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ABSTRACT 

 

Dynamics of Intelligent Poly(N-isopropylacrylamide) Microgels. (May 2009) 

Srinivasa Rao Pullela, B.S, University of Mumbai; M.S, Oklahoma State University 

Chair of Advisory Committee: Dr. Zhengdong Cheng 

 

This dissertation investigates the self assembly and automatic oscillation of intelligent 

poly (N-isopropylacrylamide) [PNIPAM] microgel particles. The equilibrium phase 

diagram as a function of temperature and concentration was constructed for the charged 

PNIPAM spheres. The PNIPAM microgel particles display rhythmic size oscillations 

when covalently coupled to a nonlinear chemical reaction, the Belousov-Zhabotinsky 

(BZ) reaction. The nonequilibrium dynamics of PNIPAM microgels in the presence of 

BZ reaction was studied by the systematic variation of substrate concentrations and 

temperature. In addition, the BZ chemical reaction was modeled to reveal the existence 

of upper temperature limits for nonlinear chemical systems.  

 

The experiments employ environment sensitive PNIPAM particles that are sensitive to 

temperature, pH, and ionic strength. The PNIPAM particles have been demonstrated 

here to behave as hard spheres at low pH values and soft spheres at high pH. This is 

done by measuring the freezing and melting boundary of fluid-crystal coexistence region 

with a new technique which is simpler and quicker compared to the traditional 

sedimentation method.   

 

A novel method was developed to achieve size uniformity of PNIPAM gel particles with 

covalently-bound tris(bipyridyl)ruthenium(II) via the coordination chemistry between a 

ruthenium complex and the monodispersed PNIPAM gel particles bearing bipyridine 

ligands. The correlation between the dynamic behavior of BZ reaction induced 



 iv 

mechanical oscillations of PNIPAM particles and substrate concentrations was presented 

in a ternary phase diagram. In particular, the dependence of oscillation frequency and 

induction time on the substrate concentrations was studied. The temperature dependency 

of the induction time and oscillatory frequency of the BZ reaction in this polymer-

immobilized catalyst system were compared to the bulk BZ reaction with the catalyst in 

the solution phase. Prolonged induction times were observed for the immobilized 

catalyst, compared with free catalyst, while little difference was observed on the 

oscillation frequency. 

 

A theoretical improvement has been achieved by incorporating the temperature 

dependence in the BZ Oregonator model.  Bifurcation has been calculated in the phase 

space spanned by initial reagents concentration ratio, stoichiometric factor and 

temperature. The existence of upper temperature limits has been demonstrated.  
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CHAPTER I 

INTRODUCTION: POLY(N-ISOPROPYLACRYLAMIDE) GELS 

 

 

1.1 Stimuli-Responsive Poly(N-isopropylacrylamide) Gels 

 

Response to stimuli is a basic phenomenon in living systems. Aqueous environment-

sensitive gels form an interesting subset of polymer gels, offering promising routes to 

mimic complex functions of living systems. The polymer gels are swollen in water and 

contain up to 97% of water. They undergo relatively large and abrupt reversible size 

changes in response to small external variations in the environmental conditions. They 

are classified according to the stimuli they respond to as: temperature, pH, ionic 

strength, light, electric and magnetic field sensitive. The swell-shrink properties of 

microgels depend upon the subtle balance of polymer-polymer vs. polymer-water 

interactions. Their ability to swell and de-swell according to conditions makes them an 

interesting proposition for use in intelligent materials. This phenomenon has been 

exploited in many areas such as drug delivery,
1-4

 chemical and biosensing,
5-7

 nano-

patterning
8
 etc.  

 

Poly(N-isopropylacrylamide) [PNIPAM] is a well studied polymer that exhibits 

reversible phase transitions with the applied stimuli. The mechanistic understanding of 

swell and de-swell phase transition, fine control of the structure-property relationship, 

and novel biomedical applications of PNIPAM gels are the subjects of focus for many 

recent studies. Tanaka reported the thermodynamics underlying the collapse of the 

polymer network in polyacrylamide gels for the first time in 1978.
9
 PNIPAM exhibits a 

lower solution critical temperature (LCST) of about 32°C.
10

 Below the LCST, PNIPAM 

is soluble in water and favorable interactions via hydrogen bonding between amide 

____________ 
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groups of the polymer and water molecules lead to the dissolution of polymer chains. 

Above the LCST, the hydrogen bonds are broken and water molecules are expelled from 

the polymer, resulting in precipitation of the polymer.
11

 The phase transition of PNIPAM 

from a soluble to insoluble state can be seen on a nanometer scale using atomic force 

microscopy (AFM).
12

 Confocal laser scanning microscopy (CLSM) has been used to 

probe the mesoscopic internal structures of network polymers, including those of 

poly(NIPAM), were shown to be composed of continuous two-domain structures with 

dense and sparse regions in the polymer network demonstrating fixed concentration 

fluctuations.
13

 Copolymerization of NIPAM with hydrophobic comonomers, such as 

butylmethacrylate, decreases the LCST of aqueous copolymer solution. And 

copolymerization with hydrophilic comonomers, such as acrylic acid or hydroxy ethyl 

methacrylate, results in an increase of the LCST.
11

  

 

PNIPAM gels and their derivatives have been tested for many biological applications 

such as separations, enzyme immobilization, gene delivery and cell culture.
14-18

 

PNIPAM polymers were investigated for the on–off control of avidin–biotin binding.
14

 

Below the transition temperature of 32°C, NIPAM copolymers forms favorable 

polymer–water interactions and the polymer interferes with the biotin-binding site on the 

avidin, whereas above the transition temperature, the polymers are collapsed and cannot 

interfere with the binding sites. In a related research, bioseparations of enzymes has been 

achieved using the PNIPAM conjugated to trypsin and chymotrypsin.
14,15

 Although the 

enzyme activity decreased to <50% of the native enzyme activity, the ease of separation 

at high temperatures was demonstrated.  

 

pH sensitive PNIPAM hydrogels have been used to develop controlled release 

formulations. Kumacheva et al. have reported novel bio-functionalized pH sensitive 

PNIPAM microgels that can specifically target tumor cells.
19

 The site specific treatment 

involves the advantage of the receptor-mediated endocytosis process and use pH changes 

in the intracellular environment for targeted delivery of anticancer drug into the tumor 
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cells. Lyon et al. have reported folate-conjugated PNIPAM gels for specific targeting of 

cancer cells.
20

 The conjugated folate-PNIPAM gel particles act as potential candidates 

for cytosolic drug delivery in addition to their large swelling capacity. Yang has 

demonstrated a pH sensitive PNIPAM gel that is stable in neutral media, but release drug 

in the acid media due to the deformation of the polymer gel.
21

 

 

A novel cell co-culture method was investigated using thermosensitive grafted PNIPAM 

surfaces.
22

 By covalently grafting PNIPAM onto tissue culture surfaces, cell adhesion 

and detachment were regulated by temperature.
23,24

 Cell manipulation techniques using 

temperature responsive culture surfaces grafted with PNIPAM were also reported.
25

 A 

decrease in culture temperature below the LCST resulted in the release of cardiac 

myocyte sheets from the cell culture dishes without enzymatic treatment. PNIPAM–

acrylic acid copolymers were used for entrapping islets of Langerhans for a refillable 

biohybrid artificial pancreas.
18

  

 

Hybrid materials containing magnetic nanoparticles and thermosensitive PNIPAM have 

received a lot of interest during the last few years due to their faster response.
26,27

 The 

magnetic functionality can be used to guide the microgels in particular parts, thus 

opening up the possibility of their use as targeted dug delivery systems. PNIPAM gels 

seeded with ferromagnetic materials demonstrated magnetic-field-sensitive swelling–

deswelling transition. The transition resulted from the heat released by magnets in a 

magnetic field, followed by the collapse of temperature-sensitive PNIPAM copolymer.
28

 

 

PNIPAM polymers are also pH sensitive when copolymerized with ionizable functional 

groups such as poly(acrylic acid) or poly(allylamine)
29

 etc. By generating the charge 

along the polymer backbone, the electrostatic repulsion results in an increase in the 

hydrodynamic volume of the polymer. 

 

 



 

 

4 

1.2 Phase Transition Studies in PNIPAM Colloidal Suspensions 

 

In contrast to the conventional colloids, the inter-particle potential in aqueous dispersion 

of PNIPAM microgel particles is sensitive to the temperature changes. Consequently, the 

phase diagram of PNIPAM dispersions differs from those for ordinary colloids where 

the inter-particle potential in general is invariant with temperature.
30,31

 Phase transitions 

in colloidal systems have been studied over past decades not only because of theoretical 

interests for addressing fundamental questions about the nature of liquids, crystals and 

glasses, but also for many practical applications of colloids, especially for the fabrication 

of nanostructured materials.
32-35

 Previous investigations on the phase behavior of 

colloidal dispersions, however, are primarily focused on hard-sphere-like particles such 

as polymethylacrylate, silica, or polystyrene; only a limited number of studies are 

available on those colloids where the inter-particle potential is a strong function of 

temperature. Aqueous dispersions of poly-N-isopropylacrylamide (PNIPAM) microgel 

particles exhibit a reversible and continuous volume transition in water around 34°C.
36,37

 

The lower critical solution temperature behavior of a PNIPAM microgel could affect the 

inter-particle forces between microgels, resulting in drastic different phase behavior 

from those of conventional hard-sphere-like colloidal systems.  

 

1.2.1 Volume Transition of PNIPAM Particles 

The Flory and Rehner theory for gel swelling assumes uniform distributions of polymer 

segments and cross-linking points throughout the polymer network.
38

 Due to the 

heterogeneous nature of PNIPAM particles,
37

 an empirical modification of the 

Flory−Rehner theory has been proposed by Hino and Prausnitz.
39

 This theory has been 

applied successfully to describe the volume transition of bulk PNIPAM gels. The same 

thermodynamic model for bulk polymer gels is also applicable to microgel particles 

because the physics for the volume transition is independent of the particle size as long 

as the surface effect is unimportant.  
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At swelling equilibrium, the chemical potential of water is equal inside and outside the 

microgel particle: 

 

.pure

water

gel

water µµ =    (1) 

 

The chemical potential inside the gel includes two contributions:  one is the same as that 

in the aqueous solution of PNIPAM polymer, and the other arises from the cross-linking 

of polymer chains or from the gel elasticity: 

 

.elasticity

water

polymer

solution

gel

water µµµ +=         (2)

        

The chemical potential of water in an aqueous PNIPAM solution can be calculated from 

the Flory−Huggins theory, 

 

( ) .)1ln(/ 2χφφµµ +−=− kT
pure

water

polymer

water       (3) 

 

Where φ is the volume fraction of PNIPAM polymer, and the Flory polymer−solvent 

energy parameter χ  is given empirically as a function of temperature and composition,  

 









−








+−
=

TT

468.4566

)/867.2458exp(50001

5001
ln2

65.01

3

φ
χ   (4) 

 

Eq. (4) is obtained by fitting the Flory−Huggins theory with the phase-equilibrium data 

for non-cross-linked PNIPAM polymer in water.
39

 For microgels, the volume fraction φ 

in Eq. (3) corresponds to that inside of individual particles. 
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The second term on the right-hand of Eq. (2) arises from gel elasticity. This term takes 

into account the effect of the network formation on the chemical potential of the solvent. 

According to the modified Flory-Rehner theory by Hino and Prausnitz,
39

 the chemical 

potential of water due to gel elasticity is given by,  

 

.
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3
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1

0

0
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elasticity

water
   (5) 

 

where m is the average number of segments between two neighboring cross-linking 

points in the gel network, and 0φ  is the polymer volume fraction in the reference state 

where the conformation of the network chains is closest to that of unperturbed Gaussian 

chains. Approximately, 0φ  is equal to the volume fraction of polymer within the 

microgel particles at the condition of preparation. Substitution of Eqs. (2) – (5) into Eq. 

(1) yields 
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At a given temperature, Eq. (6) can be used to find the polymer volume fractionφ . Once 

we haveφ , the diameter of PNIPAM particles can be found from, 

 

,
3

1

00




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


=

φ

ϕ

σ

σ
          (7) 

 

where 0σ  is the particle diameter at the reference state. The average chain length m and 

the volume fraction of polymer 0φ  at the reference state are obtained by fitting Eqs. (6) 
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and (7) to the diameters of microgel particles obtained from static and dynamic light 

scattering experiments.  

 

1.2.2 Inter-particle Potential and Osmotic Second Virial Coefficient 

The inter-particle potential )(rU  is related to the osmotic second virial coefficient B2 by 

 

[ ] drreB
kTrU

∫
∞

−−=
0

2/)(

2 12π ,        (8) 

 

where r is center-to-center distance between colloidal particles.  

 

It is assumed that the interaction potential for PNIPAM particles can be represented by a 

function that includes a hard sphere repulsion and a van der Waals attraction. A similar 

potential was used by Senff and Richttering for representing the phase behavior of 

rheological properties of PNIPAM microgel dispersions.
37

 The hard-sphere diameter is 

related to the swelling of gel particles and can be calculated from Eq. (7). The van der 

Waals attraction beyond the hard-sphere diameter can be represented by 

 

,)(
nA

r

H
rU −=          (9) 

  

where H is the Hamaker constant, and n is assumed as 8 in considering that the range of 

attraction between colloidal particles (relative to the particle size) is shorter than that 

between atomic molecules. Approximately, the Hamaker constant of microgel particles 

is given by  

 

,
2

mH ρ∝           (10) 
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where mρ  represents the number density of polymeric groups within each particle. The 

proportionality constant in Eq. (10) is independent of temperature and the polymeric 

group density mρ . From Eqs. (9) and (10), the attractive potential due to the van der 

Waals forces is, 

 

,)(

6

00

nn

AA
rT

T
krU 
























−=

+
σ

σ

σ
       (11) 

 

where kA is a dimensionless constant and T0 is a reference temperature that is introduced 

for the purpose of dimensionality. In Eq. (11), the parameters T0, ,0σ and kA are 

temperature independent, and they can be obtained by fitting Eq. (8) to the osmotic 

second virial coefficients obtained from static light scattering measurements.  

 

1.2.3 Thermodynamic Model for the Fluid and Solid Phase 

A first order perturbation theory is appropriate for a dispersion of microgel particles in 

the fluid state because higher order terms are insignificant when the perturbation arises 

only from short-range attractions.
40

 The Helmholtz energy of the fluid phase includes a 

hard-sphere contribution that is given by the Carnahan−Starling equation of state and a 

perturbation that takes into account the van der Waals attraction (Eq. 11). In 

dimensionless units, the Helmholtz energy is given by 

 

,
)(

)(12
)1(

34
1)ln(

1

2

2

2

dx
kT

xU
xgx

NkT

F AHS

F∫
∞

+
−

−
+−= η

η

ηη
η     (12) 

 

where N represents the total number of particles, 6/3πρση =  is the particle packing 

fraction, ρ is the particle number density, and )(xg HS

F  is the hard-sphere radial 

distribution function. The integral in Eq. (12) is correlated as a function of particle 
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packing fraction using the radial distribution function )(rg HS

F obtained from the 

Percus−Yevick equation,
41

 

 

.2007.01642.0027224.0)()( 2

1

6 ++=≡ ∫
∞

− ηηη xgxI
HS

F     (13) 

 

The quadric form as given in Eq. (13) is applicable to the reduced density .6.03 <ρσ  

 

Replacement of the integral in Eq. (12) with )(ηFI  gives, 

 

,)(12
)1(

34
1)ln( *

2

2

εηη
η

ηη
η FI

NkT

F
−

−

−
+−=       (14) 

 

where  

.

6

00*

n

T

T

kT

+

















=

σ

σε
ε         (15) 

 

Other thermodynamic properties can be derived from Eq. (14) following standard 

thermodynamic relations.  

 

To describe the thermodynamic properties of the solid phase, a perturbation approach is 

followed similar to that for the fluid phase. The Helmholtz energy includes a 

contribution from the reference hard sphere crystal and a perturbation taking into 

account the van der Waals attraction, 

  

,
)(

)(12
1

2 dx
kT

xU
xgx

NkT

F

NkT

F AHS

S

HS

∫
∞

+= η       (16) 

 



 

 

10 

where )(xg
HS

S is the radial distribution function of the hard sphere solid. As in a hard-

sphere system, an aqueous dispersion of PNIPAM microgel particles forms a face 

centered cubic (fcc) lattice in the solid phase even when the particles are at low cross-

linking density.
42

  

 

 

The Helmholtz energy of the hard-sphere solid is given by, 

  

.1
2

8
ln

3
1

0 










−







=

ρ
ρ

NkT

F
HS

        (17) 

 

Compared with the original Lennard-Jones and Devonshire cell model,
43

 the improved 

cell model introduces a factor of 8, taking into account the fact that the neighboring 

particles share partially the free space. The modified cell model provides accurate 

freezing and melting densities for the fluid−solid transition of uniform hard spheres. The 

hard-sphere radial distribution function )(rg
HS

S  can be calculated using a modified 

Gaussian model for density distributions.  

 

The perturbation term in Eq. (16) is intergrated using the radial distribution function 

)(rg
HS

S  for the hard-sphere solid. The final expression for the Helmholtz energy of the 

solid phase is given by 

 

,)(121
2

8
ln *

3
1

0

ερη
ρ

ρ
S

HS

I
NkT

F
−


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




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
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
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



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where, 

.5514.05253.0451.0)()( 2

1

6 +−=≡ ∫
∞

− ρρρ xgxI
HS

S     (19) 
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Eq. (19) is applicable for the solid phase with the reduced density 0.95 < 3ρσ  < 1.27.  

 

1.2.4 Phase Equilibrium Calculations 

The chemical potential µ and the osmotic pressure P can be derived following standard 

thermodynamic relations, 

 

VTN

F

,










∂

∂
=µ .          (20) 

 

NTN

F
P

,










∂

∂
−= .         (21) 

 

where V stands for the total volume. A fluid-fluid coexistence curve is obtained from the 

criteria of phase equilibrium 

 

αα µµ = .          (22) 

 

αα PP = .          (23) 

 

where α  and β  represents two different fluid phases. For each temperature, the 

equilibrium densities αρ  and βρ  are solved using Eqs. (22) and (23). If no solution is 

found, the temperature is above the critical temperature for fluid-fluid equilibrium; in 

this case, there is only one fluid phase. For fluid-solid equilibrium, Eqs. (22) and (23) 

can be used. For liquid phase α , the Helmholtz energy in Eq. (14) and for the solid 

phase β , Helmholtz energy in Eq. (18) accounts for the fluid-solid phase transition. 

Again, the, the equilibrium densities αρ  and βρ  can be matched using Eqs. (22) and 

(23). 
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1.3 Design and Applications of Mechanically Oscillating PNIPAM Particles 

 

The stimuli-responsive behavior is a temporary action toward an equilibrium state. In 

contrast, there are many physiological phenomena in our body that continue their own 

native cyclic changes such as brain waves and the pulsating secretion of hormones. If 

such self-oscillation could be achieved for gels, many possibilities would emerge for 

new biomimetic intelligent materials that exhibit autonomous rhythmical motion. 

Yoshida et al. developed a new design concept for polymer gels which exhibit 

spontaneous and autonomous periodic swelling and de-swelling changes under constant 

conditions without on–off switching of external stimuli will be introduced.
44

 In the 

materials design, nonlinear dynamics of chemical reactions and characteristics of gels as 

open systems play an important role.
45

 

 

The mechanical oscillation of the gel is produced via an oscillating chemical reaction, 

called the Belousov–Zhabotinsky (BZ) reaction.
46-48

 The BZ reaction has a cyclic 

reaction network similar to the tricarboxylicacid (TCA) cycle which is a metabolic 

reaction in living systems. The BZ reaction is well known for exhibiting temporal and 

spatial oscillating phenomena with periodic redox changes of the catalysts in a closed 

solution. The overall process is the oxidation of an organic substrate such as citric or 

malonic acid (MA) by an oxidizing agent (bromate) in the presence of a metal catalyst 

under acidic conditions. Metal ions or metal complexes with high redox potentials (1.0–

1.4 volts/standard hydrogen electrode), such as cerium ion, ferroin, or ruthenium 

tris(2,2’-bipyridine) [Ru(bipy)3
2+

] are widely used as catalysts. During the BZ reaction, 

the metal catalyst ion periodically changes its oxidation number to oscillate between the 

oxidized and reduced states. In a homogeneously stirred BZ reaction, the color of the 

solution periodically changes due to the redox changes of the metal catalyst. In an 

unstirred solution BZ reaction, concentric or spiral wave patterns appear in the solution 

as shown in Figure 1.1.  
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Figure 1.1 Spiral waves in the Belousov–Zhabotinsky reaction (Left) and in D. 

discoideum (Right).
49

  

 

The significance of the BZ reaction has been recognized as a chemical model for 

understanding some aspects of biological phenomena, such as glycolytic oscillations or 

biorhythms,
50

 cardiac fibrillation,
51

 self-organization of amoeba cells,
52

 pattern 

formation on animal skin,
53,54

 visual pattern processing on retina,
55

 etc. The chemical 

oscillation of the BZ reaction is converted into the mechanical changes of gels via direct 

linking of the polymer chains to the metal catalyst of the BZ reaction as illustrated in the 

Figure 1.2. 

 

The PNIPAM-co-Ru(bipy)3
+2

 gel has a phase-transition temperature because of 

themosensitive constituent NIPAM. The oxidation of the Ru(bipy)3
+2 

moiety caused not 

only an increase in the swelling degree of the gel, but also a rise in the transition 

temperature (Figure 1.3). These characteristics may be interpreted by considering an 

increase in hydrophilicity of the polymer chains due to the oxidation of Ru(II) to Ru(III)  

in the Ru(bipy)3 moiety. As a result, it is expected that the gel undergoes a cyclic 

swelling–deswelling alteration when the Ru(bipy)3 moiety is periodically oxidized and 
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reduced under constant temperature. When the gel is immersed in an aqueous solution 

containing the substrate of the BZ reaction except for the catalyst, the substrates 

penetrates into the polymer network and the BZ reaction occurs in the gel. Consequently, 

periodical redox changes induced by the BZ reaction produce periodical swelling–

deswelling changes of the gel.
56

 The gel has the cyclic reaction network in itself to 

generate periodic mechanical energy from the chemical energy of the BZ reaction. 

 

 

 

 

 

 

Figure 1.2 Mechanic self-oscillation for PNIPAM-co-Ru(bipy)3
+2

 gel coupled with the 

Belousov-Zhabotinsky reaction. 

 

The cubic PNIPAM-co-Ru(bipy)3
+2

 gel (each length of about 0.5 mm) was found to 

oscillate mechanically when immersed into an aqueous BZ solution containing malonic 

acid (MA), sodium bromate (NaBrO3), and nitric acid (HNO3) at constant temperature. 

Therefore, the redox oscillation takes place with in the Ru(bipy)3 the gel network  which 

periodically changes between reduced and oxidized states. When the gel size smaller 

than the wavelength of the chemical wave, the redox changes of ruthenium catalyst 

occurs homogeneously without pattern formation.
57

 Due to the redox oscillation of the 
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immobilized Ru(bipy)3
+2

, mechanical swelling-deswelling oscillation of the gel 

autonomously occurs with the same period as for the redox oscillation. The size changes 

are isotropic and the gel beats as a whole, like a heart muscle cell. The gel exhibits 

swelling during the oxidized state and deswelling during the reduced state. The chemical 

and mechanical oscillations are synchronized without a phase difference. 

 

 

 

 

Figure 1.3 Temperature dependence of diameter for PNIPAM-co-Ru(bipy)3
+2

 gel 

particles under the conditions of reduced Ru(II) state [in Ce(III) solution] and oxidized 

Ru(III) state [in Ce(IV) solution].
58

  

 

 

A rectangular PNIPAM-co-Ru(bipy)3
+2

 gel (1mm x 1mm x 20 mm) was immersed in an 

BZ solution containing MA, NaBrO3, and HNO3 solutions. The chemical waves 

propagate in the gel at a constant speed in the direction of the gel length as shown in 

Figure 1.4.
59,60
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Figure 1.4 Propagation of chemical wave in rectangular PNIPAA-co- Ru(bipy)3
+2

 gel.
58

  

 

The dark Ru(II) and light Ru(III) zones represent the shrunken and swollen parts 

respectively of the gel. The locally swollen and shrunken parts move with the chemical 

wave, like the peristaltic motion of living worms. The propagation of the chemical wave 

makes the free end of the gel move back and forth at a rate corresponding to the wave 

propagation speed. As a result, the total length of the gel periodically changes.  

 

A novel biomimetic self-walking gel which is made up of self-oscillating gel was 

developed by Yoshida et al.
61

 Directional movement of gel is produced by asymmetrical 

swelling–deswelling of the PNIPAM-co-Ru(bipy)3
+2

 gel. For these purposes, the 

hydrophilicity of the gel is increased by copolymerizing PNIPAM-co-Ru(bipy)3
+2

 gel 

with a third component, hydrophilic 2-acrylamido-2-methylpropanesulfonic acid 

(AMPS). The monomer solution during the polymerization was added between two 

different surfaces of plates; a hydrophilic glass surface and a hydrophobic Teflon 
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surface. Due to the hydrophobicity of Ru(bipy)3
+2

, it migrates to the Teflon surface side. 

As a result, a non-uniform distribution along the height is formed by the components, 

and the resulting the gel strip always bends in the direction of the surface which was 

facing the Teflon plate during polymerization.  

 

 

 

 

Figure 1.5 Time course of self-walking motion of the gel actuator. During stretching, 

the front edge can slide forward on the base, but the rear edge is prevented from sliding 

backwards. Oppositely, during bending, the front edge is prevented from sliding 

backwards while the rear edge can slide forward. This action is repeated, and as a result, 

the gel walks forward (the walking velocity: 170 µm/min). Outer solution: MA 62:5 

mM, NaBrO3 84 mM, and HNO3 0:894 M, 18°C.
61

 

 

A ratchet mechanism was employed to convert the bending and stretching changes to 

one-directional motion. On the ratchet base, the gel repeatedly bends and stretches 

autonomously resulting in the forward motion of the gel, while sliding backwards is 

prevented by the teeth of the ratchet. Figure 1.5 shows forward movement of the self-
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walking motion of the gel in the BZ substrate solution under constant temperature. The 

period of chemical oscillation and the velocity of the gel actuator was approximately 112 

s, and 170 µm/min, respectively. The velocity of the gel can be controlled by changing 

the concentration of substrates in the outer solution. 

 

A two dimensional close-packed array of thermo-sensitive microgel beads was prepared 

by double template polymerization.
62

 First, a 2D colloidal crystal of silica beads with 10 

µm diameter was obtained by solvent evaporation. This monolayer of colloidal crystal 

can serve as the first template for preparation of macroporous polystyrene. The 

macroporous polystyrene trapping the crystalline order was used as a negative template 

for fabricating a gel bead array (Figure 1.6). The fabrication method demonstrated was 

so versatile, and this method may be a key technology to create new functional surface. 

 

A rapid swelling-deswelling response during the BZ reaction can be achieved by 

introducing porosity into the PNIPAA-co- Ru(bipy)3
+2

 gel membrane.
63

 A closely 

packed 3D colloidal silica crystal is used as a template to obtain the periodically ordered 

PNIPAM-co-Ru(bipy)3
+2

 gel membrane with an interconnecting porous structure (Figure 

1.7). If the porous gel precisely maintains the fine structure of the precursor colloidal 

crystal, the dynamic movement can be observed quantitatively through the structural 

color based on the reflection from the photonic bandgap in the gel. Because of its 

unusual and complex photochemical properties of ruthenium, the amplitude and the 

period of the gel membrane can also be controlled by illumination with visible light. 

Hence, photo-regulated worm like motion of the gel can be achieved by light irradiation.  

 

The operating conditions for the self-oscillation are limited to conditions under which 

the BZ reaction occurs. For practical applications, it is necessary to design a self- 
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Figure 1.6 Preparation method for the ordered array of 2-D microgel beads. (a) 

Photograph and SEM images of the obtained silica colloidal crystal. (b) Fabrication 

process of a 2D monolayer of gel beads by the double-template polymerization 

method.
63

  

 

oscillating polymer which acts under biological environments. The acid media such as 

nitric acid or sulfuric acid was substituted by directly incorporating a sulfonic acid group 

into the polymer.
64,65

 The strong oxidant bromate was replaced with another compound 

that releases bromate ions through ion exchange.
66

  For this purpose either 2-acrylamido-

2-methylpropanesulfonicacid (AMPS) or Methacrylamidopropyltrimethylammonium-
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chloride (MAPTAC) were incorporated into PNIPAM-co-Ru(bipy)3
+2

. Therefore, the 

self oscillations in the in porous PNIPAM-co-Ru(bipy)3
+2

 gels can be achieved without 

using strong acid or oxidizing agents. 

 

1.4 Mechanism of the BZ Reaction: The Oregonator Model 

 

The reactants for the simple BZ reaction are malonic acid (MA), Sodium bromate, 

Cerium (IV) sulfate and sulfuric acid. The original FKN (Richard J. Field, Endre Koros, 

and Richard M. Noyes) mechanism for the BZ reaction consists of 80 elementary steps 

in which the metal cation, cerium oscillates between +3 to +4 and vice versa.
47

 Below is 

the overview of some of the key steps in FKN mechanism: 

 

(1) BrO3 
-
 + 5 Br 

-
 + 6 H

+
                        3 Br2 + 3 H2O 

(2) HOBr + Br 
-
 + H

+
                         Br2 + H2O 

(3) BrO3 
-
 + Br 

-
 + 2 H

+
                        HBrO2 + HOBr 

(4) Br2 + MA        BrMA + Br 
-
 + H

+
 

(5) 2Ce
+3

 + BrO3 
-
  + HBrO2 + 3 H

+
          2Ce

+4
 +   2 HBrO2   +    H2O 

(6) 2 HBrO2                  HOBr + BrO3 
-
 + H

+
 

(7) 6Ce
+4

 + MA + 2 H2O   6Ce
+3

 + HCOOH + 2 CO2 + 6 H
+
 

(8) 4Ce
+4

 + BrMA + 2 H2O     4Ce
+3

 + Br 
-
 + HCOOH + 2 CO2 + 5 H

+
 

(9) Br2 + HCOOH   2Br 
-
 + CO2 + 2 H

+
 

 

In the above reaction mechanism, bromide (Br 
-
) reduces the bromate (BrO3 

-
). This 

reaction is fast, quickly using up the available bromide. Once bromide drops to a critical 

level, bromous acid (HBrO2) takes over the reduction of bromate in a reaction that auto 

catalytically produces more bromous acid (step 5). This leads to exponential growth in 

HBrO2. This is eventually checked by a reaction that converts HBrO2 to HOBr and  
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Figure 1.7 Three dimensional periodically ordered porous PNIPAM-co-Ru(bipy)3
+2

 gel. (a) Preparation scheme of a 

periodically ordered interconnecting porous PNIPAM-co-Ru(bipy)3
+2

 gel using a closest-packing colloidal silica crystal as a 

template. Spatiotemporal color patterns of oscillating behavior for a (b) bulk porous PNIPAM-co-Ru(bipy)3
+2

 gel, and for a (c) 

porous PNIPAM-co-Ru(bipy)3
+2

 gel. The pictures show the time change in the pigment color of the bulk gel and the structural 

color of the porous gel during the BZ reaction at several temperatures. The BZ reaction solution (20 mL) containing malonic 

acid (0.0625M), sodium bromate (0.084M), and nitric acid (0.890M) was used.
63
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bromate (step 6). The rate limiting steps (7), (8), and (9) reduce Ce
+4

 to Ce
+3

 and 

simultaneously increase bromide concentration. Meanwhile, the decomposition of 

malonic acid [CH(COOH)2] in step 4 results in the reduction of bromine to bromide, 

nearly restoring the initial concentration of bromide. Once the bromide concentration is 

high enough, it reacts with bromate and HOBr in (1) and (2) to form bromine, and the 

process begins again. The two ionization states of the cerium produce two different 

absorption spectra and the change can be viewed by a color change from yellow to clear 

and vice versa. 

 

The simpler version of the reaction model, namely the Oregonator model, can reproduce 

the essential characteristics of the reaction.
67,68

 It used three composition variables, five 

irreversible reaction steps controlled by five rate constants and a stoichiometric factor, f 

(which is proportional to the ratio between the average number of bromide ions 

produced and the number of Ce
4+

 ions consumed during the malonic acid oxidation 

step).  

 

The five equations that are representative of over all BZ reaction are,  
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The classical three dimensional Oregonator consists of the following kinetic equations: 
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hBZkHXYkAYHk
dt

dY
52

2

1 +−−=  (24b) 

BZkHAXk
dt

dZ
532 −=  (24c) 

 

where X = [HBrO2], Y = [Br
-
], Z = [Ce(IV)], A = [BrO3

-
], B = [CH2(COOH)2], H = 

[H
+
], and h = 2f. The kinetic rate constants in Eq. (24) are labeled according to their 

original sequence. 

 

The following dimensionless quantities are defined. 
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With the subscript 0 denotes the reference values, 
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Plugging Eqs. (25) and (26) into (24), the kinetic equations become: 
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Using the pseudo-steady state approximation for y, i.e., ),()( TT εδ <<  Eq. (27) is 

converted into a pair of ordinary differential equations: 

  

2
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The above equations can be solved for x and z.  
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1.5 Organization of the Dissertation 

 

The dissertation is organized as follows. In Chapter II a novel technique has been 

developed to determine the freezing-melting boundaries of the thermo-sensitive neutral 

PNIPAM-co-acrylic acid microgel particles in the temperature-concentration plane. In 

addition, the phase behavior of the charged PNIPAM-co-acrylic acid has been 

investigated by tuning the inter-particle potential of the particles. Chapter III provides 

details of the automatic size oscillations of PNIPAM particles in coupling to a nonlinear 

chemical reaction, the Belousov-Zhabotinksy reaction. The BZ reaction characteristics 

such as the oscillatory frequency, induction time, and the oscillation amplitude are 

analyzed as a function of initial substrate concentrations. Then, the temperature 

dependency of the BZ reaction has been compared between polymer-immobilized and 

free ruthenium catalyst BZ reactions in Chapter IV. The overall activation energies of 

the BZ reaction are calculated for both induction and oscillatory phases. In Chapter V, 

the temperature response of the two-variable Oregonator model is investigated. The 

prediction of the temperature dependency of the BZ reaction response from the model is 

correlated to the experimental findings. This analysis provides insights into the role of 

temperature and can be extended to some biological oscillators. Finally, conclusions are 

presented in Chapter VI, together with projects in progress.  
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CHAPTER II 

DETERMINATION OF FREEZING-MELTING BOUNDARIES OF POLY(N-

ISOPROPYLACRYLAMIDE) GEL PARTICLES
*
 

 

 

 

2.1 Synopsis 

 

Phase boundaries for thermo-sensitive colloids are determined by UV Vis spectroscopy 

as an alternative to the time consuming sedimentation method. The Bragg attenuation 

peak from colloidal crystallites was monitored during the quasi-equilibrium colloidal 

crystal melting. The melting and freezing boundaries of the coexistence region were 

determined via a blue-shift of Bragg’s peak and the disappearance of peak area. This 

method is demonstrated for poly(N-isopropylacrylamide) (PNIPAM) particles at 

different charge densities and temperatures far below the lower critical solution 

temperature. At low pH, the particles were neutral and behave as thermo-sensitive hard 

spheres, and at high ph, the PNIPAM particles behave as thermo-sensitive charged 

spheres.  

 

2.2 Introduction 

 

Colloidal suspensions are vital model systems for the investigation of not only the 

structure and dynamics of fluids, crystals, and glasses, but also the phase transitions 

between them.
37,69-71

 Colloids are directly analogous to atoms and are advantageous to 

study owing to their larger sizes and hence slower diffusion rates.  They can be 

visualized by microscopy methods
72-74 

or analyzed using light scattering 

techniques.
31,75,76

 Although hard-sphere like colloidal suspensions were the primary 

____________ 

*
Reproduced with permission from the Journal of Colloid and Interface Science, 2008, 

317, 96-100. Copyright 2009 Elsevier. 
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focus of crystal nucleation studies,
77-82

 the crystallization kinetics and phase behavior of  

aqueous dispersions of PNIPAM particles have attracted increasing attention in recent 

years.
  
Recently, the crystallization kinetics and phase behavior of aqueous dispersions of 

PNIPAM particles have attracted increasing attention,
83

 partly due to their easier 

manipulation of volume fraction by changing local environmental conditions.
84-86

 

 

Until now, the primary method for phase boundary analysis was carried out via 

sedimentation.
37,69,78

 A suspension in the fluid and crystal coexistence region is analyzed 

over a period of time. The crystals are allowed to grow and settle under gravity. The 

height of the fluid-crystal interface is used to determine the crystallinity produced by the 

phase transition.
78

 However, gravity also concentrates the suspensions and subsequently 

grows a thin layer of crystals at the fluid-crystal interface.
37

 Thus a major drawback of 

this method is the extremely long time duration, weeks or even months, required for the 

measurement of thin layer growth in order to extract the effect of gravity. A more 

prompt method for analysis of phase boundaries and crystallization kinetics has been 

brought forth using UV-vis spectroscopy, where a small density difference between the 

PNIPAM colloidal particles and the medium elongated the sedimentation time.
31,75

 

However, that study did not determine the melting temperatures, and thus left the 

coexistence region undefined; the hard sphere interation between particles is therefore 

still an assumption.  Yodh et al. found premelting of the crystals at grain boundaries and 

dislocations within the colloidal crystals where they utlized temperature responsive 

PNIPAM particles, viewed under real time video microscopy.
87

 In this work, the fluid-

crystal phase boundaries were probed by UV-vis. spectroscopy in a more time-efficient 

manner than the aforementioned sedimentation method. The present work is an extention 

to the previous measurements of phase boundaries by UV-vis spectroscopy.
88

 

 

 

 

 



 

 

28 

2.3 Experimental Section 

 

All Chemicals were purchased from Sigma-Aldrich. N-isopropylacrylamide (NIPAM) 

(97% purity) was re-crystallized from 1:5 (v:v) toluene and n-hexane mixture.  All other 

chemicals were used as received. The PNIPAM microgel samples containing 5 mole % 

of either acrylic acid or allylamine were prepared by precipitation polymerization.  The 

following reagents were mixed in a three-neck flask and stirred for 1 hour at 300 rpm 

using a mechanic stirrer under nitrogen purge:  240 mL deionized (DI) water, 3.78 g N-

isopropylacrylamide (NIPAM) monomer and 0.12 g acrylic acid (AA) as co-polymer, 

0.0665 g methylene-bis-acrylamide (MBA) as cross-linker, and 0.106 g sodium dodecyl 

sulfate (SDS) as a surfactant.  The reaction was initiated by adding a 0.166 g portion of 

potassium persulfate dissolved in 10 mL of degassed DI water and allowed to run for 4 

hours at 70 ºC. The polymer suspension was then purified via dialysis against DI water 

for a week at room temperature, with the DI water changed twice per day. The molecular 

weight cut off of the dialysis membrane is 10000 kDa. The hydrodynamic diameter 

measured by dynamic light scattering (DLS) for dilute sample is 253 nm at pH 3.0 and at 

23°C. The pH of the particle suspension was first changed to an appropriate value, 

followed by centrifugation at 30000 g for 2 hours at 34 °C. The particles were then  re-

dispersed in DI water having same pH to that of concentrated suspension. Four 

concentrated samples with pH values 2.80, 3.50, 3.90 and 4.20 were first made and using 

which, crystals were formed under different concentrations at coexistence region. The 

weight percentage of each sample was obtained by drying out the solvent completely.  

 

A fiber optic UV-vis spectrometer EPP2000 (StellarNet Inc., Tampa, Florida), a halogen 

light source with an SL1 filter, and a temperature-controlled cuvette holder from 

Quantum Northwest (QNW, Spokane, Washington), were used for sample analysis.  

SpectraWiz software was used for spectra acquisition.  To avoid water condensation 

inside the cuvette holder at lower temperatures, a nitrogen gas purge setup, equipped 
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with a Rego twin-gauge regulator and a ChemGlass air-free bubbler for visual flow rate 

observation, was employed. 

  

The laboratory temperature was maintained at approximately 22 ºC. Visual observation 

of the samples provided a good basis for the freezing point estimation. To avoid shear 

melting, each sample was heated to a temperature at which only the fluid phase was 

seen, whereupon a reference spectrum was taken. Then, the cuvette temperature was 

maintained well below the estimated melting temperature for several hours so that the 

sample is fully crystallized and equilibrated. Beginning at this low temperature, the 

cuvette temperature was slowly increased in the increments of 0.25 ºC, allowing 30 

minutes to equilibrate after each step. A UV-vis transmission spectrum was recorded at 

each temperature. With the fluid references taken well above the freezing temperatures 

for each sample, an intense Bragg attenuation peak evolves as crystallites form. As 

temperature was increased in measured increments, the Bragg peak started to shrink until 

it fully disappeared at or below the fluid reference temperature. 

 

2.4 Results and Discussion 

 

2.4.1 Determination of Freezing-Melting Boundaries of PNIPAM Colloidal Suspensions 

The spectra gathered at different temperatures for a specific sample was compiled and 

overlaid on a single plot of transmittance versus wavelength using OriginLab 7.5 

(Northampton, MA). Figure 2.1 plots the data for charged PNIPAM-co-allylmine 

spheres with pH=7.4. Most relevant to the determination of the melting and freezing 

points for the suspensions are the decrease in the peak integration and the blue-shift of 

the Bragg diffraction as temperature increases (Figure 2.2). Determination of the 

freezing point exploits the change in peak area (integration) as a function of temperature, 

which is plotted in Figure 2.2a. The Bragg peak area was calculated by fitting two 

Gaussian peaks to each spectrum and the value for the integration of the sharp, narrow 
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Figure 2.1 UV-vis transmission spectra of the PNIPAM-co-allylamine microgel 

dispersions of pH=7.4 at different temperatures.  With a fluid reference at 22º C, the 

Bragg peak blue-shifts and disappears with the melting of crystallites.   

 

peak is used in Figure 2.2a, which indicates that the freezing point is located between 

20ºC and 20.5ºC.  By fitting the data on both sides to a linear and third order polynomial 

line, the freezing point is calculated to be at their intersection, 20.2 + 0.1ºC. Notice that 

the area is not linearly dependent on temperature in the coexistence regime because the 

volume fraction of the suspension is not linearly dependent on temperature. The melting 

point determination utilizes the temperature responsive shrinkage of the PNIPAM 

particles and the resulting blue shift of Bragg scattering as the particles move closer. The 

peak position is described by the dynamic diffraction theory.
89
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Figure 2.2 Determination of phase boundaries using PNIPAM-co-acrylic acid by UV-

vis spectroscopy (a) Area of the Bragg peak. The Bragg peak disappears completely 

when the last of the crystallites has melted.  Intersection of the two trend lines yields the 

precise melting temperature. (b) Wavelength of the peak position. The Bragg peak 

begins to shift to a lower wavelength as the crystallites begin to melt. The precise 

melting point is shown to be at the intersection of the two trend lines. The particles move 

closer when the crystallites melt as illustrated by inset diagram. 
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where n is the refractive index of the suspension, 0ψ  is photonic scattering strength of 

the particles, which is almost zero due to the high porosity of the hydrogels. D is the 

diameter of the colloidal particles, φ  is the volume fraction of the particles inside the 

crystallites, θ is the averaged Bragg angle, and h,k,l are the indices of the scattering 

plane. Considering the quasi-equilibrium nature of the melting and the random 

orientation of the crystallites, the average scattering angle can be assumed to be the same 

as the temperature increases. Figure 2.2b shows that the melting point separates two 

distinct behaviors of the crystallites, i.e. the retaining of a constant Bragg peak position 

at lower temperatures and the strong blue-shifting right above the melting point. 

 

Below the melting temperature, no crystallites were melted even though the particle 

diameter is reduced. Because all particles shrink simultaneously, the relative positions 

among the particles remain constant. Hence, 3Dφ ∝ , which leads to 
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, which is a constant for the same sample. 

 

On the contrary, the particle volume fraction of the crystallites inside the coexistence 

regime is constant,  meltingcrystalecoexistenccrystal ϕϕ =, . Therefore,  
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As illustrated by the inset of Figure 2.2(b), as crystallites melt, the further shrunken 

particles (red positions) need to move closer (blue positions) to maintain the proper 

osmotic pressure of the crystallites. This close-packing motion creates tighter lattice 

planes, hence shorter Bragg scattering wavelength. When the crystallites begin to melt, 

the peak begins to shift; this point is taken as melting point.  In a similar manner to the 

freezing point determination, the intersection of a linear trend line to the left and a 

second degree polynomial trend line to the right of these temperatures yields a precise 

melting temperature of 15.4 + 0.1 ºC.   

 

Figure 2.3a plots the determined transition temperatures versus polymer concentration 

for PNIPAM-co-acrylic acid particles at pH=2.8. Using the precise melting and freezing 

temperatures, an accurate depiction of the phase diagram for PNIPAM particles was 

provided far below their lower critical solution temperature, which is around 34
o
C.  

Following a horizontal path across the diagram, the width of the coexistence region was 

determined to be approximately 7% relative to the freezing concentration at room 

temperature. This value is consistent with hard sphere boundaries with 5% 

polydispersity in size.
5,90

 The polymer concentration was converted into the 

corresponding volume fraction for PNIPAM hard spheres at room temperature by 

calibrating the particle volume fractions at the freezing transition to be 49.4% (Figure 

2.3b). The corresponding diameter of the particles with temperature is shown in the 

inset. The diameter of the particles used were in agreement with the dynamic light 

scattering measurement of the particles. To investigate the interaction between the 

particles, we systematically change the pH of PNIPAM-co-acrylic acid suspension. 

Figure 2.4 plots the relative width of the coexistence region at room temperature as a 

function of pH. The width increases from pH 2.8 to 3.9 and then decrease upto pH 6.5 

for PNIPAM-co-acrylic acid spheres. With pH rise, the particles are physically charged 

up. An initial increase and then decrease for the relative width is observed. The initial 

increase in the width is due to the increase in the debye length of the particles and the 

decrease in the width after 3.9 is due to the increase in the charge of the particles. 



 

 

3
4

 

 

Figure 2.3 Phase diagram of the PNIPAM-co-acrylic acid microgel dispersions at pH=2.8 measured via UV-vis spectroscopy. 

a) Temperature-concentration representation. At room temperature, the fluid-crystal transition width normalized to the freezing 

transition concentration is approximately 7%, consistent with hard sphere models with 5% polydisperisity. Inset: Illustration of 

the phase diagram in a broader concentration and temperature range. b) Temperature-particle volume fraction φ representation. 

Inset: Particle diameter with temperature (open circles are dynamic light scattering measurement). Red solid line indicates the 

diameter of the particles used to transfer from temperature-concentration representation to temperature-volume fraction 

representation. 
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Figure 2.4 Plots of acrylic acid dissociation (solid line) and relative width of coexistence 

region (dotted line) normalized to the freezing concentration as a function of pH at room 

temperature.   

 

2.4.2 Phase Behavior of Charged PNIPAM Spheres 

The size of the charged PNIPAM spheres measured by dynamic light scattering as a 

function of temperature is shown in Figure 2.5. The volume phase transition is between 

30 - 34°C. The line in the graph is merely a guide to the eye. Below the volume phase-

transition temperature, the PNIPAM dispersion exists as a clear liquid at low polymer 

concentration, and a crystalline solid at high polymer concentration. Above the volume 

transition temperature of the microgel particles, the sample appears turbid due to the 

phase transition, where no crystals are observed. Figure 2.6 plots the experimental phase 

behavior of hard and charged PNIPAM spheres on temperature-concentration plane.  

The surface charge of PNIPAM particles are controlled by varying pH of the microgel 

dispersions. At pH 2.80, all the acid groups in the acrylic acid are protonated and the 

PNIPAM particles acts as hard spheres. At a higher pH of 4.20, the acrylic acid is 50%  
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Figure 2.5 Diameter of charged PNIPAM spheres at pH 4.20, determined by the 

dynamic light scattering measurements for different temperatures. 

 

dissociated and the PNIPAM particles behave as soft spheres. 

 

Figure 2.6a show the experimental equilibrium phase behavior of charged PNIPAM 

particles, and the phase diagram of PNIPAM hard spheres calculated by perturbation 

theory is graphed in Figure 2.6b. For hard PNIPAM spheres, the coexistence region is 

extended up to a concentration of 250 g/L, whereas the coexistence region spans up to a 

concentration of 28 g/L. The experimental phase diagram for charged spheres is different 

to that of hard spheres, in the sense that the particles crystallize at lower volume 

fractions. The movement of the coexistence region towards lower concentrations is due 

to the increase in the Debye length of the particles. The effective diameter of the charged 

spheres can be calculated from equation (30) along the melting curve of the coexistence 

region. The diameters obtained from the experiments are being compared to that of hard 

spheres in Figure 2.7. The data from the Figure 2.7 is suggestive of less degree of 

shrinkage for charged spheres at high temperatures. As the particles shrink at higher  
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Figure 2.6 The equilibrium phase diagram of thermo-sensitive PNIPAM colloids. (a)  

Experimental phase behavior of charged PNIPAM particles probed by UV Vis 

spectroscopy, and (b) Prediction of phase diagram of hard PNIPAM spheres from the 

thermodynamic perturbation theory.
31

  

 

temperatures, the surface charge density on the particles increases to a much higher 

degree, resulting in the high Debye length compared to those at lower temperatures. 

The future work investigates into the application of perturbation theory to interpret 

charged spheres phase behavior. Prediction of phase equilibrium with the perturbation 

theory requires calculating osmotic pressure (π) and Gibbs free energy (G), as functions 

of volume fraction (φ ), for both fluid and solid states. The hard sphere diameter is being 

replaced by the effective diameter for the charged spheres.  
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Figure 2.7 Comparison of diameters between hard and charged PNIPAM spheres at 

different temperatures. 

 

2.5 Conclusions 

 

A critical technique was developed in this chapter to characterize the melting and 

freezing temperatures for a PNIPAM microgel dispersions using UV-visible 

transmission spectroscopy. This method provides an accurate and time-efficient method 

of phase boundary analysis for temperature-sensitive polymers, and a valuable technique 

for inter-particle potential characterization. At low pH, the PNIPAM-co-acrylic acid 

microgel particles behave as thermo-sensitive hard spheres, and at high pH, the particles 

behave as charged spheres. 

 

The determination of freezing-melting boundaries by UV Vis spectroscopy method can 

be broadly applicable to “intelligent” colloidal systems in which the effective hard-

sphere particle diameter during phase transition is sensitive to control variables such as 
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temperature, pH, and salt. This method can also offer an analytical tool for direct size 

measurement for the particles in the coexistence regime if φmelting and the dominant 

Bragg scattering angle are determined. For example, we can measure the de-swelling of 

the hydrogels under osmotic pressure at the fluid-crystal phase transition. The 

coexistence region for the chaged spheres moved towards lower concentrations, and the 

effective diameter of the charged particles increases with temperature due to the increase 

in the charge density. 
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CHAPTER III 

A TERNARY PHASE DIAGRAM FOR THE BELOUSOV-ZHABOTINSKY 

REACTION INDUCED MECHANICAL OSCILLATION OF INTELLIGENT 

PNIPAM COLLOIDS
*
 

 

3.1 Synopsis  

  

Belousov-Zhabotinsky reaction-induced mechanical oscillation of poly(N-isopropyl-

acrylamide) (PNIPAM) gel particles was investigated by systematic variation of BZ 

substrate concentrations. The correlation between the dynamic behavior and substrate 

concentrations was presented in a ternary phase diagram. The phase diagram shows that 

the oscillatory and steady state regimes coexist and are separated by a high frequency 

oscillation band. Dependence of oscillation frequency and induction time on the 

substrate concentrations was also studied. To achieve size uniformity, these PNIPAM 

gel particles with covalently-bound tris(bipyridyl)ruthenium(II) were synthesized via the 

coordination chemistry between a ruthenium complex and the monodispersed PNIPAM 

gel particles bearing bipyridine ligands. The study of the dynamic behavior of this 

intelligent colloid is beneficial to the BZ-reaction-facilitated dynamic self-assembly of 

colloids. 

 

3.2 Introduction 

 

The Belousov-Zhabotinsky (BZ) reaction is a well-known non-linear dynamic chemical 

system that exhibits fascinating phenomena such as periodic and chaotic temporal 

oscillations, traveling waves, and Turing structures.
46,47,49,91-95

 It includes a series of 

metal-ion-catalyzed oxidative reactions of organic substrates, such as malonic acid, by 

an acidified bromate solution. The complex nature of this system, as well as its profound 

____________ 

*
Reproduced with permission from the Journal of Physical Chemistry A, 2007, 111, 

12081-12085. Copyright 2009 American Chemical Society. 
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significance in understanding the biological oscillators related to some basic aspects of 

life, have attracted extensive attention from both experimentalists and theoreticians. A 

detailed chemical mechanism, the Field-Körös-Noyes (FKN) mechanism, was 

established as the framework for understanding and modeling the complicated 

phenomena of this system. Recent studies of BZ reactions in a variety of 

microheterogeneous media,
94,96-99

 such as PDMS-separated BZ compartments,
100

 water-

in-oil microemulsions
98

 and catalyst-loaded resin-exchange beads,
97,99,101

 have brought 

insights into the communication and self-organization of large quantities of individual 

relaxation oscillators through the concentration of chemicals in the external media, 

mimicking living systems such as ventricular cells and neurons.
102

  

 

Recently, the BZ reaction has been used to induce mechanical oscillation in polymeric 

systems to mimic biological materials.
57,103

 Yoshida and his coworkers reported the 

development of a self-oscillating gel composed of stimuli-responsive poly(N-

isopropylacrylamide) (PNIPAM) polymer with grafted tris(bipyridine)ruthenium 

(Ru(bipy)3) moiety as the BZ catalyst.
104-109

 The schematics of the mechanical 

oscillation of the PNIPAM-co-Ru(bipy)3 microgel particles, induced by the BZ reaction, 

is shown in Figure 3.1. The actual FKN mechanism consists of many BZ reaction 

intermediate species; however, only a few of those are shown in the scheme. Initially, 

the metal catalyst ruthenium (II) is in the reduced state (orange color), and the gel 

particles remain in the shrink state. With the introduction of BZ substrates, after some 

time, and during the rest of the induction time, ruthenium switches to its oxidized form, 

ruthenium (III) (green color). In this state, the microgel becomes swollen. During the 

oscillatory stage, the gel exhibits rhythmic volume changes. It was found that the 

chemical oscillation induced a periodic volume oscillation in the PNIPAM gel. This 

discovery stimulated our interest in the study of colloidal interactions coupled with BZ 

oscillations, with the long-term goal being to control colloidal self-assembly. Currently, 

ubiquitous domain defects pose great challenges to the fabrication of large colloidal 

crystals. We envision that these defects can be annealed by the introduction of  



 

 

42 

 

 

 

Figure 3.1 Schematics of the mechanical oscillation of PNIPAM particles loaded with 

Ru(bipy)3. 

 

controlled autonomous mechanical oscillations as in the self-oscillating PNIPAM gel 

particles via the BZ reaction. 

 

It is well known that the BZ reaction can exhibit a variety of dynamic regimes, such as 

steady state, periodic oscillation, and chaos in both open and closed systems, depending 

on reagent concentrations and a number of external factors such as temperature, speed of 

agitation, and flowing rate. As shown by Yoshida and his coworkers, factors such as 

temperature and substrate concentrations not only turn on or off of the Hopf bifurcation, 

60,66,110,111
but also control the frequency and magnitude of the mechanical oscillation of 

the self-oscillating gel. For the practical application of the self-oscillating microgels to 

colloidal crystal annealing, it is therefore important to identify the main ‘tuning knobs’ 

for self-assembly, and understand the interplay between the polymer system and the BZ 

reaction.  In this study,
112

 we focused our attention on controlling the oscillation 

dynamics of colloids by varying the BZ substrate concentrations.  
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3.3 Experimental Section 

 

3.3.1 Materials  

N-isopropylacrylamide (NIPAM) (Aldrich, 97%) was purified by recrystallization from 

1:5 (v:v) toluene and n-hexane mixture. 4-vinyl-4’-methyl-2,2’-bipyridine (vmbipy) was 

synthesized according to a reported procedure.
113

 The crosslinking monomer N, N-

methylene-bis-acrylamide (Aldrich, 99%), initiator 2,2’-azobis-(amidinopropane) 

dihydrochloride (V50) (Sigma-Aldrich, 97%), and emulsifier cetyltrimethylammonium 

chloride (CTAC) (Aldrich, 25 wt%) were used as received. 

 

3.3.2 Preparation of Poly(NIPAM-co-Ru(vmbipy)(bipy)2) Particles 

Since the size uniformity of the colloid particles is essential for crystallization,
5,114,115

 we 

prepared the PNIPAM particles with covalently-bound Ru(bipy)3 catalyst using an 

approach different from that of Yoshida
110

 and his coworkers (Figure 3.2). First, uniform 

gel particles of poly(NIPAM-co-vmbipy) were prepared by emulsion polymerization, 

which crystallize at high a concentration in the proper temperature range. The bipyridyl 

groups were then converted into Ru(bipy)3 by a subsequent reaction with cis-

Ru(bipy)2Cl2. The following synthetic procedure was used. 

 

The copolymer gel particles of poly(NIPAM-co-vmbipy) were prepared by emulsion 

polymerization. Reagents of the following quantities were mixed in a flask at a stirring 

rate of 350 rpm for about an hour with continuous nitrogen purge: 0.628 gram NIPAM, 

0.014 gram MBA, 0.035 gram vmbipy, 3.3 µl CTAC, and 42 ml 50 mM acetic acid 

buffer (PH at 3.9). The mixture was then maintained in an oil bath at 75°C for 5 minutes. 

The reaction was initiated with a 2ml aqueous solution of 0.026 gram of V50, and was 

continued for 6 hours. 

 

The poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles were prepared according to the 

following procedure. 0.080 gram cis-RuCl2(bipy)2 (Acros) was dissolved in 120 ml  
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Figure 3.2 Scheme for the preparation of uniform PNIPAM particles with covalently 

bound Ru(bipy)3 catalyst via coordination chemistry.  The uniform poly(NIPAM-co-

vmbipy) gel particles, as represented by the checked spheres, are prepared by emulsion 

polymerization.  Subsequent coordination with cis-Ru(bipy)2Cl2 converts the bipy ligand 

group into Ru(bipy)3 moiety. 

 

ethanol (95%). To this solution was added 20 ml of the poly(NIPAM-co-vmbipy) 

emulsion. The mixture was refluxed under nitrogen for 2 days. The product was purified 

via dialysis against continuously stirred deionized (DI) water for 6 days at room 

temperature. The dialysis membrane has a cutoff molecular weight of 10000 kDa. 

 

3.3.3 Characterization of PNIPAM-co-Ru(vmbipy)(bipy)2) Particles 

The hydrodynamic diameter (Dh) and size distribution of the PNIPAM particles were 

characterized by 90 degree dynamic light scattering (DLS) (ZetaPALS, Brookhaven 

Instrument Corporation, Holtsville, NY) measurements. The experimental setup includes 

a 35 mW He-Ne laser source (wavelength λ = 632.8 nm) and a Brookhaven digital 



 

 

45 

correlator BI9000AT. The hydrodynamic diameters for the poly(NIPAM-co-vmbipy) 

and poly(NIPAM-co-Ru(bipy)2vmbipy) particles are 386 ± 10 nm and 425 ± 16 nm at 25 

ºC, based on ten and fifteen measurements, respectively. The DLS measured 

polydispersity (PDI) is below 7% for the poly(NIPAM-co-vmbipy) particles, and 13% 

for the poly(NIPAM-co-Ru(bipy)2vmbipy) particles, demonstrating good monodispersity 

for both particles.
83

 

A suspension of the poly(NIPAM-co-vmbipy) particles was centrifuged at 34ºC and 

30000g for 2 hours. A hydrogel pellet with strong iridescence was obtained after 

decantation of the supernatant (Figure-3.3), indicating a very narrow size distribution of 

the poly(NIPAM-co-vmbipy) particles. 

The sample of poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles for confocal scanning 

laser microscopy (CSLM) imaging was prepared by sandwiching the predried gel 

particles (20 hrs, in air) between a micro slide (3×1, Corning) and a cover slip (No. 1, 

Gold Seal) and subsequent sealing with Scotch tape. A Leica TCS SP5 confocal 

scanning laser microscope (Leica, NJ) in combination with an argon laser (λ0 = 488 nm) 

and an oil-immersion lens (Leica 63X) was operated in both fluorescence and 

reflectance modes. A scanning speed of 400 Hz was applied. The CSLM images of the 

poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles are shown in Figure-3.4. The 

fluorescence image (Figure 3.4a) shows discrete poly(NIPAM-co-Ru(vmbipy)(bipy)2) 

particles with relatively uniform fluorescent emission from the Ru(bipy)3 centers. The 

reflectance image (Figure 3.4b) shows the particles after natural solvent evaporation. 

The particles are relatively uniform and ordering was seen in some domains. UV-vis 

characterization of the PNIPAM particles was conducted by use of a fiber optic UV-

visible spectrometer (EPP2000, StellarNet Inc., FL) equipped with SL1 halogen and SL3 

Deuterium double light sources and a temperature controlled cuvette holder (Quantum 

Northwest, WA). The SpectraWiz software was used for spectrum acquisition. The UV-

vis spectrum of the poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles was compared with 

those of cis-RuCl2(bipy)2, Ru(bipy)3(PF6)2, pure PNIPAM and the poly(NIPAM-co-
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vmbipy) gel particles (Figure 3.5). The characteristic absorbance peak in the 400–500 

nm region corresponds to the metal to ligand charge transfer of the Ru(bipy)3 group, 

hence convincingly supports the conversion of bipyridyl moiety into Ru(bipy)3 after the 

coordination reaction. 

 

 
 

 

Figure 3.3 A centrifuged pellet of poly(NIPAM-co-vmbipy) particles on a spatula. The 

strong iridescence of the pellet indicates a high degree of size uniformity of the particles. 
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Figure 3.4 Confocal images of the poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles 

measured in (a) fluorescence and (b) reflectance modes  (Argon laser λ0 = 488 nm). The 

particles are approximately 300 ~ 400 nm in size. 

 

 

 

Figure 3.5 UV-vis spectrum of the Poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles, in 

comparison to the spectra of the starting materials and the pure Ru(bipy)3
2+

 complex. 

The characteristic absorbance peak in the 400−500 nm region convincingly supports the 

conversion of bipyridyl moiety into Ru(bipy)3. 
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The conversion percentage of the bipyridyl groups is estimated based on the UV-vis 

measurements described below. Figure 3.6a shows the UV-vis absorbance of the 

poly(NIPAM-co-Ru(bipy)2vmbipy) particles after correction of the absorbance from the 

PNIPAM polymer. The two most intense peaks, at 287 and 452 nms, arise from the 

π−π* transition of the bipyridyl group and the metal to ligand charge transfer of the 

Ru(bipy)3, respectively, with the latter being characteristic to the coordinated bipyridyl 

group. The intensity ratio between the two peaks was used to quantify the molar ratio 

between the uncoordinated and coordinated bipyridyl groups. 

 

A series of dilute solutions of 4,4’-dimethyl-2,2’-bipyridine (dmbipy) and 

Ru(bipy)3(PF6)2 in mixed solvent of ethanol and water (v:v = 6:1) were prepared. The 

molar concentrations of the solutions are in the range of 10
-5

 and 10
-6

 M. From the UV 

absorbance vs. concentration working curves, the molar absorption coefficients (εL-282) 

are determined to be 7.9×10
3
 L⋅mol

-1⋅cm
-1

 at 282 nm for the dmbipy ligand, 5.8×10
4
 

L⋅mol
-1⋅cm

-1
 (εR-282) and 1.3×10

4
 L⋅mol

-1⋅cm
-1

 (εR-452) at 282 and 452 nms for the 

Ru(bipy)3 groups.  For a solution of dmbipy and Ru(bipy)3(PF6)2 mixture, the molar 

percentage of Ru(bipy)3(PF6)2 (PRu) and the relative intensity of the UV-vis absorbance 

at 282 and 452 nms (A282/A452), can be correlated using the following equation, 

 

A282

A452

=
εL −282 ⋅CL + εRu− 282 ⋅ CRu

εRu− 452 ⋅ CRu

=
εRu− 282

εRu− 452

+
εL − 282

εRu− 452







⋅

CL

CRu








=
εRu− 282

εRu− 452

+
εL − 282

εRu− 452







1

PRu

− 1







       (32) 

 

where CL and CRu stand for the concentrations of dmbipy and Ru(bipy)3(PF6)2, 

respectively. A series of solutions with mixed dmbipy and Ru(bipy)3(PF6)2 were 

prepared at certain molar ratios, and the UV-vis absorbance for these solutions was 
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Figure 3.6 Estimation of molar percentage of Ru(bipy)3 on the PNIPAM gel particles. 

(a) UV-vis absorbance spectrum of the poly(NIPAM-co-Ru(bipy)2vmbipy) gel particles. 

The absorbance from the PNIPAM polymer was corrected for using a reference sample 

of 0.02 wt% pure PNIPAM polymers in a mixed solvent of ethanol and water. (b) The 

intensity ratio of the absorbance at 282 nm (A282) and 452 nm (A452) with the change of 

molar percentage of Ru(bipy)3(PF6)2 in a series of mixed solutions of  4,4’-dimethyl-

2,2’-bipyridine (dmbipy) and Ru(bipy)3(PF6)2. The dashed line was calculated using Eq. 

(32). The blue triangle denotes the poly(NIPAM-co-Ru(bipy)2vmbipy) sample. The 

molar percentage of the Ru(bipy)3 on the gel particles was estimated to be 50 ± 5%. 
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measured. The ratios A282/A452 from the measurements were plotted against the molar 

percentages of Ru(bipy)3(PF6)2 (Figure-3.6b). Also plotted in Figure-3.6b were the 

A282/A452 values of these solutions calculated using Eq. (32). As shown in Figure-3.6b, 

the measured and the calculated values agree well at low Ru(bipy)3(PF6)2 percentage 

(PRu < 50%), but differ more at higher Ru(bipy)3(PF6)2 percentage. Overall, this method 

provides a fairly accurate estimation of the Ru(bipy)3(PF6)2 molar percentage for 

mixtures with low to medium Ru(bipy)3(PF6)2 molar percentages. Whereas at higher 

Ru(bipy)3(PF6)2 percentages, the estimation error may be quite high due to the 

diminishing slope of the function. Assuming the influence of the PNIPAM matrix on the 

absorbance of the bipyridyl and Ru(bipy)3 groups can be neglected, the molar percentage 

of Ru(bipy)3 on the poly(NIPAM-co-Ru(bipy)2vmbipy) particles, i.e., the conversion 

percentage of the coordination reaction, can be estimated. With the measured peak ratio 

A282/A452 being 5.1 ± 0.1, the conversion percentage is estimated to be 50 ± 5% from 

Figure 3.6b. 

 

3.3.4 Measurement of Mechanical Oscillation of Poly(NIPAM-co-Ru(vmbipy)(bipy)2) 

Particles 

Mechanical oscillation of the gel particles during BZ reactions was studied by UV-vis 

spectroscopy. The UV-vis measurement utilized the aforementioned setup, with the 

difference that only the SL1 halogen was used for the light source. The poly(NIPAM-co-

Ru(bipy)2vmbipy) gel suspension and the reactants, including nitric acid, sodium 

bromate, and malonic acid were mixed in a 4 ml UV-vis cuvette. At controlled 

temperature and under constant stirring, the transmittance of the mixture was recorded in 

the episodic data capture mode. The time interval between the episodes is 400 ms and 

the spectrum spans 190–856 nm. Data acquired was processed using the SwDemo and 

Origin programs (OriginLab 7.5, Northampton, MA). The oscillation frequency was 

analyzed using the Fast Fourier Transformation (FFT) algorithm in the OriginLab 7.5 

program. For a systematic study, the experiments were conducted at 22 °C and the bulk 

solution was 0.30 M nitric acid. The original substrate concentrations are as follows:  
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malonic acid 0.30 M, sodium bromate 0.75 M, and net Ru(bipy)3
2+

 1×10
-4

 M. A number 

of samples with different substrate concentrations were prepared by diluting each of the 

three original solutions, followed by mixing of the diluted solutions. For each sample, 

the dilution ratios relative to the original solutions sum to 1. The mixed solution was 

then loaded in the UV-vis cuvette and the transmittance of the solution with change of 

time was monitored by UV-vis spectroscopy. 

 

3.4 Results and Discussion 

 

3.4.1 Analysis of Mechanical Oscillation of PNIPAM-co-Ru(vmbipy)(bipy)2) Particles 

Uniform self-oscillating microgel particles are produced with a diameter of 425 nm, and 

with PDI 7%. UV-vis spectroscopy convincingly supported the conversion of bipyridyl 

moiety into Ru(bipy)3 via coordination chemistry. Confocal scanning laser microscopy 

showed discrete poly(NIPAM-co-Ru(vmbipy)(bipy)2) particles with relatively uniform 

fluorescent emission from the Ru(bipy)3 centers. We foresee that this approach can be 

utilized for preparation of uniform polymer gel particles with different sizes and various 

catalytic metal centers. 

 

An example chemical and mechanical oscillation profile probed by UV-vis spectrometer 

is plotted in Figure 3.7. The oscillations at 460 nm and 685 nm represent chemical 

oscillations due to the redox changes of the ruthenium at the reduced and oxidized states, 

respectively. The oscillations at the isobestic wavelength 570 nm in Figure 3.7b are due 

to the mechanical swelling and shrinking of the polymer network, in contrast to 

homogeneous Ru(bipy)3
+2

 system, where the transmission spectrum shows no 

oscillations at 570 nm (Figure 3.7a). This observation confirms that the oscillations at 

570 nm for the PNIPAM polymer gels truly arise from the mechanical oscillation of the 

gel particles induced by the BZ reaction and the chemical and mechanical oscillations 

are well synchronized in the oscillatory phase. The polymer and the catalyst together act 

as a chemical-to-mechanical energy transformer, similar to the function of muscles of a 
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living body. The chemical and mechanical oscillations critically depend on the substrate 

composition, as also noted by Biosa and Yoshida.
60,91

 We were therefore motivated to 

analyze the concentration dependence of the BZ oscillation in these poly(NIPAM-co-

Ru(vmbipy)(bipy)2) particles. Concentrations of the BZ substrates, including malonic 

acid, NaBrO3, and the PNIPAM polymer with Ru(bipy)3 catalyst, were systematically 

changed by dilution of the original bulk solutions, as detailed in the experimental 

section. For practical purposes, we imposed a restriction that the dilution ratios of the 

three solutions always sum to 1. The dynamic behavior of the samples was monitored by 

UV-vis spectroscopy. For the oscillating samples, the frequency and induction time were 

also analyzed. 

 

3.4.2 Dependence of Oscillatory Frequency on Substrate Concentrations 

A ternary phase diagram (Figure 3.8) summarizes the concentration dependence of the 

oscillating behavior in this MA-NaBrO3-Ru(bipy)3 (grafted) system. Each of the three 

axes on the diagram corresponds to a dilution ratio of a BZ reactant with respect to its 

original solution. It is clearly shown that the phase diagram can be separated into 

oscillating and non-oscillating regions, with the oscillating region mostly located in the 

area where the dilution ratio of NaBrO3 is below 50%. Moreover, there exists a 

minimum concentration of the Ru(bipy)3 catalyst below which no oscillation was 

observed.  A series of control experiments were conducted in which the grafted 

PNIPAM polymer suspension was replaced by a Ru(bipy)3SO4 solution with a similar 

catalyst concentration. The phase diagram of the latter system is overlaid with that of the 

polymer system (Figure 3.8). The dashed line separates the oscillating and non-

oscillating regions for the Ru(bipy)3SO4 catalyzed system. Judging from the similarity 

between the two phase diagrams, it is clear that the separation between the oscillatory 

and steady state regimes for the oscillating gel demonstrates the intrinsic Hopf 

bifurcation in the MA-NaBrO3-Ru(bipy)3 system. The shrinkage of the oscillatory region 

for the PNIPAM system at high NaBrO3 concentration conditions, relative to the 

Ru(bipy)3SO4 system, can be accounted for by the colloidal aggregation of the polymer
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Figure 3.7 UV-vis spectrographs of (a) chemical oscillation of Ru(bipy)3, and (b) 

mechanical oscillation of PNIPAM loaded with Ru(bipy)3.  
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Figure 3.8 A ternary phase diagram for the BZ reaction induced mechanical oscillation 

of poly(NIPAM-co-Ru(vmbipy)(bipy)2) gel particles with variation of substrate 

concentrations. The solid line inside the triangle was added for the guidance of the eye to 

separate the oscillating and non-oscillating regions. The dashed line shows the 

borderline of the oscillatory-steady state regimes for a control study using non-

polymerized Ru(bipy)3SO4.   
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Figure 3.9 Dynamic behavior of BZ reactions in PNIPAM gel particles with covalently-

bound Ru(bipy)3. (a) Dependence of oscillating frequency on the sodium bromate 

concentration. (b) Dependence of oscillating frequency on the malonic acid 

concentration.  Squares denote samples with [NaBrO3] = 0.2 [NaBrO3]0 and stars denote 

samples near the oscillation, non-oscillation boundary. 
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gels due to enhanced screening of coulombic interactions and the subsequent increase in 

the van der Waals attraction. The dependence of oscillation frequency on the malonic 

acid (MA) and NaBrO3 concentrations is plotted in Figures 3.9a and 3.9b. At constant 

MA concentrations it was found that the oscillation frequency increases linearly with the 

NaBrO3 concentration (Figure 3.9a). While at fixed NaBrO3 concentrations, the 

oscillation frequency increases monotonically with the MA concentration (Figure 3.9b).  

This trend was fit linearly with a simplified two variable Oregonator model.
48

 The 

correlation between frequency and substrate concentration reported here bears a similar 

trend with the findings of Yoshida and his coworkers
116

 on the poly(NIPAM-co-

Ru(bipy)3) gel beads, with the difference that a power law relationship was found in the 

latter case. We did not use the power law fitting due to the limited data range. 

Nevertheless, it is interesting to note that the oscillation frequency does not vary much 

for the samples near the oscillating and non-oscillating borderline (Figure 3.9b). Hence, 

a high frequency band separates the two dynamic regimes. 

 

3.4.3 Amplitude Analysis of  Poly(NIPAM-co-Ru(vmbipy)(bipy)2) Particles 

To verify the proposed Hopf bifurcation, we performed an analysis on the oscillation 

amplitude of transmittance across the ternary phase diagram for three series of samples. 

They each consisted of several data points on a line parallel to one of the three axes of 

the ternary phase diagram, i.e., with one of the three substrate concentrations fixed and 

the other two are allowed to vary. The oscillation amplitude was plotted against one of 

the variable concentrations. The results are shown in Figure-3.10.  In each subdiagram, 

as the concentration changes, the oscillation amplitude gradually decreases to zero with 

the system turning from the oscillatory state to stationary state (denoted in the direction 

of the red arrows). This trend is contrary to that of the oscillation frequency which 

changes discontinuously across the borderline. Therefore, we conclude that the phase 

change has the Hopf bifurcation characteristics. Special attention was paid to the pink 

area on subdiagram 3.10(b), which is a non-oscillatory region arising from the colloidal 

aggregation at high salt concentration, but not the bifurcation. 



 

 

5
7

 

 

 

 

Figure 3.10 Trend of the oscillation amplitude across the ternary phase diagram. In each subdiagram, one substrate 

concentration was fixed and the other two were variable. The oscillation amplitude of transmittance was plotted against one of 

the two variable concentrations. The oscillation amplitude decreases continuously to zero as the system progresses from the 

oscillatory state to the stationary state (noted in the direction of the red arrows). The area of the fill pattern on diagram (b) is a 

non-oscillatory region due to colloidal aggregation at high salt concentration. 
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3.4.4 Induction Time of Poly(NIPAM-co-Ru(vmbipy)(bipy)2) Catalyzed BZ Reaction with 

Substrate Concentrations 

More interestingly, we observed that the preoscillatory time, i.e., the induction time, is 

dramatically longer for the gel supported system when compared to the conventional 

non-polymerized Ru(bipy)3 system. The dependence of induction time on the MA and 

NaBrO3 concentrations for the gel supported system is shown in Figure 3.11. Figure 

3.11a shows that the NaBrO3 concentration is the predominant factor for determining the 

induction time at low MA concentration (the MA dilution ratio is no greater than 40%). 

The induction time increases monotonically with the increase in NaBrO3 concentration, 

and an approximate exponential correlation can be found.  At a fixed NaBrO3 

concentration, the induction time remains almost constant when the malonic acid 

concentration is below 40% of the original, while increases abruptly with the change in 

malonic acid concentration beyond that critical point (Figure 3.11b).  A similar 

dependence of induction time on the NaBrO3 and malonic acid concentrations was 

observed for the cerium catalyzed BZ reactions in bulk system. Here, we offer a rather 

qualitative explanation by pointing out the important inhibition effects to the HBrO2 

autocatalysis process.  It is known that bromide competes with HBrO2 for bromate and 

the autocatalysis process would not start until the [Br 
–]

 drops to a certain critical value.  

We assume that an increase in bromate concentration demands longer time for the 

reduction of [Br
–
] to the threshold value. Accordingly, an increase in bromate 

concentration would lead to an increase of induction time. At high [MA]0/[BrO3
-
]0, the 

effect of another inhibitor, i.e., the organic radicals, MA·, generated by the catalyst, 

becomes increasingly important, as noted by Field et al.
93

 This explains the dramatic 

increase of induction time with malonic acid concentrations beyond the critical [MA] at 

a fixed bromate concentration. Overall, BZ reactions catalyzed by the Ru(bipy)3 catalyst 

immobilized in the responsive gel can be considered as being conducted in nano-sized 

open reactors. Hence, mass diffusion and the local chemical and mechanical 

environment of the supporting gel might play very important roles in the chemical 

kinetics of the reaction. Quantitative studies bring more insights to this system. 
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Figure 3.11 Dependence of induction time on the BZ substrate concentrations. (a) 

Samples with low [MA] ([MA] ≤ 0.4[MA]0). Note that samples at the same [NaBrO3] 

have different [MA]. (b) Samples with fixed [NaBrO3] ([NaBrO3] = 0.2 [NaBrO3]0. 
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3.5 Conclusions 

 

A systematic study was presented on the BZ reaction induced mechanical oscillation of 

PNIPAM gel particles by varying the malonic acid, sodium bromate, and the imbedded 

Ru(bipy)3 catalyst concentrations. A ternary diagram was created to show the correlation 

between the dynamic behavior of the system and the substrate concentrations. It was 

found that the oscillating and steady state regimes coexist on the ternary diagram and are 

separated by a high frequency oscillation band.  The dependencies of the oscillation 

frequency and induction time on the substrate concentrations were analyzed and 

tentatively explained by the inhibition effects. This study provides guidance for tuning 

induction time and frequency, the two important parameters in mechanical-oscillation-

facilitated colloidal assembly. 
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CHAPTER IV 

A COMPARATIVE STUDY OF TEMPERATURE DEPENDENCE OF 

INDUCTION TIME AND OSCILLATORY FREQUENCY IN POLYMER-

IMMOBILIZED AND FREE CATALYST BELOUSOV-ZHABOTINSKY 

REACTIONS
*
 

 

 

4.1 Synopsis  

  

Environment-sensitive poly(N-isopropylacrylamide) (PNIPAM) microgel particles with 

covalently bonded ruthenium(4-vinyl-4’-methyl-2,2’-bipyridine) bis (2,2’-bipyridine) 

[Ru(vmbipy)(bipy)2] display periodic size changes when placed in Belousov-

Zhabotinsky (BZ) reaction substrates. The temperature dependency of the induction time 

and oscillatory frequency of the BZ reaction in this polymer- immobilized catalyst 

system were compared to the bulk BZ reaction with the catalyst in the solution phase. 

Prolonged induction times are observed for the immobilized catalyst, compared with free 

catalyst, while little difference is observed on the oscillation frequency. The Arrhenius 

frequency factor calculated using the induction time for the immobilized catalyst BZ 

reaction is about seven times smaller than that for the free catalyst Ru(bipy)3
+2

 case. On 

the other hand, the Arrhenius frequency factors calculated using the oscillatory 

frequency are almost the same, showing similar reaction kinetics during the BZ 

oscillations. The tunability of the induction time using a polymer matrix, as we observed 

here, while maintaining similar oscillatory behavior, should provide a new dimension to 

control the self-assembling of BZ active particles. 

 

 

 

____________ 

*
Reproduced with permission from the Journal of Polymer Science Part B, In press, 

2009. Copyright 2009 Wiley-Blackwell. 
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4.2 Introduction 

 

It is well known that temperature has a pronounced effect on the bromide-driven BZ 

reaction.
117-119

 In this paper, the characteristics of the temperature dependent self-

oscillations are investigated, particularly the induction time of BZ reaction, which is 

least studied in dilute suspensions of PNIPAM gel particles embedded with ruthenium 

catalyst. Here, to clarify the factors that influence induction time, experiments are 

performed between 5
o
C and 26

o
C for both the uniform microgel particles loaded with 

Ru(bipy)3
+2

 which are prepared by emulsion polymerization, and the normal Ru(bipy)3
+2

 

solutions. Here, the temperature response of the induction and the oscillatory phases of 

the BZ reaction in both immobilized and free catalyst systems is analyzed by using 

Arrhenius plots.  

 

The self-oscillating microgels have potential applications in developing smart functional 

materials that display autonomous response.  Examples include self-walking actuator,
61

 

micropumps with autonomous beating or peristaltic motion,
120

 devices for signal 

transmission utilizing propagation of chemical waves,
63

 and oscillatory drug release 

synchronized with cell cycles or human biorhythms.
56

 It is important to understand how 

proper control over the self oscillations can be achieved.   

 

4.3 Experimental Section 

 

4.3.1 Materials 

All chemicals were purchased from Sigma-Aldrich (Milwaukee, Wisc.). N-

isopropylacrylamide (NIPAM, 97%) was recrystallized from 1:8 (v:v) toluene and n-

hexane mixture. 4-vinyl-4’-methyl-2,2’-bipyridine (vmbipy) was synthesized according 

to a reported procedure. The crosslinking monomer N, N-methylene-bis-acrylamide 

(MBA, 99%), initiator 2,2’-azobis-(amidinopropane) dihydrochloride (V50, 97%), and 
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the emulsifier cetyltrimethylammonium chloride (CTAC, 25 wt%) were used as 

received. 

 

4.3.2 Preparation and Characterization of Poly(NIPAM-co-Ru(vmbipy)(bipy)2) Particles 

Uniform PNIPAM gel particles bearing tris(bipyridyl)ruthenium(II) were synthesized as 

illustrated in Chapter III. Measured by dynamics light scattering, the hydrodynamic 

diameters were 386 ± 10 nm for the PNIPAM-co-vmbipy particles, and 425 ± 16 nm for 

the PNIPAM-co-Ru(bipy)3 particles at 25ºC.  

 

For all comparison experiments, equal concentrations of the initial BZ substrates 

(Ru(bipy)3
+2

 (2.5 mM), bromate 0.15 M, and malonic acid 0.09M)  were maintained in 

both immobilized and free catalyst systems. The approximate concentration of 

Ru(bipy)3
+2

 (0.0025M) in PNIPAM-co-Ru(bipy)3 suspension was determined by 

comparing the absorption peak intensities due to Ru(bipy)3
+2

 at 454 nm (after correcting 

the absorption due to PNIPAM), with a known concentration of Ru(bipy)3
+2 

solution. For 

the solution phase experiments, Ru(bipy)3
+2

 solution was initially made using solid 

Ru(bipy)3SO4 crystals, prepared from commercially available Ru(bipy)3Cl2.
121

 Solutions 

of 0.3 M malonic acid, 0.75 M sodium bromate, 5 mM Ru(bipy)3
+2

, and 1.5 wt% of 

PNIPAM-co-Ru(bipy)3 suspension with about 5 mM net Ru(bipy)3
+2

 concentration were 

prepared using 0.3 M HNO3 solution. The BZ reaction for each catalyst system at 

various temperatures was performed by mixing 0.6 ml of 0.75 M sodium bromate, 0.9 

ml of 0.3 M malonic acid, and 1.5 ml of PNIPAM-co-Ru(bipy)3 suspension (which has a 

net 5 mM Ru(bipy)3
+2

 content) or 1.5 ml of 5 mM Ru(bipy)3
+2

 solution (a total of 3 ml) 

in a 4.5 ml quartz cuvette, and stirred at 350 rpm. The oscillation frequency and the 

induction time were measured between 5°C and 26°C with an increment of 2°C for 

PNIPAM-co-Ru(bipy)3 and 5°C for Ru(bipy)3
+2

 reaction systems. 

 

Oscillations of the BZ reaction were detected via the transmission changes in a fiber 

optic UV-vis spectrometer (EPP2000, StellarNet Inc., Tampa, Fla.) equipped with SL1 
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halogen light source, and a temperature controlled cuvette holder (Quantum Northwest, 

Liberty Lake, Wash.). SpectraWiz software was used for spectrum acquisition. The 

transmittance data was recorded in the episodic mode. The time interval between the 

episodes was 400 ms, and the spectrum spans, 190–856 nm.  Data acquired was 

processed using the SwDemo (StellarNet Inc., Fla.) and Origin programs (OriginLab 7.5, 

Northampton, Mass.). The oscillation frequency was calculated by the Fast Fourier’s 

transform (FFT) of UV-vis transmission. 

 

4.4 Results and Discussion 

 

4.4.1 Comparison of Induction Time and Oscillatory Frequency at Different 

Temperatures in Polymer-Immobilized and Free Ruthenium Catalyst BZ Reaction 

Uniform self-oscillating microgel particles are produced with a diameter of 425 nm, and 

with PDI 7%. Two important reaction features are investigated in this paper: (a) 

oscillation frequency, and (b) induction time, both of which depend critically on the 

initial concentration of the reagents. Our aim is to understand what factors, such as the 

catalyst immobilization, presence of the polymer, or adsorption of BZ reaction species, 

contribute to the increased induction times and how temperature influences the 

oscillatory and induction phase for PNIPAM-co-Ru(bipy)3 microgels.  

 

The temperature dependency of the oscillation frequency and induction time is obtained 

from 5
o
C to 26

o
C. The oscillation frequency of the BZ reaction in response to the 

changes in temperatures is observed at 460 nm is shown in the Figure 4.1. For a given 

temperature, same oscillation frequencies are observed within the experimental error, in 

both free and immobilized catalyst BZ reaction. The BZ reaction stays much longer time  
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Figure 4.1 The temperature dependence of oscillatory frequency of the mechanical 

oscillation of PNIPAM spheres with covalently bound Ru(bipy)3 in comparison to the 

chemical oscillations by Ru(bipy)3
+2

.  

 

in the reduced state of the ruthenium than in the oxidized state, and the switch between 

two states is relatively fast. Therefore, the consumption of the bromide ion is the 

frequency determining step, which is given by the following equation.
122,123

 

 

[ ] 2

--

3 HBrO HOBr    H2  Br  BrO +→←++
+

. 

 

Even though the reaction kinetics may become slow with the polymer immobilized 

catalyst (due to the chemical and physical reasons pointed out in the next paragraph), yet 
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it is not the rate determining step for oscillation frequency because we observed same 

frequencies in both catalyst systems and the oscillation frequency is not influenced by 

the interaction of the catalyst with the polymer. At high temperatures, faster bromide ion 

consumption shrinks the duration of the reduced state, and hence the reaction exhibits 

high frequency.  

 

Induction time as a function of temperature is plotted in Figure 4.2, which shows a 

drastic difference between the immobilized and free catalyst systems. For a given 

temperature, compared with free Ru(bipy)3
+2

, longer induction times are observed with 

PNIPAM-co-Ru(bipy)3. In the free catalyst case, ruthenium can directly produce 

bromide ions (Br
-
) by the interaction with bromide containing sources such as bromate 

ions (BrO3
-
), and hypobromous acid (HOBr) due to its high standard reduction 

potential.
55,97

 Therefore, the BZ reaction quickly returns to the reduced state from an 

oxidized state, resulting in almost no induction time at room temperatures. In the case of 

PNIPAM-co-Ru(bipy)3, the chemical bonding of the ruthenium with the polymer 

possibly lowers its standard reduction potential
116

 such that it may not oxidize bromide 

containing species effectively as it could in the free catalyst BZ solution. Due to a 

decrease in the standard reduction potential of the ruthenium, the immobilized catalyst 

BZ reaction might behave similar to those reaction mechanisms observed in cerium or 

manganese catalyzed reactions, requiring a critical amount of bromomalonic acid 

(BrMA) for the onset of oscillations.
124

 Therefore, the polymer immobilized ruthenium 

system displays an induction time. In addition, the dramatic increase in the induction 

time in ruthenium immobilized catalyst BZ reaction can be attributed to the reduced 

diffusion and local mass transfer of BZ species from bulk to the polymer immobilized 

catalyst. We elaborate this assumption as follows. According to the GTF model,
93

 BrMA 

is produced mainly by the following reactions. (We used the same notation as used in the 

original GTF model.) 
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Figure 4.2 Induction time the mechanical oscillation of PNIPAM spheres with 

covalently bound Ru(bipy)3 in comparison to the chemical oscillations by Ru(bipy)3
+2

 at 

various temperatures.  

 

 

(R1, R2):  HOBr + Br
-
 + H

+
 ↔ Br2 + H2O 

(R5, R6):  BrO3
-
 + Br

-
 + 2H

+
 ↔ HOBr + HBrO2 

(R15, R16):  MA ↔ MA(enol) 

(R17):   MA(enol) + Br2 → BrMA + Br
-
 + H

+
 

(R25):   Ru
3+

 + BrMA → Ru
2+

 + BrMAº + H
+
 

(R44):   MAº + Brº → BrMA 

(R26, R45):  Ru
3+ 

+ MA ↔ Ru
2+ 

+ MAº + H
+
 

(R56):   MAº + Br2 → BrMA + Brº 
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The reactions R25, R26, and R45 involve the use of the catalyst. If the metal catalyst is 

attached to the crosslinked PNIPAM particles, the diffusion of BZ species from the bulk 

to the gel phase becomes difficult. The kinetic characteristics of the BZ reaction using 

immobilized catalyst can be considered similar to those characteristics of immobilized 

biocatalysts such as enzymes.
125

 The reaction rate with immobilized catalyst can be 

altered considerably by the following effects to cause a difference in the concentrations 

of some reaction species in the immediate vicinity of the immobilized catalyst: (i) steric 

effects, due to the hindrance of polymer; (ii) partitioning effects, due to the electrostatic 

and hydrophobic interactions of the polymers with reaction; and (iii) mass-transfer 

effects, which resist the reaction species to move from bulk phase to the immobilized 

catalyst. Therefore, the rates of the reactions R25, R26, and R45 with immobilized 

catalyst decrease drastically, resulting in much longer induction times. The quantitative 

nature of these effects in case of immobilized BZ reaction catalyst is yet to be 

elucidated. 

 

There is an additional temperature influence on induction time due to the temperature 

sensitivity of PNIPAM microgels. At low temperatures, especially below 15
o
C, the 

production of BrMA is significantly delayed due to the slow reaction kinetics.
126

 At low 

temperatures, the PNIPAM microgel particles are well swollen, allowing increased 

access to the metal catalyst for the BZ reaction substrates to react. In the meantime, the 

incoming BZ substrates experience a decreased catalyst concentration because of the 

polymer swelling. We have shown that there exists a minimum concentration of the 

PNIPAM-co-Ru(bipy)3 catalyst below which no oscillation was observed. Therefore, in 

addition to the slow reaction kinetics, and reduced mass transport due to the gel network, 

a decrease in the catalyst concentration due to the swelling at low temperatures might 

contribute to prolonged induction times.  

 

Another possibility of high induction time is due to gradual reaction of PNIPAM with 

the acidic bromate to produce bromous acid HBrO2. The continuous production of this 
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autocatalytic intermediate will retain the BZ system longer in the oxidized state, hence 

lengthening the induction time. A control experiment was performed in which the BZ 

reaction system with free catalyst Ru(bipy)3
+2

 was perturbed by the added PNIPAM gel 

particles with no covalently bonded catalyst. As shown in Figure 4.3, the free catalyst 

with added PNIPAM spheres did not alter any of the temperature characteristics of the 

reaction showing the same frequency and induction time at the same temperature as the 

free catalyst BZ reaction does. Therefore, the hypothesis of a possible chemical reaction 

between the polymer and BZ substrates is over thrown by this experiment, which 

otherwise could influence the induction time. 

 

4.4.2 Measurement of Activation Energies and Collision Factors of the BZ Reaction in 

Polymer-Immobilized and Free Ruthenium Catalyst BZ Reaction by Oscillatory 

Frequency and Induction Time 

To make quantitative characterization, we plotted BZ reaction oscillations in the 

Arrhenius format,  








 −
=

RT

E
Af i

iexp  (33) 

 

where f is frequency of oscillations, Ai represents the pre-exponential factor, which is 

also known as frequency or collision factor and which is equal to the average number of 

collisions between the reacting molecules. Ei is effective activation energies, R is the gas 

constant (R = 8.314 J K
-1

mole
-1

), and T is temperature in Kelvin. The induction time of 

nonlinear oscillatory reaction might also be interpreted using Arrhenius rate 

equation,
122,127

 








 −
=

RT

E
AT j

ind

ind exp /1         (34) 

where Eind is effective activation energy for the reactions responsible during induction 

time. The activation energy obtained from induction time measurement is very likely 

attributable to a sub reaction system that produces BrMA. Figure 4.4 shows the fittings  
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Figure 4.3 The dynamics of the temperature dependent BZ reaction. Comparison of BZ 

chemical oscillations using the catalyst Ru(bipy)3 to that of oscillations with external 

addition of PNIPAM spheres in the BZ reactants. (a) Frequency, and (b) induction time. 
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Figure 4.4 Arrhenius plots for the oscillatory and pre-oscillatory phases of the BZ 

reactions, yielding the apparent activation energies when the catalyst Ru(bipy)3 is 

immobilized on PNIPAM spheres in comparison to that of conventional BZ chemical 

oscillations using the catalyst Ru(bipy)3
+2

. Calculated from (a) frequency, and (b) 

induction time. EPR and ER are the activation energies of PNIPAM-co-Ru(bipy)3 and 

Ru(bipy)3
+2

 reaction systems, respectively. 
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to obtain the activation energies for immobilized and free catalyst BZ reactions. From 

the frequency and induction time measurements, the calculated activation energies for 

the immobilized catalyst are slightly higher than that of free catalyst. With the addition 

of polymer network, the reaction species experience a transport hindrance. Therefore, a 

higher amount of energy is required to cross the barrier, and hence higher activation 

energy for PNIPAM-co-Ru(bipy)3 reaction system. 

 

The collision factors Ai, and Aj, calculated from the Arrhenius plots (Figure 4.4) are 

listed in Table 4.1. The values of Ai in both immobilized and free catalysts systems for 

the oscillatory phase are found to be about one thousand times higher than those 

calculated from the induction phase (Aj), possibly due to the faster kinetics during the 

oscillation phase. Also, the collision factor for the immobilized catalyst system during 

the induction phase is found to be seven times smaller, compared with the free catalyst 

system. Even though a small Aj for the PNIPAM-co-Ru(bipy)3 compared to free 

Ru(bipy)3
+3

 may suggest slow reaction kinetics between the catalyst and reactant 

molecules in the pre-oscillation phase, it is difficult to interpret the exact meaning of the 

pre-exponential factors in the case of complex reactions due to the multiple elementary 

 

 

Table 4.1 Arrhenius collision factors for both oscillatory and induction phase of the BZ 

reaction. 

 

Catalyst system Oscillatory Phase, (Ai) 

(sec
-1

) 

Induction Phase, (Aj) 

(sec
-1

) 

Ru(bipy)3
+3 

(1.63 ± 0.78) x 10
10 

(7.32 ± 2.2) x 10
7 

PNIPAM-co- Ru(bipy)3 (1.44 ± 0.68) x 10
10

  (1.08 ± 0.33) x 10
7
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steps and large calculation errors. These experimental findings revealed that the 

temperature has a strong influence on induction time when the catalyst is immobilized 

on PNIPAM gel particles, yet has a negligible effect on oscillations kinetics. 

 

4.4.3 Temperature Dependent Comparison Analysis of BZ Oscillation Amplitude in 

Polymer-Immobilized and Free Ruthenium Catalyst BZ Reaction 

In Figure 4.5, the amplitude of the BZ oscillations is compared at different temperatures 

between polymer immobilized and free ruthenium catalysts at 460 nm, specific to Ru(II) 

oxidation state. The amplitude of polymer size oscillation (measured at 570 nm) is 

overlaid into the plot. The oscillation amplitude specific to Ru(II) in the polymer-catalyst 

system is found to be smaller than that observed using the solution phase BZ catalyst. 

However, the amplitude gradually decreased with temperature for both catalytic systems, 

a general trend observed in normal BZ reaction. The amplitude decrease with 

temperature in the polymer-immobilized BZ reaction is found to be more pronounced at 

high temperatures compared to that of amplitude decrease in the free ruthenium catalyst 

case. The large decrease of amplitude at higher temperatures in the polymer case is due 

to the reduced transmission of light through the phase separated PNIPAM particles from 

aqueous BZ reaction. The size oscillation of the polymer, observed at 570 nm does not 

follow the amplitude trend observed at 460 nm. Instead, the amplitude increases with 

temperatures (Figure 4.6a). This behavior can be understood by plotting LCST curves 

for the catalyst immobilized polymer gel in both oxidized and reduced states of the 

ruthenium. Figure 4.6b shows the transmittance changes of PNIPAM-co-Ru(bipy)3 gel 

beads as a function of temperature under the different conditions of the reduced Ru(II) 

state and oxidized Ru(III) state. The oxidized or reduced states of the ruthenium were 

maintained by dissolving PNIPAM-co-Ru(bipy)3 in 0.3M HNO3 containing either 

0.005M Ce(IV)(SO)4 or 0.005M Ce(III)(SO)4, respectively. 
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Figure 4.5 The amplitude dependence with temperature for the chemical and mechanical 

oscillations of the PNIPAM-co-Ru(bipy)3 particles, in comparison with solution phase 

BZ reaction. 

 

 

Due to the characteristics of thermo-sensitive NIPAM component, the transmittance 

decreases as the temperature increases, due to the increase in the turbidity. The 

transmittance in the oxidized state is larger than that in the reduced state all over the 

temperature range because the hydrophilicity of the polymer increases in the oxidized 

state. From the differences of the transmittance between the Ru(II) and the Ru(III) states, 

we may expect that the gel beads undergo periodical swelling-deswelling changes when 

the Ru(bipy)3 moiety is oxidized and reduced periodically by the BZ reaction at constant 
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temperature. These periodic changes of gel beads can be detected as cyclic transparent 

and opaque changes for the suspension accompanying color changes due to the redox 

oscillation of the catalyst. It is observed that the difference in the transmittance increases 

with temperature between the oxidized and reduced states of the BZ reaction. 

Consequently, the amplitude increases with temperature. 

 

4.5 Conclusions 

 

The BZ reaction characteristics were compared between polymer immobilized and bulk 

catalyst systems at various temperatures. We found that the immobilization of the 

catalysts lengthens the induction time of the BZ reaction and this effect is more 

pronounced at lower temperatures. The high induction time for the immobilized catalyst 

case can be attributed to possible chemical (lowering of standard reduction potential of 

the ruthenium), and diffusional changes (due to the presence of a polymer network) of 

the BZ species due to the polymer addition. However, the rate determining step for the 

oscillation frequency is not affected by the polymer-catalyst interaction. Arrhenius pre-

exponential factors and activation energies are calculated for both induction and 

oscillatory phase.  

 

It is observed that the chemical bonding of PNIPAM spheres with BZ reaction catalyst 

can tailor the induction time while without effect on oscillation kinetics. The existence 

of a prolonged BZ reaction induction period with the immobilized catalyst in colloidal 

suspensions offers a temporal separation between the colloidal phase transition kinetics 

and the nonlinear dynamics of particle’s size oscillation. For example, during the 

prolonged induction time of the BZ reaction, colloids can make the conventional phase 

transition (i.e. crystallization) from the metastable state into the crystalline state. Hence, 

the sample will be made up of a collection of small colloidal crystallites. The coarsening 

process will anneal the crystallites into larger crystals, with the smallest crystallites 

disappearing first. During the oscillatory state of the BZ reaction, the volume fraction of
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Figure 4.6 Temperature dependence of the transmittance for PNIPAM-co-Ru(bipy)3 gel 

beads. (a) Size oscillations of PNIPAM-co-Ru(bipy)3 particles, and (b) transmittance of 

PNIPAM-co-Ru(bipy)3 in the (i) reduced Ru(II) state [in Ce(III) solution] and (ii) 

oxidized Ru(III) state [in Ce(IV) solution]. 
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the particles decreases due to the reduced state of the metal catalyst. As a result, the 

volume fraction of the particles inside the crystallites also decreases, perhaps even to the 

degree that the crystallites become metastable (superheated), and melt. The smallest 

crystallite should melt first. Later, at the oxidized state of the BZ reaction, as the volume 

fraction increases again, the sample will recrystallize, and the larger crystallites have the 

advantage of growing faster. This melt-recrystallization process repeats during the BZ 

oscillatory phase. Therefore, BZ reaction should accelerate crystal annealing process. 

Currently, experiments are in progress in our lab to fabricate BZ active colloidal crystals. 
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CHAPTER V 

TEMPERATURE DEPENDENCE OF THE OREGONATOR MODEL FOR THE 

BELOUSOV-ZHABOTINSKY REACTION
*
 

 

 

5.1 Synopsis 

 

It is well known that temperature plays an important role in the chemical dynamics of 

Belousov-Zhabotinsky (BZ) reactions. The five step Oregonator model of the BZ 

reaction has been elaborated here to investigate the temperature effect. The bifurcation 

dynamics has been calculated in the phase space spanned by initial reagents 

concentration ratio, stoichiometric factor and temperature. The combination of activation 

energies of the individual reaction steps governs the dependence of oscillation period 

and amplitude with temperature. The analysis reveals the existence of the temperature 

limits beyond which no oscillations occur.  

 

5.2 Introduction 

 

Every living system contains hundreds of chemical oscillators in which concentrations of 

the intermediate species vary periodically and the overall chemical reaction moves 

towards equilibrium. Chemical oscillators are often regarded as the model systems for 

biological rhythms such as heart beat, pulse etc. Temperature is one vital parameter that 

has a significant influence on the dynamics of oscillations. It is known that some bacteria 

such as pyrolobu fumarii, and strain 121 are capable of surviving up to 130
○
C,

128
 due to 

the presence of stable enzymes that can function at high temperatures. It is always 

assumed that there might be an upper temperature limit for the biological systems. Yet,  

____________ 

*
Reproduced by permission of the Physical Chemistry Chemical Physics Owner 

Societies, In press, 2009, DOI: 10.1039/b820464k. Copyright 2009 Royal Society of 

Chemistry. 
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the precise upper temperature limit for life has not been found. The upper temperature 

limit where the molecular repair and resynthesis becomes unsustainable is predicted to 

be the region of 140-150
○
C.

129
 Knowledge about the upper temperature limit of the 

biological oscillators is essential to answer some of the fundamental questions about the 

biological evolution on the hot early earth, the depth in the sea to which life might exist 

and a potential life in hot, extraterrestrial environments. In this work, it is our 

fundamental interest to investigate the dynamics of nonlinear oscillatory processes at 

high temperatures. We used a simple non-living chemical reaction, the Belousov-

Zhabotinksy (BZ) reaction as a model system to study how temperature controls the 

reaction dynamics.  

 

The complex nature of the BZ reaction, and its similarities to the biological oscillators, 

has attracted extensive attention from both experimentalists and theoreticians.
93,98,118,130-

134
 A well supported mechanism of the reaction, given by Field, Koros, and Noyes 

(FKN), supplied an intellectual framework for the experimental and theoretical 

investigation of the BZ reaction dynamics.
47,67,135,136

 The simpler version of the reaction 

model, namely the Oregonator model, can reproduce the essential characteristics of the 

reaction. It used three composition variables, five irreversible reaction steps controlled 

by five rate constants and a stoichiometric factor, f (which is proportional to the ratio 

between the average number of bromide ions produced and the number of Ce
4+

 ions 

consumed during the malonic acid oxidation step). The modified Oregonator model can 

display complex dynamics such as excitability,
133,137

 bistability,
138

 target or spiral wave 

patterns,
139,140

 chaos,
141

 amplitude death or even mixed mode oscillations.
134,142

  

 

The bromide driven chemical oscillators highly depend on temperature. The history of 

research on the temperature dependent BZ oscillations dates back to 1974 when Koros 

first time reported the dependence of oscillatory frequency on temperature.
117

 Since then 

many efforts have been made to understand the oscillatory dynamics with 

temperature.
122,123,127,143-147

 The reaction was studied at different temperatures, ranging 
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from 15
○
C to 88

○
C.

127,146
 In general, frequency increases with temperature and the BZ 

rate constants follow the Arrhenius law. For the classical cerium catalyzed BZ reaction, 

the overall activation energy of about 70 kJ/mole was determined.
117,148

 However, 

limited studies are available about the temperature influence of the BZ reaction due to 

the unknown rate constants and the complexity of the reaction.  

 

The stability of the steady states in the Oregonator model has been analyzed using either 

the rate constant k5 of the bromide regeneration step or f as the bifurcation 

parameter.
67,134,149

 A change in the value of the parameter makes the system passes from 

a stable to an unstable state, or vice versa. Although, the Oregonator model and its 

modified versions revealed many interesting features of the BZ reaction, the oscillation 

dynamics over a wide range of temperatures has not been fully explored. Here, we have 

investigated the stability of the steady states in a three dimensional phase space spanned 

by the temperature T, f, and the initial reagent concentration ratios (b, malonic acid 

divided by a, sodium bromate). We have included temperature in rate constants by using 

the Arrhenius equation and analyzed the stability of the system while changing f and T.  

 

The activation energies of the individual reaction steps of the Oregonator model mainly 

govern the temperature dependent oscillation dynamics. For the case of the ferroin 

catalyzed BZ reaction, experimental values of the activation energies of the BZ reaction 

are reported recently.
150

 However, due to the complexity of the reaction, the activation 

energies of the individual reaction steps are usually associated with large errors. We 

selected two sets of activation energies and calculated the associated bifurcations along 

the T, f, and b/a plane. Activation energies of set (ii) in Table 5.1 are used to reduce the 

maximum upper temperature limit, calculated using activation energies of set (i) in Table 

5.1 to a value closer to the observation in the experiments. A temperature dependent 

bifurcation in both cases estimates the upper temperature limits for different b/a and f, 

which may provide insights into the understanding of the theoretical upper temperature 

limits exhibited by the systems that display nonlinear chemical dynamics. 
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5.3 Theory 

 

5.3.1 Oregonator Model with Temperature Dependent Rate Constants 

The classical three dimensional Oregonator consists of the following kinetic 

equations:
136,137

 

 

2

432
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1 2 XkHAXkHXYkAYHk
dt

dX
−+−=  (35a) 

hBZkHXYkAYHk
dt

dY
52
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dt
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where, 
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BrOAIVCeZBrYHBrOX
 

and 

h = 2f.  

 

The kinetic rate constants in Eq. (35) are labeled according to their original sequence. 

The Arrhenius equation for the rate constant is given by, 

 

[ ]{ },)/1()/1()/(exp 0

*
TTREkk iii −−=  (36) 

 

where i=1…5. T0 is room temperature. 
*

ik is rate constant of the i
th

 reaction step at T0, 

which is taken using the “Lo” values proposed by Tyson.
68

 Ei is the activation energy of 

i
th 

reaction step in the Oregonator. And R is the gas constant, R = 8.314 J K
-1

mol
-1

. For 

simplicity, the frequency factor in the Arrhenius equation is assumed to be constant over 

a wide range of temperature. 
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The following widely accepted scaled dimensionless parameters and variables are 

adopted here:
151,152
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Table 5.1 lists the values of the kinetic parameters
151

 and two sets of activation energies 

for the individual reaction steps. Also, [H]
+
 = 1M and A0 = B0 = 1M. 

 

Plugging Eqs. (36)-(38) into (35), the kinetic equations become, 
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Table 5.1 Selected kinetic rate constants at room temperature and two sets of activation 

energies of the Oregonator elementary steps. 

 

k1
*
 k2

*
 k3

*
 k4

*
 k5

*
 Kinetic rate 

constants 

 at 298K 2 M
-3

S
-1 

10
6
 M

-2
S

-1
 10 M

-2
S

-1
 2000 M

-1
S

-1
 1 M

-1
S

-1
 

Activation 

energies 

E1 

(kJ/mole) 

E2 

(kJ/mole) 

E3 

(kJ/mole) 

E4 

(kJ/mole) 

E5 

(kJ/mole) 

Set (i) 54 25 60 64 70 

Set (ii) 60 25 60 75 70 
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Eq. (39) retains the same format as in the original model
135

 except that the variables, 

),(),( TT δε and )(Tq are now temperature dependent. Their values at different 

temperatures are listed in Table 5.2.  

 

Using the pseudo-steady state approximation for y, i.e., ),()( TT εδ << Eq. (39) is 

converted into a pair of ordinary differential equations:  
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The positive steady state of this equation is given by, 
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and, 
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5.3.2 Numerical Methods 

Equation (40) is made up of stiff differential equations. We carried out the numerical 

calculations using routine ode23s in Matlab V6.R12, which is a one-step solver based on 

a modified Rosenbrock formula of order 2, capable of solving moderate stiff problems. 

The relative and absolute error tolerance of ode23s solver was set to 10
−6

 and 10
−10

,
 

respectively, for high accuracy. To test the validity of the calculation, we have also 

calculated the time series with the ode15s routine, which is a multistep variable-order 

solver with higher accuracy than ode23s, but less efficient. The results were found to be 

the same when compared to the time series calculations with the ode23s routine. 

Therefore, to calculate the time series over a long time spans, the ode23 routine was used 

for adequate accuracy and efficiency. 
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Table 5.2 Parameter values for dimensionless quantities at various temperatures, 

calculated using the activation energies of set (i) in Table 5.1. The initial reagent 

concentration ratio b/a is set to 1.  

 

Temperature(K) )(Tε  )(Tq  )(Tδ  

300 0.10251 8.68 x 10
-04

 4.172 x 10
-04

 

325 0.13955 2.40 x 10
-03

 7.048 x 10
-04

 

350 0.18178 5.75 x 10
-03

 1.104 x 10
-03

 

375 0.22858 1.22 x 10
-02

 1.630 x 10
-03

 

400 0.27932 2.37 x 10
-02

 2.293 x 10
-03

 

425 0.33337 4.25 x 10
-02

 3.97 x 10
-03

 

450 0.39013 7.15 x 10
-02

 4.46 x 10
-03

 

 

 

 

5.4 Results and Discussion 

 

5.4.1 Nullcline Analysis and Trajectories in the x-z Plane 

Unless otherwise stated, activation energies of set (i) (in Table 5.1) are used in the 

results and discussion section. The phase plane analysis involving two variables x and z, 

is carried out to gain insights into how the oscillations rise and disappear with 

temperature. The x and z nullclines are 
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Figure 5.1 plots x, z nullclines of Eq. (42) for different f, and T with b/a ratio equal to 

1.0. The z-nullcline (Eq. 41b) is a straight line with slope a/b, is independent of 

temperature, whereas the shape of x-nullcline (Eq. 41a) changes with temperature. The 

position of the steady state (intersection of the nullclines) depends on f and T. As 

temperature increases, the steady state S moves from an unstable state (on the middle 

branch of the x-nullcline) to a stable state. (on the right or left branch). In some cases, 

the middle branch of the x-nullcline disappears at high temperatures (e. g. at 470K in the 

Figure 5.1b) and the function of x decreases monotonically.  

 

From Eq. 8a, 

 

[ ])(

)(()( 2

Taqxfb

Taqxxax
z

−

+−
=         (43) 

 

The sufficient condition for Eq. (43) to decrease monotonically in the range x > q(T) is 

that the derivative of this function, dxdz has no positive roots. Through q(T), dxdz  

depends on temperature. The product [ ]2
)()( Taqxfbdxdz − is a third order function of 

x. With increasing q(T), at approximately q(T) = 0.08 (when a = 1), the two positive 

roots disappear. Hence, at high temperature, only steady states exist as the x-nullcline 

becomes a monotonically decreasing function of x. Therefore, a bifurcation from 

oscillation to steady state exists at a high temperature, which is the upper limit for the 

existence of the oscillations. However, in other cases, the middle branch of the x-

nullcline will not disappear at high temperatures when the steady state exists, as shown 

in Figure 5.1a for f = 0.6. 

 

Trajectories in the x-z plane are shown in the Figure 5.2(a-d) for selected temperatures. 

Figure 5.2a plots the case for f = 0.6, and b/a=1. Since ( )Tε is very small, the trajectories 

move faster along the x direction compared with those in the z direction. When the 
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Figure 5.1 The temperature dependence of the nullclines in the Oregonator model at 

various stoichiometric factors. The initial reagent concentration ratio, b/a = 1. The 

activation energies are chosen from set (i) in Table 5.1. For each f, as the temperature 

rises, the reaction moves from an unstable state (S1) to a stable steady state (S2). Hence, 

there is an upper temperature limit for the oscillatory state.  

 

temperature is raised from 298 to 340K, the size of limit cycles (amplitude of 

oscillations) decrease gradually, which in turn results in the more number of cycles per 

second (the frequency of oscillations). The further temperature increase to 360K will 

make the system reach a stable steady state. These analyses confirm the existence of an 

upper temperature limit above which the system rests in its non-oscillatory stable state.  
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Figure 5.2 Trajectories in the x-z plane for the two variable Oregonator model at 

different temperatures and stoichiometric factors. Initial concentrations are taken as b/a 

= 1. The activation energies of set (i) in Table 5.1 are chosen. Point A is the initial point 

which is set to x = 0.1 and z = 0.2.  

 

Figure 5.2(b-d) plots trajectories for f = 1.0, 1.5, and 2.0, respectively. The 

corresponding upper temperature limits are 415, 420 and 370K. Clearly, the upper 

temperature limits also strongly depend on the stoichiometric factors. Moreover, an 

increase in f at a constant temperature results in a decrease in the amplitude of the 

oscillations for both x and z. The trajectories of limit cycle oscillations profiles of x and 

z with time are shown in Figure 5.3. The amplitude of oscillations decreases with an 

increase in temperature and decays to zero after 80 seconds at 415K. Also the oscillation  
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Figure 5.3 Temperature dependent oscillations for the reduced Oregonator model using 

the activation energies of set (i) in Table 5.1. The stoichiometric factor f = 1.0, and b/a = 

1.   
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Figure 5.4 Overlaid graphs of nullclines and trajectories of limit cycle oscillations with 

)(Tε  changing from 0.1 to 0.001 at different temperatures, (a) 300K, (b) 340K, (c) 

412K, (d) 420K, (e) 450K, and (f) 490K, using the activation energies of set (i) in Table 

5.1. The stoichiometric factor f = 1.0, and b/a = 1. The initial conditions at point A are x0 

= 0.3 and z0 = 0.08. 

 



 

 

91 

frequency increases with temperature and finally reduces to zero at the high temperature 

limit, which is a characteristic of supercritical Hopf bifurcation. 

 

The nullclines and the corresponding limit cycle oscillations are overlaid in a single plot 

in Figure 5.4(a-f) with )(Tε changing from 0.1 to 0.001 at different temperatures. For 

each temperature, the b/a, and f are fixed at 1.0. The initial conditions at point A are, x0 = 

0.3 and z0 = 0.08. The BZ model system reaches steady state at about 415K when )(Tε = 

0.1, and 465K when )(Tε is 0.001. It is evident from the plots that the nullcline analysis 

is incomplete and inconclusive. As the nullclines are insensitive to the changes in )(Tε , 

they cannot measure the accurate steady state temperatures. For example, in Figure 5.4d, 

the trajectories move towards the stable steady state when )(Tε = 0.1, whereas the 

nullclines show that the steady state is unstable. The nullcline analysis only gives 

intuition about the stability of the steady state. When )(Tε = 0.1, limit cycle oscillations 

surrounds the equilibrium point at temperatures below a maximum temperature limit. 

However, the path of trajectories is not parallel to either x or z axis. As )(Tε is reduced 

to 0.001, the trajectories jumps faster along x direction, but the steady state is achieved 

at a higher temperature compared with those when )(Tε  = 0.1. In the later case, the time 

scale due to the product τε ddxT )(  is thousand times smaller in the x direction 

compared to those time scales in the z direction, resulting in the increases stiffness of the 

differential equations (40). 

 

5.4.2 Stability Analysis for the Reduced Oregonator Model 

To determine the stability of the steady state of the Oregonator at different temperatures 

and to find out the conditions when the steady state loses its stability to exhibit limit 

cycle oscillations, asymptotic stability techniques are applied.
153,154

 In order for a 

chemical system to exhibit limit cycle oscillations, it is necessary that the steady state is 

unstable to an infinitesimal perturbation. Linearizing equation (40) around its steady 
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state (xs, zs) yields a Jacobian matrix J. The trace of J at (xs, zs), is given by the 

following expression, 
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which is positive. The criteria for a Hopf bifurcation (for a positive determinant J) is set 

by Tr(J) = 0. The analysis presented by Gray and Scott
153

 is followed for classifying the 

behavior of two dimensional systems based on the nature of the solutions to Tr(J) = 0.  

 

Therefore, the condition for the Hopf bifurcation is given by, 
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The Hopf bifurcation boundaries are presented in Figure 5.5. In Figure 5.5a, a boundary 

surface divides two regions, below which the Tr(J) is positive and the steady state is 

unstable. Above the surface, the Tr(J) is negative and the steady state is stable. Also, for 

each f and b/a, we can compute the temperature limits below which an unstable steady 

state prevails. Figure 5.5b represents a projection of the bifurcation surface in the f-T 

plane. The oscillatory region is shown below the bell shaped line, where the Tr(J) is 

positive. A shift from the blue to red colored regions indicates a higher b/a value. A low 

malonic acid, b or/and a high bromate concentration, a favors oscillations over a wide 

range of f. On the other hand, a high b/a value reduce the oscillation region in the f-T 

plane. The bifurcation curves with two parameters f and b/a for different temperatures 
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Figure 5.5 Bifurcation diagram for the temperature dependent two variable Oregonator 

model. The activation energies of set (i) in Table 5.1 are used. (a) The upper temperature 

limit surface in the phase space of temperature, initial reagent concentration ratio and 

stoichiometric factor. The model exhibits limit cycle oscillations below the colored 

bifurcation surface. (b) Plot of oscillatory region in the plane of temperature and 

stoichiometric factor. The color bar indicates different values of initial concentration 

ratios b/a. Each b/a cuts a curve in the f-T plane which encloses the oscillation region 

below it. The maximum upper temperature limit is about 455K when b/a is close to zero. 

(c) Bifurcation curve in the plane of stoichiometric factor and initial reagent 

concentration ratios at various temperatures. Below the curves are the regions of 

oscillations. 
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are plotted in Figure 5.5c. For every point below the curve, the Tr(J) is positive and the 

steady state is unstable. With a rise in temperature, the area of the oscillatory region 

shrinks and no oscillations are observed when the temperature reaches 455K. This is the 

maximum upper temperature limit when the concentration ratio b/a is close to zero.  

  

The maximum upper temperature limit (455K) for the existence of oscillations is well 

above the physical limit (100
○
C at 1 atm) of aqueous BZ reaction system. In spite of the 

numerous efforts to unfold the oscillation dynamics of the BZ reaction, little information 

is available in the literature on the high temperature oscillatory dynamics. The 

experimental findings so far are inconclusive. Misra
146

 has showed that the cerium 

catalyzed BZ reaction in a flow reactor displays an upper temperature limit of about 

361K when b/a is equal to 1.83. Here, we notice that the activation energies of the 

elementary reaction steps of the Oregonator model significantly influence the upper 

temperature limits for the existence of oscillations. As a result, we select another set [set 

(ii) in Table 5.1] of activation energies to correlate the model prediction to those 

observed in the experiments. 

 

The three dimensional bifurcation diagram in the Figure 5.6a uses activation energies of 

set (ii) in Table 5.1. Compared to Figure 5.5a, the bifurcation surface in (b/a)-T plane is 

flatter. The calculated upper temperature limit is adjusted to 361K when b/a is equal to 

1.83 (Figure 5.6b). Since both q(T) and )(Tε contain temperature dependent parameters, 

the sign of the combinations of activation energies control the temperature dependence 

of amplitude and period of oscillations. When E2+E3-E1-E4, and E3-E5 are negative, an 

upper temperature limit exists. The upper temperature limit reduces to a lower value 

when E2+E3-E1-E4 and E3-E5 become more negative. Under these conditions, the BZ 

reaction exhibits Arrhenius oscillatory behavior. The period and amplitude of the 

oscillations decreases with temperature, as shown in Figure 5.7. The temperature 

compensation (an interesting phenomena of unchanged oscillatory period and amplitude 

over a wide range of temperature), occurs when E2+E3-E1-E4 and E3-E5 equals to zero. 
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Figure 5.6 Bifurcation diagram for the temperature dependent two variable Oregonator 

model. The activation energies of set (ii) in Table 5.1 are used. (a) The upper 

temperature limit surface in the phase space of temperature, initial reagent concentration 

ratio and stoichiometric factor. The model exhibits limit cycle oscillations below the 

colored bifurcation surface. (b) Plot of oscillatory region in the plane of temperature and 

stoichiometric factor. The color bar indicates different values of initial concentration 

ratios b/a. Each b/a cuts a curve in the f-T plane which encloses the oscillation region 

below it. The maximum upper temperature limit is about 387K when b/a is close to 0, 

and 361K when b/a is equal to 1.83.  
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Therefore, the positive feed back loops are counterbalanced by negative feedback loops 

for a given set of activation energies.  

 

Recent experiments show a non-Arrhenius oscillation behavior during the catalytic 

oxidation of formic acid
155

 on a polycrystalline platinum electrode unlike the oxidation 

in methanol.
156

 At high applied currents, temperature compensation is observed and at 

low applied currents, both period and amplitude increases with temperature (temperature 

over-compensation). The authors point out that the non-Arrhenius behavior arises from 

the interplay among reaction steps than the actual temperature dependence of the 

individual steps. In our model, when E2+E3-E1-E4 and E3-E5 are positive, temperature 

over-compensation is observed. The amplitude and period of oscillations increases with 

temperature, and the reaction follow non-Arrhenius oscillation behavior where a lower 

temperature limit exists. It is noteworthy that the Oregonator model here can display all 

three important phenomena, the temperature compensation, Arrhenius, and non-

Arrhenius oscillatory behavior. Due to the multiple reaction steps of the BZ reaction and 

uncertainty of temperature dependent parameters, the results presented here illustrates 

the qualitative characteristics of the BZ reaction.  

  

5.4.3 Characteristics of Hopf Bifurcation with Temperature 

In Hopf bifurcations when the bifurcation parameter p increases to a value pc the steady 

state looses its stability and a limit cycle forms surrounding the steady state. In a 

supercritical Hopf bifurcation, the limit cycle is stable and the steady state loses its 

stability and any small perturbation will cause the system to produce sustained 

oscillations. The amplitude grows gradually with increasing p. In a subcritical Hopf 

bifurcation, the steady state maintains its stable steady state, but becomes surrounded by 

a pair of limit cycles, an unstable inner one which exists when p is less than pc  and a 

stable outer one. The character of Hopf bifurcation is determined by applying normal 

form analysis. For the two variable Oregonator, normal form analysis yield the following 

expression for the coefficient a1(T) as,
149
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Figure 5.7 Temperature dependence of oscillation period and amplitude for the reduced 

Oregonator model. The activation energies are used from set (ii) in Table 5.1. The 

stoichiometric factor f = 1.0, and b/a = 1.83. 
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Figure 5.8 Application of normal form analysis to determine the character of Hopf 

bifurcation at different temperatures. (a) The reaction undergoes a supercritical Hopf 

bifurcation when a1 < 0, and a subcritical Hopf bifurcation when a1 > 0. (b) 

Representation of the subcritical and supercritical Hopf bifurcations in the f-T plane. The 

bifurcation curve (circular symbols) cuts out with b/a = 1 from the bifurcation surface 

(Figure 5.5a) intersects with a1 = 0 (dashed curve) at a point fHD at which the Hopf 

bifurcation is degenerate. Bifurcations with f > fHD (open circles) are supercritical and f < 

fHD (solid circles) are subcritical. 
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The sign of the coefficient a1(T) defines the character of Hopf bifurcation. If a1(T) is 

positive for the given bifurcation parameter, it undergoes a subcritical Hopf bifurcation. 

On the other hand, if a1(T) is negative, the bifurcation displays the characteristics of a 

supercritical Hopf bifurcation. Figure 5.8a illustrates the behavior of a1(T) as a function 

of bifurcation parameter f with b/a = 1. At temperature of 298K and b/a = 1, a1(T) 

becomes zero at approximately f = 0.985836, which represents the stoichiometric factor 

at Hopf degeneracy. Therefore the reaction exhibits a subcritical Hopf bifurcation at f = 

0.52, and a supercritical Hopf bifurcation at f = 2.25.  At a higher temperature 350K, 

a1(T)  become zero at  f = 0.953596. Figure 5.8b shows that the Hopf degeneracy line 

[a1(T) = 0] which divides subcritical and supercritical bifurcations moves towards lower 

f values as reported in Table 5.3. The fHD is the degeneracy point for b/a = 1. 

Bifurcations with f > fHD (open circles) are supercritical and f < fHD (solid circles) are 

subcritical. 

 

Table 5.3 Stoichiometric factors where Hopf bifurcation degenerates as a function of 

temperature, calculated using the activation energies of set (i) in Table 5.1. The initial 

reagent concentration ratio, b/a is set to 1. 

 

Temperature (K) fHD 

298 0.9858366 

350 0.9535960 

400 0.8739118 

450 0.6897815 
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5.5 Conclusions 

 

The temperature response of the two variable Oregonator model are investigated by 

considering all five reaction rates. The analysis is carried out in the 3-D phase space 

spanned by the temperature, stoichiometric factor and initial reagent concentrations. The 

upper temperature limits for the oscillations are calculated for a given b/a and f. The 

activation energies of the elementary reaction steps of the Oregonator model govern the 

overall oscillatory behavior. The predictions from the model can be correlated to the 

experimental findings of the temperature related BZ oscillations. Even though the BZ 

reaction is not a biological system, the present analysis provides insights into the role of 

temperature and can be extended to some of the biological oscillators. The determination 

of the temperature dependent subcritical or supercritical characteristics of the Hopf 

bifurcation is useful for the design of batch processes that run at various temperatures. 
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CHAPTER VI 

CONCLUSIONS 

 

6.1 Summary 

 

The dynamics of environment sensitive PNIPAM gel particles has been investigated 

here, both near and away from the chemical equilibrium. In Chapter II, the freezing-

melting boundaries of the charged and hard PNIPAM spheres are determined by UV Vis 

spectroscopy method. This method can be applied to colloidal systems in which the 

effective hard-sphere particle diameter during phase transition is sensitive to control 

variables such as temperature, pH, and salt or other chemical concentrations. The 

particle diameter can be measured using this technique in the coexistence regime if 

φmelting and the dominant Bragg scattering angle are determined. The coexistence region 

for the chaged spheres moved towards lower concentrations, and the effective diameter 

of the charged particles increases with temperature due to the increase in the charge 

density. This method provides an accurate and time-efficient method of phase boundary 

analysis for temperature-sensitive polymers, and a valuable technique for inter-particle 

potential characterization. At low pH, the PNIPAM-co-acrylic acid microgel particles 

behave as thermo-sensitive hard spheres, and at high pH, the particles behave as charged 

spheres. 

 

Chapter III presents a systematic study on the BZ reaction induced mechanical 

oscillation of PNIPAM gel particles by varying the malonic acid, sodium bromate, and 

the imbedded Ru(bipy)3 catalyst concentrations. A ternary diagram was created to show 

the correlation between the dynamic behavior of the system and the substrate 

concentrations. It was found that the oscillating and steady state regimes coexist on the 

ternary diagram and are separated by a high frequency oscillation band.  The 

dependencies of the oscillation frequency and induction time on the substrate 

concentrations were analyzed and tentatively explained by the inhibition effects.  This 
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study provides guidance for tuning induction time and frequency, the two important 

parameters in mechanical-oscillation-facilitated colloidal assembly. 

  

A comparative analysis of the BZ reaction characteristics between polymer immobilized 

and bulk catalyst systems at various temperatures is shown in Chapter IV. We found that 

the immobilization of the catalysts lengthens the induction time of the BZ reaction and 

this effect is more pronounced at lower temperatures. The high induction time for the 

immobilized catalyst case can be attributed to possible chemical (lowering of standard 

reduction potential of the ruthenium), and diffusional changes (due to the presence of a 

polymer network) of the BZ species due to the polymer addition. However, the rate 

determining step for the oscillation frequency is not affected by the polymer-catalyst 

interaction. Arrhenius pre-exponential factors and activation energies are calculated for 

both induction and oscillatory phase. The chemical bonding of PNIPAM spheres with 

BZ reaction catalyst can tailor the induction time while without effect on oscillation 

kinetics. The existence of a prolonged BZ reaction induction period with the 

immobilized catalyst in colloidal suspensions offers a temporal separation between the 

colloidal phase transition kinetics and the nonlinear dynamics of particle’s size 

oscillation. Currently, experiments are in progress to fabricate BZ active colloidal 

crystals. 

 

In Chapter V, the temperature response of the two variable Oregonator model has been 

investigated by considering all five reaction rates. The analysis is carried out in the 3-D 

phase space spanned by the temperature, stoichiometric factor and initial reagent 

concentrations. It is found that the activation energies of the elementary reaction steps of 

the Oregonator model govern the overall oscillatory behavior. The predictions from the 

model can be correlated to the experimental findings of the temperature related BZ 

oscillations. The results presented in here agree qualitatively with those of the 

observation in the experiments. This analysis provides insights into the role of 

temperature and can be extended to some of the biological oscillators.  
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6.2 On Going Projects 

 

6.2.1 Phase Diagram of Charged PNIPAM Spheres 

The experimental phase diagram for charged spheres investigated in Chapter II is 

different to that of hard sphere phase behavior, in the sense that the particles crystallize 

at lower volume fractions. The general trend of the charged sphere phase behavior in the 

concentration-temperature plane appeared to be similar to that of hard sphere phase 

diagram, predicted by perturbation theory. It would be interesting to correlate the 

experimental observation on the charged sphere phase behavior to those predictions from 

the theory. Therefore, the future work investigates into the application of perturbation 

theory to interpret charged PNIPAM sphere phase behavior. One possible route is to 

replace the core diameter of the neutral PNIPAM particles with the known effective 

diameter of the charged spheres as calculated in the results and discussion of Chapter II. 

This method assumes that the radial distribution functions for the solid and fluid phase 

are same to those in the hard sphere model. 

 

6.2.2 Wave Patterns and Mechanical Deformation of BZ Active PNIPAM Gels 

As pointed out in Chapter I, a wide range of applications are expected for the PNIPAM 

based polymers. An approach was developed recently for simulating chemoresponsive 

gels that exhibit not only large variations in volume but also alterations in shape.
95

 

Through this approach, oscillating gels undergoing the Belousov-Zhabotinsky (BZ) 

reaction were simulated, which showed that the formation of the wave pattern depends 

on the aspect ratios of the sample (Figure 6.1). The future work investigates into the 

experimental realization of the controlled dynamic patterns that give rise to distinctive 

oscillations in gel’s shape. By probing morphological changes in BZ gels, a design 

criterion can be established for creating autonomous small scale devices, which perform 

sustained work until the reagents in the host solution are consumed and can be simply 

refueled by replenishing these solutes. 
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Figure 6.1 Two-dimensional wave patterns and deformations for gels of different 

dimensions.
95

 

  

6.2.3 Colloidal Crystallization in Coupling to BZ Reaction 

Many potential applications for colloidal crystals require samples which are free from 

defects over a macroscopic length scale. Several approaches have been proposed for 

minimizing defect formation during colloidal crystallization. A perfect (defect-free) 

crystal is still an idealization. The defects are due to poorly controlled kinetic processes 

which are affected by hydrodynamics, sedimentation, interactions among the particles 

etc. By inducing mechanical oscillations at the coarsening and ripening of the crystal 

growth, the future work focuses on controlling the kinetics of crystal growth and 

creating a near perfect big crystal. 
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Specifically, the growth and melt process of the crystallites are controlled via forced size 

oscillations of the PNIPAM colloidal microgels in coupling to the BZ reaction. During 

the oscillatory state of the BZ reaction, the volume fraction of the particles changes in 

accordance with the oxidization state of the ruthenium catalyst. Consequently, the 

sample undergoes repeated melt-recrystallize process which facilitate the crystal 

annealing process as shown in the Figure 6.2.  

 

 

 

 

Figure 6.2 Representation of the BZ reaction facilitated colloidal self assembly. 

 

6.2.4 Fast Responsive and High Amplitude BZ Induced PNIPAM Gel Oscillations 

In this project, a novel method is developed to fabricate fast responsive self-oscillating 

gels with large amplitudes. The imbalance between the attractive and repulsive forces 

acting on the PNIPAM polymer controls the swell/shrink response of the polymer. The 

swelling occurs when the repulsive forces such as the ionic repulsions or osmotic forces 

exceeds the attractive forces such as hydrogen bonding, van der Waals interactions. In 

this swell/shrink process, water is diffused either from the surface towards the centre of 

the gel, or vice versa. It is known that the swell/shrink rate is inversely proportional to 

the square of the distance that the water molecules have to traverse. As a result, the gel 

response at macroscopic level is not sufficiently fast to make them widely useful. There 

are many natural examples of chemically driven actuation that rely on short diffusion  
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Figure 6.3 Comparison of normalized length shrinkage of PNIPAM-co-Ru(bipy)3 in 

normal bulk and structured gel networks. The reduced and oxidized states of ruthenium 

are maintained by placing gel pieces in either Ce(III) or Ce(IV) solutions. 

 

paths to produce a rapid response.
157

 Faster response is desired in many areas such as 

drug delivery,
3
 chemical and biosensing,

7
 photonic crystals,

158,159
 absorbants, and in 

separation and purification technologies.
160

 Recent work by Cho et al. has demonstrated 

a fast responsive three dimensional gel that swells or deswells at a macroscopic level by 

incorporating either bridging or depletion interactions.
161

 Here, we prepared fast 

responsive self oscillating polymer gels utilizing attractive interactions  
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Figure 6.4 Comparison of normalized transmittance of PNIPAM-co-Ru(bipy)3 in 

normal bulk and structured gel networks. Structured gels oscillate with larger amplitudes 

compared to normal bulk gels. The reduced and oxidized states of ruthenium are 

maintained by placing gel pieces in either Ce(III) or Ce(IV) solutions. 

 

between positively charged ruthenium complex, allylamine and negatively charged 

poly(acrylic acid).  

 

Preliminary results are suggestive of the faster response of the structured gel compared 

to the response in bulk gels (Figure 6.3). The gel shrinkage in length with time was 

monitored by placing in a solution of 1M nitric acid containing either Ce(IV)SO4 or 

Ce(III)SO4, which corresponds to the oxidized or reduced states of the ruthenium metal. 
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The degree of swelling in the oxidized state is higher compared to the swelling in the 

reduced state in both gels due to the increased Donnan osmotic pressure. It is observed 

that the structured microgel formed by the inter-connected gel network responds ten 

times faster than the bulk gel. This remarkably faster kinetics arises from the smaller 

dimensions of the microgel particles that form the three dimensional gel networks. The 

smaller size speeds up the diffusion of the fluid through the gel network. In the case of 

the bulk gel, the crosslinked three dimensional network reduces the diffusion of 

surrounding fluids and hence the gel exhibits slow response. 

 

The normalized transmittance of the structured gel particles as a function of temperature 

in Figure 6.4 is measured under different oxidization states of the ruthenium metal. 

Compared to bulk gel particles, the structured gel particles display higher swelling and 

shrinkage. The structured gel particles shrink to about 40% of their original size above 

their LCST temperatures whereas the bulk gel particles shrink to about 55%. Therefore, 

in conjunction with the BZ reaction, the interconnected gel particles display higher 

volume changes compared to bulk particles due to the increased diffusion rates of the 

fluids surrounding the particles. The future work investigates into the switching time and 

amplitude oscillations of the PNIPAM-co-Ru(bipy)3 gel between oxidized and reduced 

states of the ruthenium catalyst at different temperatures. 
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