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ABSTRACT 

 

A Molecular Analysis of Protein Trafficking in the Vertebrate Retina: Implications for 

Intraflagellar Transport and Human Disease.   

(May 2009) 

Bryan L. Krock, B.S., The Pennsylvania State University 

Chair of Advisory Committee: Dr. Brian D. Perkins 

 

Vertebrate photoreceptors are highly specialized sensory neurons that utilize a 

modified cilium known as the outer segment to detect light.  Proper trafficking of 

proteins to the outer segment is essential for photoreceptor function and survival and 

defects in this process lead to retinal disease.  In this dissertation I focus on two aspects 

of protein trafficking, intracellular vesicular trafficking in photoreceptors and retinal 

pigmented epithelial (RPE) cells and how it relates to the human disease choroideremia 

(CHM), and the trafficking of proteins through the photoreceptor cilium.  The human 

retinal degenerative disease choroideremia (CHM) is caused by mutation of the Rab 

escort protein-1 (REP1) gene, which is required for proper intracellular vesicular 

trafficking.  However, it was unclear whether photoreceptor degeneration in this disease 

is cell-autonomous, due to defective opsin transport within the photoreceptor, or is 

noncell-autonomous and a secondary consequence of defective RPE.  Utilizing the 

technique of blastomere transplantation and a zebrafish line with a mutation in the rep1 
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gene, I show that photoreceptor degeneration in CHM is noncell-autonomous and is 

caused by defective RPE.   

The molecular machinery responsible for protein trafficking through the 

photoreceptor cilium remained unclear for a long time.  Recent studies found 

Intraflagellar Transport (IFT) is the process that mediates cilia formation and transport 

of proteins through a cilium, and further analyses showed IFT is important for 

trafficking proteins to the outer segment.  However, many details about how IFT works 

in photoreceptors remained unclear.  By analyzing zebrafish harboring a null mutation in 

the ift57 gene, I show that Ift57 is only required for efficient IFT, and that the Ift57 

protein plays a role in the ATP-dependent dissociation of kinesin II from the IFT 

particle.  Lastly, I investigate the role of retrograde IFT in photoreceptors, a process that 

had yet to be investigated.  By utilizing antisense morpholino oligonucleotides to inhibit 

expression of cytoplasmic dynein-2 (the molecular motor that mediates retrograde IFT) , 

I show that retrograde IFT is required for outer segment extension and the recycling of 

IFT proteins.   
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CHAPTER I 

INTRODUCTION 

BACKGROUND 

The Retina 

Vision, or the detection of environmental light stimuli, is mediated by a thin layer 

of cells lining the back of the eye known as the retina.  The retina is part of the central 

nervous system and is composed of two synaptic layers intercalated between three 

cellular layers (Fig. 1).   The most proximal cellular layer is the ganglion cell layer, 

which is composed of neurons that collect information from the cells of the middle layer 

and send it to the brain via their axonal processes that coalesce and leave the eye as the 

optic nerve.  The middle layer of cells is known as the inner nuclear layer and is 

composed of four neuronal types, the horizontal, bipolar, amacrine and Müller cells.  

The basic function of these cells is to collect sensory impulses generated by the 

photoreceptors of the distal most retinal layer, perform rudimentary neuronal processing 

of this information, and transmit this information to the ganglion cells. 

Photoreceptors occupy the most distal layer of the retina, meaning light must 

pass through the proximal ganglion cell layer and inner nuclear layer before striking 

these light sensing cells.  Photoreceptors are classified into two subtypes: rods and 

cones, which mediate vision during dim light and normal light conditions, respectively.  

Rods cannot distinguish color, but are exquisitely sensitive, as they are able to detect as  

____________ 
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Fig.1. Cell types of the retina.  (A) Diagrammatic representation of the vertebrate retina, 

illustrating the major retinal cell types and the basic circuitry of the retina.  (B) Structure 

of rod and cone photoreceptors.  (A) Modified from (Purves and Williams, 2001). (B) 

Modified from  (Dowling, 2001).

A B 
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little as one photon of light (Baylor et al., 1979).  Cones, however, are less sensitive but 

 are able to distinguish color based on the subtype of opsin (the protein component of the 

visual photopigment) that is expressed within a particular cell.  Photoreceptors are highly 

polarized neurons that consist of an outer segment, inner segment, nucleus and a 

synaptic region at the basal side of the cell (Fig. 1).  The outer segment is a modified 

sensory cilium and is the compartment of the cell that contains the proteins responsible 

for detection of light, and is the site where electrical signals are first generated in 

response to light stimuli.  The inner segment is the site of protein synthesis within the 

photoreceptor, while the synapse is where the photoreceptor communicates with the 

second order neurons of the inner nuclear layer.   

The molecular basis for light detection involves a signaling cascade called 

phototransduction.  The molecule responsible for directly detecting light is rhodopsin (in 

rods), which is a prototypical G-protein coupled receptor that is bound to the 

chromophore, 11-cis-retinal.  Phototransduction in cones is highly similar to rods but 

utilizes cone-specific versions of the rod phototransduction proteins, such as cone 

opsins, which are tuned to detect certain wavelengths of light.  Absorption of light 

causes 11-cis-retinal to undergo isomerization to all-trans retinal, which induces several 

conformational changes in rhodopsin, generating an active form, R*.  R*, in turn, 

activates the heterotrimeric G-protein transducin (Kwok-Keung Fung and Stryer, 1980).  

This is achieved through rhodopsin catalyzed exchange of GDP for GTP on the 

transducin α-subunit.  GTP binding induces the dissociation of transducin-α from the α-

β-γ transducin heterotrimer (Lerea et al., 1986).  Liberated transducin-α then binds to 
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and activates a cGMP phosphodiesterase, which degrades intracellular cGMP, resulting 

in a decrease in intracellular cGMP levels.   cGMP gated cation channels in the plasma 

membrane of the photoreceptor outer segment close as a result of lower cGMP levels, 

lowering the net influx of cations (primarily Na+) which causes hyperpolarization of the 

membrane (Tomita, 1970; Yau and Nakatani, 1985).  Hyperpolarization of the 

membrane at the synaptic terminals slows the tonic release of neurotransmitter and 

thereby communicates the detection of a light stimulus to the second-order neurons of 

the inner nuclear layer.   

Deactivation of the phototranduction machinery involves several steps.  R* 

activity is first inhibited by phosphorylation at its C-terminus by rhodopsin kinase, 

though phosphorylated rhodopsin retains some activity (Palczewski et al., 1991).  

Phosphorylated rhodopsin is subsequently bound by arrestin, causing further 

deactivation (Hargrave and McDowell, 1992).  The intrinsic GTPase activity of 

transducin-α hydolyzes bound GTP to return transducin-α to the inactive state.  

However, the intrinsic GTPase activity of transducin-α is slow, so this process is 

accelerated by the GTPase accelerating protein RGS9 (He et al., 1998).  This complex 

biochemical pathway occurs in a sensory cilium, and the nature of the outer segment as a 

cilium has very specific implications for the manner by which the components of 

phototransduction reach the outer segment.   

Cilia   

Cilia and flagella are microtubule based organelles that protrude from nearly all 

eukaryotic cells (Fig. 2) that require the process of intraflagellar transport for their  
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Fig. 2. The structure of cilia and flagella.  (A) Diagrammatic representation of a cilium 

that also illustrates the organization of the microtubules of the axoneme.  (B) Electron 

micrograph of a Chlamydomonas flagellum.  (A) Modified from (Scholey, 2003) (B) 

Modified from (Rosenbaum et al., 1999). 
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formation and maintenance (Kozminski et al., 1995; Kozminski et al., 1993).  The term 

flagella originally referred to long motile appendages used for locomotion (e.g. sperm 

flagellum), while cilia referred to shorter structures that could be motile or nonmotile.  It 

is now clear that cilia and flagella are functionally and structurally indistinct, and these 

terms are used interchangeably as a result.  The microtubule cytoskeleton of the cilium, 

known as the axoneme, is composed of an array of 9 outer doublet microtubules 

surrounding either central pair of microtubules (a  9 + 2 cilium) or no central pair of 

microtubules (a  9 + 0 cilium).  Classically, 9 + 2 cilia have been known as motile cilia, 

while 9 + 0 cilia were called nonmotile, or primary cilia, though exceptions to these 

classifications exist.  The axoneme extends from a microtubule based organelle called 

the basal body, which is derived from the maternal centriole.  The basal body is 

composed of an array of 9 triplet microtubules termed the a, b and c subfibers, of which 

the a and b subfibers extend to form the ciliary axoneme.  At the intersection between 

the basal body and axoneme is a region of the cilium called the transition zone, where 

filamentous fibers stretch between the ciliary membrane and distal microtubules of the 

basal body.  The transition zone is likely a regulatory region, determining what proteins 

enter the cilium, and serving as an assembly site for flagellar precursor proteins.  In 

addition to the microtubules of the axoneme, there are proteins that function to generate 

motility and maintain the structural integrity of the axoneme, which include the inner 

and outer dynein arms, radial spoke proteins and nexin.  It should be noted that recent 

proteomic studies have identified more than 3,000 different ciliary proteins, illustrating 
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the tremendous structural complexity of this organelle (Liu et al., 2007; Ostrowski et al., 

2002; Pazour et al., 2005; Smith et al., 2005).   

Early ultrastructural studies identified cilia on many vertebrate cells where they 

performed functions including locomotion (sperm), fluid and mucous flow (respiratory 

epithelia), and sensation (photoreceptors).  The various roles of cilia in these cells were 

obvious at the time, though perplexingly, cilia were eventually identified on nearly all 

eukaryotic cells where the functions of these primary cilia were not clear.  In fact, the 

identification of cilia on fibroblasts, kidney tubule cells, neurons, Schwann cells, smooth 

muscle cells, and many other cells led some to initially consider these primary cilia 

vestigial organelles.  It has only been recently with the discovery of the molecular 

processes that mediate cilia formation and maintenance that we have begun to 

understand the various and complex functions of this cryptic organelle. 

Intraflagellar Transport:  Discovery 

IFT was first discovered in the unicellular biflagellate alga Chlamydomonas 

reinhardtii through video enhanced differential interference contrast (DIC) microscopy 

on paralyzed flagella mutants (Kozminski et al., 1993).  Imaging of these cells revealed a 

bidirectional movement of granular particles within the flagellum at rates of 2-

3.5µm/sec.  Initial electron microscopic analyses of Chlamydomonas flagella found 

electron-dense rafts of protein between the outer doublet microtubules of the ciliary 

axoneme and plasma membrane.  Indeed, correlative microscopy techniques later 

demonstrated these rafts to be the particles observed to undergo IFT (Kozminski et al., 

1995).   
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Studies utilizing a temperature-sensitive flagella mutant, fla10, which encodes 

the Kif3A subunit of kinesin II, demonstrated flagellar IFT movements ceased when 

these mutants were moved to the restrictive temperature, implicating kinesin II as a 

molecular motor involved in IFT.  The fla10 mutant has been an invaluable resource in 

the study of IFT, as it was later used to generate flagellar protein extracts lacking IFT 

particles (Piperno and Mead, 1997).  Comparison of these extracts to flagellar extracts 

with IFT particles on sucrose density gradients revealed that the IFT proteins form a 17s 

complex, and was the basis for identification of nearly all IFT proteins (Cole et al., 1998; 

Piperno and Mead, 1997), the number of which is currently 17 (Table 1).   

The Mechanism of IFT 

The process of IFT is currently defined as the movement of a multisubunit 

protein complex (the IFT particle) and its associated cargoes along a ciliary axoneme 

(Fig. 3).  Studies in organisms as diverse as Chlamydomonas, Tetrahymena, C. elegans, 

Drosophila, trypanosomes, mice and zebrafish have shown that the process of IFT is 

conserved among nearly all eukaryotes (Avidor-Reiss et al., 2004; Han et al., 2003; 

Kozminski et al., 1995; Pazour et al., 2000; Qin et al., 2001). The IFT particle itself is 

composed of two subcomplexes, complex A and complex B, based on differential 

sedimentation on sucrose density gradients (Cole et al., 1998; Ou et al., 2005; Piperno 

and Mead, 1997).  In general, complex A is thought to mediate retrograde IFT as 

mutations in complex A genes yield short cilia that accumulate IFT particles at the distal 

tip (Cortellino et al., 2009; Iomini et al., 2001; Lee et al., 2008).  In contrast, complex B 

mediates anterograde IFT, as null mutations in ift88, ift172, and ift52 all lack flagella  
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Fig. 3.  Intraflagellar transport.  (A) A diagrammatic representation of IFT illustrates the 

IFT particles associate with both molecular motors and cargoes and move along the 

outer doublet microtubules of the ciliary axoneme.  (B) An electron micrograph of IFT 

particles in a Chlamydomonas flagellum, arrows indicate IFT particle oligomers.  (A) 

and (B) Modified from (Rosenbaum and Witman, 2002).

A 

B 
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(Rosenbaum and Witman, 2002).  The anterograde movement of the IFT complex is 

mediated by two molecular motors, kinesin II and OSM-3 (Cole et al., 1998; Snow et al., 

2004).  Kinesin II is a heterotrimeric microtubule plus-end motor consisting of two 

motor domains, Kif3A and Kif3B, and an accessory subunit, KAP. OSM-3 is a 

homodimeric kinesin first identified in C. elegans, and is homologous to mammalian 

KIF17.  In C. elegans, these two motors function in a cooperative manner, where kinesin 

II drives anterograde movement along the proximal cilium composed of doublet 

microtubules, while OSM-3 drives anterograde movement along the distal singlet 

microtubules (Snow et al., 2004).  Once the IFT particle reaches the tip of the cilium, 

through a poorly understood mechanism, the IFT particle undergoes structural 

rearrangements and switches from the anterograde motors to the retrograde IFT motor, 

cytoplasmic dynein-2.  Recent data suggest ift172 may play a role in this process 

(Pedersen et al., 2005; Tsao and Gorovsky, 2008). 

The retrograde IFT motor, cytoplasmic dynein-2, is composed of a homodimeric 

heavy chain, dync2-h1 (Pazour et al., 1999; Porter et al., 1999; Signor et al., 1999),  and 

the accessory subunits cytoplasmic dynein-2 light intermediate chain, dync2-li1 (Hou et 

al., 2004; Mikami et al., 2002; Perrone et al., 2003), intermediate chain, dync2-i1 

(Rompolas et al., 2007), and light chain known as LC8 (Pazour et al., 1998; Rompolas et 

al., 2007).  Dync2-h1 is a force-generating adenosine triphosphatase (ATPase) that forms 

the core of a macromolecular complex though its associate with the accessory subunits, 

which are thought to mediate physical interactions between cytoplasmic dynein-2 and  

 



 11

Table 1.  Components of the IFT machinery.  Table shows the IFT genes identified for 

Chlamydomonas, C. elegans, and humans.  Modified from (Pedersen and Rosenbaum, 

2008). 
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cargoes (Gibbons et al., 1994; Zhang et al., 1993).  Mutations in dync2-h1, dync2-li1 and 

LC8 all result in defective retrograde IFT and exhibit similar ciliary phenotypes, 

characterized by stunted cilia with swollen ciliary tips that contain disorganized 

microtubules, IFT proteins and cellular debris.  dync2-i1, however, was only shown 

biochemically to be part of the cytoplasmic dynein 2 macromolecular complex 

(Rompolas et al., 2007), but the ciliary phenotype resulting from dync2-i1 dysfunction 

remains unknown.   Consistent with a role in IFT, knockdown of the Trypanosome 

dync2-i1 homologue resulted in flagellar dysfunction (Baron et al., 2007).  

Structure of the IFT Complex and Roles of Individual IFT Particle Proteins 

Recent biochemical studies, predominantly in Chlamydomonas, have started to 

reveal the structural composition of the IFT particle and specific interactions between 

individual IFT proteins, particularly within complex B.  Complex B is composed of at 

least 11 proteins in Chlamydomonas, and a subset of these form a core consisting of an 

Ift72/74-Ift80 tetramer along with Ift88, Ift81, Ift52 and Ift46 (Lucker et al., 2005).  The 

outer surface of complex B is composed of Ift20, Ift57 and Ift172.  Data from yeast two-

hybrid experiments indicate direct interactions between Ift72/74 and Ift81 and between 

Ift57 and Ift20.  Similar approaches indicated interactions between Ift20 and the Kif3B 

subunit of kinesin II (Baker et al., 2003; Lucker et al., 2005).  While the Ift72/74-IFT80 

interaction likely forms the structural core of complex B, the functional nature of the 

interactions described for the outer surface IFT proteins remains unclear. 

Evaluating the function of individual IFT proteins within the IFT particle has 

been difficult, as mutation of most IFT genes results in failed ciliogenesis.  This has been 
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compounded by the fact that little functional data can be gleaned from analyses of IFT 

protein structures, as they are composed principally of domains associated with transient 

protein-protein interactions, with the notable exception of Ift27, which has a predicted 

enzymatic function as a small GTPase (Cole, 2003).  However, mutational and 

biochemical analyses have elucidated the functional importance of several IFT proteins.  

First, Ift27 has been shown to be a small G-protein (Qin et al., 2007) that plays a role in 

cell-cycle control, as partial knockdown yields defective cytokinesis and abnormal 

progression of the cell cycle in Chlamydomonas.  Ift46 appears to play a role in transport 

of outer dynein arms, a component of the axoneme (Hou et al., 2007) through its 

interaction with the outer dynein arm-16 gene product (Ahmed et al., 2008), suggesting 

that some IFT proteins may be specialized for transport of specific cargoes.  Ift20 plays a 

role in transport of membrane bound cargoes from the Golgi to the ciliary base (Follit et 

al., 2006a; Omori et al., 2008).  Finally, Ift172 mediates the exchange of molecular 

motors at the ciliary tip, an integral step in the transition from anterograde to retrograde 

IFT (Pedersen et al., 2005; Tsao and Gorovsky, 2008).  Though these studies have 

provided valuable insights into the mechanism of IFT, much of the mechanistic details 

behind IFT are unknown.  For example, the IFT complex associates with three molecular 

motors, however, it is unknown which IFT proteins directly mediate these interactions or 

how the IFT complex dissociates from these motors, an important step in switching 

motors at the ciliary tip and at the base of the cilium.  It is known that IFT complexes 

dissociate once they return to the base of the cilium, presumably to liberate IFT proteins 

for assimilation into new IFT particles (Cole et al., 1998; Iomini et al., 2001), however, 
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the mechanisms behind IFT particle assembly and disassembly are completely unknown.  

Though progress has been made in the study of IFT, much of the fine mechanistic details 

behind IFT and its regulation remain to be elucidated. 

IFT Cargoes 

As early studies found that IFT was required for cilia formation and maintenance, 

it is not surprising that the first identified cargoes of IFT were structural components of 

the axoneme, such as tubulin, radial spoke proteins and outer dynein arms (Hou et al., 

2007; Qin et al., 2004).  Though these cargoes are soluble, it is apparent that many of the 

putative cargoes of IFT are membrane bound, such as the TRPV channel, polycystin 1 

and 2, cyclic-nucleotide gated channel -1, the G-protein coupled receptors rhodopsin, 

and possibly somatostatin receptor type 3 and melanin-concentrating hormone receptor-1 

(Bae et al., 2006; Berbari et al., 2008b; Follit et al., 2006a; Pazour et al., 2002b; Qin et 

al., 2005; Tsujikawa and Malicki, 2004).  Several of these potential cargoes, however, 

were identified based on mislocalization data.  The fact that IFT dysfunction 

compromises cilium integrity necessitates rigorous validation of these cargoes, which 

has been done with only a few cargoes, including the TRPV channel and rhodopsin.  For 

example, co-immunoprecipitation studies found that rhodopsin interacts with the IFT 

particle (Insinna and Besharse, 2008).  It is striking that direct interactions between IFT 

proteins and cargoes have not been shown.  This may be due to the presence of adaptor 

proteins, as has been shown for the transport of outer dynein arms (Ahmed et al., 2008), 

or the transport of cargoes in large pre-assembled complexes, as is the case for radial 

spoke proteins (Qin et al., 2004).  Another possibility is that IFT is a general mechanism 
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for protein transport and that specificity of cargoes transported is defined by the 

composition of the vesicle in which a cargo is packaged.  Consistent with this, a recent 

study found that the outer segment is the default destination for membrane bound 

cargoes in a photoreceptor, raising the possibility that many cargoes ‘hitch a ride’ with 

others targeted for the cilim (Baker et al., 2008) 

IFT and Photoreceptors 

As described earlier, photoreceptors are highly polarized neurons that have a 

modified sensory cilium known as the outer segment.  Though the study of IFT has only 

been around for 16 years, important details about how this process works in 

photoreceptors can be learned from much earlier studies of the retinal photoreceptors.  

The nature of the outer segment as a cilium was one of the earliest ultrastructural 

observation of photoreceptors, described by Eduardo De Robertis in 1956 (De Robertis, 

1956).  Indeed, a following study on the developing retina of rats and mice revealed that 

the early stages of outer segment morphogenesis resembled that of ciliogenesis (Fig. 4), 

and could be defined in three stages.  The initial budding of a primary cilium (then called 

a primitive cilium) was followed by an accumulation of membrane and protein at the 

distal tip of the cilium.  In the third stage, the disorganized membrane and protein 

became organized into arrays of membrane arranged in parallel with a periodicity of 

approximately 210Å.  Though it could be inferred from these early studies that the 

connecting cilium was the route by which proteins moved to the outer segment, it was 

not formally addressed until a series of illuminating experiments were performed by 
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Fig. 4. The initial stages of outer segment formation resemble ciliogenesis.  

Morphogenic material (mm) accumulates at the distal tip of a primary cilium, which 

aggregates to form photoreceptor sacs (prs), that later become organized rod sacs.  (cc) 

connecting cilium, (cf) ciliary fibers, (C1 and C2) basal body.  Modified from (De 

Robertis, 1960).  
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Richard Young in the 1960s.  Utilizing a procedure whereby radioactive amino acids 

were administered to rats, mice and frogs, they could monitor where in the photoreceptor 

these newly synthesized proteins were integrated.  Their striking results showed that in 

rods, newly synthesized proteins are first observed in the Golgi, then migrate through the 

connecting cilium to the outer segment.  Within the outer segment, newly synthesized 

proteins were integrated at the base of the outer segment (as seen by a band of 

radioactivity on micrographs).  This band of radioactivity progressively migrated 

apically along the outer segment until it was eventually integrated into adjacent retinal 

pigmented epithelial (RPE) cells.  These studies revealed three important things about 

the biology of the photoreceptor.  First, it provided important data to suggest that 

proteins move to the outer segment through the connecting cilium.  Second, it showed 

that the outer segment is replaced periodically, approximately every two weeks, and that 

the RPE phagocytosed the shed tips of outer segments.  Lastly, when the process of IFT 

is considered, it indicates that the IFT complex releases some of its cargoes at the base of 

the outer segment.  In contrast, it was determined that in the frog cones, that newly 

synthesized proteins were integrated diffusely throughout the outer segment, raising the 

possibility that the mechanism of IFT differs slightly between rods and cones (Young, 

1967; Young, 1969).  These data indicate that in photoreceptors, there are at least two 

sites of cargo release by IFT, the base of the outer segment, and the tip of the outer 

segment where the structural components of the axoneme are delivered.  This suggests 

that photoreceptor regulation of cargo dissociation may occur differently than in other 

cilia. 
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The observations by Richard Young that the outer segment is periodically 

replaced raised an important problem in the field of photoreceptor cell biology.  It had 

been shown in Xenopus that approximately 64 new outer segment discs were formed 

within an eight hour period, which corresponds to ~3,600 µm2 of membrane (Besharse et 

al., 1977a; Besharse et al., 1977b; Besharse and Pfenninger, 1980).   The mechanism by 

which a photoreceptor managed to traffic such a tremendous amount of membrane to the 

outer segment was unclear.  A series of ultrastructural studies of light adapting Xenopus 

photoreceptors found that electron lucent vesicles accumulated around the base of the 

connecting cilium and along an adjacent structure known as the periciliary region.  

These vesicles, later shown to contain rhodopsin, between the cilium and periciliary 

regions were also observed to fuse with the plasma membrane, suggesting that rhodopsin 

bearing vesicles fuse with the plasma membrane before the rhodopsin is delivered to the 

outer segment.  Consistent with these data, subsequent studies successfully 

immunolocalized rhodopsin to the connecting cilium plasma membrane (Wolfrum and 

Schmitt, 2000).  Thus, it appears as if IFT transports rhodopsin while it is embedded in 

the ciliary plasma membrane, similar to what has been described for the TRPV channel 

in C. elegans sensory neurons (Qin et al., 2005).    

The first evidence to directly suggest a role for IFT in protein transport to outer 

segments was obtained through the analysis of a photoreceptor specific knockout of 

murine Kif3A, a kinesin II subunit.  These mice exhibited opsin and membrane 

accumulation within the inner segment of photoreceptors that eventually underwent 

apoptosis (Marszalek et al., 2000).  However, potential pleiotropic effects of the Kif3A 
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mutation on photoreceptors prevented any direct link between IFT and protein 

trafficking in photoreceptors.  Subsequently, the TG737orpk mouse, a mutant that was a 

model for polycystic kidney disease (Moyer, 1994), was shown to disrupt the ift88 gene, 

reducing expression of ift88 by 90% (Pazour et al., 2000).  A following study showed  

TG737orpk  mutants exhibited progressive photoreceptor degeneration and defects in 

opsin transport (Pazour et al., 2002a).  This work provided the first direct evidence for 

the role of IFT in protein transport in photoreceptors.  Further study utilizing an ENU-

induced mutation in zebrafish ift88 found that IFT was essential for outer segment 

formation, opsin transport and photoreceptor survival (Tsujikawa and Malicki, 2004).  

These studies all noted mislocalized opsins and defective outer segment morphogenesis 

when anterograde IFT was compromised, yet the role of retrograde IFT in 

photoreceptors was less clear.  The cytoplasmic dynein-2 heavy chain and light 

intermediate chain are both expressed in photoreceptors and localize to the connecting 

cilium, implying that retrograde IFT occurs in photoreceptors (Mikami et al., 2002).  

However, the only study that investigated the effects of loss of retrograde IFT noted that 

knockdown of ift140 did not affect photoreceptor survival to the extent of mutation of 

ift88 (Tsujikawa and Malicki, 2004) 

Golgi to Cilium Rhodopsin Trafficking 

Ciliary transport of cargoes to the photoreceptor outer segment is an essential 

process for photoreceptor survival, however, these cargoes must first be properly 

targeted to the base of the cilium before the process of IFT can deliver them to the outer 

segment.  Rhodopsin is the predominant protein in the outer segment and appears to be 
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the most important outer segment protein from the perspective of human disease, so the 

intracellular trafficking of rhodopsin will be discussed here.  Rhodopsin contains a 

sorting sequence at its C-terminus consisting of a VXPX motif, where X is any amino 

acid (Deretic et al., 2005; Mazelova et al., 2009).  Newly synthesized rhodopsin in the 

Golgi directly binds to ADP-ribosylation factor 4 (ARF4), which mediates the 

incorportation of rhodopsin into specialized post-Golgi rhodopsin transport carriers 

(RTCs).  Without ARF4, rhodopsin remains trapped in the Golgi. The intracellular 

targeting of these rhodopsin-bearing vesicles is through Rab6 and Rab8, as expression of 

mutant forms of Rab8 causes accumulation of rhodopsin-bearing vesicles and the base of 

the cilium (Deretic et al., 1995; Moritz et al., 2001).  Ezrin and Moesin, proteins 

involved in apical membrane trafficking may also play a role in targeting of rhodopsin, 

because they localize to post-golgi rhodopsin vesicles (Deretic et al., 2004). The physical 

movement of RTCs is likely mediated by cytoplasmic dynein-1, as the C-terminus of 

rhodopsin physically interacts with the cysoplasmic dynein-1 light chain tctex-1 and 

expression of mutant tctex-1 causes rhodopsin mislocalization (Tai et al., 1999; Yeh et 

al., 2006).  Consistent with a general role for cytoplasmic dynein-1 in apical trafficking 

of vesicles, inhibition of cytoplasmic dynein-1 function caused mislocalization of 

RPGR, the retinitis pigmentosa GTPase regulator protein that localizes to the basal body 

and cilium of photoreceptors (Khanna et al., 2005).  These data are consistent with the 

orientation of microtubules between the Golgi and basal body.  However, the delivery of 

RTCs by cytoplasmic dynein-1 remains controversial because addition of microtubule 
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depolymerizing agents did not result in mistargeted rhodopsin bearing vesicles (Vaughan 

et al., 1989)   

Once at the basal body, rhodopsin bearing vesicles likely associate with the IFT 

particle via Rab8 through its interaction with the endocytic regulator Rabaptin 5.  

Rabaptin 5 also interacts with elipsa, the zebrafish homologue of C. elegans Dyf-11, and 

a putative IFT protein (Bacaj et al., 2008; Kunitomo and Iino, 2008; Li et al., 2008; 

Omori et al., 2008).  Elipsa also interacts with Ift20, illustrating a direct sequence of 

protein-protein interactions between the IFT particle and rhodopsin bearing vesicles.  

Additionally, Ift20 localizes to the Golgi, suggesting it may also play a role in targeting 

of post-Golgi RTCs to the photoreceptor cilium, just as it does for the transmembrane 

protein Pkd2 (Follit et al., 2008; Follit et al., 2006a).    Interestingly, Rab8  has recently 

been shown to be essential for cilium formation and to play a role in promoting ciliary 

membrane biogenesis (Nachury et al., 2007; Omori et al., 2008).  This suggests that 

rhodopsin trafficking may be through a cilium-specific post-Golgi mechanism, and that 

other GPCRs localized to cilia may utilize this pathway as well. 

Defective Protein Trafficking and Human Disease 

  Retinitis Pigmentosa (RP) is the most common genetic disease that causes 

blindness, affecting approximately 1 in 4000 individuals. RP is a broadly defined genetic 

disease, characterized by progressive degeneration of photoreceptors and the RPE 

(Heckenlively, 1988).  Those affected initially report night blindness, followed by 

progressive loss of the peripheral visual field, and eventually complete loss of vision for 

some.  The genetic lesions that can cause RP occur at numerous loci, though the most 
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common locus is that of the visual pigment rhodopsin, of which about 150 different 

mutations have been described (Garriga and Manyosa, 2002).  In fact, some of the most 

severe forms of RP have been mapped to lesions at the C-terminus of rhodopsin 

including P347L and S344Ter, indicating that this region is especially important in this 

disease.  In fact, the C-terminal tail of rhodopsin contains a sorting sequence that is 

necessary and sufficient for transport to the outer segment (Perkins et al., 2002; Tam et 

al., 2000).  Mutations in this region result in protein accumulation in the inner segment 

and at the base of the connecting cilium in mice, rats, and frogs (Green et al., 2000; Li et 

al., 1996; Sung et al., 1994; Tam et al., 2000), leading to photoreceptor degeneration.  

Rhodopsin mislocalization, and consequently retinal degeneration, also occurs in 

animals with mutations in the molecular motors kinesin II (Marszalek et al., 2000) and 

the dynein light chain Tctex-1 (Tai et al., 1999).  It is imperative, therefore, that cargo 

targeted for the outer segment reach its destination or retinal degeneration will occur.  

Thus, both mutations within the opsin gene and mutations in the transport machinery can 

cause retinal degenerative diseases. 

Choroideremia 

One human disease resulting from defective intracellular protein trafficking is 

choroideremia (CHM).  CHM is an X-linked retinal degenerative disease caused by 

mutation of the Rab escort protein 1 (REP1) gene (Cremers et al., 1990a; Seabra et al., 

1992).  This disease presents in early adulthood as night blindness, and the vision of 

those affected continues to progress until complete blindness is reached in middle age.  
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Clinically, CHM patients show patchy depigmentation of the RPE, abnormal vasculature 

of the choroid, and degeneration of photoreceptors and RPE. 

Humans have two REP genes, REP1 and REP2, that are expressed ubiquitously 

and are partially functionally redundant, interacting with many shared substrates 

(Seabra, 1996).  REPs are essential for the maturation of Rab proteins, the small GTPase 

proteins that are required for targeting of post-Golgi vesicles and thus, proper 

intracellular transport.    Briefly, REP binds to a newly synthesized Rab protein in the 

cytosol and escorts it to an enzymatic protein complex called geranyl geranyl transferase 

II, which catalyzes the addition of a geranyl geranyl group to a double Cys motif on the 

Rab C-terminus.  The REP subsequently transfers the modified Rab to its appropriate 

target membrane where the geranyl geranyl group embeds into the cytosolic face of the 

appropriate membrane.  Membrane localization is required for Rab function, thus, 

without REP function, Rab proteins are rendered nonfunctional and intracellular 

vesicular trafficking is compromised.  

Exactly how REP1 dysfunction leads to CHM is currently unclear.  Though both 

photoreceptors and RPE degenerate in this disease, it is unknown if the primary defect is 

in photoreceptors or the RPE.  Rab6 and Rab8 play an essential role in targeting post-

Golgi vesicles to the outer segment, therefore, one explanation for photoreceptor death 

in CHM is that Rab6 and Rab8 dysfunction leads to opsin mislocalization, which kills 

the photoreceptor.  However, opsin mislocalization is not typically observed in CHM 

patients or animal models, though it has been documented in one female carrier of this 

disease (Bonilha et al., 2008).   Alternatively Rab27a, a known target of REP1, 
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facilitates melanosome transport and may mediate phagocytosis of shed outer segment 

disks (Gibbs et al., 2004; Gibbs et al., 2003; Seabra et al., 1995).  Thus, RPE 

degneneration could be explained by defective phagocytic function of the RPE.  A third 

possibility is that defective RPE creates a toxic environment for photoreceptors, 

resulting in photoreceptor cell death.   Consistent with this, previous studies have noted 

that the severity of degeneration of the RPE does not always correlate with that of 

photoreceptors, suggesting that these two tissues degenerate independently (Syed et al., 

2001; Tolmachova et al., 2006).  Though it is clear that CHM is the result of defective 

intracellular protein trafficking, the primary tissue affected needs to be determined in 

order to design targeted therapies to treat this disease.   

The Ciliopathies 

The study of cilia has experienced an incredible surge in interest over the past 

several years, in large part due to the realization that cilia play a central role in a number 

of human diseases, now known collectively as ciliopathies.  The basis for much of our 

understanding about the role of cilia in human disease comes from the Oak Ridge 

Polycystic Kidney (ORPK) mouse, reviewed in (Lehman et al., 2008).  The ORPK 

mouse was originally identified through an insertional mutagenesis screen and later 

found to partially disrupt expression of the ift88 gene (Moyer, 1994; Yoder et al., 1995).  

Several studies found these mutants exhibited polycystic kidneys,  liver abnormalities, 

retinal degeneration, anosmia, hydrocephaly, skeletal abnormalities, polydactyly and 

situs inversus (Banizs et al., 2005; Haycraft et al., 2007; Murcia et al., 2000; Pazour et 

al., 2002a; Pazour et al., 2000; Serra, 2008; Zhang et al., 2005).  Remarkably, several 



 25

human diseases display a similar constellation of phenotypes exhibited by this mutant, 

thereby providing the initial link between cilia and human disease.  These diseases, or 

ciliopathies, include Bardet-Biedl syndrome, Senor-Loken syndrome, nephronophthisis, 

Meckel-Gruber Syndrome, Oral-Facial-Digital Syndrome, Joubert Syndrome, Jeune 

asphyxiating thoracic dystrophy, and Alstrom syndrome (Beales et al., 2007; Pazour and 

Rosenbaum, 2002; Snell et al., 2004).  Many human genetics studies have begun to 

identify the genes responsible for these human diseases, expanding the number of cilia-

related genes.  

Jeune Asphyxiating Thoracic Dystrophy 

It is known that cilia defects cause human diseases, but only one disease is 

known to be the direct result of a mutation in an IFT gene.  Jeune asphyxiating thoracic 

dystrophy (JATD) is a genetically heterogeneous disease characterized by retinal 

degeneration, polydactyly, polycystic kidneys, and chondrodysplasia.  A recent study 

found one subtype of JATD is cause by mutation of IFT80, validating the role of IFT in 

human disease (Beales et al., 2007).   

Bardet-Biedl Syndrome 

There are examples where identification of human disease genes has helped 

identify new genes involved in cilia biology.  Bardet-Biedl Syndrome (BBS) is a rare 

genetic disease characterized by obesity, polydactyly, mental retardation, kidney 

abnormalities, hypogenitalism and diabetes (Blacque and Leroux, 2006; Mykytyn et al., 

2004; Nishimura et al., 2004; Tobin and Beales, 2007).  These phenotypes are variable, 

likely due to the genetic heterogeneity of the disease, as there are 14 genes known to 
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cause BBS, named BBS1-14. In fact, many of the BBS proteins form a multisubunit 

protein complex called the BBSome (Nachury et al., 2007). Though the exact function of 

many of these proteins is unclear, it is apparent that they are all involved in some aspect 

of cilia structure or function.  For example, BBS7 and BBS8 have been shown to 

undergo IFT in C. elegans through functional interactions with the IFT particle.  

Interestingly, it appears as if BBS7 and BBS8 serve to coordinate the function of the 

anterograde IFT motors kinesin II and OSM-3 by tethering the IFT complex A and 

complex B together (Ou et al., 2005).  In contrast, the G-protein coupled receptors that 

play a regulating feeding behavior, somatostatin receptor type 3 and melanin-

concentrating hormone receptor 1 were mislocalized in BBS2 and BBS4 mutant 

neurons, which have apparently normal cilia (Berbari et al., 2008a).  Taken together, 

these data suggest that BBS proteins tend to function in the trafficking of proteins to the 

basal body and perhaps regulation of IFT.  Elucidating the functions of each BBS protein 

in cilia biology will provide valuable insights into the mechanisms underlying the human 

disease condition.   

Cilia Disease Phenotypes Resulting from Impaired Cellular Signaling 

Though the number of different ciliopathies known to clinicians is impressive, it 

is striking that only one IFT protein has been implicated as the cause of human disease.  

The mutations described for IFT80 are amino acid substitutions, indicating these mutant 

forms of IFT80 could retain some function.  The paucity of IFT genes identified as 

disease genes can likely be explained by the lethal phenotype of mouse null mutations in 

IFT genes.  For example, several chemically induced mutations that caused sonic 
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hedgehog (shh) signaling defects were mapped to IFT genes, including ift88, ift172 and 

dync2-h1 (Huangfu and Anderson, 2005; Huangfu et al., 2003; May et al., 2005). 

Subsequent studies have shown IFT proteins are necessary for correct processing and 

function of the transcription factors Gli2 and Gli3, effectors of shh signaling.  

Additionally, the shh receptor smoothened localizes to the primary cilium when ligand is 

present, suggesting this too, plays an important role in shh signal transduction. (Corbit et 

al., 2005; Haycraft et al., 2005; May et al., 2005).  

Similarly, cilia have also been shown to be involved in planar-cell-polarity 

signaling, PDGF signaling, and possibly BMP signaling.  The integral role of cilia in 

diverse signaling pathways has led many to consider the primary cilium to function as a 

“cellular antennae” of sorts, an area of the cell where extracellular cues are detected and 

integrated.  Thus, it is likely that null mutations in IFT genes have not been identified as 

disease genes because these embryos are inviable.  Instead, human diseases are caused 

by mutations that only affect one aspect of cilia function, or represent hypomorphic 

alleles that result in cilia that are partially functional.   

Dissertation Objectives 

The goal of my work is to understand how proteins are trafficked within a 

photoreceptor and the functional consequences resulting from dysfunction of these 

processes.  By using a combination of genetics, cell biology, biochemistry and molecular 

biology I model the pathology of a human disease and make contributions to the 

understanding of molecular mechanisms behind ciliary protein trafficking, the 

conclusions of which are broadly applicable to other types of cilia. 
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Chapter II is a study designed to address two competing hypotheses in the field 

of choroideremia research regarding the primary tissue defect that causes retinal 

degeneration in this disease.  Using the technique of blastomere transplantation and a 

zebrafish line with a mutation in the zebrafish rep1 gene, I demonstrate that rep1 mutant 

photoreceptors do not degenerate when placed opposite a wild type RPE.  In contrast, 

rep1 mutant RPE is sufficient to cause degeneration of wild type photoreceptors.  These 

studies show that photoreceptor degeneration in CHM is non-cell autonomous and is 

caused by defective RPE.  Additionally, this study indicates that human therapies 

designed to treat CHM should target the RPE. 

 Chapter III utilizes a combination of cell biology, biochemistry and genetics to 

elucidate the role of the Ift57 protein within photoreceptors and the intraflagellar 

transport particle.  A phenotypic analysis reveals that, unlike previously described IFT 

mutants, the process of IFT is partially functional when Ift57 is lost in photoreceptors.  I 

go on to show, using a series of co-immunoprecipitation experiments, that kinesin II fails 

to dissociate from the IFT particle, while Ift20 does not associate with the IFT particle in 

Ift57 mutants.  I therefore conclude that Ift57 is only required for efficient IFT, because 

it mediates the ATP-dependent dissociation of kinesin II from the IFT particle, likely 

through Ift20. 

 Chapter IV addresses the function of retrograde IFT in the context of 

photoreceptors, an aspect of IFT in photoreceptor biology that has, until now, remained 

uninvestigated.  Utilizing morpholinos directed against the heavy chain, light 

intermediate chain and intermediate chain subunits of cytoplasmic dynein-2, the 
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retrograde IFT motor, I show that retrograde IFT is necessary for outer segment 

extension, organization and the recycling of IFT protein subunits.  Addtionally, I show 

that dynein morphants have defects in retinal electrophysiology, suggesting these 

proteins may play a greater role in retinal physiology.  Furthermore, I provide the first 

functional data that show the intermediate chain subunit of cytoplasmic dynein-2 is 

required for retrograde IFT function.  Overall, this study provides the first functional 

evidence that retrograde IFT plays an important role in photoreceptor structure and 

function.   
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CHAPTER II 

NONCELL-AUTONOMOUS PHOTORECEPTOR DEGENERATION IN A 

ZEBRAFISH MODEL OF CHOROIDEREMIA* 

OVERVIEW 

 This study analyzes the cause of photoreceptor degeneration in zebrafish rep1 

mutants.   Joe Bilotta of Western Kentucky University is a collaborator who performed 

the ERG analysis on rep1 mutants. 

SUMMARY 

 Choroideremia is an X-linked hereditary retinal degeneration resulting from 

mutations in the Rab escort protein-1 (REP1).   The Rep1 protein facilitates post-

translational modification of Rab proteins, which regulate intracellular trafficking in the 

retinal pigment epithelium (RPE) and photoreceptors and are likely involved in the 

removal of outer segment disk membranes by the RPE.  A critical question for potential 

treatment of choroideremia is whether photoreceptor degeneration results from 

autonomous defects in opsin transport within the photoreceptor or as a non-autonomous 

and secondary consequence of RPE degeneration.  To address this question, we have 

characterized the retinal pathology in zebrafish rep1 mutants, which carry a recessive 

nonsense mutation in the REP1 gene.  Zebrafish rep1 mutants exhibit degeneration of  

____________ 
*Reprinted with permission from “Noncellautonomous photoreceptor degeneration in a 
zebrafish model of choroideremia” by B.L. Krock, J. Bilotta and B.D. Perkins, Proc. 

Natl. Acad. Sci. U S A 104, 4600-5. Copyright 2007 by The National Academy of 
Sciences 
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the RPE and photoreceptors and complete loss of visual function as measured by 

electroretinograms.  In the mutant RPE, photoreceptor outer segment material was not  

effectively eliminated and large vacuoles were observed.  However, opsin trafficking in  

photoreceptors occurred normally.  Mosaic analysis revealed that photoreceptor 

degeneration was non-autonomous and required contact with the mutant RPE as mutant 

photoreceptors were rescued in wild type hosts and wild type photoreceptors 

degenerated in mutant hosts.  We conclude that mutations in REP1 disrupt cellular 

processes in the RPE, which causes photoreceptor death as a secondary consequence.  

These results suggest that therapies that correct the RPE may successfully rescue 

photoreceptor loss in choroideremia. 

INTRODUCTION 

   Choroideremia (CHM) is an X-linked form of retinal degeneration caused by 

mutations in the gene for Rep1 (Rab escort protein 1) (Cremers et al., 1990b; Seabra et 

al., 1992), a protein found in all tissues and highly expressed in the outer retina and 

retinal pigment epithelium (RPE).  CHM causes night-blindness in children and 

progresses to complete loss of vision in adults.  CHM is one of the few hereditary 

blindness disorders that can be clinically identified before significant loss of visual 

function (Sorsby et al., 1952), suggesting that diagnosis and intervention during 

childhood may prevent further loss of vision.   

Rep proteins play an essential role in the post-translational modification of Rab 

proteins, the small GTP-binding proteins that are essential for many aspects of 

intracellular transport.  Rep proteins bind newly synthesized Rab proteins and facilitate 



 32

the addition of geranyl-geranyl groups, a modification essential for Rab function in 

intracellular trafficking (reviewed in (Preising and Ayuso, 2004).  In humans, Rep1 and 

its homolog Rep2, are ubiquitously expressed and exhibit overlapping substrate 

specificity (Cremers et al., 1994).  Mutations in Rep1 prevent the modification of Rab 

proteins, thereby disrupting Rab-mediated intracellular trafficking in photoreceptors and 

the RPE.  As patients with CHM only experience age-related blindness, Rep2 appears to 

effectively compensate for the loss of Rep1 in all tissues except the eye (Seabra, 1996).  

Interestingly, zebrafish do not contain a Rep2 ortholog and the loss of Rep1 results in 

lethality at larval stages (Starr et al., 2004). 

The development and survival of photoreceptors requires effective intracellular 

trafficking in both photoreceptors and the RPE.  In the photoreceptor, proteins destined 

for the outer segment (e.g. opsin) travel from the Golgi to the connecting cilium via 

vesicular transport that is regulated by Rab8 and Rab6 (Deretic et al., 1995; Deretic and 

Papermaster, 1993).  In Xenopus laevis expressing dominant negative forms of Rab8, 

rapid photoreceptor degeneration and defects in outer segment morphogenesis were 

observed (Moritz et al., 2001).  It has been proposed that mutations in Rep1 may lead to 

defects in opsin trafficking that contribute to photoreceptor degeneration (Alory and 

Balch, 2001).  In the RPE, intracellular trafficking controls the phagocytosis and 

degradation of disk membranes shed from the apical tips of photoreceptor outer 

segments.  Failure of the RPE to clear outer segment debris leads to a toxic environment 

surrounding the photoreceptors and causes death.  It is believed that Rab proteins 

function during phagocytosis by the RPE, although the mechanism is not clear.  It is 
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known that Rab27a is target of Rep1 and that Rab27a interacts with myosin VIIA in the 

transport of melanosomes (Gibbs et al., 2004; Seabra et al., 1995).  Furthermore, 

cultured RPE cells that lack myosin VIIA exhibit defects in the phagocytosis of outer 

segment membranes (Gibbs et al., 2003).  A tempting hypothesis states that loss of Rep1 

disrupts the function of a Rab27a/myosinVIIA complex and causes defects in 

phagocytosis by the RPE.  As all retinal cells express Rep1, it is unknown if CHM 

reflects a cell-autonomous degeneration by photoreceptors, a non-cell-autonomous effect 

caused by RPE dysfunction, or a combination of both.  Development of appropriate 

therapies requires a clear understanding of the tissue-specific contributions to disease. 

Here we report that zebrafish carrying a recessive nonsense mutation in rep1 (Starr et al., 

2004) exhibit retinal phenotypes consistent with CHM.  Using histological, functional, 

and embryonic manipulations, we found that rep1 mutants experience photoreceptor 

degeneration, loss of visual function, and defects in RPE pigmentation and outer 

segment phagocytosis.  By producing genetically mosaic animals, we show that the loss 

of Rep1 in the RPE is sufficient to induce degeneration of wild type photoreceptors.  

These findings provide novel insight into the pathology of the disease and have 

implications for the design of future therapies.  

RESULTS 

The morphological phenotypes of rep1 mutants are described elsewhere (Starr et 

al., 2004), but retinal defects have not been studied extensively.  Mutants had slightly 

smaller eyes and the loss of pigment in the RPE could be observed through the lens as a 

cloudy coloration in the posterior part of the eye (data not shown).  As patients with  
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Fig. 5. ERG analysis of rep1 mutant larvae.  (A) ERG responses from 5 dpf wild type 

(left) and mutant (right) to 200 msec flashes of light at the designated wavelengths. Each 

waveform was based on the average response from ten stimulus presentations. Stimulus 

irradiance (15 log quanta s-1 cm-2) was the same across all panels.  Bars represent the 

light stimulus.  (B) Graph of the average irradiance-response functions from wild type 

(filled circles; n=11) and mutant (open circles; n = 14) subjects based on the b-wave 

amplitude at three different wavelengths.  Error bars represent ± 1 SEM.  A mixed 

design Analysis of Variance (ANOVA) found a significant difference (p ≤ .05) between 

the wild type and mutant responses at the last five irradiances tested.
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CHM lose vision, an animal model of CHM should also exhibit visual defects.  We used 

full field electroretinogram (ERG) recordings to determine if the rep1 mutation also 

results in loss of visual function.  We recorded the ERG at 5 days post fertilization (dpf) 

using stimuli at three different wavelengths (Fig. 5A).  When presented with a long-flash 

(≥200 msec), the vertebrate ERG is characterized by a hyperpolarizing a-wave, a 

depolarizing b-wave, and a depolarizing d-wave, which reflect photoreceptor cell and on 

and off activity of second-order cells, respectively.  Above 360 nm the amplitude of the 

b-wave masks the a-wave signal.  Compared to wild type animals, all components of the 

mutant ERG were significantly reduced at 360 nm, 460 nm and 560 nm.  The minimum 

light intensity required to produce the smallest detectable ERG response was almost two 

orders of magnitude higher in the mutants, depending upon the wavelength tested (Fig. 

5B).  The b-wave amplitude of rep1 mutants was reduced across a range of stimuli 

intensities at all three wavelengths.  These data indicate that rep1 mutants exhibit severe 

loss of outer retina function.   

CHM is characterized by degeneration of the choroid, RPE and photoreceptors, 

so we investigated the retinal histology of rep1 mutants.  Retinal lamination of rep1 

mutants was not affected and all major cell types were present (Fig. 6).  The RPE 

maintains a consistent thickness in wild type animals; however, RPE thickness was 

highly irregular in the mutants.  Hypertrophic areas extended into the photoreceptor 

layer and other areas possessed few or no observable melanosomes.  The morphology of 

the mutant photoreceptor layer was disorganized.  Mutant photoreceptor outer segments  
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Fig. 6.  Histological sections of 4.5 dpf wild type and rep1 mutant retinas.  (A) Wild type 

retinas at 4.5 dpf have fully laminated and retinal ganglion cells (GCL), amacrine and 

bipolar interneurons (INL) and photoreceptors (ONL) have differentiated and the optic 

nerve (O.N.) is apparent.  (B) Lamination and cellular differentiation is not affected in 

rep1 mutants but eye size is reduced and the RPE layer appears irregular.  (C) High 

magnification of sections from light-adapted wild type retinas showing the rod (r) outer 

segments positioned distally from the cone (c) outer segments.  (D)  Sections of rep1 

mutants showing areas of RPE hypertrophy (arrows) into the photoreceptor layer and 

other regions where the RPE is almost devoid of pigmentation (arrowhead).  Rod and 

cone outer segments are not normally positioned and are shorter than wild type.
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were compressed against hypertrophic regions of RPE.  In wild type retinas, rod and 

cone photoreceptors are tiered, with UV cones located basally and rods located apically.   

In rep1 mutant retinas, no discernable tiering could be observed, perhaps due to 

hypertrophy of the RPE into the photoreceptor layer. 

 Ultrastructural analysis of rep1 mutants by transmission electron microscopy 

revealed additional defects of the photoreceptors and RPE (Fig. 7).  In rep1 mutants, 

photoreceptor outer segments were disheveled and degenerating.  Melanosomes in the 

RPE cells were smaller and more immature than those found in wild type animals.  

Large vacuoles and undigested outer segment disk membranes were observed within the 

RPE of the mutants.  The results from light microscopy and electron microscopy indicate 

that loss of Rep1 disrupts maturation of melanosomes and the elimination of 

photoreceptor disk membranes within the RPE and leads to degeneration of the RPE and 

photoreceptors.   

 It is well established that defects in opsin trafficking can lead to photoreceptor 

death.  As Rab proteins function in opsin trafficking (Deretic et al., 1995; Deretic and 

Papermaster, 1993; Moritz et al., 2001), we tested the hypothesis that loss of Rep1 

results in opsin mislocalization and therefore contributes to degeneration in CHM.  

Retinal sections labeled with an antibody that recognizes rhodopsin (1D1) showed little 

to no mislocalization in wild type or mutant rods (Fig. 8A, E).  During development, 

small amounts of rhodopsin can be seen around the plasma membrane in wild type rods 

(Morris and Fadool, 2005; Perkins et al., 2005) and this was occasionally observed in  
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Fig. 7.  Transmission electron microscopy of 4.5 dpf wild type and rep1 mutant retinas.  

(A) Electron micrographs of wild type retinas reveal an orderly array of photoreceptor 

outer segments and the uniform thickness of the RPE.  Melanosome maturation within 

the RPE is normal.  (B-D)  Electron micrographs from multiple rep1 retinas showing 

degeneration of the RPE and photoreceptors.  Arrows in B and C indicate large vacuoles 

observed in the RPE of rep1 mutants.  Arrowheads in D indicate outer segment material 

that is not digested by the RPE.  Melanosome size and maturation varies more 

dramatically and is less dense than what is seen in wild type. 
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rep1 mutants, although this was not interpreted as an effect of Rep1 loss.  In addition, 

both blue and green cone opsin proteins localized exclusively to the cone outer segments  

in wild type and mutant animals (Fig. 8B, C, F, G).  Taken together, these data indicate 

that opsin mislocalization is not responsible for photoreceptor degeneration. 

 As the larval ERG is cone-dominated, we used additional immunohistochemical 

markers to specifically investigate cone morphology.  In wild type animals, the red/green 

double cones are regularly spaced and columnar in appearance (Fig. 8D, H).  In rep1 

mutants, these cones are irregularly shaped, appear disheveled, and have lost their 

columnar organization.  To investigate synapse integrity of rep1 mutants, retinas were 

stained with antibodies for a glutamate transporter, GLT-1, which is stains cone pedicles 

and bipolar cell terminals in goldfish, and the outer plexiform layer of zebrafish 

(Vandenbranden et al., 2000; Yazulla and Studholme, 2001).  We found that GLT-1 

labeling was missing from the outer plexiform layer and strongly reduced in the inner 

plexiform layer, suggesting that cone degeneration disrupts synapse formation and may 

have deleterious effects on inner retinal cells such as bipolar cells (Fig. 9).  Although 

correlative, loss of GLT-1 immunoreactivity agrees with the loss of activity by inner 

retinal cells seen in the ERG of rep1 mutants. 

 In rep1 mutant zebrafish, the degenerating RPE fails to eliminate photoreceptor 

disk membranes yet transport of opsin within the photoreceptors is normal.  We 

therefore addressed the hypothesis that photoreceptor degeneration is non-cell 

autonomous and directly caused by the RPE.  We produced genetically mosaic eyes in 

rep1 and wild type animals by transplanting cells from blastula stage embryos 
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Fig. 8.  Opsin trafficking is unaffected in rep1 mutants.  Retinal cryosections were 

stained with markers for rod and cone photoreceptors in wild type (A-D) and rep1 

mutants (E-H).  The 1D1 marker labels rhodopsin (Rho) whereas antibodies against blue 

opsin (BOPS) and green opsin (GOPS) in the photoreceptor outer segments of wild type 

and rep1 mutants.  The zpr-1 antibody labels the red/green double cones and reveals the 

disheveled morphology of the photoreceptors.  All sections were counterstained with 

DAPI to visualize nuclei.  Pyknotic nuclei, a hallmark of cell death, are seen in rep1 

mutants and indicated by arrows.  Bar = 20 µm. 
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Fig. 9.  Loss of rep1 disrupts photoreceptor termini.  Retinal cryosections of (A) wild 

type and (B) rep1 mutant retinas were stained with an antibody against the glutamate 

transporter (GLT-1).  Staining in the OPL and IPL is greatly reduced in rep1 mutants.  

The asterisks mark the optic nerve. 
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(Ho and Kane, 1990).  Cells from donor embryos that had been injected with a lineage 

tracing dye (rhodamine-dextran) were transplanted into unlabeled hosts.  Transplanted 

cells gave rise to clones of varying size that were assessed for cone morphology and cell 

death.  Wild type cells transplanted into wild type hosts produced cones with normal 

morphology with no evidence of cell death (Fig. 10A-D).  When rep1 mutant cells were 

transplanted into rep1 mutant hosts, the photoreceptors produced by the clones lacked 

the columnar organization and were similar in morphology to cells outside the clone 

(Fig. 10M-P).  In addition, cell death was often observed within and outside the clone as 

small, round pyknotic nuclei that stained brightly with DAPI.  When mutant cells were 

transplanted into wild type hosts, the photoreceptor morphology was rescued and cell 

death was rarely observed anywhere within the clone (Fig. 10E-H).  Conversely, when 

wild type cells were transplanted into mutant hosts, cell death was observed within the 

clone and the morphology of photoreceptors within the wild type clone resembled that of 

the surrounding mutant cells (Fig. 10I-L).    Quantification of clones exhibiting cell 

death revealed that almost all clones of mutant photoreceptors (94%) could be rescued 

when placed opposite wild type RPE (Table 2).  Importantly, most clones of wild type 

cells (71%) exhibited some cell death and acquired an abnormal morphology when 

placed opposite RPE from mutant animals. 

To directly test the role of mutant RPE in photoreceptor dysfunction, we 

transplanted cells from wild type or rep1 mutant donors into albino hosts (Fig. 11).  As 

donor cells were pigmented, the location of RPE clones was easily identified in the  
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Fig. 10.  Analysis of photoreceptor morphology and survival in mosaic animals.  

Genetically mosaic animals were created by blastomere transplantation.  Shown are 

retinal cryosections of 4.5 dpf mosaic animals.  Cryosections were stained with DAPI to 

visualize nuclei (blue; A, E, I, M), and the zpr-1 antibody to label the red-green double 

cones (green; B, F, J, N).  Donor cells were labeled by the lineage-tracer rhodamine-

dextran (red cells; C, G, K, O).  Composite images (D, H, L, P) show all markers and 

labels.  Bar = 20 µm.
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                                Table 2.  Cell death within mosaic clones.  

 

Clones analyzed Clones with pyknotic nuclei 

WT-WT 12 

 

0 (0%) 

mut-WT 16 

 

1 (6%) 

WT-mut 17 

 

12 (71%) 

mut-mut 6 

 

5 (83%) 
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albino hosts.  Photoreceptor morphology remained unaffected by the presence of wild 

type RPE and no differences could be seen in photoreceptors in contact with the RPE 

clone and those outside the clone (Fig. 11A-E).  In contrast, RPE cells from rep1 mutant 

donors disrupted the morphology of the host photoreceptors.  The host photoreceptors 

were shorter, disheveled, and more disorganized than those photoreceptors not in contact 

with the mutant RPE clone (Fig. 11F-J).  Taken together, the mosaic experiments show 

that photoreceptor degeneration in CHM is non-cell autonomous and that RPE cells 

lacking Rep1 are both necessary and sufficient for photoreceptor cell death. 

DISCUSSION 

The purpose of this study was to investigate the retinal pathology of a zebrafish 

model of CHM and to test various hypotheses regarding the mechanism of photoreceptor 

degeneration.  The results point to four significant findings.  First, mutation of the 

zebrafish rep1 gene caused degeneration of the RPE and photoreceptors in a manner that 

closely resembled the degeneration seen in human cases of CHM (Syed et al., 2001).  

Similar to what is observed in human cases of CHM (Flannery et al., 1990; Jacobson et 

al., 2006), zebrafish rep1 mutants exhibit variable thickness of the RPE with areas of 

depigmentation and accumulation of outer segment material in the RPE.  Mutant 

photoreceptors became much shorter and visual function was highly reduced or absent.   

Thus, the zebrafish represents a suitable animal model for this disease.  Second, the RPE 

of rep1 mutant zebrafish failed to properly eliminate photoreceptor disk membranes, 

which can be a cause of non-autonomous photoreceptor death (Vollrath et al., 2001).  

The failure to effectively digest phagosomes carrying disk membranes is hypothesized to 
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Fig. 11.  Effects of RPE clones on wild type photoreceptor morphology.  Donor cells 

from wild type or rep1 mutant embryos were transplanted into albino hosts in order to 

visualize transplanted RPE clones.  Retinal cryosections of 4.5 dpf mosaic animals were 

stained with DAPI to visualize nuclei (blue; A, F), and the zpr-1 antibody to label the 

red-green double cones (green; B, G).  Donor cells were labeled by the lineage-tracer 

rhodamine-dextran (red cells; C, H).  Brightfield images using Nomarski optics (D, I) 

were used to visualize and distinguish pigmented RPE (donor) from albino RPE (host).  

Composite images (E, J) show all markers and labels.  The dotted line (B, G) denotes the 

location of donor RPE.  Bar = 20 µm. 
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cause the accumulation of lipofuscin within the RPE, which is a clinical feature of CHM 

and other forms of retinal degeneration (Kolb and Gouras, 1974; Syed et al., 2001; Weng 

et al., 1999).  Third, opsin mislocalization was not observed in intact rod or cone 

photoreceptors.  Mislocalization of opsin was observed in a single case study of a female 

carrier of CHM in which photoreceptor degeneration was variable (Syed et al., 2001). 

While mutations that affect rhodopsin folding and trafficking can cause autonomous 

photoreceptor cell death (Li et al., 1996; Moritz et al., 2001; Pazour et al., 2002a; Sung 

et al., 1993), opsin mislocalization can also occur when the RPE fails to phagocytize 

shed disk membranes, as in the RCS rat (Dowling and Sidman, 1962; Nir and 

Papermaster, 1989) and possibly in the Myo7a mouse (Gibbs et al., 2003).  Finally, 

genetic mosaic analysis indicated that the RPE of rep1 zebrafish was both necessary and 

sufficient to cause photoreceptor degeneration (Figs. 10-11). 

 Perhaps the most debated question regarding the pathology of CHM is the 

primary site of the disease.  Our results strongly suggest that photoreceptor death in 

CHM is secondary to defects in the RPE, which differs from previous studies.  In reports 

of a human female carrier of CHM (Syed et al., 2001) and of CHM mouse models 

(Tolmachova et al., 2006), the authors argue that the severity of degeneration of 

photoreceptors and RPE does not always correlate, suggesting that the tissues degenerate 

independently.  To address the autonomy of the disease, Tolmachova et al. (Tolmachova 

et al., 2006) bred mice carrying a Chm
flox gene with mice carrying a six3-Cre transgene 

to generate a tissue-specific knockout of the mouse CHM gene.  During development, 

however, both six3 and the six3-Cre transgene are expressed in the anterior neural plate 
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and the optic vesicle, which are tissues that give rise to both neural retina and RPE 

(Furuta et al., 2000; Oliver et al., 1995).  Thus, autonomy could not be directly tested in 

these experiments because the CHM gene was likely missing from both photoreceptors 

and RPE.  Our results and methodology are similar to those of Mullen and LaVail 

(Mullen and LaVail, 1976), who used chimeric animals to identify the RPE as the 

primary site of disease in RCS rats.  It should be noted that the long-term fate of mutant 

photoreceptors in our mosaic animals is not known and we cannot rule out the possibility 

that a slow, progressive degeneration may occur.  Furthermore, as zebrafish lack an 

ortholog to the human Rep2 protein, the effects observed in this study may be more 

severe than what occurs in human CHM patients.  Nevertheless, our results show that 

loss of Rep1 from the RPE is sufficient for early photoreceptor degeneration in 

zebrafish.  These results have significant implications for development of appropriate 

RPE-specific therapies to treat and correct CHM.  As this disease can be diagnosed 

during childhood while symptoms are mild (Sorsby et al., 1952), effective intervention 

of the RPE at early ages may prevent the loss of vision later in life. 

MATERIALS AND METHODS 

Zebrafish Care and Maintenance 

The rep1
ru848 allele, which contains a nonsense mutation (Q32X) in the second 

exon, was obtained from Dr. James Hudspeth (Starr et al., 2004).  Albino animals were 

obtained from the Zebrafish International Resource Center (ZIRC).  All fish were 

maintained according to standard methods (Westerfield, 1995).   
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Histology:  Light Microscopy and Transmission Electron Microscopy (TEM) 

Embryos were processed for histology as previously described (Schmitt and 

Dowling, 1999).  For transmission electron microscopy, transverse sections (60-80 nm) 

of the central retina were stained with lead citrate and uranyl acetate.  Photographs were 

obtained with a JEOL transmission electron microscope and image processing 

performed using Adobe Photoshop.   

Immunohistochemistry 

Immunohistochemistry was performed as previously described (Perkins et al., 

2005).  Images were obtained with an Olympus FV1000 confocal microscope.  The 

following is a list of primary antibodies used, dilution, and cell types that possess the 

antigens:  1D1 (1:500) rods (Fadool, 1999), Zpr1 (1:100) red-green double cones 

(Larison and Bremiller, 1990), cone opsin antibodies (1:200) (Vihtelic et al., 1999), and 

glutamate transporter (1:100; AB1783, Chemicon)(Yazulla and Studholme, 2001).  The 

appropriate fluorescently conjugated antibodies (Jackson ImmunoResearch) were used at 

1:500 dilutions.  Slides were counterstained with DAPI (Molecular Probes) to label 

DNA.   

Electroretinographic (ERG) Recording 

Details of the optical system and embryo preparation can be found elsewhere 

(Bilotta et al., 2001; Hughes et al., 1998; Saszik and Bilotta, 1999).  All experiments 

were performed on light-adapted animals at 5 dpf.  Animals were given a 200-ms 

stimulus at a range of irradiances (10 to 15 log quanta s-1 cm-2) at 360 nm, 460 nm and 

560 nm wavelengths. 
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Mosaic Analysis 

Mosaic retinas were produced by blastomere transplantation (Ho and Kane, 

1990).  Clutches of embryos from rep1 heterozygous matings were dechorionated and 

injected at the 1-to 4-cell stage with a lineage-tracing label (1:9 mix of lysine fixable 

rhodamine-dextran (Molecular Probes) at a total concentration of 5% w/v).  At the 1000-

cell stage, 10-40 donor cells were transplanted to the animal pole of the dechorionated 

wild-type hosts, the region fated for eye and forebrain (Kimmel et al., 1995).  Donor 

embryos were phenotyped at 4 dpf and host embryos were fixed in 4% 

paraformaldehyde at 4.5 dpf.  Donor cells in host embryos were assessed by 

immunohistochemistry and confocal microscopy as described above. 
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CHAPTER III 

THE INTRAFLAGELLAR TRANSPORT PROTEIN Ift57 IS REQUIRED FOR 

CILIA MAINTENANCE AND REGULATES IFT-PARTICLE-KINESIN-II 

DISSOCIATION IN VERTEBRATE PHOTORECPTORS* 

OVERVIEW 

 This work analyzes the photoreceptor phenotypes of the zebrafish ift57 mutants 

and investigates the function of Ift57 protein within the IFT particle.  

SUMMARY 

 Defects in protein transport within vertebrate photoreceptors can result in 

photoreceptor degeneration.  In developing and mature photoreceptors, proteins targeted 

to the outer segment are transported through the connecting cilium via the process of 

Intraflagellar Transport (IFT).  In studies of vertebrate IFT, mutations in any component 

of the IFT particle typically abolish ciliogenesis, suggesting that IFT proteins are equally 

required for IFT.  To determine if photoreceptor outer segment formation depends 

equally on individual IFT proteins, we compared the retinal phenotypes of ift57 and ift88 

mutant zebrafish.  ift88 mutants failed to form outer segments, while ift57 mutants 

formed short outer segments with reduced amounts of opsin.  Our phenotypic analysis 

revealed that ift57 is not essential for IFT, but is required for efficient IFT.  In co-

immunoprecipitation experiments from whole animal extracts, we determined that  

____________ 
*Reprinted with permission from “The Intraflagellar transport protein Ift57 is required 
for cilia maintenance and regulates IFT-particle-kinesin-II dissociation in vertebrate 
photoreceptors.” by B.L. Krock and B.D. Perkins, 2008.  J. Cell Science 121, 1907-15.  
Copyright 2008 by The Company of Biologists. 
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kinesin II remained associated with the IFT particle in the absence of Ift57, but Ift20 did 

not.  Additionally, kinesin II did not exhibit ATP-dependent dissociation from the IFT 

particle in ift57 mutants.  We conclude that ift20 requires ift57 to associate with the IFT 

particle and that Ift57/Ift20 mediate kinesin II dissociation. 

INTRODUCTION 

Vertebrate photoreceptors are highly specialized neurons that possess a modified 

sensory cilium known as the outer segment.  The outer segment develops as an extension 

of a nonmotile primary cilium (De Robertis, 1960).  As the outer segment lacks the 

machinery for protein synthesis, all protein destined for the outer segment must pass 

through the connecting cilium.  Large amounts of protein synthesized in the inner 

segment must be efficiently transported to the outer segment to replenish material lost 

from the distal tips each day.  Estimates from mammalian systems have calculated 

~2000 rhodopsin molecules per minute must be transported to the outer segment to 

compensate for lost material (Besharse, 1990).  Hence, both the development and 

survival of the photoreceptor require this continual transport of protein to the outer 

segment (Marszalek et al., 2000). 

Studies of rhodopsin trafficking in several species have linked defects in protein 

transport to photoreceptor degeneration and the disease retinitis pigmentosa.  The C-

terminal tail of rhodopsin contains a sorting sequence that is necessary and sufficient for 

transport to the outer segment (Perkins et al., 2002; Tam et al., 2000).  Mutations in this 

region result in protein accumulation in the inner segment and at the base of the 

connecting cilium in mice, rats, and frogs (Green et al., 2000; Li et al., 1996; Sung et al., 
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1994; Tam et al., 2000), leading to photoreceptor degeneration.  Indeed, mutations in the 

C-terminus of human rhodopsin, such as P347L and S344Ter, can cause retinitis 

pigmentosa (Berson et al., 1991).  Rhodopsin mislocalization also occurs in animals with 

mutations in the molecular motors kinesin II (Marszalek et al., 2000) and the dynein 

light chain Tctex-1 (Tai et al., 1999), both of which show severe retinal degeneration.  It 

is imperative, therefore, that cargo targeted for the outer segment reach its destination or 

retinal degeneration will occur.  Thus, both mutations within the opsin gene and 

mutations in the transport machinery can cause retinal degenerative diseases. 

Protein transport along a ciliary axoneme, such as the connecting cilium, occurs 

via the process known as Intraflagellar transport (IFT) (Rosenbaum and Witman, 2002).  

Both the assembly and maintenance of cilia require IFT and defects in ciliogenesis have 

been linked to retinal degeneration, polycystic kidney disease, Bardet-Biedl syndrome, 

Jeune asphyxiating thoracic dystrophy, respiratory disease and defective left-right axis 

determination (Beales et al., 2007; Pazour and Rosenbaum, 2002; Snell et al., 2004).  

IFT refers to movement of the IFT particle, a multisubunit protein complex which 

consists of at least 17 IFT proteins that form two subcomplexes: complex A and 

complex B (Cole et al., 1998).  The IFT particle associates with heterotrimeric kinesin II, 

which is composed of two motor subunits and an accessory subunit, known as Kif3A, 

Kif3B and KAP, respectively (reviewed in (Cole, 1999). Kinesin II cooperates with a 

homodimeric kinesin II known as OSM-3 to mediate transport of the IFT particle and its 

associated cargo toward the ciliary tip (Cole et al., 1998; Orozco et al., 1999; Ou et al., 

2005; Snow et al., 2004).  The process of IFT is highly conserved, as mutations in IFT 
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proteins perturb ciliary assembly and/or maintenance in organisms as diverse as 

Chlamydomonas, C. elegans, Drosophila, mouse, humans and zebrafish (Beales et al., 

2007; Cole et al., 1998; Han et al., 2003; Murcia et al., 2000; Pazour et al., 2000; 

Pedersen et al., 2005; Sun et al., 2004; Tsujikawa and Malicki, 2004).   

Recent biochemical studies, predominantly in Chlamydomonas, have started to 

reveal the structural composition of the IFT particle and specific interactions between 

individual IFT proteins, particularly within complex B.  Eleven proteins constitute the 

Chlamydomonas complex B, a subset of these form a core consisting of an Ift72/74-Ift80 

tetramer along with Ift88, Ift81, Ift52 and Ift46 (Lucker et al., 2005).  The outer surface 

of complex B is composed of Ift20, Ift57, Ift80 and Ift172.  Data from yeast two-hybrid 

experiments indicate direct interactions between Ift72/74 and Ift81 and between Ift57 and 

Ift20.  Similar approaches indicated interactions between Ift20 and the Kif3B subunit of 

kinesin II (Baker et al., 2003; Lucker et al., 2005).  While the Ift72/74-Ift80 interaction 

likely forms the structural core of complex B, the functional nature of the interactions 

described for the outer surface IFT proteins remains unclear. 

Previous studies investigating mutations in IFT genes have revealed few 

phenotypic differences in ciliated structures of any tissue.  In Chlamydomonas, 

mutations in genes coding for complex B proteins, such as ift52, ift88 and ift172, result 

in a complete absence of flagella (Cole, 2003).  Ift88 mutations have been shown to 

abolish cilia in the sensory neurons  of C. elegans and Drosophila  (Han et al., 2003; 

Haycraft et al., 2001).    In zebrafish, mutants of ift88 and ift172 lack outer segments 

entirely and ift88 mutants lack all sensory cilia at 4 days post fertilization (dpf) (Gross et 
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al., 2005; Tsujikawa and Malicki, 2004).  In mice, all null alleles of Ift88 and Ift172 

cause embryonic lethality before E12, thereby preventing analysis of photoreceptor 

structure, though nodal cilia are completely absent in these animals (Huangfu et al., 

2003; Murcia et al., 2000).  In Tg737orpk mutants, a hypomorphic mutation in murine 

ift88, photoreceptors display aberrant outer segment disk stacking, accumulation of 

vesicles, and progressive photoreceptor degeneration (Pazour et al., 2002a; Pazour et al., 

2000).  Recent evidence suggests, however, that loss of individual IFT proteins may not 

completely abolish ciliogenesis.  While not completely normal, cilia do remain in 

Chlamydomonas cells lacking Ift27, which plays a role in cell cycle regulation (Qin et 

al., 2007), or Ift46, which facilitates transport of outer dynein arms (Hou et al., 2007).  

Phenotypic differences have not yet been described in other tissues or species. 

While the photoreceptor phenotypes associated with the partial or complete loss 

of function of ift88 have been well characterized in both mouse and zebrafish, no such 

analysis has been done for most of the remaining 16 or so IFT peptides.  Loss of 

function studies with zebrafish ift140 and ift81 did not reveal a retinal phenotype, though 

the ift81 mutation did cause cystic kidneys (Gross et al., 2005; Sun et al., 2004; 

Tsujikawa and Malicki, 2004).  Morpholino knockdown of the zebrafish ift52 and ift57 

genes resulted in a loss of photoreceptors (Tsujikawa and Malicki, 2004); however, the 

ultrastructure, development and morphology of photoreceptors in these animals were not 

analyzed.  Although photoreceptors clearly require the IFT process for proper outer 

segment biogenesis, the composition of the IFT particle functioning in the photoreceptor 

may be different than the one in Chlamydomonas.  Many cargo molecules destined for 
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the outer segments, such as rhodopsin, are unique to photoreceptors.   Vertebrate 

photoreceptors also have a simpler axonemal structure (9+0 microtubule arrangement) 

than the one found in the Chlamydomonas flagellum or vertebrate motile cilia (9+2 

arrangement).     

Herein we analyze zebrafish with an insertional mutation in the Ift57 gene, which 

have a photoreceptor phenotype that is distinct from ift88 mutant zebrafish.  Our data 

show that the process of IFT can occur, albeit inefficiently, in the absence of Ift57.  Our 

data also attribute specific functions to Ift57 and Ift20 within the IFT complex and 

provide novel insights into how kinesin II dissociates from the IFT particle.  This work 

has implications in both the molecular mechanism of IFT and the molecular 

requirements for photoreceptor outer segment formation. 

RESULTS 

To determine the effects different IFT mutations have on photoreceptor 

development, we examined the phenotypes of zebrafish ift57 and ift88 mutants.  In a 

screen for photoreceptor defects, we previously identified a mutation in the zebrafish 

ift57 homolog (Gross et al., 2005).  The hi3417 allele is a retroviral insertional mutation 

(Amsterdam and Hopkins, 1999) in the first exon of the ift57 gene.  This mutant has 

been reported to form kidney cysts (Sun et al., 2004), but the retinal phenotype of ift57 

mutants has yet to be fully characterized.  Zebrafish oval mutants carry an ENU induced 

point mutation in the ift88 gene that introduces a premature stop codon, thereby 

eliminating function (Tsujikawa and Malicki, 2004).    
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Fig. 12.  Morpholinos phenocopy ift57and ift88 mutant zebrafish.  (A) Wild type (top) 

and ift57 mutant larvae (bottom) at 4 dpf.  (B) Wild type (top) and ift88 mutant larva 

(bottom) at 4 dpf.  (C-D)  Uninjected control (top) and zebrafish larva injected with a 

splice-blocking morpholino (MO) against ift57 (bottom) or a translation blocking 

morpholino against ift88 (D – bottom).  Bar = 200µm 



 58

At 4 days post fertilization, both ift57 and ift88 mutants exhibited a ventral body 

curvature, had slightly smaller eyes, and developed kidney cysts (Fig. 12).  To  

confirm that the retroviral insertion in ift57 causes the observed phenotype, we injected 

splice site-directed morpholino oligonucleotides into wild type embryos.  Injection of 

gene-specific morpholinos phenocopied the morphological and kidney phenotypes of 

both ift57 and ift88 mutants (Fig. 12).  These results show that the general phenotype of 

both mutants is highly similar and suggest that the ift57 mutation represents a functional 

null allele. 

To compare the retinal anatomy of ift57 and ift88 mutants, we analyzed 

histological sections of 4 dpf animals by light microscopy.  Retinal lamination and 

normal cellular differentiation was unaffected in ift57 and ift88 mutants at 4 dpf (Fig. 

13A-C).  Both ift57 and ift88 mutants exhibited holes within the photoreceptor layer, 

which is indicative of cell death, while other cell types within the retina were unaffected.  

Cell death specifically within the outer nuclear layer indicated that photoreceptors are 

the only cell type within the retina whose survival was affected by the loss of IFT 

proteins.  Consistent with previous findings (Doerre and Malicki, 2002; Tsujikawa and 

Malicki, 2004), higher magnification images (Fig. 13D-F) revealed no photoreceptor 

outer segments in ift88 mutants.  In contrast, ift57 mutant photoreceptors retained short 

outer segments in both the periphery and central regions of the retina.  Morpholino-

injected animals (morphants) were phenotypically identical to the mutants at 4 dpf (Fig. 

13E-F compared with H-I).  To test if the ift57 mutant phenotype reflected a 

hypomorphic mutation, we performed western blots on lysates of 4 dpf ift57 mutant  
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Fig. 13.  Histology of 4 dpf wild type and IFT mutant retinas.  (A) The outer nuclear 

layer (ONL), inner nuclear layer (INL) and retinal ganglion cells (RGC) are present in 

wild type and the outer plexiform layer (OPL), and inner plexiform layer (IPL) are easily 

observable. (B,C)  In both ift57 and ift88 mutants acellular holes (arrows) in the ONL are 

observed.  (D) Wild type retinas have photoreceptor outer segments (arrowhead),  (E,F) 

but ift88 mutants  do not, while ift57 mutants have short outer segments (arrowhead). 

(G) Western blot analysis of ift57 mutants at 4dpf.  No Ift57 protein is observed in ift57 

mutants (upper blot lane 2).  Lower blot shows loading control.  (H, I) Histological 

analysis of ift57 and ift88 morphants phenocopy the ift57 and ift88 mutations, 

respectively.   Scale bar: 100µm in (A-C), 20µm in (D-F, H,I). 
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embryos with a polyclonal antibody against the C-terminus of zebrafish Ift57 (See 

materials and methods).  We did not detect any Ift57 protein in mutant lysates (Fig 13G), 

and concluded that the hi3417 allele caused a null mutation in the ift57 gene.  These 

results demonstrate phenotypic differences resulting from mutations in two different IFT 

complex B proteins. 

As ift57 mutants produced outer segments, we hypothesized that components of 

the phototransduction cascade would be transported to the outer segments.  

Immunohistochemical analysis with an antibody against rhodopsin, 1D1, and an 

antibody against blue cone opsin revealed both rhodopsin and blue cone opsin were 

present within the outer segments of ift57 mutant rods and blue cones, respectively (Fig. 

14A-F).   Opsin mislocalized to the inner segment in ift57 mutant photoreceptors, 

although transport to the outer segments did occur (Fig. 14B,E).  Both rhodopsin and 

blue opsin were completely mislocalized throughout the plasma membrane of ift88 

mutant photoreceptors (Fig. 14C, F).  These data indicate that transport to the outer 

segment via IFT was disrupted but not abolished in the absence of Ift57 but did not occur 

in the absence of Ift88.  To address the question of whether ift57 mutants generated 

connecting cilia, we stained retinal sections with anti-acetylated tubulin (Fig. 14J-L).  

Consistent with the observation that outer segment formation and opsin transport occurs 

in ift57 mutants, we found cilia projecting apically from the inner segment of wild type 

and ift57 mutants.  Ciliary projections were not observed in ift88 mutants.  However, 

when stained with ZPR1, a marker for red-green double cone  
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Fig. 14.  Immunohistochemical analysis of wild type and IFT mutants.  Retinal 

cryosections of 4 dpf larvae were stained for rhodopsin (1D1), blue cone opsin (BOPS), 

ZPR1, which labels cones and acetylated tubulin to label cilia. In all panels, 

immunolabel is shown in green and nuclei are counterstained with DAPI (blue).  (A-F) 

White arrowhead indicates outer segment, red arrow indicate mislocalized opsin, white 

arrow indicates pyknotic nuclei, red arrowhead indicates opsin mislocalized around basal 

body.  (G-I) ZPR1 labeling indicates red-green double cone morphology at 4 dpf. (J-L)  

Anti-acetylated tubulin labels the  connecting cilia (arrowheads).  Bar = 10µm 
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morphology, we found that ift57 and ift88 mutant photoreceptor morphology was 

abnormal (Fig. 14G-I). 

As mislocalization of opsin can cause photoreceptor degeneration, and defects in 

opsin transport are associated with disorganized outer segments (Pazour et al., 2002a), 

we used transmission electron microscopy (TEM) to examine the photoreceptor 

morphology of 4 dpf ift57 and ift88 mutants (Fig. 15A-C).  Wild type photoreceptors had 

elongated outer segments, while ift88 mutants exhibited no photoreceptor outer 

segments.  In contrast, both rod and cone outer segments were seen in ift57 mutants.  

Consistent with results from immunohistochemistry, basal bodies and connecting cilia 

were observed in ift57 mutant photoreceptors.  We observed vesicle membranes 

accumulating near the connecting cilium in ift57 mutants.  These vesicles were similar to 

those seen in photoreceptors expressing a dominant-negative Rab8, which disrupted 

transport of vesicular cargo through the connecting cilium (Moritz et al., 2001).  These 

membranes were likely post-Golgi vesicles that reflect inefficient protein transport 

through the outer segment, which is consistent with results of opsin mislocalization in 

the inner segment.  Although the outer segments were shorter and ciliary transport was 

affected, the disk membranes remained well ordered and tightly stacked in the ift57 

mutants.  Upon quantification, ift57 mutants were found to have photoreceptor outer 

segments that were reduced in length by 75% compared to wild type photoreceptors 

(Fig. 16A).  To quantify how the loss of Ift57 and Ift88 affected rhodopsin transport, we 

performed immunogold analysis on ift57 and ift88 mutants using the anti-rhodopsin 

antibody 1D1 (Fig. 15F-H).  Although the rhodopsin immunogold label localized 
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Fig. 15.  Transmission electron microscopy of 4 dpf wild type and IFT mutant retinas.  

(A-C) Low magnification micrographs of retinas illustrate the outer segment (OS), inner 

segment (IS) and nucleus (N).  (D, E)  High magnification micrographs of wild type and 

ift57 mutant retinas.  ift57 mutants have accumulated vesicles (black arrowheads).  An 

asterisk denotes centrioles.  (F-H) Immunogold labeling of rhodopsin, outer segments 

are outlined by broken line and insets are magnified views of the boxed area in each 

panel, which illustrate gold particle density.  Bar = 2µm (A-C), 200nm (D, E), 0.75 µm 

(F), 1µm (G,H). 



 64

primarily to the rod outer segments in ift57 mutants (Fig. 15G), gold particle density was 

reduced by 59% when compared to age-matched wild type controls (Fig. 16B).  In ift88 

mutants, gold-labeled rhodopsin localized predominantly to the apical part of the inner 

segment but was also distributed in the plasma membrane (Fig. 15H), indicating that 

vesicular trafficking from the Golgi to the apical surface is unaffected by loss of Ift88.  

These data demonstrate that outer segment formation and opsin transport requires Ift88, 

whereas IFT can function at reduced efficiency without Ift57. 

Biochemical studies have shown that Ift57 directly interacts with Ift20 and that 

Ift20 directly interacts with the Kif3B subunit of kinesin II (Baker et al., 2003).  Baker 

and colleagues (2003) proposed a model wherein Ift57 recruits Ift20 to the IFT particle 

and Ift20 serves as the link between kinesin II and the IFT particle. To investigate the 

nature of the Ift57-Ift20 interaction in vivo, we analyzed the localization of Ift20 in Ift57 

mutant photoreceptors.  In immunohistochemical analysis, the polyclonal antibodies we 

generated against Ift20 failed to label with sufficient specificity for conclusive results.  

We therefore injected 1-cell embryos with a plasmid containing an Ift20-GFP fusion 

protein under the control of a Xenopus laevis rhodopsin promoter to transiently express 

Ift20-GFP in a subset of zebrafish rod photoreceptors.  In transgenic rods of 4 dpf wild 

type embryos, Ift20-GFP was observed at the base of the connecting cilium, as 

demonstrated by colocalization with anti-acetylated tubulin (Fig. 17A).  Ift20-GFP also 

localized to the base of the cilium in ift57 mutant rods, indicating that ciliary localization 

of Ift20 does not require Ift57 (Fig. 17B).  Consistent with recent reports that Ift20 also 

localized to the Golgi apparatus (Follit et al., 2006b), we observed that Ift20-GFP 



 65

  

Fig. 16.  Quantification of outer segment length and rhodopsin staining density within 

the outer segments of wild type and ift57 mutants.  (A) ift57 mutant photoreceptor outer 

segments are reduced in length by 75% when compared to age-matched wild type 

photoreceptors.  Data was taken from retinas of four animals for both wild type and IFT 

mutants. (B) Photoreceptor outer segments in ift57 mutants contain 59% less rhodopsin.  

Staining density was determined by counting colloidal gold particles in a random 

0.25µm2 region of rod outer segments with each data point obtained from a unique outer 

segment.  Data was obtained from retinas of four animals for both wild-type and Ift57 

mutants.  (A) P<0.01, (B) P<0.0001, as determined by a Students t-test. 
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fluorescence colocalized with antibodies against syntaxin-6,  a marker for the trans-

Golgi network, in both wild type and ift57 mutants (Fig. 17C-D).  As mutation of ift88 

completely abolishes IFT and our ift57 mutant exhibits some functional IFT, we 

predicted that loss of Ift57 would not affect the localization of Ift88 to the connecting 

cilium.  When we immunolabeled ift57 mutant retinal sections with an anti-Ift88 

antibody, we observed Ift88 staining that colocalized with acetylated tubulin.  The 

pattern of localization of Ift88 also indicated that Ift88 was present within the connecting 

cilium itself, consistent with our assertion that ift57 mutants retain some functional IFT.  

Taken together, these results indicate that Ift57 is not required for the normal localization 

of Ift20 or Ift88 to the base of the connecting cilium. 

We next analyzed the composition of the IFT particle in ift57 mutants in order to 

understand how the process of IFT could occur in the absence of the Ift57 protein.  We 

first performed western blotting experiments on wild-type and ift57 mutant larval lysates 

(Fig. 18A).  Protein blots probed with antibodies against Kif3A, Ift88, Ift52 and Ift20 

showed that IFT protein levels were present at levels that would likely be sufficient for 

biological activity.  As shown previously, we did not detect measurable levels of Ift57 

protein in mutant lysates.  These results suggested that loss of Ift57 did not significantly 

alter the expression of other IFT components.  We next performed co-

immunoprecipitation experiments on 4 dpf wild type and ift57 mutant lysates.  Briefly, 4 

dpf zebrafish larvae were homogenized and IFT proteins co-immunoprecipitated using a 

polyclonal antibody against zebrafish Ift88 (Fig. 18B).  We found that Ift52, Ift20 and the 

Kif3A subunit of kinesin II could be co-precipitated from wild-type zebrafish lysates.   
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Fig. 17.  Ift20-GFP localization in wild type and ift57 mutant photoreceptors.  (A,B) 

Arrow points to the connecting cilia in a neighboring cell that does not express the Ift20-

GFP transgene.  (C-D)  In the presence or absence of Ift57, Ift20-GFP localized to the 

Golgi apparatus where it colocalizes with syntaxin-6 (arrowhead).  (E) Ift88 localizes to 

the base of the connecting cilium (arrowhead) in wild type and Ift57 mutant 

photorecptors (F).  AT = acetylated tubulin.  Syn-6 = syntaxin-6  Bar = 10µm  

(A,B,E,F);  40 µm (C, D).
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When these experiments were performed on ift57 mutant lysates, we found that Kif3A 

and Ift52 co-precipitated, but Ift20 did not.  We were surprised to find that Kif3A also co-

precipitated in the absence of Ift20, indicating that kinesin II can interact with the IFT 

particle independent of Ift20.  When we performed the co-immunoprecipitation 

experiments on ift57 mutant lysates, we noticed that significantly more Kif3A was 

present in our precipitates from ift57 mutant lysates than from wild type lysates.  Given 

that the process of IFT is defective in ift57 mutants, but still occurs, we hypothesized 

that kinesin fails to dissociate from the IFT particle in the absence of Ift57.  The 

interaction between kinesin II and the IFT particle is salt-sensitive and ATP-dependent, 

such that addition of 1 mM ATP to lysates blocks precipitation of kinesin II with the IFT 

particle (Baker et al., 2003).  Consistent with these results, we found that kinesin II did 

not co-precipitate from wild type lysates in the presence of 1 mM ATP (Fig. 18C).  

When ift57 mutant lysates were incubated with 1 mM ATP, however, the association 

between kinesin II and the IFT particle is maintained (Fig. 18C).  However, if protein 

lysates were incubated with 10 mM ATP, the association between kinesin II and the IFT 

particle is lost in both wild type and ift57 mutants (Fig. 18D).  These data show that the 

ATP-dependent dissociation of kinesin II from the IFT particle is impaired, and suggest 

a role for Ift57 and Ift20 in mediating motor dissociation from the IFT particle. 
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Fig. 18.  Biochemical analysis of ift57 mutants.  (A) Western blot of lysates generated 

from the larval heads of 4dpf wild type and ift57 mutants.  Mutation of ift57 does not 

significantly alter the abundance of any other IFT protein other than Ift57.  (B) Lysates 

of wild type (+/+) or ift57 mutants (IFT57-/-) were incubated with rabbit antibodies 

against zebrafish Ift88 or normal rabbit IGG as a negative control.  Immunoprecipitates 

were subsequently blotted with antibodies against Kif3A, Ift52 and Ift20.  In ift57 

mutants, Ift20 is not precipitated along with the IFT complex, while more Kif3A is 

precipitated.  (C) The addition of 1mM ATP to lysates blocks the association of Kif3A 

with the IFT particle in wild-type lysates but not ift57 lysates.  Lysates were prepared as 

described above, and then ATP was added to a final concentration of 1 mM prior to the 

addition of Ift88 antibody and precipitation.  (D) The addition of 10mM ATP blocks the 

association of Kif3A with the IFT particle in both wild-type and mutant lysates.  Asterisk 

indicates IGG heavy chain band from precipitating antibody on immunoblots. 
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 DISCUSSION 

In this study we investigated and compared the roles of Ift57 and Ift88 in 

vertebrate photoreceptor development.  Unlike the mouse Tg737orpk allele of ift88, which 

forms outer segments, the zebrafish ift57 mutant phenotype is not the result of a 

hypomorphic allele.  Although a genome duplication occurred during the evolution of 

the lineage leading to zebrafish, only about 30% of these genes were retained 

(Postlethwait et al., 2000).  ift57 paralogs have not been identified in the zebrafish  

genome databases that might compensate for its function and generate a hypomorphic 

phenotype (Sun et al., 2004), and this study).  Our western blotting analysis of ift57 

mutants also excludes maternal contribution of protein or mRNA as an explanation for 

the ciliary phenotype of ift57 mutants at 4 dpf.  Even if an undetectable amount of Ift57 

protein exists in ift57 mutants, the stoichiometric composition of the IFT particle would 

be perturbed, likely resulting in a null phenotype.  Taken together, these results 

demonstrate that the loss of Ift57 and Ift88 can produce distinct phenotypes that reflect 

functional roles for these proteins within the IFT complex, as discussed below.   

Many studies of loss-of-function phenotypes in vertebrate IFT genes focus 

attention on phenotypic similarities and rarely emphasize differences, which implies that 

all IFT mutant phenotypes should be identical.  Mutations in the mouse Ift52, -57, -88 

and -172 orthologs all lead to identical defects in cilia formation, sonic hedgehog 

signaling and motor neuron differentiation (Houde et al., 2006; Huangfu et al., 2003; Liu 

et al., 2005).  A mouse knockout of ift57 reported loss of nodal cilia, however their 

analysis does not exclude the possibility of cilia formation and subsequent degeneration 
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(Houde et al., 2006).  Morpholinos that disrupt zebrafish ift88 and ift57 gene expression 

produce similar defects in left-right asymmetry, kidney function and cilia motility, 

although subtle differences in cilia length and phenotypic outcomes were mentioned but 

not elaborated (Bisgrove et al., 2005; Kramer-Zucker et al., 2005).  In zebrafish, a 

retroviral insertion mutation in the complex B gene ift81 did not affect photoreceptor 

development (Gross et al., 2005) but did cause kidney cysts (Sun et al., 2004), while 

morpholino knockdown of a complex A protein, ift140, did not affect photoreceptor 

survival (Tsujikawa and Malicki, 2004).  Our results provide the first in vivo 

comparative study of photoreceptor structure and function in two null IFT mutants and 

demonstrate that mutations in ift57 and ift88 affect different aspects of photoreceptor 

development. 

Our data also indicate that ciliary transport and outer segment morphogenesis 

requires Ift88, whereas Ift57 is required for effective transport and outer segment 

maintenance.  Transport is also eliminated in ift88 mutants of Chlamydomonas, mice and 

worms (Haycraft et al., 2001; Pazour et al., 2000; Qin et al., 2001).  In contrast, the 

presence of connecting cilia and opsin labeling of outer segment structures indicate 

ciliary transport does occur in ift57 mutants.  It is important to note, however, that 

transport remains compromised in ift57 mutants, as indicated by opsin mislocalization to 

the inner segment, vesicle accumulation at the base of the cilium, and an overall 

reduction in outer segment length.   
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Fig. 19.  Ift57 and Ift20 mediate the ATP-dependent dissociation of kinesin.  (A) A 

model describing the nature of protein interactions within the IFT complex.  Ift57 tethers 

Ift20 to the IFT particle, while kinesin binds to the IFT particle through an unknown 

entity.  Ift20 physically interacts with Kif3B and mediates the ATP-dependent 

dissociation of kinesin.  (B) In the absence of Ift57, Ift20 can no longer associate with 

the IFT particle.  However, kinesin’s interaction with the IFT particle is stabilized by 

loss of Ift57 and Ift20 from the IFT particle.   
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A previous analysis of a mutation in CHE-13, the C. elegans orthologue of ift57, 

noted that the CHE-13 phenotype was identical to that of a previously characterized ift88 

mutation (Haycraft et al., 2003).  Our analysis, however, indicates that mutation of these 

two genes results in different outcomes.  This may be due to inherent differences in the 

mechanism of IFT between these two systems.  Also, the authors did not exclude the 

possibility of formation of these structures and subsequent degeneration, which is what 

we observed in our study.  Although transport is compromised, disk stacking in ift57 

mutant outer segments was unaffected.  Opsin is believed to play an important role in the 

formation and stabilization of disk membranes within the outer segment (Nathans, 

1992).  Studies of rhodopsin heterozygous knockout mice found that reducing opsin by 

approximately 50% causes disorganization of outer segments and disk stacking, with 

some abnormally oriented membranes and a complete loss of outer segments in 

homozygous rhodopsin knockout mice (Humphries et al., 1997; Lem et al., 1999).  

Rhodopsin levels were reduced by almost 60% in ift57 mutant photoreceptors yet no 

such disorganization of the outer segment was observed.  One explanation is that opsin 

mislocalization kills the photoreceptor before outer segment disorganization occurs.  

Alternatively, zebrafish outer segments may require less opsin for disk membrane 

organization and outer segment integrity than do mammalian systems. 

Our phenotypic and biochemical analyses of ift57 mutants support a model for 

protein interactions within the IFT particle that facilitate ciliary transport and 

anterograde motor dissociation.  We show that Ift20 does not bind the IFT particle in the 

absence of Ift57, indicating that Ift57 mediates the interaction between Ift20 and the 
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particle.  Additionally, kinesin II co-precipitates with the IFT particle in ift57 mutant 

lysates.  These results indicate that the previously described Ift20-kinesin II interaction 

(Baker et al., 2003) is not the primary link between kinesin II with the IFT particle.  We 

suggest that kinesin II binds to the IFT particle through an interaction with an 

unidentified IFT protein.  Finally, we have shown that the ATP-dependent dissociation 

of kinesin II from the IFT particle is inhibited by loss of Ift57.  Consistent with this, we 

also observe a greater quantity of Kif3A in Ift57 mutant precipitates than in wild type 

precipitates.  It is important to note, however that kinesin II has the ability to dissociate 

from the IFT particle in Ift57 mutants, as addition of super-physiological levels of ATP 

(10 mM) can cause dissociation of kinesin II. 

We propose that Ift57 mediates the interaction between Ift20 and the IFT particle, 

while an undefined IFT protein or adaptor protein serves as the primary bridge between 

kinesin II and the IFT particle (Fig. 19).  Our data indicate this bridge must be 

independent of both Ift57 and Ift20.  Additionally, we propose that Ift57 and/or Ift20 

mediates dissociation of heterotrimeric kinesin II from the IFT particle, potentially by 

enhancing the ATPase activity of Kif3B.  As Ift20 is the only IFT protein known to 

interact with kinesin II, loss of Ift20 from the IFT particle is the likely explanation for 

the observed kinesin II dissociation defect.  However, we cannot rule out a direct role for 

Ift57 in this process, though yeast 2-hybrid analysis showed no interaction between Ift57 

and any of the kinesin II subunits (Baker et al., 2003).  Others have shown that the ATP-

mediated dissociation of kinesin II from the IFT particle is independent from the ATP-

dependent dissociation of kinesin II from microtubules, illustrating that our data reflect a 
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novel mechanism for motor dissociation and are not a result of impaired microtubule 

association.  According to our model neither the assembly of the IFT particle nor the 

recruitment of kinesin II requires Ift57. 

Knockdown of ift20 has been shown to abolish cilia in cultured mammalian cells, 

indicating that Ift20 is essential for IFT.  Our data indicate that Ift20 is not essential for 

IFT but does play a vital role in effective transport.  The more severe phenotype 

described in cultured cells may reflect additional roles of Ift20 in post-Golgi to cilium 

trafficking of proteins.  Consistent with this, Follit et al. (2006) observe a reduction in 

the amount of polycystin-2 that is trafficked to the cilium.  As we show that loss of Ift57 

abolishes the interaction between Ift20 and the IFT particle, we are able to separate the 

Golgi and ciliary functions of Ift20 and demonstrate its role within the IFT particle and 

that Ift20 is necessary only for efficient IFT.   

In conclusion, we have provided novel details about IFT function in vertebrate 

photoreceptors that likely have broader implications for IFT function in a wide variety of 

tissues.  First, we have demonstrated that Ift57 is not absolutely required for ciliogenesis 

and transport in photoreceptors but is required for ciliary elongation (e.g. outer segment 

growth) and the long-term maintenance of photoreceptor survival.   Combined with 

previous results demonstrating that loss of Ift81 or Ift140 does not affect photoreceptor 

development, it is likely that most, but not all, IFT proteins are required for ciliogenesis 

in all vertebrate tissues and the composition of the IFT particle varies from tissue to 

tissue.  Second, we have provided evidence that presents novel insights into how Ift20 

associates with the IFT particle, and the mechanism by which kinesin II dissociates from 
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the IFT particle.  These data illustrate how proper dissociation of kinesin II is necessary 

for efficient IFT and show the functional nature of two previously described interactions 

within the IFT particle.  Additional biochemical studies are necessary to elucidate which 

IFT subunit(s) mediate the particle’s interaction with kinesin II, the mechanism by which 

the IFT particle assembles and the mechanisms that mediate kinesin II dissociation from 

the IFT particle.  Finally, the structure and function of cilia varies with different tissues 

and the composition of the IFT particle may reflect this diversity.  Identification of IFT 

genes required for photoreceptor development may help predict whether mutations in 

specific IFT genes will lead to retinal disease. 

MATERIALS AND METHODS 

Zebrafish Care and Maintenance 

The oval allele is an ENU induced point mutation that caused a T-A transition, 

resulting in a premature stop codon in exon 11 and a null mutation in the ift88 gene.  The 

ift88 mutant line was a gift from Jarema Malicki (Doerre and Malicki, 2002) and the 

ift57 mutation was previously described (Gross et al., 2005).  Zebrafish were maintained 

according to standard procedures (Westerfield, 1995).   

Morpholino Knockdown  

Morpholino knockdown of ift57 was carried out using morpholinos directed 

against the splice site, sequence 5’ GTTATCGCCTCACCAGGGTTCGAAG 3’.  A 

morpholino designed against the 5’UTR of ift88, sequence 5’ 

TTATTAAACAGAAATACTCCCA 3’ was used to knock down ift88 gene expression.  



 77

Both morpholinos used have been described previously (Tsujikawa and Malicki, 2004) 

and were synthesized by Gene Tools, LLC.   

Transient Expression of Ift20-GFP 

An Ift20-GFP fusion construct driven by the zebrafish opsin promoter was 

obtained from Dr. Joe Besharse (Medical College of Wisconsin).  Transgenic 

photoreceptors were generated as described (Perkins et al., 2002) and analyzed by 

immunohistochemistry as described below. 

Histology: Light Microscopy and Transmission Electron Microscopy (TEM) 

Embryos were processed for light microscopy and TEM histology as previously 

described (Schmitt and Dowling, 1999). Histological sections were stained with a 

solution of 1% azure blue, 1% methylene blue and 1% sodium borate (Electron 

Microscopy Sciences).  For immunogold labeling, staged embryos were fixed in 4% 

paraformaldehyde, 0.5% glutaraldehyde and 1% tannic acid in 0.1M sodium cacodylate 

buffer (pH 7.4) overnight at 4°C.  Embryos were washed in 0.15M sodium cacodylate 

buffer at 4°C and dehydrated in a graded ethanol series with 1% p-phenylenediamine.  

Specimens were embedded in LR-White resin (Electron Microscopy Sciences) and 

polymerized overnight at 55°C.  For immunolocalization, incubations were done in a 

PELCO Biowave (Ted Pella Inc) at low wattage, at 30°C.  Grids were incubated in 

blocking solution (PBST + 4% cold water fish gelatin), then in primary antibody (1D1 

1:50) diluted in blocking solution.  Grids were washed with PBS then incubated in 

secondary antibody, donkey anti-mouse 18nm colloidal gold (Jackson Immuno Research 

1:30) diluted in TBST (TBST+2% normal donkey serum +4% coldwater fish gelatin).  
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Grids were washed with TBS and then fixed with 1% glutaraldehyde and post stained 

with 2% uranyl acetate.  Photographs were obtained on a JEOL 1200EX transmission 

electron microscope and images processed using Adobe Photoshop. 

Antibody Production 

Rabbit polyclonal antibodies were generated against synthetic peptides 

corresponding to the C-terminus of Ift88, Ift57, Ift52 and Ift20.  The antigens were 

LEFADGELGDDLLPE, CMHATHLLEPNAQAY, CKKLNEEHDVDTAEARFSMY 

and CEAEQSEFIDQFILQK, respectively.  The Ift88, Ift57 and Ift20 antibodies were 

generated and affinity purified by Bethyl Labs, while the Ift52 antibody was generated 

and affinity purified by Open Biosystems.   

Immunohistochemistry 

Immunohistochemistry was performed as previously described (Perkins et al., 

2005).  Images were obtained on an Olympus FV1000 confocal microscope or a Zeiss 

ImagerZ1 fluorescence microscope fitted with an ApoTome.  Images were prepared 

using Adobe Photoshop software.  The following list of primary antibodies were used, 

followed by the dilution used: 1D1 (1:200)(Fadool, 1999), cone opsin antibodies 

(1:200)(Vihtelic et al., 1999), ZPR1 (Zebrafish International Resource Center 1:200), 

anti-acetylated tubulin (Sigma 1:500), anti-syntaxin6 (BD Bioscience 1:200) anti-Ift88 

(1:5000).  The appropriate fluorescently conjugated antibodies (Jackson Immunological) 

were used at 1:500 dilutions.  Slides were counterstained with DAPI (Invitrogen) to label 

DNA. 
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Immunoprecipitation 

4 dpf wild-type and ift57 mutants were collected and homogenized using 200-

250 larvae per reaction in IP lysis buffer (PBS + 1% Triton + 5mM EDTA) 

supplemented with a cocktail of  protease inhibitors (Complete-mini EDTA Free, 

Roche).  Samples were lightly sonicated and lysates subsequently clarified by 

centrifugation at 13,200 RPM at 4°C for 15 minutes.  Lysates were then precleared with 

ExactaCruz F preclearing matrix (Santa Cruz Biotechnology) according to 

manufacturer’s instructions.  Polyclonal rabbit anti-Ift88 antibody was bound to 

ExactaCruz F IP matrix per instructions.  An equivalent amount of normal rabbit IGG 

(Santa Cruz Biologicals) was bound to ExactaCruz F IP matrix as a negative control.  

Lysates were then pooled and normalized for total protein concentration before 

incubation overnight at 4°C with antibody-IP matrix on a rocking platform.  The IP 

matrix was pelleted by low speed centrifugation and washed 2X with cold PBS and then 

5X with cold IP lysis buffer.  Samples were eluted from IP matrix by boiling 5 minutes 

in 45µl of 2X laemmli buffer and then 20µl loaded on an SDS-PAGE gel for analysis.  

For ATP experiments, prior to addition of antibody-IP matrix to the lysates, ATP 

(Roche) was added to achieve either 1 or 10mM final concentration.  The lysates were 

incubated with ATP at 4C for 1h prior to the addition of antibody-IP matrix to the 

lysates. 

SDS-PAGE and Immunoblot Analysis 

4 dpf zebrafish heads were homogenized in IP lysis buffer at a volume of 3µl per 

head, then lightly sonicated.  4x SDS sample buffer was added to the lysate and the 
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samples were then boiled for 5min. prior to centrifugation at 13,200 rpm for 10min and 

subsequent loading on a 10% PAGE gel.  Following electrophoresis, proteins were 

blotted onto PVDF membranes (Bio-Rad) and subjected to immunodetection using 

standard protocols.  The following dilutions of primary antibodies were used:  K2.4 

(mouse anti-Kif3A, Covance 1:10,000), Rabbit anti-Ift88 (1:5000), Rabbit anti-Ift52 

(1:5000), Rabbit anti-Ift20 (1:5000), Rabbit anti Ift57 (1:5000), mouse anti-acetylated 

tubulin (Sigma, 1:10,000).   
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CHAPTER IV 

RETROGRADE INTRAFLAGELLAR TRANSPORT BY CYTOPLASMIC 

DYNEIN-2 IS REQUIRED FOR OUTER SEGMENT EXTENSION IN 

VERTEBRATE PHOTORECEPTORS BUT NOT ARRESTIN 

TRANSLOCATION 

OVERVIEW 

 This chapter assesses the role of retrograde intraflagellar transport in vertebrate 

photoreceptor cell biology and physiology.  It reflects a collaboration with John 

Dowling’s Lab in the Department of Molecular and Cellular Biology at Harvard 

University, as Ishara Mills-Henry performed the electroretinograms in this study. 

SUMMARY 

Anterograde Intraflagellar Transport (IFT) is essential for photoreceptor outer 

segment formation and maintenance, as well as for the proper intracellular trafficking of 

opsins.  However, the role of retrograde IFT in vertebrate photoreceptors remains 

unclear.  Some proteins in photoreceptors, such as arrestin, move in a retrograde 

direction through the photoreceptor cilium, and retrograde IFT is a candidate to mediate 

this process.  The purpose of this study was to evaluate the cell biology and physiology 

of photoreceptor lacking the retrograde IFT motor, cytoplasmic dynein-2.  We utilized 

morpholino oligonucleotides against the heavy chain (dync2-h1), light intermediate 

chain (dync2-li1) and intermediate chain (dync2-i1) subunits of cytoplasmic dynein-2 to 

compromise retrograde IFT function in larval zebrafish.  These zebrafish morphants 

were subjected to  immunohistochemical and ultrastructural analyses to determine the 
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effects of cytoplasmic dynein-2 dysfunction on photoreceptors and other ciliated cells.  

Additionally, whole field electroretinograms (ERGs) were performed on 5 and 6 dpf 

dynein morphants in order to assess the effect of cytoplasmic dynein-2 dysfunction of 

retinal electrophysiology.  Analyses of zebrafish lacking cytoplasmic dynein-2 function 

revealed morphants had small eyes, kidney cysts, and short photoreceptor outer 

segments, some of which were disorganized and accumulated vesicles.  Morphant 

photoreceptor connecting cilia were swollen, but neither opsin nor arrestin was 

mislocalized, while IFT88 accumulated in the distal region of the connecting cilium.  

Nasal cilia were severely shortened and displayed cytoplasmic swelling along the 

axoneme.  Our ERG analysis revealed electrophysiology is affected by cytoplasmic 

dynein-2 dysfunction.  This study shows that retrograde IFT is essential for outer 

segment extension, organization and IFT protein recycling in vertebrate photoreceptors.  

We show for the first time that the dync2-i1 subunit of cytoplasmic dynein-2 is 

necessary for retrograde IFT.  Additionally, the retrograde movement of visual arrestin is 

not mediated by retrograde IFT.  Finally, our ERG results suggest cytoplasmic dynein-2 

may play a previously unappreciated role in retinal electrophysiology. 

INTRODUCTION 

Vertebrate photoreceptors detect light through the phototransduction cascade, 

which occurs in the outer segment.  The outer segment is a modified sensory cilium (De 

Robertis, 1960), and as all other cilia, lacks the cellular machinery for protein synthesis.  

Thus, all of the protein components used in phototransduction and that make up the outer 

segment, such as opsins, must pass through the narrow connecting cilium.  Failure to 
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transport opsins efficiently to the outer segment leads to photoreceptor degeneration and 

death (Grimm et al., 2000; Portera-Cailliau et al., 1994), as opsins play an important 

structural role in the outer segment (Lem et al., 1999).  Thus, the effective transport of 

proteins through the connecting cilium is critical to both the function and survival of 

photoreceptors. 

The process of intraflagellar transport (IFT) is the mechanism by which some 

proteins move through the connecting cilium to the outer segment (Marszalek et al., 

2000; Pazour et al., 2002a).  Studies of zebrafish IFT mutants have shown that the initial 

stages of outer segment formation require IFT and that IFT is also necessary for outer 

segment maintenance (Krock and Perkins, 2008; Sukumaran and Perkins, 2009b; 

Tsujikawa and Malicki, 2004).  Similarly, loss of IFT function causes mislocalization of 

opsins, a phenotype that is accompanied by photoreceptor cell death.  These studies, 

along with similar studies in mouse (Marszalek et al., 2000; Pazour et al., 2002a), 

reinforce the premise that the outer segment is, in fact, a modified cilium (Marszalek et 

al., 2000).  As several diseases affecting cilia and ciliary trafficking, such as Jeune 

asphyxiating thoracic dystrophy (JATD) and Bardet-Biedl Syndrome (BBS), result in 

blindness and retinal degeneration, understanding the process of IFT in the context of 

vertebrate photoreceptors is of great importance.    

In photoreceptor cell biology, anterograde IFT has received the most scrutiny, 

while the role of retrograde IFT in photoreceptors remains largely unexplored.  Kinesin-

II (Kozminski et al., 1995), and OSM-3 (Snow et al., 2004) cooperate to drive 

anterograde IFT, while cytoplasmic dynein-2 (Pazour et al., 1999) mediates retrograde 
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IFT.  The retrograde IFT motor is composed of an ATP-dependent homodimeric heavy 

chain, Dync2-h1 (previously termed DHC-1b) (Pazour et al., 1999; Porter et al., 1999; 

Signor et al., 1999; Zhang et al., 1993), a cytoplasmic dynein-2 light intermediate chain, 

dync2-li1 (Hou et al., 2004; Mikami et al., 2002; Perrone et al., 2003), an intermediate 

chain, dync2-i1 (Rompolas et al., 2007), and light chain known as LC8 (Pazour et al., 

1998; Rompolas et al., 2007).  Importantly, dync2-h1  and dync2-li1 are expressed in 

bovine photoreceptors and localize to the connecting cilium (Mikami et al., 2002), 

suggesting the process of retrograde IFT occurs in photoreceptors. 

Retrograde IFT is indeed necessary in other vertebrate cilia, as mouse Dync2-h1 

and Dync2-li1 mutants have stumpy nodal cilia with swollen ciliary tips that contain 

disorganized microtubules, IFT proteins and cellular debris (May et al., 2005; Rana et 

al., 2004).  The ciliary phenotype resulting from dync2-i1 dysfunction remains unknown, 

though knockdown of the Trypanosome dync2-i1 homologue resulted in flagellar 

dysfunction (Baron et al., 2007).   So, what then, is the potential role form retrograde 

IFT in photoreceptors?   

 The established function for retrograde IFT is to recycle IFT proteins and other 

ciliary components by returning them to the basal body from the tip of the cilium 

(Pazour et al., 1999; Qin et al., 2004).  This function has not been formally tested in 

phororeceptors.  The movement of some proteins through the connecting cilium is 

indeed unidirectional, (e.g. opsins), however, is clear that some proteins move in a 

retrograde fashion, such as arrestin and transducin, reviewed in (Calvert et al., 2006)).   
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During light adaptation, arrestin moves from the photoreceptor inner segment to 

the outer segment through the connecting cilium, while transducin moves in a 

complementary fashion.  During dark adaptation, arrestin translocates back to the 

photoreceptor inner segment, while transducin moves into the outer segment (Brann and 

Cohen, 1987; Philp et al., 1987; Whelan and McGinnis, 1988).  Although most current 

models suggest arrestin and transducin translocate via passive diffusion, there remains a 

possibility that an active transport mechanism plays a role.  First, the kinetics of arrestin 

movement during light adaptation are estimated move at a rate 100-1000 times that of 

rhodopsin, suggesting an active transport mechanism would be incapable of moving 

cargoes this quickly (Calvert et al., 2006).  However, the movement of arrestin during 

dark adaptation is much slower.  This raises the possibility that anterograde and 

retrograde arrestin movement are mediated by different processes and that molecular 

motor-driven transport could account for this phenomenon.    Second, both the actin and 

microtubule cytoskeletons are required for the retrograde movements of arrestin and 

transducin, which is consistent with an active transport model (Broekhuyse et al., 1985).  

As cytoplasmic dynein-2 is a microtubule minus-end motor, and IFT is a known 

mechanism that mediates retrograde protein movement, retrograde IFT is a prime 

candidate to mediate retrograde arrestin translocation through the photoreceptor 

connecting cilium.  

In this study, we utilize antisense-morpholino oligonucleotides to abrogate 

expression of dync2-h1, dync2-li1 and dync2-i1 in order to understand the function of 

retrograde IFT in vertebrate photoreceptors.  Additionally, we describe robust light-
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dependent translocation of visual arrestin in larval zebrafish rods.  We have found that 

retrograde IFT is necessary for outer segment extension, organization, and recycling of 

IFT proteins in photoreceptors.  We provide the first functional evidence to show that the 

cytoplasmic dynein-2 intermediate chain is required for the process of retrograde IFT, 

and that retrograde IFT plays an essential role in both sensory and motile cilia.  Finally, 

we show that the electrophysiological response of dynein morphant retinas is 

compromised, suggesting a greater role for cytoplasmic dynein-2 in retinal physiology. 

RESULTS 

To identify the zebrafish dync2-h1 orthologue, we search performed a BLAST 

search of the zebrafish genome for sequences with homology to mouse Dync2-h1.   Two 

partial mRNA sequences were recovered, which represented 6.3kb of the 5’ end and 

11.4kb of the 3’ end of dync2-h1 (accession numbers XR_029028 and XR_029028.2, 

respectively), these two sequences combined yielded a predicted protein product of 4266 

amino acids, which was 69% identical to mouse Dync2-h1, but only 26% identical to 

mouse Dync1-h1 and 24.5% identical to zebrafish dync1-h1.  To verify this as the true 

zebrafish orthologue of previously described dync2-h1 genes, we performed a 

phylogenetic analysis of zebrafish dync2-h1 using the Neighbor-Joining method (Fig. 

20) and found that this zebrafish dync2-h1 sequence is most closely related to other 

vertebrate dync2-h1 genes.  Sequence data for dync2-li1 and dync2-i1, the zebrafish 

orthologue of Chlamydomonas FAP133 were identified using Ensembl. In zebrafish, 

previous studies have shown IFT genes are most highly expressed in the CNS and 
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Fig. 20.  Phylogenetic analysis of zebrafish dync2-h1.  A neighbor-joining tree was 

generated based on Clustal W  protein sequence alignments of Cr, Chlamydomonas 

reinhardtii, Ce, C. elegans, Ga, Gasterosteus aculeatus, Gg, Gallus gallus, Hs, Homo 

sapiens, Mm, Mus musculus, Ol, Orzius latipes Rn, Rattus norvegicus, and Tr, Takifugu 

rubripes dync1-h1 and dync2-h1 genes.  The bootstrap percentages (500 iterations) are 

shown at the branch points.  Note how the dync2-h1 gene identified in this study (arrow) 

lies closest to other vertebrate dync2-h1 genes. Scale bar, 0.1 substitutions/amino acid. 
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pronephros (Bisgrove et al., 2005).  As cytoplasmic dynein-2 genes have not been 

investigated previously in this system, we first wanted to assess the expression  

pattern of dync2-h1, dync2-li1 and dync2-i1 via in situ hybridization on 72 hpf zebrafish 

embryos.  Consistent with cytoplasmic dynein-2 being involved in IFT, we observed 

expression of dync2-h1, dync2-li1 and dync2-i1 most strongly in the CNS and 

pronephros (Fig. 21A-C).  Though dync2-h1 and dync2-li1 have previously been shown 

to be expressed in photoreceptors (Mikami et al., 2002), others have suggested that 

dync2-i1 is only expressed in motile cilia (Rompolas et al., 2007).  To address this 

question, we sectioned embryos following in situ hybridization and observed that dync2-

h1, dync2-li1 and dync2-i1 genes were all expressed throughout the retina, including in 

photoreceptors (Fig. 21D-F).  The identical expression patterns of dync2-h1, dync2-li1 

and dync2-i1 are consistent with these being part of the same molecular complex. 

In order to disrupt retrograde IFT, we injected antisense morpholino 

oligonucleotides against the dync2-h1, dync2-li1 and dync2-i1 genes into one-cell stage 

zebrafish embryos.  Zebrafish IFT mutants all exhibit a specific constellation of 

phenotypes due to ciliary dysfunction, these phenotypes include ventral curvature of the 

body axis, kidney cysts and small eyes.  Remarkably, dync2-h1  morphants look very 

similar to previously described IFT mutants, such as ift88 
oval and ift57

hippi (Kramer-

Zucker et al., 2005; Tsujikawa and Malicki, 2004).  The dync2-h1 morphants have a 

distinctive ventral curvature of the body axis, small eyes and 100% penetrance of kidney 

cysts at 4 dpf (Fig. 21F).  dync2-li1 morphants similarly exhibit small eyes and a high  
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Fig. 21.  Dynein gene expression and morphant phenotypes.  (A-C) In situ hybridization 

performed on 72 hpf zebrafish.  (D-F)  Transverse retinal sections of in situs from A-C, 

dorsal is up.  (G-I) Dynein morphant phenotypes, kidney cysts are indicated with 

arrowheads, hindbrain swelling (I, arrow) was observed for dync2-i1 morphants.  (J-L) 

Assessment of morpholino efficacy.  (J) Western blot of cellular lysates from WT and 

dync2-h1 morphants.  Red arrowhead indicates 500kDa standard.  (J’-L) RT-PCR of 

dync2-h1, dync2-li1 and dync2-i1 morphants, arrowheads indicate RT-PCR products that 

are the result of defective splicing.  (M) Table of penetrance of kidney cysts observed in 

dynein morphants at 4 dpf.  Asterisks in (D-F indicates the lens) and in (K,L) indicate 

500bp DNA standard.  Scale bar: (A-C, G-I) 200µm; (D-F) 20µm
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penetrance of kidney cysts (Fig 2H) though they do not exhibit ventral curvature of the 

body.  Knockdown dync2-i1 yielded morphants with small eyes, pronounced swelling in 

the hindbrain and kidney cysts, and a penetrance of kidney cysts similar to that of dync2-

li1 morphants (Fig. 21M).  Some dync2-i1 morphants had a ventral curvature of the body 

while others did not (Fig. 21I), and both dync2-li1 and dync2-i1 morphants were shorter 

than age-matched controls.  Importantly, knockdown experiments with non-overlapping 

morpholinos designed against each gene resulted in phenotypes identical to those just 

described, strongly suggesting that the phenotypes observed in the dynein morphants are 

specific (data not shown).  These phenotypes are consistent with ciliary defects and with 

the known function of cytoplasmic dynein-2 as the retrograde IFT motor.  Western blots 

were performed on heads of 4 dpf and 5 dpf larvae using a polyclonal antibody against 

zebrafish Dync2-h1 show it recognizes a high molecular weight band that is depleted in 

morphants at 4 and 5 dpf (Fig.  21J).  RT-PCR analysis of dync2-h1 morphants showed 

similar results (Fig. 21J’).  Due to the absence of suitable antibodies against dync2-li1 

and dync2-i1, we performed RT-PCR to assess the efficacy of our morpholinos to 

interfere with splicing.  Sequencing of  two RT-PCR products revealed that the dync2-li1 

morpholino disrupted  splicing through 5 dpf, and resulted  in either exclusion of the 70 

bp exon 4 or exclusion of both exon 4 and the 35 bp exon 3 (Fig. 21K).  Exclusion of 

exon 4  resulted in a frameshift of the downstream message and introduction of a stop 

codon, while exclusion of exons 3 and 4  produced an in-frame deletion that removed 35 

amino acids from the protein.  This 35 amino acid region is highly conserved among 

dync2-li1 sequences and likely results in a nonfunctional protein, based on the 
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phenotypic analysis.  The dync2-i1 morpholino caused production of a longer transcript 

containing frameshift mutations, which resulted from inclusion of the 71 bp intron 4.  

RT-PCR of dync2-i1 morphants revealed full knockdown at 30 hpf, and nearly complete 

knockdown at 4 and 5 dpf. (Fig. 21K,L).  Taken together, these data show  cytoplasmic 

dynein-2 activity was effectively inhibited through 5 dpf. 

As the function of cytoplasmic dynein-2 in photoreceptors is unknown, we first 

performed histology on 4 dpf morphant retinas to assess the effect of loss of cytoplasmic 

dynein-2 on retinal organization.  Similar to previously described IFT mutants, overall 

retinal organization was normal in all three dynein morphants.  However, dynein 

morphant eyes were smaller than controls (Fig. 22). We did not observe pyknotic nuclei 

or other evidence of cell death within the photoreceptor layer of dynein morphants, 

unlike  previously described IFT mutants (Krock and Perkins, 2008; Tsujikawa and 

Malicki, 2004).  As IFT plays a critical role in outer segment formation and 

maintenance, we hypothesized that retrograde transport would also be important for 

outer segment integrity.  At 4 dpf, transmission electron microscopy (TEM) revealed 

that wild-type photoreceptors have robust outer segments that extend into the retinal 

pigmented epithelium (Fig 23A-B).  In contrast, all of the dynein morphants exhibited 

very short outer segments, with some photoreceptors completely lacking these structures 

(Fig. 23C,E,G).  Higher magnification images of the photoreceptor connecting cilium 

showed that all dynein morphant connecting cilia were swollen, likely due to 

accumulation of IFT particles and cellular debris (Fig. 23D,F,H arrow).  Many dync2-li1 

morphant photoreceptors had outer segments composed of disordered membranes, some  
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Fig.  22.  Transverse histological sections through 4 dpf wild type and dynein morphant 

retinas (A-D). The wild-type zebrafish retina (A) is highly organized by 4 dpf with all 

cellular layers readily observable, including the ganglion cell layer (GCL), inner nuclear 

layer (INL), photoreceptor layer (PL) and retinal pigmented epithelium (RPE). The 

organization of dynein morphant retinas (B-D) is unaffected, though their eyes are 

smaller than wild-type.  IPL(Inner plexiform layer), OPL (outer plexiform layer), ON 

(optic nerve) Scale bar, 100µm. 



 93

of which contained large vesicles within them (Fig. 23E-F).  These structures are highly 

abnormal and were never observed in wild-type photoreceptors.  We also observed  

accumulated vesicles within the outer segments of dync2-i1 morphants (Fig. 23G,H).  

These data show that outer segment extension requires retrograde IFT and suggest that 

recycling of IFT proteins and retrograde movement of vesicular cargoes function in 

outer segment formation.   

It is well established that retrograde IFT is essential for cilium formation and 

maintenance in Chlamydomonas, C. elegans, and mouse.  If our dynein morphants lack 

retrograde IFT, we should observe defects in other ciliated tissues.   Kidney cysts 

occurred with high penetrance in dync2-h1, dync2-li1 and dync2-i1 morphants, 

suggesting that pronephric cilia in these morphants were impaired (Fig. 21M).  To test 

this directly, we performed whole-mount immunolabeling on 30 hpf zebrafish embryos 

with an antibody against acetylated tubulin, a marker for cilia.  At 30 hpf, the anterior 

zebrafish pronephros is highly ciliated, with numerous monocilia extending into the 

pronephric lumen (Fig. 24A).  dync2-h1 morphants, however, possessed few cilia  and 

the existing cilia were significantly shorter than wild type cilia (Fig. 24B).  dync2-li1 

morphants displayed cilia that were shorter that wild type, but longer than dync2-h1 

morphants (Fig. 24C).  Cilia density was lower in dync2-i1 morphants, though their 

lengths were comparable to that of wild type (Fig. 24D).  These data are consistent with 

the penetrance of kidney cysts observed at 4 dpf for all three morphants (Fig. 21M) and 

demonstrate pronephric cilia are compromised by dync2-h1, dync2-li1 and dync2-i1 

dysfunction. 
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Fig. 23.  Transmission electron microscopy of 4 dpf wild type and dynein morphant 

retinas.  (A,C,E,F) Low magnification electron micrographs of wild-type and dynein 

morphant retinas.  The wild-type retina (A) illustrates photoreceptor outer segments 

(OS), inner segments (IS), nuclei (N) and connecting cilia (black arrow).  White arrows 

in (A,C,E,F) indicate cells lacking outer segments.  dync2-li1 morphants (E) had short 

outer segments and cells with abnormal membranous structures that had large electron 

lucent vesicles in them (arrowhead).  Inset of (C) is the boxed area magnified 2.5x and 

illustrates a photoreceptor cilium that had disorganized membrane at its distal end.  The 

basal body (arrowhead) and axoneme (arrow) are evident.  (B,D,F,H) High 

magnification micrographs show connecting cilia (black arrow) and basal bodies (white 

arrowhead) and disorganized outer segment membranes with accumulated vesicles in 

them (black arrowheads) are evident in  (H) In dync2-i1 morphants electron-lucent 

vesicles (black arrowheads) are visible at the distal tip of an outer segment.  White 

arrows indicated photoreceptor membranes that are improperly oriented in (H).  Scale 

bar: (A,C,E,G) 1µm; (B,D,F,H) 500nm.   
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The canonical ciliary phenotype of disrupted retrograde IFT is swollen ciliary axonemes 

in which accumulated cytoplasm, IFT proteins and cellular debris are present (May et 

al., 2005; Pazour et al., 1999; Signor et al., 1999).  If our dynein morphants truly reflect 

a state of compromised retrograde IFT, we expected to observe the phenotype in ciliated 

cells outside the retina.  The zebrafish nasal epithelium is highly ciliated and provides a 

very accessible ciliated tissue for analysis at 4 dpf.  We performed TEM on the nasal 

epithelium of 4 dpf larvae and found robust cilia in wild-type individuals (Fig. 24E).  As 

expected, we observed very short nasal cilia with swollen axonemes in all three dynein 

morphants (Figs. 24F-H).  These data indicate that dync2-h1, dync2-li1 and dync2-i1 

morphants had compromised retrograde IFT and that retrograde IFT is essential for nasal 

cilium integrity.   

Rod and cone opsins have been shown to be mislocalized in kinesin-II, ift88 and 

ift57 mutants, implying that opsins are cargo of IFT in photoreceptors (Krock and 

Perkins, 2008; Marszalek et al., 2000; Pazour et al., 2002a; Tsujikawa and Malicki, 

2004).  Indeed, others have reported that rhodopsin co-immunoprecipitated with the IFT 

complex (Insinna and Besharse, 2008).  However, as opsins and most other known outer 

segment proteins are believed to move unidirectionally and not translocate back to the 

inner segment, it is unclear if retrograde IFT would affect opsin trafficking.  We 

performed immunohistochemistry on 4 dpf dynein morphants using antibodies directed 

against zebrafish rhodopsin and blue cone opsin.  At 4 dpf, both rod and blue cone 

opsins localized nearly exclusively to the outer segment (Fig. 25A).  We obtained similar  
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Fig. 24.  Analysis of non-photoreceptor cilia.  (A-D)  30 hpf wild-type and dynein 

morphant embryos were immunolabeled with an anti-acetylated tubulin antibody, a 

marker for cilia.  Images were collected of the anterior pronephros, anterior is to the left 

dorsal is up.  (E-H)  Electron micrographs of 4 dpf wild-type and dynein morphant nasal 

cilia, nasal cilia (arrow) and basal bodies (arrowhead) are readily observable.  Scale bar, 

(A-D) 20µm; (E-H) 500nm. 
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results with dync2-h1, dync2-li1 and dync2-i1 morphants (Figs. 25B-D), though 

occasionally we observed subtle mislocalization of opsins in these morphants.  This 

phenotype was only observed in the most severely affected photoreceptors and likely 

reflects the cells inability to make an outer segment of normal size.   

As disruption of retrograde IFT causes accumulation of IFT particles within cilia 

(Pazour et al., 1999; Pazour et al., 1998; Porter et al., 1999; Signor et al., 1999), we 

speculated that the accumulated debris we observed in photoreceptor cilia was IFT 

proteins.  To test this, we immunolabeled 4 dpf retinal sections with antibodies against 

Ift88 and acetylated tubulin.  In wild-type photoreceptors, Ift88 colocalized with 

acetylated tubulin at the connecting cilium, while acetylated tubulin staining often 

extended distally past the Ift88 staining, likely representing the photoreceptor axoneme 

that extends to the tip of the outer segment (Fig. 25E).  In the dync2-h1 morphants, 

however, IFT88 and acetylated tubulin staining often colocalized in a small sphere and 

failed to elongate in the proximal-distal axis (Fig. 25F, arrowhead).  In dync2-li1 and 

dync2-i1 morphants Ift88 labeling was biased distally relative to the connecting cilium 

(Figs. 25G-H, arrows).  This mislocalization of Ift88 is consistent with the role of 

retrograde IFT in IFT protein recycling and suggests that some of the debris observed in 

dynein morphant outer was IFT proteins.   
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Fig. 25.  Immunohistochemical analysis of 4 dpf wild type and dynein morphant 

photoreceptors.  (A-D) Immunohistochemical labeling of rhodopsin (red) and blue cone 

opsin (green) in 4 dpf wild type and dynein morphant photoreceptors, arrows indicate 

outer segment localization of opsins and arrowheads indicated subtle mislocalization of 

opsins.  (E-H)  Immunolabeling with antibodies against Ift88 (red) and acetylated tubulin 

(green), which marks the connecting cilium. Ift88 is mislocalized at the distal tip of the 

connecting cilium in morphants (arrowhead).  (E) In wild-type photoreceptors , there is 

show marked colocalization of acetylated tubulin and Ift88 (yellow), though the 

acetylated tubulin staining often extends more distally than Ift88 (arrowhead).  DAPI 

(blue) labels nuclei.  Scale bar, (A-D) 20µm; (E-H) 5µm.   
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Although cytoplasmic dynein-2 does not participate in anterograde opsin 

trafficking, studies of mammalian photoreceptors have shown that transducin and 

arrestin move in a retrograde fashion through the connecting cilium.  Zebrafish cone 

transducin does not move to the inner segment during light adaptation (Kennedy et al., 

2004), but the translocation of arrestin has not been tested in zebrafish.  To first establish 

that arrestin moves in a light-dependent manner in zebrafish rods, we performed 

immunohistochemistry on 5 dpf zebrafish larvae with a monoclonal anti-rod arrestin 

antibody (Peterson et al., 2003).  Briefly, larvae were dark adapted for three hours and 

then   fixed at regular intervals after light exposure and assayed for arrestin localization.  

We observed robust light-dependent translocation of arrestin to the rod outer segment, 

with outer segment localization of rod arresting peaking at 15 minutes of light adaptation 

(Fig. 26B).  With continued light exposure, arrestin progressively migrated back to the 

inner segment (Fig. 26C), with migration nearly complete after 60 minutes (Fig. 26D).  

This pattern of arrestin movement is similar to that previously described in Xenopus 

(Peterson et al., 2003).  In order to evaluate arrestin movement in zebrafish dynein 

morphants, 5 dpf larvae were dark adapted for three hours and then light adapted for 15 

minutes, the time at which arrestin concentrations peaked in the outer segment.     

Animals were returned to the dark to facilitate retrograde movement back to the inner 

segment and then fixed at regular intervals.  Following light adaptation of wild-type 

animals, nearly all of the arrestin translocated to the inner segment within 15 minutes of 

dark adaptation (compare Figs. 26E and 26I).  The timecourse of retrograde arrestin 

movement in dync2-h1, dync2-li1, and dync2-i1 morphant rods was identical to that of  
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Fig. 26.  Immunohistochemical analysis of arrestin translocation. (A-D) Arrestin (red) 

moves to the outer segment during light adaptation (white arrowhead), the apical part of 

the inner segment has a semicircular area of less intense staining, likely due to exclusion 

of cytoplasm by the mitochondria (green arrowhead).  Staining along the photoreceptor 

cilium (white arrow) was apparent for some rods.  DAPI (blue) labels the photoreceptor 

nuclei.  (E-L) Retrograde arrestin movement is not affected in dynein morphants.  Dark 

adapted rods (I-L) had little arrestin in outer segments (arrowheads). Rhodopsin labeling 

(green) marks the outer segments.  Scale bar, 10µm. 
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Fig. 27. Electrophysiological analysis of dynein morphants.  Electroretinograms (ERGs) 

of wild-type (wt), dync2-h1, dync2-li1, and dync2-i1 morphant 5-6 dpf larvae under 

photopic conditions. (A). ERGs at increasing light intensities (B) ERGs after incubation 

in pharmcological agents L-AP4 and TBOA to isolate the photoreceptor response, and 

increasing light intensities.  The bars indicate light on (white bar) and light off (black 

bar) in 500 ms light stimulus. 
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wild-type rods (Figs. 26E-L).  Additionally, we also observed retrograde arrestin 

movement was not affected in dynein morphants when these experiments were 

performed at 4 dpf (data not shown).  These data indicate that cytoplasmic dynein-2, and 

by extension, retrograde IFT does not play a role in retrograde arrestin movement during 

dark adaptation. 

In order to investigate the role of the retrograde IFT motor in photoreceptor 

physiology, we performed whole-field electroretinograms on 5 and 6 dpf dynein 

morphants (Fig. 27).  Wild-type larvae have an ERG response characterized by a 

hyperpolarizing a-wave, and a depolarizing b- and d-wave, which reflect the response of 

photoreceptors and on and off-bipolar cells respectively.  Dynein morphant ERGs 

exhibited decreased b- and d-wave amplitudes.  Pharmacological isolation of the a-wave 

revealed dynein morphants also displayed reduced a-wave amplitudes.  These data show 

that overall visual function of dynein morphants is significantly impaired.  

DISCUSSION 

In this study, we investigated the function of retrograde IFT in vertebrate 

photoreceptors and non-photoreceptor cilia through morpholino-mediated gene 

knockdown of three cytoplasmic dynein-2 subunits.  The phenotype of photoreceptors 

lacking cytoplasmic dynein-2 differs from those described for mutations in anterograde 

IFT components.  First, IFT88 and IFT172 mutants fail to make outer segments 

altogether (Tsujikawa and Malicki, 2004), while IFT57 mutants produce short outer 

segments (Krock and Perkins, 2008; Sukumaran and Perkins, 2009a).  Though the outer 

segments in dynein morphants appear shorter than those described for IFT57 mutants, 
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they are not accompanied by significant opsin mislocalization or cell death, as was 

observed in IFT57 mutants.  Second, the outer segments formed in IFT57 mutants had 

surprisingly normal ultrastructure, while we observed disorganized disk membranes and 

accumulated vesicles and debris in dynein morphant outer segments.   

Our analysis revealed the accumulation of vesicles within the dynein morphant 

outer segments.  We considered two possible explanations for these observations.  First, 

the vesicles we observed may indicate that some vesicular traffic is recycled to the inner 

segment.  As the outer segment sheds roughly 10% of its volume from the distal tips 

each day, it was assumed that most, if not all vesicles trafficked to the outer segment 

remained there.  The composition of these vesicles remains unclear, as we are unaware 

of any vesicles that move from the outer segment to the inner segment.  Alternatively, 

these vesicles could be the result of improper outer segment disk stacking.  

Peripherin/rds and Rom-1 play essential roles in formation of new outer segment disks, 

and mutation of these genes causes severely disorganized outer segments that are 

composed of whorls of outer segment membrane, though accumulation of vesicles 

within the outer segments was not mentioned in these studies (Bascom et al., 1995; 

Kajiwara et al., 1994; Shastry, 1994).  A FYVE domain protein SARA has recently been 

shown to play a role in fusion of rhodopsin bearing vesicles with nascent disk 

membranes.  Importantly, RNAi mediated knockdown of SARA in rat photoreceptors 

caused accumulation of vesicles within the outer segment, the only previous 

documentation of this phenotype (Chuang et al., 2007).  Additionally, SARA localizes to 

the photoreceptor axoneme in a pattern that is strikingly similar to that of IFT proteins 
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(Luby-Phelps et al., 2008).  These data make it tempting to speculate that perhaps IFT, 

and specifically retrograde IFT, play a role in the fusion of rhodopsin bearing vesicles 

with nascent outer segment disks, potentially through interaction with SARA.  Since IFT 

is the mechanism responsible for ciliary transport of rhodopsin, there must be a 

mechanism to mediate the hand off of membrane-bound cargo from the IFT machinery 

to its target membrane, either directly or through an intermediary.   

Understanding the role of the accessory subunits of cytoplasmic dynein-2 is 

essential for a thorough understanding of the mechanism of retrograde IFT.  Previous 

mutational studies in Chlamydomonas, C. elegans, and mouse have established a role for  

dync2-h1, dync2-li1 and LC8 in retrograde IFT(Huangfu and Anderson, 2005; May et 

al., 2005; Pazour et al., 1999; Pazour et al., 1998; Porter et al., 1999; Signor et al., 1999).  

Our phenotypic analysis of dync2-i1 morphants is the first, however, to show that the 

cytoplasmic dynein-2 intermediate chain is necessary for cytoplasmic dynein-2 function, 

as dync2-i1 morphant photoreceptor and nasal cilia exhibit phenotypes characteristic of 

retrograde IFT dysfunction.  We did not observe short pronephric cilia in dync2-i1 

morphants, even though they produced kidney cysts.  This is likely explained by 

maternal contribution of dync2-i1 compensating during early development.   

To our knowledge, we are the first to describe light-dependent translocation of 

rod arrestin in zebrafish.  The overall pattern of arrestin localization is similar to that 

described in Xenopus, where arrestin migrates to the outer segment during light 

adaptation and subsequently returns during prolonged light exposure (Peterson et al., 

2003).  This differs from murine systems where arrestin remains in the outer segment 
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with continued light adaptation (McGinnis et al., 1992; Philp et al., 1987; Whelan and 

McGinnis, 1988).  This also suggests that retrograde arrestin translocation following 

continued light exposure a feature common to all teleosts and amphibians.  Importantly, 

zebrafish rods display robust light-dependent movement of arrestin at 5dpf, and the 

utility of forward and reverse genetics in zebrafish could become a powerful tool for 

elucidating the mechanism underlying arrestin movements.   

The mechanism underlying arrestin translocation has been the subject of several 

studies (Broekhuyse et al., 1985; McGinnis et al., 2002; McGinnis et al., 1992; Nair et 

al., 2005; Peterson et al., 2003; Philp et al., 1987).  Although previous studies concluded 

that arrestin translocation occurs via simple diffusion (Nair et al., 2005), a direct test of 

retrograde IFT has not yet been performed.  Although we observed several phenotypes 

consistent with disrupted retrograde IFT in dynein morphant photoreceptors, nasal cilia 

and pronephric cilia, we did not observe any defect in arrestin movements.  While 

consistent with previous reports (Nair et al., 2005), our data directly show retrograde IFT 

does not participate in this process.   

Finally, we observed reduced amplitude in dynein morphant ERG a, b and d 

waves.  The a-wave reflects the hyperpolarizing photoreceptor response, and the 

presence of short outer segments in dynein morphants likely accounts for the reduced a-

wave amplitudes observed in this study.  A reduced photoreceptor response should 

reduce the electrical responses of the second order neurons, which is what we observed.  

Thus, the reduction in a- b- and d-wave amplitudes can be attributed to photoreceptor 

dysfunction.   
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MATERIALS AND METHODS 

Fish Maintenance and Breeding 

Wild-type zebrafish of the AB strain were housed, bred and staged according to 

standard procedures (Westerfield, 1995).  Zebrafish were treated in accordance with the 

ARVO Statement for the Use of Animals in Ophthalmic and Vision Research.   

Cloning of Dynein Genes and Phylogenetic Analysis of dync2-h1 

5’ RACE (Rapid Amplification of cDNA Ends) was performed on retinal cDNAs 

to clone the 5’ end of dync2-h1 using primer dync2-h1 RACE1R: 

5’TGCAGCAGGACGGGGCTGTAGACCTGA3’ and the 5’ end of dync2-i1 using 

nested primers dync2-i1 RACE 1R: 5’TTTGGCCGCTCTGGTCTTGTGTTTG3’ and 

dync2-i1-nested-2R: 5’ATCGCCATCATCCACACGGCCAAAT3’.  5’ RACE was done 

using the Gene Racer Kit (Invitrogen, Eugene, OR) according to manufacturers 

instructions.  Initial dync2-h1 sequence data was obtained from accession numbers: 

XR_029028 and XR_029028.2.  The dync2-h1 sequence was aligned against genomic 

contig NW_001514387 to annotate intron-exon boundries for the 5’ 1.3kb of the coding 

sequence for morpholino design.  Sequence data for dync2-i1 and dync2-li1 was 

obtained from Ensembl, numbers ENDSARG00000057635 and ENSDAR00000039770, 

respectively.  Phylogenetic analysis was performed with MEGA software 

(www.megasoftware.net).  Accession numbers and Ensembl numbers used are as 

follows:  C. reinhardtii dhc1b (XP_001696428), C. elegans DHC1 (NP_491363.1), 

CHE-3 (NP_492221.2), D. rerio dync1-h1 (NP_001036210.1), M. musculus Dync1-h1 

(NP_084514.2), Dync2-h1 (NP_084127.2), R. norvegus dync1-h1 
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(ENSNOG00000006178),  dync2-h1 (NP_075413.1), G. gallus dync1-h1 

(ENGALT00000037512), dync2-h1 (ENSGALP00000027700), O. latipes dync1-h1 

(ENSORLP00000015944), dync2-h1 (ENSORLT00000013451), G. aculeatus dync1-h1 

(ENSGALP00000014094), dync2-h1  (ENSGALP00000010733), T. rubripes dync1-h1 

(ENSTRUP00000031697), dync2-h1 (ENSTRUP00000010356). 

In situ Hybridization 

Antisense riboprobes corresponding to dync2-h1, dync2-li1 and dync2-i1 were 

synthesized with SP6 RNA polymerase (Invitrogen)  and in situ hybridizations 

performed as in (Jowett and Lettice, 1994).  Probes for in situ hybridization were 5’ 

RACE product corresponding to the 5’1.5kb of dync2-h1, a 1.2kb fragment of dync2-li1 

cloned via RT-PCR with PCR primers dync2-li1F: 

5’GCAGGAGGCAAAACAACAAT3’ and dync2-li1R: 

5’GCTCTTTACGCTCCCTTGTG3’, a 389bp fragment of dync2-i1 cloned via RT-PCR 

with PCR primers dync2-i1F: 5’CCTTGGGATTTGGACACATT3’ and dync2-i1R: 5’ 

AGACTAGAGGGCGCGTAGGT3’.  All RT-PCR products were ligated into pGEM T-

Easy Vector (Promega, Madison, WI) for probe synthesis.   

Morpholino Microinjection and Design 

One to two cell stage zebrafish embryos were injected as described (Nasevicius 

and Ekker, 2000) .  Morpholino were synthesized by Gene Tools, LLC. (Philomath, 

OR). The sequences were:  dync2-h1MO1: 

5’CTGCTGTGAATGCATGTACCTGCTG3’, injected 8-9ng, dync2-h1MO2: 

5’GACAGGTGTGCAGTCTGACCTCCTC3’, injected 3.5ng.   dync2-li1MO1sp:  
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5’GGACTGTCACTTTTACCGTATTATG3’, injected 13ng.  dync2-li1MO2atg: 

5’GCTTACTTTCGGCATTATTTTACCG3’, injected 3.5ng.  dync2-i1MO1 

5’ACAATAAACTGTTACCGGCCAAATC3’ , injected 5ng.  dync2-i1MO2 

5’CCACACTAATCCCAGAAATACAACA3’, injected 13ng. 

Reverse Transcription-Polymerase Chain Reaction 

RT-PCR was performed as in (Krock and Perkins, 2008).  The primer sequences 

were as follows:  dync2-h1MOF1: 5’TGTGGAAGCAGAATGAGCAC3’, dync2-

h1MOR1: 5’TGCTAATTGTGGCTCGTTTG3’, dync2-li1MOF1: 

5’GACACATTATGGGATATTGCT3’, dync2-li1MOR1: 

5’GGTTTAGACAGATCCAAAACAA3’, dync2-i1MOF2: 

5’GACCGAGATCTACAGACTTTC3’, dync2-i1MOR1: 

5’AAACTACCACCTCACCACTGTA3’.   

Immunohistochemistry and Immunocytochemisry 

Whole mount immunostaining of 30 hpf zebrafish was performed as in (Riley et 

al., 1999) with an anti-acetylated tubulin antibody (Sigma, St. Louis, MO 1:50).  

Immunohistochemistry and imaging of frozen sections was performed as in (Krock and 

Perkins, 2008) using the following antibodies:  anti-acetylated tubulin (1:500), anti-

IFT88 (1:5000)(Krock and Perkins, 2008), 1d1 (monoclonal zebrafish rhodopsin 

antibody 1:100)(Fadool, 1999), rabbit anti-zebrafish rhodopsin and rabbit anti-zebrafish 

blue cone opsin (both 1:200) (Vihtelic et al., 1999).  Staining with monoclonal anti-

arrestin antibody (1:25) staining was performed as in (Peterson et al., 2003). 
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Antibody Generation 

A rabbit polyclonal anti-dync2-h1 antibody was generated against the synthetic 

peptide MAPGTDDPRK corresponding to the N-Terminus of zebrafish dync2-h1 and 

affinity-purified by Bethyl Laboratories (Montgomery, TX). 

Histology and Electron Microscopy 

Embryos were processed for histology and electron microscopy as described 

(Schmitt and Dowling, 1999) 

SDS-PAGE and Western Blotting 

Total protein from larval heads was generated as in (Krock and Perkins, 2008), 

electrophoresed on 5-15% gradient SDS-PAGE gels (Biorad, Hercules, CA), and 

transferred to PVDF.  Rabbit anti-dync2-h1 (1:5000) and anti-α-tubulin clone 12G10 

(1:2000, Developmental studies hybridoma bank) were used and detected as in (Krock 

and Perkins, 2008). 

Electroretinograms 

Larval eyes were isolated using a tungsten wire loop according to (Wong et al., 

2004) Ringer’s solution as defined by (Emran et al., 2007), was added continuously 

through the preparation stage.  This method prolongs the electrical responsiveness of the 

eye and improves the signal to noise ratio compared to whole animal recordings (Wong 

et al., 2004).  A glass recording electrode with an 8-12 µm tip was placed below the 

cornea and above the lens to achieve the sum of the outer retinal cell responses.  The 

reference electrode was placed in the 2% agarose pad covering the preparation stage.  
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Full-field light stimulation was prolonged for 500 ms under photopic conditions to 

ensure b- and d-wave separation. The light source utilized a 100W halogen bulb at the 

light intensity, log 0 = 13µW/cm2.  Three recordings are averaged to obtain the ERG 

trace.  The response was amplified at 1,000 total gain and low-pass filtered at 300 Hz.  

L-AP4 (L-(+)-2-Amino-4-phosphonobutyric acid) and TBOA (DL-threo-b-

Benzyloxyaspartic acid) were purchased from ToCris Biosciences (Ellisville, MA).  

Stock solutions of 100 mM were prepared by dissolving L-AP4 in 0.1 M NaOH and 

TBOA in DMSO.  The stock solutions were added to fish water to a final concentration 

of 0.2mM TBOA and 0.4mM L-AP4.  Larval fish at 5-6 dpf were incubated in TBOA 

and L-AP4 for 30 minutes.  
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CHAPTER V 

SUMMARY AND FUTURE DIRECTIONS 

SUMMARY 

The purpose of my dissertation project was to investigate the mechanisms that 

mediate protein trafficking in the vertebrate retina, and how disruption of these processes 

leads to retinal degeneration.   

In chapter II, I demonstrated that the phenotype zebrafish rep1 mutants closely 

resembled that of human CHM patients, indicating it is a suitable animal model of this 

disease.  Using this model, I subsequently showed that opsin mislocalization did not 

cause photoreceptor degeneration, but that defective RPE killed photoreceptors in a non-

cell autonomous manner.  The results of this study have specific implications for the 

design of human therapies, specifically that therapies should be targeted to the RPE. 

In chapter III, I demonstrated that the photoreceptor phenotype of zebrafish ift57 

mutants was unique among previously described IFT mutants in that they formed short 

outer segments that contained a reduced amount of opsin.  These data imply that the 

process of IFT occurred in ift57 mutants, but at a reduced efficiency.  In biochemical 

experiments, I utilized a co-immunoprecipitation assay and demonstrated that in ift57 

mutants, Ift20 did not associate with the IFT particle, while Ift88 and Ift52 did.  Most 

strikingly, I showed that kinesin II failed to dissociate from the IFT particle in ift57 

mutants, even in the presence of 1mM ATP.  These results indicate that Ift57 mediates 

the interaction between Ift20 and the IFT particle, and that the interaction previously 
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described between Ift20 and kinesin II facilitates the ATP-dependent dissociation of 

kinesin II.  These results provide important details about a vital step in the process of 

IFT, anterograde motor dissociation.   

In chapter IV, I evaluated the function of retrograde IFT in the context of 

photoreceptor cell biology, a previously unexplored area. I used a loss of function 

approach and showed that retrograde IFT was necessary for outer segment organization, 

extension, and possibly retrograde trafficking of vesicles from the outer segment to the 

inner segment.  Additionally, retrograde IFT mediated return of IFT proteins to the base 

of the cilium, but did not mediate arrestin translocation.  Additionally, I have shown for 

the first time that the intermediate chain subunit of cytoplasmic dynein-2 is necessary for 

retrograde IFT.  Finally, an electrophysiological analysis of dynein morphants showed 

impaired retinal electrophysiology, suggesting a greater role for cytoplasmic dynein-2 in 

retinal physiology.  This study was the first detailed analysis of retrograde IFT in 

vertebrate photoreceptors and provides a basis for further inquiry.   

This dissertation provides valuable insights into the pathology of a human 

blindness disorder and the molecular mechanisms that drive ciliary protein trafficking in 

photoreceptors.   

FUTURE DIRECTIONS 

The field of IFT and the surge in interest in cilia biology are relatively recent 

occurrences, meaning there are many unexplored avenues to pursue in these fields.  In 

the following section, I address future directions to build upon the work I have done and 

discuss a few interesting new directions for the study of IFT in the retina.   
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My work has shown that in a zebrafish model of CHM, photoreceptor 

degeneration is induced by the RPE.  However, it is possible that over time, these 

photoreceptors may degenerate in a cell-autonomous manner.  To address this 

shortcoming, repeating blastomere transplants with GFP-tagged rep1 mutant donors 

would allow the assessment of long term survival of rep1 mutant photoreceptors over a 

period of several months and into adulthood.  Probing rep1 mutant photoreceptors with 

markers for photoreceptor viability, and performing correlative electron microscopy 

would enable us to determine if photoreceptors require rep1 and would conclusively 

determine the autonomy of photoreceptor degeneration in the zebrafish model of CHM. 

My biochemical analysis showed that Ift57 and Ift20 are required for the ATP-

dependent dissociation of kinesin II from the IFT particle.  Exactly how the impaired 

dissociation of kinesin II affects the kinetics and mechanism of IFT, however, were not 

investigated.  It is apparent that once IFT proteins are returned to the base of the cilium, 

the IFT particles themselves dissociate into IFT subunits, after which they are 

presumably re-integrated into new IFT particles (Cole et al., 1998; Iomini et al., 2001).  

This is probably an important step in the IFT cycle, and in Ift57 mutants, the inability of 

kinesin II to dissociate from the IFT particle could perturb this.  Perhaps the kinesin II 

bound IFT proteins are sequestered from re-integration into new IFT particles, thereby 

depleting the pool of free IFT subunits and kinesin II at the base of the cilium.  This 

would create unfavorable conditions for the assembly of new IFT particles and likely 

lower the frequency of IFT particles entering the cilium.  This hypothesis could be tested 

using a combination of biochemistry and ex vivo imaging.  First, assessment of the 
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hydrodynamic properties of ift57 mutant IFT particles using sucrose density 

centrifugation would enable comparison of the relative abundances of IFT particle-

bound IFT subunits versus free IFT proteins.  Second, ex-vivo imaging of ift57 deficient 

photoreceptors expressing a Ift88-GFP construct would enable the evaluation of the 

effects of loss of Ift57 on IFT kinetics.  Since ift57 mutant photoreceptors die, these 

experiments would be done on adult animals.  In-vivo electroporation of ift57 

morpholinos into adult retinas would facilitate these studies.  

In my analysis of cytoplasmic dynein-2 morphants, I observed accumulated 

vesicles within the outer segments.  There are three plausible explanations for the origins 

of these vesicles; first, these may represent vesicular cargoes that are trafficked from the 

outer segment to the inner segment.  However, there have been no descriptions of 

membrane bound cargoes or vesicles that move in a retrograde fashion in 

photoreceptors. Initial experiments to determine the composition of these vesicles is in 

order, with rhodopsin a likely candidate.  Second, these vesicles may reflect improper 

formation of new disks at the base of the outer segment.  Genetic interaction studies with 

cytoplasmic dynein-2 genes and Peripherin/rds and Rom-1, two proteins known to play 

a role in formation and organization of new outer segment disks, would effectively 

evaluate this potential connection between cytoplasmic dynein-2 and outer segment 

organization.  Third, some believe rhodopsin bearing vesicles fuse with the nascent outer 

segment disks at the base of the outer segment, and defects in this process should cause 

vesicle accumulation within the outer segment.  It is thought that a protein called Smad 

anchor for receptor activation (SARA) mediates this process (Chuang et al., 2007).  
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When SARA expression was perturbed in rat photoreceptors, they accumulated vesicles 

at the base of the outer segment, which is the only other description of this phenotype in 

the literature.  Additionally SARA localizes to the photoreceptor connecting cilium in a 

pattern that is strikingly similar to IFT proteins.  Therefore, genetic interaction studies 

with cytoplasmic dynein-2 and SARA are in line in order to determine if these similar 

phenotypes are due to a common mechanism. 

Classic studies performed by Richard Young in the 1960s investigating where 

newly synthesized proteins were integrated into outer segments provided much of the 

foundation for how we currently view outer segment protein trafficking.  His seminal 

studies determined that newly synthesized proteins were incorporated into the base of 

rod outer segments, however, this was not observed in cone outer segments (Young, 

1967; Young, 1969).  Instead,  new proteins were integrated diffusely throughout cone 

outer segments.  These data, typically overlooked by much of the vision community, 

suggest that cone opsins are not deposited in the same manner as rhodopsin is in rods.  

Intriguingly, when I immunolabeled adult zebrafish retinas with antibodies against Ift88 

and Ift52, I found that cones express IFT proteins at much higher levels than rods; others 

have mentioned this observation as well (Luby-Phelps et al., 2008).  Taken together, 

these data suggest that the deposition of cargo by IFT occurs differently in cones, and 

that, perhaps cones utilize IFT in a slightly different way than rods.  A first step in 

understanding these differences would be to image IFT ex vivo in both adult rods and 

cones expressing an Ift88-GFP fusion construct to evaluate the kinetics of IFT and 
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frequency of IFT particles entering the cilium.  in vivo morpholino electroporation could 

be utilized in order to determine if IFT dysfunction differentially affects rods and cones.   

 Though it is now clear that IFT proteins play an integral role in the 

photoreceptor outer segment, there are recent data that show IFT proteins also localize to 

the photoreceptor synapse (Sloboda and Rosenbaum, 2007).  The function of IFT 

proteins in this region of the cell is unclear, though bioinformatic analysis of IFT 

proteins indicated that these polypeptides are evolutionarily related to protein 

components of coat protein I (COPI) and clatharin-coated vesicles (Jekely and Arendt, 

2006).  These data make it tempting to speculate that IFT proteins may be involved in 

synaptic vesicle dynamics at the vertebrate synapse.  This possible non-ciliary transport 

role of IFT proteins is an exciting new development worthy of further scientific inquiry.  

Specifically, it would be informative to determine if IFT proteins localize to the synaptic 

regions of other neurons.  It is possible that this is a common feature of all neurons, or 

potentially only of a subset of neurons, possibly sensory neurons. 

Additionally, we have found that IFT proteins are expressed throughout the 

entire retina, and it is becoming increasingly evident that essentially all vertebrate cells 

are ciliated.  Without IFT proteins photoreceptors die, but it is unknown what the effect 

of IFT protein dysfunction is on cells of the inner nuclear layer or ganglion cell layer.  

Working in the zebrafish model, we are uniquely situated to address this question.  An 

interesting set of experiments to address this would be to breed H2AX-GFP into our IFT 

mutant line and transplant the GFP tagged cells from their offspring into wild-type hosts.  

These experiments would enable the evaluation of survival of these cells, and more 
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interestingly, permit electrophysiological analyses via single-cell recordings.  These 

studies would help evaluate the role of IFT proteins and cilia in non-photoreceptor  

retinal cells, an currently unexplored topic. 



 118

REFERENCES 

 Ahmed, N. T., Gao, C., Lucker, B. F., Cole, D. G. and Mitchell, D. R. (2008). 

ODA16 aids axonemal outer row dynein assembly through an interaction with the 

intraflagellar transport machinery. J Cell Biol 183, 313-322. 

 Alory, C. and Balch, W. E. (2001). Organization of the Rab-GDI/CHM 

superfamily: the functional basis for choroideremia disease. Traffic 2, 532-43. 

 Amsterdam, A. and Hopkins, N. (1999). Retrovirus-mediated insertional 

mutagenesis in zebrafish. Methods Cell Biol. 60, 87-98. 

 Avidor-Reiss, T., Maer, A. M., Koundakjian, E., Polyanovsky, A., Keil, T., 

Subramaniam, S. and Zuker, C. S. (2004). Decoding cilia function: defining 

specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527-39. 

 Bacaj, T., Lu, Y. and Shaham, S. (2008). The conserved proteins CHE-12 and 

DYF-11 are required for sensory cilium function in Caenorhabditis elegans. Genetics 

178, 989-1002. 

 Bae, Y. K., Qin, H., Knobel, K. M., Hu, J., Rosenbaum, J. L. and Barr, M. 

M. (2006). General and cell-type specific mechanisms target TRPP2/PKD-2 to cilia. 

Development 133, 3859-70. 

 Baker, S. A., Freeman, K., Luby-Phelps, K., Pazour, G. J. and Besharse, J. 

C. (2003). IFT20 links kinesin II with a mammalian intraflagellar transport complex that 

is conserved in motile flagella and sensory cilia. J. Biol. Chem. 278, 34211-8. 



 119

 Baker, S. A., Haeri, M., Yoo, P., Gospe, S. M., 3rd, Skiba, N. P., Knox, B. E. 

and Arshavsky, V. Y. (2008). The outer segment serves as a default destination for the 

trafficking of membrane proteins in photoreceptors. J Cell Biol 183, 485-98. 

 Banizs, B., Pike, M. M., Millican, C. L., Ferguson, W. B., Komlosi, P., 

Sheetz, J., Bell, P. D., Schwiebert, E. M. and Yoder, B. K. (2005). Dysfunctional cilia 

lead to altered ependyma and choroid plexus function, and result in the formation of 

hydrocephalus. Development 132, 5329-39. 

 Baron, D. M., Ralston, K. S., Kabututu, Z. P. and Hill, K. L. (2007). 

Functional genomics in Trypanosoma brucei identifies evolutionarily conserved 

components of motile flagella. J Cell Sci 120, 478-91. 

 Bascom, R. A., Liu, L., Heckenlively, J. R., Stone, E. M. and McInnes, R. R. 

(1995). Mutation analysis of the ROM1 gene in retinitis pigmentosa. Hum. Mol. Genet. 

4, 1895-1902. 

 Baylor, D. A., Lamb, T. D. and Yau, K. W. (1979). Responses of retinal rods 

to single photons. J Physiol (Lond) 288, 613-634. 

 Beales, P. L., Bland, E., Tobin, J. L., Bacchelli, C., Tuysuz, B., Hill, J., Rix, 

S., Pearson, C. G., Kai, M., Hartley, J. et al. (2007). IFT80, which encodes a 

conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic 

dystrophy. Nat Genet 39, 727-9. 

 Berbari, N. F., Johnson, A. D., Lewis, J. S., Askwith, C. C. and Mykytyn, K. 

(2008a). Identification of ciliary localization sequences within the third intracellular loop 

of G protein-coupled receptors. Mol Biol Cell 19, 1540-7. 



 120

 Berbari, N. F., Lewis, J. S., Bishop, G. A., Askwith, C. C. and Mykytyn, K. 

(2008b). Bardet-Biedl syndrome proteins are required for the localization of G protein-

coupled receptors to primary cilia. Proc Natl Acad Sci U S A 105, 4242-6. 

 Berson, E. L., Rosner, B., Sandberg, M. A., Weigel-DiFranco, C. and Dryja, 

T. P. (1991). Ocular findings in patients with autosomal dominant retinitis pigmentosa 

and rhodopsin, proline-347-leucine. Am. J. Ophthalmol. 111, 614-623. 

 Besharse, J. C., Hollyfield, J. G. and Rayborn, M. E. (1977a). Photoreceptor 

outer segments: accelerated membrane renewal in rods after exposure to light. Science 

196, 536-8. 

 Besharse, J. C., Hollyfield, J. G. and Rayborn, M. E. (1977b). Turnover of rod 

photoreceptor outer segments. II. Membrane addition and loss in relationship to light. J. 

Cell Biol. 75, 507-27. 

 Besharse, J. C. and Pfenninger, K. H. (1980). Membrane assembly in retinal 

photoreceptors I. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc 

assembly. J. Cell Biol. 87, 451-63. 

 Besharse, J. C. and Horst, C. J. (1990). The photoreceptor connecting cilium.  

A model for the transition zone. New York: Plenum Publishing Corp. 

 Bilotta, J., Saszik, S. and Sutherland, S. E. (2001). Rod contributions to the 

electroretinogram of the dark-adapted developing zebrafish. Dev. Dyn. 222, 564-70. 

 Bisgrove, B. W., Snarr, B. S., Emrazian, A. and Yost, H. J. (2005). Polaris 

and Polycystin-2 in dorsal forerunner cells and Kupffer's vesicle are required for 

specification of the zebrafish left-right axis. Dev Biol 287, 274-88. 



 121

 Blacque, O. E. and Leroux, M. R. (2006). Bardet-Biedl syndrome: an emerging 

pathomechanism of intracellular transport. Cell Mol Life Sci 63, 2145-61. 

 Bonilha, V. L., Trzupek, K. M., Li, Y., Francis, P. J., Hollyfield, J. G., 

Rayborn, M. E., Smaoui, N. and Weleber, R. G. (2008). Choroideremia: analysis of 

the retina from a female symptomatic carrier. Ophthalmic Genet 29, 99-110. 

 Brann, M. R. and Cohen, L. V. (1987). Diurnal expression of transducin 

mRNA and translocation of transducin in rods of rat retina. Science 235, 585-7. 

 Broekhuyse, R. M., Tolhuizen, E. F., Janssen, A. P. and Winkens, H. J. 

(1985). Light induced shift and binding of S-antigen in retinal rods. Curr Eye Res 4, 

613-8. 

 Calvert, P. D., Strissel, K. J., Schiesser, W. E., Pugh, E. N., Jr. and 

Arshavsky, V. Y. (2006). Light-driven translocation of signaling proteins in vertebrate 

photoreceptors. Trends Cell Biol 16, 560-8. 

 Chuang, J. Z., Zhao, Y. and Sung, C. H. (2007). SARA-regulated vesicular 

targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 

130, 535-47. 

 Cole, D. G. (1999). Kinesin-II, coming and going. J Cell Biol 147, 463-6. 

 Cole, D. G. (2003). The intraflagellar transport machinery of Chlamydomonas 

reinhardtii. Traffic 4, 435-42. 

 Cole, D. G., Diener, D. R., Himelblau, A. L., Beech, P. L., Fuster, J. C. and 

Rosenbaum, J. L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport 



 122

(IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis 

elegans sensory neurons. J. Cell Biol. 141, 993-1008. 

 Corbit, K. C., Aanstad, P., Singla, V., Norman, A. R., Stainier, D. Y. and 

Reiter, J. F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 

437, 1018-21. 

 Cortellino, S., Wang, C., Wang, B., Bassi, M. R., Caretti, E., Champeval, D., 

Calmont, A., Jarnik, M., Burch, J., Zaret, K. S. et al. (2009). Defective ciliogenesis, 

embryonic lethality and severe impairment of the Sonic Hedgehog pathway caused by 

inactivation of the mouse complex A intraflagellar transport gene Ift122/Wdr10, 

partially overlapping with the DNA repair gene Med1/Mbd4. Dev Biol 325, 225-37. 

 Cremers, F. P., Armstrong, S. A., Seabra, M. C., Brown, M. S. and 

Goldstein, J. L. (1994). REP-2, a Rab escort protein encoded by the choroideremia-like 

gene. J. Biol. Chem. 269, 2111-7. 

 Cremers, F. P., Brunsmann, F., Berger, W., van Kerkhoff, E. P., van de Pol, 

T. J., Wieringa, B., Pawlowitzki, I. H. and Ropers, H. H. (1990a). Cloning of the 

breakpoints of a deletion associated with choroidermia. Hum. Genet. 86, 61-4. 

 Cremers, F. P., Sankila, E. M., Brunsmann, F., Jay, M., Jay, B., Wright, A., 

Pinckers, A. J., Schwartz, M., van de Pol, D. J., Wieringa, B. et al. (1990b). 

Deletions in patients with classical choroideremia vary in size from 45 kb to several 

megabases. Am. J. Hum. Genet. 47, 622-8. 

 De Robertis, E. (1956). Morphogenesis of the retinal rods; an electron 

microscope study. J Biophys Biochem Cytol 2, 209-18. 



 123

 De Robertis, E. (1960). Some observations on the ultrastructure and 

morphogenesis of photoreceptors. J. Gen. Physiol. 43(6)Suppl, 1-13. 

 Deretic, D., Huber, L. A., Ransom, N., Mancini, M., Simons, K. and 

Papermaster, D. S. (1995). rab8 in retinal photoreceptors may participate in rhodopsin 

transport and in rod outer segment disk morphogenesis. J. Cell Sci. 108, 215-24. 

 Deretic, D. and Papermaster, D. S. (1993). Rab6 is associated with a 

compartment that transports rhodopsin from the trans-Golgi to the site of rod outer 

segment disk formation in frog retinal photoreceptors. J. Cell Sci. 106, 803-13. 

 Deretic, D., Traverso, V., Parkins, N., Jackson, F., Rodriguez de Turco, E. B. 

and Ransom, N. (2004). Phosphoinositides, ezrin/moesin, and rac1 regulate fusion of 

rhodopsin transport carriers in retinal photoreceptors. Mol Biol Cell 15, 359-70. 

 Deretic, D., Williams, A. H., Ransom, N., Morel, V., Hargrave, P. A. and 

Arendt, A. (2005). Rhodopsin C terminus, the site of mutations causing retinal disease, 

regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc Natl Acad 

Sci U S A 102, 3301-6. 

 Doerre, G. and Malicki, J. (2002). Genetic analysis of photoreceptor cell 

development in the zebrafish retina. Mech Dev 110, 125-38. 

 Dowling, J. E. (2001). Neurons and networks : an introduction to behavioral 

neuroscience. Cambridge, Mass. ;: Belknap Press of Harvard University Press. 

 Dowling, J. E. and Sidman, R. L. (1962). Inherited retinal dystrophy in the rat. 

J. Cell Biol. 14, 73-109. 



 124

 Emran, F., Rihel, J., Adolph, A. R., Wong, K. Y., Kraves, S. and Dowling, J. 

E. (2007). OFF ganglion cells cannot drive the optokinetic reflex in zebrafish. Proc Natl 

Acad Sci U S A 104, 19126-31. 

 Fadool, J. M., Fadool, D. A., Moore, J. C., and Linser, P. J. (1999). 

Characterization of monoclonal antibodies against zebrafish retina. Invest. Opth. Vis. Sci. 

Suppl. 40, 1251. 

 Flannery, J. G., Bird, A. C., Farber, D. B., Weleber, R. G. and Bok, D. 

(1990). A histopathologic study of a choroideremia carrier. Invest Ophthalmol Vis Sci 

31, 229-36. 

 Follit, J. A., San Agustin, J. T., Xu, F., Jonassen, J. A., Samtani, R., Lo, C. 

W. and Pazour, G. J. (2008). The Golgin GMAP210/TRIP11 anchors IFT20 to the 

Golgi complex. PLoS Genet 4, e1000315. 

 Follit, J. A., Tuft, R. A., Fogarty, K. E. and Pazour, G. J. (2006a). The 

intraflagellar transport protein IFT20 is associated with the Golgi complex and is 

required for cilia assembly. Mol Biol Cell 17, 3781-92. 

 Follit, J. A., Tuft, R. A., Fogarty, K. E. and Pazour, G. J. (2006b). The 

intraflagellar transport protein IFT20 is associated with the Golgi complex and is 

required for cilia assembly. Mol. Biol. Cell 17, 3781-92. 

 Furuta, Y., Lagutin, O., Hogan, B. L. and Oliver, G. C. (2000). Retina- and 

ventral forebrain-specific Cre recombinase activity in transgenic mice. Genesis 26, 130-

2. 



 125

 Garriga, P. and Manyosa, J. (2002). The eye photoreceptor protein rhodopsin. 

Structural implications for retinal disease. FEBS Lett 528, 17-22. 

 Gibbs, D., Azarian, S. M., Lillo, C., Kitamoto, J., Klomp, A. E., Steel, K. P., 

Libby, R. T. and Williams, D. S. (2004). Role of myosin VIIa and Rab27a in the 

motility and localization of RPE melanosomes. J. Cell. Sci. 117, 6473-83. 

 Gibbs, D., Kitamoto, J. and Williams, D. S. (2003). Abnormal phagocytosis by 

retinal pigmented epithelium that lacks myosin VIIa, the Usher syndrome 1B protein. 

Proc. Natl. Acad. Sci. U. S. A. 100, 6481-6. 

 Green, E. S., Menz, M. D., LaVail, M. M. and Flannery, J. G. (2000). 

Characterization of rhodopsin mis-sorting and constitutive activation in a transgenic rat 

model of retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci. 41, 1546-53. 

 Grimm, C., Wenzel, A., Hafezi, F., Yu, S., Redmond, T. M. and Reme, C. E. 

(2000). Protection of Rpe65-deficient mice identifies rhodopsin as a mediator of light-

induced retinal degeneration. Nat Genet 25, 63-6. 

 Gross, J. M., Perkins, B. D., Amsterdam, A., Egana, A., Darland, T., Matsui, 

J. I., Sciascia, S., Hopkins, N. and Dowling, J. E. (2005). Identification of zebrafish 

insertional mutants with defects in visual system development and function. Genetics 

170, 245-61. 

 Han, Y. G., Kwok, B. H. and Kernan, M. J. (2003). Intraflagellar transport is 

required in Drosophila to differentiate sensory cilia but not sperm. Curr Biol 13, 1679-

86. 



 126

 Hargrave, P. A. and McDowell, J. H. (1992). Rhodopsin and 

phototransduction: a model system for G protein-linked receptors. Faseb J 6, 2323-2331. 

 Haycraft, C. J., Banizs, B., Aydin-Son, Y., Zhang, Q., Michaud, E. J. and 

Yoder, B. K. (2005). Gli2 and Gli3 localize to cilia and require the intraflagellar 

transport protein polaris for processing and function. PLoS Genet 1, e53. 

 Haycraft, C. J., Schafer, J. C., Zhang, Q., Taulman, P. D. and Yoder, B. K. 

(2003). Identification of CHE-13, a novel intraflagellar transport protein required for 

cilia formation. Exp. Cell Res. 284, 251-63. 

 Haycraft, C. J., Swoboda, P., Taulman, P. D., Thomas, J. H. and Yoder, B. 

K. (2001). The C. elegans homolog of the murine cystic kidney disease gene Tg737 

functions in a ciliogenic pathway and is disrupted in osm-5 mutant worms. Development 

128, 1493-505. 

 Haycraft, C. J., Zhang, Q., Song, B., Jackson, W. S., Detloff, P. J., Serra, R. 

and Yoder, B. K. (2007). Intraflagellar transport is essential for endochondral bone 

formation. Development 134, 307-16. 

 He, W., Cowan, C. W. and Wensel, T. G. (1998). RGS9, a GTPase accelerator 

for phototransduction. Neuron 20, 95-102. 

 Heckenlively, J. R. (1988). Retinitis pigmentosa. Philadelphia: J. B. Lippincott. 

 Ho, R. K. and Kane, D. A. (1990). Cell-autonomous action of zebrafish spt-1 

mutation in specific mesodermal precursors. Nature 348, 728-30. 



 127

 Hou, Y., Pazour, G. J. and Witman, G. B. (2004). A dynein light intermediate 

chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell 15, 

4382-94. 

 Hou, Y., Qin, H., Follit, J. A., Pazour, G. J., Rosenbaum, J. L. and Witman, 

G. B. (2007). Functional analysis of an individual IFT protein: IFT46 is required for 

transport of outer dynein arms into flagella. J Cell Biol 176, 653-65. 

 Houde, C., Dickinson, R. J., Houtzager, V. M., Cullum, R., Montpetit, R., 

Metzler, M., Simpson, E. M., Roy, S., Hayden, M. R., Hoodless, P. A. et al. (2006). 

Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol 300, 

523-33. 

 Huangfu, D. and Anderson, K. V. (2005). Cilia and Hedgehog responsiveness 

in the mouse. Proc. Natl. Acad. Sci. U. S. A 102, 11325-30. 

 Huangfu, D., Liu, A., Rakeman, A. S., Murcia, N. S., Niswander, L. and 

Anderson, K. V. (2003). Hedgehog signalling in the mouse requires intraflagellar 

transport proteins. Nature 426, 83-7. 

 Hughes, A., Saszik, S., Bilotta, J., Demarco, P. J., Jr. and Patterson, W. F., 

2nd. (1998). Cone contributions to the photopic spectral sensitivity of the zebrafish 

ERG. Vis. Neurosci. 15, 1029-37. 

 Humphries, M. M., Rancourt, D., Farrar, G. J., Kenna, P., Hazel, M., Bush, 

R. A., Sieving, P. A., Sheils, D. M., McNally, N., Creighton, P. et al. (1997). 

Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nature 

Genetics 15, 216-219. 



 128

 Insinna, C. and Besharse, J. C. (2008). Intraflagellar transport and the sensory 

outer segment of vertebrate photoreceptors. Dev Dyn 237, 1982-92. 

 Iomini, C., Babaev-Khaimov, V., Sassaroli, M. and Piperno, G. (2001). 

Protein particles in Chlamydomonas flagella undergo a transport cycle consisting of four 

phases. J Cell Biol 153, 13-24. 

 Jacobson, S. G., Cideciyan, A. V., Sumaroka, A., Aleman, T. S., Schwartz, S. 

B., Windsor, E. A., Roman, A. J., Stone, E. M. and MacDonald, I. M. (2006). 

Remodeling of the human retina in choroideremia: rab escort protein 1 (REP-1) 

mutations. Invest Ophthalmol Vis Sci 47, 4113-20. 

 Jekely, G. and Arendt, D. (2006). Evolution of intraflagellar transport from 

coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 28, 191-8. 

 Jowett, T. and Lettice, L. (1994). Whole-mount in situ hybridizations on 

zebrafish embryos using a mixture of digoxigenin- and fluorescein-labelled probes. 

Trends Genet 10, 73-4. 

 Kajiwara, K., Berson, E. L. and Dryja, T. P. (1994). Digenic retinitis 

pigmentosa due to mutations at the unlinked peripherin/RDS and ROM1 loci. Science 

264, 1604-1608. 

 Kennedy, M. J., Dunn, F. A. and Hurley, J. B. (2004). Visual pigment 

phosphorylation but not transducin translocation can contribute to light adaptation in 

zebrafish cones. Neuron 41, 915-28. 

 Khanna, H., Hurd, T. W., Lillo, C., Shu, X., Parapuram, S. K., He, S., 

Akimoto, M., Wright, A. F., Margolis, B., Williams, D. S. et al. (2005). RPGR-



 129

ORF15, which is mutated in retinitis pigmentosa, associates with SMC1, SMC3, and 

microtubule transport proteins. J Biol Chem 280, 33580-7. 

 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. and Schilling, T. 

F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253-310. 

 Kolb, H. and Gouras, P. (1974). Electron microscopic observations of human 

retinitis pigmentosa, dominantly inherited. Invest. Ophthalmol. 13, 487-98. 

 Kozminski, K. G., Beech, P. L. and Rosenbaum, J. L. (1995). The 

Chlamydomonas kinesin-like protein FLA10 is involved in motility associated with the 

flagellar membrane. J. Cell Biol. 131, 1517-27. 

 Kozminski, K. G., Johnson, K. A., Forscher, P. and Rosenbaum, J. L. (1993). 

A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. 

Sci. U S A 90, 5519-23. 

 Kramer-Zucker, A. G., Olale, F., Haycraft, C. J., Yoder, B. K., Schier, A. F. 

and Drummond, I. A. (2005). Cilia-driven fluid flow in the zebrafish pronephros, brain 

and Kupffer's vesicle is required for normal organogenesis. Development 132, 1907-21. 

 Krock, B. L. and Perkins, B. D. (2008). The intraflagellar transport protein 

IFT57 is required for cilia maintenance and regulates IFT-particle-kinesin-II dissociation 

in vertebrate photoreceptors. J Cell Sci 121, 1907-15. 

 Kunitomo, H. and Iino, Y. (2008). Caenorhabditis elegans DYF-11, an 

orthologue of mammalian Traf3ip1/MIP-T3, is required for sensory cilia formation. 

Genes Cells 13, 13-25. 



 130

 Kwok-Keung Fung, B. and Stryer, L. (1980). Photolyzed rhodopsin catalyzes 

the exchange of GTP for bound GDP in retinal rod outer segments. Proc Natl Acad Sci 

U S A 77, 2500-2504. 

 Larison, K. D. and Bremiller, R. (1990). Early onset of phenotype and cell 

patterning in the embryonic zebrafish retina. Development 109, 567-76. 

 Lee, E., Sivan-Loukianova, E., Eberl, D. F. and Kernan, M. J. (2008). An 

IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. 

Curr Biol 18, 1899-906. 

 Lehman, J. M., Michaud, E. J., Schoeb, T. R., Aydin-Son, Y., Miller, M. and 

Yoder, B. K. (2008). The Oak Ridge Polycystic Kidney mouse: modeling ciliopathies of 

mice and men. Dev Dyn 237, 1960-71. 

 Lem, J., Krasnoperova, N. V., Calvert, P. D., Kosaras, B., Cameron, D. A., 

Nicolo, M., Makino, C. L. and Sidman, R. L. (1999). Morphological, physiological, 

and biochemical changes in rhodopsin knockout mice. Proc. Natl. Acad. Sci. U S A 96, 

736-741. 

 Lerea, C. L., Somers, D. E., Hurley, J. B., Klock, I. B. and Bunt-Milam, A. 

H. (1986). Identification of specific transducin alpha subunits in retinal rod and cone 

photoreceptors. Science 234, 77-80. 

 Li, C., Inglis, P. N., Leitch, C. C., Efimenko, E., Zaghloul, N. A., Mok, C. A., 

Davis, E. E., Bialas, N. J., Healey, M. P., Heon, E. et al. (2008). An essential role for 

DYF-11/MIP-T3 in assembling functional intraflagellar transport complexes. PLoS 

Genet 4, e1000044. 



 131

 Li, T., Snyder, W. K., Olsson, J. E. and Dryja, T. P. (1996). Transgenic mice 

carrying the dominant rhodopsin mutation P347S: evidence for defective vectorial 

transport of rhodopsin to the outer segments. Proc. Natl. Acad. Sci. U. S. A 93, 14176-

14181. 

 Liu, A., Wang, B. and Niswander, L. A. (2005). Mouse intraflagellar transport 

proteins regulate both the activator and repressor functions of Gli transcription factors. 

Development 132, 3103-11. 

 Liu, Q., Tan, G., Levenkova, N., Li, T., Pugh, E. N., Jr., Rux, J. J., Speicher, 

D. W. and Pierce, E. A. (2007). The proteome of the mouse photoreceptor sensory 

cilium complex. Mol Cell Proteomics 6, 1299-317. 

 Luby-Phelps, K., Fogerty, J., Baker, S. A., Pazour, G. J. and Besharse, J. C. 

(2008). Spatial distribution of intraflagellar transport proteins in vertebrate 

photoreceptors. Vision Res 48, 413-23. 

 Lucker, B. F., Behal, R. H., Qin, H., Siron, L. C., Taggart, W. D., 

Rosenbaum, J. L. and Cole, D. G. (2005). Characterization of the intraflagellar 

transport complex B core: direct interaction of the IFT81 and IFT74/72 subunits. J. Biol. 

Chem. 280, 27688-96. 

 Marszalek, J. R., Liu, X., Roberts, E. A., Chui, D., Marth, J. D., Williams, D. 

S. and Goldstein, L. S. (2000). Genetic evidence for selective transport of opsin and 

arrestin by kinesin-II in mammalian photoreceptors. Cell 102, 175-87. 

 May, S. R., Ashique, A. M., Karlen, M., Wang, B., Shen, Y., Zarbalis, K., 

Reiter, J., Ericson, J. and Peterson, A. S. (2005). Loss of the retrograde motor for IFT 



 132

disrupts localization of Smo to cilia and prevents the expression of both activator and 

repressor functions of Gli. Dev Biol 287, 378-89. 

 Mazelova, J., Astuto-Gribble, L., Inoue, H., Tam, B. M., Schonteich, E., 

Prekeris, R., Moritz, O. L., Randazzo, P. A. and Deretic, D. (2009). Ciliary targeting 

motif VxPx directs assembly of a trafficking module through Arf4. Embo J 28, 183-92. 

 McGinnis, J. F., Matsumoto, B., Whelan, J. P. and Cao, W. (2002). 

Cytoskeleton participation in subcellular trafficking of signal transduction proteins in 

rod photoreceptor cells. J Neurosci Res 67, 290-7. 

 McGinnis, J. F., Whelan, J. P. and Donoso, L. A. (1992). Transient, cyclic 

changes in mouse visual cell gene products during the light-dark cycle. J Neurosci Res 

31, 584-90. 

 Mikami, A., Tynan, S. H., Hama, T., Luby-Phelps, K., Saito, T., Crandall, J. 

E., Besharse, J. C. and Vallee, R. B. (2002). Molecular structure of cytoplasmic dynein 

2 and its distribution in neuronal and ciliated cells. J Cell Sci 115, 4801-8. 

 Moritz, O. L., Tam, B. M., Hurd, L. L., Peranen, J., Deretic, D. and 

Papermaster, D. S. (2001). Mutant rab8 impairs docking and fusion of rhodopsin-

bearing post-golgi membranes and causes cell death of transgenic xenopus rods. 

Molecular Biology of the Cell 12, 2341-51. 

 Morris, A. C. and Fadool, J. M. (2005). Studying rod photoreceptor 

development in zebrafish. Physiol. Behav. 86, 306-13. 

 Moyer, J. H., M.J. Lee-Tischler, H.-Y. Kwon, J.J. Schrick, E.D. Avner, W.E. 

Sweeney, V.L. Godfrey, N.L. Cacheiro, J.E. Wilkinson, and R.P. Woychik. (1994). 



 133

Candidate gene associated with a mutation causing recessive polycystic kidney disease 

in mice. Science 264, 1329-1333. 

 Mullen, R. J. and LaVail, M. M. (1976). Inherited retinal dystrophy: primary 

defect in pigment epithelium determined with experimental rat chimeras. Science 192, 

799-801. 

 Murcia, N. S., Richards, W. G., Yoder, B. K., Mucenski, M. L., Dunlap, J. R. 

and Woychik, R. P. (2000). The Oak Ridge Polycystic Kidney (orpk) disease gene is 

required for left-right axis determination. Development 127, 2347-55. 

 Mykytyn, K., Mullins, R. F., Andrews, M., Chiang, A. P., Swiderski, R. E., 

Yang, B., Braun, T., Casavant, T., Stone, E. M. and Sheffield, V. C. (2004). Bardet-

Biedl syndrome type 4 (BBS4)-null mice implicate Bbs4 in flagella formation but not 

global cilia assembly. Proc Natl Acad Sci U S A 101, 8664-9. 

 Nachury, M. V., Loktev, A. V., Zhang, Q., Westlake, C. J., Peranen, J., 

Merdes, A., Slusarski, D. C., Scheller, R. H., Bazan, J. F., Sheffield, V. C. et al. 

(2007). A core complex of BBS proteins cooperates with the GTPase Rab8 to promote 

ciliary membrane biogenesis. Cell 129, 1201-13. 

 Nair, K. S., Hanson, S. M., Mendez, A., Gurevich, E. V., Kennedy, M. J., 

Shestopalov, V. I., Vishnivetskiy, S. A., Chen, J., Hurley, J. B., Gurevich, V. V. et 

al. (2005). Light-dependent redistribution of arrestin in vertebrate rods is an energy-

independent process governed by protein-protein interactions. Neuron 46, 555-67. 

 Nasevicius, A. and Ekker, S. C. (2000). Effective targeted gene 'knockdown' in 

zebrafish. Nat. Genet. 26, 216-20. 



 134

 Nathans, J. (1992). Rhodopsin: structure, function, and genetics. Biochemistry 

31, 4923-4931. 

 Nir, I. and Papermaster, D. S. (1989). Immunocytochemical localization of 

opsin in degenerating photoreceptors of RCS rats and rd and rds mice. Prog. Clin. Biol. 

Res. 314, 251-64. 

 Nishimura, D. Y., Fath, M., Mullins, R. F., Searby, C., Andrews, M., Davis, 

R., Andorf, J. L., Mykytyn, K., Swiderski, R. E., Yang, B. et al. (2004). Bbs2-null 

mice have neurosensory deficits, a defect in social dominance, and retinopathy 

associated with mislocalization of rhodopsin. Proc Natl Acad Sci U S A 101, 16588-93. 

 Oliver, G., Mailhos, A., Wehr, R., Copeland, N. G., Jenkins, N. A. and 

Gruss, P. (1995). Six3, a murine homologue of the sine oculis gene, demarcates the 

most anterior border of the developing neural plate and is expressed during eye 

development. Development 121, 4045-55. 

 Omori, Y., Zhao, C., Saras, A., Mukhopadhyay, S., Kim, W., Furukawa, T., 

Sengupta, P., Veraksa, A. and Malicki, J. (2008). Elipsa is an early determinant of 

ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nat 

Cell Biol 10, 437-44. 

 Orozco, J. T., Wedaman, K. P., Signor, D., Brown, H., Rose, L. and Scholey, 

J. M. (1999). Movement of motor and cargo along cilia. Nature 398, 674. 

 Ostrowski, L. E., Blackburn, K., Radde, K. M., Moyer, M. B., Schlatzer, D. 

M., Moseley, A. and Boucher, R. C. (2002). A proteomic analysis of human cilia: 

identification of novel components. Mol Cell Proteomics 1, 451-65. 



 135

 Ou, G., Blacque, O. E., Snow, J. J., Leroux, M. R. and Scholey, J. M. (2005). 

Functional coordination of intraflagellar transport motors. Nature 436, 583-7. 

 Palczewski, K., Buczylko, J., Kaplan, M. W., Polans, A. S. and Crabb, J. W. 

(1991). Mechanism of rhodopsin kinase activation. Journal of Biological Chemistry 266, 

12949-12955. 

 Pazour, G. J., Agrin, N., Leszyk, J. and Witman, G. B. (2005). Proteomic 

analysis of a eukaryotic cilium. J Cell Biol 170, 103-13. 

 Pazour, G. J., Baker, S. A., Deane, J. A., Cole, D. G., Dickert, B. L., 

Rosenbaum, J. L., Witman, G. B. and Besharse, J. C. (2002a). The intraflagellar 

transport protein, IFT88, is essential for vertebrate photoreceptor assembly and 

maintenance. J. Cell Biol. 157, 103-13. 

 Pazour, G. J., Dickert, B. L., Vucica, Y., Seeley, E. S., Rosenbaum, J. L., 

Witman, G. B. and Cole, D. G. (2000). Chlamydomonas IFT88 and its mouse 

homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and 

flagella. J. Cell Biol. 151, 709-18. 

 Pazour, G. J., Dickert, B. L. and Witman, G. B. (1999). The DHC1b (DHC2) 

isoform of cytoplasmic dynein is required for flagellar assembly. J. Cell Biol. 144, 473-

81. 

 Pazour, G. J. and Rosenbaum, J. L. (2002). Intraflagellar transport and cilia-

dependent diseases. Trends Cell Biol. 12, 551-5. 



 136

 Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L. and 

Witman, G. B. (2002b). Polycystin-2 localizes to kidney cilia and the ciliary level is 

elevated in orpk mice with polycystic kidney disease. Curr. Biol. 12, R378-80. 

 Pazour, G. J., Wilkerson, C. G. and Witman, G. B. (1998). A dynein light 

chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J. 

Cell Biol. 141, 979-92. 

 Pedersen, L. B., Miller, M. S., Geimer, S., Leitch, J. M., Rosenbaum, J. L. 

and Cole, D. G. (2005). Chlamydomonas IFT172 is encoded by FLA11, interacts with 

CrEB1, and regulates IFT at the flagellar tip. Curr Biol 15, 262-6. 

 Pedersen, L. B. and Rosenbaum, J. L. (2008). Chapter Two Intraflagellar 

Transport (IFT) Role in Ciliary Assembly, Resorption and Signalling. Curr Top Dev 

Biol 85, 23-61. 

 Perkins, B. D., Kainz, P. M., O'Malley, D. M. and Dowling, J. E. (2002). 

Transgenic expression of a GFP-rhodopsin COOH-terminal fusion protein in zebrafish 

rod photoreceptors. Vis. Neurosci. 19, 257-264. 

 Perkins, B. D., Nicholas, C. S., Baye, L. M., Link, B. A. and Dowling, J. E. 

(2005). dazed gene is necessary for late cell type development and retinal cell 

maintenance in the zebrafish retina. Dev. Dyn. 233, 680-94. 

 Perrone, C. A., Tritschler, D., Taulman, P., Bower, R., Yoder, B. K. and 

Porter, M. E. (2003). A novel dynein light intermediate chain colocalizes with the 

retrograde motor for intraflagellar transport at sites of axoneme assembly in 

chlamydomonas and Mammalian cells. Mol. Biol. Cell 14, 2041-56. 



 137

 Peterson, J. J., Tam, B. M., Moritz, O. L., Shelamer, C. L., Dugger, D. R., 

McDowell, J. H., Hargrave, P. A., Papermaster, D. S. and Smith, W. C. (2003). 

Arrestin migrates in photoreceptors in response to light: a study of arrestin localization 

using an arrestin-GFP fusion protein in transgenic frogs. Exp Eye Res 76, 553-63. 

 Philp, N. J., Chang, W. and Long, K. (1987). Light-stimulated protein 

movement in rod photoreceptor cells of the rat retina. FEBS Lett 225, 127-32. 

 Piperno, G. and Mead, K. (1997). Transport of a novel complex in the 

cytoplasmic matrix of Chlamydomonas flagella. Proc Natl Acad Sci U S A 94, 4457-62. 

 Porter, M. E., Bower, R., Knott, J. A., Byrd, P. and Dentler, W. (1999). 

Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in 

Chlamydomonas. Mol Biol Cell 10, 693-712. 

 Portera-Cailliau, C., Sung, C. H., Nathans, J. and Adler, R. (1994). Apoptotic 

photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U 

S A 91, 974-978. 

 Postlethwait, J. H., Woods, I. G., Ngo-Hazelett, P., Yan, Y. L., Kelly, P. D., 

Chu, F., Huang, H., Hill-Force, A. and Talbot, W. S. (2000). Zebrafish comparative 

genomics and the origins of vertebrate chromosomes. Genome Res 10, 1890-902. 

 Preising, M. and Ayuso, C. (2004). Rab escort protein 1 (REP1) in intracellular 

traffic: a functional and pathophysiological overview. Ophthalmic Genet. 25, 101-10. 

 Purves, D. and Williams, S. M. (2001). Neuroscience. Sunderland, Mass.: 

Sinauer Associates. 



 138

 Qin, H., Burnette, D. T., Bae, Y. K., Forscher, P., Barr, M. M. and 

Rosenbaum, J. L. (2005). Intraflagellar transport is required for the vectorial movement 

of TRPV channels in the ciliary membrane. Curr Biol 15, 1695-9. 

 Qin, H., Diener, D. R., Geimer, S., Cole, D. G. and Rosenbaum, J. L. (2004). 

Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and 

turnover products to the cell body. J. Cell Biol. 164, 255-66. 

 Qin, H., Rosenbaum, J. L. and Barr, M. M. (2001). An autosomal recessive 

polycystic kidney disease gene homolog is involved in intraflagellar transport in C. 

elegans ciliated sensory neurons. Curr. Biol. 11, 457-61. 

 Qin, H., Wang, Z., Diener, D. and Rosenbaum, J. (2007). Intraflagellar 

transport protein 27 is a small G protein involved in cell-cycle control. Curr Biol 17, 

193-202. 

 Rana, A. A., Barbera, J. P., Rodriguez, T. A., Lynch, D., Hirst, E., Smith, J. 

C. and Beddington, R. S. (2004). Targeted deletion of the novel cytoplasmic dynein 

mD2LIC disrupts the embryonic organiser, formation of the body axes and specification 

of ventral cell fates. Development 131, 4999-5007. 

 Riley, B. B., Chiang, M., Farmer, L. and Heck, R. (1999). The deltaA gene of 

zebrafish mediates lateral inhibition of hair cells in the inner ear and is regulated by 

pax2.1. Development 126, 5669-78. 

 Rompolas, P., Pedersen, L. B., Patel-King, R. S. and King, S. M. (2007). 

Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde 

intraflagellar transport motor. J Cell Sci 120, 3653-65. 



 139

 Rosenbaum, J. L., Cole, D. G. and Diener, D. R. (1999). Intraflagellar 

transport: the eyes have it. J. Cell Biol. 144, 385-8. 

 Rosenbaum, J. L. and Witman, G. B. (2002). Intraflagellar transport. Nat. Rev. 

Mol. Cell. Biol. 3, 813-25. 

 Saszik, S. and Bilotta, J. (1999). The effects of temperature on the dark-adapted 

spectral sensitivity function of the adult zebrafish. Vision Res. 39, 1051-8. 

 Schmitt, E. A. and Dowling, J. E. (1999). Early retinal development in the 

zebrafish, Danio rerio: light and electron microscopic analyses. J. Comp. Neurol. 404, 

515-36. 

 Scholey, J. M. (2003). Intraflagellar transport. Annu Rev Cell Dev Biol 19, 423-

43. 

 Seabra, M. C. (1996). New insights into the pathogenesis of choroideremia: a 

tale of two REPs. Ophthalmic Genet. 17, 43-6. 

 Seabra, M. C., Brown, M. S., Slaughter, C. A., Sudhof, T. C. and Goldstein, 

J. L. (1992). Purification of component A of Rab geranylgeranyl transferase: possible 

identity with the choroideremia gene product. Cell 70, 1049-57. 

 Seabra, M. C., Ho, Y. K. and Anant, J. S. (1995). Deficient 

geranylgeranylation of Ram/Rab27 in choroideremia. J. Biol. Chem. 270, 24420-7. 

 Serra, R. (2008). Role of intraflagellar transport and primary cilia in skeletal 

development. Anat Rec (Hoboken) 291, 1049-61. 



 140

 Shastry, B. S. (1994). Retinitis pigmentosa and related disorders: phenotypes of 

rhodopsin and peripherin/RDS mutations. American Journal of Medical Genetics 52, 

467-474. 

 Signor, D., Wedaman, K. P., Orozco, J. T., Dwyer, N. D., Bargmann, C. I., 

Rose, L. S. and Scholey, J. M. (1999). Role of a class DHC1b dynein in retrograde 

transport of IFT motors and IFT raft particles along cilia, but not dendrites, in 

chemosensory neurons of living Caenorhabditis elegans. J Cell Biol 147, 519-30. 

 Sloboda, R. D. and Rosenbaum, J. L. (2007). Making sense of cilia and 

flagella. J Cell Biol 179, 575-82. 

 Smith, J. C., Northey, J. G., Garg, J., Pearlman, R. E. and Siu, K. W. (2005). 

Robust method for proteome analysis by MS/MS using an entire translated genome: 

demonstration on the ciliome of Tetrahymena thermophila. J Proteome Res 4, 909-19. 

 Snell, W. J., Pan, J. and Wang, Q. (2004). Cilia and flagella revealed: from 

flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117, 693-7. 

 Snow, J. J., Ou, G., Gunnarson, A. L., Walker, M. R., Zhou, H. M., Brust-

Mascher, I. and Scholey, J. M. (2004). Two anterograde intraflagellar transport motors 

cooperate to build sensory cilia on C. elegans neurons. Nat Cell Biol 6, 1109-13. 

 Sorsby, A., Franceschetti, A., Joseph, R. and Davey, J. B. (1952). 

Choroideremia; clinical and genetic aspects. Br. J. Ophthalmol. 36, 547-81. 

 Starr, C. J., Kappler, J. A., Chan, D. K., Kollmar, R. and Hudspeth, A. J. 

(2004). Mutation of the zebrafish choroideremia gene encoding Rab escort protein 1 

devastates hair cells. Proc. Natl. Acad. Sci. U S A 101, 2572-7. 



 141

 Sukumaran, S. and Perkins, B. D. (2009b). Early defects in photoreceptor outer 

segment morphogenesis in zebrafish ift57, ift88 and ift172 Intraflagellar Transport 

mutants. Vision Res 49, 479-89. 

 Sun, Z., Amsterdam, A., Pazour, G. J., Cole, D. G., Miller, M. S. and 

Hopkins, N. (2004). A genetic screen in zebrafish identifies cilia genes as a principal 

cause of cystic kidney. Development 131, 4085-93. 

 Sung, C. H., Davenport, C. M. and Nathans, J. (1993). Rhodopsin mutations 

responsible for autosomal dominant retinitis pigmentosa. Clustering of functional classes 

along the polypeptide chain. J. Biol. Chem. 268, 26645-26649. 

 Sung, C. H., Makino, C., Baylor, D. and Nathans, J. (1994). A rhodopsin gene 

mutation responsible for autosomal dominant retinitis pigmentosa results in a protein 

that is defective in localization to the photoreceptor outer segment. J. Neurosci. 14, 

5818-5833. 

 Syed, N., Smith, J. E., John, S. K., Seabra, M. C., Aguirre, G. D. and Milam, 

A. H. (2001). Evaluation of retinal photoreceptors and pigment epithelium in a female 

carrier of choroideremia. Ophthalmology 108, 711-20. 

 Tai, A. W., Chuang, J. Z., Bode, C., Wolfrum, U. and Sung, C. H. (1999). 

Rhodopsin's carboxy-terminal cytoplasmic tail acts as a membrane receptor for 

cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell 97, 877-87. 

 Tam, B. M., Moritz, O. L., Hurd, L. B. and Papermaster, D. S. (2000). 

Identification of an outer segment targeting signal in the COOH terminus of rhodopsin 

using transgenic Xenopus laevis. J. Cell. Biol. 151, 1369-80. 



 142

 Tobin, J. L. and Beales, P. L. (2007). Bardet-Biedl syndrome: beyond the 

cilium. Pediatr Nephrol 22, 926-36. 

 Tolmachova, T., Anders, R., Abrink, M., Bugeon, L., Dallman, M. J., Futter, 

C. E., Ramalho, J. S., Tonagel, F., Tanimoto, N., Seeliger, M. W. et al. (2006). 

Independent degeneration of photoreceptors and retinal pigment epithelium in 

conditional knockout mouse models of choroideremia. J. Clin. Invest. 116, 386-94. 

 Tomita, T. (1970). Electrical activity of vertebrate photoreceptors. Q Rev 

Biophys 3, 179-222. 

 Tsao, C. C. and Gorovsky, M. A. (2008). Different effects of Tetrahymena 

IFT172 domains on anterograde and retrograde intraflagellar transport. Mol Biol Cell 19, 

1450-61. 

 Tsujikawa, M. and Malicki, J. (2004). Intraflagellar transport genes are 

essential for differentiation and survival of vertebrate sensory neurons. Neuron 42, 703-

16. 

 Vandenbranden, C. A., Yazulla, S., Studholme, K. M., Kamphuis, W. and 

Kamermans, M. (2000). Immunocytochemical localization of the glutamate transporter 

GLT-1 in goldfish (Carassius auratus) retina. J. Comp. Neurol. 423, 440-51. 

 Vaughan, D. K., Fisher, S. K., Bernstein, S. A., Hale, I. L., Linberg, K. A. 

and Matsumoto, B. (1989). Evidence that microtubules do not mediate opsin vesicle 

transport in photoreceptors. J Cell Biol 109, 3053-62. 



 143

 Vihtelic, T. S., Doro, C. J. and Hyde, D. R. (1999). Cloning and 

characterization of six zebrafish photoreceptor opsin cDNAs and immunolocalization of 

their corresponding proteins. Vis. Neurosci. 16, 571-85. 

 Vollrath, D., Feng, W., Duncan, J. L., Yasumura, D., D'Cruz, P. M., 

Chappelow, A., Matthes, M. T., Kay, M. A. and LaVail, M. M. (2001). Correction of 

the retinal dystrophy phenotype of the RCS rat by viral gene transfer of Mertk. Proc. 

Natl. Acad. Sci. U S A 98, 12584-9. 

 Weng, J., Mata, N. L., Azarian, S. M., Tzekov, R. T., Birch, D. G. and 

Travis, G. H. (1999). Insights into the function of Rim protein in photoreceptors and 

etiology of Stargardt's disease from the phenotype in abcr knockout mice. Cell 98, 13-

23. 

 Westerfield, M. (1995). The zebrafish book. Eugene: University of Oregon 

Press. 

 Whelan, J. P. and McGinnis, J. F. (1988). Light-dependent subcellular 

movement of photoreceptor proteins. J Neurosci Res 20, 263-70. 

 Wolfrum, U. and Schmitt, A. (2000). Rhodopsin transport in the membrane of 

the connecting cilium of mammalian photoreceptor cells. Cell Motil Cytoskeleton 46, 95-

107. 

 Wong, K. Y., Gray, J., Hayward, C. J., Adolph, A. R. and Dowling, J. E. 

(2004). Glutamatergic mechanisms in the outer retina of larval zebrafish: analysis of 

electroretinogram b- and d-waves using a novel preparation. Zebrafish 1, 121-31. 



 144

 Yau, K. W. and Nakatani, K. (1985). Light-suppressible, cyclic GMP-sensitive 

conductance in the plasma membrane of a truncated rod outer segment. Nature 317, 252-

255. 

 Yazulla, S. and Studholme, K. M. (2001). Neurochemical anatomy of the 

zebrafish retina as determined by immunocytochemistry. J Neurocytol 30, 551-92. 

 Yeh, T. Y., Peretti, D., Chuang, J. Z., Rodriguez-Boulan, E. and Sung, C. H. 

(2006). Regulatory dissociation of Tctex-1 light chain from dynein complex is essential 

for the apical delivery of rhodopsin. Traffic 7, 1495-502. 

 Yoder, B. K., Richards, W. G., Sweeney, W. E., Wilkinson, J. E., Avener, E. 

D. and Woychik, R. P. (1995). Insertional mutagenesis and molecular analysis of a new 

gene associated with polycystic kidney disease. Proc Assoc Am Physicians 107, 314-23. 

 Young, R. W. (1967). The renewal of photoreceptor cell outer segments. J. Cell 

Biol. 33, 61-72. 

 Young, R. W. (1969). A difference between rods and cones in the renewal of 

outer segment protein. Invest. Ophthalmol. 8, 222-31. 

 Zhang, Q., Davenport, J. R., Croyle, M. J., Haycraft, C. J. and Yoder, B. K. 

(2005). Disruption of IFT results in both exocrine and endocrine abnormalities in the 

pancreas of Tg737(orpk) mutant mice. Lab Invest 85, 45-64. 

 Zhang, Z., Tanaka, Y., Nonaka, S., Aizawa, H., Kawasaki, H., Nakata, T. 

and Hirokawa, N. (1993). The primary structure of rat brain (cytoplasmic) dynein 

heavy chain, a cytoplasmic motor enzyme. Proc Natl Acad Sci U S A 90, 7928-32. 

 



 145

                                                                   VITA 

 

Name: Bryan L. Krock 

Address: Texas A&M University Department of Biology.  3258 TAMU 
College Station, TX 77843 

 
Email Address: k_rock1@hotmail.com 
 
Education: B.S., Biology, The Pennsylvania State University, 2003 
 
 
  
 
 
 
 


