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ABSTRACT 

Finite Element Modelling and Molecular Dynamic Simulations of  

Carbon Nanotubes/Polymer Composites. (May 2009) 

Dhatri Gaddamanugu, B.E., Osmania University, India   

Chair of Advisory Committee: Dr. Junuthala N. Reddy 

   
Modeling of single-walled carbon nanotubes, multi-walled nanotubes and nanotube 

reinforced polymer composites using both the Finite Element method and the Molecular 

Dynamic simulation technique is presented. Nanotubes subjected to mechanical loading 

have been analyzed. Elastic moduli and thermal coefficient of expansion are calculated and 

their variation with diameter and length is investigated. In particular, the nanotubes are 

modeled using 3D elastic beam finite elements with six degrees of freedom at each node. 

The difficulty in modeling multi walled nanotubes is the van der Waal’s forces between 

adjacent layers which are geometrically non linear in nature. These forces are modeled 

using truss elements. The nanotube-polymer interface in a nano-composite is modeled on a 

similar basis. While performing the molecular dynamic simulations, the geometric 

optimization is performed   initially to obtain the minimized configuration and then the 

desired temperature is attained by rescaling the velocities of carbon atoms in the nanotube. 

Results show that the Young’s modulus increases with tube diameter in molecular 

mechanics whereas decreases in molecular dynamics since the inter-atomic potential due to 

chemical reactions between the atoms is taken into consideration in molecular dynamics 

unlike in molecular mechanics. 



iv 
 

ACKNOWLEDGEMENTS 

 

I would like to thank a few people whose whole hearted help made this work a 

reality. Firstly, I would like to thank my research advisor, Dr. J.N.Reddy, for his invaluable 

guidance all along the research work. I also thank Dr. Jose Roesset and Dr. Xin Lin Gao 

for being on my graduate committee and for extending support throughout the course of 

this research. 

Thanks also go to all my friends and colleagues who have helped me in the 

successful completion of writing this thesis and the department faculty and staff for 

making my time at Texas A&M University a great experience. I also wish to thank Dr. 

Vinu Unnikrishnan for his help during the course of this study. 

Finally, I sincerely thank all my family members for their encouragement, patience 

and love. 



v 
 

NOMENCLATURE 

 Å                                 Armstrong                                                                                               

CNT                             Carbon Nanotube                                                                                    

DWCNT                      Double Walled Carbon Nanotube                                                                     

E                                  Young’s modulus                                                                                                      

FE                                Finite Element                                                                                                   

G                                  Shear modulus                                                                                                   

MD                              Molecular Dynamics                                                                                            

MM                             Molecular Mechanics                                                                                

MWCNT                     Multi Walled Carbon Nanotube                                                                      

MWNT                        Multi Walled Nanotube                                                                                

NVT                            Constant Volume-Temperature                                                         

SWCNT             Single Walled Carbon Nanotube                                                           

SWNT                         Single Walled Nanotube                                                                                     

α                                  Coefficient of Linear Expansion  
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CHAPTER I 

INTRODUCTION 

 

Attempts have been made to study the mechanical behavior of SWNTs, MWNTs 

and subsequently nanotube embedded polymer composite subjected to various types of 

loads using both FE approach and atomistic approach (MD). One of the advantages of 

atomistic simulation is the ease with which various configurations can be studied when 

compared to an experimental investigation of CNT. The experimental investigation is 

extremely difficult as it is limited by the availability of high quality defect free CNTs of 

sufficient length and in the measurement of nanoscale objects. But due to the 

computational intensity both in terms of time and storage involved in carrying out MD 

simulations, there is a need to find an alternate computational methodology that prove to 

be accurate while correlating the nano-scale to macro-scale and allowing a thorough study 

of changing the properties of nanotube embedded polymer composites at macro level. 

In the thesis, firstly, a three-dimensional finite element (FE) model of single-walled 

carbon nanotubes (SWCNTs) is presented. The model is based on the assumption that 

carbon nanotubes behave like space-frame structures. The bonds between carbon atoms are 

treated as connecting load-carrying members, while the carbon atoms as joints of the space 

frame. The elastic moduli of beam elements are determined by using a linkage between 

molecular mechanics and continuum mechanics. In order to evaluate the FE model and 

demonstrate its performance, the influence of tube wall thickness, diameter and chirality on  

 
This thesis follows the style of Computer Methods in Applied Mechanics and Engineering. 
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 the elastic moduli (Young’s modulus and Shear modulus) of armchair SWCNTs is 

investigated. It is found that the choice of wall thickness significantly affects the 

calculation of Young’s modulus. For the values of wall thickness used in the literature, the 

obtained values of Young’s modulus agree very well with the corresponding theoretical 

results and many experimental measurements. Dependence of elastic moduli to diameter of 

the nanotubes is also obtained. With increase in tube diameter, the elastic moduli of the 

SWCNTs increases. The FE model developed herein may provide a valuable tool for 

studying the mechanical behavior of carbon nanotubes and their integration in nano-

composites. 

Secondly, a study of the elastic behavior of multi-walled carbon nanotubes 

(MWCNTs) is presented. The nested individual layers of an MWCNT are treated as single-

walled frame-like structures and simulated by the molecular structural mechanics method. 

The interlayer van der Waals forces are represented through Lennard–Jones potential and 

simulated by a nonlinear truss -rod model. Results indicate that the tube diameter and 

number of tube layers have some noticeable effect on the elastic properties of MWCNTs. 

Furthermore, it has been demonstrated that the inner layers of an MWCNT can be 

effectively deformed only through the direct application of tensile or shear forces, not 

through van der Waals interactions. This is in the process of paving a way for the multi-

scale modeling of the compressive behavior of carbon nanotube/polymer composites. The 

nanotube is modeled at the atomistic scale, and the matrix deformation is analyzed using 

the continuum based finite element model. The nanotube is modeled at the atomistic scale, 

and the matrix deformation is analyzed by the continuum finite element method. The 
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nanotube and polymer matrix are assumed to be bonded by van der Waals interactions at 

the interface leading us to examine the stress distributions at the nanotube/polymer 

interface and buckling behavior under compressive loading.  

Finally, MD simulations of various SWNTs, MWNTs and a CNT polymer 

composite have been performed under different straining conditions at different 

temperatures using the PCFF force field.  In the simulations, the entire systems have been 

minimized and later equilibrated for 1 ps (1000) steps. The temperature scale was carried 

out in 5 ps as an NVT ensemble (10,000) steps. During the minimization and NVT 

processes, the structures were placed in a unit cell and periodic boundary conditions were 

applied in all directions. All simulations have been made in Material Studio 4.3 (Accelrys 

inc.). Elastic constants have been calculated using the ‘Forcite Mechanical Properties 

module’ by stretching the periodic cell in one direction. The convergence plots and 

temperature variation have been presented for all the specimens considered. Variation of 

obtained values of Young’s modulus and Shear modulus with tube diameter and length 

have been plotted to compare them with those obtained using FE method. 
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CHAPTER II 

LITERATURE REVIEW 

 

Carbon nanotubes (CNTs) are fullerenes, diamondoids, nano-onions and nanohorns 

discovered by Iijima in 1991 [1].  CNTs are nanometer-size cylinders made out of cylinder 

atoms. They can be thought of as a layer of graphite rolled up into a tube. Recently, 

individual single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes 

(MWCNTs) were synthesized commercially.  

Before full realization of the potential of the nanotechnologies in engineering 

applications, there is much work remaining to be done, such as good command of their 

physical properties and behaviors and well-controlled manipulation of the nanostructures 

to achieve desired material responses. In literature, extensive experimental studies using 

various advanced measurement tools with various nano-manipulation techniques have been 

carried out to identify the mechanical properties and behaviors of CNTs, including 

Young’s modulus, Shear modulus, buckling behavior, and vibrational response. The 

earliest attempt to determine mechanical property of carbon nanotube was made by 

Treachy et al. [2]. Treachy et al. [2] estimated the Young’s modulus of isolated nanotubes 

by measuring in the transmission electron microscope, the amplitude of their intrinsic 

thermal vibrations. They found out the average Young’s modulus of individual nanotube to 

be 1.8 TPa. Subsequently, Wong et al. [3] determined the Young’s modulus, strength and 

toughness of silicon carbide nanorods and multi-walled carbon nanotubes (MWCNTs) 

using atomic force microscopy. Tombler et al. [4] reported an experimental and theoretical 

elucidation of the electromechanical characteristics of individual single-walled carbon 
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nanotubes (SWNTs) under local-probe manipulation using atomic force microscope 

(AFM). Yu et al. [5] measured tensile strength of individual multi-walled carbon 

nanotubes (MWCNTs) with a nano stressing stage located within a scanning electron 

microscope and found that MWCNTs broke in  the outer most layer and Young’s modulus 

ranged from 11 to 63 GPa. Other relevant references regarding characterizing of CNTs can 

be found in Falvo et al. [6] and Krishnan et al. [7]. Inspite of all advancements in 

experimental techniques, characterization of mechanical behavior of nanomaterials poses 

great challenges from both physical and mechanical aspects. Mostly, due to cost 

insensitivity of experimentation hindered to gain the physical insights because of the 

microscopic dimensions of nanomatertials.  

Computational approaches are typically more efficient and flexible as compared 

with experimental methods, and thus become a significant and powerful tool nowadays in 

the study of nanomaterials. Among the existing atomistic computational approaches, the 

classical MD simulation and the continuum modeling are two of the most widely-used 

techniques in nanomechanics (Shen and Atluri,[8]). Yakobson et al. [9] studied nanotubes 

under generic modes of axial compression, bending and torsion using molecular dynamics 

simulation. A remarkable synergism between the methods of MD and those of structural 

mechanics was found. The model provided remarkable good results of nanotube behavior 

beyond Hooke’s law. Lu [10]   investigated the elastic properties of carbon nanotubes and 

nanoropes using an empirical force-constant model. The simplicity of the model enables to 

explore the dependence of geometry on the properties of nanotubes and nanoropes.  

Yao and Lodi [11] employed molecular dynamics using universal force field (UFF) 

to determined Young’s modulus of single walled carbon nanotubes. They found out that 
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Young’s modulus increases significantly with decreasing tube diameter. The effect of 

geometry (diameter and helicity) on Young’s modulus is most pronounced for smaller 

tubes. Hernández et al. [12] carried out extensive structural, energetic and elastic properties 

of single walled carbon and composite nanotubes using a non-orthogonal tight binding 

formalism. The results indicate that graphitic nanotubes are stiffer than any of the 

composite nanotubes considered in this work, and that the elastic properties of single-wall 

nanotubes are of the same order of magnitude as those of the corresponding flat sheets. Jin 

and Yuan [13] studied the macroscopic mechanical behavior of the single walled carbon 

nanotube using molecular dynamics (MD) simulations in which the dynamic response and 

mutual force interaction among atoms of the nanostructures are obtained when subjected to 

small-strain deformation. Both force and energy approaches that link the behavior at the 

atomic and macroscopic scales of the nanotubes are used to predict the elastic moduli 

under different deformation modes. Xing et al. [14] studied the Young’s moduli of  

armchair, zig-zag and chiral single walled carbon nanotubes based on molecular dynamics 

simulation where the inter-atomic short-range interaction and long-range interaction of 

carbon nanotubes are represented by a second generation reactive empirical bond order 

(REBO) potential and Lennard–Jones (LJ) potential, respectively. The computational 

results showed that the Young’s moduli of SWCNTs are in the range of 929.8±11.5GPa. 

Liew et al. [15] carried out MD simulation in the micro-canonical ensemble to examine the 

elastic and plastic properties of single and multi-walled carbon nanotubes (CNTs) under 

axial tension. The interaction force between atoms is modeled using the second generation 

of reactive empirical bond order (REBO) potential coupled with Lennard Jones potential. 
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The MD simulation revealed that the fracture damage of MWCNTs takes place initially 

takes place in the outermost layer, and subsequently occurring in the inner layers. 

Other references related to molecular dynamics simulation of CNTs can be found 

in, Gao et al.[16], Lier et al. [17] ,Zhou et al. [18] etc. Despite the powerful capability and 

great efficiency of microcomputers today, classical MD simulation is still limited to a 

relatively small-scale model, only containing atoms less than 106~108 and duration less 

than 10-6~10-9 second. This has brought about the demand of more effective modeling 

techniques. One of the major developments is the so-called equivalent-continuum 

modeling (ECM) approach. It has been regarded as a very efficient method, especially for 

nano-structures with large scale, in contrast to MD simulation. Over the past years, many 

ECM models were presented in literature. For example, Ru [19] adopted an elastic shell 

model to study the buckling behaviors of double-walled CNTs. Odegard et al. [20] 

proposed a method which served as a link between computational chemistry and solid 

mechanics by substituting discrete molecular structures with equivalent-continuum models. 

The substitution is accomplished by equating the molecular potential energy of a nano-

structured material with the strain energy of representative truss and continuum models. Li 

and Chou [21] studied the elastic behavior of multi-walled carbon nanotubes (MWCNTs) 

where the nested individual layers of MWCNT were treated as single-walled frame-like 

structures and simulated by the molecular structural mechanics method. The interlayer van 

der Waals forces were represented by Lennard–Jones potential and simulated by a 

nonlinear truss rod model. The computational results showed that the Young’s moduli and 

shear moduli of MWCNTs are in the ranges of 1.05±0.05 and 0.40±0.05 TPa, respectively. 

Results indicated that the tube diameter, tube chirality and number of tube layers have 
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some noticeable effects on the elastic properties of MWCNTs Li and Chou [22] proposed 

structural mechanics approach to modeling of single-walled carbon nanotubes where CNT 

is space truss structure with C-C bond being modeled as load bearing beam and C atom as 

joints of load bearing beam. The proposed method was validated with existing theoretical 

and experimental results and revealed that both Young’s modulus of both arm chair and 

zig-zag SWCNT increase with increasing tube diameter. In addition, Li and Chou [23-24] 

further applied the approach to investigate the vibrational and buckling behaviors of CNTs. 

Chang and Gao [25] derived closed form expressions for elastic modulus and Poisson’s 

ratio as a function of the nanotube diameter based on the molecular mechanics approach. 

Properties at different length scales are directly connected via these expressions. Their 

study represented a preliminary effort to develop analytical methods of molecular 

mechanics for applications in nanostructure modeling. Natsuki et al. [26] derived closed 

form elastic solution based on a model of truss structures linked by inter-atomic potentials 

to predict elastic modulus, Poisson’s ratio and deformation behavior of SWCNTs and 

MWCNTs. The studies showed that the disposition of the strain energy of bonds shows a 

quite a difference between zig-zag and armchair tubes subjected to axial loading and 

zigzag tubes have shown  lower elongation property than an armchair tube. Natsuki and 

Endo [27] developed nanoscale continuum theory to directly incorporate the Morse 

potential function into the constitutive model of CNTs to simulate the stress strain behavior 

of carbon nanotube. The result showed that the armchair zigzag tube exhibits larger stress–

strain response than the zigzag tube under tensile loading, but its relationship turns over 

between the tension and compression deformations. Natusuki et al. [28] developed a link 

analytical model based on a link between molecular and solid mechanics for the modeling 
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the elastic properties of single walled carbon nanotubes (SWCNTs). They regarded 

SWCNT as a continuum shell model which consisted of  the discrete molecular structures 

linked by the carbon-to-carbon bonds and elastic properties where investigated on the 

based of nanotube size in terms of chiral vectors. Zhang et al. [29] investigated the elastic 

properties of two groups of SWCNTs by means of Tersoff-Bernner and modified Morse 

potentials based on Cauchy Born rule and brought out the fact that elastic modulus of 

SWCNTs  depends dramatically on the tube radius ranging from 0.3-0.6 nm but not much 

on tube chirality. Xiao et al. [30] developed an analytical structural mechanics model for 

the prediction of defect free carbon nanotube by incorporating the modified Morse 

potential which capable of predicting Young’s Moduli, Poisson’s Ratio and stress-strain 

relationship carbon nanotube both under tensile and torsion loading condition. The model 

gave non-linear stress-strain relationship of CNTs which gives good approximation of 

ultimate strength and strain to the failures of nanotubes. Lau et al. [31] presented a critical 

review on the validity of different experimental and theoretical approaches to the 

mechanical properties of carbon nanotubes such measurement and modeling of tensile 

modulus, tensile strength, and torsional stiffness.  Their studies put forth the fact the 

theoretical approaches such as molecular dynamic (MD) simulations, finite element 

analysis, and classical elastic shell theory were frequently used to analyze and interpret the 

mechanical features of carbon nanotubes gave  inconsistent results due to the use of 

different fundamental assumptions and boundary conditions. 

These ECM approaches have been proved effective and efficient, there are still 

some technical challenges remaining to be solved. Henceforth, molecular mechanics based 

finite element models have been employed to determine the mechanical response. For 
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instance,   Sun and Zhao [32] used molecular mechanics based finite element approach to 

calculate tensile stiffness and strength of single walled carbon nanotube. Reported results 

reveal that the tensile stiffness was independent of nanotube diameter and helicity whereas 

Poisson’s ratio was found to be dependent on nanotube diameter. Nanotube strength was 

predicted at 77–101GPa with the fracture strain around 0.3. Tserpes and Papanikos [33] 

developed a three dimensional finite element model based on the assumption that carbon 

nanotubes when subjected to loading behave like space frame structures to investigate the 

effect of geometry on the mechanical property of carbon nanotube. It was found that 

Young’s modulus of chiral nanotube was greater than both armchair and zigzag nanotube. 

Meo and Rossi [34] evaluated the mechanical properties of single walled carbon nanotube 

based on finite element code on the use of non-linear and torsional spring elements. Use of 

spring elements in FE codes enabled to model the complex interaction of many atoms and 

also to model bond interaction without introduction of any non-physical variable such as 

area and inertia of atoms while using beam elements. Kalamkarov et al. [35] presented two 

different approaches to calculate the Young’s modulus and Shear modulus of carbon 

nanotube. One approach consider carbon nanotubes as inhomogeneous cylindrical network 

shell using the asymptotic homogenization method and explicit formulae are derived for 

Young’s modulus and Shear modulus of SWCNTs in terms pertinent material and 

geometric parameters. The second approach is based on finite element models where inter-

atomic interactions due to covalent and non-covalent bonds are replaced by beam and 

spring elements respectively in the structural model. Giannopoulos et al. [36] proposed a 

three-dimensional finite element formulation for the computation of mechanical elastic 

response of armchair and zigzag SWCNTs for a wide range of values of nanotube’s radius. 
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The linear elastic spring elements have been introduced in order to simulate the force field 

and inter-atomic interactions observed between the carbon atoms effectively. The 

advantage of the method is its simplicity and the fact that uses as input straightforwardly 

physical constants provided by molecular theory. Axial strain and torque loadings have 

been applied to compute the Young’s modulus and Shear modulus of the SWCNTS, 

respectively. 
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CHAPTER III 

THEORY: NANOSTRUCTURES 

 

3.1 Atomic Structure of CNTs 

There are two types of CNTs: SWCNTs and MWCNTs. MWCNTs are composed 

of co-axially situated SWCNTs of different radii. There are several ways to view a 

SWCNT. The most widely used is by reference to rolling up graphene sheet to form a 

hollow cylinder with end caps. The cylinder is composed of hexagonal carbon rings, while 

the end caps of pentagonal rings. The hexagonal pattern is repeated periodically leading to 

binding of each carbon atom to three neighboring atoms with covalent bonds. This 

covalent bond is a very strong chemical bond and plays significant role to the impressive 

mechanical properties of graphitic and as a consequence, of all carbon-related nano-

structures. The atomic structure of nanotubes depends on tube chirality, which is defined 

by the chiral vector Ch and the chiral angle θ. The chiral vector is defined as the line 

connected from two crystallographic ally equivalently sites O and C on a two-dimensional 

graphene structure, as may be seen in Fig.3.1. The chiral vector Ch can be defined in terms 

of the lattice translation indices (n, m) and the basic vectors a1 and a2 of the hexagonal 

lattice (see Fig.3.1) as follows: 
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Fig 3.1 Schematic of the hexagonal lattice of graphene sheet including definition of 

basic structural parameters and explanation of SWCNTs formation [39]. 

1h
C n a m a= +
G G G

2                                                                                                             (3.1) 

The chiral angle θ is the angle between the chiral vector Ch with respect to the 

zigzag direction (n, 0) where θ=30̊ and the unit vectors a1 and a2. For the chiral angles of 0 ̊ 

and 30 ̊, the armchair and zigzag nanotubes are formed, respectively. These two types of 

nanotubes correspond to the two limiting cases. In terms of the roll-up vector, the  

armchair nanotubes are defined by (n, n) and the zigzag nanotubes by (n, 0). For chiral 

angles different than 0̊ and 30̊, the chiral nanotubes, which are defined by a pair of indices 

(n, m) are formed. Schematic representations of the three types of nanotubes are shown in 

Fig. 3.2. 
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3.2 Properties of CNTs  

The mechanical properties are strongly dependent on the structure of the nanotubes. 

This is due to the high anisotropy of graphite. The single- and multi-wall nanotubes are 

interesting nanoscale materials for the following four reasons: 

1. Single- and multi-wall nanotubes have very good elastomechanical properties 

because the two-dimensional arrangement of carbon atoms in a graphene sheet 

allows large out-of-plane distortions, while the strength of carbon-carbon in-plane 

bonds keeps the graphene sheet exceptionally strong against any in-plane distortion 

or fracture. These structural and material characteristics of nanotubes point towards 

their possible use in making next generation of extremely lightweight, but highly 

elastic, and very strong composite materials. 

2. A single-wall nanotube can be either conducting or semiconducting, depending on 

its   chiral vector (n, m), where n and m are two integers. The rule is that when the 

difference n-m is a multiple of three, a conducting nanotube is obtained. If the 

difference is not a multiple of three, a semiconducting nanotube is obtained. In 

addition, it is also possible to connect nanotubes with different chiralities creating 

nanotube hetero-junctions, which can form a variety of nanoscale molecular 

electronic device components. 

3. Nanotubes, by structure, are high aspect-ratio objects with good electronic and 

mechanical properties. Consequently, the applications of nanotubes in field-

emission displays or scanning probe microscopic tips for metrological purposes, 

have started to materialize even in the commercial sector. 
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4. Since nanotubes are hollow, tubular, caged molecules, they have been proposed as 

lightweight large surface area packing material for gas-storage and hydrocarbon 

fuel storage devices, and gas or liquid filtration devices, as well as nanoscale 

containers for molecular drug-delivery and casting structures for making nanowires 

and nanocapsulates. 

 

 

Fig 3.2 Multi walled nanotube with 3 layers 

3.3 Applications of CNTs 

CNTs have very unsual mechanical, chemical, thermal, electronic and optical 

properties, carbon nanotubes (CNTs) are promising to revolutionize several fields such a 

material science and nanotechnology. CNTs have wide range of unexplored potential 

applications in various technological areas such as aerospace , energy , automobile , 

medicine , or chemical industry, in which they can be used as gas absorbents, templates, 

actuators, composite reinforcements, catalyst supports, probes, chemical sensors, 

nanopipes, nanoreactors etc. 
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CHAPTER IV 

FINITE ELEMENT FORMULATION OF 3D ELASTIC BEAM ELEMENTS  

 

In this chapter, the finite element model for 3D elastic beam elements is described 

in a step by step manner as each bond in the nanotube is modeled using this element. 3D 

beam with six degrees of freedom at each node (3 translation + 3 rotation) is obtained by 

superposition of (i) 3D coupled Euler Bernoulli beam with coupling between axial 

displacement and rotation about orthogonal axis and (ii) Torsion element. Finite element 

equations of the two are derived individually from their respective governing differential 

equations. 

4.1 3D Coupled Euler Bernoulli Beam 

4.1.1 Displacement Field 

The displacement field for Euler Bernoulli beam [40] having moderately large 

rotations but small strains is: 

0 0
1 0 2 0 3 0

( ) ( )( ) , ( ), ( )dw x dv xu u x z y u v x u w x
dx dx

= − − = =                                                (4.1) 

 are the displacement along (x, y, z) axis and  , v0 and w0 are the  are the axial 

displacement, transverse displacement in y direction and transverse displacement in z 

direction on the neutral axis, respectively. The following nonlinear strain-displacement 

relation is used to calculate the strains  

1 2 3( , , )u u u 0u
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                                                                                  (4.2) 

Substituting the values of , and  in the above equations and eliminating the large 

strain terms but retaining the rotation terms of the transverse normal we get, 

1u 2u 3u

2 22 2
0 0 0 0 0

11 2 2

2 2 2 2
0 0 0 0

2

0 1 1

1 1
2 2

1 1
2 2
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y z
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⎝ ⎠ ⎝ ⎠

⎡ ⎤ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞= + + − −⎢ ⎥ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟
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⎟
⎠

4.3)  

where, 

                                    (

2 2 2 2
0 10 0 0 0

2 2

1 1 , ,
2 2xx xx xx

du dw dv d v d w
dx dx dx dx dx

ε ε
⎡ ⎤ ⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞= + + = − = −⎢ ⎥ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎝ ⎠ ⎝⎣ ⎦
�  1 0 ,ε

⎞
⎟
⎠

These strains are known as von Karman strains. 

4.1.2 Derivation of Governing Equations  

l displacement, for a body in equilibrium, the 

virtual 

                                                                                                   (4.4) 

 According to the principle of virtua

work done by the internal and external forces to move through their virtual 

displacements is zero. Thus based on this principle the following can be concluded. 

e e e 0I EW W Wδ δ δ≡ + =
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 where , e
IWδ  is the virtual strain stored in the element due to ijσ (Cartesian component of 

stress tensor) due to the virtual displacement ijδε (Cartesian component of strain tensor)  

and  is the work done by external forces. Thus for a beam element we have, e
EWδ

e

e
I ij ijV

W dδ δε σ= ∫ V

e
i

 

10

1 0 0 2 0
1

b

e e
a

x
e e

E iV V
ix

W q v dx f u dx q w dx Qδ δ δ δ
=

= + + + ∑∫ ∫ ∫ δΔ                                                    (4.5)    

where,  is the elemental volume, q1(x) is the distributed transverse load (per unit length) 

in y-direction, q2(x) is the distributed transverse load (per unit length) in z-direction and 

f(x) distributed axial load.  is the nodal force and 

eV

e
iQ e

iδΔ is the nodal displacement of the 

element. The nodal displacements and nodal forces are 

( ) ( )0 0
1 0 2 0 3Δ = 0 4 5 2,  ( ), ( ),  ,

a a

e e e e e
a a a a a

x x
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⎝ ⎠ ⎝ ⎠

1≡( )u x

( ) ( )0 0
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⎝ ⎠ ⎝ ⎠
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x x
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⎤
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                                           (4.6) 

The virtual strain energy equation can be simplified by substituting equation (4.3) in 

equation (4.5) as follows: 
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where, xxN  is the axial force which can be expressed as and  
exx xxA

N dσ= ∫ A xxM  is the 

moment which can be expressed as 1 exx xxA
M ydAσ= ∫ , 2 exx xxA

.M zdAσ= ∫  
Thus virtual 

work statement can be written as 

( ) ( ) ( ) ( )

( ) ( )

2 2
0 0 0 0 0 0 0

1 22 2

1 0 2 0

10

0
1

0

      

b

a

e e

b

a

x

xx xx xx
x

V V

x
e e
i i

ix

d u dv d v dw d w d v d wN M M d
dx dx dx dx dx dx dx

q x v x dx q x w x dx

f x u x dx Q

δ δ δ δ δ

δ δ

δ δ
=

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= + + − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

− − −

− Δ

∫

∫ ∫

∑∫

x

0

           (4.8) 

Collecting the coefficients of  0 0,  and  u v wδ δ δ  the following three equations are 

obtained:  
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Collecting the terms of 0 0,  and  u v w0δ δ δ  and simplifying the terms, 
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                                                       (4.10) 

Thus the boundary conditions are: 

( ) ( )1 6

0 1 0 1
2 7

0 2 0 2
3 8

0,                                   0

0,                0 

0,                

a b

a

e e
xx a xx b

e exx xx
xx xx

x x

e exx xx
xx xx

x

Q N x Q N x

dv dM dv dMQ N Q N
dx dx dx dx

dw dM dw dMQ N Q N
dx dx dx dx

+ = − =

⎡ ⎤ ⎡ ⎤+ + = − + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤+ + = − +⎢ ⎥⎣ ⎦

( ) ( )
( ) ( )

4 1 9 1

5 2 10 2

0 

 + =0 ,                                    + =0   

 + =0 ,                                    + =0    

bx

e e
xx a xx b

e e
xx a xx b

Q M x Q M x

Q M x Q M x

⎡ ⎤ =⎢⎣ ⎦⎥
                      (4.11)                         

4.1.3 Weak Form Development 

Using the governing equations from equations (4.10) the weak form is developed as 

follows: 
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 (4.12c) 

Here the weight functions are v1,v2 and v3 are the weight functions which correspond to 

0uδ  , δv0 and 0wδ respectively. As mentioned in the assumptions earlier the EB has small 

to moderate rotations and the material is assumed to be linearly elastic which results in the 

following  

  e
xx E xxσ ε=                                                                                                                    (4.13) 

The above relationship which defines the relationship between the total stress and the total 

strain is called as the Hooke’s law. Thus we get 
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where, e
xxA  is the extensional stiffness, e

xxB is the extensional-bending stiffness  and  e
xxD

e

 

, are the bending stiffnesses. For isotropic material we have,e
yyD e e

xxA E A= , and 

31
12

e eD Exx = bh ,
31

12
e e
yyD E h= b  where  is the cross section area and eA eI is the second 

moment of inertia of the beam element. 

4.1.4 Finite Element Model 

The interpolation functions for the axial and transverse deflection will be  
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In the above equations jψ  are Lagrange interpolation functions and jφ  are Hermite 

interpolation functions. Substituting the interpolation function in the weak form equation, 

the following equations are obtained:  
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In matrix form it can be written as  
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� ⎪
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⎪

                                                                         (4.18)   

                                                                                                                                                                           

4.2. Torsion Element 

In this section, the torsion element is introduced in order to model the twist of C-C 

bonds, The governing differential equation of torsion[41] is given by 

( )d duGJ f x
dx dx

⎛ ⎞− =⎜ ⎟
⎝ ⎠

                                                                                                     (4.19) 

The weak form is given by the following 

0
b

a

bx

ax

dw du duGJ fw dx wGJ
dx dx dx

⎡ ⎤⎛ ⎞ ⎡ ⎤= − − −⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦
∫

                                                                (4.20)
 

The finite element equations obtained by substituting the approximation function are 
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                                                                                                     (4.21) 

Thus, the left over dof i.e. rotation in x-direction is obtained.  

Superposing the above two different elements to get the 6  DOF (3 translation and 3 

rotation) at each node, the total non-linear stiffness matrix for the 3D elastic beam element 

is derived. 

In contrast, Li and Chou [22] used the linear stiffness matrix by superposing a bar 

and torsion element for translation and rotation in x-direction, two 2D Euler-Bernoulli 

beams in perpendicular directions to obtain translations and rotations in y and z directions 

and so the total stiffness matrix becomes 

ii ij
T
ij jj

K K
K

K K
⎛ ⎞

= ⎜
⎝ ⎠

     where,                                                                                              (4.22) 
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The elemental equilibrium equation can be written as 

,Ku f=                                                                                                                           (4.23) 

where,  [ , , , , , , , , , , , ]T
xi yi zi xi yi zi xj yj zj xj yj zju u u u u u uθ θ θ θ θ θ= ,

[ , , , , , , , , , , , ]T
xi yi zi xi yi zi xj yj zj xj yj zjf f f f m m m f f f m m m=  

In order to obtain the deformation of a space frame, the above elemental stiffness 

equations should be established for every element in the space frame and then all these 

equations should be transformed from the local coordinates to a common global reference 

system. Finally, a system of simultaneous linear equations can be assembled according to 

the requirements of nodal equilibrium. By solving the system of equations and taking into 

account the boundary restraint conditions, the nodal displacements are obtained. 
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CHAPTER V 

FINITE ELEMENT MODELING OF SINGLE-WALLED, MULTI-WALLED CARBON 

NANOTUBES AND POLYMER COMPOSITES 

 

5.1. Finite Element Modeling of Single Walled Nanotube 

A three-dimensional finite element (FE) model for armchair (5,5) single-walled 

carbon nanotubes (SWCNTs) is presented. The model development is based on the 

assumption that carbon nanotubes, when subjected to loading, behave like space-frame 

structures. The bonds between carbon atoms are considered as connecting load-carrying 

members, while the carbon atoms as joints of the members. To create the FE models, 

nodes are placed at the locations of carbon atoms and the bonds between them are modeled 

using three-dimensional elastic beam elements. The elastic moduli of beam elements are 

determined by using a linkage between molecular and continuum mechanics.  

5.1.1 Aim 

To evaluate the FE model and demonstrate its performance, the influence of tube 

wall thickness, diameter and chirality on the elastic moduli (Young’s modulus, Shear 

modulus, coefficient of thermal expansion in radial and axial direction) of SWCNTs is 

investigated.  

5.1.2   3D FE Model Development Using ANSYS 

Bonds are modeled using 3D ELASTIC BEAM4 element [37]. The specific 

element is a uni-axial element with tension, compression, torsion and bending capabilities. 
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As described in chapter 4, it has six degrees of freedom at each node: translations in the 

nodal x, y, and z directions and rotations about the nodal x, y, and z-axes. The element is 

defined by two nodes as well as its cross-sectional area, two moments of inertia, two 

dimensions and the material properties. Fig.5.1 depicts how the hexagon, which is the 

constitutional element of CNTs nano-structure, is simulated as structural element of a 

space-frame. In the same way the entire nanotube lattice is simulated. The simulation leads 

to the correspondence of the bond length a C–C with the element length L as well as the 

wall thickness t with the element thickness. By assuming a circular cross-sectional area for 

the element, as in Fig.5.1, t corresponds to the element diameter d.  

 

 

 

 

 

 

Fig 5.1 Simulation of a SWCNT as a space-frame structure 

Carbon atom node 

L=acc 

C‐C bond   beam element 

acc

t

d=t 

5.1.3 Relationship between Material Stiffness Parameters and the Constants of 
Force Fields 

Presently, there is no information about the material and sectional properties of the 

C-C bonds under the theory of continuum mechanics. Therefore it is indispensable to 

establish a relationship between the theory of nano-scale mechanics and the theory of 

continuum mechanics. The best way to analyze the nano-scale mechanics is MD 
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simulation. The Tersoff-Brenner force field is the foundation of MD simulation, and the 

force field is generated owing to the interaction of the atoms-atoms, which regulates the 

motion of the atoms in a molecule. Usually, the inter-atomic interactions in molecular 

mechanics of a molecular structure can be described as five forms below: bond stretching, 

bond angle bending, improper (out-of-plane) torsion and dihedral angle torsion and van-

der Waals force, as shown in Fig.5.2. 

 

r0   

 

 

 

 

 

 

 

 

Fig 5.2 Inter-atomic interactions in molecular mechanics 

 

According to the Tersoff-Brenner force field, the general expression of the total 

steric potential energy is the sum of energies due to valence or bonded interaction and non-

bonded interaction: 

Stretching

θ0 

van  der Waals 

Bending

θ0 

Out of torsion Dihedral angle torsion
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rU U U U U Uθ φ ω= + + + + vdw                                                                                                              (5.1) 

where, Ur is the potential energy induced by the bond stretch interaction, Uθ by the bond 

angle bending, Uφ by the dihedral angle torsion, Uω by the improper (out-of-plane) torsion, 

Uvdw by the non-bonded van der-Waals interaction. It is clear that the energy associated 

with van der Waals interactions is highly nonlinear with respect to inter-atomic distance 

and much less than the other bond energy. So in the present analysis, the effect of vander 

Waals interaction is neglected. And for simplicity and convenience, the simplest harmonic 

forms are adopted, with the dihedral angle torsion and the improper torsion merged into a 

single equivalent term, i.e. 

( ) ( )2
r r 0 r

1U  ½K r –  r  K r   
2

= = 2Δ                                                                                                   (5.2) 

( ) ( )2 2
0

1U  ½K  –   K
2θ θ θθ θ θ= = Δ

                                                                                              
(5.3) 

  ( )2
r    r

1U  U  U K    
2ωΦ= + = ΔΦ                                                                                                       (5.4) 

where Kr, Kθ and Kτ are the bond stretching force constant, bond angle bending force 

constant and torsional resistance, respectively, and the symbols Δr, Δθ and Δφ represent 

the bond stretching increment, the bond angle variation and the torsion angle variation, 

respectively. It is assumed that in a hexagonal graphite sheet, only the atom B undergoes a 

micro linear displacement δ in the AB direction, as shown in Fig. 5.3. The internal 

coordinate of bond DB and CB will also change as ∟DBB*=60°. Therefore, 

Δr = BE = ½*δ                                                                                                                  (5.5) 
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δ┴ = EB* = (√3)/2δ                                                                                                            (5.6) 

as δ is micro ,so Δθ  ≈  ( δ┴ / L) =[ √3(δ) /(2L)]  

 

Fig 5.3 Displacements of atoms in graphite sheet and change in internal coordinates 
in BD 

 

According to the theory of the Tersoff-Brenner force field, the change of the total 

steric potential energy can be determined as follows: 

( ) ( ) (1 1 1   
2 2 2

U K r K r K r= Δ + Δ + Δ2 2
r r AB r BD r B )2

C                                                                     (5.7) 

( ) ( ) ( ) ( )
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θ θ θ θ θ
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∟ ∟ ∟

∟ ∟ ∟

 θ∟
 

      ( ) ( ) ( )2
                   

1 1  6 2  15 / 4
2 2

K K L Kθ θ θθ θ δ= Δ × + Δ × =2 2 2
                                                     (5.8) 

From the viewpoint of the theory of continuum mechanics, because the chemical 

properties of C-C bonds in the graphite sheets are identical, it can be assumed that the 

graphite sheet can be treated as a plane frame-like structure, the C-C bonds as uniform 

beam models. Moreover, suppose that the sections of beams are uniformly round and the 
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carbon atoms act as joints of the related load-bearing beam models. So the analysis above 

can be considered as showing that beam AB undergoes a micro displacement δ under axial 

force, with the other joints fixed. The axial displacement Δl and the deflection w of beam 

DB and beam CB may be calculated, and 

 Δl = - Δr =  -(½) δ    ,  w = δ┴ = (√3)/2δ                                                                          (5.9) 

As stated above that δ is micro, the deformation of the structure obeys the linear elastic-

continuum theory, the changes of total strain energies of this plane frame structure under 

the action of the axial force N and bending moment M as shown in Fig 5.4 can be written 

as  

                                                                                                            (5.10)     A      MU U U= +

where 
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The beams will twist in space frame structures and the strain energy of uniform beams 

under the action of the pure torsion T is 
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= =

= =∑ ∑∫ Δ                                                                                  (5.13) 

where Δφi is the relative rotation between the two ends of the ith beam and is equivalent to 

the angle variation of the i-th bond twisting.  

 

Fig 5.4 Pure tension, bending and torsion of an element [22] 

It is evident that both Ur and UA represent the stretching energy, both Uθ and UM 

represent the bending energy, and both Uτ and UT represent the torsional energy. So it can 

be UA = UR, UM = Uθ and UT = Uτ. Thus by comparing Eq.(5.11) with Eq.(5.7), Eq.(5.12) 

with Eq.(5.8), and Eq.(5.13) with Eq.(5.4), the following equations can be obtained. 

r
EA K
L

=                       (5.14) 

5
12

EI K
L θ=               (5.15) 

GJ K
L τ=                              (5.16) 

From equations (5.14)-(5.16), the sectional stiffness parameters of beam models are 

determined and the linkage between the nano-scale mechanics and the continuum 

mechanics is established. Then, based on the theory of continuum mechanics, the material 
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mechanical properties of graphite sheets and carbon SWNTs can be obtained by numerical 

simulative calculation. 

By assuming a circular beam section with diameter d, and setting A=πd2/4, 

I=πd4/64 and J=πd4/32 we get, 

22

24 , ,
4 8

rr

r

k k Ld E G
k k

θ k k L
k
τ

θ θπ π
= = =            (5.17) 

For, kr = 6.52 × 10-7 N nm-1, kθ = 8.76 × 10-10 N nm rad-2, 

kτ = 2.78 × 10-10 N nm rad-2 and L=ac-c=0.1421 nm,    

We get, d=0.147nm, E=5.49 TPa , G = 0.871 TPa. 

5.1.4 Calculation of Elastic Moduli  

The Young’s modulus of a material is the ratio of normal stress to normal strain as 

obtained from a uniaxial tension test. Following this definition, the Young’s modulus of 

SWCNTs is been calculated using the following equation  

0

0

( / )
( /

F AY
H H

=
Δ )

t

                                   (5.18) 

where, 0A Dπ=  and Ho is initial length. where F is the total applied force, A0, the cross-

sectional area, H0 the initial length and ∆H the elongation. A0 is equal to πDt where D is 

the mean diameter of the tube as seen in Fig.5.5. In the case of armchair and zigzag 

SWCNTs, their initial length H0 is preset since all the sub marginal nodes are situated at 

the same plane. However, in case of chiral SWCNTs, the sub marginal nodes are not at the 

same plane and therefore, H0 is taken as the average of the longitudinal coordinates of the 
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sub marginal nodes. ∆H is taken in all cases as the average of the displacements of the sub 

marginal nodes. For calculating the Shear modulus of SWCNTs, the following relation is 

used  

0

0

THS
Jθ

=                          (5.19) 

 

Fig 5.5 Schematic of the cross-section of a SWCNT. 

where T stands for the torque acting at the one end of the SWCNT,  θ for the torsional 

angle of the tube and J0 for the polar moment of inertia of the cross-sectional area. For 

calculating J0, the SWCNT is considered as a hollow tube of diameter D and thickness t. In 

this case, J0 is equal to 

( ) ( )4
0 32

J D t Dπ⎛ ⎞ ⎡= + − −⎜ ⎟ ⎣⎝ ⎠
4t ⎤
⎦                                                                                       (5.20) 

The elongation ∆H and the torsional angle θ are calculated by the FE model. In order to 

apply the conditions of tension and torsion, the nodes of the bottom end of the SWCNT 

have been fully bult-in (zero displacement and rotation conditions), while the nodes of the 
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upper end, are subjected to tensile and tangential forces, respectively. Fig.5.6A and 5.6B 

shows the FE meshes of the SWCNTs with the applied boundary conditions. The first and 

third SWCNT have been subjected to tension, while the second SWCNT to torsion. As 

may be seen in Fig.5.6B, in the case of torsion loading, the nodes of the upper end are 

restricted from moving in the radial direction. In order to apply the boundary conditions of 

tension and torsion, the nodes of the bottom end of the SWCNT have been fully built-in 

(zero displacement and rotation conditions), while the nodes of the upper end, are 

subjected to tensile and tangential forces, respectively. 

5.1.5 Calculation of Coefficient of Thermal Expansion (CTE) 

Here graphene sheets and SWCNTs are modeled using ANSYS commercial FE 

code. The uniform temperature is applied to each node by fixing the nodes at one end (zero 

displacement). The coefficient of thermal expansion of the CNTs in the axial direction is 

given by 

0

1
axial

t

H
H T

α Δ
=

Δ
                                                                                                               (5.21) 

where, ∆H is the change in length of the nanotube, H0 is the length of the carbon nanotube 

and ∆Tt is the change in temperature. Similarly, the coefficient of thermal expansion of the 

CNTs in the radial direction is given by  

1
radial

t

R
R T

α Δ
=

Δ
                                                                                                                (5.22)   
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where, R is the radius of the CNT and ∆R is the change in radius of the nanotube. The 

coefficient of linear thermal expansion of carbon bond as 0.0000019 cm/cm/ ̊ C is adopted 

based on the earlier reference. 

 

Fig 5.6A FE nodal diagram of (5,5) SWCNT under tensile load 

 

Fig 5.6B FE nodal diagram of (5,5) SWCNT under torsional load 
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Fig 5.6C FE mesh of (5,5) SWCNT under tensile load 

 

Table 5.1 Beam element properties I 

Cross sectional area, A: 0.0169785 nm2 

Moments of Inertia, 
I1,I2: 2.293E-5 nm4 

Torsional constant, J: 0.0376735 nm4 

 

Table 5.2 Nanotube geometric and mesh properties 

Type: Armchair
Chirality: 5,5

Avg. Diameter: 0.677901 nm
Length: 1.5987 nm

Number of nodes: 140
Number of elements: 600
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Fig 5.7 Displacement solution of (5,5) nanotube 

 

5.1.6 Results and Discussions 

The data in Table 5.1 & 5.2 is given as input of Ansys and the elongation ∆H and 

the torsional angle θ are calculated by the FE model as shown in the Fig 5.7. Varying the 

wall thickness we analyze the variation of young’s modulus. Varying the diameter of CNT, 

we analyze the variation in elastic moduli and thermal coefficient of linear expansion in 

axial and radial directions. 
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Fig 5.8 Variation of Young’s modulus with wall thickness for (5,5) armchair 

nanotube 

 

 

Fig.5.9 Nanotube bending behavior 

 

Hence, we observe that the young’s modulus increases linearly with 1/wall thickness in Fig 

5.8 and force-deflection relationship is also linear in Fig 5.9. 
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Fig 5.10 Variation of Young’s modulus of armchair SWCNTs (for t=0.34 nm) with 

nanotube diameter 

 

Fig 5.11 Variation of Shear modulus of SWCNTs with nanotube diameter 

 

Hence in Fig 5.10 & Fig 5.11, we observe that both E and G increase with increase in tube 

diameter and reach a constant value for diameters more than 1.5 nm or 15 Å. 
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Fig 5.12 Variation of Coefficient of linear expansion with nanotube length 

 

We observe from Fig 5.12 that the thermal coefficient of linear expansion of 

nanotube increases with nanotube length and reaches a constant value of 2.32E-6 / 0C for 

nanotubes of length 17 Å or greater.  

The plots below in Fig 5.13 & Fig 5.14 depict that the similar variation is seen for  

α axial and α radial with increase in tube diameter. α axial  reaches a value of 2.32E-6 / 0C and   

α radial  reaches a constant value of 2.13E-6 / 0C. 
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Fig 5.13 Variation of Axial Coefficient of linear expansion with nanotube diameter 

 

Fig 5.14 Variation of Radial Coefficient of linear expansion with nanotube diameter 

 

5.2 Finite Element Modeling of Double Walled Carbon Nanotube 

Until now we have observed the behavior of SWNT by bending, stretching and 

twisting them and also subjecting them to elevated temperatures. In an attempt to 

understand the behavior of multi walled nanotubes, in this section we will study the 
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behavior of DWNT under tensile load. The challenge involved in modeling a DWNT is to 

account for the van der Waal’s forces between the adjacent layers. 

The forces are simulated by truss rods between nodes of adjacent layers as seen in 

Fig 5.15. The individual nanotubes are modeled as usual using 3D elastic beam elements. 

In this model, based on the Lennard-Jones ‘‘6–12’’ potential, the van der Waals force 

between interacting atoms is written as  

13 7( )( ) 24 2dU rF r
dr r r r

ε σ σ⎡ ⎤⎛ ⎞ ⎛ ⎞= − = −⎢ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

⎥                                                                      (5.23) 

Where r is the inter-atomic distance, ε and σ are the Lennard-Jones parameters. For carbon 

atoms, the Lennard-Jones parameters are ε = 0.0556 kcal/mole and σ = 3.4Å. 

 

 

Fig 5.15 Truss rods for simulating van der waals forces [23] 

Based on the criterion that the van der Waals force from the lennard Jones Potential 

is negligible when the distance between atoms is beyond 2.5σ, a truss rod is activated 



45 
 

whenever the distance between located in neighboring tube layers is less than 2.5 σ. The 

young’s modulus is then expressed as 

 0

0

( / )
( /

F AY
H H

=
Δ )

                                                                                                               (5.24) 

where, F is the total force acting on the atoms at one end of the nanotube, 

( ) (2
0 0 3.4 3.4

4 iA D Dπ⎛ ⎞ ⎡= + − −⎜ ⎟ ⎣⎝ ⎠
)2 ⎤

⎦ Å2 represents the cross sectional area of the multi 

walled tube with Do and Di  as the outer and inner tube diameters and Ho is the initial length 

of the tube and ∆H is the elongation of the tube. 

 

 * For the above specimen, the no. of van der Waal’s truss rods are 16,662. 

Fig 5.16  3D Elastic beam element mesh of DWNT 
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Table 5.3 Beam element properties II 

Cross sectional area, A 0.0169785 nm2 
Moments of Inertia, I1,I2: 2.293E-5 nm4 

Torsional constant, J 0.0376735 nm4 
 

Table 5.4 Inner SWNT geometric and mesh properties 

Type Armchair 
Chirality 4,4 

Avg. Diameter 0.54233 nm 
Length 2.3366 nm 

Number of nodes 160 
Number of elements 732 

 

Table 5.5 Outer SWNT geometric and mesh properties 

Type  Armchair 
Chirality  8,8 
Avg. Diameter  1.085 nm 
Length  2.3365 nm 
Number of nodes  321 
Number of elements  1304 

 

Since the van der Waal’s force is non linearly varying with length of the truss rod, 

it was possible to analyze only small length nanotubes using ANSYS by giving the data in 

tables 5.3, 5.4 and 5.5 as input. So, a FORTRAN code has been written for modeling the 

nanotubes using 3D beam elements discussed in chapter 4 and the van der Waal’s forces 

using truss elements. Then using the connectivity and the calculated forces fed as nodal 

boundary conditions in ANSYS, the elongation of the DWNT has been calculated for few 

specimens with small lengths of 0.7-1 nm as shown in Fig 5.17.  

The major difficulty involved in FE coding of nanotubes include conversion of 

element coordinates from local coordinate to global coordinate system (using the 3D 
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transformation matrices for rotation and translation) for assembling the elemental 

equations to solve the total system of equations and get the global displacements. Also, the 

boundary conditions at the end nodes need to be carefully applied. If this can be implanted, 

then we are well equipped to analyze longer tubes as shown in Fig 5.16 and get more 

accurate values for elastic moduli of MWNTs. 

 

 

Fig 5.17 Variation of Young’s modulus with outer tube diameter for armchair DWNT 

 

Regarding the experimental results of Young’s moduli of MWCNTs, Wong et al. 

[24] and Salvetat et al. [25] reported values of 1.28 ±0.59 and 0.81±0.41 TPa, respectively, 

using AFM-based experiments. These data are comparable to the present prediction of 

1.05±0.05 TPa. 

The FE code can be extended to model and study the properties of nano-

composites. Multi-scale modeling of compressive behavior of carbon nanotube/ polymer 

composites can be done on similar lines where the nanotube is modeled at the atomistic 



48 
 

scale by the molecular structural mechanics method, and the matrix deformation is 

analyzed at the macroscopic scale by the continuum finite element method. The nanotube 

and polymer matrix are assumed to be bonded by van der Waal’s interactions at the 

interface as shown in Fig 5.18. 

The stress distributions at the nanotube/ polymer interface under isostrain and 

isostress loading conditions have to be examined to study the load transfer between 

nanotubes and matrix. Under compressive loading, one of the failure modes of a structural 

component is elastic instability, namely, buckling. For understanding the performance of 

nanotube/polymer composites under compression, elastic buckling is a fundamental issue 

that needs to be addressed. According to the theory of structural stability, the buckling 

force of a structural element can be determined by the eigen-value analysis, which requires 

the consideration of the geometrically nonlinear problem since For the nanotube/ polymer 

interface, the force–displacement relationship of a truss rod is nonlinear. 

5.2.1 Modeling of Polymer Matrix 

Two kinds of three dimensional finite elements are used in the meshing of the 

matrix [38]: 20-node iso-parametric cubic element (Solid 95 in ANSYS) and 15-node iso-

parametric wedge-shaped element (Solid 147/186). The 20-node element is used in the 

circumferential region surrounding the nanotube, whereas the 15-node element is used in 

the regions directly above and below the nanotube as shown in Fig 5.19 & Fig 5.20. 
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Fig  5.18 Illustrations of truss rods connecting nodes in finite elements with 

carbon atoms: (a) on the nanotube lateral surface and (b) on the nanotube 

end cap region [38] 

 

 

Fig 5.19 Computational model for nanotube/polymer composites 
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Fig 5.20 Mesh of polymer composite matrix 

Then, following the procedure of the structural mechanics technique as in the 

previous models of SWNT and DWNT, the nanotube deformation under certain loading 

conditions can be readily solved. 
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CHAPTER VI 

MOLECULAR DYNAMIC SIMULATIONS OF CARBON NANOTUBES/ POLYMER 

COMPOSITES 

 

Molecular  mechanics and molecular  dynamics simulations  promotes  

science-based  understanding  of the  properties   of complex  materials  and  

phenomena.   In  the  development   of carbon  nanotube/ polymer   composites,  they  

offer  insight  into  the  local interactions  among individual  atoms  based  on  the  

discrete   models  of  the  nanotubes   and  polymer  matrix. They have  provided  

enough  detailed  information  for understanding   the  load  transfer  and mechanical  

behavior  of carbon  nanotube/ polymer   composites.  However,  these  simulations 

are  currently  limited  to  very small  length  and  time  scales and  therefore   are  

not  suitable for large-scale analysis in real-life  applications.  Regarding the  

modeling  of carbon  nanotube/ polymer   composites,  it is required  to  incorporate   

more structural  characteristics  of carbon nanotubes  into the computational  models, 

such as structural  defects  on the  nanotube  surface,  ropes  or bundles  of 

nanotubes,  and waviness of the nanotubes  in the nano-composites. 

6.1 Introduction to Molecular Dynamics Simulation 

In this chapter a summary is given of the key ingredients necessary to carry out 

a molecular dynamics simulation, with particular emphasis on macromolecular systems.  

We discuss the form of the intermolecular potential for molecules composed of atoms, 

and of non-spherical sub-units, giving examples of how to compute the forces and 

torques. We also describe some of the MD algorithms in current use. Finally, we briefly 
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refer to the factors that influence the size of systems, and length of runs, that are needed 

to calculate statistical properties. 

6.1.1 The Aims of Molecular Dynamics 

Computer simulations are carried out in the hope of understanding the properties 

of assemblies of molecules in terms of their structure and the microscopic interactions 

between them.  This serves as a complement to conventional experiments, enabling us 

to learn something new, something that cannot be found out in other ways. The two main 

families of simulation technique are molecular dynamics (MD) and Monte Carlo (MC); 

addition ally, there is a whole range of hybrid techniques which combine features from 

both.  In this lecture we shall concentrate on MD. The obvious advantage of MD over MC 

is that it gives a route to dynamical properties of the system: transport coefficients, time-

dependent responses to perturbations, rheological properties and spectra.  

Computer simulations act as a bridge between microscopic length and time scales 

and the macroscopic world of the laboratory: we provide a guess at the interactions 

between molecules, and obtain ‘exact’ predictions of bulk properties. The predictions are 

‘exact’ in the sense that they can be made as accurate as we like, subject to the 

limitations imposed by our computer budget. At the same time, the hidden detail behind 

bulk measurements can be revealed. An example is the link between the diffusion 

coefficient and velocity autocorrelation function (the former easy to measure 

experimentally, the latter much harder). Simulations act as a bridge in another sense: 

between theory and experiment. 

 



53 
 

6.2 Molecular Interactions 

Molecular dynamics simulation consists of the numerical, step-by-step, solution 

of the classical equations of motion, which for a simple atomic system may be written 

         i i im r f=�� i
i

f u
r
∂

=
∂��

                              (6.1) 

For this purpose we need to be able to calculate the forces if  acting on the atoms, and these 

are usually derived from a potential energy , where  

represents the complete set of 3N atomic coordinates. In this section, we focus on this 

function , restricting ourselves to an atomic description for simplicity. 

( )NU r ( )1 2 3, , ..........N Nr r r r r=

( )NU r

6.2.1 Non-bonded Interactions 

The part of the potential energy Unon-bonded representing non-bonded 

interactions between atoms is traditionally split into 1-body, 2-body, 3-body . . . terms: 

( ) ( ) ( , )N
non bonded i i j

i i j i
u r u r v r r−

>

= + +∑ ∑∑ ….

)

                                                                 (6.2) 

The  term represents an externally applied potential field or the effects of the container 

walls; it is usually dropped for fully periodic simulations of bulk systems.  Also, it is 

usual to concentrate on the pair potential 

( )u r

(v i jr ,r  = ( )v ijr  and neglect three-body (and 

higher order) interactions. There is an extensive literature on the way these potentials are 

determined experimentally, or modeled theoretically. The Lennard-Jones potential is the 

most commonly used form:  
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⎥
         

                                                                                (6.3) 

This potential was used, for instance, in the earliest studies of the properties of liquid 

argon. For applications in which attractive interactions are of less concern than the 

excluded volume effects which dictate molecular packing, the potential may be truncated 

at the position of its minimum, and shifted upwards to give what is usually termed the WCA 

model. If electrostatic charges are present, we add the appropriate Coulomb potentials 

1 2

0

( ) ,
4

coulomb Q QU r
rε

=
Π

                                                                                                      (6.4) 

where Q1, Q2  are the charges and ε0 is the permittivity of free space.  

6.2.2 Bonding Potentials 

For molecular systems, we simply build the molecules out of site-site potentials of 

the form of Eq. (6.3) or similar. Typically, a single-molecule quantum-chemical 

calculation may be used to estimate the electron density throughout the molecule, which 

may then be modeled by a distribution of partial charges via Eq. (6.4), or more accurately 

by a distribution of electrostatic multipoles. For molecules we must also consider the 

intra-molecular bonding interactions. The simplest molecular model will include terms 

of the following kind: 

2
int

1 (
2

r
ramolecular ij ij eq

bonds

U k= −∑ )r r                                                                                     (6.5a) 
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                     21 (
2 ijk ijk eq

bend
angles

kθ θ θ+ ∑ )−                                                                              (6.5b) 

                     ,1 (1 cos( ))
2

m
ijkl ijkl m

torsion m
angles

k mφ φ γ+ +∑ ∑ −                                                         (6.5c) 

The “bonds” will typically involve the separation i= −ij jr r r  between adjacent pairs of 

atoms in a molecular framework, and we assume in Eq. (6.5a) a harmonic form with 

specified equilibrium separation, although this is not the only possibility. As seen in 

Fig 6.1,  the “bend angles” ijkθ  are between successive bond vectors such as i − jr r  

and −j krr  , and therefore involve three atom coordinates: 

 

 

 

 

 

 

 

 

 

 

Fig 6.1 Geometry of a simple chain molecule, illustrating the definition of 
interatomic distance r23 , bend angle θ234 , and torsion angle φ1234  

 

1

2

3

4

r23 

θ234 

φ1234 
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1 1
2 2ˆ ˆcos . ( . ) ( . ) ( . )ijk ij ij ij ij jk jk ij jkr r r r r rθ

− −
= =r r                                                                        (6.6) 

where .  Usually this bending is taken to be quadratic in the angular dis- 

placement from the equilibrium value, as in Eq. (6.5b), although periodic functions are also 

used. The “torsion angles” 

ˆ rr = r/

ijkφ  are defined in terms of three connected bonds, hence four 

atomic coordinates: 

ˆ ˆijkl ijk jklcos n nφ = − •        where,     ijk ij jkn r r= × , jkl jk kln r r= ×                                    (6.7) 

torsional potential involves an expansion in periodic functions of order m  = 1, 2, . , 

Eq. (6.5c). 

6.3 Force Calculation 

Having specified the potential energy function , the next step is to 

calculate the atomic forces 

( )NU r

( )N
i

i

U∂
= −

∂
f r

r
                                                                                                             (6.8) 

For site-site potentials this is a simple exercise. For the intra-molecular part of the 

potential, it is a little more involved, but still a relatively straightforward application of 

the chain rule. 

6.4 The MD Algorithm 

A system composed of atoms with coordinates ( ), ,.....N
1 2 N=r r r r  and potential 

energy , we introduce the atomic momenta ( )NU r ( ), ,.....N
1 2 N=p p p p , in terms of 
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which the kinetic energy may be written 2

1
( ) / 2N

ii
K

=
= m∑N

ip p . Then the energy, or 

hamiltonian, may be written as a sum of kinetic and potential terms . Write 

the classical equations of motion as  

H K U= +

/i i m=�r p i i    and  i =�p f                                                                                                (6.9) 

This is a system of coupled ordinary differential equations. Many methods exist to 

perform step-by-step numerical integration of them. Characteristics of these equations 

are: (a) they are ‘stiff’, i.e. there may be short and long timescales, and the algorithm 

must cope with both; (b) calculating the forces is expensive, typically involving a sum 

over pairs of atoms, and should be performed as infrequently as possible. Also we must 

bear in mind that the advancement of the coordinates of two functions: (i) accurate 

calculation of dynamical properties, especially over times as long as typical correlation 

times τa of properties a of  interest (we shall define this later); (ii) accurately staying on 

the constant-energy hyper-surface, for much longer times run aτ τ� , in order to sample 

the correct ensemble. 

To ensure rapid sampling of phase space, we wish to make the timestep as large 

as possible consistent with these requirements. For these reasons, simulation algorithms 

have tended to be of low order (i.e. they do not involve storing high derivatives of 

positions, velocities etc.): this allows the time step to be increased as much as possible 

without jeopardizing energy conservation. It is unrealistic to expect the numerical method 

to accurately follow the true trajectory for very long times τrun .  The ‘ergodic’ and 

‘mixing’ properties of classical trajectories, i.e. the fact that nearby trajectories diverge 

from each other exponentially quickly, make this impossible to achieve. 
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6.5 The Verlet Algorithm 

There are various, essentially equivalent, versions of the Verlet algorithm, 

including the original method and a ‘leapfrog’ form .  

  1 1( ) ( ) ( )
2 2i ip t t p t tf tδ δ+ = + i

                                                                                   (6.10a)
 

1( ) ( ) ( ) /
2i i ir t t r t tp t t mδ δ δ+ = + + i

                                                                            (6.10b) 

1 1( ) ( ) ( )
2 2i i ip t t p t t tf t tδ δ δ δ+ = + + +

                                                       (6.10c)
 

 After step (6.10b), a force evaluation is carried out, to give (t t)δ+if  for step (6.10c). 

This scheme advances the coordinates and momenta over a timestep δt. As we shall see 

shortly there is an interesting theoretical derivation of this version of the algorithm. 

Important features of the Verlet algorithm are: (a) it is exactly time reversible; (b) it is 

symplectic (to be discussed shortly); (c) it is low order in time, hence permitting long 

timesteps; (d) it requires just one (expensive) force evaluation per step; (e) it is easy to 

program. 

6.6 Constraints 

 It is quite common practice in classical computer simulations not to attempt to 

represent intra-molecular bonds by terms in the potential energy function, because these 

bonds have very high vibration frequencies (and arguably should be treated in a quantum 

mechanical way rather than in the classical approximation).  Instead, the bonds are 

treated as being constrained to have fixed length. In classical mechanics, constraints are 

introduced through the Lagrangian or Hamiltonian formalisms. Given an algebraic 
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relation between two atomic coordinates, for example a fixed bond length b between 

atoms 1 and 2, one may write a constraint equation, plus an equation for the time 

derivative of the constraint 

( ) ( ) 2
1 2 1 2 1 2( , ) 0bχ = − • − − =r r r r r r                                                                           (6.11a) 

( ) ( )1 2 1 2 1 2( , ) 2 0χ = − • − =� r r v v r r                                                                               (6.11b) 

In the Lagrangian formulation, the constraint forces acting on the atoms will enter thus: 

i i i im = + Λ��r f g                                                                                                               (6.12) 

where Λ  is the undetermined multiplier and 

( )1 1 2
1

2∂
= − = − −

∂
χ r r
r

, (2
2

2 )1 2
∂

= − = −
∂

χg r r
r

                                                           (6.13) g

It is easy to derive an exact expression for the multiplier Λ from the above equations; if 

several constraints are imposed, a system of equations (one per constraint) is obtained. 

However, this exact solution is not what we want: in practice, since the equations of 

motion are only solved approximately, in discrete time steps, the constraints will be 

increasingly violated as the simulation proceeds. The breakthrough in this area came with 

the proposal to determine the constraint forces in such a way that the constraints are 

satisfied exactly at the end of each time step. For the original verlet algorithm, this 

scheme is called SHAKE. The appropriate version of this scheme for the velocity verlet 

algorithm is called RATTLE.  

 



60 
 

6.7 Periodic Boundary Conditions 

Small sample size means that, unless surface effects are of particular interest, 

periodic boundary conditions need to be used. Consider 1000 atoms arranged in a 10 × 

10 × 10 cube. Nearly half the atoms are on the outer faces, and these will have a large 

effect on the measured properties. Even for 106 = 1003 atoms, the surface atoms amount 

to 6% of the total, which is still nontrivial. Surrounding the cube with replicas of itself 

takes care of this problem. Provided the potential range is not too long, we can adopt the 

minimum image convention that each atom interacts with the nearest atom or image in 

the periodic array 

In the course of the simulation, if an atom leaves the basic simulation box, 

attention can be switched to the incoming image as shown in Fig 6.2. Of course, it is 

important to bear in mind the imposed artificial periodicity when considering properties 

which are influenced by long-range correlations. Special attention must be paid to the case 

where the potential range is not short: for example for charged and dipolar systems. 

 

6.8   Neighbour Lists 

Computing the non-bonded contribution to the inter-atomic forces in an MD 

simulation involves, in principle, a large number of pair-wise calculations: we consider 

each atom i and loop over all other atoms j to calculate the minimum image separations 

rij . Let us assume that the interaction potentials are of short range,  if , 

the potential cutoff. In this case, the program skips the force calculation, avoiding 

expensive calculations, and considers the next candidate j. Nonetheless, the time to 

( ) 0ijv r = ij cutr r>
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examine all pair separations is proportional to the number of distinct pairs, 1/2 ( )1N N −  

in an N-atom system, and for every pair one must compute at least  ; this still 

consumes a lot of time.  

2
ijr

Some economies result from the use of lists of nearby pairs of atoms. Verlet 

suggested such a technique for improving the speed of a program. The potential cutoff 

sphere, of radius rcut, around a particular atom is surrounded by a ‘skin’, to give a larger 

sphere of radius rlist. At the first step in a simulation, a list is constructed of all the 

neighbors of each atom, for which the pair separation is within rlist. Over the next few MD 

time steps, only pairs appearing in the list are checked in the force routine. From time to 

time the list is reconstructed: it is important to do this before any unlisted pairs have 

crossed the safety zone and come within interaction range. It is possible to trigger the list 

reconstruction automatically, if a record is kept of the distance travelled by each atom 

since the last update. The choice of list cutoff distance rlist is a compromise: larger lists 

will need to be reconstructed less frequently, but will not give as much of a saving on CPU 

time as smaller lists. This choice can easily be made by experimentation. 

For larger systems (N ≥ 1000 or so, depending on the potential range) another 

technique becomes preferable. The cubic simulation box (extension to non-cubic cases is 

possible) is divided into a regular lattice of ncell × ncell × ncell cells. These cells are chosen 

so that the side of the cell lcell = L/ncell is greater than the potential cutoff distance rcut. If 

there is a separate list of atoms in each of those cells, then searching through the 
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Fig 6.2 Periodic boundary conditions. 

neighbours is a rapid process: it is only necessary to look at atoms in the same cell as the 

atom of interest, and in nearest neighbour cells. The cell structure may be set up and used 

by the method of linked lists. The first part of the method involves sorting all the atoms 

into their appropriate cells. This sorting is rapid, and may be performed every step. Then, 

within the force routine, pointers are used to scan through the contents of cells, and 

calculate pair forces. This approach is very efficient for large systems with short-range 

forces. A certain amount of unnecessary work is done because the search region is cubic, 

not (as for the Verlet list) spherical. 

6.9 Direct velocity scaling 

Direct velocity scaling is a drastic way to change the velocities of the atoms so that 

the target temperature can be exactly matched whenever the system temperature is higher 

or lower than the target by some user-defined amount.  Direct velocity scaling cannot be 
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used to generate realistic thermodynamic ensembles, since it suppresses the natural 

fluctuations of a system. It can be used to bring a system to equilibrium quickly, at which 

point a more appropriate thermostat can be used. In Materials Studio, the velocities of all 

atoms are scaled uniformly as follows: 

                                                                                                           (6.14) 

Direct temperature scaling adds (or subtracts) energy from the system efficiently, but it is 

important to recognize that the fundamental limitation to achieving equilibrium is how 

rapidly energy can be transferred to, from, and among the various internal degrees of 

freedom of the structure. The speed of this process depends on the energy expression, the 

parameters, and the nature of the coupling between the vibrational, rotational, and 

translational modes. It also depends directly on the size of the system, larger systems 

taking longer to equilibrate. Velocity increments to attain desired temperature governed by 

the relationship 

21 3
2 2 bmv NK T=                                                                                                              (

Maxwe

6.15) 

ll Boltzmann distribution (probability) is used to guess the velocity for a timestep. 

6.10 Forcite Module 

Forcite is a molecular mechanics module for potential energy and geometry 

optimization calculations of arbitrary molecular and periodic systems using classical 

mechanics. Forcite offers support for the PCFF force fields. With this wide range of force-

fields, Forcite can handle essentially any material. The geometry optimization algorithm 
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offers steepest descent, conjugate gradient, and quasi-Newton methods, in addition to the 

Smart algorithm, which uses these methods sequentially. This allows very accurate energy 

minimizations to be performed. 

A standard constant stress molecular dynamics (MD) simulation method was 

applied

6.11 Results and Discussions 

ade using FORCITE module of MATERIAL STUDIO 

softwar

 to construct the atomistic models of the polymer/CNT composites in this study by 

setting up an appropriate inter-atomic potential function (specified in  the following 

discussion). MD simulations are useful to study the time evolution behavior of systems in a 

variety of states where thermal sampling of configurational space is required. After 

equilibration at finite temperature, an energy minimization method was applied to calculate 

the elastic moduli of the models structures computed from the MD simulations. Periodic 

boundary conditions were applied to the models along both the tube axis and transverse 

directions.   

Simulations have been m

e to observe the behavior of nanotubes and nanocomposites under thermal 

fluctuations and under application of constant strain to get the mechanical properties. 

NVT Ensemble has been used with velocity verlet scheme for integration with pcff force-

field. Further in Figures from 6.3A to 6.6C, we have the list of models simulated under 

different conditions and the output data from performing minimization and production 

runs. 
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Fig 6.3A SWNT Armchair (4,4) with D=5.42 Å and L=17.216585 Å at T=298K 

 

Fig 6.3B Convergence of SWNT Armchair (4,4) during geometry optimization 

 

Fig 6.3C Temperature deviation during the dynamics run for   SWNT Armchair (4,4) 
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Fig 6.4A SWNT Zigzag (5,0) with D=3.91A and L=21.3A at T=298K 

 

Fig 6.4B Convergence of SWNT Zigzag (5,0) during geometry optimization 

 

Fig 6.4C Temperature deviation during the dynamics run for SWNT Zigzag (5,0) 
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Fig 6.5A SWNT Chiral (4,8) with D=8.29Å and L=11.270901 Å 

 

Fig 6.5B Convergence of SWNT Chiral (4,8) during geometry optimization 

 

Fig 6.5C Temperature deviation during the dynamics run for SWNT Chiral (4,8) 
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Fig 6.6A DWNT with (8,8) as D0=10.85 Å, (5,5) as Di=6.78 Å and L=7.38 Å 

 

Fig 6.6B Convergence of DWNT (5,5) -(8,8) during geometry optimization 

 

Fig 6.6C Temperature deviation during the dynamics run for DWNT (5,5) -(8,8) 
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Now in figures 6.7- 6.15 shown below, we have the plots of E and G for the above 

specimens of SWNTs and DWNTs to analyze their variation with length and diameter. 

The mechanical properties are obtained using Forcite module in Materials Studio. We will 

therefore be in a position to make a comparative study of the results obtained from FE 

method and MD simulations. 

 

Fig 6.7 Variation of Young’s modulus with nanotube diameter 

 

Fig 6.8 Variation of Shear modulus with nanotube diameter 
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Fig 6.9 Variation of Young’s modulus with nanotube length 

 

 

Fig 6.10 Variation of Shear modulus with nanotube length 
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Fig 6.11 Variation of Young’s modulus with Strain applied at the ends of the 
nanotube 

 

 

 

Fig 6.12 Variation of Young’s modulus with outer diameter of double walled 
nanotube 
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Fig 6.13 Variation of Shear modulus with outer diameter of double walled nanotube 

 

 

 

Fig 6.14 Variation of Young’s modulus with DW nanotube length 
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Fig 6.15 Variation of Shear modulus with DW nanotube length 

 

Next we present classical molecular dynamics (MD) simulations of model 

polymer/CNT composites constructed by embedding a single wall (10, 10) CNT into two 

different amorphous polymer matrix of poly-oxyacetylene as shown in Fig 6.16 with 

different volume fractions. A constant-strain energy minimization method was then applied to 

calculate the axial and transverse elastic moduli of the composite system. 

In general, semi-crystalline thermoplastic polymers can exhibit relatively large 

strains compared to other amorphous materials in which only a small elastic strain can be 

generated before either fracture or yielding takes place. Since the ultimate tensile strength 

or yield stress are governed by the presence of defects, then the large-scale microstructure 

of the material is more pertinent than the local atomic structure. Hence it is computationally 

very difficult to calculate the strength of pure polymer systems, and also in composite systems 

undergoing large plastic deformations (e.g. fibre pull-out) using the molecular dynamics 

method. It is for this reason that the current study focuses on the calculation of low strain 
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elastic moduli only, with the principle motivation being an elucidation of the effect of 

interfacial interaction energy between CNTs and polymer matrices on the elastic moduli of 

their composites. However, it is certain that these interfacial phenomena will also affect the 

strength of the composite. 

 

 

Fig 6.16A Minimized configuration of (10, 10) SWNT in poly-oxyacetylene matrix of 
10 chains in the cell 

 

 

Fig 6.16B Temperature window of (10, 10) armchair SWNT in poly-oxyacetylene 
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Table 6.1 Elastic stiffness constants Cij (GPa), σi=Cijεj, for an applied strain of 0.002 

Cij 1 2 3 4 5 6 
1 -0.2693 0.6596 -0.5334 0.613 0.1219 0.2005 
2 0.6596 -0.7092 -0.2432 0.2944 0.5259 0.1712 
3 -0.5334 -0.2432 1.6638 0.3261 -0.1121 -0.1704 
4 0.613 0.2944 0.3261 0.6425 -0.5957 -0.0083 
5 0.1219 0.5259 -0.1121 -0.5957 0.3728 -0.4341 
6 0.2005 0.1712 -0.1704 -0.0083 -0.4341 -0.0231 

 

Table 6.2 Elastic stiffness constants Cij (GPa), σi=Cijεj, for an applied strain of 0.004 

Cij 1 2 3 4 5 6 
1 -0.4095 0.2271 0.5587 0.0971 -0.1483 -0.1744 
2 0.2271 0.0906 0.5354 0.708 0.2728 0.1185 
3 0.5587 0.5354 0.9119 0.1802 0.1852 -0.0308 
4 0.0971 0.708 0.1802 0.2373 0.0846 -0.0917 
5 -0.1483 0.2728 0.1852 0.0846 0.4576 0.1323 
6 -0.1744 0.1185 -0.0308 -0.0917 0.1323 -0.2302 

 

Table 6.3 Elastic moduli of nanocomposite for different applied strains 

 

Strain 0.002 0.004 
Elastic Properties Reuss Voight Hill Reuss Voight Hill 

Bulk modulus (GPa) 0.0000 0.0501 0.0251 1.5581 0.3595 0.9588 
Shear modulus (GPa) 0.0000 0.2519 0.1260 0.0000 0.0444 0.0222 

Compressibility (1/TPa) -15996.3209 641.8113 
λ* (GPa) -0.4330 0.3307 
μ* (GPa) -0.1122 0.1549 

From the data in tables 6.1, 6.2 and 6.3, we observe that the Shear modulus 

decreases with increase in strain and Young’s modulus in the direction of strain increases 

with strain. Close observations of the above results obtained using MD simulations 

subsequently processed using statistical mechanics are likely to lead us to several 

important conclusions which correlate atomistic scale to macroscale nanocomposites. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

7.1 Summary 

The discovery of carbon nanotubes has initiated a number of scientific 

investigations to explore their unique properties and potential applications. They are 

considered as ideal reinforcements for structural and multifunctional composite 

applications. However, some crucial issues must be solved before the full potential of 

carbon nanotubes is realized in the nanocomposite materials. Fundamental understanding 

and highly accurate predictive methods for the interfacial bonding and mechanical 

behavior of carbon nanotube/polymer composites are crucial to realize successfully the 

extraordinary properties of this new class of nanocomposite materials. This part of research 

has compared different computational methods to study the behavior of nanotubes when 

subjected to bending, stretching and twisting. Subsequently, one can understand the 

interfacial bonding and mechanical behavior of carbon nanotube/polymer composites. The 

comparison sheds light on the main differences and similarities between the methods and 

introduces the essential features of new methods. 

7.2 Conclusions 

1) A finite element model using 3D ELASTIC BEAM elements has been presented 

for studying the behavior of single walled carbon nanotubes under mechanical 

loading (bending, stretching and twisting).  
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2) A finite element code has been developed to model multi-walled carbon nanotubes 

and to impart Van der Waal’s forces between adjacent layers and consequently 

study its effect on the mechanical properties. 

3) Parametric studies have been made to analyze the effect on different parameters 

like diameter, length and wall thickness on the elastic moduli using FE method and 

MD simulation technique. 

4) Contrasting effect of tube diameter on young’s modulus of nanotube is observed 

using ‘Finite Element Technique based on Molecular Mechanics’ and ‘Molecular 

Dynamics’ which is as expected due to the difference in inter-atomic potentials 

considered at 0 K and higher temperatures. 

5) Multi-scale modeling of nanocomposite is presented to study the buckling behavior 

of carbon nanotube/polymer composite. 

6) Elastic constants of carbon nanotube in poly-oxyacetylene matrix are derived using 

MD to study their variation with density (no. of nanotubes embedded/unit cell 

volume) of the nanocomposite.  

7.3 Scope of Future Work 

This work can be extended to determine the mechanical properties of Si3N4 and BN 

nanotubes as well as defective nanotubes and functionalized nanotubes. New models can 

be suggested to determine the electrical and electronic properties of nanotubes at high 

temperature. 
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