
− 9

8

[
D2

L1
(E3

1 + E4
1)

]
K=II

bII =
1

12
M [AQ0]K=II

+

{
LK=II

1

24
E1

1 −
1

2

[
DE2

1

]
K=II

}
TT

1 Φd
e=(II,1)

+

⎧⎪⎨⎪⎩
LK=II

2

24
E1C

2,3 − 1
2

[
DE2C

K,2,3

]
K=II
− 1

2

[
DE2C,T

K,3,2

]
K=VI

+9
8
DK=VI

[
D
L2

(E3C
K,2,3 + E4C

K,2,3)
]

K=II

⎫⎪⎬⎪⎭ΦK=VI

+

⎧⎪⎨⎪⎩
LK=II

3

24
E1C

3,1 − 1
2

[
DE2C

K,3,1

]
K=II
− 1

2

[
DE2C,T

K,1,3

]
K=I

+9
8
DK=I

[
D
L3

(E3C
K,3,1 + E4C

K,3,1)
]

K=II

⎫⎪⎬⎪⎭ΦK=I

= qK=II + AII,VIΦK=VI + AII,IΦK=I

It can be shown that the two block matrices AII,I and AI,II are identical and that

both AI and AII are symmetric. Note that they may not positive definite.
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The local matrix for interior element III is simpler to assemble,

AIII =
(σaA)K=III

12
M + [DS]K=III

+
LK=III

1

24
E1

1 −
1

2

[
D(E2

1 + E2T
1 )
]
K=III

− 9

8

[
D2

L1
(E3

1 + E4
1)

]
K=III

+
LK=III

2

24
E1

2 −
1

2

[
D(E2

2 + E2T
2 )
]
K=III

− 9

8

[
D2

L2
(E3

2 + E4
2)

]
K=III

+
LK=III

3

24
E1

3 −
1

2

[
D(E2

3 + E2T
3 )
]
K=III

− 9

8

[
D2

L3
(E3

3 + E4
3)

]
K=III

bIII =
1

12
M [AQ0]K=III

+

⎧⎪⎨⎪⎩
LK=III

1

24
E1C

1,1 − 1
2

[
DE2C

K,1,1

]
K=III

− 1
2

[
DE2C,T

K,1,1

]
K=V

+9
8
DK=V

[
D
L1

(E3C
K,1,1 + E4C

K,1,1)
]

K=III

⎫⎪⎬⎪⎭ΦK=V

+

⎧⎪⎨⎪⎩
LK=III

2

24
E1C

2,2 − 1
2

[
DE2C

K,2,2

]
K=III

− 1
2

[
DE2C,T

K,2,2

]
K=VI

+9
8
DK=VI

[
D
L2

(E3C
K,2,2 + E4C

K,2,2)
]

K=III

⎫⎪⎬⎪⎭ΦK=VI

+

⎧⎪⎨⎪⎩
LK=III

3

24
E1C

3,2 − 1
2

[
DE2C

K,3,2

]
K=III

− 1
2

[
DE2C,T

K,2,3

]
K=VII

+9
8
DK=VII

[
D
L3

(E3C
K,3,2 + E4C

K,3,2)
]

K=III

⎫⎪⎬⎪⎭ΦK=VII

= qK=III + AIII,VΦK=V + AIII,VIΦK=VI + AIII,VIIΦK=VII

Repeating this process for all elements, we assemble the DG-diffusion system for

the entire computational domain:

AΦ = d = B

⎡⎢⎢⎢⎢⎣
Q0

Q1

qedge

⎤⎥⎥⎥⎥⎦ (3.86)

We use qedge to represent all edge sources including the surface source on the non-

homogeneous boundaries. Multiplying the B matrix and the source vector [Q0,Q1,qedge]
T

gives the global right-hand-side of the system. We will see that there will be surface

sources for DSA introduced by the significant angular flux in Sec. D in this chapter
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and Sec. 3 in Chapter V.

3. Solving the DG-Diffusion Problem

Because the global system matrix A is symmetric and positive definite (SPD) for the

IP and MIP, we can use a simple Preconditioned Conjugate Gradient (PCG) to solve

the resulting linear system of equations. The system matrix A is split into L + D + L,

where the D is a positive block diagonal and L is the block-lower-triangular; this

splitting is useful for the preconditioner stage. Each block corresponds to a local

(active) element (the terminology active refers to their AMR process, to be detailed

in Chapter IV). The dimension of each element block depends on the local polynomial

order.

A simple SSOR (symmetric Successive Over-Relaxation) technique is used to

precondition the diffusion equation with the over-relaxation factor 1, i.e., the precon-

ditioner is given by M = (D + L)D−1(D + L
T
). This preconditioner can be easily

implemented with the Eisenstat trick [114] presented in Appendix E. Only one for-

ward and backward arbitrarily ordered element-based diffusion sweeps are needed.

The chosen initial guess is zero and the recommended stopping criterion is,

‖AΦ− d‖M
‖d‖ � ε (3.87)

where the M-norm is defined as

‖Φ‖M =
√

ΦTMΦ (3.88)

When the DCF form is used, the diffusion system should be solved with, for

instance, an SQMR package [115] because the DCF form is symmetric but not PD.

The P1 forms have not been implemented in xuthus.

When solving a stand-alone diffusion problem, we need to provide the conver-
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gence criterion:

ε = tolinner (3.89)

D. DFE Diffusion Forms as Preconditioners to the DFE SN Transport

Form

The goal in deriving DFE forms for the diffusion equations was to employ them as

preconditioning techniques to accelerate the DFE transport sweeps, which are solved

either using SI or GMRes. We discuss these DSA preconditioners here.

1. DSA for SI

One step of SI for the DFE SN transport form can be written as

b(Ψ(�+1/2),Ψ∗) =l(Ψ∗) +
Na∑
n=0

n∑
k=−n

(2n + 1)(σs,nΦ
(�)
n,k,Φ

∗
n,k)D+

∑
e∈∂Dr

∑
�Ωm·�nb<0

4πwm

〈
Ψ

(�)
m′ ,Ψ

∗
m

〉
e

(3.90)

Note that we start the transport sweeps on the reflecting boundaries; the incoming

angular flux values on the reflecting boundaries are coming from the outgoing angular

fluxes at the previous iteration. As a result, we can still enjoy a matrix-free ordered

transport sweep. Note that SI not only converges the flux moments but also the

outgoing angular fluxes on the reflecting boundaries, which we named as SAF in

Chapter II.
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Replacing the iterates � and �+ 1/2 with the converged solution, we have

b(Ψcvg,Ψ∗) =l(Ψ∗) +

Na∑
n=0

n∑
k=−n

(2n+ 1)(σs,nΦcvg
n,k ,Φ

∗
n,k)D+

∑
e∈∂Dr

∑
�Ωm·�nb<0

4πwm 〈Ψcvg
m′ ,Ψ

∗
m〉e

(3.91)

Subtracting these two equations, we obtain an equation for the iteration error,

b(ε(�+1/2),Ψ∗) =

Na∑
n=0

n∑
k=−n

(2n+ 1)(σs,nE (�)
n,k,Φ

∗
n,k)D+

∑
e∈∂Dr

∑
�Ωm·�nb<0

4πwm

〈
ε
(�)
m′ ,Ψ

∗
m

〉
e

(3.92)

where the angular error and the error moments are, respectively,

ε(�) = Ψcvg −Ψ(�) (3.93)

E (�)
n,k = Φcvg

n,k − Φ
(�)
n,k (3.94)

We have

ε(�) = ε(�+1/2) +
(
Ψ(�+1/2) −Ψ(�)

)
= ε(�+1/2) + δΨ(�)

E (�)
n,k = E (�+1/2)

n,k +
(
Φ

(�+1/2)
n,k − Φ

(�)
n,k

)
= E (�+1/2)

n,k + δΦ
(�)
n,k

Therefore, we have the following equation for the angular error at iteration � +

1/2 as a function of only the changes in angular fluxes δΨ(�+1/2) and flux moments

δΦ
(�+1/2)
n,k ,

a(ε(�+1/2),Ψ∗) =
Na∑
n=0

n∑
k=−n

(2n+ 1)(σs,nδΦ
(�)
n,k,Φ

∗
n,k)D+

∑
e∈∂Dr

∑
�Ωm·�nb<0

4πwm

〈
δΨ

(�)
m′ ,Ψ

∗
m

〉
e

(3.95)

Note the bilinear form a(·, ·) contains the removal bilinear form b(·, ·), and the scat-
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tering and reflecting boundary terms. Refer the Sec. 3 of Chapter II for more details.

We see that the source terms for the angular error ε(�+1/2) is the difference between

two successive SI values δΨ(�+1/2) and δΦ
(�+1/2)
n,k . If we define the isotropic and linearly

anisotropic error source terms as

Q0 = σs,0δΦ
(�) (3.96)


Q1 = σs,1δ 
J
(�) (3.97)

and define the following surface sources on reflecting boundaries,

δJ inc =
∑

�Ωm·�nb<0

wm|
Ωm · 
nb|δΨ(�)
m′ =

∑
�Ωm·�nb>0

wm|
Ωm · 
nb|δΨ(�)
m (3.98)

δ
Υinc = −
∑

�Ωm·�nb>0

3wm

Ωm|
Ωm · 
nb|δΨ(�)

m (3.99)

we can then solve an approximate equation for the angular error ε(l+1/2), using for

instance the MIP form of the DFE diffusion equation for the unknown Φ = E (�+1/2),

bMIP (Φ,Φ∗) = (σaΦ,Φ
∗)D +

(
D
∇Φ, 
∇Φ∗

)
D

+ (κe[[Φ]], [[Φ∗]])Ei
h

+ ([[Φ]], {{D∂nΦ∗}})Ei
h

+ ({{D∂nΦ}}, [[Φ∗]])Ei
h

+ (κeΦ,Φ
∗)∂Dd − 1

2
(Φ, D∂nΦ∗)∂Dd − 1

2
(D∂nΦ,Φ∗)∂Dd (3.100)

lMIP (Φ∗) = (Q0,Φ
∗)D −

(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
δJ inc,Φ∗)

∂Dr

+
(
3{{D
Q1 · 
n}}, [[Φ∗]]

)
Ei

h

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

(3.101)

Recall that in the MIP form, we dropped the 
Υ term on the boundaries, assuming

their effect is not significant. We also noticed the boundary condition on the vacuum

boundary is of Dirichlet type and not of Robin type, as proposed in the asymptotic
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analysis. With the DCF form, the source linear functional is,

lDCF (Φ∗) = (Q0,Φ
∗)D −

(
3
∇ ·D
Q1,Φ

∗
)
D

+
(
δJ inc,Φ∗)

∂Dr (3.102)

−
(
δ
Υinc, D
∇Φ∗

)
∂Dr

+ 2
(
δ
Υinc · 
n,D∂nΦ∗

)
∂Dr

+
(
3{{D
Q1 · 
n}}, [[Φ∗]]

)
Ei

h

− 1

2

(
3D
Q1 · 
n,Φ∗

)
∂Dd

(3.103)

where the higher moment terms with 
Υ are kept. To obtain these two terms, Eq. (2.6)

given the reflecting directions is used.

Once we obtain the scalar error E (�+1/2), we need to prolongate it back and

modify the �+1/2 transport solution. (Note that we need to update current and SAF

unknowns consistently if we assumed no 
Q1 terms in the diffusion approximation.)

Φ(�+1) =Φ(�+1/2) + E (�+1/2) (3.104)


J (�+1) = 
J (�+1/2) +
σs,1δ 
J

(�)

σtr
−D
∇E (�+1/2) (3.105)

Ψ(�+1)
m =Ψ(�+1/2)

m +
1

4π

(
E (�+1/2) + 3

(
σs,1δ 
J

(�)

σtr

−D
∇E (�+1/2)

)
· 
Ωm

)
(3.106)

on 
rb ∈ ∂Dr, 
Ωm · 
n(
rb) > 0

The entire procedure can be written in a matrix form as follows. One SI is

performed ,

x(�+1/2) = Tx(�) + b (3.107)

where the notation is identical to the one used in Chapter II.

Finally, the diffusion correction to the transport solution, after each source iter-

ation, is

δx(�) = PA−1BR(x(�+1/2) − x(�)) (3.108)

where R is the restriction operation which gives the [Q0,Q1,qedge]
T with Eqs. (3.96)
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through (3.99). P is the prolongation operation which manipulates the scalar flux

to obtain the correction of zero and first flux moments and SAF with Eqs. (3.104)

through (3.106). A is the global DG-diffusion matrix and B is used to construct the

right-hand-side of the DG-diffusion problem.

Thus,

x(�+1) = x(�+1/2) + δx(�)

= Tx(�) + b + PA−1BR(x(�+1/2) − x(�))

= Tx(�) + b + PA−1BR(Tx(�) + b− x(�))

= x(�) + (T− I)x(�) + b + PA−1BR(Tx(�) + b− x(�))

= x(�) − (I + PA−1BR)(I−T)x(�) + (I + PA−1BR)b

which is exactly a preconditioned Richardson iteration:

(I + PA−1BR)(I−T)x = (I + PA−1BR)b (3.109)

A loose criterion could degrade the spectral radius of DSA, while a tight criterion

could augment excessively the CPU time spent in the DSA solves. As a compromise,

the recommended stopping criterion is,

ε = tolDSA = 10−1 (3.110)

This tolerance can be changed by the user. The initial guess for the DSA iterations is

zero. Note that a tolerance tolDSA = 10−4 is chosen to analyze the spectral radius of

the DSA schemes, in order to avoid creating numerical noise in the estimation of the

spectral radius. When the SQMR solver is used for the DCF scheme, the convergence

criteria of DSA needs to be set to 10−4. Numerical results to validate these settings

are presented in Section F.
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2. DSA for GMRes

In the preceding section, we have demonstrated that the preconditioner for the trans-

port system is I+PA−1BR. So we need to provide the action of matrix on a Krylov

vector v, i.e., y = (I + PA−1BR)v. This matrix-vector operation can be done with

two steps:

w = PA−1BRv (3.111)

y = w + v (3.112)

So if we already have the DSA subroutine to accelerate SI, we can let x(�+1/2) = v

and x(�) = 0, and reuse it, thus reducing the coding effort greatly.

Applying the preconditioner requires solving the diffusion system iteratively. As

the result of iterative error, the preconditioning operation is inexact. Experiences

showed that we can still achieve the converged transport solution while relaxing the

convergence of the diffusion solver significantly. The strategy on the convergence

tolerance of diffusion solver can affects the overall efficiency of the transport solver

greatly. Studies on the inexact Krylov methods including the inexact preconditioning

can be seen [116, 117]. The idea is that because at any particular GMRes iteration

a Krylov subspace solver constructs a solution based on the solutions from previous

iterations to that point, the preconditioning operation should be computed with a

strict convergence tolerance in the early stages of the GMRes iterative solution and

the tolerance can be relaxed as the GMRes iteration proceeds.

So the strategy is that

ε = c
tolinner

error
(3.113)

where error is the transport solution error of the previous GMRes iteration; c is a

small constant to assure the convergence of the GMRes. We use c = 0.001 and set
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the initial guess of the diffusion system to zero.

E. Fourier Analysis (FA)

To analyze the performance of acceleration schemes, it is customary to carry out a

Fourier Analysis (FA) on the discretized equations. A large body of work exists in

the transport community regarding the application of FA to the study of accelera-

tion of the SI scheme with DSA, both for the continuous and discretized equations

[118, 68, 70]. Obviously, for numerical applications, the study of the discretized

{transport + acceleration} solvers is of prime interest. Oftentimes, this is done for

a periodic homogeneous domain, and in fewer cases for a periodic heterogeneous do-

main. We present here our FA of the various DGFEM diffusion schemes used to

accelerated the DGFEM SN transport equations. This study includes different ge-

ometries, media and mesh aspect ratios. First, we give the FA formulation. Basically,

the error is decomposed into modes that are charactered by Fourier wave numbers.

How these modes are damped during one step of the iterative method provides insight

on the effectiveness of the acceleration method. This damping is characterized by the

spectral radius, the largest attenuation factor for any wave number. It is important

that the initial error (initial guess) contains all error modes. The slowest mode will

dominate as the iteration proceeds and its damping rate (spectral radius) will eventu-

ally characterize the iteration procedure. The smaller spectral radius, the faster the

iterations converge. If the spectral radius is greater than 1, the scheme is unstable.

Our periodic heterogeneous FA was performed on a Cartesian regular geome-

try, described by the cell widths in x (Δx1,Δx2, · · · ,ΔxNx) and cell widths in y

(Δy1,Δy2, · · · ,ΔyNy), as shown in Fig. III-4. Each rectangular cell is cut into two

triangular cells. Different triangular cells may contain different media. Periodic

boundary conditions are applied on the domain boundary. While this geometrical
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Fig. III-4. Domain for the Fourier analysis.

layout is simple, we were able to perform heterogeneous FA and analyze important

problems such as the PHI (Periodic Horizontal Interface [119]) problems and situation

where the elements present high aspect ratios. Our FA study was limited to linear

shape functions, i.e., DGFEM(1), for simplicity. The transport system of equations

is solved by direct inversion of the L operator in MATLAB, so no SAF are present.

For each error mode with the Fourier wave numbers λ = [λx, λy], a diagonal

phase matrix is associated with each cell (i, j, 1):

ej(λxxi+λyyj)

⎡⎢⎢⎢⎢⎣
ej(λxΔx+λyΔy) 0 0

0 1 0

0 0 ejλxΔx

⎤⎥⎥⎥⎥⎦Φi,j,1 (3.114)

and a diagonal phase matrix is associated with each cell (i, j, 2):
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ej(λxxi+λyyj)

⎡⎢⎢⎢⎢⎣
1 0 0

0 ej(λxΔx+λyΔy) 0

0 0 ejλyΔy

⎤⎥⎥⎥⎥⎦Φi,j,2 (3.115)

with j =
√−1. When assembling L and Σ for the transport solver, and A and B for

the diffusion solver, we apply these phase matrices on the corresponding elementary

matrices. When assembling the edge coupling matrices in transport and diffusion

with an edge located on the domain’s boundary, the base phase of the cell of the

other side of the periodic boundary edge is not used but instead the actual base of

the virtual cell is employed, as shown in Fig. III-4.

Wave numbers are chosen in the interval
[
0, 2π

X

) ⊗ [0, 2π
Y

)
, where X and Y are

the domain size in the x and y directions.

Finally, the resulting FA iteration matrix in the case of SI is

DL̃−1MΣ̃, (3.116)

where ˜ is used to represent a matrix to which the phase transformation was applied.

The iteration matrix for SI+DSA is given by

I− (I + PÃ−1B̃R)(I−DL̃−1MΣ̃). (3.117)

The largest eigenvalue of these two iteration matrices is the spectral radius for a given

specific wavelength number. This eigenmode can be calculated easily in MATLAB

using the built-in function eig.

The Nelder-Mead simplex algorithm is used to find the maximum eigenvalue over

all possible wavelength numbers in
[
0, 2π

X

)⊗[0, 2π
Y

)
for a given problem configuration.

This maximum will be the global spectral radius of the method for the problem under

consideration.
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F. Results

1. Fourier Analysis Results

a. Infinite Homogeneous Medium Case

We perform FA for a 1× 1 Cartesian geometry (i.e., 2 triangles). The same medium

in placed in these two elements. The domain is square, i.e., X = Y and the mesh

size X is varied from 2−10 MFP to 210 MFP (Mean Free Path). Periodic boundary

conditions are applied on all four sides. Scattering is isotropic with a scattering ratio

fixed to c = 0.9999. Level-Symmetric (LS) angular quadrature sets with S2, S4, S8

and S16 are used. Three DSA schemes are analyzed: DCF, IP and MIP. Figs. III-5

through III-7 show the spectral radius obtained using these three schemes. There are

four curves on each plot corresponding to the four different angular quadrature sets.

The x-axis of these three plots is the mesh size, measured in MFP; the y-axis is the

spectral radius.
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Both DCF and IP forms are not unconditionally stable: the DCF form is unstable

in the intermediate range when the cell is a few MFP thick; the IP form is unstable

for thick cells, when their cell sizes corresponds to an edge penalty factor of about

1/4. The MIP form is stable for all cell sizes, with the maximum spectral radius

occuring in the intermediate MFP range: the maximum spectral radius is less than

0.5, except for S2 where it is about 0.7. These results for MIP are very satisfactory

and signify that the MIP DSA form is capable of providing good acceleration, at least

in the case of an infinite homogeneous problem. Results employing the IP form will

not longer be presented, since the MIP form is clearly better. We also note that

1. when the mesh size is very small, the spectral radius is approaching the theo-

retical value of 0.2247 c (obtained in the case of a continuous (not discretized)

DSA accelerator) as the number of directions increases in the angular quadra-

ture. Values obtained for the four different SN sets are 0.4999, 0.2689, 0.2401

and 0.2322, respectively.

2. when the mesh size is equal to 1, DCF gives a spectral radius of 1. (This is also

the case in 1-D.)

3. the M4S method is also not stable in the intermediate MFP range, as reported

[70], which is a behavior similar to that of the DCF form presented here.

Several optical thicknesses, marked on Fig. III-8 and numbered 1 through 6

from left to right, are further discussed in the case of DCF. Their 2-D wave number

dependencies are plotted in Fig. III-9. The colorbars show the log value of the spectral

radius.

The DSA DCF scheme becomes unstable when the cell size is equal to
√

2.
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Fig. III-5. Fourier analysis for the DCF form as a function of the mesh optical

thickness, homogeneous infinite medium case.
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Fig. III-6. Fourier analysis for the MIP form as a function of the mesh optical

thickness, homogeneous infinite medium case.
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Fig. III-7. Fourier analysis for the IP form as a function of the mesh optical thickness,

homogeneous infinite medium case.
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Fig. III-8. FA of the DCF form. Selected 6 points whose 2-D wave number depen-

dencies are plotted in Fig. III-9.
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(a) Point #1 (b) Point #2

(c) Point #3 (d) Point #4

(e) Point #5 (f) Point #6

Fig. III-9. 2-D wave number dependencies of the DCF form for the selected 6 optical

thicknesses.
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Fig. III-10. Spectral radius for the MIP form with different aspect ratios and using

C = 2.
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Fig. III-11. Spectral radius for the MIP form with different aspect ratios and using

C = 4.
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Finally, we analyze the MIP form for different cell aspect ratios by fixing X = 1

and changing the value of Y . Results are shown in Fig. III-10. They indicate that

the MIP scheme converges, even for high aspect ratio cells. It was noted that the

performance of the MIP acceleration scheme can be improved by adjusting the C

constant in the penalty formula Eq. (3.40) by increasing it from 2 to 4. The Fourier

Analysis results with this augmented coefficient are in presented Fig. III-11.

b. Periodic Horizontal Interface (PHI) Problem

The Periodic Horizontal Interface (PHI) problem [119] is a standard litmus test for

DSA techniques, notably to assess the effectiveness of the acceleration for highly

heterogeneous configurations. The PHI problem consists of horizontal stripes of al-

ternating transparent and highly-diffusive media. In our test, two layers are em-

ployed. The first layer is optically thick and the other layer is optically thin. This

is achieved by setting σt,1 = σ and σt,2 = 1/σ and increasing the value of σ. Strong

material discontinuities are present in this problem when σ becomes large, which

could potentially reduce the effectiveness of the DSA schemes. Again, different LS

quadrature sets are utilized in our results. Various values of scattering ratios are

chosen: c = {0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999}. The study was conducted

with a sequence of σ = {10, 20, 40, 80, 160, 320, 640}. Tables III-I to III-VIII display

the spectral radius results for different angular quadratures and different scattering

ratios for the following two DSA schemes: MIP and DCF.

It can be seen the MIP DSA form loses effectiveness when the heterogeneity is

strong, with a spectral radius tending towards c. However, the maximum spectral

radius for the DCF DSA is close to 0.5 for all quadrature sets except for S2 where it

is about 0.69–0.78.

Recall that the edge penalty formula uses the average of the penalties computed
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Table III-I. Spectral radius for the PHI problem, DCF form with LS-2.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.2898 0.7374 0.7812 0.7860 0.7865 0.7865

20 0.3370 0.6572 0.7208 0.7278 0.7285 0.7286

40 0.2282 0.5890 0.6969 0.7105 0.7119 0.7120

80 0.1413 0.5031 0.6731 0.6982 0.7008 0.7011

160 0.0853 0.3974 0.6429 0.6892 0.6947 0.6953

320 0.0474 0.2833 0.5979 0.6806 0.6920 0.6933

640 0.0140 0.1864 0.5293 0.6682 0.6901 0.6929

Table III-II. Spectral radius for the PHI problem, DCF form with LS-4.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.1724 0.2901 0.3215 0.3251 0.3255 0.3255

20 0.1093 0.2527 0.3388 0.3470 0.3484 0.4656

40 0.0831 0.2518 0.3502 0.3767 0.3796 0.4928

80 0.0543 0.2275 0.3504 0.3924 0.3985 0.5059

160 0.0319 0.1760 0.3479 0.3967 0.4086 0.5102

320 0.0175 0.1203 0.3211 0.3963 0.4130 0.5085

640 0.0092 0.0748 0.2710 0.3912 0.4137 0.5022
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Table III-III. Spectral radius for the PHI problem, DCF form with LS-8.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.1708 0.2772 0.3063 0.3525 0.3100 0.3100

20 0.1161 0.2739 0.3864 0.4074 0.4097 0.4099

40 0.0848 0.2824 0.3991 0.4395 0.4444 0.4449

80 0.0529 0.2479 0.4040 0.4540 0.4636 0.4646

160 0.0302 0.1850 0.3976 0.4571 0.4733 0.4753

320 0.0163 0.1212 0.3605 0.4599 0.4773 0.4808

640 0.0085 0.0723 0.2970 0.4520 0.4793 0.4839

Table III-IV. Spectral radius for the PHI problem, DCF form with LS-16.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.1736 0.2902 0.3042 0.3074 0.3078 0.3078

20 0.1158 0.2794 0.4134 0.4423 0.4456 0.4460

40 0.0835 0.2891 0.4205 0.4745 0.4814 0.4821

80 0.0515 0.2498 0.4256 0.4869 0.5005 0.5019

160 0.0293 0.1835 0.4152 0.4873 0.5094 0.5123

320 0.0161 0.1186 0.3709 0.4904 0.5122 0.5175

640 0.0085 0.0701 0.3004 0.4792 0.5143 0.5201
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Table III-V. Spectral radius for the PHI problem, MIP form with LS-2.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.7334 0.7854 0.8655 0.8673 0.8675 0.8675

20 0.8029 0.9174 0.9354 0.9375 0.9377 0.9377

40 0.8029 0.9519 0.9574 0.9715 0.9717 0.9718

80 0.8328 0.9690 0.9781 0.9867 0.9870 0.9870

160 0.8640 0.9777 0.9878 0.9935 0.9938 0.9938

320 0.8686 0.9778 0.9947 0.9967 0.9970 0.9970

640 0.8711 0.9817 0.9966 0.9982 0.9985 0.9985

Table III-VI. Spectral radius for the PHI problem, MIP form with LS-4.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.6910 0.8258 0.8521 0.8551 0.8554 0.8554

20 0.7749 0.9031 0.9272 0.9305 0.9308 0.9309

40 0.8175 0.9460 0.9635 0.9666 0.9670 0.9670

80 0.8430 0.9658 0.9814 0.9838 0.9841 0.9842

160 0.8579 0.9749 0.9902 0.9921 0.9923 0.9924

320 0.8657 0.9796 0.9943 0.9960 0.9963 0.9963

640 0.8697 0.9827 0.9963 0.9979 0.9981 0.9982
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Table III-VII. Spectral radius for the PHI problem, MIP form with LS-8.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.6868 0.8220 0.8541 0.8582 0.8586 0.8586

20 0.7716 0.9013 0.9278 0.9322 0.9327 0.9327

40 0.8167 0.9451 0.9629 0.9671 0.9676 0.9676

80 0.8434 0.9651 0.9811 0.9837 0.9841 0.9837

160 0.8580 0.9744 0.9900 0.9918 0.9922 0.9923

320 0.8656 0.9793 0.9942 0.9959 0.9962 0.9962

640 0.8696 0.9827 0.9962 0.9979 0.9981 0.9981

Table III-VIII. Spectral radius for the PHI problem, MIP form with LS-16.

Scattering ratios

σ 0.9 0.99 0.999 0.9999 0.99999 0.999999

10 0.6859 0.8189 0.8543 0.8593 0.8598 0.8599

20 0.7716 0.8996 0.9272 0.9326 0.9332 0.9333

40 0.8123 0.9442 0.9622 0.9671 0.9677 0.9678

80 0.8436 0.9647 0.9810 0.9835 0.9841 0.9838

160 0.8580 0.9742 0.9897 0.9917 0.9922 0.9923

320 0.8656 0.9793 0.9941 0.9958 0.9962 0.9962

640 0.8696 0.9828 0.9962 0.9978 0.9981 0.9981
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on two neighboring cells, which may not be the best choice for this problem. The

loss of effectiveness of the MIP DSA scheme suggests that the MIP form, though

conditionally stable and quite effective for homogeneous configurations, may not yield

the speed-ups necessary for highly heterogeneous and diffusive configurations.

2. Results for a Simple 2-Cell Problem

A Matlab code solving a 2-cell problem (shown in Fig. III-12) was written to test the

five proposed DSA schemes: DCF, IP, MIP, P1C, P1M. To make the matrix assembly

procedure simpler, all four boundaries are reflecting. This code has also been used to

perform tests with highly anisotropic scattering; these results are presented later in

this Section.

Y

σ1 μ11, c  ,

σ2 μ22, c  ,

Reflecting
R

eflecting

Reflecting

R
ef

le
ct

in
g

X

Fig. III-12. Geometry for a simple 2-cell problem.

The geometry is given in Fig. III-12. A rectangular area is cut into 2 triangular

cells. The vertices of element 1 and element 2 are numbered so that the interface

edge is from vertex 1 to vertex 2. Such numbering makes the ri ratios of two elements

identical,thus greatly simplifying the matrix assembly procedure. The size of the

rectangle can be varied by changing X and Y . The total cross section, scattering

ratio, and average scattering cosine can be different in the two elements. Only linear



144

elements (DGFEM(1)) are used, i.e., the unknowns are associated with vertices of two

elements. The transport sweep is solved by direct inversion of the {streaming+loss}
matrix L, thus avoiding SAF in these calculations.

We first test the DCF with different angular quadratures with σ1 = σ2 = 1 cm−1,

c1 = c2 = 0.9999 and isotropic scattering. The domain size X is always equal to Y

(square geometry), and its width varies from 2−8 cm to 210 cm. The spectral radius

is calculated as the maximum eigenvalue of the DSA iteration matrix. As shown in

Fig. III-13, the angular quadrature does not have to exactly satisfy Eqs. (3.10) and

(3.23) for an effective DSA scheme. The quadrature effect is only noticeable for large

cell sizes. Fig. III-13 presents the spectral results using DCF, for which instability

occurs for intermediate MFP values of the cell width, as observed earlier. Also note

that the spectral radius goes to zero for small cell sizes, a trend that differs from

the 2-D Fourier analysis results. The reason could be that some error modes are not

present when using reflecting boundary conditions.

In Fig. III-14, we present the spectral radius results for the 5 DSA schemes using

the LS-8 angular quadrature (hereafter, when no angular quadratures are specified,

the LS-8 is assumed). We notice that the MIP is stable for the entire range of mesh

size, with a maximum value of 0.358 attained for X = 3.364, and that the difference

between P1M and P1C schemes is negligible, except maybe for very small cell sizes.
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Fig. III-13. Spectral radius of the DCF form for the 2-cell problem with different

quadrature sets.
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Fig. III-14. Spectral radius of different DSA forms for the 2-cell problem.
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Different levels of anisotropic scatterings are presented. Linear anisotropic scat-

tering is modeled using

σs,1 = μσs,0 (3.118)

where various values of μ are chosen to increase the anisotropy. The DCF and MIP

forms are tested with and without the 
Q1 terms present (recall that these terms are

related to the anisotropic component in Fick’s law and appear as anisotropic error

source term in the DSA equations.) Without the 
Q1 terms, we observe in Fig. III-15

that the spectral radius is dependent upon the value of the average scattering cosine μ

for thick cells. The DCF form converges for thin cells, whereas the MIP form diverges

for thin cells when the average scattering cosine is greater than 0.45.

With 
Q1 terms present, the spectral radius does not seem to be limited by the

average scattering cosine for thick cells, as shown in Fig. III-16. For thin cells, we have

also been able to reproduce exactly the spectral radius values μ
1−μ

published in the

paper by Adams [120] on the effectiveness of DSA schemes for anisotropic scattering.

Furthermore, to stabilize DSA schemes in highly anisotropic situation, Adams

suggested a simple remedy which consisted in performing several SI iterations before

accelerating the transport solves with DSA. We have chosen to set the DSA frequency

to once every 4 SI solves. The results are given in Fig. III-17. As we expected,

convergence is restored when the cell size is small. But for highly forward-peaked

scattering, i.e., μ close to 1, the MIP scheme still fails for thick cells (the frequency

of DSA acceleration should be further reduced.)
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Fig. III-15. Spectral radius of different DSA forms for various degrees of anisotropic

scattering without the Q1 terms.
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Fig. III-16. Spectral radius of different DSA forms for various degrees of anisotropic

scattering with the Q1 terms.
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Fig. III-17. Spectral radius of the MIP form for various degrees of anisotropic scat-

tering with Q1 terms and the “anisotropic trick”.

Finally, we have also tested the P1C and P1M schemes for this simple geometrical

configuration. Both P1C and P1M provide good acceleration in the case of isotropic

scattering (see Fig. III-18 and Fig. III-19 with mu= 0), but they behave differently in

the case of anisotropic scattering. P1C is always stable and effective (spectral radius

less then 0.5) even with highly forward-peaked anisotropic scattering; see Fig. III-

18. P1M fails (similarly to MIP) for thin cells and strong anisotropy, as shown in

Fig. III-19. These results suggest that the P1C scheme is superior than the P1M

scheme. Further research should be performed regarding the P1C scheme (which is

PD.)
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Fig. III-18. Spectral radius of the P1C form with anisotropic scattering.
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Fig. III-19. Spectral radius of the P1M form with anisotropic scattering.
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3. Results Obtained Using xuthus

In this Section, we test three DSA schemes implemented in 2-D transport solver

xuthus: the DSA-IP, the DSA-MIP, and the DSA-DCF. More detailed explanations

about xuthus can be found in Chapter V. Problems with vacuum and reflecting

boundaries, with heterogeneous material configurations and with unstructured irreg-

ular meshes stemming from adaptivity are utilized to test these schemes. Both the

computing time and the spectral radius are provided.

a. Homogeneous Problem

The first test is a simple homogeneous problem with vacuum boundaries. The com-

putational mesh is shown in Fig. III-20. Equal widths in x and y are used. Scattering

is isotropic with a scattering ratio c being equal to 0.9999. All calculations are per-

formed with the LS-8 angular quadrature.

Vacuum

V
acuum

V
ac

uu
m

Vacuum

c = 0.9999
S = 1

Fig. III-20. Domain of the homogeneous DSA test problem computed with xuthus.

We test DCF, IP and MIP as accelerator to SI for a wide range of cell sizes.
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For cases with cells thicker than 1 MFP, a fixed number of elements is used. In this

situation, the square domain is cut into 200 triangular elements and domain size is

fixed to 10 cm × 10cm. The optical thickness of cells are changed by varying the total

cross section σt from 1 cm−1 to 210 cm−1. For cases with cells thinner than 1 MFP

and in order not to let the leakage affect the spectral radius much, we keep the total

cross section equal to 1 cm−1 and the domain size is unchanged. By doing so, the

domain size in MFP does not change, i.e., the leakage through the vacuum boundaries

does not change. The cell size is reduced through uniform mesh refinements (during

which each element is subdivided into 4 elements). Each refinement cycle decreases

the cell size by a factor 2.

The spectral radius data is numerically obtained using the following equation,

where L is the number of SI accomplished.

ρ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4

√
‖Φ(L) − Φ(L−1)‖
‖Φ(L−4) − Φ(L−5)‖ , when L � 8

2

√
‖Φ(L) − Φ(L−1)‖
‖Φ(L−2) − Φ(L−3)‖ , when L < 8

(3.119)

The tolerance used in SI, tolinner, is set to 10−10 and the maximum number of SI is 20.

By doing this, numerical oscillations in calculating the spectral radius can be reduced.

We later refer the spectral radius calculated with Eq. (3.119) as the numerical spectral

radius or NSR.

The first investigation consisted in analyzing the effect of the DSA convergence

tolerance, tolDSA, to finely tune the performance of the DSA schemes. Different DSA

tolerances are tested and the NSR results are shown in Fig. III-21. The MIP form

is solved using PCG with the Eisenstat trick, while the DCF form is solved with the

SQMR solver. We note that a coarse tolerance close to 1 is unacceptable because

the DSA calculations do not accelerate SI at all. Although some oscillations in the
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Fig. III-21. Dependence of the numerical spectral radius on the tolerance used in

DSA.

convergence history still occur for a tolerance of 0.1 in the MIP form, the NRS are

reasonably converged and there is no need to employ a tighter convergence criterion;

therefore, it is a sensible choice to use 0.1 with the PCG solver. Due to the dif-

ferent criterion used in the SQMR solver, the right pane of Fig. III-21 shows that

the tolerance needs to be set to 10−4 for DCF solved using SQMR. We note that

because various convergence criteria are available, this type of curves needs to be

generated to gain confidence in setting the tolerance criteria for any given iterative

solver. For the purposes of generating NSR, we employ more stringent convergence

tolerances as follows: 0.001 for the PCG solver and 10−6 for the SQMR solver. In

routine calculations with xuthus or when the CPU time is of concern, we use the pre-

viously mentioned tolerances of 0.1 for the PCG solver and 10−4 for the SQMR solver.

With this preliminary remark on the convergence tolerances, we can now present

the various NSR obtained for the different DSA, see Fig. III-22. It can been seen

clearly that xuthus produces results very similar to the results obtained with Fourier

Analysis. DCF diverges for cell sizes in the intermediate MFP range while IP is un-
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stable with thick cells. The NSR of the MIP form is a combination of the NSR of

DCF and IP, showing that MIP is stable in the entire range, from optically thin to

optically thick cells. The presence of Dirichlet boundaries seems to degrade effective-

ness of the MIP scheme for small cell sizes. The NSR for thin cells is now about 0.56,

while, in the same range, DCF yields a NSR of 0.20, which is very close to the theo-

retical spectral radius. For large cell sizes, the NSR from MIP and DCF are almost

identical. However, if we keep the additional factor 2 in the penalty coefficient for

vacuum boundaries as in the IP form, the MIP spectral radius is significantly larger

for thick cells, Fig. III-22.
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Fig. III-22. Numerical spectral radius computed with xuthus for various DSA

schemes.

The effect of polynomial order on the MIP form is analyzed (recall that the

penalty coefficient in the MIP quadratically depends on the polynomial order p.) For

polynomial orders 1 through 4, the NSR results for DSA-MIP are plotted in Fig. III-

23. The DSA MIP form is stable for all polynomial orders. By increasing the constant

C in the penalty formula Eq. (3.40) to 4, the results shown in Fig. III-24 are obtained
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and we can conclude that the default value of C = 2 is a good choice for the MIP

stabilization terms.

10
−1

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cell size in MFP

S
pe

ct
ra

l r
ad

iu
s

DSA convergence property

 

 
p = 1
p = 2
p = 3
p = 4

Fig. III-23. Numerical spectral radius computed with xuthus for the MIP form

using different polynomial orders.

The next tests deal with the effect of reflecting boundaries. The MIP and DCF

forms are used for a problem that is one quarter of the previous homogeneous problem,

hence of size 5 cm × 5 cm with 50 triangles and reflecting boundaries on the left and

bottom sides. The spectral radius data is shown in Fig. III-25, along with the data

from the original homogeneous problem that used only Dirichlet boundaries. We

see that neglecting the higher moment terms on the reflecting boundaries does not

degrade the performance of the MIP form but DCF does not work as expected with

reflecting boundaries for thin cells.
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Fig. III-24. Convergence with different polynomial orders for the MIP form using

C = 4.
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Fig. III-25. Spectral radius with reflecting boundaries.



156

b. Heterogeneous Problem

The CPU time for the MIP form is studied for a heterogeneous problem. This problem

is a simplified version of a shielding problem. The external source and the scattering

medium are separated by two shielding blocks and connected with a void channel. In

this problem, the two shielding blocks are treated as a strong pure absorber, while

the total cross section of the void channel is significantly smaller than the total cross

section of the adjacent scattering and shielding medium. The geometrical descriptions

can be found in Fig. III-26. The domain is triangularized with Triangle and the mesh

is shown in the right pane of Fig. III-26.
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Void region

V
acuum

V
ac

uu
m

Shielding region

Source region

   −1

c = 0.9999
S = 0 cm  sec−3 −1

σt= 100 cm
c = 0
S = 0 cm  sec−3 −1

     −1

σt= 1 cm −1

c = 0
S = 1 cm  sec−3 −1

σt= 0.001 cm          −1

c = 0
S = 0 cm  sec−3 −1
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 Source  Shielding block 1  Void 
 Scatterer  Shielding block 2 

Fig. III-26. Non-homogeneous DSA test problem calculated with xuthus (left) and

its initial mesh (right).

We are interested in how the choice of angular quadrature and the mesh refine-

ment (both h- and p versions) affect the fraction of time spent in DSA with the MIP

form. The fraction of DSA time is plotted in Fig. III-27 with different polynomial

orders and different uniform mesh refinement levels.

The first plot in Fig. III-27 shows how uniform p-refinement affects the perfor-

mance of DSA. The other three graphs correspond to three polynomial orders, from
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1 to 3, with different different uniform refinement levels. Refinement level 0 stands

for the original mesh, shown in the right pane of Fig. III-26. After two levels of

h-refinement, the time spent in DSA has about doubled with respect to p. Note that

0.1 tolerance on DSA is used for all calculations. Because the condition number of

the global diffusion matrix A increases with p- and h-refinement, more iterations are

required for the same DSA tolerance, although the time ratio of a diffusion sweep

and a transport sweep does not change. These two figures confirmed this fact. The

effect of DSA with MIP can be see in Table III-IX. We can note that MIP reduces

the spectral radius from about 0.96 to 0.55. It is clear that MIP is effective for this

heterogeneous problem.

Table III-IX. NSR with MIP for the heterogeneous problem.

(left number: NSR for SI, right number: NSR for SI+DSA)

Polynomial Initial Once uniformly Twice uniformly

order mesh refined mesh refined mesh

1 0.9587 0.5542 0.9588 0.5319 0.9588 0.5149

2 0.9589 0.5291 0.9588 0.4885 0.9588 0.5213

3 0.9588 0.5293 0.9588 0.5430 0.9588 0.5199

4 0.9588 0.5301 0.9588 0.5455 0.9588 0.5088

The effect of using DSA-MIP as a preconditioner for the GMRes solver is tested

and the results are shown in Table III-X, where the number of unpreconditioned and

preconditioned GMRes iterations needed to reduce the error below 10−8 is given for

different polynomial orders and different refinement cycles. Using DSA as a precon-

ditioner reducing the number of GMRes iterations by a factor of 6.
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Table III-X. Number of GMRes iterations with MIP for the heterogeneous problem.

(left number: GMRes, right number: DSA-preconditioned GMRes)

Polynomial Initial One uniformly two uniformly

order mesh refined mesh refined mesh

1 55 9 56 9 55 9

2 55 9 55 9 55 9

3 54 9 54 9 55 9

4 54 10 55 9 55 9

c. Problem with Hanging Nodes
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Fig. III-28. Geometry and material description.

The DGFEM diffusion schemes derived earlier can be used in a natural fashion

with hp-type unstructured meshes. The performance of the MIP form on irregular

meshes from AMR is analyzed using a simple transport benchmark problem. The

geometry and material descriptions are shown in Fig. III-28. The initial computa-
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 Region I  Region II  Region III

Fig. III-29. Initial mesh.

tional mesh is regular, as shown in Fig. III-29. The polynomial order used is 2 for all

elements; the angular quadrature is LS-4; scattering is isotropic. The SI tolerance is

set to tolinner = 10−8 and the AMR control parameter is α = 1/3 (details regarding

this parameter can be found in Section 3 of Chapter IV.) Different mesh irregular-

ity settings are also tested: 1-irregularity, 2-irregularity and 3-irregularity. Here n-

irregularity means the maximum refinement-level difference between two neighboring

elements can be at most n. It is expected that a higher mesh irregularity is preferred

for hyperbolic problems which can present strong singularities, but the point-wise

errors at the irregular points, i.e., the hanging nodes, are significantly larger than the

errors elsewhere in the domain. Thus, DSA could potentially lose accuracy due to

this effect. For each mesh irregularity, two AMR runs driven by the projection-based

error estimator μk,ref
g,K in Eq. (4.7) are presented: one run is performed using solution

bootstrapping after each cycle of mesh adaptation, i.e., the numerical solution of the

previous adapted mesh is projected onto the newly prescribed adapted mesh as an

initial guess; the other run is performed without bootstrapping, i.e., the initial guess

is reset to zero at each mesh adaptivity iteration.
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Six tables for different mesh irregularities and different bootstrapping strategies

were generated and are displayed as Tables III-XI through III-XVI. A total of 25

mesh adaptivity cycles are performed in each case. The second column in these tables

shows the number of active elements at each adaptivity cycle. The third column is a

mesh parameter measuring the mesh irregularity; this irregularity index is the average

number of hanging nodes on all interior active edges. “Interior” in that context means

that edges on boundaries or on sub-domain interface are not counted. An interior

edge is regarded as active when following two conditions are met:

1. at least one neighboring element is active;

2. two neighboring elements have the same refinement level.

Here, the neighboring element of an edge is defined as the element containing the

largest portion of that edge.

We can note that the NSR is decreasing as the AMR progresses and that the

number of DSA iterations is significantly smaller with bootstrapping than with reini-

tialization. As the result, the total computing time with AMR is significantly reduced.

The DSA preconditioner performs efficiently with AMR. The mesh irregularity index

with the 2-irregularity constraint is larger than in the 1-irregularity case, while the

difference between the results using a 2-irregularity or a 3-irregularity constraint is

small. The resulting meshes are slightly different due to a slightly different conver-

gence history for SI.

Several selected meshes marked in Table III-XV from the 2-irregularity run with-

out bootstrapping are showed in Fig. III-30.
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(a) Cycle #6 (b) Cycle #12

(c) Cycle #18 (d) Cycle #24

Fig. III-30. Regular and irregular unstructured meshes.
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G. Conclusions

In this chapter, we derived DSA conforming schemes for unstructured hp-type meshes

with DGFEM using a variational principle. Both vacuum and reflecting boundaries

are treated consistently with significant angular fluxes (SAF). We tested and analyzed

five different schemes: DCF, MIP, IP, P1C and P1M. In conclusion,

1. All of these schemes can be used with AMR on unstructured meshes.

2. DCF is symmetric but not positive definite; like M4S schemes, it is unstable in

the intermediate MFP range, although it works very well in the thin and thick

cell limits. The reason why DCF is unstable has not been understood so far.

DCF seems to work well with strong material discontinuities.

3. MIP is SPD, thus can be efficiently solved with PCG. It is stable over the entire

MFP range; the presence of Dirichlet boundaries, i.e., vacuum boundaries, can

degrade the performance of MIP slightly; like the WLA scheme, MIP loses its

effectiveness when strong material discontinuities present. MIP behaves well for

all polynomial orders and with distorted cells.

4. IP is not recommended because it is quite similar to MIP for thin cells but

diverges for large optical thicknesses.

5. Although P1C has not been implemented with xuthus and no FA analysis was

conducted so far, results based on the simple 2-cell problem suggest that it may

be unconditionally stable and effective, even with strong anisotropic scattering.

P1C is positive definite but is not symmetric, which can pose an issue for the

numerical solution technique.

6. P1M is obtained directly by discretizing the P1 equations with DGFEM, as
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proposed by Warsa and Morel. Results from the 2-cell problem suggest that

can loss effectiveness when highly anisotropic scattering is present, but is quite

effective in the isotropic scattering case. We believe P1C to be superior than

P1M for DSA.

Therefore, MIP is a reasonable choice when anisotropy is not too strong. The

fully consistent P1C may be promising and we recommend further studies of it.
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CHAPTER IV

SPATIAL ADAPTIVE MESH REFINEMENT

A. Introduction

In this chapter, we describe a cell-based spatial Adaptive Mesh Refinement (AMR)

technique for the neutron transport equation. The numerical simulation of multi-

dimensional deterministic particle transport processes remains a challenging issue in

applied mathematics and engineering due to the high dimensionality of the phase-

space. For large multi-dimensional realistic problems, containing heterogeneous ma-

terials of greatly varying opacities in complex geometrical configurations, an approach

based on a uniformly distributed fine mesh can be too costly, in both memory and

CPU time, to provide a reasonably accurate numerical solution. The concept of au-

tomatic mesh adaptation as a technique to efficiently obtain an accurate numerical

solution to a partial differential equation (PDE) with fewer unknowns has been pio-

neered since the 1980’s for finite volume and finite element techniques [121, 1]. We

have explained and reviewed AMR in the first chapter. We will take a look at AMR

from the implementation viewpoint and give more detailed reviews in this section.

The rationale for mesh adaptivity is based on the notion that a locally refined

or adapted mesh, whose number of unknowns is significantly smaller than that of a

uniform mesh, can yield the the same level of accuracy. This is based on the fact that

solutions of PDEs

• can, on the one hand, present boundary layers, steep gradients, and disconti-

nuities in some regions, where small mesh cells are required to resolve these

aspects and provide a good numerical approximation,
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• and, on the other hand, often exhibit a smoother behavior in other regions of

the domain, where larger mesh cells can be employed while still yielding an

accurate numerical approximation.

In order to prescribe the next adapted mesh on which a newer numerical solution

is to be computed, mesh adaptivity procedures typically require the following tools:

1. a reliable local error estimate to assess the amount of error committed in a given

cell; this estimate is usually obtained from the current numerical solution,

2. flexible geometrical data structures to follow the physics tightly and to allow

the efficient implementation, and,

3. prolongation/restriction operators in order exchange data in between mesh cells

of various refinement levels.

We now elaborate on these three above-mentioned aspects. First, an error es-

timator or indicator is necessary to determine the regions which will require fur-

ther refinement. These zones are not known a priori and are obviously PDE- and

problem-dependent. This naturally calls for error estimators based on a current nu-

merical solution, a technique known and referred to as a posteriori error estimation

[58]. With a posteriori error estimation, the zones with larger errors are selected

for refinement. Hence, it is possible to control the numerical error in an automated

succession of computations performed on locally adapted meshes. This leads to high-

resolution numerical solutions that can be obtained with fewer unknowns and smaller

CPU times than the more pedestrian approach based on uniform mesh refinement.

Second, a flexible data structure is needed to handle the local refinement of the mesh.

More specifically, the data structure needs to support hp-type unstructured meshes.

In the context of multigroup approximations, this means that (i) energy groups may
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have different meshes (hence, we need to handle group-dependent spatial meshes), (ii)

elements may have different polynomial order (p-refinement type), and (iii) elements

may have different refinement levels and histories. In cell-based discrete ordinate

(SN) transport sweeps, this notably requires the ability to insert additional newly

refined cells in the sweep ordering and to efficiently obtain the radiation inflow values

in between cells of various refinement levels. Finally, prolongation and restriction

operations are needed (i) to compute the in-scattering and fission terms contribution

to group g due to reactions that occurred in other groups g′ �= g (mesh coupling) (ii)

to compute inflow values in between zones of different refinements (mesh irregularity)

and also (iii) to project the current solution onto the next adapted mesh in order to

provide an good initial guess for the next computation and to reduce the computa-

tional time on the new mesh (e.g., bootstrapping the numerical solution on the newer

mesh using a projection of the current solution). We also note that mesh coarsening

(though not used in this Dissertation) can also be employed to decrease the resolution

in areas where the mesh granularity was deemed too fine; examples of such situations

include, for instance, transient problems with front wave propagations.

While mesh adaptivity is now widely used in many science and engineering fields

(see, for instance, [122, 123] and recent textbooks such as [124, 125, 126]), only a lim-

ited number of references are available regarding the applications of mesh adaptivity

to the transport equation. Most methods in place in production codes for computing

the solution of the transport equation have been implemented for fixed computational

meshes and cannot easily support a local refinement. It can be noted that some of

the earliest work on mesh adaptive refinement for transport has occurred in the field

of radiative transfer, where a transport solver was frequently coupled to AMR hydro-

dynamics codes [105, 127, 128], resulting in a natural tendency to implement AMR

techniques in the transport solver.
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In [51], a patch-AMR technique for the discrete ordinate transport equation has

been devised and is based on a hierarchy of nested grids (see also the prior work of

Berger and Oliger [129] and Berger and Colella for hyperbolic PDEs [105]). Patch-

AMR can be relatively simple to implement in an already existing code that uses

a fixed Cartesian grid; additionally, the various patches of a mesh can be readily

distributed for parallel computations. Some of the drawbacks of patch-AMR may

include the fact that the physics are not followed as closely as possible (the extent

of refined patch being often too large), leading to more unknowns than needed, and

the need to converge inflow/outflow values in between nested grids (a feature that is

not present in cell-based AMR). In [51], the gradient of the solution is employed to

drive the adaptive mesh refinement in 2-D Cartesian geometries for a one-group (one-

frequency) transport equation. The gradient-based error estimator is known to be

fairly accurate for low-order (e.g., first-order step) schemes but is overly conservative

for higher-order schemes. A similar multiple-grid patch-AMR technique, with error

estimation based on the gradient of the numerical solution, has also been more recently

used by several other authors for photon transport applications, see, for instance,

[130, 62, 63].

In [64], a local refinement (cell-based AMR) technique is described for SN trans-

port, where the value of the neutron MFP (Mean Free Path) in a given cell is employed

as a mesh refinement criterion. While this approach takes into account the size of

potential internal layers at a given location in the domain, it does not account for the

actual smoothness of the solution at these locations and is, therefore, far from opti-

mal; for example, in optically thick areas, the solution may well be approximated by

a smooth spatial representation on coarse meshes despite the smallness of the MFP.

Kanschat et al. used fully adaptive finite element approximations to the station-

ary, monochromatic radiative transfer problem [131, 132] on 2-D structured Cartesian
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grids. Klar et al. [133] considered a coupled radiation-temperature model, with a Sim-

plified PN treatment of the angular variable, leading to diffusion-like equations, and

applied adaptive methods to their model to resolve the boundary layer of a hot,

homogeneous body that is in thermal contact with a colder exterior.

In the field of neutronics and reactor applications, some authors have also con-

sidered mesh adaptivity for PN and diffusion approximations. Lewis et al. presented

a refinement technique for the inter-element approximation in a primal hybrid finite

element technique; diffusion [134] and PN [54] results were given for a 2-D one-group

problem. Ragusa [55, 135] employed an error indicator based on estimating the second

derivatives of the numerical solution and applied the resulting method to multigroup

diffusion problems; their error indicator was based on the interpolation error of linear

finite elements [136] and therefore limiting the application to these elements. More

recently, Wang and Ragusa applied the hp-adaptation concept to the multigroup dif-

fusion equations, where both the local polynomial degree of shape functions and the

local cell size are selected adaptively [56]; nonetheless, error estimators for the com-

bined hp adaptation are less mature and, as a consequence, these authors used the

difference between a finer mesh solution Φfine and a coarser mesh solution Φcoarse to

drive the refinement; their results included mesh adaptation for 1-D multigroup and

2-D 1-group diffusion problems.

An outline of the remainder of this chapter is as follows: Section B presents the

error indicator used to select mesh cells for refinement, describes the mesh refine-

ment process and how multi-mesh coupling and mesh irregularity are dealt with. In

Section C, 2-D results are presented for three examples: (i) a simple homogeneous

problem employed to present in details the performance of AMR, (ii) a searchlight

example, (iii) a problem with different material opacities. We conclude in Section D

and present an outlook on open questions.
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B. Mesh Adaptation

We briefly review next the principles of AMR, the a posteriori error estimates used

to drive the AMR procedure for transport and describe some implementation details,

namely the hierarchy of refined meshes, the edge flux mapping between elements of

various refinement levels and the cell flux mapping between different meshes.

1. Principles of a posteriori error adaptivity and AMR

An AMR procedure generally starts with a given initial and coarse mesh. A mesh

generator could be employed to generate a reasonable initial triangularization. On

this mesh, a numerical solution is sought after using an appropriate solver for the PDE

under consideration, here the multigroup SN transport. With the use of a posteriori

error estimates, the current numerical solution itself is employed to determine the

regions where the spatial discretization errors are large. A fraction of the elements

with the largest errors is selected for local refinement. The error estimates are said

to be a posteriori because they are determined once a numerical solution is obtained.

With elements flagged for refinement, a newly refined or adapted mesh is available and

a new, more precise, numerical solution can be obtained. This process is repeated,

as shown in Fig. IV-1, until a user-prescribed tolerance on the absolute global error

is satisfied.

By effectively estimating the error, the entire simulation can be controlled: once

a numerical solution has been computed on, say, the k-th mesh, the error is estimated

using the current solution. If the solution has not converged sufficiently, the error

estimator is used to build a new mesh k+1 on which a new solution will be sought. The

entire process is achieved within a single calculation, comprising a set of successively

adapted meshes and their solutions.
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Fig. IV-1. Principle of mesh adaptation.

2. Error Estimations

Dealing with the approximation error, i.e., the difference between the exact solution

and a numerical solution, is an arduous task because the bounds of the approxima-

tion error are complex to obtain, with the added difficulty that they are problem-

dependent. Over the last two decades, the theory of a posteriori error estimations

[58, 57] has significantly progressed to allow the measure and minimization of approx-

imation errors. In this theory, the computed solution itself is used to inexpensively

provide point-wise error estimations. In this section, we will present two error es-

timations: jump-based error indicator and projection-based error estimator. Their

advantages and disadvantages will be discussed.

a. Jump-based Error Indicator

Some error estimators for transport problems have been theoretical derived (see,

for instance, [137, 65, 138]), requiring the use of an adjoint calculation, which can
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significantly increase the computational cost of the error estimator. Furthermore, this

adjoint (dual) solution needs to be sought in a richer space than the primal solution.

As a consequence, simpler techniques or considerations are frequently employed in

order to obtain an error indicator; as noted in the introduction (Section A), several

authors utilize the gradient of the numerical solution to drive the mesh refinement.

Here, we propose an error estimator that is both related to the formal mathe-

matical derivation of the a posteriori error and intuitively practical. The fact that

DG methods are discontinuous approximations, with the presence of jumps in the

numerical solution at the interfaces between elements, can be used to monitor the

approximation error. It has been observed that, as the mesh is refined, the magni-

tude of these jumps tends to zero, since the true solution is better approximated.

Therefore, it is intuitive to use the jump values as an indication of the spatial error

distribution and our mesh adaptive method will closely monitor these jumps. The

a posteriori error estimators used in [137, 65, 138] is based on the the interior and

interface (edges in 2-D) residuals. The integrated inter-element jumps are closely re-

lated to the interface residual and using them to control the error distribution in our

simulations is, therefore, closely related to a more formal mathematical justification

and can be a sensible (and less costly) alternative to adjoint-based error estimates.

Nonetheless, in the above discussion, the jumps are to be understood in the light

of the SN transport approximation, i.e., as direction-dependent (or angular) jumps.

However, in most steady-state SN algorithms, the angular flux is not kept (except on

the domain’s boundaries and the interfaces of its partitions) but is discarded after

a transport sweep has been performed for a given direction. Thus, the information

retained is usually limited to the flux moments, which are angle-integrated quantities,

as shown in Eq. (C.35), because the number of moments is usually significantly smaller

than the number of directions. This has led us to modify the error estimate in order
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to only employ angle-integrated quantities and we finally arrive at the definition of

the practical error indicator used in this dissertation:

ηk
g,K =

1∥∥Φk
g

∥∥2

2

∫
∂K

[[Φk
g ]]

2 ds =
1∥∥Φk
g

∥∥2

2

∫
∂K

(
M∑

m=1

wm[[Ψk
g,m]]

)2

ds (4.1)

for K ∈ Tk
g,h, g = 1, · · · , G

where

[[Φk
g(
r)]] = Φk,+

g (
r)− Φk,−
g (
r) (4.2)

and

Φk,−
g (
r) = lim

s→0−
Φk

g(
r + s
n) (4.3)

Φk,+
g (
r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

lims→0+ Φk
g(
r + s
n) when 
r /∈ ∂D∫

�Ω·�n>0
Ψk,−

g (
r, 
Ω) dΩ +
∫

�Ω·�n<0
Ψinc

g (
r, 
Ω) dΩ

=
∑

�Ωm·�n>0wmΨk,−
g,m(
r) +

∑
�Ωm·�n<0wmΨinc

g,m(
r) when 
r ∈ ∂Dd

Φk,−
g (
r) when 
r ∈ ∂Dr

(4.4)


n is the unit norm outward vector wrt the element K on the element boundary ∂K;

∂Dd is the Dirichlet boundary; ∂Dr is the reflecting boundary. Ψk,−
g (
r, 
Ω) is the

angular flux defined on the element boundary. Ψk
g(
r) is the scalar flux. Tk

g,h denotes

the mesh for the g-th group, at mesh adaptivity cycle k; note the use of the subscript

g for each mesh triangularization to stress that different energy groups may have

different meshes.

This error indicator for a given element K ∈ Tk
g,h, is the integrated jump of

the scalar flux Φk
g(
x) along all interfaces ∂K. The error indicator is weighted by the

norm of the scalar flux so that all energy groups can converge at the same rate. This

indicator, denoted hereafter as jump-based, is simple and inexpensive to compute and
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will be used to drive the mesh refinement.

b. Projection-based Error Estimator

This so-called projection-based error estimator was proposed in [125, 126] for elliptic

and Maxwell’s equations and was later extended in the context of the multigroup

neutron diffusion equations by Wang and Ragusa [56].

Instead of computing the flux moments on the adapted mesh Tk
g,h at each mesh

adaptation cycle k, they are solved for on a refined adapted mesh Tk
g,h/2. Tk

g,h/2 is

obtained by refining each element K of the Tk
g,h mesh (in 2-D triangular geometries,

this translates into subdividing each triangle K into 4 smaller triangles). We denote

the solution on the refined mesh Tk
g,h/2 as Φk

g,h/2. This finer solution lives in a much

richer function space than the solution of the Tk
g,h mesh, so it is significantly closer

to the exact solution. We then project the finer solution back into the function space

of the Tk
g,h mesh. The projection ΠhΦ

k
g,h/2 is an fairly close approximation of the

numerical solution on the coarse mesh Tk
g,h. The L2 norm of the difference between

the solution computed on the finer mesh Tk
g,h/2 and its projection onto Tk

g,h provides

a good representation of the spatial error on Tk
g,h. Following the practice employed in

elliptic problems, where the semi-H1 norm, i.e., the L2 norm of the currents is used to

compute the error estimate [139, 140, 141], we have chosen to compute the L2 norm of

the difference of the first (angular) flux moments (i.e., the x and y components of the

net current) on the fine mesh and its projection on the coarse mesh. This difference

is calculated on all elements of the coarse mesh, at adaptivity cycle k, as follows.

For simplicity, we have dropped the mesh iteration superscript k in the following
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equations.

μk
g,K =

∫
K

[
(ΠhJ

x
g,h/2 − Jx

g,h/2)
2 + (ΠhJ

y
g,h/2 − Jy

g,h/2)
2
]
d
r∫

D

[
(ΠhJ

x
g,h/2)

2 + (ΠhJ
y
g,h/2)

2
]
d
r

, (4.5)

K ∈ Tk
g,h; g = 1, · · · , G

In this equation and afterwards, the projection operation is defined as:

Find ΠhΦ ∈W h
D, such that,

(
ΠhΦ,Φ

∗)
D =

(
Φ,Φ∗)

D, ∀Φ∗ ∈W h
D (4.6)

The solution vector of ΠhΦ is computed with a matrix-vector product of the inverse of

the global mass matrix and the right-hand-side vector obtained with Φ, which could

be in a richer function space than the DGFEM space W h
D. Because the continuity on

the element interfaces of solutions belonging to space W h
D is not required, the global

mass matrix corresponding to W h
D is block diagonal, where a block corresponds to an

element. (It could even be strictly diagonal if we define shape functions which are

orthogonal to each other on the reference element.) So the inverse of this matrix rep-

resenting the projection operation can simply be done cell by cell; its cost is negligible

compared to the cost of the solver. In contrast, in the continuous FEM setting, in

order to avoid inverting the global mass matrix, which is not block diagonal in that

case, the projection operation keeps the solution values on all element interfaces to

preserve continuity and solutions are projected locally onto the span of the bubble

interior functions only (since values of bubble functions on the element boundary are

equal to zero).

In a preliminary version of the code developed, we tested the option of either

choosing the first flux moments, i.e., the net currents, or the zeroth flux moment,

i.e., the scalar flux, for calculating the error and results suggested that the first
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flux moments were a better choice. This error estimator, valid on Tk
g,h, requires the

calculation of the numerical solution on the finer mesh Tk
g,h/2 at every mesh adaptation

cycle k, which may seem sub-optimal because (i) there are more unknowns in the

finer mesh and (ii) only the error on the coarse mesh is obtained. We will discuss

this point in Section C. The error distribution calculated is for the solution on the

coarse mesh and not the fine mesh on which we sought the solution. Although a fixed

ratio between these two errors may exist in the asymptotic range, this ratio could

be problem-dependent and may not be easily obtained a posteriori . Nonetheless,

upon convergence, the final product of this mesh adaptivity strategy is the numerical

solution on the finer adapted mesh, which, as we have already mentioned, is much

closer to the exact solution than the numerical solution on the coarser adapted mesh.

Furthermore, this error estimate is, by construction, asymptotically exact. Accuracy

and simplicity are among its more obvious advantages and it can also be used for

hp-type AMR with minor modifications as presented in [125, 126].

c. A Two-Mesh Error Estimator

For debug purposes, when projection-based error estimator is used, the solution on the

coarse mesh can also be computed at each adaptivity cycle (rather than approximation

it by the projection of the finer mesh solution.) Then, an error estimation can be

evaluated straightforwardly using the difference between the fine solution and the

coarse solution directly.

μk,ref
g,K =

∫
K

[
(Jx

g,h − Jx
g,h/2)

2 + (Jy
g,h − Jy

g,h/2)
2
]
d
r∫

D
[
(Jx

g,h)
2 + (Jy

g,h)
2
]
d
r

(4.7)

In the asymptotic range (i.e., fine mesh limit), μk,ref
g,K and μk

g,K are very similar.
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d. Reference Numerical Solution as Estimator

Finally, for debug purposes as well, an numerical “exact” solution to the SN transport

equations can be obtained and stored for verification of the various error estimates.

We denote this solution as the reference solution and typically obtain it using the

two-mesh error estimator μk,ref
g,K .

Once this reference solution 
Jref
g has been computed, we can drive the AMR

procedure using the following “exact” spatial error distribution εg,K .

εkg,K =

∫
K

[
(Jx

g,h − Jx,ref
g )2 + (Jy

g,h − Jy,ref
g )2

]
d
r∫

D
[
(Jx

g,h)
2 + (Jy

g,h)
2
]
d
r

(4.8)

e. Closing Comments on the Error Estimates

Note the AMR processes based either on ηg,K , μg,K , μref
g,K , or εg,K will yield different

meshes and convergence histories.

In the results Section, we compare the error Eq. (4.8) as a function of the number

of unknowns for the following three refinement strategies: (1) uniform mesh refine-

ment, (2) adaptivity using the jump-based indicators of Eq. (4.2), and (3) adaptivity

using the projection-based error of Eq. (4.8). The meshes resulting from the two

AMR strategies will also be compared.

3. Refinement Strategy and Stop Criteria

The criterion for refinement is defined as follows: an element K of Tk
h is selected for

refinement if

ηk
g,K ≥ α max

K ′∈T
k
g,h,1≤g′≤G

(
ηk

g′,K ′
)
, (4.9)
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where α is a user-defined fraction (we used α = 0.3, unless otherwise noted). This

criterion allows us to focus the computational effort on elements with the largest

errors and tends to equi-distribute the spatial error. Note that this criterion does not

mean that 30% of the elements are refined at each iteration; only the elements whose

error is greater than or equal to 30% of the largest error are refined. xuthus was

written to allwo hp-refinement but only h-adaptivity has been fully implemented so

far, so there is need to specify an additional criterion to select beween h- (subdividing)

or p- (increasing the polynomial order of) refinement at this point.

We can apply the above strategy with any other error estimates: μk
g,K, μk,ref

g,K , or

εk,ref
g,K . It can easily be seen that this strategy leads to group-dependent meshes in a

natural way. It is possible to specify (user-input) that several energy groups share

the same mesh, i.e., the number of meshes is not necessarily equal to the number of

energy groups. In this case, the above refinement criterion should be understood as

follows: if a cell is marked for refinement in any energy group sharing the same mesh,

then it is going to be refined.

We obtain the global error index by summing the error estimates over all ele-

ments,

ηk
g =

√ ∑
K∈Tk

g,h

ηk
g,K , g = 1, · · · , G (4.10)

though this is only a reliable measure of the global error when the projection-based

(μk
g,K), two-mesh (μk,ref

g,K ), or reference error (εk,ref
g,K ) estimates are utilized.

The AMR iterations are stopped when

ηk
g < tolAMR, g = 1, · · · , G (4.11)
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or when the total number of adaptivity cycles has been reached. In cases where the

globally-refined solution is available at each cycle of the mesh adaptation, we can

evaluate the relative errors of the scalar flux at little extra cost

μk,ref
g =

∥∥Φg,h − Φg,h/2

∥∥
2

‖Φg,h‖2
(4.12)

and use this to control the termination of AMR.

4. hp-type Hierarchy of 2-D Unstructured Meshes

The Discontinuous Galerkin (DG) FEM supports hp unstructured meshes for AMR

applications in a natural manner. By construction of the approximation space in

DGFEM, the continuity of the numerical solution is not required across element

boundaries. Therefore, an arbitrary difference in refinement level can be employed

easily in between neighboring elements (for instance, see the Figures of Sections B and

C). We refer this as mesh multi-irregularity later. Performing the upwind procedure

to solve the transport equation using DGFEM on an AMR mesh is straightforward,

even for higher-order finite element approximations. On hp-type meshes there are

no constraints on the difference of polynomial orders between two neighbor elements

as well. We do not need to constrain the edge and vertex shape functions to ensure

the continuity in DGFEM. This concept of mesh irregularity applies independently

to an energy group: depending on the local smoothness of the solution, the number

of elements varies locally.

In addition, meshes with different numbers of unknowns (i.e., different mesh

irregularities) are also desired in the context of multigroup calculations because the

behavior of particles can vary greatly with their energy. For example, the total cross

section of fast neutrons is smaller than the one of thermal neutrons; furthermore,

fast groups are usually less diffusive than thermal group, and streaming is more
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important in the fast portion of the energy spectrum. In short, the smoothness

of the multigroup solution is rightfully expected to be quite different in between

the multigroup components. This leads to another AMR concept: the multi-mesh

concept, or group-dependent AMR meshes. Because the solution on any element

is locally determined with DGFEM, it is easier to deal with the mesh coupling in

between energy groups or to project the solution from one mesh onto another.

In our implementation in xuthus, the user can set

1. the maximum difference in refinement levels (mesh irregularity),

2. the maximum polynomial order to be used, and

3. the maximum level difference in between two elements located in different

meshes that have a common parent element (or equivalently have the same

initial element).

In addition, several energy groups can be tagged by the user so that they share the

same adapted mesh (a useful feature to limit the total number of group-dependent

meshes when the number of energy group is large).

It is important to note that all meshes are derived from the same initial (and

usually) coarse mesh.

We denote by Tk
g,h a subdivision of domain D at the k-th mesh adaptivity cycle

for one energy group g of all G energy groups. The number of elements on the mesh

Tk
g,h is denoted by Nk

el,g. The initial mesh, T0
g,h, is a conforming triangular mesh,

either obtained from a structured 2-D Cartesian mesh whose rectangles have been

split into 2 triangles, or obtained from a 2-D Delaunay mesh generator (our initial

unstructured meshes are generated with Triangle [93]). All energy groups are sharing

the same initial mesh T0
h. All elements in the initial mesh are numbered with a fixed
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ordering. This ordering will help to create the natural ordering, which will be used

for mesh coupling and explained later. Any given mesh Tk
g,h (k ≥ 0; 1 ≤ g ≤ G)

consists of disjoint open element cells K such that their union fully covers D, i.e.,⋃
K∈T

k
g,h
K = D.

3
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1 2
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2
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Fig. IV-2. Element refinement rules.

Once an element K has been flagged for refinement, it is subdivided into 4 equal

smaller triangles (as seen on Fig. IV-2). All four child elements have the same shape.

A subdivision into 4 smaller elements avoids the creation of sliver elements (which are

frequently obtained when triangles are successively cut into 2 or 3 smaller triangles; we

note that sliver elements could be mitigated using techniques such as edge swapping

but we have not implemented such techniques and, therefore, only refine a given

element into 4 children). The rules for element refinement are as follows:

1. Child element with rank I is placed near vertex 1.

2. Child element with rank II is placed near vertex 2.

3. Child element with rank III is placed near vertex 3.
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4. Child element with rank IV is placed at the center.

5. The three vertices of child elements 1 to 3 common with the original element

inherit the same local numbering.

6. The three vertices of center child element are numbered using the opposite

vertex numbers of the original element.

7. Vertex and edge numbering of four child elements follow the rules presented in

chapter 2.

These rules are illustrated in Fig. IV-2. These numbering rules ensure that the local

vertex numbering is always counter-clockwise.

The children elements and the parent element remain related and the refinement

process leads to a hierarchy of mesh cells that have all been obtained from subdivisions

of cells from the initial mesh T0
h. All elements form a tree hierarchy structure. We

denote as active an element that is not refined any further, i.e., it is a cell on which

basis functions are defined. A cell becomes inactive after it has been refined. We

number all active elements with the so-called natural ordering, explained below. This

ordering (or sets of rules) allows us to reconstruct on the fly the tree structure (instead

of storing it) with only the knowledge of the refinement level of all active elements.

1. First, the ordering is based on the ordering of initial elements; the number of

an active element is smaller if its initial element has a smaller number.

2. Second, elements sharing the same closest ancestor element are ordered based on

the rank of their ancestors which are the direct children of the closest common

ancestor. Smaller rank has smaller numbering.
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Natural ordering is illustrated in Fig. IV-3. This natural ordering proved to be useful

for the mesh coupling because once it is set up, only refinement levels of all elements

are needed to describe the partition of the domain.

(b) Refinement tree structure

1 2 3 4

5 6 7 8

9 10 11

Number of all elements: 14
Number of active elements: 11
Maximum refinement level: 2
Maximum irregularity: 1

Number of initial elements: 2

1
2

3 2
1

3

1

23

4
5

6 7
8

9 10

11

Initial element 1

Initial element 2
(a) sample domain

Fig. IV-3. Refinement tree.

We define the refinement level �(K) for a given element K as the number of times

a cell in the original mesh T0
h has been refined to yield element K. Note that the the

refinement level �(K) is not the number of refinement cycles k since mesh cells are not

necessarily refined at each adaptivity cycle. Practically, each time a cell is refined, its

children inherit its refinement level, augmented by 1, (by convention, mesh cells in the

initial mesh all have a refinement level of 0). Note that two neighboring elements, K1

and K2, that have the same refinement level (�(K1) = �(K2)) share a common edge

in its entirety. This notion will prove useful to determine the upwind contribution,

detailed next in Section 5. Once an element has been refined, it is removed from

the sweep ordering and replaced by its 4 children, in the appropriate order for all

directions. The sweep ordering algorithm will be detailed in Chapter V.
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5. Edge Interface Flux Mapping

In a sweep-based solution procedure for transport or diffusion calculations (e.g., SSOR

for diffusion), knowledge of the incoming angular fluxes from upwind neighboring

elements or the scalar fluxes of the all neighboring elements are required to solve the

local system in a given element.

We have three basic situations to deal with in the case of AMR, which are illus-

trated in Fig. IV-4: case (1) both elements sharing an edge have the same refinement

level (this situation is identical to the case without refinement but will be explained

in details as this will be helpful to understand cases 2 & 3); case (2) the edge contri-

bution to element K comes from smaller elements; case (3) the edge contribution to

element K comes from larger elements. There are two equivalent ways to compute the

edge contribution: one manner employs 2-D prolongation and edge coupling matrices,

the other manner uses only 1-D prolongation and edge operation matrices. Both ways

are explained below for completeness. In transport calculations, the edge coupling

only requires operations dealing with the basis functions that are nonzero on a given

edge. This forms a subset of the element basis functions and can be dealt with as a

1-D problem only since the coupling amounts to computing a 1-D mass matrix (the

basis functions not associated with that edge are exactly zero and do not contribute

to the coupling). But, in the case of a diffusion solver, edge coupling also involve

terms containing the derivative of the basis functions (and then any basis function

may be nonzero on any given edge), requiring that all basis functions be taken into

account in the implementation. Both coupling ways are presented here, although the

second way employing all basis functions is recommended for a matrix-free algorithm

due to its ease of implementation.
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Fig. IV-4. Three cases of edge coupling.

a. With Cell Prolongation and Edge Coupling Matrices

First, we consider a given edge e separating element K and its neighbor K ′, with the

assumption that these two elements possess the same refinement level, i.e., �(K) =

�(K ′) as shown in case 1 of Fig. IV-4. In such a situation, edge e is shared in its

entirety by K and K ′ (e = K
⋂
K ′). Let us consider the simplest edge coupling

term (i.e., only functions and not their derivatives participate in the coupling terms),

which is given by ∫
e

uK ′(x, y)u∗K(x, y) ds (4.13)

where u∗K is an arbitrary test function in element K and uK ′ is the solution on the

neighboring element K ′. We use the notation u to designate the solution variable,

which, in transport calculations, is the angular flux and, in diffusion calculations, is

the scalar flux.

Expanding the solution and test function with the shape functions and applying

the change of variables to map onto the reference element, we have

u∗K(x, y)|e = u∗T
K bK(x, y)

∣∣
e

= u∗T
K b̂K(ξ1, ξ2)

∣∣∣
e

= u∗T
K b̂(ξi) (4.14)

uK ′(x, y)|e = bT
K ′(x, y)uK ′

∣∣
e

= b̂T (ξ1, ξ2)uK ′

∣∣∣
e

= b̂T (−ξj)uK ′ (4.15)
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The definitions for ξk, k = 1, 2, 3 can be found in Chapter II. Here, i is the local edge

ID of edge e with respect to element K and j is the local edge ID of e for element

K ′. Substituting the ξk into Eq. (4.13), we obtain∫
e

uK ′(x, y)u∗K(x, y) ds =
LAB

6
u∗T

K

[
3

∫ 1

−1

b̂(ξi)b̂
T (−ξj)ds

]
uK ′

=
LAB

6
u∗T

K E1C
i,j uK ′, (4.16)

where the type-1 edge coupling matrix E1C
i,j was defined in Chapter II and LAB is

the length of edge [AB]. When assembling the global system, vectors uK ′ and u∗T
K

simply indicate which columns and rows of the global system should be used to in-

sert the local matrix LAB

6
E1C

i,j . When assembling the right-hand-side vector, we have

LAB

6
E1C

i,j uK ′. u∗T
K simply tells us where the resulting local vector should be added on

the global vector.

We now analyze the situation where the neighboring elements of K have been

further refined. For simplicity, let us first consider case 2 of Fig. IV-4, where element

K has an neighboring contribution along edge [AC] from two smaller elements, K ′
1

and K ′
2; note that there is only a refinement level difference of 1 between K and its

two neighbors, i.e., �(K ′
1) = �(K ′

2) = �(K) + 1. The contribution to K, through edge

[AC], of elements K1 and K2 is given by:∫
[AB]

uK ′
2
(x, y)u∗K(x, y) ds+

∫
[BC]

uK ′
1
(x, y)u∗K(x, y) ds (4.17)

Let us consider edge [AB] first. Expanding the solution with the shape functions and

applying the change of variables as in case 1, we have

uK ′
2
(x, y)

∣∣
AB

= b̂T (−ξj)uK ′
2

(4.18)
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Note that the (determinant of the) Jacobian of the coordinates transformation is LAB

2

here. Again, we expand the test function with the shape functions and, before apply-

ing the change of variables, we virtually cut the element K and prolong the solution

on element K to its children elements on the edge common with K1. Because of the

rule of refinement, this prolongation operation is only determined by the rank of the

child element i1. (Ranks of three corner child elements are equal to the corresponding

vertex number of the parent element based on our refinement rules.)

u∗K(x, y)|AB = u∗T
K bK(x, y)

∣∣
AB

= (Pi1u
∗
K)TbK1(x, y)

∣∣
AB

= (Pi1u
∗
K)T b̂(ξi) (4.19)

Note that with our refinement rules, we have

i1 = mod (i, 3) + 1

i2 = mod (i1, 3) + 1 (4.20)

The Pk, k = 1, 2, 3, 4 matrices we have introduced are cell prolongation matrices.

They operate on the local solution vector and give the solution vectors on the four

child elements. With our definition of shape functions and the refinement rules, they

are independent of the element shape. These prolongation matrices for the four child

elements are given below, for polynomial orders up to 4 (we have outlined the various

parts according to the polynomial order):
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P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0 0

1
2 0 1

2 0 0 −
√

6
4 0 0 0 0 0 0

√
14

16 0 0

0 0 0 1
4 0 0 −

√
15
8 0 0 0

√
21

16 0 0 0 0

0 0 0 0 1
4 0 −

√
15

24 0
√

15
24 −

√
6

8
5
√

21
384 −

√
21

64
5
√

21
384 −

√
10

32

√
10

32

0 0 0 0 0 1
4 0 0

√
15
8 0 0 0

√
21

16 0 0

0 0 0 0 0 0 1
8 0 0 0 −

√
35

16 0 0 0 0

0 0 0 0 0 0 0 1
8 0 0

√
35

128 0 −
√

35
128

√
6

32

√
6

32

0 0 0 0 0 0 0 0 1
8 0 0 0

√
35

16 0 0

0 0 0 0 0 0 0 0 0 1
8 − 5

√
14

256 0 − 5
√

14
256

5
√

15
96 − 5

√
15

96

0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0

0 0 0 1
4 0 0

√
15
8 0 0 0

√
21

16 0 0 0 0

0 0 0 0 1
4 0 0 −

√
15
8 0 0 0

√
21

16 0 0 0

0 0 0 0 0 1
4

√
15

24 −
√

15
24 0 −

√
6

8
5
√

21
384

5
√

21
384 −

√
21

64 0 −
√

10
16

0 0 0 0 0 0 1
8 0 0 0

√
35

16 0 0 0 0

0 0 0 0 0 0 0 1
8 0 0 0 −

√
35

16 0 0 0

0 0 0 0 0 0 0 0 1
8 0 −

√
35

128

√
35

128 0 −
√

6
16

√
6

32

0 0 0 0 0 0 0 0 0 1
8 − 5

√
14

256 − 5
√

14
256 0 0 5

√
15

96

0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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P3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 0 1

2 0 0 −
√

6
4 0 0 0 0 0 0

√
14

16 0 0

0 1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
4 0 0 0

√
15

24 −
√

15
24 −

√
6

8 −
√

21
64

5
√

21
384

5
√

21
384

√
10

32 0

0 0 0 0 1
4 0 0

√
15
8 0 0 0

√
21

16 0 0 0

0 0 0 0 0 1
4 0 0 −

√
15
8 0 0 0

√
21

16 0 0

0 0 0 0 0 0 1
8 0 0 0 0 −

√
35

128

√
35

128

√
6

32 −
√

6
16

0 0 0 0 0 0 0 1
8 0 0 0

√
35

16 0 0 0

0 0 0 0 0 0 0 0 1
8 0 0 0 −

√
35

16 0 0

0 0 0 0 0 0 0 0 0 1
8 0 − 5

√
14

256 − 5
√

14
256 − 5

√
15

96 0

0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0

1
2 0 1

2 0 0 −
√

6
4 0 0 0 0 0 0

√
14

16 0 0

1
2

1
2 0 −

√
6

4 0 0 0 0 0 0
√

14
16 0 0 0 0

0 0 0 1
4 0 0 0

√
15

24 −
√

15
24 −

√
6

8 −
√

21
64

5
√

21
384

5
√

21
384

√
10

32 0

0 0 0 0 1
4 0

√
15

24 0 −
√

15
24 −

√
6

8
5
√

21
384 −

√
21

64
5
√

21
384 −

√
10

32

√
10

32

0 0 0 0 0 1
4

√
15

24 −
√

15
24 0 −

√
6

8
5
√

21
384

5
√

21
384 −

√
21

64 0 −
√

10
32

0 0 0 0 0 0 − 1
8 0 0 0 0

√
35

128 −
√

35
128 −

√
6

32

√
6

16

0 0 0 0 0 0 0 − 1
8 0 0 −

√
35

128 0
√

35
128 −

√
6

32 −
√

6
32

0 0 0 0 0 0 0 0 − 1
8 0

√
35

128 −
√

35
128 0

√
6

16 −
√

6
32

0 0 0 0 0 0 0 0 0 − 1
8

5
√

14
128

5
√

14
128

5
√

14
128 0 0

0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that P4 is never used in the edge mapping, since it related to the interior

child element but it will be employed for element coupling, for instance in the multi-

group case.
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Substitute Eqs. (4.18) and (4.19) into the integral,∫
[AB]

uK ′
2
(x, y)u∗K(x, y) ds =

LAB

6
(Pi1u

∗
K)T

[
3

∫ 1

−1

b̂(ξi)b̂
T (−ξj)ds

]
uK ′

2

= u∗T
K (PT

i1

LAB

6
E1C

i,j )uK ′
2

(4.21)

Similarly, we obtain the contribution from edge [BC]:∫
[BC]

uK ′
1
(x, y)u∗K(x, y) ds =

LBC

6
(Pi2u

∗
K)T

[
3

∫ 1

−1

b̂(ξi)b̂
T (−ξj)ds

]
uK ′

1

= u∗T
K (PT

i2

LBC

6
E1C

i,j )uK ′
1

(4.22)

When the refinement levels are strictly greater than 1, as shown on the left pane

of Fig. IV-5, we employ the fact that the meshes are nested and recursively use the

above procedure, presented for the case of a refinement level difference of 1. For the

situation shown on Fig. IV-5, the contribution through edge [AD] to element K from

the neighboring elements K ′
2, K

′
12, K

′
11 is:

(PT
i1

LAB

6
E1C

i,j )uK ′
2
+ (PT

i2
PT

i1

LBC

6
E1C

i,j )uK ′
12

+ (PT
i2
PT

i2

LCD

6
E1C

i,j )uK ′
11

(4.23)

Refinement levels of any degree can be treated this way, using the cell prolongation

matrices.

So far, we have described the contribution from smaller elements to larger ele-

ments. The case of neighboring contribution from larger elements to smaller elements

is derived in an analogous fashion. Consider case 3 of Fig. IV-4. The contribution for

element K is simply given by

LAB

6
E1C

i,j Pj1uK ′ (4.24)
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Fig. IV-5. Multi-irregularity, i.e., differences > 1 in refinement levels.

When the refinement levels are strictly greater than 1, we again employ the fact

that the meshes are nested and recursively use the above procedure to determine the

neighboring contributions.

Finally, considering the right pane of Fig. IV-5, the contributions from K ′ to K

is,

LAB

6
E1C

i,j Pj2Pj1uK ′ (4.25)

This procedure applies for all other edge coupling terms and is simply done by

changing edge coupling matrix from E1C
i,j to the appropriate matrices E2C

K,i,j, E3C
K,i,j or

E4C
K,i,j. Refer to Chapter III for more details regarding these additional edge coupling

matrices.

b. With Edge Prolongation and Edge Operation Matrices

Edge flux mapping can also be perform by considering on the edge under considera-

tion. In this case, the edge contribution reduces to a 1-D problem.



198

2

ξ−1 10
1

Fig. IV-6. 1-D reference element.

The 1-D reference element is represented by the [−1; +1] interval on Fig. IV-6.

Our choice of basis function for the triangle produces the Lobatto polynomials on

the triangle’s edges (see, e.g., pp. 27-27 and 56-57 in [5] for the definition of Lobatto

polynomials).

Let us consider the type-1 edge coupling first. Since the view of edge coupling

requires that we extract the the 1-D solution vector from the 2-D element solution
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vector, we define the following extraction matrix, for any three local edges:

T1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.26)

T3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because of the definition of 2-D and 1-D shape functions on their reference elements,

the extraction operation simply takes a vector of size (p+1)(p+2)/2 (solution vector

on an element) and extracts the nonzero components corresponding to a given edge

(size of the vector solution on an edge is p+ 1). There are three extraction matrices

for the three different edges.

Then, we need to rotate the neighboring edge solution vector to align it with the
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orientation of the edge of the local element. The edge rotation matrix is

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
This rotation operation simply swaps the first two degrees of freedom corresponding

to the two edge vertices and adds minus sign on all the other terms with odd polyno-

mial orders. We have used the “underlined” notations for all 1-D items: the rotation

matrix, 1-D shape functions, reference mass matrix and 1-D edge prolongation ma-

trices. Note that rotation on 2-D faces is more complicated and would be needed in

3-D calculations.

After we obtain the solution vectors on both sides of an edge, we apply the 1-D

mass matrix to provide us with the integral of their inner product along that edge.

The reference 1-D mass matrix is defined as

M = 3

∫ +1

−1

b̂(ξ) b̂
T
(ξ) dξ (4.27)

and, up to order 4, is given by

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 −
√

6
2

1√
10

0

1 2 −
√

6
2
− 1√

10
0

−
√

6
2
−

√
6

2
6
5

0 −
√

21
35

1√
10
− 1√

10
0 2

7
0

0 0 −
√

21
35

0 2
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.28)
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Finally, for case 1 in Fig. IV-4, the neighboring contribution is LAB

6
TT

i M RTj .

Because both the 1-D mass matrix and the rotation matrix are symmetric, their

sequence can be exchanged. It is useful to note that the edge coupling matrix E1C
i,j

can be obtained again, since

E1C
i,j = TT

i M RTj (4.29)

Ti and Tj are element independent, so is the type-1 edge coupling matrix E1C
i,j .

In the case of local refinement (edge irregularity), we need to use 1-D edge

prolongation matrices defined as follows

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0

1
2

1
2
−

√
6

4
0

√
14

16

0 0 1
4
−

√
15
8

√
21

16

0 0 0 1
8

−
√

35
16

0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.30)

P2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2
−

√
6

4
0

√
14

16

0 1 0 0 0

0 0 1
4

√
15
8

√
21

16

0 0 0 1
8

√
35

16

0 0 0 0 1
16

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4.31)

Multiplying these prolongation matrices with the 1-D solution vector of an edge gives

the 1-D solution vector of the child elements connected to the edge.

For instance, in case 2 of Fig. IV-4, the edge contribution from elements K ′
1 and
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K ′
2 to K is

LAB

6
(TT

i PT
1 M RTj)uK ′

2
+
LBC

6
(TT

i PT
2 M RTj)uK ′

1
(4.32)

If there are multiple hanging nodes on the edge (i.e., the level difference between the

element and its neighbors is greater than 1), we again can recursively use the 1-D

prolongation matrices. For example, the contribution for element K in Fig. IV-5 is,

LAB

6
(TT

i PT
1 M R Tj)uK ′

2
+
LBC

6
(TT

i PT
2 PT

1 M R Tj)uK ′
12

+
LCD

6
(TT

i PT
2 PT

2 M R Tj)uK ′
11

(4.33)

Finally, consider case 3 of Fig. IV-4. The contribution for element K is simply given

by

LAB

6
(TT

i M P2 RTj)uK ′
2

(4.34)

Considering the right pane of Fig. IV-5, a case with multi-irregularity, the contribu-

tions from K ′ to K is given by

LAB

6
(TT

i M P1 P2 RTj)uK ′
2

(4.35)

We can define other edge operations to deal with the other edge coupling terms,

needed in the DFEM diffusion solver. The following matrices given below should

replace the use of the Ti (i = 1, 2, 3) matrices above. To obtain the outward normal

derivative on an edge, we need to define the following matrices (for conciseness, we

only give the matrices up to order 3; the reader can generate the order-4 matrices
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with the Mathematica notebook provided in Appendix F.)

NK,1 =
2

L1

⎡⎢⎣ −r1
cot α3

2
cot α2

2
−

√
6 cot α2

2
0

√
6r1

√
10 cot α2

2
0

√
10r1 0

−r1
cot α3

2
cot α2

2
−

√
6 cot α3

2

√
6r1 0 −

√
10 cot α3

2
−√

10r1 0 0

0 0 0 0 0 0
√

15(r3−r2) −
√

15r1
3

√
15r1
3

√
6r1

0 0 0 0 0 0 0 0 0 0

⎤⎥⎦
NK,2 =

2

L2

⎡⎢⎣
cot α3

2
−r2

cot α1
2

√
6r1 −

√
6 cot α3

2
0

√
10r2

√
10 cot α3

2
0 0

cot α3
2

−r2
cot α1

2
0 −

√
6 cot α1

2

√
6r2 0 −

√
10 cot α1

2
−√

10r2 0

0 0 0 0 0 0
√

15r2
3

√
15(r1−r3) −

√
15r2
3

√
6r2

0 0 0 0 0 0 0 0 0 0

⎤⎥⎦ (4.36)

NK,3 =
2

L3

⎡⎢⎣
cot α2

2
cot α1

2
−r3 0

√
6r3 −

√
6 cot α1

2
0

√
10r3

√
10 cot α1

2
0

cot α2
2

cot α1
2

−r3

√
6r3 0 −

√
6 cot α2

2
−√

10r3 0 −
√

10 cot α2
2

0

0 0 0 0 0 0 −
√

15r3
3

√
15r3
3

√
15(r2−r1)

√
6r3

0 0 0 0 0 0 0 0 0 0

⎤⎥⎦
Note this edge operation matrix depends on the shape of the real (physical) element.

Next, we define some geometrical variables for a given triangle,

y12 =
y1 − y2

2A
, x21 =

x2 − x1

2A

y23 =
y2 − y3

2A
, x32 =

x3 − x2

2A

y31 =
y3 − y1

2A
, x13 =

x1 − x3

2A
. (4.37)

In order to obtain the derivative in the x-direction, we define the following edge

operation matrices:

XK,1 =

⎡⎣ y23 y31 y12 −√
6y12 0 −√

6y23

√
10y12 0 −√

10y23 0

y23 y31 y12 −√
6y31 −√

6y23 0 −√
10y31

√
10y23 0 0

0 0 0 0 0 0
√

15(y12−y31)
√

15y23
3

−
√

15y23
3

−√
6y23

0 0 0 0 0 0 0 0 0 0

⎤⎦
XK,2 =

⎡⎣ y23 y31 y12 −√
6y31 −√

6y23 0 −√
10y31

√
10y23 0 0

y23 y31 y12 0 −√
6y12 −√

6y31 0 −√
10y12

√
10y31 0

0 0 0 0 0 0 −
√

15y31
3

√
15(y23−y12)

√
15y31
3

−√
6y31

0 0 0 0 0 0 0 0 0 0

⎤⎦ (4.38)

XK,3 =

⎡⎣ y23 y31 y12 0 −√
6y12 −√

6y31 0 −√
10y12

√
10y31 0

y23 y31 y12 −√
6y12 0 −√

6y23

√
10y12 0 −√

10y23 0

0 0 0 0 0 0
√

15y12
3

−
√

15y12
3

√
15(y31−y23) −√

6y12

0 0 0 0 0 0 0 0 0 0

⎤⎦
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Similarly, for the derivative in the y-direction, we have

YK,1 =

⎡⎣ x32 x13 x21 −√
6x21 0 −√

6x32

√
10x21 0 −√

10x32 0

x32 x13 x21 −√
6x13 −√

6x32 0 −√
10x13

√
10x32 0 0

0 0 0 0 0 0
√

15(x21−x13)
√

15x32
3

−
√

15x32
3

−√
6x32

0 0 0 0 0 0 0 0 0 0

⎤⎦
YK,2 =

⎡⎣ x32 x13 x21 −√
6x13 −√

6x32 0 −√
10x13

√
10x32 0 0

x32 x13 x21 0 −√
6x21 −√

6x13 0 −√
10x21

√
10x13 0

0 0 0 0 0 0 −
√

15x13
3

√
15(x32−x21)

√
15x13
3

−√
6x13

0 0 0 0 0 0 0 0 0 0

⎤⎦ (4.39)

YK,3 =

⎡⎣ x32 x13 x21 0 −√
6x21 −√

6x13 0 −√
10x21

√
10x13 0

x32 x13 x21 −√
6x21 0 −√

6x32

√
10x21 0 −√

10x32 0

0 0 0 0 0 0
√

15x21
3

−
√

15x21
3

√
15(x13−x32) −√

6x21

0 0 0 0 0 0 0 0 0 0

⎤⎦

6. Mesh Coupling

We now address the issue related to having group-dependent adapted meshes with

a multigroup solver. Multigroup equations are coupled via fission and scattering

reactions, leading to coupling terms in between groups that require mass matrices,

where the test function lives on one mesh, say g, and the shape function lives of the

g′ mesh.

First, let us describe the standard case, where a single mesh is employed for all

energy groups. In this situation, we can simply follow the four steps given below to

construct the (angular) directional source for any energy group g and direction m in

the DGFEM transport sweep:

1. First, obtain the (n, k) moment of the source term due to energy transfers from

all other groups

Qg
n,k(
r) = δn,0χg(
r)

G∑
g′=1

νσf,g′(
r)Φ
g′
n,k(
r)+

G∑
g′=1
g′ �=g

σg′→g
s,n (
r)Φg′

n,k(
r) =

G∑
g′=1

f gg′
n,k(
r)Φ

g′
n,k(
r)

(4.40)
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2. Second, test the above source moment with all basis functions and carry out

the inner product (integration) to form the (n, k) moment of the right-hand-

side. This is equivalent to multiplying the global mass matrix with the source

moment vector. This multiplication can be done element-wise in a matrix-free

fashion.

3. Then, apply the spherical harmonics coefficient 2n+1
4π

Yn,k(
Ωm) to this right-hand-

side source moment for the chosen direction m.

4. Finally, sum the contributions from all moments together (
∑N

n=0

∑k=n
k=−n . . .).

In our implementation, the various flux moments and angular fluxes, for a given

energy group, share the same mesh, so we can keep the last two steps. However,

because different meshes for different energy groups are used, we had to combine

the first two steps together in order to evaluate the right-hand-side source moment

directly. This is explained below and constitutes what we refer to as “multi-mesh”.

The idea to calculate the right-hand-side source moment for one group g with

solutions of other groups on different meshes is pictured on Fig. IV-7. In general,

integrating terms that involve functions defined on two entirely different meshes is

an expensive procedure, since it involves finding the cell of one mesh in which a

quadrature point defined on the other mesh lies. The integration will in this case

have a complexity higher than O(N), i.e., the number of operations will grow faster

than linearly with the number of cells N . However, this problem can be avoided if we

use hierarchical meshes that result from refinement of the same chosen initial coarse

mesh.

With the common initial coarse mesh and the regular refinement, we can always

find a set of cells, which we denote by Tgg′,h, that satisfy the following conditions:

• the union of the cells covers the entire domain, and
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Fig. IV-7. Three cases of multi-mesh coupling.

• a cell in mesh Tgg′,h is active on at least one of the two meshes Tg,h or Tg′,h.

Then for all of these cells, we will again have three basic situations to deal with,

similar to the cases of edge flux mapping described in the preceding Section; the

three cases of mesh-coupling are depicted in Fig. IV-7.

The first case is simple since there are no refinement and the shape and test func-

tions live on the same local mesh common to both energy groups. The contribution

from group g′ to group g for the element K is

f gg′
K,n,kAK

12
MΦg′

K,n,k. (4.41)

Using the same methodology developed for edge mapping, we deal with the

second and the third cases of mesh-coupling next. The contribution group g′ to

element K in group g in case 2 and case 3 are, respectively

4∑
i=1

f gg′
K,n,kAK ′

i

12
PT

i MΦg′
K ′

i,n,k (4.42)

f gg′
K,n,kAK

12
MP1Φ

g′
K ′,n,k (4.43)

where A represent the triangle area.
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In the cases where the difference in refinement levels is greater than 1, we can

apply the prolongation matrices Pi, i = 1, 2, 3, 4 recursively for the cases where the

maximum refinement level difference between any cells in a common cell of Tgg′,h

of the two meshes is greater than 1. The methodology applies to arbitrary level

differences, although in practice, we have limited that level difference to 6.

Implementation-wise, we naturally order all active cells. Therefore, we do not

need to visit the mesh information for each mesh coupling and the algorithm can

be used indifferently in a matrix-free scheme or within a standard matrix assembly

procedure. If the number of energy groups is smaller than the number of meshes,

i.e., some energy groups share the same mesh, we can combine their solution vectors

into the source moment first and then apply the mesh coupling algorithm. The

mesh coupling operation needs to be done only for different meshes. Our numerical

experiments have shown that mesh coupling can be efficiently implemented.

This algorithm can be extended for projecting the solution from one mesh to

another easily because a DG method is used. The global mass matrix is block di-

agonal, hence, its inverse is easily computed element-wise. Projecting the solution

onto another mesh is useful for bootstrapping the numerical procedure. Once a nu-

merical solution has been obtained and its flux moments Φn,k computed, the spatial

error distribution is assessed using the jump-based error estimated with Eq. (4.2) (or

using any other error estimate described earlier) and a new adapted mesh Tk+1
h is

prescribed. In order to bootstrap the solution procedure on that new mesh, the flux

moments Φn,k are projected on Tk+1
h . For bootstrapping, we also need to project the

SAF on selected edges from one mesh to another. Again, if we number these edges

appropriately, we have a similar 1-D algorithm to perform the projection.
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C. Results

We present five examples to validate our approach.

1. Example 1: One-group Source Driven Problem

This first example consists of an homogeneous medium placed in vacuum. The domain

size is [10×10] cm2; the total cross section σt is varied from 0.1 to 100 cm−1 to model a

wide range of domain optical thicknesses (from 1 MFP to 1000 MFP). The scattering

ratio c = σs,0/σt is chosen to be equal to 0.9. A volumetric uniform and isotropic

source is imposed and a level-symmetric S4 angular quadrature is used for the angular

discretization. A 2-irregularity constraint is set in the AMR process. Two different

initial meshes are chosen and shown on Fig. IV-8: a structured regular mesh and an

unstructured mesh obtained with the Triangle mesh generator.

(a) Regular mesh (b) Aligned mesh

Fig. IV-8. Initial meshes for Example 1.

It is important to note that the unstructured mesh is aligned with the corner

singularities of the SN transport equation (using S4 in 2-D leads to 3 singular lines

per corner, thus a total of 12 singularity lines here). For a mesh aligned with the

singularities, the convergence is not restricted by the regularity of the solution. The

GMRes solver without preconditioning is used for this problem; tolerance tolsource is
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set to 10−12. μk,ref
g,K is used for the projection-based error estimator, i.e., two solutions

on both the coarse mesh Tk
h and the finer mesh Tk

h/2 are obtained at each cycle of

mesh adaptation. The convergence plots are generated in the following way: we first

use the projection-based error estimator to drive the AMR with highest polynomial

order 4, and obtain a much accurate reference solution; then we can evaluate the

numerical “exact” spatial error of the scalar flux of group g (here only one group) at

any cycle k like Eq. (4.8),

εk,ref
g =

∥∥Φg,h − Φref
g

∥∥
2

‖Φg,h‖2
(4.44)

and plot them with respect to the number of unknowns of the mesh Tk
h,g.

Fig. IV-9 shows the convergence rates as a function of the number of unknowns

when utilizing the unstructured aligned mesh as initial mesh. Fig. IV-10 shows the

convergence rates for various domain optical thicknesses as a function of the number

of unknowns when utilizing the structured regular mesh as initial mesh. Each pane

of Figs. IV-9 and IV-10 present 12 curves; the following three refinement strategies

are plotted: uniform mesh refinement (black lines), AMR refinement driven by the

jump-based estimator (red lines) and AMR driven by the projection-based estimator

(blue lines); each strategy is displayed for polynomial orders 1 through 4 (squares for

p = 1, circles for p = 2, crosses for p = 3 and diamonds for p = 4).

First, we discuss the results obtained using the initial mesh aligned with the

transport singularities (Fig. IV-9). For uniform refinement, we note that the asymp-

totic convergence rates behave as (p+1)/2 as a function of the number of unknowns,

which translates into orders of p+ 1 as a function of mesh size (the number of mesh

cells, thus of unknowns, is proportional to the square of the mesh size for uniform

refinement). The exception is the case with domain size equal to 1 MFP. This may

suggest that the 12 singularity lines may not be the only places where singularities
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Fig. IV-9. Convergence rates for various domain thicknesses and various polynomial

orders; case of the aligned initial mesh.
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Fig. IV-10. Convergence rates for various domain thicknesses and various polynomial
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are present. The results with AMR show a vast improvement over the uniform mesh

approach for optically large domains. With AMR, the number of unknowns can be

reduced by 1 to 1.5 orders of magnitude. It is clear that the higher-order results are

significantly better in terms of number of unknowns.

In light of these explanations, we proceed with the discussion of Fig. IV-10 show-

ing the convergence history for meshes that are not aligned with the singularities.

Here, the regularity in the transport solution constrains the convergence rates for

optically thin domain (see also a similar discussion in Chapter II) in the uniform re-

finement case. For large domain sizes, the AMR solutions are very accurate before the

convergence rates enter the singularity-constrained asymptotic range. With adapted

meshes, not only the convergence rates at the asymptotic range are improved, but

also the numbers of unknowns are much smaller than the ones of uniform meshes

to obtain the same level of accuracy. The projection-based error estimator delivers

meshes slightly better than with the jump-based error indicator but their differences

are small similar as shown in the results plotted in Fig. IV-9.

At this stage, we need to point out that, for the projection-based AMR, only

the number of unknowns of mesh Tk
h at the k-th adaptivity cycle has been graphed.

The error of adapted solutions on both the coarse mesh Tk
h and the finer mesh Tk

h/2

for all refinement cycles are compared in Figs IV-11 and IV-12. We can see that

when the AMR strategy reaches the asymptotic range, the convergence curves of

the coarse solution and the finer solution almost overlap, which means that the finer

meshes are almost as good as the coarse mesh. The coarse meshes are better when the

refinement is not at the asymptotic range, which can easily been seen in the 100-MFP

and 1000-MFP plots.

To complete the study of the convergence histories, we graph the accuracy

reached as a function of the CPU time on Figs. IV-13 through IV-14 for the two
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Fig. IV-11. Comparison of the coarse and finer solutions with the aligned initial

mesh.
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Fig. IV-12. Comparison of the coarse and finer solutions with the regular initial

mesh.
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initial meshes. At each cycle, the computing time is the accumulated time of all

previous cycles. For the projection-based error estimator, the finer error is plotted

with the computing time of the two solves per cycle together. This is the reason why

the computing times are slightly larger with the projection-based estimator than the

times with the jump-based indicator. For very thin domains, there is a modest gain

using AMR techniques. As the domain thickness increases, both AMR techniques

utilized present far better results than a uniform mesh refinement approach. For in-

stance, AMR with DGFEM(1) is about one order of magnitude less costly in number

of unknowns for the same accuracy as uniform refinement. In addition, AMR with

quadratic, cubic or quartic polynomials is about two times better than DGFEM(1)

with AMR.

Finally, we also compare the adaptive meshes generated using the two AMR

approaches in Fig. IV-15. The left mesh is the adapted mesh at cycle 14 with the

projection-based error estimator and α = 1/3. Number of active elements in this mesh

is 5042. The right mesh is the adapted mesh at cycle 13 with the jump-based error

indicator and α = 0.2. Number of active elements in this mesh is 5024. Numbers

of active elements of these two meshes are about the same and both meshes have

the uniform polynomial order 2. The numerically “exact” relative error of scalar

flux in L2 norm on the projection-based mesh is 3.20 × 10−6 while the error on the

jump-based mesh is 5.22×10−6. Both the projection-based and the jump-based error

estimations are able to detect the singularity lines when the mesh is not aligned with

the singularities.

Grind time are shown in Tables IV-I through IV-IV with four different polynomial

orders. Only the case with domain size 10-by-10 MFP and projection-based AMR is

considered. The grind time is defined as the average computing time per unknown

for solving one single task in the transport sweeps. This grind time includes the time
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Fig. IV-13. CPU time of AMR with the aligned initial mesh.
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(a) Projection-based (b) Jump-based

Fig. IV-15. Meshes with different error estimations.

needed to assemble the local system, solving it and updating the flux moments. The

time on construction of the source moments is not counted in the grind time but it

is usually a small fraction of the computing time in the transport sweeps.

Results show that the grind times of quadratic and cubic elements are even

smaller than the linear element although the numbers of local operations per unknown

are much larger than the one with the linear element. These results suggest the

computing time is dominated by accessing data from the memory. The grind time with

polynomial order 4 is significantly larger than others may be due to cache missing with

a larger dimension of local system (Np(4) = 15). The presence of mesh irregularity

does not impact much the grind time.

2. Example 2: Search-light Problem

This example models a searchlight problem, where an incident beam of radiation is

propagated through in a vacuum. For instance, a similar problem has been studied in
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[53]. The spatial discretization causes the radiation to be distributed to all downwind

edges of a cell, leading to numerical dispersion. In this example, a domain of size

[0, 1]2 is chosen and an incoming radiation impinges the left face for 0.25 ≤ y ≤ 0.35.

For the chosen direction, the analytical solution would cause the radiation to leave

from the right edge for 0.583505568402405 ≤ y ≤ 0.683505568402405. Any amount

of radiation leaving from other values of y are due to the numerical spreading of the

beam. When the projection-based error estimator is used, α is set 1/3. When the

jump-based error indicator is used, α = 0.2 for the linear elements and α = 0.1 for

all other polynomial orders. In Fig. IV-16, we show the relative error in the angular

flux as a function of unknowns for the projection-based and jump-based adaptive

refinement strategies and uniform refinement. In Fig. IV-17, we show the relative

error in the right edge leakage on 0.583505568402405 ≤ y ≤ 0.683505568402405 (in

%) as a function of unknowns for the three strategies.
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Fig. IV-16. Convergence history of the angular flux, Example 2.
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Fig. IV-17. Convergence history of the out-leakage on the right boundary with

0.583505568402405 ≤ y ≤ 0.683505568402405.

We can see that both jump-based and projection-based AMR solutions are sig-

nificantly more accurate than the solution obtained with uniform refinement. The

convergence rates of solution employing AMR are significantly enhanced compared

to the convergence rates obtained from the uniform refinement procedure. It also

needs to be pointed out that the solution computed with quadratic elements is more

precise than the solution obtained with linear element while there are not much gain

with higher polynomial orders greater than 2.

We then plot the angular flux along the right boundary to see the numerical

dispersion in Figs. IV-18 and IV-19 for the projection-based AMR and the uniform

refinement with polynomial orders from 1 to 4.

To see how the polynomial order affects the transition at point (1, 0.683505568402405)

along the right boundary, we plotted the angular flux around this point in the y-
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Fig. IV-18. Angular flux on the right boundary with the projection-based AMR.
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Fig. IV-19. Angular flux on the right boundary with the uniform refinement.
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direction with the projection-based AMR and the uniform refinement in Fig. IV-20.

Results of cycle 15 for the projection-based AMR and of cycle 7 for the uniform

refinement are shown.
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Fig. IV-20. Angular flux on the right boundary around point

(1, 0.683505568402405).

We plotted the resulting mesh obtained with the projection-based AMR at cycle

12 (4840 active elements) and the angular flux in Fig. IV-21. For comparison, we also

plotted the results with the jump-based AMR at cycle 13 (4750 active elements) in

Fig. IV-22. Although both estimations are able to capture the solution discontinuity

along the streaming direction, the location of the discontinuity is better resolved by

the projection-based error estimator: by looking at Fig. IV-21 more closely, we can

notice the double-line feature along the two discontinuity lines. Similar behaviors are

also seen for higher polynomial orders.
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Fig. IV-21. Angular flux with the projection-based error estimator at cycle 12.

Fig. IV-22. Angular flux with the jump-based error indicator at cycle 13.
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3. Example 3: 2-group Eigenproblem

This example is a 2-group eigenvalue problem to show that the AMR methodology

proposed in this chapter can also be applied to eigenvalue problems. Geometry is

described in Fig. IV-23. Material data are shown in Table IV-V.

V
ac

uu
m

160cm 40cm

160cm
Fissile material

Reflector

R
eflecting

Reflecting

40cm

Vacuum

Fig. IV-23. Geometry of the 2-g eigenvalue problem.

Convergence studies are conducted with this eigenvalue problem. Fig. IV-24

shows the convergence history for the two energy groups using different polynomial

orders and the projection-based error estimator μk,ref
g,K .

We can note that the solution in each group converges in the same rate. The

thermal group requires more degrees of freedom to reach the same accuracy as the fast

group. The convergence in keff with different polynomial orders is plotted in Fig. IV-

25, in which the x-coordinates represents the total number of degrees of freedom for

the two groups. Adapted meshes at cycle 8 with linear and quadratic elements are

given in Fig. IV-26 for the fast and thermal groups.

As we can see, regions at the material discontinuity are more refined by AMR

automatically.
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Table IV-V. Material properties of the 2-group eigenvalue problem.

Fissile material Reflector

g = 1 g = 2 g = 1 g = 2

Total XSs σt,g (cm−1) 0.55 1.1 0.561 2.34

Fission XSs νσf,g (cm−1) 0.005 0.125 - -

Fission spectrum χg 0.99 0.01 - -

Scattering matrix g′ = 1 0.52 0.0 0.51 0.0

σg→g′
s,0 (cm−1) g′ = 2 0.02 1.0 0.05 2.3
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Fig. IV-24. AMR convergence of the 2-g eigenvalue problem.
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Fig. IV-25. AMR convergence of the 2-group eigenvalue problem with keff.

4. Example 4: Takeda Benchmark

The Takeda benchmark problem, a 4-group eigenvalue problem, has been described in

Chapter II. We solve it here using AMR to demonstrate the multi-mesh calculation

and solution singularities in a large domain. Projection-based error estimator and

LS-16 angular quadrature are used. Four different meshes are assigned to four energy

groups. The convergence histories employing polynomial order 1 to 3 are plotted in

Figs. IV-27 and IV-28. The adapted meshes obtained after 15 cycles of refinement

for the four energy groups are shown in Fig. IV-29 where a polynomial order 3 is used.

The number of active elements for the four groups are 3516, 4347, 6384 and 8544,

respectively. The error in keff for this cycle is 0.0032 pcm. More refinements are ob-

served at the reentering boundary corner. AMR captures the material discontinuities

at the annular interfaces of the core.
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Fig. IV-26. Meshes of the 2-group eigenvalue problem.
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Fig. IV-27. Convergence in the flux for the Takeda benchmark problem.
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Fig. IV-28. Convergence in keff for the Takeda benchmark problem.

5. Example 5: 44-group Pin Cell Problem

A fuel cell surrounded with cladding is one of the basic structures of LWR (Light

Water Reactor). We arranged fuel cells into an infinite lattice as shown in Fig. IV-30.

Then, a geometry consisting of a few fuel elements is chosen for the calculations, in

which all four boundaries are set to be reflecting. In Fig. IV-30, we indicate that

there are two ways to select such a fuel element geometry: using a 0 and 45 degree

rotation with respect to the x-direction.

The 44-group cross section data of the fuel cell problem are obtained with SCALE

package. The cross sections for the example 4 in the NEWT manual [72] are used,

which are generated with the T-XSEC sequence of TRITON [71]. 22 groups are

in the thermal range. Maximum anisotropic scattering order Na is set to 2 in this

calculations. A LS-4 quadrature is used in this calculation to make it clearer (fewer

singularities) that the singularities of the SN solution are also present in eigenvalue
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(a) Group #1 (b) Group #2

(c) Group #3 (d) Group #4

Fig. IV-29. Adapted meshes of the four energy groups, after 15 cycles of mesh adap-

tation.
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45

Fuel cell

Fuel cellFuel cell

Fuel cell

Coolant

x

Fig. IV-30. Fuel lattice.

problems. In real-world reactor analysis, a higher quadrature (such as the product

quadrature with many more sweeping directions in the azimuthal direction) should

be employed. Calculations with AMR are conducted with the two fuel elements. The

initial meshes are shown in Fig. IV-31. After 40 cycles, we obtain the two different

adapted meshes given in Fig. IV-32.

 Fuel  Cladding  Coolant

(a) 0◦ rotation
 Fuel  Cladding  Coolant

(b) 45◦ rotation

Fig. IV-31. Initial meshes for the 44-group pin problem.

Singularity lines are observed in both calculations. the solutions of the continuous

transport equation should be exactly the same for these two fuel elements. However,

although we can control the spatial discretization error, the numerical solutions are
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 Fuel  Cladding  Coolant

(a) 0◦ rotation
 Fuel  Cladding  Coolant

(b) 45◦ rotation

Fig. IV-32. Adapted meshes for the 44-group pin problem.

different due to the angular discretization error. For example, the scalar flux in

the first group (i.e., with the highest neutron energy) is very different as shown in

Fig. IV-33. The singularities in the thermal groups are not as strong as the ones of

the fast groups. The keff values for two calculations are 1.18874 and 1.19652, or about

800pcm difference. Such solutions are clearly unacceptable due to the poor choice of

the angular quadrature, which was later verified by employing a higher-order product

quadrature set.
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(a) 0◦ rotation (b) 45◦ rotation

Fig. IV-33. Scalar fluxes of the first group of two fuel elements.

D. Conclusions

In this chapter, we proposed two error estimations to drive the AMR applied to the SN

transport equation: the projection-based and the jump-based error estimations. Tests

were performed using both source problems and eigenvalue problems. In conclusion,

we find that:

1. A cell-based AMR is feasible for higher-order DGFEM;

2. AMR can significantly reduce the number of unknowns and the CPU time re-

quires to obtain an accurate solution. Notably, it pays to use, at least, quadratic

basis functions;

3. Jump-based error estimation is cheaper and good for a variety of problems;

4. Singularities in the transport solutions can be captured with both error estima-

tions;
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5. Although we can align the mesh with the solution singularities due to the SN

quadrature once an angular quadrature has been chosen, such an alignment may

not important because whenever AMR improves the solution significantly, the

angular discretization error become dominant in the numerical solution.

6. We were able to reduce significantly the spatial error, to the point where the

angular error (ray effects) were dominant. The next logical step would be to

address the question adaptivity in both space and angle.
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CHAPTER V

xuthus, A 2-D AMR TRANSPORT SOLVER

xuthus is the 2-dimensional multigroup SN -transport solver with Adaptive Mesh Re-

finement (AMR) developed in Texas A&M University (TAMU) as a part this Ph.D.

dissertation. The main feature of xuthus is that the spatial discretization error is

controlled using AMR the first time for the multigroup SN -transport calculations, in-

cluding acceleration solvers. Guaranteed numerical solutions, with error below a pre-

scribed tolerance, are provided in an efficient manner through AMR. The spatial dis-

cretization scheme employed in xuthus, the hp-version of the Discontinuous Galerkin

Finite Element Method (DGFEM) on unstructured triangular meshes, allows for a

flexible and non-uniform distribution of the degrees of freedom throughout the com-

putational domain. Group-dependent adapted meshes (referred to as “multi-mesh”),

with arbitrary refinement level differences between elements (aka “multi-irregularity”)

and non-homogeneous polynomial order are possible with hp-type meshes. Since the

adapted mesh delivered with the AMR procedure can follow the physics closely, the

computing effort can be significantly reduced. In addition, the reduction in memory

needs with AMR enables the accurate solution of problems that were once impossible

with a uniform mesh because of the prohibitive computational effort of the uniform

refinement, both in CPU and memory. Furthermore, a stable conforming Diffusion

Synthetic Acceleration (DSA) scheme makes xuthus effective for a wide range of

highly-diffusive problems. A parallelization with spatial domain decomposition has

been implemented with MPI (Message Passing Interface) and allows xuthus to take

the advantage of the development of supercomputer architectures in order to handle

extremely large problems.
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In collaboration with the Nuclear Science and Technology Division (NSTD) of

the Oak Ridge National Laboratory (ORNL), xuthus may ultimately be distributed

as a released module within the SCALE (Standardized Computer Analysis for Li-

censing Evaluation) code system, providing users with an alternative to the current

transport solver NEWT (New Extended-step-characteristic-based Weighting Trans-

port code). All of the cross section processing options of SCALE are seamlessly

integrated into a xuthus-based sequence. The powerful yet easy-to-use geometry

description in SCALE, together with the Triangle mesh generator provides xuthus

with the capability to solve problems containing sophisticated geometries.

xuthus can be used for both source- and eigenvalue-problems and can function

as both a forward and an adjoint solvers. xuthus can potentially be applied be-

yond the traditional nuclear fuel assembly calculations, e.g., for shielding or inverse

calculations, due to all of these features. In short, xuthus’s characteristics are:

• Fortran 90 Language;

• Unstructured triangular meshes;

• hp-type DGFEM with polynomial order up to 4;

• Multi-mesh, multi-irregularity and non-homogeneous polynomial order;

• h-type AMR driven by either projection-based or jump-based error estimators;

• Standalone DG-diffusion calculation;

• Conforming stable DSA;

• Krylov solver and SI (Source Iteration);

• “Integratable” into SCALE;

• Domain decomposition with MPI, with synchronous or asynchronous transport

sweeps.
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A. Development History of xuthus

Development of xuthus can be roughly divided into four stages.

Initial stage, October 2006 to June 2007. Upon completion of a M.S. thesis

[142] dealing with AMR applied to the multigroup diffusion equations, the following

conclusions were drawn:

1. Exponential spatial convergence rate can be obtained for the multigroup diffu-

sion equations using p-type or hp-type mesh adaptation, while h-type adaptivity

alone only yields algebraic convergence rates.

2. Projection-based error estimator can be used to drive AMR without the need

of a finely resolved initial mesh.

3. Using different meshes for different energy groups can further reduce the number

of unknowns in the multigroup scenario. Mesh coupling in dependent group-

dependent meshes can be done either either using an adaptive integral technique

or by visiting the tree structure of the refinement history.

The experience gained by programming of hp-type mesh refinement with continu-

ous FEM was successful and it was proposed to apply the hp-version AMR to the

multigroup SN -transport equation, which is a better mathematical model to describe

particle transport. The model error is greatly reduced compared to suing a diffusion

model, which was one of the major critique of performing AMR for a diffusion model

of particle transport. As explained in Chapter I, we have not considered angular

adaptation nor the accuracy of the multigroup approximation in the present work,

although we recognize that discretization errors are also associated with both energy

and angle variables.
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First summer at ORNL, June 2007 to August 2007. Both Dr. Ragusa and

I were at ORNL during this period; Fortran 90 was chosen as the programming lan-

guage. We also decided that the new code must support MPI because problem sizes

were becoming larger for Hi-Fi (High-Fidelity) calculations. We planned to write a

reusable production code but not a toy code in this Ph.D. research, which meant that

a significant amount of effort was targeted at code quality (use of modern version-

control tools, documentation, verification). In this stage, the frame of the code was

formed: data structures for multiple unstructured meshes, MPI, transport-sweep or-

dering, hp-type mesh refinement capability, iterative solver. Extensive discussions on

the design of modules were conducted and module initializers were rewrote several

times to make sure their logic were clearly defined. Common interests are identi-

fied through talks with people at NSTD. Before we left ORNL, we had named the

code xuthus and it was running with unstructured regular meshes, i.e., without hp-

refinement and without accelerations. The grind time of the transport sweep was in

a good range compared with equivalent codes. We were facing with new challenges:

how to deal with mesh coupling effectively both for multi-mesh and multi-irregularity,

how would the performance of higher order elements affect runtime? How does AMR

work with SN -transport? And MPI with adaptive mesh refinement is far from trivial.

Development stage, August 2007 to December 2007. Mesh coupling algo-

rithms were mastered and coded in a matrix-free scheme. Multi-mesh and multi-

irregularity were implemented without much performance loss due to the fact that

fetching data from memory is the bottle neck of modern computing but not floating-

point operations in the CPU. Also, for the same reason, the grind time per unknown

remained almost constant for different polynomial orders. The grind time of p = 2

was even smaller than linear grind time because of the cache capacity. We noticed



244

that higher-order calculation were still effective for calculations where boundary-layer

effect was significant. Full hp-mesh capability were coded. We were thrilled that the

SN singularities were isolated with the h-type AMR driven by the projection-based

error estimator. Also, MPI was implemented for AMR.

Improvement period, end of 2007 to present. We were facing a fork in devel-

opment options: one option was to continue the development of AMR, including full

implementation of hp-type and goal-oriented refinements; the other was to enhance

the solver by including Krylov solvers, eigensolvers and acceleration techniques such

as DSA. We decided to go in the second direction. The DGFEM for the diffusion

turned out to be much more complicated to implement than for the transport. We

first implemented the well-known IP form for elliptic problems and used it to perform

DSA. We noticed immediately that this scheme was not stable for large cell sizes.

By keeping the IP penalty below 0.25, the scheme remained stable. To understand

this unexpected phenomenon, we tried several the variational derivations and a new

conforming DSA scheme was proposed. It turned out that the modified IP form is

a stabilization scheme of this conforming scheme, which also suffered instabilities in

the intermediate mean-free-path range . We also develop a means of dealing with the

significant angular fluxes and anisotropic scattering within these new DSA schemes.

GMRes for one-group transport problem is implemented with an open-source soft-

ware package. Preconditioned CG with the Eisenstat “trick” was also coded for the

DG-diffusion calculation with the modified IP form. For all new spatial schemes, we

made sure that AMR and MPI were working properly. SQMR solver for the DG-

diffusion was employed for the diffusion conforming scheme, which is symmetric but

not positive definite. Integration of xuthus within SCALE was considered during

the summer 2008. The jump-based error estimator was implemented, while testing



245

the convergence properties of DG-FEM. Chebyshev acceleration for the power itera-

tion was implemented and the ARPACK solver was added. Meanwhile, Dr. Ragusa

and several students added several angular quadratures, which can be used for highly

forward peaked scattering calculations.

Now, xuthus is in a stable version. Future developments may include:

• Finalize the integration of xuthus into SCALE ;

• Add METIS to perform domain decomposition on unstructured meshes;

• Perform a load rebalance after mesh adaptation;

• Add more post-processing options so that xuthus can be coupled with other

modules in the TRITON sequence to perform depletion calculations;

• Implement an unstructured Coarse-Mesh Finite Difference (CMFD) solver within

xuthus to accelerate power iterations;

• Implement full hp-adaptivity;

• Implement goal-oriented calculations;

• Optimize memory management in transport sweeps;

• Add P1 conforming DSA;

• Optimize the design of shape functions and implementation of polynomial for

orders greater than 4;

• Make the solver and AMR dimension-independent;

• Add cycle detection in the transport sweeps.
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B. Implementation Details

1. Data Structure for the Unstructured Mesh

The spatial coordinates of all vertices are needed to locate all elements covering the

domain. It is not suggested to describe the coordinates of vertices separately for

all elements. If, for example, there are on average five elements connecting to a

vertex, then four times the memory would be needed to store the same coordinates.

So a vertex array is used, where each entry in the array containing the coordinates

of a vertex and the entry index will is as the vertex ID. We can access the vertex

coordinates through a vertex ID.

All local operations with DGFEM are associated with elements, so an element

array is naturally needed to describe all elements. IDs of the three counter clock-wise

numbered vertices must given for each element. The vertex array and the element ar-

ray with vertex IDs are the minimum data required to describe a geometry. However,

for simpler coding and better run-time performance, redundant geometrical data is

also stored. e.g., the three neighboring element IDs of a given element are needed

to easily access the neighbors of a element or to use them to describe the type of

boundary condition when a element lies on the boundary.

We also maintained an edge array (in 2-D, this would be a face array). Our

argument to have this redundant array is that edges form the domain boundary and

the sub-domain interfaces, where significant angular fluxes are required in transport

sweeps and for inter-processor communications. In addition, regional particle balance

(in- and out-leakage) needs also to be evaluated along a region’s edges. Our basic

principle for this edge array is to setup the bi-directional connections between elements

and edges, i.e., add an entry in the element type containing all of its edge IDs and

add two entries in the edge type, which are the edge’s left and right elements. We
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also have two more entries for the edge type to locate the edge in space: the starting

and ending vertex ID. Note that an edge has its own orientation defined by its two

vertices; this orientation may not be the same as the one defined by the element local

numbering. So, in the element type, we need have one more entry in general to state

how the edge is oriented in that element. In 2-D, we can simply add a minus sign

on the edge IDs if the two orientations are opposite. It is also convenient that add

two other entries for the edge type, which give the local edge ID in its left and right

elements. If a left or right element does not exist, i.e., the edge is a boundary edge,

we can use the element ID as the boundary type or the virtually connected element

ID in the case of periodic boundaries.

For h-type AMR, we need to add more entries in the element type to describe

the hierarchical mesh refinement structure. To be able to visit the refinement tree

structure from top to down, we need an entry containing the IDs of the four child

elements. The entry is set to zero if the element is not refined. On the other hand, we

need an entry containing its parent’s ID to visit the tree structure from the bottom

up. If an element is part of the initial mesh, this ID is zero. So far, these two entries

are sufficient for the purpose of h-refinement calculations. However, some additional

information has been stored to minimize the coding efforts and maximize the run-time

performance. The rank of the element among its siblings and its refinement level in

the tree have been added. An element is active when it is not further refined, i.e., all

its child elements are zero. An active element has another ID, which we called active

element ID, from the natural ordering we described in Chapter IV. So we need an

entry for all elements to store this active element ID. If an element is not active, this

entry is zero. To be able to access the element array through the active element ID,

we need a mapping array, whose entries are simply the elements’ ID numbers and

whose length is the number of active elements, in order to map the active ID to the
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element array ID.

When performing AMR, we need to temporarily increase the size of all arrays.

To manage empty entries, we create chain lists for each array. Once a new entry

needs to be added, the header of the corresponding chain list is accessed. Upon

completion of one adaptivity iteration, all the arrays are resized to minimize the

memory requirements. Note that because all these operations are not within the

iterative solver, they are not critical for runtime efficiency.

All of the above arrays form one mesh structure. In multigroup calculations,

there are mesh ID numbers for each group. The number of group-dependent meshes

does not need to be equal to the number of energy groups, but the user can control

which energy groups employ the same adapted mesh. When several meshes are used,

we simply keep as many (number-of-mesh copies) adapted meshes as required.

It is also helpful to setup at the beginning of a run the following data: a list

of initial elements, a list of boundary edges and lists of edges on interfaces between

subdomains. This information is useful for projecting solutions from one mesh to

another and for the initialization of computing modules. Note that the edges on

the subdomains’ interfaces need to be ordered properly to assure consistency among

processors.

2. Transport Sweep Ordering

Each combination of an element and a streaming direction is labeled as a task. We

define the incoming degree of a task as the number of upwind elements, i.e., the

number of dependent tasks. The incoming degree is always less than the number of

sides (edges) of an. When an edge is parallel or almost parallel with a streaming

direction, the neighboring element on its other side is neither upwind nor downwind.

Numerically we set a small real number EPS to determine this as follows: when the
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Table V-I. Subroutines to form the topological relations in between all transport

tasks.

Get Incoming Degree(g,itask) Get the incoming degree of a task in en-
ergy group g

Get UpWind Tasks(g,itask) Obtain a list of all upwind tasks for a task
in group g

Get DownWind Tasks(g,itask) Obtain a task list of all downwind tasks of
a task of group g

Modify DownWind Degree(g,itask) Modify incoming degrees of all downwind
tasks

Modify Edge DownWind Degree(g,edg,dir) Modify incoming degrees of all downwind
tasks of a single edge wrt the direction

inner product of the streaming vector 
Ωm and the unit outward norm vector of a side


ni is too small, i.e.,


Ωm · 
ni < EPS (5.1)

this side is considered as being parallel to the streaming direction. In the above

equation, i is the local side ID of the element. In our implementation, EPS is 10−8.

All tasks are managed through a task list or list of tasks. The total number of tasks

for a given mesh is the number of active elements times the number of streaming

directions. Each entry in the task list provides an active element ID, a streaming

direction ID and the incoming degree of a task. At the initialization stage, this task

list is not ordered. A few subroutines in Table V-I are used to setup the topological

relations in between all tasks, which are collected in one Fortran 90 module.

Note that the number of upwind tasks of a task which is on the downwind side

of a subdomain interface (wrt the streaming direction) depends on how we perform

communications in the paralle setup. If we always start sweeping from the subdo-

main interface (asynchronous mode), the incoming degree of these tasks need to be
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decreased in the subroutine.

With these subroutines, we can order the task list using a chain list, where

all entries are accessed with the header pointer hp. The algorithm is presented in

Algorithm 1.

Algorithm 1 Transport sweep ordering.

1: Insert IDs of all tasks whose incoming degrees are zero into the chain list one by

one with a specific priority rule ‡.

2: Initial number of tasks to be solved: itask ← 0.

3: Allocate memory for the new ordered task list.

4: while the chain list is not empty do

5: Get a task ID task id with the pointer hp from the chain list until the list is

empty.

6: itask ← itask + 1

7: Put the task with task id into the ordered task list.

8: Call Modify DownWind Degree(g,task id) to decrement the incoming degrees

of all downwind tasks by 1.

9: Call Get DownWind Tasks(g,task id) to obtain all downwind task dtask(j), j =

1, · · · , ndtask.
10: for j = 1 to ndtask do

11: Call Get Incoming Degree(g,dtask(j)) to check if its incoming degree is zero

or not.

12: if the incoming degree is zero then

13: Insert dtask(j) into the chain list with the specific priority rule ‡.

14: end if

15: end for
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16: end while

17: Check itask, see if it is equal to the number of total tasks ntask.

18: Deallocate memory for the old task list.

‡ Note that different priority rules can be applied. We did not try to optimize the

priority rule to minimize memory cost. Theoretically, memory needs to be allocated

solely for the sweep front, which is significantly smaller than the memory cost for

storing angular fluxes for all tasks. As of now, the best we have is that setting the

priority with the ID of the streaming direction, and only keeping the angular fluxes

for one direction of all active elements.

Although we do not need to order all tasks if we directly use the above algorithm

to perform a transport sweep, it is still preferred to do so for of cache optimization.

Reflecting
mΩ

mΩ

mΩ

Vacuum

Fig. V-1. Significant angular flux update.

The Significant Angular Fluxes (SAF) are stored in another Fortran 90 module.

We have two options on how to utilize the SAF. The first manner is as follows: before

performing a transport sweep, the SAF values are copied to a “work” memory location

and during the sweep, the SAF values are taken from and updated to these memory

slots (the SAF may be updated during the sweep as shown in Fig. V-1). By doing

so, we are in fact applying a Gauss-Seidel scheme for the SAF. The second manner

is that we always directly take the SAF values from the Fortran module where they

are stored. After a transport sweep, the SAF from the working array is copied to
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the SAF module (Jacobi iterative approach). Communication could be done at this

time if the sweeps are performed synchronously across subdomains’ interfaces. It is

important for the DSA algorithm that we employ the second option in the sweeps.

More details on the parallelization are presented in the next section.

3. Spatial Domain Decomposition with MPI

The only parallel technique available in xuthus so far is a spatial domain decompo-

sition, where communication across subdomains are performed using MPI. The entire

spatial domain is divided into subdomains with the number of subdomains is equal

to the number of processors np. The domain partition is done at the user-level as

of now and, in the future, should be automatically performed by calling a domain

decomposition package such as METIS [143]. A entry domain id in the element type

must present for all elements to differentiate between an element on a subdomain and

a ghost element ; a ghost element is an element belonging to other subdomains and

attached to the current subdomain through an edge on the subdomain’s interfaces.

Note that not all the children of an initial ghost element are ghost elements because,

at least, the central (fourth) child element is not connected to any interfaces. Like

active elements, there are also active ghost elements which are assigned an active ID

sequentially after the standard active elements.

Processors need to communicate the outgoing angular fluxes on their subdo-

main interfaces for transport calculation. Sweeping through a subdomain requires

knowledge of the incoming angular fluxes (provided by the active ghost elements)

on the interfaces; these flux values are obviously outgoing angular fluxes from other

subdomains. There are essentially two different ways in xuthus for setting up the

communications in between subdomains: asynchronously and synchronously.

In the asynchronous communication mode, we did not modify the sweeping order;
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an interface task and all its downwind tasks in a given subdomain can not be initiated

until its upwind task located in other subdomains are solved and the angular fluxes of

these tasks are obtained through communication. Obviously, the sequential feature

of the asynchronous transport sweep and the parallelization needs are in conflict,

especially for unstructured meshes; refer to [144] for additional discussions. We did

not optimize our implementation but simply used the sweeping algorithm presented in

the previous section and modified it because of communications requirements. Note

that because the communications are started with tasks and occur during a sweep,

the solution sequence is not known before run-time; we cannot pre-order all tasks and

must update dynamically the incoming degrees before performing a given task.

Although only the angular fluxes along the interface edges are needed, it is con-

venient to communicate the entire angular flux vector of the sending element. We

need to obtain a tag or sending port with the edge ID and the direction through the

proper ordering of the interfaces edges. Only when the orderings of any pair of two

adjacent processors for their common edges are the same can the two processors be

allowed to communicate.

Algorithm 2 Transport sweep with asynchronous communication.

1: Start listening of all receiving ports (MPI functionality).

2: Insert IDs of all tasks whose incoming degrees are zero into the chain list one by

one with a specific priority rule ‡.

3: Initial number of tasks to be solved: itask ← 0.

4: while itask is not equal to the total number of tasks ntask on the local processor

do

5: while the chain list is not empty do

6: Get a task ID task id with the pointer hp from the chain list until the list is
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empty.

7: itask ← itask + 1

8: Put the task with task id into the ordered task list.

9: Call Modify DownWind Degree(g,task id) to decrement the incoming de-

grees of all downwind tasks by 1. Check all downwind tasks one by one, if

it is in another domain, a non-blocking communication with the solution of

the current task is started (MPI functionality).

10: Call Get DownWind Tasks(g,task id) to obtain all downwind task dtask(j), j =

1, · · · , ndtask in the current subdomain.

11: for j = 1 to ndtask do

12: Call Get Incoming Degree(g,dtask(j)) to check if its incoming degree is

zero or not.

13: if the incoming degree is zero then

14: Insert dtask(j) into the chain list with the specific priority rule ‡.

15: end if

16: end for

17: end while

18: Test all left receiving ports (MPI functionality).

19: for all receiving ports just cleared do

20: Get the interface edge and call Modify Edge DownWind Degree to decre-

ment the incoming degrees of all its downwind tasks by 1. This subroutine

will also give a downwind task list dtask(j), j = 1, · · · , ndtask.
21: for j = 1 to ndtask do

22: Call Get Incoming Degree(g,dtask(j)) to check if its incoming degree is

zero or not.

23: if the incoming degree is zero then
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24: Insert dtask(j) into the chain list with the specific priority rule ‡.

25: end if

26: end for

27: end for

28: end while

‡: same remark as in the previous algorithm.

The communication mode is a synchronous communication, where sweep are

broken on the subdomains’ interfaces and each subdomain starts their portion of

the sweep at the same time (parallel block Jacobi). Ghost angular fluxes from the

previous source iteration or from the prolongation of a previous AMR solution are

used. Communications are done synchronously, after all processors finish all their

sweeping tasks. All processors copy their outgoing angular fluxes on the interfaces

from the working memory and send them to their neighboring processors.

These two communication modes are radically different. If the problem is mostly

absorbing (i.e., low scattering cross section), there is no point in doing synchronous

sweeps as the transport effect dominates the solutions are the flow of information

(upwind to downwind) is important. Such a situation is better handled with asyn-

chronous communications.On the contrary, if scattering is strong, diffusion processed

tend to dominate and there are no preferred flows of information, favoring a syn-

chronous communication mode. It has also been proposed that the uncollided flux

be solved with asynchronous communications (pure absorber situation) and subse-

quently use it to construct the first-collision source and finish solving the problem

with synchronous communication. We have not yet added this automatic switch in

xuthus.

We now present the DSA acceleration when performed with the synchronous
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communication mode. The transport bilinear form is

b(Ψ,Ψ∗) =

M∑
m=1

wm

(
(
Ωm · 
∇+ σt)Ψm,Ψ

∗
m

)
D+

M∑
m=1

wm

〈
[[Ψm]],Ψ∗+

m

〉
Ei

h

+
∑
e∈∂D

∑
�Ωm·�nb<0

wm 〈Ψm,Ψ
∗
m〉e

(5.2)

Let us define the interface between subdomain i and subdomain j as Fi,j, i = 1, ..., np; j =

1, ..., np, where np is the number of processors, i.e., the number of subdomains. All

Fi,i, i = 1, ..., np are null sets. If two subdomains i and j are not adjacent with com-

mon edges, their interface Fi,j is also a null set. Denote the set of all interfaces as

F = ∪np
i=1 ∪np

j=1 Fi,j and denote the set of all the interfaces for a given subdomain i

as Fi = ∪np
j=1Fi,j. Let us also re-define the set of interior edges as Ei

h = Ei
h\F (i.e.,

excluding edges belonging the subdomain interfaces). The bilinear form can then be

re-written as,

b(Ψ,Ψ∗) =

M∑
m=1

wm

(
(
Ωm · 
∇+ σt)Ψm,Ψ

∗
m

)
D+
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wm

〈
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m

〉
Ei

h

+
∑
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∑
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wm 〈Ψm,Ψ
∗
m〉e +
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〈
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m,Ψ
∗+
m

〉
e
−
∑
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∑
�Ωm·�ni<0

wm

〈
Ψ−

m,Ψ
∗+
m

〉
e

⎤⎦ ,
(5.3)

where the 
ni is the outward normal unit vector on Fi with respect to subdomain i.
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We can then define the bilinear form with domain decomposition (DD) as follows

bDD(Ψ,Ψ∗) =

M∑
m=1

wm

(
(
Ωm · 
∇+ σt)Ψm,Ψ

∗
m

)
D+

M∑
m=1

wm

〈
[[Ψm]],Ψ∗+

m

〉
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h

+
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∑
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wm 〈Ψm,Ψ
∗
m〉e +
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∑
�Ωm·�ni<0
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〈
Ψ+

m,Ψ
∗+
m

〉
e

(5.4)

It can be easily seen that the system corresponding this bilinear form can be divided

into np separate systems which can then be solved separately. When we use syn-

chronous communications, we basically move the term
∑np

i=1

∑
e∈Fi

∑
�Ωm·�ni<0wm 〈Ψ−

m,Ψ
∗+
m 〉e

to the right-hand-side, like in the case of reflecting boundaries. The subdomain in-

terface is treated like a reflecting boundaries. We define the surface source on the

subdomain interface Fi, i = 1, ..., np for DSA as

δJ inc
∣∣
�r∈Fi

=
∑

�Ωm·�ni<0

wm|
Ωm · 
ni|δΨ−(�)
m (5.5)

δ
Υinc
∣∣∣
�r∈Fi

= −
∑

�Ωm·�ni<0

3wm

Ωm|
Ωm · 
ni|δΨ−(�)

m , (5.6)

where δΨ
−(�)
m is the difference in the upwind (indicated by ′−′ superscript) angular

fluxes obtained from the active ghost elements before and after one transport sweep at

the �th iteration; the value after the transport sweep is obtained through synchronous

communications. Note that we will need to deal with the mesh irregularity for these

interfaces, which is different from the reflecting boundary situation where irregularity

does not exist.

After we obtain the scalar error E (�+1/2), we can accelerate the outgoing angular
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fluxes on all active elements on the interfaces:

Ψ+(�+1)
m =Ψ+(�+1/2)

m +
1

4π
(E (�+1/2) − 3D
∇E (�+1/2) · 
Ωm)

on 
r ∈ Fi, 
Ωm · 
ni > 0.

(5.7)

Through one synchronous communication, these accelerated values reach the neigh-

boring processors as ghost incoming angular fluxes for the next iteration. We have

discarded the 
Q1 contribution in the above equation.

Note that like flux moments from a previous AMR iteration were used to boot-

strap the numerical solution at the next iteration, we use the ghost incoming angular

fluxes of the previous cycle as the initial guess. Because all edges on the subdomains’

interfaces possess a natural ordering like all the active elements, the solution on the

edges can be projected with the simple algorithm presented in Chapter IV. It is

possible that an element in subdomain i may have two sides on the interface Fi,j.

This situation is illustrated in Fig. V-2. We may have two copies of the angular

fluxes of the ghost element. In this case, the angular fluxes in subdomain j will be

projected twice because the projections are done edge-by-edge, and we may have two

different solutions on the common vertex if the element solution to be projected is in

a richer solution space. However, the difference between these two edge-projections

on the common vertex should be negligible when the coarse mesh is good enough.

Finally, we always have the same copies when one source iteration converges and

communications have just been performed.

Parallelization of the diffusion calculation is straightforward if we only have to

perform the matrix-vector product, because no ordering is required in this operation.

The data needed to be communicated are the scalar fluxes and currents of active ghost

elements. Note that that constructing the source requires the 
Q1 term on the active

ghost elements, which can only be obtained through communications. For simplicity,
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Sub−domain interface

I

II

Connecting vertex

Connecting vertex

Fig. V-2. Elements have two edges on the one subdomain interface.

we do not do the 
Q1 communications now but assume that the 
Q1 jumps on the

subdomain interfaces are always zero.

With the SSOR preconditioner for DSA, all local solutions need to be ordered

again. Fortunately this ordering is much simpler than the transport ordering. The

majority of local solutions, i.e., the solutions for all elements whose edges are not part

of the subdomain interfaces can be done independently in any arbitrary order. For

the rest of elementary solutions, we simply split them into several stages based on the

connectivities of all subdomains. Communications are performed after each stage.

For example, in the domain configuration of Fig. V-3, there will be two stages: all

solutions on the subdomains of processors I and IV can be done completely in the first

stage while only solutions not on the domain interfaces are processed for processors

II and III; then processors I and IV send their results on the active interface elements

to their neighboring processors II and III; in the second stage, processors II and III

finish all their left local solutions. Note that each SSOR solve is composed of two

sweeps: a forward and a backward solve. We will need to do above solution inversely

as shown in the right pane of Fig. V-3.

Processor load could be severely unbalanced when using AMR. This problem
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I II

III IV

I II

III IV

Stage 1

Stage 2

(b) Backward(a) Forward

Fig. V-3. Stages of SSOR.

can only be solved by re-partitioning the domain and re-distributing the unknowns

accordingly. The idea on how re-partitioning is performed with AMR can be found

in [145]. Load rebalancing after AMR is not currently considered in xuthus. After

the refinement flag is obtained with an a posteriori error estimator, communications

are performed among all processors whose active elements located along the subdo-

main interfaces have received the refinement flags. In xuthus, the element irregular-

ity constraints (either within one adapted mesh or across group-dependent meshes)

are enforced across subdomain interfaces. For example, if 1-irregularity is imposed,

Fig. V-4 shows that elements II and III need to be refined due to the refinement flag

of element I on the subdomain interface.

4. Matrix-free Scheme

For each type of element, i.e., shape of an element + basis functions defined on the

reference element, we can create a collection of local operations. We do not need to

use a numerical quadrature to compute these operations, but instead computed their

results symbolically and implemented them directly to reduce the flops by exploring
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I

Sub−domain interface

II
III

Fig. V-4. Irregularity constraint with domain decomposition.

the known structure of the involved local matrices. Table V-II lists all the local

operations. The “importance” of these operations is labeled according to where the

operations are used: if they are called inside the one-group transport solver, they

have an importance level of 1; if they are called in other parts of multigroup transport

solver, they have an importance level of 2; otherwise have an importance level of 3.

In the table, u is the input solution vector of an element. u is the input solution

vector on a local edge. The reference mass matrix M, element prolongation matrices

Pi, i = 1, 2, 3, 4, stiffness matrix S and transport upwind coupling matrices Hi,Ki

have been defined in previous chapters. The reference 1-D mass matrix M, 1 -D

prolongation matrices Pi, i = 1, 2, rotation matrix R and edge operation matrices

Ti,Ni,Xi,Yi, i = 1, 2, 3 have also been defined previously. A is the triangle area;

Li, i = 1, 2, 3 are the lengths of the three edges. We have a few new notations:
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s =

∫
K̂

b̂(ξ1, ξ2) dξ1dξ2 (5.8)

Dx =
2

A
M−1

∫
K

b
∂

∂x
bT dxdy =

1

A
M−1

∫
K̂

b̂
∇ξb̂
T

⎡⎢⎣y3 − y1

y1 − y2

⎤⎥⎦ dξ1dξ2 (5.9)

Dy =
2

A
M−1

∫
K

b
∂

∂x
bT dxdy = − 1

A
M−1

∫
K̂

b̂
∇ξb̂
T

⎡⎢⎣x3 − x1

x1 − x2

⎤⎥⎦ dξ1dξ2 (5.10)

ei =

∫ +1

−1

b̂(ξi) ds (5.11)

P = M−1
N(p1),N(p1)MN(p1),N(p2) (5.12)

When p2 is less then p1, operating with the projection matrix P simply means ap-

pending N(p1)−N(p2) zeros on the input vector u. But when p2 is greater then p1,

higher-order terms have non-zero projections on the low-order terms. We used

J−1 det (J) =
1

2

⎡⎢⎣y3 − y1 x1 − x3

y1 − y2 x2 − x1

⎤⎥⎦ (5.13)

in the Dx and Dy formula. Other notations in the table are straightforward.

In Fig. V-5, we provide, as an example, a piece of pseudo-code that demonstrates

how the DCF edge terms are assembled in a matrix-free fashion for an interior edge:

! au1 - rhs vector of left element (Output)
! au2 - rhs vector of right element (Output)
! u1 - scalar flux vector of left element (Input)
! u2 - scalar flux vector of right element (Input)
! elm1 - left element ID (Input)
! elm2 - right element ID (Input)
! ied1 - local edge ID in left element (Input)
! ied2 - local edge ID in right element (Input)
! kh - penalty of the edge (Input)
! slen - edge length (Input)
! --------------------------------------------------------
! Following variables can be retrieved with element ID
! ndofs1 - length of u1
! ndofs2 - length of u2
! dc1 - diffusion coefficient of left element
! dc2 - diffusion coefficient of right element
! s2v1 - surface-volume ratio of left element
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! s2v2 - surface-volume ratio of right element
! x1 - x-coordinate of left element
! x2 - x-coordinate of right element
! y1 - y-coordinate of left element
! y2 - y-coordinate of right element
! vol1 - area of left element
! vol2 - area of right element
! ndofside1 - length of left solution vector on an edge
! ndofside2 - length of right solution vector on an edge
! s1 - left scalar flux on the edge
! s2 - right scalar flux on the edge
! ds1 - left norm derivative on the edge
! ds2 - right norm derivative on the edge
! rs1, rs2, t1, t2, tt1, tt2, tx1, tx2, ty1, ty2 - temporary working arrays
! get solutions and normal derivatives on the side into s1,ds1 and s2,ds2
CALL GET_SIDE_SOLUTION (ndofs1,u1,ied1,ndofside1,s1)
CALL GET_SIDE_DSOLUTION(s2v1,slen,ndofs1,u1,ied1,ndofside1,ds1)
CALL GET_SIDE_SOLUTION (ndofs2,u2,ied2,ndofside2,s2)
CALL GET_SIDE_DSOLUTION(s2v2,slen,ndofs2,u2,ied2,ndofside2,ds2)
! get [[u]] with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside1, s1, -1, rs1)
t1 = zero
CALL SIDE_MASS_PADD(-slen, ndofside1, rs1, ndofside2, t1)
CALL SIDE_MASS_PADD( slen, ndofside2, s2 , ndofside2, t1)
! get [[D*du/dn]]/2 with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside1, ds1, -1, rs2)
t2 = zero
CALL SIDE_MASS_PADD(-slen*dc1/two, ndofside1, rs2, ndofside2, t2)
CALL SIDE_MASS_PADD( slen*dc2/two, ndofside2, ds2, ndofside2, t2)
! modify rhs coresponding to elm2
t2(1:ndofside2) = t1(1:ndofside2)*kh - t2(1:ndofside2)
CALL PUT_SIDE_SOLUTION(ndofside2, t2, ied2, ndofs2, au2)
t1(1:ndofside2) = -t1(1:ndofside2)*dc2/two
CALL SIDE_DSOL_TADD(s2v2, slen, ndofside2, t1, ied2, ndofs2, au2)
! get [[u]] with respect to elm1
CALL ROT_SIDE_SOLUTION(ndofside2, s2, -1, rs1)
t1 = zero
CALL SIDE_MASS_PADD(-slen, ndofside2, rs1, ndofside1, t1)
CALL SIDE_MASS_PADD( slen, ndofside1, s1, ndofside1, t1)
! get [[D*du/dn]]/2 with respect to elm1
CALL ROT_SIDE_SOLUTION(ndofside2, ds2, -1, rs2)
t2 = zero
CALL SIDE_MASS_PADD(-slen*dc2/two, ndofside2, rs2, ndofside1, t2)
CALL SIDE_MASS_PADD( slen*dc1/two, ndofside1, ds1, ndofside1, t2)
! modify rhs coresponding to elm1
t2(1:ndofside1) = t1(1:ndofside1)*kh - t2(1:ndofside1)
CALL PUT_ADD_SIDE_SOLUTION(ndofside1, t2, ied1, ndofs1, au1)
t1(1:ndofside1) = -t1(1:ndofside1)*dc1/two
CALL SIDE_DSOL_TADD(s2v1, slen, ndofside1, t1, ied1, ndofs1, au1)
! get x and y derivatives on the side
CALL GET_SIDE_DERIVATIVE(vol1, y1, ied1, ndofs1, u1, ndofside1, dx1)
CALL GET_SIDE_DERIVATIVE(vol1,-x1, ied1, ndofs1, u1, ndofside1, dy1)
CALL GET_SIDE_DERIVATIVE(vol2, y2, ied2, ndofs2, u2, ndofside2, dx2)
CALL GET_SIDE_DERIVATIVE(vol2,-x2, ied2, ndofs2, u2, ndofside2, dy2)
hk = 0.75_8
cc1 = dc1*hk; cc2 = dc2*hk
! get [[dxu]] with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside1, dx1, -1, rs2)
tx2 = zero
CALL SIDE_MASS_PADD( slen*cc1*cc2, ndofside1, rs2, ndofside2, tx2)
CALL SIDE_MASS_PADD(-slen*cc2*cc2, ndofside2, dx2, ndofside2, tx2)
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CALL MULT_SIDE_TADD_DER(vol2, y2, ied2, ndofside2, tx2, ndofs2, au2)
! get [[dyu]] with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside1, dy1, -1, rs2)
ty2 = zero
CALL SIDE_MASS_PADD( slen*cc1*cc2, ndofside1, rs2, ndofside2, ty2)
CALL SIDE_MASS_PADD(-slen*cc2*cc2, ndofside2, dy2, ndofside2, ty2)
CALL MULT_SIDE_TADD_DER(vol2,-x2, ied2, ndofside2, ty2, ndofs2, au2)
! get [[dxu]] with respect to elm1
CALL ROT_SIDE_SOLUTION(ndofside2, dx2, -1, rs1)
tx1 = zero
CALL SIDE_MASS_PADD( slen*cc2*cc1, ndofside2, rs1, ndofside1, tx1)
CALL SIDE_MASS_PADD(-slen*cc1*cc1, ndofside1, dx1, ndofside1, tx1)
CALL MULT_SIDE_TADD_DER(vol1, y1, ied1, ndofside1, tx1, ndofs1, au1)
! get [[dyu]] with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside2, dy2, -1, rs1)
ty1 = zero
CALL SIDE_MASS_PADD( slen*cc2*cc1, ndofside2, rs1, ndofside1, ty1)
CALL SIDE_MASS_PADD(-slen*cc1*cc1, ndofside1, dy1, ndofside1, ty1)
CALL MULT_SIDE_TADD_DER(vol1,-x1, ied1, ndofside1, ty1, ndofs1, au1)
! get {{D*du/dn}} with respect to elm1
CALL ROT_SIDE_SOLUTION(ndofside2, ds2, -1, rs1)
tt1 = zero
CALL SIDE_MASS_PADD(-slen*cc2*cc1, ndofside2, rs1, ndofside1, tt1)
CALL SIDE_MASS_PADD(-slen*cc1*cc1, ndofside1, ds1, ndofside1, tt1)
CALL SIDE_DSOL_TADD(s2v1, slen, ndofside1, tt1, ied1, ndofs1, au1)
! get {{D*du/dn}} with respect to elm2
CALL ROT_SIDE_SOLUTION(ndofside1, ds1, -1, rs2)
tt2 = zero
CALL SIDE_MASS_PADD(-slen*cc1*cc2, ndofside1, rs2, ndofside2, tt2)
CALL SIDE_MASS_PADD(-slen*cc2*cc2, ndofside2, ds2, ndofside2, tt2)
CALL SIDE_DSOL_TADD(s2v2, slen, ndofside2, tt2, ied2, ndofs2, au2)

Fig. V-5. Pseudo-code used to assemble the DCF edge terms in the matrix-free

fashion.

Since compilers can in-line these small local function calls, there is no efficiency

penalty associated with them.

C. Integration into SCALE

1. Procedure

In collaboration with the Nuclear Science and Technology Division (NSTD) of the

Oak Ridge National Laboratory (ORNL), TAMU will be integrating xuthus into a
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developmental version of SCALE, which may ultimately be distributed as a released

module within the TRITON lattice physics sequence [71], providing users with an

alternative to NEWT, the 2-D SN module currently used with TRITON. Our ini-

tial objectives in the development of xuthus as a module for SCALE are fulfilled

or verified: (a) arbitrary high-order spatial shape functions can be and have been

implemented efficiently in the DGFEM framework, whereas in the Extended Step

Characteristic solver of NEWT, the scattering and fission source is assumed spa-

tially constant in each polygonal element, (b) additional flexibility and robustness is

gained by having two distinct solvers, (c) the spatial discretization error is controlled

with a user-prescribed tolerance with AMR, and (d) TRITON-xuthus sequence may

be accurately utilized for problems beyond traditional nuclear reactor fuel assembly

calculations, including shielding or inverse problems.

Xuthus

Triangle

Subroutine to read
AMPX working library

PSLG file AMPX working 
library

NEWT
Module to generate 

the PSLG file

Control parameters 
in XML format

TRITON

Subroutine to read 
Xuthus control block

Write XML file

Source 
description

Xuthus

Triangle

Subroutine to read
AMPX working library

PSLG file AMPX working 
library

NEWT
Module to generate 

the PSLG file

User input file

Control parameters 
in XML format

TRITON

Subroutine to read 
Xuthus control block

Write XML file

Source 
description

Post-processing

Fig. V-6. Integration of xuthus into SCALE: stand-alone mode (left), integration

mode (right).

Like all other modules in SCALE, xuthus can be run as a standalone module or

as part of a SCALE sequence. While xuthus provides new capabilities of transport

calculation for SCALE, it benefits from other modules: all cross section processing

options and the powerful yet easy-to-use geometry description provided by SCALE.
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The relations between xuthus and other modules are illustrated in Fig. V-6. xuthus

is loosely coupled with other modules through binary files, like all modules in SCALE.

In standalone mode, xuthus accepts a single XML (the Extensible Markup

Language) input file, which provides access to all the control parameters, simple

material data, regular geometry configurations and external source descriptions for a

source problem. This file can be generated easily by hand, which makes it very useful

for simple benchmark problems and for the proof-of-principle calculations. xuthus

can also employ far more complicated problems in the standalone mode, for which a

geometry file and/or a cross section library file (in a format readable by xuthus) are

referenced in the input deck. A subroutine in xuthus has been created to read the

AMPX-format cross section library. More subroutines can be added later for other

types of libraries. xuthus accepts files for unstructured meshes generated by the

open source triangularization packages Triangle. Triangle used the PSLG (Planar

Straight Line Graph) format file (by definition, a PSLG is just a list of vertices and

segments), as input. Also note that xuthus currently only allows triangular meshes

and that boundaries and interfaces of the initial mesh are not changed in the AMR

procedure.

The xuthus-based sequence within the TRITON control module of SCALE uti-

lizes the automatically generated cross sections. In this sequence, TRITON reads the

cross sections of all isotopes generated by the SCALE cross section processing rou-

tines and uses the SCALE ICE module to generate an AMPX-format working library

of mixed macroscopic cross sections. For the details of the format of AMPX working

library, see the manual of NITAWL, section F2.4. By doing this, all SCALE cross

section processing options are seamlessly integrated into a xuthus-based sequence.

The xuthus-based sequence can also be used to automatically generate the

PSLG file. The grid generation capabilities in NEWT (based on the combinato-
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rial SCALE Generalized Geometry Package used by KENO VI and Monaco within

SCALE) provide a simplified user input specification in which elementary bodies can

be defined and placed within a problem domain. This body description is transformed

into meshes of arbitrary polygons and can be used to closely approximate curved or

irregular surfaces with volume preservation. A module has been created for NEWT

to output the mesh into a PSLG which is then processed using the Triangle mesh

generator. This module will be discussed in more detail later.

The xuthus-based sequence also provide a free-form and keyword-based input,

similar in form to the input for many other modules in the SCALE code package.

A subroutine for TRITON has been created to parse the input block specifically for

xuthus control parameters. The Control module in xuthus can then be linked with

TRITON, in which a subroutine to set default values for all control parameters and

a subroutine to output parameters into a XML file are provided. TRITON then uses

these subroutines to generate the XML file for xuthus.

So far, only a few things are missing to complete the integration into SCALE:

• Integrate the external source description for source problems.

• Form the sequence to call NEWT, xuthus and Triangle automatically.

• Add a post-processing module to xuthus so that the xuthus-based sequence

can also perform 2-D depletion calculations.

2. Creation of a .poly File from NEWT

A .poly file, the input file required for the 2-D triangulation software - Triangle,

contains a PSLG, as well as some additional information. By definition, a PSLG

is just a list of vertices and segments. A .poly file can also contain information

about holes in the domain, as well as regional attributes and constraints on the
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maximum triangle areas. The format of .poly file for Triangle can be found in: http:

//www.cs.cmu.edu/~quake/triangle.html.

NEWT possesses its own mesh generator with the combinatorial SCALE Gen-

eralized Geometry Package used by KENO VI and its own compact data structure

to describe polygons which are formed by the body interfaces and base grid-lines. In

order to create a .poly file understandable by Triangle, we need to expand this data

structure with additional information. The unstructured triangular mesh created by

Triangle can then be read into xuthus for further computations. The main complex-

ity in creating a PSLG .poly file from NEWT is the requirement to find an arbitrary

point inside any polygon that is not necessarily convex (in order to assign a regional

attribute index).

a. NEWT’s Data Structure

Each polygon is called a element in NEWT. The user-defined type of element is as

follows:

type elementstr

integer :: material

integer :: numsides

integer, pointer :: side(:)

end type

Note that only entries relevant in creating a .poly file are listed. A global variable

numelements described many elements or polygons are on the computational domain

and the size of the array element. A polygon is composed of numsides number of

sides, stored in the entry side. Using these side numbers, we can retrieve their left

and right element numbers with another user-defined type:
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type lineseg

integer :: left

integer :: rite

end type lineseg

Total number of sides is stored in the global variable numlines. Additional information

about all lines (coordinates of their beginning and ending points,; whether they are

on the boundary and the boundary type) can be obtained with the endptsarray which

has the user-defined type:

type lineends

type (point) :: beg

type (point) :: end

integer :: boundtype

end type lineends

where the user-defined type point is:

type point

double precision :: x

double precision :: y

end type point

This data structure is very compact. Another remarkable feature is that there are

no numberings of the vertices. Note that NEWT has its own encoding of boundary

type. We need a small subroutine to transform the boundtype into xuthus’s types

of boundaries such as vacuum, reflecting, etc.
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b. The Expanded Data Structure

To create the expanded data structure, we first collect all vertices into the array verts

of data type point, count number of vertices into the global variable nrvers. With

these numbered vertices, we can then create another array, edges, for all sides. Each

entry of edges contains the indices of the beginning and the ending vertices. With

this information, we can re-describe all elements with their numbered vertices and

their sides in the array elems. Each entry of elems is the collection of side numbers

and vertex numbers. Here, all vertices and sides of a element are arranged clockwise.

It is possible that the orientation of a side in a element is in the opposite direction

of the one determined by the edges array. We use a negative number to indicate this

situation.

The algorithm to collect all vertices and form the array edges and elems is

straightforward: we loop over all elements, and then consider its vertices and edges

clockwise one by one. The way to determine if a vertex has already been in the

array verts or if we need to add a new vertex into the array verts is by inspecting

all elements connected with this vertex and check whether any one of them has been

visited. All sides have already been numbered in NEWT.

c. Algorithm to Find an Arbitrary Point inside a Non-convex Polygon

Creating a .poly file with the expanded data structure is simple. The only difficulty

resides in finding an arbitrary point inside a polygon. With a polygon whose ver-

tices are numbered clockwise and all sides form a closed area which is nonzero, the

algorithm for obtaing a point within that polygon is given below:

1. Identify a convex vertex v : letting its adjacent vertices be a and b, we make

sure that(̂avb) < π; note this is a strict inequality, i.e., a, b and v are not on a
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line.

2. Algorithm fails when no v can be identified.

3. For each other vertex q do:

- if q is on any edge of triangle avb, find a new convex vertex v by restarting

at step 1

- if q is inside triangle avb, compute distance to v (orthogonal to line ab).

- save point q if distance is a new minimum.

4. If no points are inside, return the midpoint of ab, or centroid of avb.

5. Else if some point is inside, qv is internal: return its midpoint.

Although the algorithm geometrically makes sense, we need be careful in step 1 and

step 3.a. (see the additional comments in the parenthesis.) Machine round off error

may be significant in some very extreme cases.

3. Dealing of Polygon Attributes

Another problem is that Triangle only supports one single zonal attribute whereas

we need to have multiple attributes to describe the material ID, the external source

ID (source problem only), the subdomain ID (parallel calculation only) and/or region

ID (for the purpose of computing regional particle rebalance). To solve this issue, we

encode all thse required data into a single attribute with the following equation:

codepolygon = mid+sid×(NM+1)+did×(NM+1)×(NS+1)+(rid−1)×(NM+1)×(NS+1)×ND

(5.14)
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where

mid the material ID (≥ 0)

NM the total number of materials

sid the external source ID (≥ 0)

NS the total number of external sources

did the subdomain ID (≥ 0)

ND the total number of subdomains

rid the region ID (≥ 1)

NR the total number of regions

Material ID 0 is reserved for void. Material ID and region ID for users start at 1 while

source ID and subdomain ID start at 0. A source with ID=0 means no external source.

Note that the number of materials does not include the void medium. Note also that

number of sources does not include the non-sources. The maximum subdomain ID

must be less than the number of subdomains.

Then the first line of the .poly file should contain one line generated with

WRITE(*,’(A,4I,A)’) ’#code:’, nmat, nsour, ndomain, nregion, ’ ’

This line will be treated as a comment line by Triangle because of the leading pound

sign (#), but later can be read by xuthus and help decode the multiple attributes.

The last space character is used to avoid text formating between Unix and DOS/Win-

dows.

4. A Sample Triangular Mesh Created with NEWT

The left pane of Fig. V-7 is the grid structure of the example 4 in NEWT’s manual [72].

This problem illustrates a calculation with one-forth of a PWR fuel assembly. A PSLG

file is generated with the above procedure to describe this grid structure. Then the
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polygon grid is further processed with Triangle into the triangular mesh shown in the

right pane of Fig. V-7.

Fig. V-7. NEWT’s polygon grid and xuthus’s triangular mesh.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

We have developed a new 2-D multigroup SN transport solver xuthus for unstruc-

tured triangular meshes. The spatial discretization has been carried out using a

high-order Discontinuous Galerkin Finite Element Method (DGFEM), and Adaptive

Mesh Refinement (AMR) techniques have been implemented and tested with this

solver. Two error estimations, a projection-based error estimator and a jump-based

error indicator, have been devised and implemented to drive the mesh adaptation

procedure so as to deliver adapted meshes that tightly follow the physics. Different

adapted meshes for different energy groups are automatically generated in xuthus,

leading to group-dependent adapted meshes (the concept of “multi-mesh” developed

in this dissertation.) Furthermore, within a given adapted mesh, the difference in

refinement levels between two adjacent elements can be arbitrarily greater than one

(the concept of “multi-irregularity”). Algorithms to deal with the multi-mesh cou-

plings and the mesh multi-irregularity have been designed, implemented, and tested

for the multigroup SN equations. For the first time, the spatial discretization error is

controlled for the SN transport equation in the multigroup setting, i.e., the relative

error in the multigroup scalar fluxes is assured to be smaller than a user-prescribed

tolerance. Convergence studies with both the h-adaptation and the uniform refine-

ment have been conducted, proving the superiority of mesh adaptivity, both in terms

of number of unknowns and CPU time. For an efficient solution of the transport

equation, especially for geometries containing highly diffusive media, a stable Sym-

metric Positive Definite (SPD) Diffusion Synthetic Acceleration (DSA) scheme, based

on a modification of the Interior Penalty method, has been devised. This Modified
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IP (MIP) DSA can be employed as an accelerator for the standard Source Iteration

procedure or as a preconditioner for the GMRes solver applied to the transport equa-

tion. This MIP DSA is derived from the discretized DG transport equation using

a variational argument, resulting in a DG diffusion solver that can handle hanging

nodes (multi-irregular mesh)very efficiently and straightforwardly. All algorithms are

implemented in a matrix-free fashion.

We tested our implementations extensively with sample problems presented in

Chapters II, III and IV. Our conclusions are listed below:

1. The spatial discretization error for the SN transport equation can be controlled

for unstructured meshes using a DGFEM AMR technique. Two error estimates,

a projection-based estimator and a jump-based indicator, have been devised

and used to drive the h-adaptation reliably. This technique is easily applied to

basis functions of degree greater than 1. We have utilized polynomial orders

up to 4. The number of unknowns used in meshes stemming from adaptivity

is significantly smaller than the number needed with uniform mesh refinement

for the same level of accuracy. Both the computing time and memory cost are

greatly reduced. The concepts of arbitrary irregularity and group-dependent

meshes can be effectively implemented, leading to an adaptive technique that

follows closely the physics of the problem under consideration, both within one

group and among groups.

2. With h-adaptivity, we can capture the singularities in the SN solution, i.e., the

ray effects, and regions of material discontinuities are refined more automati-

cally. The methodology implemented in this research can apply to both source

and eigenvalue problems.

3. The solution of the SN transport equation belongs in the H3/2 space when it is
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continuous or in the H1/2 space when it is discontinuous. The regularity index

r is then 3/2 and 1/2, respectively. With uniform refinement, the convergence

rates for the scalar flux are known to be equal to min(r, p+ 1) in the L2 norm.

When the mesh is aligned with the known singularity lines of the SN solution, a

convergence order of p+1 can be restored. In the more general situation, when

the mesh is not aligned with the singularities, the AMR technique delivers an

accurate solution faster than uniform mesh refinement.

4. It is observed that the spatial discretization errors obtained with the same

numbers of unknowns are smaller when higher-order basis functions are used,

for both source problems and eigenvalue problems, establishing the advantage

of higher-order calculations.

5. A modified IP form for DSA has been devised for AMR meshes. This MIP-

DSA is SPD (thus can be solved effectively with preconditioned CG method). A

Fourier Analysis has determined that the form is stable but its efficacy degrades

in the cases where (i) materials of greatly disparate cross section are present and

(ii) scattering anisotropy is strong. In such cases, another scheme, the positive

definite P1C (P1 Conforming), has been proposed although more numerical

verifications need to be conducted.

6. The grind time (i.e., the average time needed to solve a local transport problem

in one direction for one element) of the transport sweeps is about 0.2μs per

unknown, which is in the typical range for similar codes. This grind time is

determined not only by the number of elementary operations but also by mem-

ory access delays. With current cache capacity, the grind time for quadratic

elements is even smaller than the one for linear elements, although the number

of elementary operations is roughly four times larger. When the element poly-
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nomial order increases, the number of local operations becomes dominant and

the grind time increases. Nevertheless, the grind times of different polynomial

orders are about the same.

This study opens several perspectives for continued research:

1. Full hp-adaptation

Although the hp-mechanism has been implemented in our solver xuthus, the

error estimation to drive hp-type mesh adaptation is absent, i.e., we have not

implemented a mechanism to determine, at each refinement cycle, not only

which elements need to be refined but also how these selected elements are to

be refined: either by subdivision (h-refinement) or by increasing the polynomial

order (p-refinement). Nonetheless, for this purpose, the projection-based error

estimator can be easily extended to deliver hp-adaptation as shown, for instance,

in [125, 5, 56].

2. Goal-oriented calculations

From an engineering point of view, in most cases, only some localized quantities

of interest may be needed, rather than the full detailed solution over the entire

domain. These quantities of interest are specific properties of the solution and

can usually be represented by locally bounded linear functionals of the solu-

tion. The mesh, adapted for the overall solution, may not be a good enough

choice for such goals (too many unknowns may be wasted in regions that bear

no importance to the quantity of interest, not enough refinement may be per-

formed in the zones of interest, . . . ). To demonstrate this, let us consider the

problem described in Chapter III, page 159. As our quantity of interest, we use

the leakage through a part of the boundary at the right-top corner of the do-

main. This zone is marked on Fig. III-28. The calculated leakage obtained with
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Table VI-I. Leakage convergence with uniform refinement.

Refinement Number of Leakage

level active elements (n/cm2/sec)

0 50 2.8444426472× 10−6

1 200 2.1614548069× 10−6

2 800 2.1358961790× 10−6

3 3200 2.1353830681× 10−6

4 12800 2.1353634532× 10−6

5 51200 2.1353630483× 10−6

6 204800 2.1353630115× 10−6

7 819200 2.1353630135× 10−6

8 3276800 2.1353630124× 10−6

uniform refinement and h-adaptation is listed in Tables VI-I and VI-II. The

calculation conditions are: uniform polynomial order 2, LS-4, tolsource = 10−8,

2-irregularity and projection-based error estimator μk,ref
g,K . We plot these results

on Fig. VI-1 by taking the reference leakage solution to be 2.135363011× 10−6

(n/cm2/sec).

The results clearly show that adapted meshes produce a less accurate result

than uniform meshes in terms of the number of unknowns for the same accuracy.

This is due to the fact that elements on the boundary edge are important for

evaluating our quantity of interest, yet they are not refined in h-adaptation

due to the small absolute flux values in these elements. This example does not

imply that uniform refinement is the best approach to follow for goal-oriented

calculations. Since the quantities of interest are usually local quantities, i.e.,

only local refinements are needed, a procedure that combines mesh adaptivity
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Table VI-II. Leakage convergence with h-adaptation.

Refinement Number of Leakage (n/cm/sec)

level active elements mesh Tk
h mesh Tk

h/2

0 50 2.8444426472× 10−6 2.1614548069× 10−6

1 74 2.9042896273× 10−6 2.1619893940× 10−6

2 104 2.5920154141× 10−6 2.1556978825× 10−6

3 122 2.5918812437× 10−6 2.1556963968× 10−6

4 206 2.9580990894× 10−6 2.1477897298× 10−6

5 278 2.9583467260× 10−6 2.1477923789× 10−6

6 356 2.9502350894× 10−6 2.1476949285× 10−6

7 500 2.9453945107× 10−6 2.1476837935× 10−6

8 794 2.6263097588× 10−6 2.1470871126× 10−6

9 1112 2.6171190140× 10−6 2.1470138746× 10−6

10 1526 2.6247919297× 10−6 2.1467669171× 10−6

11 2174 2.5085257044× 10−6 2.1402683204× 10−6

12 2942 2.5160732394× 10−6 2.1402416073× 10−6

13 3716 2.5149788239× 10−6 2.1402312038× 10−6

14 5144 2.1679688290× 10−6 2.1364072688× 10−6

15 6848 2.1652010997× 10−6 2.1364140375× 10−6

16 8096 2.1658738860× 10−6 2.1363998825× 10−6

17 10328 2.1619951446× 10−6 2.1362326415× 10−6

18 12746 2.1615735692× 10−6 2.1362572581× 10−6

19 15476 2.1615961869× 10−6 2.1362548548× 10−6

20 20834 2.1607686278× 10−6 2.1362514431× 10−6

21 26060 2.1395352866× 10−6 2.1355711575× 10−6

22 31748 2.1395971343× 10−6 2.1355733854× 10−6

23 41138 2.1406683718× 10−6 2.1353756881× 10−6

24 45116 2.1406157596× 10−6 2.1353731232× 10−6
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Fig. VI-1. Convergence of the boundary leakage with uniform refinement and h-

adaptation.

and importance towards a given goal must to be employed. This technique is

usually referred to as goal-oriented mesh adaptivity.

3. Angular adaptivity

Singularity lines of the SN equations (ray effects) have been noted in several

examples in Chapters III and IV. Solutions in regions where these lines exist

are not accurate due to the presence of a significant angular discretization error.

Although solutions in regions far from the SN singularities are more reliable,

how the angular discretization error propagates through the domain is not clear.

It is always possible to increase the number of streaming directions in order to

reduce the angular error, but such a uniform angular approach soon becomes

costly due to the rapid increase in computing efforts. We believe that the issues

of both the spatial and angular discretization errors should be further tackled

with a space/angle adaptivity technique.
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4. Error control for the multigroup approximation

It is difficult to quantify the error introduced by the multigroup approximation

because of the complicated energy dependence of nuclear data. On the one

hand, we can not afford a huge number of energy groups because the scattering

kernel is tightly dependent on the energy discretization and the uncertainty of

the nuclear data may make such efforts unnecessary. On the other hand, the

more groups we employ, the smaller the dependence on the accuracy of the

intra-group energy spectrum required. The energy discretization error needs

to be investigated in future and these investigations should be tightly coupled

with angular discretization through the scattering kernel.

5. Implementation of P1 conforming DSA scheme

Our preliminary results with the simple 2-cell problem of Chapter III suggest

that the P1C scheme is very promising. However, Fourier Analysis and numer-

ical verifications are needed to fully establish the properties of such a scheme.

6. Load re-balance issues for parallel computing using mesh refinement

As of now, once the initial domain has been partitioned, each processor owns

one of the partitions called sub-domains. If these subdomains undergo different

refinements, the processors’ loads may become severely unbalanced. Because

such a situation depends on the physics of the solution, which we do not know

beforehand, we would have to dynamically re-distribute the mesh among pro-

cessors after mesh refinement in order to retain a load balance among all the

processors for the next mesh adaptivity cycle. More robust data management

is required for this matter.

7. Multi-physics, non-linear coupling with curved geometries

xuthus has only been applied for the neutron transport equation as of now.
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Piece-wise constant cross sections are assumed in xuthus and curved geome-

tries are approximated by polygons in the initial mesh. To be able to couple

other physics to xuthus, we should be able to deal with cross sections that

can vary spatially based on variables from other physics such as temperature.

Additionally, support for isoparametric elements in order to describe curved

element faces may also be required.
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[131] S. Richling, E. Meinköhn, N. Kryzhevoi, and G. Kanschat. Radiative transfer

with finite elements. Astron. Astroph., 380:776–788, 2001.

[132] Guido Kanschat. Parallel and Adaptive Galerkin Methods for Radiative Trans-

fer Problems. PhD thesis, University of Heidelberg, 1996.
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APPENDIX A

DIFFERENT FORMS FOR THE STEADY-STATE ENERGY-DEPENDENT

NEUTRON TRANSPORT EQUATION
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A. Partial Differential Equations with Boundary Conditions

The steady-state energy-dependent neutron transport equation with 
r ∈ D, 
Ω ∈ S2,

E ∈ R+ is given by,

(

Ω·
∇+σt

)
Ψ = Sext+

χ

4π

∫ ∞

0

νσf (E ′)Φ(E ′)dE ′+
∫ ∞

0

∫
4π

σs(E
′ → E, 
Ω′·
Ω)Ψ(
Ω′, E ′)dΩ′dE ′

(A.1)

with the general boundary condition

Ψ(
rb, 
Ω, E) = Ψinc(
rb, 
Ω, E) +

∫ ∞

0

∫
�Ω′·�nb>0

β(
rb, E
′ → E, 
Ω′ → 
Ω)Ψ(
rb, 
Ω

′, E ′)dΩ′dE ′

(A.2)

on 
rb ∈ ∂D, E ∈ R+ and 
Ω · 
nb < 0
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Symbols used in the equation are standard in text, their meanings are listed below:


r position variable [cm]

D ∈ Rd open convex space domain, d is the spatial dimension

∂D boundary of spatial domain


nb = 
n(
r)outward unit normal vector on the boundary


Ω angular variable

S2 2-dimensional unit sphere

E energy [MeV], usually in range of [0, 20] MeV

R+ set of positive real number

Ψ(
r, 
Ω, E) = n(
r, 
Ω, E)v neutron density in phase space times speed

also called neutron angular flux [ n
cm2·MeV ·ster·s ]

Φ(
r, E) =
∫
4π

ΨdΩ neutron scalar flux [ n
cm2·MeV ·s ]

Sext(
r, 
Ω, E) external source [ n
cm2·MeV ·ster·s ]

σt(
r, E) macroscopic total cross section [cm−1]

σs(
r, E
′ → E, 
Ω′ · 
Ω) differential scattering cross section depending only on

the cosine of scattering angles [ 1
cm·MeV ·ster ]

σf (
r, E) fission cross section [cm−1]

χ(
r, E) neutron fission spectrum[ 1
MeV

]

ν(
r, E) average number of neutrons emitted per fission

Ψinc(
rb, 
Ω, E) incoming angular flux on the boundary [ n
cm2·MeV ·ster·s ]

β(
rb, E
′ → E, 
Ω′ → 
Ω) boundary albedo [ 1

MeV ·ster ]

When Ψinc(
rb, 
Ω, E) is equal to zero, the boundary condition is homogeneous:

Ψ(
rb, 
Ω, E) =

∫ ∞

0

∫
�Ω′·�nb>0

β(
rb, E
′ → E, 
Ω′ → 
Ω)Ψ(
rb, 
Ω

′, E ′)dΩ′dE ′

on 
rb ∈ ∂D, E ∈ R+ and 
Ω · 
nb < 0

(A.3)
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In addition, when β is zero, boundary conditions are vacuum.

For reflective boundary conditions, we have Ψinc(
rb, 
Ω, E) = 0 and

β(
rb, E
′ → E, 
Ω′ → 
Ω) = δ(E ′ − E)δ(
Ω′ − 
Ωr) (A.4)

where


Ωr = 
Ω− 2(
Ω · 
nb(
rb))
nb(
rb). (A.5)

Define following function space (not very strict here):

W ≡ D ∪R+ ∪ S2 =
{

Ψ(
r, 
Ω, E)|
r ∈ D, E ∈ R+ and 
Ω ∈ S2
}

(A.6)

W+ ≡ ∂D ∪R+ ∪ S2+ =
{

Ψ(
rb, 
Ω, E)|
rb ∈ ∂D, E ∈ R+ and 
Ω · 
nb > 0
}

(A.7)

W− ≡ ∂D ∪R+ ∪ S2− =
{

Ψ(
rb, 
Ω, E)|
rb ∈ ∂D, E ∈ R+ and 
Ω · 
nb < 0
}

(A.8)

and the following linear operators,

LΨ ≡ (
Ω · 
∇+ σt(
r, E)
)
Ψ(
r, 
Ω, E) (A.9)

PΨ ≡ χ(
r, E)

4π

∫ ∞

0

νσf (
r, E ′)
[∫

4π

Ψ(
r, 
Ω′, E ′)dΩ′
]
dE ′ (A.10)

HΨ ≡
∫ ∞

0

∫
4π

σs(
r, E
′ → E, 
Ω′ · 
Ω)Ψ(
r, 
Ω′, E ′)dΩ′dE ′ (A.11)

BΨ+ ≡
∫ ∞

0

∫
�Ω′·�nb>0

β(
rb, E
′ → E, 
Ω′ → 
Ω)Ψ(
rb, 
Ω

′, E ′)dΩ′dE ′ (A.12)

on 
rb ∈ ∂D and 
Ω · 
nb < 0

Ψ is a function defined on the solution space W . L, P , and H are the streaming-

collision, fission production and scattering operators respectively. Ψ+ is the function

defined in the space W+. We can think it as the result of trace operation on Ψ.

Similarly, Ψ− is the result of trace operation on Ψ. B operator maps Ψ+, all angular

fluxes for outgoing directions and all energies on the boundary, to a function in the
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space W−. The transport equation Eq. (A.1) can be written into a shorter form

LΨ = Sext +HΨ + PΨ (A.13)

with boundary condition

Ψ− = Ψinc +BΨ+ (A.14)

Note: Ψinc is in the space W−.

If we define following correspondingly linear adjoint operators,

P ∗Ψ∗ ≡ νσf (
r, E)

4π

∫ ∞

0

χ(
r, E ′)
[∫

4π

Ψ∗(
r, 
Ω′, E ′)dΩ′
]
dE ′ (A.15)

H∗Ψ∗ ≡
∫ ∞

0

∫
4π

σs(
r, E → E ′, 
Ω′ · 
Ω)Ψ∗(
r, 
Ω′, E ′)dΩ′dE ′ (A.16)

L∗Ψ∗ ≡ (− 
Ω · 
∇+ σt(
r, E)
)
Ψ∗(
r, 
Ω, E) (A.17)

B∗Ψ− ≡
∫ ∞

0

∫
�Ω′·�nb<0

β(
rb, E → E ′, 
Ω→ 
Ω′)Ψ(
rb, 
Ω
′, E ′)dΩ′dE ′ (A.18)

on 
rb ∈ ∂D and 
Ω · 
nb > 0

we can write the adjoint equation into a simpler form

L∗Ψ∗ = S∗
ext +H∗Ψ∗ + P ∗Ψ∗ (A.19)

with the general boundary condition

Ψ∗+ = Ψ∗out +B∗Ψ∗− (A.20)

Ψ∗out is in the space W+.
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B. Integral Equations

By inverting the streaming-collision operator, we obtain the integral equation for

angular flux

Ψ(
r, E, 
Ω) =Ψ(
r − τ
Ω, E, 
Ω)e−
∫ τ
0

σt(�r−τ ′�Ω)dτ ′
+∫ τ

0

ds [(H + P )Ψ + Sext] (
r − s
Ω)e−α(�r−s�Ω,�r,E) (A.21)

where the optical distance between 
r1 and 
r2 (number of MFP) is

α(
r1, 
r2, E) =

∫ |�r1−�r2|

0

ds σt(
r + s
e, E) (A.22)

with


e =

r2 − 
r1
|
r2 − 
r1| (A.23)

Note: 
r− τ
Ω ∈ ∂D. The integral form of the transport equation has a clear physical

interpretation and is the basis of a family of computational transport methods called

characteristic methods.

If we have following assumptions:

1. vacuum boundary (no incident flux)

2. isotropic total source (isotropic scattering and isotropic external source)

We then integrate the integral equation over all directions

Φ(
r, E) =

∫
D
d
r′ [(H + P )Φ + Sext] (
r

′, E)
e−α(�r′,�r,E)

4π |
r′ − 
r|2 (A.24)

This is the integral equation for the scalar flux, which is all called Peierl’s equation.

Discretizing this equation directly results into a linear system with the full matrix.



310

C. Variational Form of the PDE

We can easily prove that,

(PΨ,Ψ∗) = (Ψ, P ∗Ψ∗) (A.25)

(HΨ,Ψ∗) = (Ψ, H∗Ψ∗) (A.26)

(LΨ,Ψ∗) + 〈Ψ,Ψ∗〉− = (Ψ, L∗Ψ∗) + 〈Ψ,Ψ∗〉+ (A.27)〈
BΨ+,Ψ∗〉− =

〈
Ψ, B∗Ψ∗−〉+ (A.28)

with,

〈Ψ,Ψ∗〉− ≡
∫

∂D
ds

∫ ∞

0

dE

∫
�Ω·�nb<0

dΩ |
Ω · 
nb(
rb)|Ψ∗(
rb, 
Ω, E)Ψ(
rb, 
Ω, E) (A.29)

〈Ψ,Ψ∗〉+ ≡
∫

∂D
ds

∫ ∞

0

dE

∫
�Ω·�nb>0

dΩ |
Ω · 
nb(
rb)|Ψ∗(
rb, 
Ω, E)Ψ(
rb, 
Ω, E) (A.30)

Multiply the transport equation with Ψ∗, and integrate both sides over the phase

space, and substitute the boundary condition we obtain

(Ψ, L∗Ψ∗)+〈Ψ,Ψ∗〉+−〈BΨ+,Ψ∗〉−−(HΨ,Ψ∗)−(PΨ,Ψ∗) = (Sext,Ψ
∗)+

〈
Ψinc,Ψ∗〉−

(A.31)

Similarly we can obtain the equation for the adjoint equation

(LΨ,Ψ∗)+〈Ψ,Ψ∗〉−−〈Ψ, B∗Ψ∗−〉+−(Ψ, H∗Ψ∗)−(Ψ, P ∗Ψ∗) = (Ψ, S∗
ext)+

〈
Ψ,Ψ∗out

〉+
(A.32)
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Define

b(Ψ,Ψ∗) ≡ (Ψ, L∗Ψ∗) + 〈Ψ,Ψ∗〉+ − 〈BΨ+,Ψ∗〉− − (HΨ,Ψ∗)− (PΨ,Ψ∗) (A.33)

R(Ψ∗) ≡ (Sext,Ψ
∗) +

〈
Ψinc,Ψ∗〉− (A.34)

b∗(Ψ,Ψ∗) ≡ (LΨ,Ψ∗) + 〈Ψ,Ψ∗〉− − 〈Ψ, B∗Ψ∗−〉+ − (Ψ, H∗Ψ∗)− (Ψ, P ∗Ψ∗) (A.35)

R∗(Ψ) ≡ (Ψ, S∗
ext) +

〈
Ψ,Ψ∗out

〉+
(A.36)

We immediately notice that

b(Ψ,Ψ∗) ≡ b∗(Ψ,Ψ∗) (A.37)

The variational form of the transport equation is:

Find Ψ ∈W , such that

b(Ψ,Ψ∗) = R(Ψ∗) ∀Ψ∗ ∈W (A.38)

The variational form of the adjoint transport equation is:

Find Ψ∗ ∈W , such that

b(Ψ,Ψ∗) = R∗(Ψ) ∀Ψ ∈W (A.39)

[If there is no energy dependence, i.e. the equation is one-group, we can use Legendre

polynomial to expand the differential scattering cross section and expand the angular

flux with the spherical harmonics. And because σs,n ≤ σs,0 < σt, n = 1, . . . ,∞,

(Ψ, σtΨ) > (HΨ,Ψ). So if there is no fission, b(Ψ,Ψ) > 0. The function space W

is not cared much by our engineers. We can simply think that functions in W are

square integrable and the operation of 
Ω · 
∇ is meaningful.] Apparently, b(Ψ,Ψ∗) is

not symmetric.
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We can define the functional

F (Ψ,Ψ∗) = R(Ψ∗) +R∗(Ψ)− b(Ψ,Ψ∗) (A.40)

whose stationary points are the solutions of the normal and adjoint transport equa-

tion.

D. Parity Form

By changing variable 
Ω to −
Ω, we obtain

−
Ω · 
∇Ψ(
r,−
Ω, E) + σtΨ(
r,−
Ω, E) = Sext(
r,−
Ω, E) +H−Ψ + PΨ (A.41)

where

H−Ψ ≡
∫ ∞

0

∫
4π

σs(
r, E
′ → E,−
Ω′ · 
Ω)Ψ(
r, 
Ω′, E ′)dΩ′dE ′ (A.42)

Define

Ψ̂(
r, 
Ω, E) = Ψ(
r,−
Ω, E) (A.43)

sum the equation with Eq. (A.13) we get


Ω · 
∇Ψo + σtΨe = Sext,e +HeΨe + PΨe (A.44)

Note that

Ψe =
1

2
(Ψ + Ψ̂) (A.45)

Ψo =
1

2
(Ψ− Ψ̂) (A.46)

He =
1

2
(H +H−) (A.47)

HeΨo = 0 (A.48)

PΨo = 0 (A.49)
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Subtract the equation with Eq. (A.13) we get


Ω · 
∇Ψe + σtΨo = Sext,o +HoΨo (A.50)

Note that

Ho =
1

2
(H −H−) (A.51)

HoΨe = 0 (A.52)

Boundary condition is cast into

Ψe −Ψo = 0 on W+ (A.53)

Ψe + Ψo = 0 on W− (A.54)

To make life easier, vacuum boundary conditions are used hereafter. Transform the

Eq. (A.50)

Ψo =
1

σt

[
Sext,o +HoΨo − 
Ω · 
∇Ψe

]
and substitute it into Eq. (A.44), we obtain

−
∇·
[

1

σt


Ω
Ω · 
∇Ψe

]
+σtΨe = Sext,e+HeΨe+PΨe−
Ω· 
∇

[
1

σt
Sext,o +

1

σt
HoΨo

]
(A.55)

Similarly we can obtain

−
∇ ·
[

1

σt


Ω
Ω · 
∇Ψo

]
+ σtΨo = Sext,o +HoΨo − 
Ω · 
∇

[
1

σt
Sext,e +

1

σt
HeΨe +

1

σt
PΨe

]
(A.56)

sum the two equations,

−
∇ ·
[

1

σt


Ω
Ω · 
∇Ψ

]
+ σtΨ = (1− 1

σt


Ω · 
∇) [Sext,e +HΨ + PΨ] (A.57)

This is the SAAF (Self-Adjoint Angular Flux equation). Boundary conditions for

this form is not quite clear. Because the coefficient matrix 1
σt


Ω
Ω is singular, so the
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actual system is not elliptic, values can not be specified on all the boundaries.

We can also write down the parity form for the adjoint equation

−
Ω · 
∇Ψ∗
o + σtΨ

∗
e = S∗

ext,e +H∗
e Ψ∗

e + PΨ∗
∗e (A.58)

−
Ω · 
∇Ψ∗
e + σtΨ

∗
o = S∗

ext,o +H∗
oΨ∗

o (A.59)

Boundary condition is cast into

Ψ∗
e + Ψ∗

o = 0 on W+ (A.60)

Ψ∗
e −Ψ∗

o = 0 on W− (A.61)

E. Parity Variational Form

To get the bilinear form, we multiply the normal parities with the adjoint parity

equations

(
Ω · 
∇Ψe,Ψ
∗
o) + (σtΨe,Ψ

∗
e)− 〈Ψe,Ψ

∗
o〉+ + 〈Ψe,Ψ

∗
o〉− = (Ψe, S

∗
ext,e) + (Ψe, H

∗
eΨ∗

e + P ∗Ψ∗
e)

(A.62)

(
Ω · 
∇Ψo,Ψ
∗
e) + (σtΨo,Ψ

∗
o)− 〈Ψo,Ψ

∗
e〉+ + 〈Ψo,Ψ

∗
e〉− = (Ψo, S

∗
ext,o) + (Ψo, H

∗
oΨ∗

o)

(A.63)
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Apply boundary conditions on the two single-boxed terms to remove the adjoint odd

parity in the boundary integrals,

(
Ω · 
∇Ψe,Ψ
∗
o) + (σtΨe,Ψ

∗
e) + 〈Ψe,Ψ

∗
e〉+ + 〈Ψe,Ψ

∗
e〉− − (Ψe, H

∗
e Ψ∗

e + P ∗Ψ∗
e) = (Ψe, S

∗
ext,e)

(A.64)

(
Ω · 
∇Ψo,Ψ
∗
e) + (σtΨo,Ψ

∗
o)− 〈Ψo,Ψ

∗
e〉+ + 〈Ψo,Ψ

∗
e〉− − (Ψo, H

∗
oΨ∗

o) = (Ψo, S
∗
ext,o)

(A.65)

Sum these two together, we obtain the variational form:

Find Ψ∗
e ∈We and Ψ∗

o ∈Wo, such that

b∗(Ψe,Ψo,Ψ
∗
e,Ψ

∗
o) = R∗(Ψe,Ψo) ∀Ψe ∈We and Ψo ∈Wo (A.66)

where

b∗(Ψ∗
e,Ψ

∗
o,Ψe,Ψo) =(
Ω · 
∇Ψe,Ψ

∗
o) + (σtΨe,Ψ

∗
e)− (Ψe, H

∗
eΨ∗

e + P ∗Ψ∗
e)+

(
Ω · 
∇Ψo,Ψ
∗
e) + (σtΨo,Ψ

∗
o)− (Ψo, H

∗
oΨ∗

o)+

〈Ψe −Ψo,Ψ
∗
e〉+ + 〈Ψe + Ψo,Ψ

∗
e〉−

(A.67)

R∗(Ψe,Ψo) =(Ψe, S
∗
ext,e) + (Ψo, S

∗
ext,o) (A.68)

Note: This bilinear form is not equal to the bilinear form of the one in the Sec. C.

If we choose apply boundary condition on the double-boxed term, then we get the

exactly same form.

We multiply the adjoint parities with the parity equations

(Ψo,−
Ω · 
∇Ψ∗
e) + (σtΨe,Ψ

∗
e) + 〈Ψo,Ψ

∗
e〉+ − 〈Ψo,Ψ

∗
e〉− = (Sext,e,Ψ

∗
e) + (HeΨe + PΨe,Ψ

∗
e)

(A.69)

(Ψe,−
Ω · 
∇Ψ∗
o) + (σtΨo,Ψ

∗
o) + 〈Ψe,Ψ

∗
o〉+ − 〈Ψe,Ψ

∗
o〉− = (Sext,o,Ψ

∗
o) + (HoΨo,Ψ

∗
o)

(A.70)
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Apply boundary conditions to remove the odd parity in the boundary integrals,

(Ψo,−
Ω · 
∇Ψ∗
e) + (σtΨe,Ψ

∗
e) + 〈Ψe,Ψ

∗
e〉+ + 〈Ψe,Ψ

∗
e〉− = (Sext,e,Ψ

∗
e) + (HeΨe + PΨe,Ψ

∗
e)

(A.71)

(Ψe,−
Ω · 
∇Ψ∗
o) + (σtΨo,Ψ

∗
o) + 〈Ψe,Ψ

∗
o〉+ − 〈Ψe,Ψ

∗
o〉− = (Sext,o,Ψ

∗
o) + (HoΨo,Ψ

∗
o)

(A.72)

Sum these two together, we obtain the variational form:

Find Ψe ∈We and Ψo ∈Wo, such that

b(Ψe,Ψo,Ψ
∗
e,Ψ

∗
o) = R(Ψ∗

e,Ψ
∗
o) ∀Ψ∗

e ∈We and Ψ∗
o ∈Wo (A.73)

where

b(Ψ∗
e,Ψ

∗
o,Ψe,Ψo) =(Ψo,−
Ω · 
∇Ψ∗

e) + (σtΨe,Ψ
∗
e)− (HeΨe + PΨe,Ψ

∗
e)+

(Ψe,−
Ω · 
∇Ψ∗
o) + (σtΨo,Ψ

∗
o)− (HoΨo,Ψ

∗
o)+

〈Ψe,Ψ
∗
e + Ψ∗

o〉+ + 〈Ψe,Ψ
∗
e −Ψ∗

o〉−
(A.74)

R(Ψ∗
e,Ψ

∗
o) =(Sext,e,Ψ

∗
e) + (Sext,o,Ψ

∗
o) (A.75)

Again, we can easily prove that

b(Ψe,Ψo,Ψ
∗
e,Ψ

∗
o) = b∗(Ψe,Ψo,Ψ

∗
e,Ψ

∗
o) (A.76)

We can write the bilinear form in form of normal and adjoint angular fluxes

b(Ψ,Ψ∗) =(Ψ, L∗Ψ∗)− (HΨ + PΨ,Ψ∗)+

1

2

〈
Ψ + Ψ̂,Ψ∗

〉+

+
1

2

〈
Ψ + Ψ̂, Ψ̂∗

〉− (A.77)

Note that this form is important to derive the Marshark boundary condition for the

PN equations [146].
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APPENDIX B

FORMS FOR THE SIMPLE TRANSPORT EQUATION
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A. Variational Form for the Simple Transport Equation

Differential equation of the simple transport equation


Ω · 
∇ψ + σψ(
r) = S(
r) (B.1)


Ω is a constant vector in our study. With boundary condition

ψ(
rb) = ψinc(
rb) on ∂D− =
{

rb ∈ ∂D, 
Ω · 
n(
rb) < 0

}
(B.2)


n is the normal unit outward vector on the domain boundary. Its variational form:

Find ψ ∈WD, such that

b�Ω(ψ, ψ∗) = R(ψ∗) ∀ψ∗ ∈WD (B.3)

where

b�Ω(ψ, ψ∗) ≡ (
Ω · 
∇ψ + σψ, ψ∗)D + 〈ψ, ψ∗〉− (B.4)

R(ψ∗) ≡ (S, ψ∗)D +
〈
ψinc, ψ∗〉− (B.5)

WD =
{
ψ ∈ L2(D)|
Ω · 
∇ψ ∈ L2(D)

}
(B.6)

(f, g)D =

∫
D
f g d
r (B.7)

〈f, g〉− =

∫
∂D−
|
Ω · 
nb|f g ds (B.8)

Variational form for the adjoint equation

Find ψ∗ ∈WD, such that

b∗�Ω(ψ, ψ∗) = R∗(ψ) ∀ψ ∈WD (B.9)
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where

b∗�Ω(ψ, ψ∗) ≡ (ψ,−
Ω · 
∇ψ∗ + σψ∗)D + 〈ψ, ψ∗〉+ (B.10)

R∗(ψ) ≡ (ψ, S∗)D +
〈
ψ, ψ∗out

〉+
(B.11)

〈f, g〉+ =

∫
∂D+

|
Ω · 
nb|f gds (B.12)

∂D+ =
{

rb ∈ ∂D, 
Ω · 
nb(
rb) > 0

}
(B.13)

We can prove:

b�Ω(ψ, ψ∗) = b∗�Ω(ψ, ψ∗) (B.14)

b�Ω(ψ, ψ∗) �= b�Ω(ψ∗, ψ) (B.15)

b�Ω(ψ, ψ) = (σψ, ψ) +
〈ψ, ψ〉+ + 〈ψ, ψ〉−

2
≥ 0 (B.16)

The bilinear form is not symmetric but positive definite. Transport solution is the

stationary point of the following functional

F (ψ, ψ∗) = R(ψ∗) +R∗(ψ)− b�Ω(ψ, ψ∗) (B.17)

B. DGFEM for the Simple Transport Equation

We then consider the spatial discretization with the hp-version of the Discontinuous

Galerkin Finite Element Method (DGFEM). Let Th be a subdivision ofD into disjoint

open elements K such that D = ∪K∈Th
, where Th could be multi-irregular, i.e. an

element may have more than one or two neighbors on one of its side. We assume that

all elements are shape-regular i.e. they are affine images of a fixed master element

K̂, K = FK(K̂). If mixed types of elements are used, K̂ is either the unit simplex

or the open unit hypercube in Rd. The number of local faces varies with the type of
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element: 3 for 2-D triangle, 4 for 2-D quadrilateral and for 3-D tetrahedron, 6 for 3-D

hexahedron. For a nonnegative integer p, we denote by Pp(K̂) the set of polynomials

of total degree p on K̂ if the K̂ is a simplex. We use Qp(K̂) to denote the function

space of all tensor-product polynomials on hypercubes in all coordinate direction. We

define the local polynomial function space

Vp(K) =

⎧⎪⎨⎪⎩ψ ∈ L2(K)

∣∣∣∣∣∣∣
ψ ◦ FK ∈ Pp(K̂) if K is a simplex

ψ ◦ FK ∈ Qp(K̂) if K is a hypercube

⎫⎪⎬⎪⎭ (B.18)

More types of elements can be used. We then define the finite element spaceW h
D(D,Th,p) ={

ψ ∈ L2(D)|ψ|K ∈ VpK
(K)

}
, where p is a vector {pK |K ∈ Th} with the dimension

being the total number of elements. Here the superscript h means the space is finite-

dimensional with the discretization.

Multiply the transport equation with ∀ψ∗ ∈ Vp(K) and integrate over one ele-

ment K, with integration by parts we get

(ψ,−
Ω · 
∇ψ∗)K +
〈
ψn, ψ∗−〉

∂K+ −
〈
ψn, ψ∗+〉

∂K− + (σψ, ψ∗)K = (S, ψ∗)K (B.19)

Values on the two sides of faces could be different. To avoid ambiguity we define:

f+ = lim
s→0+

f(
r + s
Ω)

f− = lim
s→0−

f(
r + s
Ω)

(B.20)

After applying the upwind scheme to the numerical flux ψn

ψn = ψ− on ∂K\∂D− (B.21)

ψn = ψinc on ∂D− (B.22)
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to the face terms in the Eq. (B.19), we obtain

(ψ,−
Ω · 
∇ψ∗)K +
〈
ψ−, ψ∗−〉

∂K+ + (σψ, ψ∗)K

= (S, ψ∗)K +
〈
ψ−, ψ∗+〉

∂K−\∂D− +
〈
ψinc, ψ∗+〉

∂K−∩∂D−

(B.23)

We have the local conservation with the upwind scheme by substituting a constant

test function

Jout
K +RK = SK + J in

K (B.24)

with

Jout
K =

∫
∂K+

|
Ω · 
n|ψ− ds

J in
K =

∫
∂K−
|
Ω · 
n|ψn ds

RK =

∫
K

σψ d
r

SK =

∫
K

S d
r

(B.25)

We have the freedom to define the shape functions on the different types of master

elements

b̂p(
r) =

[
b̂1 b̂2 · · · b̂N(p)

]T

(B.26)

N(p) is a function of polynomial order p which gives the dimension of the local

polynomial function space. The shape functions on an element K

bK = b̂pK
◦ F−1

K (B.27)

Expand the solution and the test function on the element K with the basis functions
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with dimension being NK = N(pK)

ψ(
r)|�r∈K = bT
K(
r) ·

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψK,1

ψK,2

...

ψK,NK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= bT

K(
r) · ψK

ψ∗(
r)|�r∈K = ψ∗T
K · bK(
r)

S(
r)|�r∈K = bT
K(
r) · qK

(B.28)

qK is the external source vector. For the sake of simplicity, we shall suppress subscript

K in the equations later. Substitute them into Eq. (B.23), we get

ψ∗T (−G +
∑

∂Ki∈∂K+

Hi + σM
)
ψ =

ψ∗T (Mq +
∑

∂Ki∈∂K−\∂D

∑
K ′∈Bi

Hi,K ′ψK ′ +
∑

∂Ki∈∂D
Hiψ

inc
i

)
where

M =

∫
K

bbT d
r (B.29)

G =

∫
K

[

∇b
Ω

]
bT d
r (B.30)

Hi =

∫
∂Ki

|
Ω · 
ni|bbT ds, i = 1, · · · , Ne (B.31)

Hi,K ′ =

∫
∂Ki∩∂K′

|
Ω · 
ni|bbT
K ′ ds, i = 1, · · · , Ne (B.32)

Bi is the set of neighboring elements which is on the side i. Ne is the number of

sides of element K. ψinc
i is the vector of the boundary incoming flux. Note that


Ω = {Ωx Ωy Ωz}T and 
∇ =
{

∂
∂x

∂
∂y

∂
∂z

}
in 3-D or 
Ω = {Ωx Ωy}T and 
∇ =

{
∂
∂x

∂
∂y

}
in 2-D. If there is no h-refinement on the neighboring element on the side i, the

number of elements in Bi is 1. It could be more than two with multi-irregularity.
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Because the test vector is arbitrary, the above equation is equivalent with solving

Aψ = l (B.33)

where

A = −G +
∑

∂Ki∈∂K+

Hi + σM (B.34)

l = Mq +
∑

∂Ki∈∂K−\∂D

∑
K ′∈Bi

Hi,K ′ψK ′ +
∑

∂Ki∈∂D
Hiψ

inc
i (B.35)

Once we have all solutions of all upwind elements, we can solve this local system.

If we apply the integration by parts once again from the Eq. (B.23), we get

(
Ω · 
∇ψ, ψ∗)e +
〈
ψ+, ψ∗+〉

∂e− + (σψ, ψ∗)e

= (S, ψ∗)e +
〈
ψ−, ψ∗+〉

∂e−\∂D− +
〈
ψinc, ψ∗+〉

∂e−∩∂D−

(B.36)

The local system is

(GT −
∑

∂Ki∈∂K−
Hi + σM)ψ = l (B.37)

We see that

−G +
∑

∂Ki∈∂K+

Hi = GT −
∑

∂Ki∈∂K−
Hi (B.38)

i.e.,

G + GT = H ≡
Ne∑
i=1

Hi (B.39)

It can be proved the local system is always invertible. Sum the left hand side of

Eq. (B.23) and Eq. (B.36)

bK(ψ, ψ) = (σψ, ψ)K +
〈
ψ+, ψ+

〉
∂K− +

〈
ψ−, ψ−〉

∂K+ ≥ 0

Sum up Eq. (B.36) over all elements we get the variational form with DGFEM:
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Find ψh ∈W h
D, such that

b�Ω,h(ψh, ψ
∗
h) = R(ψ∗

h) ∀ψ∗
h ∈W h

D (B.40)

where

b�Ω,h(ψh, ψ
∗
h) ≡ (
Ω · 
∇ψh + σψh, ψ

∗
h)D +

〈
[[ψh]], ψ∗+

h

〉
Ei

h

+
〈
ψ+

h , ψ
∗+
h

〉
∂D− (B.41)

R(ψ∗
h) ≡ (S, ψ∗

h)D +
〈
ψinc, ψ∗+

h

〉
∂D− (B.42)

W h
D =

{
ψ ∈ L2(D)|ψ|K ∈ V (K), ∀K ∈ Th

}
(B.43)

(f, g)D =
∑

K∈Th

∫
K

f · g d
r (B.44)

〈f, g〉Ei
h

=
∑
e∈Ei

h

∫
e

|
Ω · 
ne|f · g ds (B.45)

Ei
h = ∪∂K\∂D (B.46)

We use the subscript h to make clear the difference between Eq. (B.40) and Eq. (B.3).

The operator [[·]] is defined

[[f ]] = f+ − f− (B.47)

This system can be solved with one sweep of all elements with proper ordering.

This ordered solving sweep is usually called the transport sweep. Because the exact

solution is continuous along 
Ω, it satisfies the Eq. (B.40). So we have the Galerkin

orthogonality

b�Ω,h(ψh − ψ, ψ∗
h) = 0 ∀ψ∗

h ∈W h
D (B.48)

DGFEM scheme is consistent because ψh → ψ when the mesh size h→ 0.

We can also write down the adjoint form of equations

(
Ω · 
∇ψ, ψ∗)K +
〈
ψ+, ψ∗+〉

∂K− + (σψ, ψ∗)K

= (ψ, S∗)K +
〈
ψ−, ψ∗+〉

∂K+\∂D+ +
〈
ψ−, ψ∗out

〉
∂K+∩∂D+

(B.49)
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Apply integration by parts again,

(ψ,−
Ω · 
∇ψ∗)K +
〈
ψ−, ψ∗−〉

∂K+ + (σψ, ψ∗)K

= (ψ, S∗)K +
〈
ψ−, ψ∗+〉

∂K+\∂D+ +
〈
ψ−, ψ∗out

〉
∂K+∩∂D+

(B.50)

Sum over all element,

b∗�Ω,h
(ψh, ψ

∗
h) ≡ (ψh,−
Ω · 
∇ψ∗

h + σψ∗
h)D −

〈
ψ−

h , [[ψ
∗
h]]
〉

Ei
h

+
〈
ψ−

h , ψ
∗−
h

〉
∂D+ (B.51)

R(ψh) ≡ (ψh, S
∗)D +

〈
ψ−

h , ψ
∗out
〉

∂D+ (B.52)

Sum Eq. (B.41) and Eq. (B.51) and divide it by 2

b�Ω,h(ψh, ψh) = ‖ψh‖2L2(D) +
1

2

∑
e∈Ei

h

∫
e

|
Ω · 
ne|[[ψh]]2 ds+
1

2

∫
∂D
|
Ω · 
n|ψ2

h ds ≥ 0 (B.53)

With this property, we define the DG-norm

‖|φh‖|2DG = b�Ω,h(ψh, ψh) (B.54)
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APPENDIX C

MULTIGROUP SN TRANSPORT EQUATIONS
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A. Multigroup Transport Equations

Integrate Eq. (A.1) over number G of energy intervals or groups [Eg, Eg−1] , g =

1, · · · , G, we obtain

(

Ω · 
∇+ σt,g

)
Ψg = Sext,g +

χg

4π

G∑
g′=1

νσf,g′Φg′ +

G∑
g′=1

∫
4π

σg′→g
s (
Ω′, 
Ω)Ψg′(
Ω

′)dΩ′ (C.1)

where

Ψg(
r, 
Ω) ≡
∫ Eg−1

Eg

Ψ(
r, 
Ω, E) dE (C.2)

Φg(
r) ≡
∫ Eg−1

Eg

∫
4π

Ψ(
r, 
Ω, E) dΩdE (C.3)

Sext,g(
r, 
Ω) ≡
∫ Eg−1

Eg

Sext(
r, 
Ω, E) dE (C.4)

σt,g(
r, 
Ω) ≡
∫ Eg−1

Eg
σt(
r, E)Ψ(
r, 
Ω, E) dE∫ Eg−1

Eg
Ψ(
r, 
Ω, E) dE

(C.5)

νσf,g(
r) ≡
∫ Eg−1

Eg
νσf (
r, E)Φ(
r, E) dE∫ Eg−1

Eg
Φ(
r, E) dE

(C.6)

χg(
r) ≡
∫ Eg−1

Eg

χ(
r, E) dE (C.7)

σg′→g
s (
r, 
Ω′, 
Ω) ≡

∫ Eg′−1

Eg′

[∫ Eg−1

Eg
σs(
r, E

′ → E, 
Ω′ · 
Ω) dE
]
Ψ(
r, 
Ω′, E ′) dE ′∫ Eg′−1

Eg′
Ψ(
r, 
Ω′, E ′) dE ′

(C.8)

The above equations mean that we can obtain the multigroup cross sections exactly

only after we know the continuous transport solution. Note that the total and scat-

tering cross sections are angular dependent. However, the above equations allow us

introduce the multigroup approximation:

Ψ(
r, 
Ω, E) = Ψ̂(
r, 
Ω)fg,r(E) (C.9)
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so

Φ(
r, E) = Φ̂(
r)fg,r(E) (C.10)

r is the region ID under consideration. We may have many regions in the solution

domain to reduce the approximation error induced by the multigroup approximation.

fg,r(E) is called as the neutron spectrum of a region r and an energy group g. With

this approximation,

σt,g(
r) ≡
∫ Eg−1

Eg
σt(
r, E)fg,r(E) dE∫ Eg−1

Eg
fg,r(E) dE

(C.11)

νσf,g(
r) ≡
∫ Eg−1

Eg
νσf (
r, E)fg,r(E) dE∫ Eg−1

Eg
fg,r(E) dE

(C.12)

σg′→g
s (
r, 
Ω′ · 
Ω) ≡

∫ Eg′−1

Eg′

[∫ Eg−1

Eg
σs(
r, E

′ → E, 
Ω′ · 
Ω) dE
]
fg′,r(E

′) dE ′∫ Eg′−1

Eg′
fg′,r(E ′) dE ′

(C.13)

We expect when the regions covering the domain are getting smaller and energy

groups are becoming thinner, the error caused by this approximation tends to be

zero. The accuracy of the multigroup approximation depends on how the full range

of energy is cut and number of regions are considered and also depends on how well

the spectrum can be obtained.

Because the integral in energy will smooth the scattering kernel, and higher

moments of angular flux are significantly smaller in most situations, we usually treat
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the scattering term with a Legendre polynomial expansion:∫
4π

σg′→g
s (
r, 
Ω′ · 
Ω)Ψg′(
r, 
Ω

′) dΩ′

=

∫
4π

[
Ns∑
n=0

2n+ 1

2
σg′→g

s,n (
r)Pn(
Ω′ · 
Ω)

]⎡⎣ Nf∑
m=0

m∑
l=−m

Φg′
m,l(
r)Ym,l(
Ω

′)

⎤⎦ dΩ′

=

∫
4π

[
Ns∑
n=0

2n+ 1

2
σg′→g

s,n (
r)
2

2n+ 1

n∑
k=−n

Yn,k(
Ω)Y ∗
n,k(


Ω′)

]⎡⎣ Nf∑
m=0

m∑
l=−m

Φg′
m,l(
r)Ym,l(
Ω

′)

⎤⎦ dΩ′

=

∫
4π

[
Ns∑
n=0

σg′→g
s,n (
r)

n∑
k=−n

Yn,k(
Ω)Y ∗
n,k(


Ω′)

]⎡⎣ Nf∑
m=0

m∑
l=−m

Φg′
m,l(
r)Ym,l(
Ω

′)

⎤⎦ dΩ′

=

∫
4π

⎡⎣ Ns∑
n=0

n∑
k=−n

Nf∑
m=0

m∑
l=−m

σg′→g
s,n (
r)Φg′

m,l(
r)Yn,k(
Ω)Y ∗
n,k(


Ω′)Ym,l(
Ω
′)

⎤⎦ dΩ′

=
Ns∑
n=0

n∑
k=−n

Nf∑
m=0

m∑
l=−m

σg′→g
s,n (
r)Φg′

m,l(
r)Yn,k(
Ω)δn,mδk,l

=

min(Ns,Nf )∑
n=0

n∑
k=−n

σg′→g
s,n (
r)Φg′

n,k(
r)Yn,k(
Ω) =

N∑
n=0

σg′→g
s,n (
r)

n∑
k=−n

Φg′
n,k(
r)Yn,k(
Ω)

In the derivation, we defined

μ0 ≡ 
Ω · 
Ω′ (C.14)

σg′→g
s (
r, 
Ω · 
Ω′) ≡ 1

2π
σg′→g

s (
r, μ0) (C.15)

Pn(
Ω · 
Ω′) ≡ 1

2π
Pn(μ0) (C.16)

σg′→g
s,n (
r) ≡

∫ 1

−1

σg′→g
s (
r, μ0)Pn(μ0) dμ0 (C.17)

Φg
n,k(
r) ≡

∫
4π

Ψg(
r, 
Ω)Y ∗
n,k(
Ω) dΩ (C.18)
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The spherical harmonics are,

Yn,k(
Ω) ≡√Cn,kP
k
n (μ)eikθ (C.19)

Cn,k ≡ (2n+ 1)(n− k)!
4π(n+ k)!

(C.20)

Note these spherical harmonics are normalized. μ is the cosine of the polar (colati-

tudinal) angle. θ is the azimuthal (longitudinal) angle with θ ∈ [0, 2π). P k
n (μ) is the

associated Legendre polynomials. They have following properties,

P 0
n(μ) = Pn(μ) (C.21)

P−k
n = (−1)k (n− k)!

(n+ k)!
P k

n (μ) (C.22)

Pn(μ) are the Legendre polynomials. Note that Yn,0 =
√

2n+1
4π

Pn(μ). Also note that

with this definition of spherical harmonics

Φg(
r) =
√

4πΦg
0,0(
r) (C.23)

In the above derivation, we used the spherical harmonic addition theorem

Pn(
Ω · 
Ω′) ≡ 1

2π
Pn(μ0) =

2

2n+ 1

n∑
k=−n

Yn,k(
Ω)Y ∗
n,k(


Ω′) (C.24)

In the above derivation, we truncate the Legendre expansion of the scattering cross

section to Ns and the spherical harmonic expansion of the angular flux to Nf . This

ends up with the truncation up to Na ≡ min(Ns, Nf) known as the PN approximation.

Note that if the scattering is isotropic∫
4π

σg′→g
s (
r, 
Ω′ · 
Ω)Ψg′(
r, 
Ω

′) dΩ′ = σg′→g
s,0 (
r)Φg′

0,0(
r)Y0,0(
Ω) =
1

4π
σg′→g

s,0 (
r)Φg′(
r)

(C.25)
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So the multigroup transport equation with the PN approximation,

(

Ω · 
∇+ σt,g

)
Ψg = Sext,g +

χg

4π

G∑
g′=1

νσf,g′Φg′ +

G∑
g′=1

Na∑
n=0

σg′→g
s,n

n∑
k=−n

Φg′
n,k(
r)Yn,k (C.26)

with the boundary condition

Ψg(
rb, 
Ω) = Ψinc
g (
rb, 
Ω) +

G∑
g′=1

∫
�Ω′·�nb>0

βg′→g(
rb, 
Ω
′ → 
Ω)Ψg′(
rb, 
Ω

′) dΩ′

on 
rb ∈ ∂D and 
Ω · 
nb < 0

(C.27)

where

βg′→g(
rb, 
Ω
′ → 
Ω) =

∫ Eg′−1

Eg′

[∫ Eg−1

Eg
β(
rb, E

′ → E, 
Ω′ → 
Ω) dE
]
fg′,r(E

′) dE ′∫ Eg′−1

Eg′
fg′,r(E ′) dE ′

(C.28)

We may use another definition of spherical harmonics which is favorable for

coding because there is not imagining number in it.

Y e
n,k(
Ω) ≡√Cn,kP

k
n (μ) cos(kθ), k = 0, · · · , n

Y o
n,k(


Ω) ≡√Cn,kP
k
n (μ) sin(kθ), k = 1, · · · , n

Cn,k ≡ (n− k)!
(n+ k)!

(2− δk,0)

(C.29)

With this definition, we have the orthogonality properties,∫
4π

Y e
n,k(


Ω)Y e
m,l(


Ω) dΩ =
4π

2n+ 1
δn,mδk,l (C.30)∫

4π

Y o
n,k(


Ω)Y o
m,l(


Ω) dΩ =
4π

2n+ 1
δn,mδk,l (C.31)∫

4π

Y e
n,k(


Ω)Y o
m,l(


Ω) dΩ = 0 (C.32)

With this definition, the addition theorem is

2πPn(
Ω · 
Ω′) = Pn(μ0) =
n∑

k=0

Y e
n,k(


Ω)Y e
n,k(


Ω′) +
n∑

k=1

Y o
n,k(


Ω)Y o
n,k(


Ω′) (C.33)
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We then define the flux moments,

Φg
n,k,e(
r) =

∫
4π

Ψg(
r, 
Ω)Y e
n,k(


Ω) dΩ (C.34)

Φg
n,k,o(
r) =

∫
4π

Ψg(
r, 
Ω)Y o
n,k(


Ω) dΩ (C.35)

The angular flux can be expanded with the spherical harmonics,

Ψg(
r, 
Ω) =

∞∑
n=0

2n+ 1

4π

[
n∑

k=0

Φg
n,k,e(
r)Y

e
n,k(
Ω) +

n∑
k=1

Φg
n,k,o(
r)Y

o
n,k(
Ω)

]
(C.36)

One nice thing about this definition is

Y e
0,0(


Ω) = 1

Y e
1,1(


Ω) = Ωx

Y o
1,1(
Ω) = Ωy

Y e
1,0(


Ω) = Ωz

(C.37)

Correspondingly

Φg
0,0,e = Φg

Φg
1,1,e = Jx

g

Φg
1,1,o = Jy

g

Φg
1,0,e = Jz

g

(C.38)
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Now the scattering term∫
4π

σg′→g
s (
r, 
Ω′ · 
Ω)Ψg′(
r, 
Ω

′) dΩ′

=

∫
4π

[∑Ns

n=0
2n+1

2
σg′→g

s,n (
r)Pn(
Ω′ · 
Ω)
]
·[∑Nf

m=0
2m+1

4π

[∑m
l=0 Φg′

m,l,e(
r)Y
e
m,l(


Ω′) +
∑m

l=1 Φg′
m,l,o(
r)Y

o
m,l(


Ω′)
]] dΩ′

=

∫
4π

[∑Ns

n=0
2n+1
4π

σg′→g
s,n (
r)

[∑m
l=0 Y

e
m,l(


Ω)Y e
m,l(


Ω′) +
∑m

l=1 Y
o
m,l(


Ω)Y o
m,l(


Ω′)
]]
·[∑Nf

m=0
2m+1

4π

[∑m
l=0 Φg′

m,l,e(
r)Y
e
m,l(


Ω′) +
∑m

l=1 Φg′
m,l,o(
r)Y

o
m,l(


Ω′)
]] dΩ′

=

min(Ns,Nf )∑
n=0

2n+ 1

4π
σg′→g

s,n (
r)

[
n∑

k=0

Φg′
n,k,e(
r)Y

e
n,k(
Ω) +

n∑
k=1

Φg′
n,k,o(
r)Y

o
n,k(
Ω)

]

=
Na∑
n=0

2n+ 1

4π
σg′→g

s,n (
r)

[
n∑

k=0

Φg′
n,k,e(
r)Y

e
n,k(


Ω) +
n∑

k=1

Φg′
n,k,o(
r)Y

o
n,k(


Ω)

]

For notational simplicity, let us re-define

Yn,k(
Ω) ≡ Y e
n,k(


Ω), k = 0, · · · , n

Yn,−k(
Ω) ≡ Y o
n,k(


Ω), k = 1, · · · , n

Φg
n,k(
r) ≡ Φg

n,k,e(
r), k = 0, · · · , n

Φg
n,−k(
r) ≡ Φg

n,k,o(
r), k = 1, · · · , n

(C.39)

Then the multigroup transport equation is,

(

Ω · 
∇+ σt,g

)
Ψg = Sext,g +

χg

4π

G∑
g′=1

νσf,g′Φg′ +

G∑
g′=1

Na∑
n=0

2n+ 1

4π
σg′→g

s,n

n∑
k=−n

Φg′
n,k(
r)Yn,k

(C.40)

In reactor analysis, we often solve the general eigenvalue (k-eigenvalue) problem

(

Ω·
∇+σt,g

)
Ψg =

1

keff

χg

4π

G∑
g′=1

νσf,g′Φg′+
G∑

g′=1

Na∑
n=0

2n+ 1

4π
σg′→g

s,n

n∑
k=−n

Φg′
n,k(
r)Yn,k (C.41)



334

with the homogeneous boundary conditions

Ψg(
rb, 
Ω) =

G∑
g′=1

∫
�Ω′·�nb>0

βg′→g(
rb, 
Ω
′ → 
Ω)Ψg′(
rb, 
Ω

′)dΩ′

on 
rb ∈ ∂D and 
Ω · 
nb < 0

(C.42)

B. The Iterative Solver for the Multigroup Problem

The traditional iterative solver of the multigroup eigenvalue problem Eq. (C.41) and

Eq. (C.42) is described in Algorithm 3.

Algorithm 3 Iterative solver for the multigroup problem.

1: Initialization:

Φ(0)
g = Φ

g,(0)
0,0 = 1, g = 1, · · · , G

Φ
g,(0)
n,k = 0, g = 1, · · · , G; n = 1, · · · , N ; k = −n, · · · , n

k
(0)
eff = keff,0 (usually 1.0)

2: Calculate the total fission source:

F (0) =

G∑
g=1

∫
D
νσf,g(
r)Φ

(0)
g (
r) d
r

3: Set the convergence flag=.FALSE.

4: for power iteration (outer iteration) l = 1 : max outer do

5: for fast group sweep g = 1 : nfg do

6: Construct fast group source moment:

Q
g,(l)
n,k (
r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
χg(�r)

k
(l−1)
eff

G∑
g′=1

νσf,g′(
r)Φ
(l−1)
g′ (
r) +

g−1∑
g′=1

σg′→g
s,0 Φ

g′,(l)
0,0 (
r) , n = k = 0

g−1∑
g′=1

σg′→g
s,n (
r)Φ

g′,(l)
n,k (
r) , otherwise
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7: Solve the one-group source problem:

(

Ω · 
∇+ σt,g

)
Ψ(l)

g =

Na∑
n=0

2n+ 1

4π

n∑
k=−n

[
Q

g,(l)
n,k (
r) + σg→g

s,n (
r)Φ
g,(l)
n,k (
r)

]
Yn,k(
Ω)

8: end for fast group sweep

9: Construct fast-to-thermal scattering sources:

Q
g,(l)
n,k,fast(
r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
χg(�r)

k
(l−1)
eff

G∑
g′=1

νσf,g′(
r)Φ
(l−1)
g′ (
r) +

nfg∑
g′=1

σg′→g
s,0 Φ

g′,(l)
0,0 (
r) , n = k = 0

nfg∑
g′=1

σg′→g
s,n (
r)Φ

g′,(l)
n,k (
r) , otherwise

g = nfg + 1, · · · , G

10: Initialize thermal flux moments:

Φ
g,(l,m=0)
n,k (
r) = Φ

g,(l−1)
n,k (
r), g = nfg + 1, · · · , G

11: for thermal iteration m = 1 : max thermal do

12: for thermal group sweep g = nfg + 1 : G do

13: Construct thermal group source moment:

Q
g,(l,m)
n,k (
r) = Q

g,(l)
n,k,fast(
r)+

g−1∑
g′=nfg+1

σg′→g
s,n (
r)Φ

g′,(l,m)
n,k (
r)+

G∑
g′=g+1

σg′→g
s,n (
r)Φ

g′,(l,m−1)
n,k (
r)

14: Solve the one-group source problem:

(

Ω·
∇+σt,g

)
Ψ(l,m)

g =

Na∑
n=0

2n+ 1

4π

n∑
k=−n

[
Q

g,(l,m)
n,k (
r) + σg→g

s,n (
r)Φ
g,(l,m)
n,k (
r)

]
Yn,k(
Ω)

15: end for thermal group sweep

16: Test thermal convergence:

max
g=nfg+1,··· ,G

∥∥∥Φ(l,m)
g − Φ

(l,m−1)
g

∥∥∥∥∥∥Φ(l,m)
g

∥∥∥ ≤ tolthermal (C.43)
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17: if the criteria is satisfied then

18: Terminate the thermal iteration.

19: end if

20: end for thermal iteration

21: Set the latest thermal solutions for the current power iteration:

Ψ(l)
g = Ψ(l,m)

g , g = nfg + 1, · · · , G

22: Update total fission source and keff :

F (l) =

G∑
g=1

∫
D

νσf,g(
r)Φ
(l)
g (
r) d
r

k
(l)
eff =

F (l)

F (l−1)
k

(l−1)
eff

23: Test outer convergence: ∣∣∣k(l)
eff − k(l−1)

eff

∣∣∣
k

(l)
eff

≤ tolkeff (C.44)

max
1≤g≤G

⎡⎢⎣max
K∈Th

∥∥∥Φ(l)
g − Φ

(l−1)
g

∥∥∥
2,K∥∥∥Φ(l)

g

∥∥∥
2,K

⎤⎥⎦ ≤ tolflux (C.45)

24: if the outer criteria is satisfied then

25: Set flag=.TRUE. and terminate the power iteration.

26: end if

27: end for power iteration

Remarks:

• Control parameters are boxed in the algorithm, including

– max outer Maximum number of outer iterations
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– max thermal Maximum number of thermal iterations

– tolthermal Tolerance of the thermal iteration

– tolkeff Tolerance on keff for the outer iteration

– tolflux Tolerance on flux for the outer iteration

– keff,0 Initial guess for the k-effective

• Number of fast groups nfg plus one is equal to the minimum number of energy

group with up-scattering sources, i.e., sources from energy group(s) with number

being larger than its number. Note that nfg does not necessarily mean the

number of fast groups, for example, if we have a problem with only two groups,

and the second group covers the entire thermal energy range, both energy groups

do not have up-scattering and are called the “fast” group in the algorithm

although the second energy group is thermal.

• F (l)k
(l)
eff is constant during the power iteration.

• If all energy groups are using the same mesh, the fission distribution

f(
r) =
G∑

g=1

νσf,g(
r)Φ
(l)
g (
r) (C.46)

can be calculated and stored at each power iteration to save time for computing

the fission sources of all energy groups.

• Power iteration can be simply accelerated with techniques such as Chebyshev

acceleration.

• Gauss-Seidel scheme on the thermal group sweep is applied in the algorithm.

Thermal re-balance could be done after each thermal iteration.
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• Solver for the one-group source problem with DGFEM is detailed in the body

of this dissertation.

• For the multi-group source problems we simply remove the outer iteration.

• The whole procedure can be accelerated with CMFD (Coarse-Mesh Finite Dif-

ference).

• New solvers regarding large number of energy groups (over 1000) are under

development.

C. Multigroup SN Equations

Given an angular quadrature set
{

Ωm, wm

}
m=1,...M

and number G of energy intervals

or groups [Eg, Eg−1] , g = 1, · · · , G, the steady-state multigroup SN equation in one

directionm and for one group g in the open convex space domainD with the boundary

∂D is

(

Ωm · 
∇+σt,g

)
Ψm,g = Sext

m,g +
χg

4π

G∑
g′=1

νσf,g′Φg′ +
G∑

g′=1

Na∑
n=0

2n+ 1

4π
σg′→g

s,n

n∑
k=−n

Φg′
n,kYn,k(
Ωm)

(C.47)

with the boundary condition

Ψm,g(
rb) = Ψinc
m,g(
rb) +

G∑
g′=1

∑
�Ωm′ ·�nb>0

βg′→g
m′→m(
rb)Ψm′,g′(
rb)

on 
rb ∈ ∂D and 
Ωm · 
nb < 0

(C.48)
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Symbol meanings are listed below:


r position variable [cm]

D ∈ Rd open d-dimensional convex space domain

∂D boundary of space domain


nb = 
n(
rb) outward unit normal vector on boundary


Ωm unit steaming direction vector in the angular quadrature set

m index of streaming directions from 1 to M

g index of energy groups from 1 to G, usually E0=20MeV and EG=0

Ψm,g(
r) = Ψg(
r, 
Ωm) neutron angular flux [ n
cm2·ster·s ]

Φg(
r) =
∑M

m=1 wmΨm,g neutron scalar flux [ n
cm2·s ]

Φg
n,k(
r) =

∑M
m=1 wmYn,k(
Ωm)Ψm,g neutron flux moments [ n

cm2·s ]

Yn,k(
Ω) spherical harmonics defined with Eq. (C.29) and Eq. (C.39)

Sext
m,g(
r) = Sext

g (
r, 
Ωm) external source [ n
cm2·ster·s ]

σt,g(
r) macroscopic total cross section [cm−1]

σg′→g
s,n (
r) =

∫ 1

−1
σg′→g

s (
r, μ)Pn(μ) dμ macroscopic scattering cross sections [cm−1]

Na truncation order of the PN approximation,

see Appendix A for more details

νσf,g(
r) fission cross section times the average number of neutrons emitted

per fission [cm−1]

χg(
r) neutron fission spectrum

βg′→g
m′→m(
rb) boundary albedo, its definition depends on the quadrature set,

also refer to the Eq. (C.28)
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Apparently to re-produce the multigroup solution, we need the quadrature set to

satisfy the following orthogonal conditions:∫
4π

Yn,k(
Ω)Ym,l(
Ω) dΩ =
4π

2n+ 1
δn,mδk,l

, n = 0, · · · , Ns; k = −n, · · · , n

, m = 0, · · · , Nf ; l = −n, · · · , n

(C.49)

Because expansion order Nf of angular flux is infinite generally, SN equation will not

exactly equivalent with the transport equation in general and as the result, we can

see the SN singularities along some characteristic lines also known as the ray effects.

The angular quadrature is designed to satisfy as many orthogonality properties as

possible, at least for all with n = 0, 1. Currently, ray effects are mitigated using

first-collision approaches or by making the SN produce the PN results. Ray effects

will not be the focus here. Multigroup PN equation will also not be presented.

D. Variational Form for the Multigroup SN Equations with DGFEM

We will not give the details on how the variational form with DGFEM for the general

multigroup SN transport equation is obtained but present it directly.

First we define the function space,

W h
D =

{
Ψm,g ∈ L2(D); Ψm,g|K ∈ V (K), ∀K ∈ Tg,h, m = 1, · · · ,M ; g = 1, · · · , G}

(C.50)

Note that meshes for all G energy groups do not have to be the same. The variational

form:

Find Ψ ∈W h
D such that:

a(Ψ,Ψ∗) = l(Ψ∗) ∀Ψ∗ ∈W h
D (C.51)
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where

a(Ψ,Ψ∗) =b(Ψ,Ψ∗)−
G∑

g=1

G∑
g′=1

∑
e∈∂D

∑
�Ωm·�nb<0

∑
�Ωm′ ·�nb>0

〈
wmβ

g′→g
m′→mΨm′,g′,Ψ

∗
m,g

〉
e
−

G∑
g=1

G∑
g′=1

1

4π

(
νσf,g′Φg′ , χgΦ

∗
g

)
D−

G∑
g=1

G∑
g′=1

Na∑
n=0

n∑
k=−n

2n+ 1

4π

(
σg′→g

s,n Φg′
n,k,Φ

g∗
n,k

)
D

(C.52)

b(Ψ,Ψ∗) =
G∑

g=1

M∑
m=1

wm

(
(
Ωm · 
∇+ σt,g)Ψm,g,Ψ

∗
m,g

)
D

+
G∑

g=1

M∑
m=1

wm

〈
[[Ψm,g]],Ψ

∗+
m,g

〉
Ei

g,h

+

G∑
g=1

∑
e∈∂D

∑
�Ωm·�nb<0

wm

〈
Ψm,g,Ψ

∗
m,g

〉
e

(C.53)

l(Ψ∗) =
G∑

g=1

M∑
m=1

wm

(
Sext

m,g,Ψ
∗
m,g

)
D +

G∑
g=1

∑
e∈∂D

∑
�Ωm·�nb<0

wm

〈
Ψinc

m,g,Ψ
∗
m,g

〉
e

(C.54)

Because the meshes could vary with energy groups, the interior edge sets Ei
g,h are

also group-dependent. Bilinear form a(Ψ,Ψ∗) is not symmetric. If there is no fission

and the scattering cross section is physically possible, the positiveness of the bilinear

form can be proved. Again we can find the adjoint bilinear form and prove the primal

and the adjoint are the same.
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APPENDIX D

1-D LINEAR DGFEM FOR THE SN TRANSPORT WITH DSA
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1-D transport equation with isotropic scatterings with x ∈ [0, a] and μ ∈ [−1, 1]

μ
∂ψ

∂x
+ σt(x)ψ(x, μ) =

σs(x)

2

∫ 1

−1

ψ(x, μ′) dμ′ +
Q(x)

2
(D.1)

and the boundary conditions

ψ(x = 0, μ) = ψleft (μ), where μ > 0 (D.2)

ψ(x = a, μ) = ψright(μ), where μ < 0 (D.3)

With a quadrature set {μm, wm}Mm=1 on [−1, 1], we have the SN equation,

μm
∂ψm

∂x
+ σt(x)ψm(x) =

σs(x)

2

M∑
m′=1

wm′ψm′(x) +
Q(x)

2
(D.4)

Arbitrarily distribute N + 1 points
{
xi+1/2

}N

i=0
in the domain [0, a], and they satisfy

x1/2 = 0

xN+1/2 = a

x1/2 < x3/2 < x5/2 < · · · < xN−1/2 < xN+1/2

(D.5)

Suppose the cross sections are piece-wise constant, and the cross section discontinuity

points are in the point set. And also suppose the source is piece-wise linear function,

and the source discontinuity points are also in the set. These points form N elements

{Ki}Ni=1, where

Ki =
[
xi−1/2, xi+1/2

]
(D.6)

We also define

Δxi = xi+1/2 − xi−1/2 (D.7)

xi =
xi+1/2 + xi−1/2

2
(D.8)
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With these definitions, the cross sections is constant in each element. Define shape

functions on element Ki:

bLi (x) = bL(x̂) = bL ◦ F−1
i (x) (D.9)

bRi (x) = bR(x̂) = bR ◦ F−1
i (x) (D.10)

where

bL(x̂) =
1− x̂

2
(D.11)

bR(x̂) =
1 + x̂

2
(D.12)

x = Fi(x̂) = xi−1/2b
L(x̂) + xi+1/2b

R(x̂) = xi +
Δxi

2
x̂ (D.13)

we get further

x̂ = F−1
i (x) =

2

Δxi

(x− xi) (D.14)

bLi (x) =
xi+1/2 − x

Δxi

(D.15)

bRi (x) =
x− xi−1/2

Δxi

(D.16)

dbLi
dx

(x) = − 1

Δxi
;
dbRi
dx

(x) =
1

Δxi
(D.17)

Mi ≡
∫ xi+1/2

xi−1/2

⎡⎢⎣bLi (x)

bRi (x)

⎤⎥⎦[bLi (x) bRi (x)

]
dx =

Δxi

6

⎡⎢⎣2 1

1 2

⎤⎥⎦ (D.18)

Gi ≡
∫ xi+1/2

xi−1/2

d

dx

⎡⎢⎣bLi (x)

bRi (x)

⎤⎥⎦[bLi (x) bRi (x)

]
dx =

1

2

⎡⎢⎣−1 −1

1 1

⎤⎥⎦ (D.19)

Assume solution in Ki

ψm,i(x) = ψL
m,ib

L
i (x) + ψR

m,ib
R
i (x), m = 1, · · · ,M (D.20)
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Or use vertex-based definition

ψm,i(x) = ψR
m,i−1/2b

L
i (x) + ψL

m,i+1/2b
R
i (x), m = 1, · · · ,M (D.21)

substitute it into Eq. (D.4) and test with two shape functions,

μm

⎡⎢⎣−1 0

0 1

⎤⎥⎦
⎡⎢⎣ψ̂m,i−1/2

ψ̂m,i+1/2

⎤⎥⎦− μm

2

⎡⎢⎣−1 −1

1 1

⎤⎥⎦
⎡⎢⎣ψL

m,i

ψR
m,i

⎤⎥⎦+
σt,iΔxi

6

⎡⎢⎣2 1

1 2

⎤⎥⎦
⎡⎢⎣ψL

m,i

ψR
m,i

⎤⎥⎦
=
σs,iΔxi

12

⎡⎢⎣2 1

1 2

⎤⎥⎦ M∑
m′=1

wm′

⎡⎢⎣ψL
m′,i

ψR
m′,i

⎤⎥⎦+
Δxi

12

⎡⎢⎣2 1

1 2

⎤⎥⎦
⎡⎢⎣QL

i

QR
i

⎤⎥⎦
(D.22)

Now apply the upwind scheme:

ψ̂m,i+1/2 =

⎧⎪⎨⎪⎩ ψR
m,i if i > 0

ψleft
m if i = 0

(D.23)

when μm > 0.

ψ̂m,i+1/2 =

⎧⎪⎨⎪⎩ ψL
m,i+1 if i < N

ψright
m if i = N

(D.24)

when μm < 0. This gives us the proper coupling.

We use the same variational derivation to obtain the conforming diffusion scheme

for this 1-D problem. We write down the variational form for the 1-D transport
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problem,

M/2∑
m=1

2wm

N−1∑
i=1

|μm|ψ∗R
m,i+1/2(ψ

R
m,i+1/2 − ψL

m,i+1/2) +

M/2∑
m=1

2wm |μm|ψ∗R
m,1/2ψ

R
m,1/2+

M∑
m=M/2+1

2wm

N−1∑
i=1

|μm|ψ∗L
m,i+1/2(ψ

L
m,i+1/2 − ψR

m,i+1/2)+

M∑
m=M/2+1

2wm |μm|ψ∗L
m,N+1/2ψ

L
m,N+1/2+

M∑
m=1

2wm

N∑
i=1

(μm
∂ψm,i

∂x
+ σtψm,i, ψ

∗
m,i)i =

M∑
m=1

2wm

N∑
i=1

(
σs

2
φi +

Qi

2
, ψ∗

m,i)i+

M/2∑
m=1

2wm |μm|ψ∗R
m,1/2ψ

left
m +

M∑
m=M/2+1

2wm |μm|ψ∗L
m,N+1/2ψ

right
m

Then we directly write down the diffusion conforming form

bDCF (φ, φ∗) = (σaφ, φ
∗)D + (Ddxφ, dxφ

∗)D+

1

4
([[φ]], [[φ∗]])Ei

h
+ ([[φ]], {{Ddxφ

∗}})Ei
h

+ ({{Ddxφ}}, [[φ∗]])Ei
h
− 9

8
([[Ddxφ]], [[Ddxφ

∗]])Ei
h
+

1

4
(φ, φ∗)R

1/2 +
1

2
(φ,Ddxφ

∗)R
1/2 +

1

2
(Ddφx, φ

∗)R
1/2 −

9

8
(Ddxφ,Ddxφ

∗)R
1/2+

1

4
(φ, φ∗)L

N+1/2 −
1

2
(φ,Ddxφ

∗)L
N+1/2 −

1

2
(Ddxφ, φ

∗)L
N+1/2 −

9

8
(Ddxφ,Ddxφ

∗)L
N+1/2

(D.25)

l(φ∗) =(Q, φ∗)D+

(J left, φ∗)R
1/2 + (ς left, Ddxφ

∗)R
1/2 + (Jright, φ∗)L

N+1/2 + (ςright, Ddxφ
∗)L

N+1/2

(D.26)
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where

J left =

M/2∑
m=1

wm |μm|ψleft
m (D.27)

ς left =

M/2∑
m=1

3wm |μm|μmψ
left
m (D.28)

Jright =

M∑
m=M/2+1

wm |μm|ψright
m (D.29)

ςright =

M∑
m=M/2+1

3wm |μm|μmψ
right
m (D.30)

Ei
h is the point set

{
xi+1/2

}N−1

i=1
. We have following definitions to understand the
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formula:

(f, g)D =
N∑

i=1

(f, g)i (D.31)

(f, g)i =

∫ xi+1/2

xi−1/2

f · g dx (D.32)

(f, g)Ei
h

=
N−1∑
i=1

(f, g)i+1/2 (D.33)

(f, g)i+1/2 = fi+1/2gi+1/2 (D.34)

(f, g)R
i+1/2 = fR

i+1/2g
R
i+1/2 (D.35)

(f, g)L
i+1/2 = fL

i+1/2g
L
i+1/2 (D.36)

[[φ]]i+1/2 = φR
i+1/2 − φL

i+1/2 (D.37)

[[φ∗]]i+1/2 = φ∗R
i+1/2 − φ∗L

i+1/2 (D.38)

[[Ddxφ]]i+1/2 =

[
D
dφ

dx

]R

i+1/2

−
[
D
dφ

dx

]L

i+1/2

(D.39)

[[Ddxφ
∗]]i+1/2 =

[
D
dφ∗

dx

]R

i+1/2

−
[
D
dφ∗

dx

]L

i+1/2

(D.40)

{{Ddxφ}}i+1/2 =
1

2
(

[
D
dφ

dx

]R

i+1/2

+

[
D
dφ

dx

]L

i+1/2

) (D.41)

{{Ddxφ
∗}}i+1/2 =

1

2
(

[
D
dφ∗

dx

]R

i+1/2

+

[
D
dφ∗

dx

]L

i+1/2

) (D.42)
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We copy the multi-dimensional diffusion conforming form to here:

bDCF (Φ,Φ∗) =(σaΦ,Φ
∗)D + (D
∇Φ, 
∇Φ∗)D

+
1

4
([[Φ]], [[Φ∗]])Ei

h
+ ([[Φ]], {{D∂nΦ∗}})Ei

h
+ ({{D∂nΦ}}, [[Φ∗]])Ei

h

+
1

4
(Φ,Φ∗)∂Dd − 1

2
(Φ, D∂nΦ∗)∂Dd − 1

2
(D∂nΦ,Φ)∂Dd

− 9

16
([[D
∇Φ]], [[D
∇Φ∗]])Ei

h
− 9

16
([[D∂nΦ]], [[D∂nΦ∗]])Ei

h

− 9

16
(D
∇Φ, D
∇Φ∗)∂Dd − 9

16
(D∂nΦ, D∂nΦ∗)∂Dd

lDCF (Φ∗) =(Q0,Φ
∗)D + (J inc,Φ∗)∂Dd − (
Υinc, D
∇Φ∗)∂Dd

(D.43)

where

J inc =
∑

�Ωm·�n(�rb)<0

wm

∣∣∣
Ωm · 
n(
rb)
∣∣∣Ψinc

m


Υinc = −
∑

�Ωm·�n(�rb)<0

3wm

Ωm

∣∣∣
Ωm · 
n(
rb)
∣∣∣Ψinc

m

(D.44)

We can see that, with following

D
∇Φ = Ddxφ (D.45)

D∂nΦ = Ddxφ on Ei
h (D.46)

D∂nΦ = Ddxφ on xN+1/2 (D.47)

D∂nΦ = −Ddxφ on x1/2 (D.48)

We can obtain the 1-D form from the multi-dimensional formula.

I will present a different way to assemble the system. Let us consider two element
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adjacent with each other noted with 1 for the left and 2 for the right.

(σaφ, φ
∗)D = φ∗T

1 σa,1Δx1Mφ1 + φ∗T
2 σa,2Δx2Mφ2

(Ddxφ, dxφ
∗)D = φ∗T

1

D1

Δx1
Sφ1 + φ∗T

2

D2

Δx2
Sφ2

1

4
([φ] , [φ∗])Ei

h
=

1

4
(φR

3/2 − φL
3/2)(φ

∗R
3/2 − φ∗L

3/2)

=
1

4
φL

3/2φ
∗L
3/2 +

1

4
φR

3/2φ
∗R
3/2 −

1

4
φR

3/2φ
∗L
3/2 −

1

4
φL

3/2φ
∗R
3/2

=
1

4
φ∗T

1

⎡⎢⎣0

1

⎤⎥⎦[0 1

]
φ1 +

1

4
φ∗T

2

⎡⎢⎣1

0

⎤⎥⎦[1 0

]
φ2

− 1

4
φ∗T

1

⎡⎢⎣0

1

⎤⎥⎦[1 0

]
φ2 − 1

4
φ∗T

2

⎡⎢⎣1

0

⎤⎥⎦[0 1

]
φ1

= φ∗T
1 E1

11φ1 + φ∗T
2 E1

22φ2 + φ∗T
1 E1

12φ2 + φ∗T
2 E1

21φ1

({Ddxφ} , [φ∗])Ei
h

=
1

2
(

[
D
dφ

dx

]R

3/2

+

[
D
dφ

dx

]L

3/2

)(φ∗R
3/2 − φ∗L

3/2)

= −1

2

[
D
dφ

dx

]L

3/2

φ∗L
3/2 +

1

2

[
D
dφ

dx

]R

3/2

φ∗R
3/2

− 1

2

[
D
dφ

dx

]R

3/2

φ∗L
3/2 +

1

2

[
D
dφ

dx

]L

3/2

φ∗R
3/2

= −1

2
φ∗T

1

⎡⎢⎣0

1

⎤⎥⎦ D1

Δx1

[
−1 1

]
φ1 +

1

2
φ∗T

2

⎡⎢⎣1

0

⎤⎥⎦ D2

Δx2

[
−1 1

]
φ2

− 1

2
φ∗T

1

⎡⎢⎣0

1

⎤⎥⎦ D2

Δx2

[
−1 1

]
φ2 +

1

2
φ∗T

2

⎡⎢⎣1

0

⎤⎥⎦ D1

Δx1

[
−1 1

]
φ1

= φ∗T
1

D1

Δx1

E2
11φ1 + φ∗T

2

D2

Δx2

E2
22φ2 + φ∗T

1

D2

Δx2

E2
12φ2 + φ∗T

2

D1

Δx1

E2
21φ1
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([φ] , {Ddxφ
∗})Ei

h
=

1

2
(φR

3/2 − φL
3/2)(

[
D
dφ∗

dx

]R

3/2

+

[
D
dφ∗

dx

]L

3/2

)

= −1

2

[
D
dφ∗

dx

]L

3/2

φL
3/2 +

1

2

[
D
dφ∗

dx

]R

3/2

φR
3/2

+
1

2

[
D
dφ∗

dx

]L

3/2

φR
3/2 −

1

2

[
D
dφ∗

dx

]R

3/2

φL
3/2

= −1

2

D1

Δx1
φ∗T

1

⎡⎢⎣−1

1

⎤⎥⎦[0 1

]
φ1 +

1

2

D2

Δx2
φ∗T

2

⎡⎢⎣−1

1

⎤⎥⎦[1 0

]
φ2

− 1

2

D1

Δx1
φ∗T

1

⎡⎢⎣−1

1

⎤⎥⎦[1 0

]
φ2 +

1

2

D2

Δx2
φ∗T

2

⎡⎢⎣−1

1

⎤⎥⎦[0 1

]
φ1

= φ∗T
1

D1

Δx1
E2T

11 φ1 + φ∗T
2

D2

Δx2
E2T

22 φ2 + φ∗T
1

D1

Δx1
E2T

21 φ2 + φ∗T
2

D2

Δx2
E2T

12 φ1

−9

8
([Ddxφ] , [Ddxφ

∗])Ei
h

= −9

8
(

[
D
dφ

dx

]R

3/2

−
[
D
dφ

dx

]L

3/2

)(

[
D
dφ∗

dx

]R

3/2

−
[
D
dφ∗

dx

]L

3/2

)

= −9

8

[
D
dφ

dx

]L

3/2

[
D
dφ∗

dx

]L

3/2

− 9

8

[
D
dφ

dx

]R

3/2

[
D
dφ∗

dx

]R

3/2

+
9

8

[
D
dφ

dx

]R

3/2

[
D
dφ∗

dx

]L

3/2

+
9

8

[
D
dφ

dx

]L

3/2

[
D
dφ∗

dx

]R

3/2

= −9

8

D1

Δx1
φ∗T

1

⎡⎢⎣−1

1

⎤⎥⎦ D1

Δx1

[
−1 1

]
φ1 − 9

8

D2

Δx2
φ∗T

2

⎡⎢⎣−1

1

⎤⎥⎦ D2

Δx2

[
−1 1

]
φ2

+
9

8

D1

Δx1
φ∗T

1

⎡⎢⎣−1

1

⎤⎥⎦ D2

Δx2

[
−1 1

]
φ2 +

9

8

D2

Δx2
φ∗T

2

⎡⎢⎣−1

1

⎤⎥⎦ D2

Δx2

[
−1 1

]
φ1

= φ∗T
1 (

D1

Δx1
)2E3

11φ1 + φ∗T
2 (

D2

Δx2
)2E3

22φ2

+ φ∗T
1

D1

Δx1

D2

Δx2
E3

12φ2 + φ∗T
2

D1

Δx1

D2

Δx2
E3

21φ1
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where

M =
1

6

⎡⎢⎣2 1

1 2

⎤⎥⎦
S =

⎡⎢⎣ 1 −1

−1 1

⎤⎥⎦
E1

11 =
1

4

⎡⎢⎣0

1

⎤⎥⎦[0 1

]
=

1

4

⎡⎢⎣0 0

0 1

⎤⎥⎦
E1

22 =
1

4

⎡⎢⎣1

0

⎤⎥⎦[1 0

]
=

1

4

⎡⎢⎣1 0

0 0

⎤⎥⎦
E1

12 = −1

4

⎡⎢⎣0

1

⎤⎥⎦[1 0

]
=

1

4

⎡⎢⎣ 0 0

−1 0

⎤⎥⎦
E1

21 = −1

4

⎡⎢⎣1

0

⎤⎥⎦[0 1

]
=

1

4

⎡⎢⎣0 −1

0 0

⎤⎥⎦
E2

11 = E2
12 = −1

2

⎡⎢⎣0

1

⎤⎥⎦[−1 1

]
=

1

2

⎡⎢⎣0 0

1 −1

⎤⎥⎦
E2

22 = E2
21 =

1

2

⎡⎢⎣1

0

⎤⎥⎦[−1 1

]
=

1

2

⎡⎢⎣−1 1

0 0

⎤⎥⎦
E3

11 = E3
22 = −9

8

⎡⎢⎣−1

1

⎤⎥⎦[−1 1

]
=

9

8

⎡⎢⎣−1 1

1 −1

⎤⎥⎦
E3

12 = E3
21 =

9

8

⎡⎢⎣−1

1

⎤⎥⎦[−1 1

]
=

9

8

⎡⎢⎣ 1 −1

−1 1

⎤⎥⎦
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Note that E1
12 = E1T

21 . So the final system without the boundary treatment is

[
φ∗

1 φ∗
2

]
A

⎡⎢⎣φ1

φ2

⎤⎥⎦ (D.49)

where

A =

⎡⎢⎣A11 A12

A21 A22

⎤⎥⎦ (D.50)

A11 = σa,1Δx1M+
D1

Δx1
S+E1

11 +
D1

Δx1
(E2

11 + E2T
11 ) + (

D1

Δx1
)2E3

11 (D.51)

A12 = E1
12 +

D2

Δx2
E2

12 +
D1

Δx1
E2T

21 +
D1

Δx1

D2

Δx2
E3

12 (D.52)

A21 = E1
21 +

D1

Δx1
E2

21 +
D2

Δx2
E2T

12 +
D1

Δx1

D2

Δx2
E3

21 (D.53)

A22 = σa,2Δx2M+
D2

Δx2
S+E1

22 +
D2

Δx2
(E2

22 + E2T
22 ) + (

D2

Δx2
)2E3

22 (D.54)

Matrix A is symmetric. If there is another cell on the right of cell 2 denoted with 3,

the resulting matrix will be

A =

⎡⎢⎢⎢⎢⎣
A11 A12 0

A21 A22 A23

0 A32 A33

⎤⎥⎥⎥⎥⎦ (D.55)
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where

A11 = σa,1Δx1M +
D1

Δx1

S + E1
11 +

D1

Δx1

(E2
11 + E2T

11 ) + (
D1

Δx1

)2E3
11 (D.56)

A12 = E1
12 +

D2

Δx2

E2
12 +

D1

Δx1

E2T
21 +

D1

Δx1

D2

Δx2

E3
12 (D.57)

A21 = E1
21 +

D1

Δx1

E2
21 +

D2

Δx2

E2T
12 +

D1

Δx1

D2

Δx2

E3
21 (D.58)

A22 = σa,2Δx2M +
D2

Δx2

S + E1
22 +

D2

Δx2

(E2
22 + E2T

22 ) + (
D2

Δx2

)2E3
22 + E1

11+

D2

Δx2

(E2
11 + E2T

11 ) + (
D2

Δx2

)2E3
11 (D.59)

A32 = E1
21 +

D2

Δx2

E2
21 +

D3

Δx3

E2T
12 +

D2

Δx2

D3

Δx3

E3
21 (D.60)

A33 = σa,3Δx3M +
D3

Δx3

S + E1
22 +

D3

Δx3

(E2
22 + E2T

22 ) + (
D3

Δx3

)2E3
22 (D.61)

This is one way where we basically are considering a bunch of small 2-by-2 system

and then summing them together. We can also consider each cell with two side

vertices, i.e., each row of the global system. 11 is right self-coupling, 22 is left self-

coupling, 12 is right vertex coupling, 21 is left vertex coupling. This way is better in

multi-dimensional situation.

E11 = ER (D.62)

E22 = EL (D.63)

E12 = ERC (D.64)

E21 = ELC (D.65)
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APPENDIX E

PRECONDITIONED CG METHOD WITH EISENSTAT TRICK
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For complete, we present the algorithm proposed by Eisenstat for the PCG (Precon-

ditioned Conjugate Gradient) method [114].

Consider the linear system,

Ax = b (E.1)

where the matrix A is SPD (symmetric and positive definite).

Applying PCG with the preconditioner

M = (D̃ + L)D̃−1(D̃ + L)T (E.2)

to the system is equivalent to applying PCG with

M = D̃−1 (E.3)

to the following modified system

[
(D̃ + L)−1A(D̃ + L)−T

] [
(D̃ + L)Tx

]
= (D̃ + L)−1b (E.4)

or

Âx̂ = b̂ (E.5)

where L is lower-triangular and D is the positive block diagonal.

Now the algorithm of PCG is:
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Algorithm 4 Preconditioned CG with Eisenstat’s trick

1: r̂0 = (D̃ + L)−1(b−Ax0)

2: p̂0 = r̂′0 = D̃r̂0

3: for k = 0 : maxiter do

4: âk =
(r̂k,r̂′k)

(p̂k ,Âp̂k)

5: xk+1 = xk + âk(D̃ + L)−T p̂k

6: r̂k+1 = r̂k + âkÂp̂k

7: r̂′k+1 = D̃r̂k+1

8: b̂k =
(r̂k+1,r̂′k+1)

(r̂k,r̂′k)

9: if
(r̂k+1,r̂′k+1)

(r̂0,r̂′0)
< tol then

10: Exit

11: end if

12: p̂k+1 = r̂′k+1 + b̂kp̂k

13: end for
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The trick is that the matrix-vector product Âp̂k can be computed efficiently by

splitting it into two stages:

t̂k = (D̃ + L)−T p̂k, (E.6)

Âp̂k = t̂k + (D̃ + L)−(p̂k −Kt̂k) (E.7)

where K = 2D̃− D.
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APPENDIX F

MATHEMATICA NOTEBOOK FOR ELEMENTARY MATRICES
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Turn off spelling warnings

In[1]:= Off�General �� spell,General �� spell1�

Lobatto and kernel functions:

In[2]:= Lobatto�k_,x_� ��

If�k �� 0, 1 � x

2
,If�k �� 1, 1 � x

2
,
LegendreP�k,x� � LegendreP�k � 2,x��

2 � 	2 � k � 1

��

In[3]:= Kernel�k_,x_� ��
Lobatto�k � 2,x�

Lobatto�0,x� � Lobatto�1,x�

Barycentric coordinates:

In[4]:= lamda3�x_,y_� ��
1 � y

2

In[5]:= lamda1�x_,y_� �� �
x � y

2

In[6]:= lamda2�x_,y_� ��
1 � x

2

Hierarchical basis functions on the reference triangle:

In[7]:= basis�p_,x_,y_� ��

Module��t,i,j,j2�,

Simplify�If�p �� 0,�Kernel�0,0��,t � �lamda1�x,y�,lamda2�x,y�,lamda3�x,y��


For�i � 1,i < p,

t � Append�t,lamda2�x,y� � lamda3�x,y��

Kernel�i � 1,lamda3�x,y� � lamda2�x,y���


t � Append�t,lamda3�x,y� � lamda1�x,y��

Kernel�i � 1,lamda1�x,y� � lamda3�x,y���


t � Append�t,lamda1�x,y� � lamda2�x,y��

Kernel�i � 1,lamda2�x,y� � lamda1�x,y���


For�j � 1,j < i,j2 � i � j


t � Append�t,lamda1�x,y� � lamda2�x,y� � lamda3�x,y��

Kernel�j � 1,lamda3�x,y� � lamda2�x,y���

Kernel�j2 � 1,lamda2�x,y� � lamda1�x,y���
j � ��
i � ��
�t����

Get Jacobin:

J�{{dx/dxix,dx/dxiy},{dy/dxix,dy/dxiy}}
(note that the determinit of Jacobin is equal to half of the triangle area)

In[8]:= coef � Solve��x1 �� a � b � 	�1
 � c � 	�1
,y1 �� dd � ee � 	�1
 � ff � 	�1
,

x2 �� a � b � 	1
 � c � 	�1
,y2 �� dd � ee � 	1
 � ff � 	�1
,x3 �� a � b � 	�1
 � c � 	1
,

y3 �� dd � ee � 	�1
 � ff � 	1
�,�a,b,c,dd,ee,ff��

Out[8]= ��a � �1
2
��x2 � x3�,b � �

1

2
�x1 � x2�,c � �

1

2
�x1 � x3�,

dd � �
1

2
��y2 � y3�,ee � �

1

2
�y1 � y2�,ff � �

1

2
�y1 � y3���

In[9]:= �Jcb � � b c
ee ff

�/.coef��1���//MatrixForm
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Out[9]=
��������
�

�
1

2
�x1 � x2� �

1

2
�x1 � x3�

�
1

2
�y1 � y2� �

1

2
�y1 � y3�

	







�

Reference mass matrix:

In[10]:= mmatrix�basis_� �� 6 � � 1

�1
� �x
�1

Transpose�basis�.basis�y�x

Two freaquently used matrices:

In[11]:= 	TT � Simplify�Inverse�Transpose�Jcb�� � Det�Jcb��
//MatrixForm

Out[11]=
��������
�

1

2
��y1 � y3�

y1 � y2

2
x1 � x3

2

1

2
��x1 � x2�

	







�

T�Inverse[Jcb].Inverse[Transpose[Jcb]]*Det[Jcb]

In[12]:= T � � 2 r2 r1 � r3 � r2
r1 � r3 � r2 2 r3

�//MatrixForm
Out[12]= � 2 r2 r1 � r2 � r3

r1 � r2 � r3 2 r3
�

Streaming matrx �

Note � det�Jcb� � � omgx omgy �.T ranspose�Inverse�Jcb�� �� 	3�t2, t3�

�Two minus sign will be cancelled in the streaming matrix�

In[13]:= gmatrix�basis_� �� Simplify�
� 1

�1
� �x
�1

3 � Transpose�Join��x basis,�y basis��.�t2t3 �.basis�y�x

,�t2 � t3 �� t1�
Stiffness matrix:

In[14]:= smatrix�basis_� ��

Simplify�� 1

�1
� �x
�1

Transpose�Join��x basis,�y basis��.T.Join��x basis,�y basis��y�x�
The type-1 edge matrix:

In[15]:= ematrixSelf�basis_,id_� ��

3�

� 1

�1
		Transpose�basis�.basis
/.If�id �� 3,�x � t,y � �1�,

If�id �� 1,�x � �t,y � t�,�x � �1,y � �t���
�t

In[16]:= ematrix�basis_,id_,iu_� ��

3�

� 1

�1
	Transpose�basis�/.If�id �� 3,�x � t,y � �1�,

If�id �� 1,�x � �t,y � t�,�x � �1,y � �t��� 
.

	 basis/.If�iu �� 3,�x � �t,y � �1�,If�iu �� 1,�x � t,y � �t�,�x � �1,y � t���


�t

1-D shape functions and reference mass, prolongation matrix:
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In[17]:= basis1D�p_,x_� ��

Simplify�If�p �� 0,�Kernel�0,0��,�Table�Lobatto�i,x�,�i,0,p�����

In[18]:= mmatrix1D�basis1d_� �� � 1

�1
Transpose�basis1d�.basis1d�x

In[19]:= bmatrix1D�basis1d_,id_� ��

Inverse�mmatrix1D�basis1d��.

� 1

�1
Transpose�	basis1d/.x � t
�.�basis1d/.�If�id �� 1,�x � t � 1

2
	,�x � t � 1

2
	����t

Edge operation to obtain the norm derivative:

Get directional derivative on outward norm direction of a side with I-D of all basis functions:

In[20]:= sideDnorm�basis_,id_� ��

Simplify�
If�id �� 3, 2�

t3
��r3 � r2 � r1,�2 r3��,

If�id �� 1, 2�
t1
��r2 � r1 � r3,r3 � r1 � r2��,

2�
t2
���2 r2,r3 � r2 � r1����

.Join��x basis,�y basis�/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t����
Get directional derivative on outward norm direction of side with ID in terms of side basis functions for all
cell basis functions (i.e. DoFs):

In[21]:= sideDSolution�basis_,basis1D_,id_� ��

Simplify�Inverse�mmatrix1D�basis1D��.
� 1

�1
Transpose�basis1D/.x � t�.sideDnorm�basis,id��t�

The type-2 edge matrix:

In[22]:= sideDSolFull�basis_,id_� ��

� 1

�1
		Transpose�

Simplify�If�id �� 3,��r3 � r2 � r1,�2 r3��,

If�id �� 1,��r2 � r1 � r3,r3 � r1 � r2��,���2 r2,r3 � r2 � r1����

.Join��x basis,�y basis���.basis
/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t���
�t

In[23]:= sideDSolFullt�basis_,id_,iu_� ��

� 1

�1
	Transpose�

	Simplify�If�id �� 3,��r3 � r2 � r1,�2 r3��,

If�id �� 1,��r2 � r1 � r3,r3 � r1 � r2��,���2 r2,r3 � r2 � r1����

.Join��x basis,�y basis��
/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t����.

	basis/.If�iu �� 3,�x � �t,y � �1�,If�iu �� 1,�x � t,y � �t�,�x � �1,y � t���



�t
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The type-3 edge matrix:

In[24]:= sideDnFull�basis_,id_� ��

� 1

�1
		Transpose�

Simplify�If�id �� 3,��r3 � r2 � r1,�2 r3��,

If�id �� 1,��r2 � r1 � r3,r3 � r1 � r2��,���2 r2,r3 � r2 � r1����

.Join��x basis,�y basis���.

Simplify�If�id �� 3,��r3 � r2 � r1,�2 r3��,

If�id �� 1,��r2 � r1 � r3,r3 � r1 � r2��,���2 r2,r3 � r2 � r1����

.Join��x basis,�y basis��
/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t���
�t

In[25]:= sideDnFullt�basis_,id1_,id2_� ��

� 1

�1
			Transpose�Simplify�If�id1 �� 3,��r13 � r12 � r11,�2 r13��,

If�id1 �� 1,��r12 � r11 � r13,r13 � r11 � r12��,���2 r12,r13 � r12 � r11����

.Join��x basis,�y basis���
/.

If�id1 �� 3,�x � t,y � �1�,If�id1 �� 1,�x � �t,y � t�,�x � �1,y � �t���
.

		Simplify�If�id2 �� 3,��r23 � r22 � r21,�2 r23��,

If�id2 �� 1,��r22 � r21 � r23,r23 � r21 � r22��,���2 r22,r23 � r22 � r21����

.Join��x basis,�y basis��
/.

If�id2 �� 3,�x � �t,y � �1�,If�id2 �� 1,�x � t,y � �t�,�x � �1,y � t���

�t

Edge operation to obtain the derivative in x and y directions:

In[26]:= sideDx�basis_,basis1D_,id_� ��

Simplify�
2

area
Inverse�mmatrix1D�basis1D��.

� 1

�1
Transpose�basis1D/.x � t�.



y3 � y1
2

y1 � y2

2
�.Join��x basis,�y basis�/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t�����t�
In[27]:= sideDy�basis_,basis1D_,id_� ��

Simplify�
2

area
Inverse�mmatrix1D�basis1D��.

� 1

�1
Transpose�basis1D/.x � t�.



x1 � x3
2

x2 � x1

2
�.Join��x basis,�y basis�/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t�����t�
The type-4 edge matrix:
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Because �


����
�

y3 	 y1
2

y1 	 y2
2


����
�
.� y3 	 y1

2
y1 	 y2

2
� �

����
�

x1 	 x3
2

x2 	 x1
2


����
�
.� x1 	 x3

2
x2 	 x1

2
�

��
1
4


����
�

a3 	
a1 � a3 	 a2

2
	

a1 � a3 	 a2
2

a1


����
�
, we can have the f ollowing f or one side,

In[28]:= sideDxyFull�basis_,id_� ��

Simplify�2 � If�id �� 1,r1,If�id �� 2,r2,r3��
� 1

�1
��Transpose�Join��x basis,�y basis��.� 2 r2 �	r2 � r3 � r1


�	r2 � r3 � r1
 2 r3
�.

Join��x basis,�y basis��/.
If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t�����t�

For the general fourth coupling matrix, we need to use coordinates of all vertices of two elements:

In[29]:= sideDxyFullt�basis_,id_,iu_� ��

Simplify�

� 1

�1

�������
�

2

area1

2

area2

If�id �� 1,a1,If�id �� 2,a2,a3��

2

�������
�

	Transpose�Join��x basis,�y basis��/.

If�id �� 3,�x � t,y � �1�,If�id �� 1,�x � �t,y � t�,�x � �1,y � �t���
.

�������
�

�������
�

y13 � y11

2
y11 � y12

2

�������
�

.
y23 � y21
2

y21 � y22

2
� � �������
�

x11 � x13

2
x12 � x11

2

�������
�

.
x21 � x23
2

x22 � x21

2
��������
�

.

	Join��x basis,�y basis�/.If�iu �� 3,�x � �t,y � �1�,

If�iu �� 1,�x � t,y � �t�,�x � �1,y � t���

�������
�

�������
�

�t�

A special case of the type-4 edge coupling matrix: id��2 and iu��2

In[30]:= sideDxyFullt2�basis_� ��

Simplify�
� 1

�1
�	Transpose�Join��x basis,�y basis��/.�x � �1,y � �t�
.
� �4 r2 t2 2 r2 	t2 � t3 � t1

2 	r2 � r3 � r1
 t2 �	r2 � r3 � r1
 	t2 � t3 � t1
 � 1

�.
	Join��x basis,�y basis�/.�x � �1,y � t�
��t�
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Inverse[Jcb]*Det[Jcb]//MatrixForm�

����
�

y3 	 y1
2

x1 	 x3
2

y1 	 y2
2

x2 	 x1
2


����
�
��TT

Get cell gridient in x or y direction (1 or 2):

(invm is the inverse of mass matrix)

In[31]:= cellGridient�invm_,basis_,id_� ��

Simplify�
2

area

invm.

� 1

�1
� �x
�1

Transpose�basis�.

��������
�

Transpose�Join��x basis,�y basis��.
�������
�

y3 � y1

2

x1 � x3

2
y1 � y2

2

x2 � x1

2

�������
�

�������
�

��All,id��	�y�x �

Cell prolongation matrix:

In[32]:= bmatrix�basis_,id_� ��

Inverse�mmatrix�basis��.

� 1

�1
� �t1
�1

Transpose�	basis/.x � t1/.y � t2
�.

�basis/.�If�id �� 1,�x � t1 � 1

2
,y �

t2 � 1

2
	,

If�id �� 2,�x � t1 � 1

2
,y �

t2 � 1

2
	,

If�id �� 3,�x � t1 � 1

2
,y �

t2 � 1

2
	,�x � �t1 � 1

2
,y � �

t2 � 1

2
	������t2�t1

In[33]:= bmatrixinvm�basis_,id_,invm_� ��

invm.

� 1

�1
� �t1
�1

Transpose�	basis/.x � t1/.y � t2
�.

�basis/.�If�id �� 1,�x � t1 � 1

2
,y �

t2 � 1

2
	,

If�id �� 2,�x � t1 � 1

2
,y �

t2 � 1

2
	,

If�id �� 3,�x � t1 � 1

2
,y �

t2 � 1

2
	,�x � �t1 � 1

2
,y � �

t2 � 1

2
	������t2�t1

END of formula
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