
NEW SOLUTION METHODS FOR JOINT CHANCE-CONSTRAINED

STOCHASTIC PROGRAMS WITH RANDOM LEFT-HAND SIDE

A Dissertation

by

MATTHEW WILEY TANNER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Industrial Engineering



NEW SOLUTION METHODS FOR JOINT CHANCE-CONSTRAINED

STOCHASTIC PROGRAMS WITH RANDOM LEFT-HAND SIDE

A Dissertation

by

MATTHEW WILEY TANNER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Lewis Ntaimo
Committee Members, Guy Curry

Sergiy Butenko
Faming Liang

Head of Department, Brett Peters

May 2009

Major Subject: Industrial Engineering



iii

ABSTRACT

New Solution Methods for Joint Chance-Constrained Stochastic Programs with

Random Left-Hand Side. (May 2009)

Matthew Wiley Tanner, B.S.E., Princeton University

Chair of Advisory Committee: Dr. Lewis Ntaimo

We consider joint chance-constrained programs with random lefthand sides.

The motivation of this project is that this class of problem has many important

applications, but there are few existing solution methods. For the most part, we

deal with the subclass of problems for which the underlying parameter distributions

are discrete. This assumption allows the original problem to be formulated as a

deterministic equivalent mixed-integer program.

We first approach the problem as a mixed-integer program and derive a class

of optimality cuts based on irreducibly infeasible subsets of the constraints of the

scenarios of the problem. The IIS cuts can be computed efficiently by means of a

linear program. We give a method for improving the upper bound of the problem

when no IIS cut can be identified. We also give an implementation of an algorithm

incorporating these ideas and finish with some computational results.

We present a tabu search metaheuristic for finding good feasible solutions to

the mixed-integer formulation of the problem. Our heuristic works by defining a

sufficient set of scenarios with the characteristic that all other scenarios do not have

to be considered when generating upper bounds. We then use tabu search on the

one-opt neighborhood of the problem. We give computational results that show our

metaheuristic outperforming the state-of-the-art industrial solvers.

We then show how to reformulate the problem so that the chance-constraints

are monotonic functions. We then derive a convergent global branch-and-bound algo-



iv

rithm using the principles of monotonic optimization. We give a finitely convergent

modification of the algorithm. Finally, we give a discussion on why this algorithm is

computationally ineffective.

The last section of this dissertation details an application of joint chance-constrained

stochastic programs to a vaccination allocation problem. We show why it is necessary

to formulate the problem with random parameters and also why chance-constraints

are a good framework for defining an optimal policy. We give an example of the prob-

lem formulated as a chance constraint and a short numerical example to illustrate

the concepts.



v

To my parents, Steven and Lisa



vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Lewis Ntaimo for all the support and advice

that he has given me over the last few years. I would like to thank the Industrial

and Systems Engineering Department here at Texas A&M for all the support they

have given me while I was studying for my doctorate. I would especially like to thank

Judy for taking care of us graduate students all these years. Finally, I would like to

thank my friends for making graduate school a fun time.



vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A. Problem Definition . . . . . . . . . . . . . . . . . . . . . . 1

B. Computation Details and Test Instances . . . . . . . . . . 5

C. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 7

II BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . 11

A. Convexity Results . . . . . . . . . . . . . . . . . . . . . . . 14

B. Discrete Distributions, Fixed Left-Hand Side . . . . . . . . 16

C. Discrete Distributions, Random Left-Hand Side . . . . . . 18

D. Approximations and Sampling . . . . . . . . . . . . . . . . 21

III IIS CUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

A. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 24

B. IIS Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1. Improving the Upper Bound . . . . . . . . . . . . . . 32

C. A Branch-and-Cut Algorithm . . . . . . . . . . . . . . . . 34

D. Computational Results . . . . . . . . . . . . . . . . . . . . 36

1. Optimal Vaccine Allocation . . . . . . . . . . . . . . . 36

2. Production Planning Application . . . . . . . . . . . . 39

E. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IV TABU SEARCH METAHEURISTIC . . . . . . . . . . . . . . . 43

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 43

B. Local Search . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1. Defining the Neighborhood . . . . . . . . . . . . . . . 44

2. Efficiently Searching the Neighborhood . . . . . . . . 46

C. Tabu Search for Probabilistically Constrained Programs . . 48

1. Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 49

2. Construction . . . . . . . . . . . . . . . . . . . . . . . 50

3. A Tabu Search Algorithm . . . . . . . . . . . . . . . . 51

D. Computational Results . . . . . . . . . . . . . . . . . . . . 53

1. Algorithm Results . . . . . . . . . . . . . . . . . . . . 53

E. Conclusions and Future Work . . . . . . . . . . . . . . . . 58



viii

CHAPTER Page

V A MONOTONIC OPTIMIZATION ALGORITHM . . . . . . . 60

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 60

B. Background . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C. A Branch-and-Bound Algorithm . . . . . . . . . . . . . . . 67

1. An Algorithm . . . . . . . . . . . . . . . . . . . . . . 67

2. Convergence . . . . . . . . . . . . . . . . . . . . . . . 68

3. Initial Implementation and Results . . . . . . . . . . . 73

D. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 73

VI OPTIMAL VACCINE ALLOCATION UNDER UNCERTAINTY 76

A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 76

B. Stochastic Programming . . . . . . . . . . . . . . . . . . . 82

1. Stochastic Programming Formulations . . . . . . . . . 82

2. Application to Various Disease Spread Models . . . . 85

C. Example Model . . . . . . . . . . . . . . . . . . . . . . . . 87

1. Linear Programming Formulation . . . . . . . . . . . 87

2. Stochastic Programming Formulation . . . . . . . . . 91

D. Numerical Example . . . . . . . . . . . . . . . . . . . . . . 92

E. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 97

VII CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . 98

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

APPENDIX B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



ix

LIST OF TABLES

TABLE Page

I Problem Sizes for Vaccination Test Instances . . . . . . . . . . . . . 6

II Problem Sizes for Production Planning Test Instances . . . . . . . . 7

III Chance-Constrained Programming Papers . . . . . . . . . . . . . . . 12

IV IIS Branch-and-Cut Computations on Vaccination Problems . . . . . 37

V IIS Branch-and-Cut Computations on Production Planning Problems 40

VI Sampling Tabu Computations on Vaccination Test Instances . . . . . 53

VII Sampling Tabu Computations on Production Planning Instances . . 54

VIII Vaccination Stochastic Programming Model Parameters . . . . . . . 89

IX Value of Information on Small Vaccination Example . . . . . . . . . 95

X Problem Sizes for Vaccination Test Instances . . . . . . . . . . . . . 114

XI Parameters for Vaccination Problem . . . . . . . . . . . . . . . . . . 115

XII List of Family Types and Frequency . . . . . . . . . . . . . . . . . . 117

XIII List of Vaccination Parameters and Distributions . . . . . . . . . . . 117

XIV Problem Sizes for Production Planning Test Instances . . . . . . . . 119

XV Parameters for Production Planning Problems . . . . . . . . . . . . . 120

XVI List of Production Parameters and Distributions . . . . . . . . . . . 120



x

LIST OF FIGURES

FIGURE Page

1 Plot of Best Feasible Solution vs. Time for Vac20000 . . . . . . . . . 56

2 Plot of Best Feasible Solution vs. Time for Prod2000 . . . . . . . . . 57

3 Plot of Vaccine Proportion vs Epidemic Prevention Rate . . . . . . . 94



1

CHAPTER I

INTRODUCTION

A. Problem Definition

We consider joint chance-constrained stochastic programming problems allowing for

the left-hand side of the constraints to be random. Instead of requiring feasibility

almost surely, a chance-constraint within a stochastic program must be satisfied at

least with probability α. A joint chance-constraint introduces dependency into this

concept, requiring that a subset of constraints in the formulation are satisfied at

least with probability α. Chance-constraints are used to model systems for which

a certain quality-of-service is required, or for when a problem has extreme cases for

which satisfying the chance-constraints for all possible parameter values is either too

expensive or impossible.

The goal of mathematical programming is to identify an optimal solution for

a problem. Traditionally it is assumed that all problem data are known precisely,

which implies that an optimal solution for the problem is truly the best (Bazaara

et al., 1990). Unfortunately, in most cases, problem data cannot be known exactly

and instead the data can take a range of values or perhaps can be defined by a

probability distribution. Sensitivity analysis can be used to identify the range of

problem parameter values for which an optimal solution to a problem remains optimal.

If this range encompasses the entire range of possible parameter values, then the

optimality of the solution can be guaranteed. However, if the parameter values vary

widely, then there may be possible parameter values for which the optimal solution

is suboptimal or even infeasible (Bazaara et al., 1990).

This dissertation follows the style of IIE Transactions



2

Stochastic programming is an extension of mathematical programming in which

the assumption that all data are known is relaxed; instead, a subset of the parameter

values of the problem are characterized by probability distributions (Ruszczyński and

Shapiro, 2003). The goal of a mathematical programming problem is to identify

an optimal solution, where optimality is defined in terms of a cost function to be

minimized or maximized. The most popular measure of optimality in stochastic

programming is in terms of the expected value of the objective function, but other

risk functions can also be used (Szegö, 2002). Except for a few cases, solving stochastic

programs with continuously distributed parameters is extremely difficult, so in most

cases parameters are given discrete distributions or the continuous distributions are

discretized through sampling. A realization ω of the vector of random variables ω̃

of the problem is known as a scenario and is defined on the sample space Ω. The

decision variables of the mathematical programs are given by the vector x ∈ Rn. The

types of information that can be gained by optimizing a general, random function

z(x, ω) in the stochastic programming framework can be described as follows:

DEFINITION A.1. The stochastic programming solution (SPP ) is the minimum

expected value of the function z(x, ω) in terms of the random variables ω̃. In other

words,

SPP = min
x
Eω̃
[
z(x, ω)

]
. (1.1)

Besides the optimal objective value and optimal decision variables, other useful

statistics can be computed to show the effect of parameter uncertainty on the policies

suggested by the model. Assuming that the random parameters have discrete distri-

butions, the problem has a finite number of scenarios. The “wait-and-see” solution

assumes that the decision maker can see the realization of the random variables before

any decisions need to be made.



3

DEFINITION A.2. The “wait-and-see” solution (WS) given in equation (1.2) is

the expected value of the solutions found by assuming that decisions are made after

the random parameters are realized.

WS = Eω̃
[
min
x
z(x, ω)

]
(1.2)

DEFINITION A.3. The value of perfect information (V PI) is given by the equation

V PI = SPP −WS. (1.3)

V PI measures how much improvement can be gained if the true values of the

parameters are known. This information can be used to decide how much effort should

be expended trying to improve estimates of the parameters.

Another important statistic found by analyzing the stochastic model is the value

of including uncertainty in the formulation. To compute this value, a deterministic

linear program is set up using the expected values of the random parameters as

deterministic parameters. This deterministic linear program is solved to find optimal

decision variable values.

DEFINITION A.4. The expected result of using the expected value solution (EEV )

is the expected objective value of the solution found with the mean point estimates

of the random parameters. EEV is given by

EEV = Eω̃
[
z(x̄(ω̄), ω)

]
. (1.4)

Since the goal is to lower the probability of a disease spreading widely, the benefit

of solving these problems as a stochastic program is in the added robustness of the



4

optimal value. In this case, the EEV shows the probability of failure for the vacci-

nation policy found by using point estimates of the parameter values and so gives an

estimate of the gain in solution robustness due to including parameter uncertainty in

the problem formulation.

It is assumed that the random variables of a problem have known distributions,

and that there is a set of decision variables that must be decided before the values

of the random parameters are realized. Two popular stochastic programming models

are chance-constrained programs and stochastic programs with recourse. The basic

formulation for a joint chance-constrained program is given by equations (1.5a)-(1.5c).

Min f(x) (1.5a)

s.t. P
{
ω ∈ Ω : gi(x, ω) ≤ 0, i = 1 . . .m

}
≥ α, (1.5b)

x ∈ X . (1.5c)

In formulation (1.5a) - (1.5c), x ∈ Rn is the decision variable vector, f(x) is the

objective function, gi(x, ω), i = 1 . . .m are real valued functions that make up the

random constraints within the joint chance-constraint (1.5b), and X is the feasible

space of the decision variables. In this formulation, individual outcomes of the random

variable are represented as realizations ω ∈ Ω of the sample space. The aim of such

a formulation is to find a minimum cost strategy while allowing a subset of the

constraints to be violated with probability less than α ∈ [0, 1].

Besides the possible nonconvexity of the objective function and feasible space,

there are several reasons specific to chance constraints that formulation (1.5) is diffi-

cult to solve. The first is that in the case of general probability distributions for the

random data, evaluating whether a point satisfies the joint chance-constraints (1.5c)



5

involves the solution of a multi-dimensional integral. So even finding a feasible point

for the problem may not be possible. The second main difficult is that even under

strong assumptions on the probability distributions, the feasible region of problem

(1.5) may be nonconvex.

Various assumptions about the distribution functions of the random parameters

must be made in order to formulate computationally tractable problems with chance

constraints. Depending on where in the problem the randomness is situated, it can

be shown that the problem is convex for various probability distributions of the ran-

dom data and various constraint function types. In this case, convex programming

methods can be used to find optimal solutions. In the case of discrete probabil-

ity distributions, most solution methods use integer programming or other discrete

programming techniques.

B. Computation Details and Test Instances

To test the effectiveness of the methods given in this thesis, we generated two sets of

random test instances. The first set of test instances is a chance-constrained program

applied to finding an optimal vaccination policy. The details of the application can

be found in Chapter VI. The problem formulation and the random parameter distri-

butions that we assumed can be found in Appendix A. Problem size information can

be found in Table I. The second set of test instances that we generated is a chance-

constrained formulation of a production planning problem. The exact formulation

and probability distributions can be found in Appendix B, while the Problem size

information is given in Table II. For each of these two sets, we generated 5 problems

of each size using random sampling.

In both Table I and Table II, the first column gives the names of the test instance.



6

Table I. Problem Sizes for Vaccination Test Instances

Instance Rows Cont. Vars. Binary Vars.

vac500 531 302 500

vac750 781 302 750

vac1000 1031 302 1000

vac2000 2031 302 2000

vac3500 3531 302 3500

vac5000 5031 302 5000

vac10000 10031 302 10000

The number in these names refers to the number of scenarios. The second column

gives the number of rows of the MIP formulation of the problem. The third column

gives the number of continuous variables that the problem has, while the fourth

column gives the number of binary variables that the problem has. The vaccination

test instances have much few rows than the production planning test instances, but

they are difficult because the instances tend to be extremely dense. The production

planning test instances are difficult because the MIP formulation becomes extremely

large as the number of scenarios increases.

For comparison with our algorithms, For all of our computational tests, we used

a Dell Optiplex GX620 computer with a PentiumD 3.0 GHz processor and 4.0 GB

RAM. We implemented our algorithms using the CPLEX 9.0 callable library within

the C++ environment.



7

Table II. Problem Sizes for Production Planning Test Instances

Instance Rows Cont. Vars. Binary Vars.

Prod100 5531 75 100

Prod250 13781 75 250

Prod500 27531 75 500

Prod750 41281 75 750

Prod1000 55031 75 1000

Prod2000 110031 75 2000

C. Thesis Outline

This dissertation focuses on mathematical programming solution techniques for chance-

constrained stochastic programs with with random constraint functions. Not all of

the results presented in this dissertation will be valid for the general formulation

(1.5). We will make assumptions at the beginning of each chapter. One of the main

assumptions that we will make in most cases is that the random parameters of the

problem have discrete distributions. Studying discrete parameter distributions is par-

ticularly important because it allows the use of sampling to generate computationally

tractable problems for cases in which assumptions on the probability distributions

that make the problem convex are too stringent. The discrete distributions allow the

problem to be reformulated as a deterministic equivalent mixed-integer programming

problem.

The integer programming reformulations of problem (1.5) tend to have very weak



8

linear programming relaxations and so traditional branch-and-cut methods are often

not effective at solving them. Also, mixed-integer programming problems can not be

solved effectively for general objective and constraint functions. We will first present

novel integer programming techniques that can be used to solve the IP formulation of

problem (1.5) more effectively in the case where the objective and constraint functions

are linear. We will then give a heuristic method for the problem that is valid for

more general problem with discretely distributed parameters. We will also present

a branch-and-bound algorithm that branches on the continuous decision variables

of the problem using a monotonic reformulation of the chance constraints. This

algorithm can be applied to problems with continuously distributed parameters. This

dissertation includes computational results of these methods on several test problem

sets that are much larger than have previously been solved.

Chapter II gives extensive background on chance-constrained stochastic pro-

grams. It begins with a description of a few different applications for chance-constrained

programming from the literature. It then continues with a short introduction to the

various types of chance-constrained programs that have been studied. We give a

review of the various solution techniques for the different classes of problems. The

chapter finishes with a more extensive review of results on chance-constrained stochas-

tic programs with discretely distributed random parameters, including a discussion

of where this dissertation fits into the literature.

Chapter III presents a new class of optimality cuts called IIS cuts that we have

derived for solving joint chance-constrained programs in a branch-and-cut framework

in the case where the constraints are linear. These cuts are derived using irreducibly

infeasible subsets of scenarios which can be identified using linear programming. We

prove that the derived cuts do not cut off all optimal solutions and present a separating

algorithm. We also give a routine for quickly improving the best feasible solution



9

found for the problem in the case when no IIS cut can be found. The methods are

only valid for problems with discretely distributed random parameters. We finish the

chapter with a description of our implementation of the algorithm and computational

results that show the effectiveness of the methods.

In Chapter IV, we reformulate the problem as finding subsets of scenarios such

that the sum of the probabilities of those scenarios is greater than the reliability

parameter α. This reformulation implies a finite feasible solution space Φ. Given

a solution C ∈ Φ, we define a neighborhood N (C). We then describe a method

for quickly searching N (C) for improving solutions, and give a random tabu search

metaheuristic for searching our solution space. This method is valid for any problem

with discretely distributed random parameters. We finish the chapter with some

computational results from our heuristic.

In Chapter V, we give a novel branch-and-bound strategy for solving a class

of joint chance-constrained problems. Our method requires the functions that make

up the chance-constraint to be either all increasing or all decreasing, an assumption

that is satisfied by all chance-constrained programs with linear constraints. We also

require an oracle to evaluate the feasibility of the chance constraints, easily done in the

case of discrete distributions. The branching is done on the decision variables of the

problem. We give some possible branching rules, prove convergence of the algorithm

in the general case of continuous distribution functions for the random parameters,

and finite ε-convergence given some extra assumptions. The chapter concludes with

a discussion of why the algorithm is computationally infeasible.

Chapter VI is a detailed description of the application that inspired this disserta-

tion. The chapter describes how chance-constrained programming can be applied to

the problem of optimal vaccine allocation. Stochastic programming is a particularly

apt framework for vaccine allocation because the parameters of disease spread models



10

that underly the problem of distributing vaccines are particularly hard to estimate.

The chapter gives a few different formulations of the vaccine allocation problem as a

chance-constrained program and also describes the class of disease models for which

stochastic programming can be used to define a vaccination program.

Chapter VII finishes with some conclusions and future work on this subject. We

also include some appendices that give the problem formulations and parameter data

that we used in our computational studies.



11

CHAPTER II

BACKGROUND

This chapter gives an introduction to the history and current status of research into

chance-constrained stochastic programs. There are a large number of potential ap-

plications for chance constrained programming including maintaining proper aquifer

levels (Curry et al., 1973; Morgan et al., 1993), maintaining a continuous distilla-

tion process (Henrion and Möller, 2003), optimizing a portfolio (Pagnoncelli et al.,

2008), air quality management with a required reliability level (Watanabe and Ellis,

1993; An and Eheart, 2007), and optimal scheduling (Tayur et al., 1995). Chapter

VI introduces an application of chance-constraints to the problem of finding opti-

mal vaccination policies. Obviously, this is not a complete list of all applications of

chance-constrained programming but it does give an idea of the wide range that have

been studied.

There are several important types of chance-constraints which drive the vari-

ous solution techniques that have been developed to tackle them. Table III includes

sections on each of these different types and lists the references for each of them,

the rest of the section will explain the papers in detail. The first column lists the

categories: problems with continuous distributions, discrete distributions, algorithms

that find approximate results, application papers, papers on convex functions, and

robust optimization papers applied to chance constrained programming. The second

column gives the type of random distribution for the papers: fixed technology matrix,

random technology matrix, and either. The final column lists the papers for each of

the combinations of categories. The rest of the chapter summarizes and highlights

the important results in chance-constrained programming.



12

Table III.: Chance-Constrained Programming Papers

Category Randomness Papers

Continuous Distributions Fixed LHS Charnes and Cooper (1959)

Miller and Wagner (1965)

Prékopa (1971)

Henrion and Strugarek (2006)

Cheon et al. (2006)

Continuous Distributions Random LHS Kataoka (1963)

Jagannathan (1974)

Prékopa (1974)

Watanabe and Ellis (1993)

Lagoa et al. (2005)

Henrion and Strugarek (2006)

Discrete Distributions Fixed LHS Prékopa (1990)

Sen (1992)

Dentcheva et al. (2000)

Dentcheva et al. (2002)

Beraldi and Ruszczyński (2002b)

Beraldi and Ruszczyński (2002a)

Cheon et al. (2006)

Saxena (2007)

Luedtke et al. (2007)

Discrete Distributions Random LHS Morgan et al. (1993)

Tayur et al. (1995)



13

TABLE III continued

Category Randomness Papers

Ruszczyński (2002)

Pang and Leyffer (2004)

Tanner and Ntaimo (2008)

Approximations Any Pintér (1989)

Iwamura and Liu (1996)

Aringhieri (2004)

Nemirovski and Shapiro (2004)

Calafiore and Campi (2005)

Nemirovski and Shapiro (2006)

Calafiore and Campi (2006)

Haneveld and Vlerk (2006)

An and Eheart (2007)

Luedtke and Ahmed (2007)

Pagnoncelli et al. (2008)

Tanner and Beier (2008)

Applications Any Curry et al. (1973)

Morgan et al. (1993)

Watanabe and Ellis (1993)

Henrion and Möller (2003)

Tanner et al. (2008)

Convex Functions Any Nemirovski and Shapiro (2004)

Dentcheva et al. (2004)

Erdogan and Iyengar (2005)



14

TABLE III continued

Category Randomness Papers

Robust Optimization Any Calafiore and Campi (2006)

Chen et al. (2007)

Parpas et al. (2007)

A. Convexity Results

Most early results in the field of chance constrained programming deals with deriv-

ing conditions for which the structure of the constraint functions and the probability

distributions of the random parameters cause the feasible space of the problem to

be convex. In these cases, standard convex programming techniques can be used to

determine optimal solutions. Due to the difficulty of evaluating the feasibility of the

chance constraints in the case of general probability distributions for the parameters,

pretty much all exact solution methods for chance constrained programs with contin-

uously distributed parameters are limited to cases where the problem is convex. All

of these results require the assumption that the chance constraints of the problem are

linear functions.

The earliest formulation of chance constraints within a stochastic programming

framework was given by Charnes and Cooper (1959). They presented a model with

single chance constraints (e.g. m = 1) and fixed left-hand side. Using these as-

sumptions, they showed that the problem can be reformulated as a deterministic

nonlinear programming problem equivalent by taking the inverse of the distribution



15

of the random righthand size. With known distributions, this transformation is linear

and results in an efficiently solvable problem. For the case of single chance constraints

and random left-hand sides, Kataoka (1963) showed that the problem is convex when

the left-hand side is independently normally distributed and α ≥ 0.5.

Problems with joint chance-constraints (m > 1) were introduced by Miller and

Wagner (1965). They focused on problems with fixed technology matrices. They

showed that when the random righthand side parameter distributions are indepen-

dent, the logarithmic transforms of the products of the CDFs are convex and hence

computationally tractable for a large class of probability distributions. In the case

when the random righthand sides are dependent, Prékopa (1971) showed that a con-

vex deterministic equivalent problem can be formulated when the righthand sides

have log-concave distributions. This class includes such distributions as multi-variate

normal and multi-variate beta.

Problems with random left-hand side are significantly more difficult to solve than

are problems with randomness just in the righthand side vector. Early results on the

convexity of this case are given by Jagannathan (1974) who showed that if the random

coefficients of the technology matrix are independent and normally distributed, then

the problem can be reformulated as a parametric convex program. Prékopa (1974)

showed that problem is convex if all the covariance and cross-covariance matrices of

the columns or rows of the normally distributed parameters of the left-hand side are

proportional to each other. Later, Watanabe and Ellis (1993) reformulated the prob-

lem as a deterministic nonlinear programming problem for the more general case that

the rows are allowed to be dependent. They gave an algorithm to find upper bounds

on the solution heuristically. Finally, Henrion and Strugarek (2006) gave conditions

for which the problem is convex as long as the problem rows are independent and

the random coefficients are normally distributed. For the restriction to single chance



16

constraints Lagoa et al. (2005) showed that the problem is convex as long as both the

left-hand and righthand sides have symmetric log-concave distributions.

In cases for which the random parameters do not have normal distributions in

the left-hand side, log-concave distributions in the righthand side, or the constraint

functions are nonlinear there have not been any conditions found for which problem

(1.5) is convex. Therefore, there has been a lot of interest in nonlinear and integer

programming techniques for solving more general instances of the problem.

B. Discrete Distributions, Fixed Left-Hand Side

An important branch of research in chance-constrained programs is on problems with

discretely distributed parameters. The main advantage of the discrete distribution

assumption is that it allows problems to be reformulated as deterministic equivalent

integer programs. Many problems have parameters with distributions that do not

fit the convexity assumptions summarized previously or else distributions that can

only be estimated empirically. So the only hope of solving the problem comes from

discretizing the distribution through sampling and then solving the deterministic

equivalent integer programming problem. The results in this subsection focus on

problems with linear functions in the chance constraints.

A wide variety of stochastic linear chance problems with discretely distributed

parameters and fixed left-hand sides use the enumeration of p-efficient points to aid

in solution. Defining F (·) as the cumulative distribution function of the random

parameters and defining z′ ≤ z if z′i ≤ zi, ∀i = 1 . . . n. A p-efficient point z is one

such that F (z) ≥ p but there is no possible z′ ≤ z such that z′ 6= z and F (z′) > p. The

main use of p-efficient points is that they can be enumerated efficiently and guarantee

that the optimal solution to the problem is within the set of points greater than the



17

p-efficient points of the problem.

Prékopa (1990) gave the earliest example of using p-efficient points to solve a

linear chance-constrained problems with fixed left-hand side. He did not address the

problem of identifying p-efficient points but given the full enumeration of them E ,

he introduced the reformulation that rewrites the chance-constraint as a disjunctive

program.

min c>x (2.1a)

s.t. Ax ≤ b (2.1b)

Tx− y = 0 (2.1c)

y ∈
⋃
zl∈E

{Hl := y|y ≥ zl} (2.1d)

x ≥ 0 (2.1e)

Sen (1992) derived valid inequalities using disjunctive programming for formula-

tion (2.1). For most problems the number of p-efficient points is too large for complete

enumeration, therefore Dentcheva et al. (2000) addressed the problem of identifying

useful p-efficient points. They also give a method for bounding the optimal objective

value of the chance-constrained program under the assumption of r-concave discrete

distributions for the parameters.

More recent work using p-efficient points has focused on extensions to the prob-

lem. Beraldi and Ruszczyński (2002a) gave a branch-and-bound algorithm for prob-

lem (2.1) in the case where the decision variables are integer valued. Dentcheva et al.

(2002) also analyzed problems with integer decision variables, giving valid upper and

lower bounds on the optimal objective values that can be computed using nonlinear

programming formulations. Dentcheva et al. (2004) extends the formulation to the



18

case of general convex constraint functions. Their method also depends on solving

nonlinear programming reformulations. The probabilistic set covering problem is an-

alyzed and solved using p-efficient points in both Beraldi and Ruszczyński (2002b)

and Saxena (2007).

More recent results have branched out from the focus on identifying p-efficient

points and solving formulation (2.1). Cheon et al. (2006) showed that the feasible

region of a chance-constraint with fixed left-hand side is a reverse normal set. They

then use methods from monotonic optimization to develop a branch-reduce-cut al-

gorithm with the branching on the continuous variables y as formulated in problem

(2.1). More details on this approach are given in Chapter V which uses similar ideas

to approach the case of random left-hand side. Finally, Luedtke et al. (2007) reformu-

lates problem (1.5) as a mixed-integer program. The special structure of this problem

allow for strong valid inequalities based on mixing cuts to be derived for the problem.

They also derive strengthened formulations for the problem. Computational results

show that this approach is particularly promising.

C. Discrete Distributions, Random Left-Hand Side

Only a few papers have been published studying exact solution methods for the

important case of problem (1.5) in which the left-hand side of the problem is allowed

to be random and the parameter distributions do not make the problem convex.

For this case, most results are for problems with f(x), gi(x) for all i = 1 . . .m as

linear functions and X (see formulation 1.5) defined by linear functions and possibly

integer requirements on the decision variables as well as discrete distributions for

the parameters. These assumptions allow the problem to be formulated as a mixed-

integer linear program and research effort has focused on mixed-integer programming



19

solution techniques. The mixed-integer formulation is given below.

min c>x (2.2a)

s.t. T (ω)x−Mωezω ≤ r(ω) ∀ω ∈ Ω (2.2b)∑
ω∈Ω

pωzω ≤ 1− α (2.2c)

Ax ≤ b (2.2d)

x ≥ 0, z ∈ B|Ω| (2.2e)

Where c ∈ Rn is the cost matrix, The technology matrix T (ω) ∈ Rn×m and

the righthand side r(ω) ∈ Rm are the random constraint matrix and righthand side,

Mω ∈ R is an appropriate large number, zω ∈ B|Ω| is a vector of binary decision

variables, pω is the probability of a scenario ω ∈ Ω, and e is an appropriately sized

vector of ones. We will refer to a scenario ω is satisfied if the binary decision variable

zω = 0. The scenario ω is unsatisfied if zω = 1. A scenario is considered binding

if the scenario is satisfied and the slack variables associated with the constraints of

that scenario are equal to 0. The chance constraint is forced to be satisfied by the

knapsack inequality (2.2c).

An early formulation of problem (1.5) as a mixed-integer program was given by

Morgan et al. (1993). Applying chance-constraints to an aquifer remediation problem,

they formulate the problem as a mixed-integer program and assume that each scenario

has the same probability. In their approach to the problem, they first solved a master

problem formulation with a reliability level α = 1 in level k = 0. This can be solved

without adding any of the extra variables zω and can be solved efficiently as long

as the set X is convex. In subsequent levels, their algorithm searches the feasible

space of problem (2.2) by branching on all possible nodes created by dropping a



20

single binding scenario. In any given level k of the search tree, each node gives a

feasible solution to problem (2.2) for reliability level α = 1− k
|Ω| while the minimum

solution on a given level k is the optimal solution for that reliability level. Thus the

algorithm finds optimal solutions to problem (2.2) for all possible reliability levels.

The authors recognized that the search tree tends to become extremely large for even

small instances and so concluded with several heuristics based upon this idea in order

to identify decent solutions at each reliability level with less computational effort.

Tayur et al. (1995) gave a method based on algebraic geometry for solving chance

constrained programs with pure integer decision variables. The method searches the

solution space of the integer variables by solving a reduced integer program without

the chance-constraints and then searching the feasible space of this reduced integer

program for points that are feasible for the chance constraints. The main contribution

of their approach is that the method can find the optimal solution for any chance-

constrained program with pure integer decision variables and an oracle to evaluate

the feasibility of a candidate solution. Computational results show that the method

can solve small problems.

A more traditional mixed-integer programming approach to formulation (2.2) is

given in Ruszczyński (2002). A property of the scenarios of a chance constrained

program is that if the parameter values of T (ω1) are greater than the parameter

values of T (ω2) for all the elements of the matrices, then scenario ω1 dominates

scenario ω2. Formulation (2.2) can then be strengthened with the added precedence

constraints zω2 ≤ zω1 . Ruszzyński then derives valid inequalities for the polyhedron

defined by the precedence constraints and the knapsack inequality. The paper also

gives a branch-and-bound method for solving the algorithm the reduces the number

of scenarios that need to be considered by dropping scenarios that are particularly

easy or hard to satisfy. New MIP results for problem (2.2) are given in Chapter III.



21

Most recently, Pang and Leyffer (2004) gave a finite branch-and-bound algorithm

for minimizing Value-at-Risk (VaR) which is equivalent to a single chance-constraint.

Their algorithm starts with a reformulation of the problem with linear complemen-

tarity constraints for which they derive linear programming upper and lower bounds

that can be used in a branch-and-bound framework. A novel branch-and-bound ap-

proach for solving formulation (1.5) with joint chance-constraints is given in Chapter

V.

D. Approximations and Sampling

Given the difficulty of solving the mixed-integer formulation (2.2) to optimality when

there are a large number of scenarios, another branch of research has been into find-

ing nearly optimal solutions. Some of these results focus on sampling methods that

allow statistically bounds to be put on the true optimal solution. Another type of ap-

proximation paper focuses on developing convex feasible regions that are guaranteed

to be contained in the feasible region of the chance constraint, thus allowing for an

efficiently computable upper bound. A third type of approximation is in heuristics

for quickly finding the best upper bound possible. A common weakness of all these

approaches is that it is quite difficult to determine tight upper and lower bounds on

the optimal solutions and so most of the results only terminate with a solution that

is guaranteed to be feasible for the chance constraint with a high probability.

An early paper by Pintér (1989) gave an explicit convex approximation of the

chance constraint called the Bernstein approximation. The feasible region of a Bern-

stein approximation constraint was derived to be contained in the feasible region

of the chance constraint. Thus the Bernstein approximation gives a computationally

tractable method for finding an upper bound on the optimization of formulation (1.5)



22

for problems with only limited information available about the parameter distribu-

tions such as the mean, variance, range, or upper bound values. For problems with

known parameter distributions, another common conservative approximation is given

by Conditional Value-at-Risk (CVaR) (Uryasev, 2000). Using CVaR constraints in

place of chance constraints again gives an upper bound on the true optimal objective

value and guarantees that a feasible solution is found. With either of these methods,

there is no guarantee on the quality of the solutions found.

In stochastic programming sampling is a popular method for finding approxi-

mate solutions. For chance-constrained programs Calafiore and Campi (2005, 2006)

sampled scenarios from the parameter distributions. They then solved a determin-

istic convex program with all the sampled scenarios required to be satisfied. They

were able to derive a lower bound on the sample size that guarantees the probability

that the optimal solution to this convex program is a feasible solution to the original

chance-constrained program. Nemirovski and Shapiro (2006) were able to tighten the

bounds on the required sample size and Nemirovski and Shapiro (2004) were able

to extend their results to general convex constraint functions rather than just linear

functions. The importance of these bounds is that the sample size N is polynomial

in terms of the log of the required probability that the chance-constraint is satisfied.

The weakness is that for some problems, the approximation is extremely conservative.

Luedtke and Ahmed (2007) gave a sampling method with stronger bounds on the

optimal solution. They find an upper bound by sampling scenarios and then solving

the mixed-integer formulation of a small chance-constrained program with a higher

reliability requirement than the original problem. The paper gives results on how

large the sample needs to be in order to guarantee with high probability that they

have found a feasible solution. These results depending on the assumption that the

problem has fixed technology matrix. They also derived a method for finding a lower



23

bound by solving a sampled problem with a lower reliability level than required in

the original problem. They are able to prove the convergence of the lower bound for

all cases.

An and Eheart (2007) studied chance-constrained programming applied to air-

quality management. They looked at problems with normally distributed parameters

but allowing for general dependence between the different parameters. They derived

convex bounds for the optimal value of the program by looking at the extreme cases of

row dependence: complete codependence, zero codependence, and complete negative

codependence. Depending on the values computed, the results are used to identify

problem instances for which assumptions that make the overall program convex are

used, or cases for which a more detailed nonconvex program must be analyzed.

Another class of approximations for chance constraints are derived by adapting

the concepts of robust optimization. Chen et al. (2007) used uncertainty sets to

define a convex feasible space of deviations around parameter values. They were

able to prove that the new convex space was contained within the convex space of

the chance constraints, thus providing an approximation. Parpas et al. (2007) used

similar ideas to optimize a chance constrained program for which only the moments

of the parameter distributions are known.

Only a few traditional combinatorial heuristics have been developed for finding

good feasible solutions to problem (1.5). Up to now all have them have dealt with

the special case of the problem with pure integer decision variables. Iwamura and

Liu (1996) gave a genetic algorithm that used a Monte Carlo simulation to check

the feasibility of any candidate solution. Aringhieri (2004) developed a tabu search

heuristic for the same problem. Again simulation is used to evaluate the feasibility of

any candidate solution. Chapter IV gives a tabu search heuristic for problems with

continuous decision variables and discretely distributed left-hand side parameters.



24

CHAPTER III

IIS CUTS

A. Preliminaries

This chapter presents a branch-and-cut approach to chance-constrained programs

with linear constraints and discretely distributed parameters. The formulation of

a chance constrained program with random left-hand side and linear constraints is

given by equations (3.1a) - (3.1c).

Min c>x (3.1a)

s.t. P
{
ω ∈ Ω : T (ω)x ≤ r(ω)

}
≥ α, (3.1b)

Ax ≤ b. (3.1c)

Specifically, the IIS cuts described here are derived for the MIP reformulation of

the problem given below by equations (3.2a)-(3.2e).

min c>x (3.2a)

s.t. T (ω)x−Mωezω ≤ r(ω) ∀ω ∈ Ω (3.2b)∑
ω∈Ω

pωzω ≤ 1− α (3.2c)

Ax ≤ b (3.2d)

x ≥ 0, z ∈ B|Ω| (3.2e)

The primary weakness of this MIP reformulation of joint chance-constrained

stochastic programs is that the “Big-M” constraints of the problem mean that the



25

linear programming relaxation of the problem is often extremely weak. The result of

this is that branch-and-bound algorithms tend to be ineffective for many instances of

the problem. A common way to strengthen the linear programming relaxation of an

MIP is the addition of cutting planes. In this section we give some background on

the problem and present the MIP reformulation of the problem that can be solved

directly. We then review a class of cutting planes derived by Codato and Fischetti

(2006) called combinatorial Benders cuts, which are derived similarly to IIS cuts. We

describe the differences between the combinatorial Benders cuts and our IIS cuts.

When the problem parameters have discrete distributions, the original problem

(3.1) can be considered as finding the optimal solution where the sum of the proba-

bilities of scenarios that are satisfied is at least α. The IIS cuts are defined by proving

that a set of scenarios cannot all be satisfied in an optimal solution to the problem.

We also show that if no such sets of scenarios can be found, then an improved upper

bound for the problem can quickly be found. We make the following assumptions

throughout the rest of the chapter:

(A1) |Ω| <∞.

(A2) Bounds on the decision variables x are included in the constraint set Ax ≤ b.

(A3) The polyhedron P1 = {x ∈ Rn | Ax ≤ b} 6= ∅.

Assumption (A1) requires the random parameters to be discretely distributed

thus allowing the MIP reformulation of the problem. Assumption (A2) is needed

solely to make the implementation of the cut generation LP more clear and does not

restrict the application of the results of this chapter. Assumption (A3) keeps the

problem from being trivially infeasible and is also not very restrictive.

Based on our computational experience we have seen that often a relatively few

number of scenarios are important in the final solution. The rest of the scenarios are



26

either redundant or cannot be satisfied in any nearly optimal solution. Our approach

aims at identifying subsets of scenarios that are particularly important for finding

optimal solutions to the problem. Using these subsets of scenarios we are then able to

derive cutting planes that can be used to strengthen the LP relaxation of formulation

(3.2). The cutting planes are based on irreducibly infeasible subsystems (IISs). An

IIS is defined as follows:

DEFINITION A.1. An IIS is a set of constraints S of a mathematical programming

problem such that S is infeasible but every proper subsystem of S is feasible.

The traditional use of IISs is in the analysis of infeasible linear programs with the

goal of figuring out the optimal strategy for changing problem parameters to make

the system feasible. Several methods for identifying these sets using LP methods

have been developed (Chinnneck, 1997; Gleeson and Ryan, 1990; Loon, 1981). In

more recent years, IISs have been used to generate valid inequalities for the max-

imum feasible subsystem problem (Amaldi et al., 2003; Pfetsch, 2008). In integer

programming, IISs have been used to derive combinatorial Benders (CB) cuts for a

class of MIP problems (Codato and Fischetti, 2006).

CB cuts are used to solve MIPs with integer and continuous variables that are

linked solely by “big-M” constraints. They decompose the problem as in Benders

decomposition with the master problem having pure integer decision variables and

the subproblem having pure continuous decision variables. While the CB cuts were

designed specifically to solve problems for which the objective function depends en-

tirely on the integer decision variables, they can also be used for problems in which

the objective function depends entirely on the continuous decision variables such as

chance-constrained programs. However, the cut generated in Codato and Fischetti

(2006) tends to be weak for such problems.



27

To derive CB cuts, a MIP with “big-M” constraints is decomposed into a master

program (3.3) and a subproblem (3.4).

min p>w (3.3a)

s.t. Dw ≤ d (3.3b)

w ∈ {0, 1}, (3.3c)

where w is a vector of binary variables, p is the cost vector of the binary variables,

D is the constraint matrix for constraints that depend only on the binary variables,

and d is the righthand side for those constraints.

min c>x (3.4a)

s.t. Ax ≤ b (3.4b)

Tx ≤ r −Mew (3.4c)

x ∈ X , (3.4d)

where all parameters and variables are the same as formulation (2.2). Furthermore,

either p or c must be a vector of all zeroes for CB cuts to be valid. After finding

an integer feasible solution w∗ to problem (3.3), an IIS S of problem (3.4) must be

identified. A CB cut is then given by the equation

∑
i∈S:w∗i =0

wi +
∑

i∈S:w∗i =1

(1− wi) ≥ 1 (3.5)

The following fundamental result gives a method for determining IISs that can

be used to derive CB cuts.

THEOREM A.2. IISs of (3.7) are in one-to-one correspondence with the supports



28

of the vertices of the polyhedron

Π :=
{
y1 ∈ Rm1 , y2(ω) ∈ Rm2 ,∀ω ∈ Ω \ U, y3 ∈ R |

y>1 A+
∑
ω∈Ω\U

y>2 T (ω) + y>3 c = 0

y>1 b+
∑
ω∈Ω\U

y>2 r(ω) + y>3 V ≤ −1

y1, y2, y3 ≥ 0.
}

(3.6)

Proof. See Gleeson and Ryan (1990)

Note that the support of a vector is the set of indices of its nonzero components.

Theorem A.2 is a direct application of the theorem in Gleeson and Ryan (1990) to

(3.7) to give us a polyhedron with the property that every extreme point of the

polyhedron corresponds with an IIS of (3.7). This means we can simply use LP to

identify IISs.

CB cuts can be generated at every feasible integer solution encountered in the

pure integer master program. Without decomposing the problem, it is possible to

derive CB cuts whenever an integer feasible solution to the problem is encountered.

This method was shown to be computationally ineffective in (Codato and Fischetti,

2006) because cuts can only be generated deep in the branch-and-bound tree. For

the MIP formulation of chance-constrained programs, Benders decomposition is not

a good solution method because the master program finds integer feasible solutions

without regard to the objective function that is defined by the continuous decision

variables. Since every feasible point of the master problem has objective value zero,

cutting off an individual point of the master program is not often useful.

This chapter focuses on theoretical results that can be used for general solution

techniques for problem (3.2). The main significance of these results is that they are



29

valid for joint chance-constrained problems with discretely distributed random tech-

nology matrices and righthand side vectors. We introduce a new class of optimality

cuts, called irreducibly infeasible subsystem (IIS) cuts, for strengthening the LP re-

laxations of (3.2). We also present a method for quickly improving the upper bound

found by the algorithm for the case when no IIS cut can be identified. We then

derive a branch-and-cut method based on the IIS cuts, termed ‘IIS Branch-and-Cut’

algorithm, and discuss its implementation. Finally, we apply the IIS Branch-and-Cut

algorithm to randomly generated large-scale instances arising in optimal vaccine al-

location for epidemic prevention, and to test instances from a production planning

problem.

The rest of the chapter is organized as follows. In Section B we derive IIS cuts

and an upper bound improvement strategy to be used in the IIS Branch-and-Cut

algorithm. We present and discuss an implementation of the IIS Branch-and-Cut

algorithm in Section C and give computational results in Section D. Finally, we

finish with a summary and point out some future research topics in Section E.

B. IIS Cuts

For chance-constrained programs, we need cuts that are effective for problems where

the objective function depends on the continuous variables. While similar to the

CB cuts described in the previous section, IIS cuts are derived so that cuts can be

generated at every solution to the linear relaxation of formulation (3.2). This means

that the cuts are more likely to tighten the formulation where it is needed and so be

much more effective at aiding solution.

Let us begin by defining some notation we will use throughout the rest of the

chapter. At an arbitrary node of a branch-and-bound search tree, let L ⊆ Ω and



30

U ⊆ Ω denote the sets of all scenarios such that zω is set to 0 and zω is set to 1,

respectively. Also, let V − ε denote the current incumbent objective value minus a

sufficiently small value. We will generate IIS cuts from IISs of the polyhedron defined

by forcing every scenario in Ω \ U to be satisfied, restricted by an optimality cut

generated from the upper bound. We will refer to a scenario ω being forced into or

out of the problem if the binary decision variable zω for that scenario is forced to equal

0 or 1, respectively. Since P{Ω\U} ≥ α, the LP formulation using this polyhedron as

a constraint set defines an upper bound on the optimal value of the original problem

and can be given as follows:

Min c>x (3.7a)

s.t. Ax ≤ b (3.7b)

T (ω)x ≤ r(ω), ∀ω ∈ Ω \ U (3.7c)

c>x ≤ V − ε (3.7d)

x ≥ 0. (3.7e)

The advantage to formulation (3.7) is that it can be set up at fractional solutions

of problem (3.2). This means that we can generate optimality cuts early in the branch-

and-bound tree when they are most effective rather than deep in the tree at integer

solutions. Also, since the fractional points that we are trying to separate with our

cuts are found via the linear relaxation of the problem, the part of the solution space

that we are cutting off is more useful than the region cut off by CB cuts.

Essentially, IISs are used to identify sets of scenarios D such that not all of the

scenarios in D can be satisfied in the optimal solution to problem (3.2). The following

fundamental results show how such sets D can be determined as well as the separation



31

problem that we are trying to solve.

THEOREM B.1. Given an IIS S of formulation (3.7), let the subset of scenarios

D = {ω ∈ Ω | T (ω)x ≤ r(ω) ∩ S 6= ∅}. The set D 6= ∅ defines the IIS cut

∑
ω∈D

zω ≥ 1. (3.8)

Equation (3.8) is valid in the sense that it does not cut off all optimal solutions to

problem (3.2).

COROLLARY B.2. Given a fractional solution (x̄, {z̄ω}ω∈Ω) to the LP relaxation

of problem (3.2). The separation problem for the CB cut is to find an IIS S of problem

(2.2) and generating a subset D ⊆ Ω as in (3.8) such that

∑
ω∈D

z̄ω < 1. (3.9)

The separation problem defined by Corollary B.2 is NP-hard (Amaldi et al.,

2003). Therefore, heuristics have to be used to find valid inequalities quickly. Pfetsch

(2008) suggests finding IISs by solving an LP constrained by Π with the objective

function coefficients given by the non-integer solution to the LP relaxation. To find

IIS cuts, a good possible objective function is:

Min
∑
ω∈Ω\U

z̄ωy2(ω). (3.10)

However, using this objective function we may not find an IIS cut that separates

the current non-integer solution. Nevertheless, the generated IIS cuts are valid for

the entire branch-and-bound tree and may cut off some non-integer solution at some

later node in the branch-and-bound tree. Notice that only the values of the binary

variables zω are used in (3.10). The reason for this is that cuts tend to be stronger



32

when |D| is small. Furthermore, the cardinality |D| only depends on the constraints

defined by the zω variables and therefore, the other variables should not affect the

objective function of the cut generating LP.

Since every extreme point of Π defines an IIS, it is possible to generate rounds of

cuts using linear programming. A tempting method to try is to use the extreme points

visited by the simplex method as it solves the cut generating LP. Unfortunately, this

has been shown to be computationally ineffective (Pfetsch, 2008). A more effective

method would be to solve the cut generating LP and then change the objective func-

tion coefficients to target specific scenarios. Then the LP can be warm-started with

the current solution information.

1. Improving the Upper Bound

One situation that may arise when generating IIS cuts is that Π = ∅ and thus the cut

generating LP is infeasible. This implies that every scenario in Ω \ U can be satisfied

with the current upper bound V . In the original decomposition approach to the prob-

lem, an upper bound to the optimal solution was found by solving the subproblem to

optimality. With a chance constrained program, it is possible to improve upon the

upper bound found in this way. We would like to either improve V by dropping more

scenarios from Ω \ U , or be able to show that no improvement is possible and fathom

the current node.

PROPOSITION B.3. Let Π be as defined in (3.6). If Π = ∅ and the original

problem (3.1) is bounded, then formulation (3.7) has an optimal solution, denoted

x̄. By setting z̄ω = 0 if ω ∈ Ω \ U and setting z̄ω = 1 otherwise, then (x̄, {z̄ω}ω∈Ω)

defines an integer feasible solution to (3.2) with c>x ≤ V . Furthermore, a possibly



33

improved integer feasible solution can be found by dropping a set of scenarios F ⊆ Ω

from problem (3.7) for any set F such that P(Ω \ (U ∪ F)) ≥ α.

Proof. Since Π = ∅, it implies there are no IISs for formulation (3.7) and hence it is

feasible. Since it cannot be unbounded as it is a restriction of problem (3.1), it has

an optimal solution x̄. The solution (x̄, {z̄ω}ω∈Ω) satisfies {Ax ≤ b, T (ω)x−Mezω ≤

r(ω),∀ω ∈ Ω, x ≥ 0}. Since P(U) ≤ 1−α or else the node would have been fathomed

by infeasibility, constraint (3.2c) must also be satisfied, and thus (x̄, {z̄ω}ω∈Ω) is an

integer feasible point. Also, c>x̄ ≤ V , otherwise constraint (3.7c) would have been

violated. Finally, dropping the set of scenarios F from formulation (3.7) provides a

relaxation whose optimal solution will be no worse.

To improve the upper bound on the problem, it is necessary to carefully choose

the set F of scenarios to remove from formulation (3.7). If the slack variables associ-

ated with the constraints of a scenario are all basic, then removing those constraints

will not improve the optimal objective value when they are removed. This means that

the only scenarios whose removal will affect the objective value are those in which

some constraint is binding.

One way to identify the set F of scenarios to be removed is to rank the slack

variables for each scenario ω ∈ Ω \ U and greedily add the ones with the minimum

values as long as P(Ω \ (U ∪ F)) ≥ α. A more time consuming method is to take

the scenario with the minimum slack variable and remove it from the problem. Then

re-solve the problem and repeat until no more scenarios can be removed. It would

also be possible to use a more complicated heuristic such as local or tabu search to

better identify sets of scenarios to remove. Note that an IIS cut can always be found

after the upper bound improvement step has been run by generating a cut using the

new upper bound in formulation (3.7). The following proposition gives an instance



34

when it is possible to show that no improvement to the upper bound is possible which

allows for early fathoming of the node.

PROPOSITION B.4. Given an optimal solution x̂ to problem (3.7) with optimal

objective value c>x̂. Define B := {ω ∈ Ω|at least one slack variable associated with the

constraints T (ω)x ≤ r(ω) is nonbasic}. If B ∩ (Ω \ U) = ∅ then no upper bound im-

provement is possible and the node can be fathomed.

Proof. Since B = ∅, for any set of scenarios F ⊆ Ω \ U the slack variables associated

with these constraints are non-basic. Therefore, removing these constraints will not

effect the optimal solution to the problem and no set of scenarios F exists that will

improve the solution.

C. A Branch-and-Cut Algorithm

This section illustrates the use of the IIS ideas within a branch-and-cut framework.

The point of this algorithm is to explicitly show how the IIS cuts and the upper

bound improvement fit into an exact method to solve formulation (3.2). First, define

k as the node index and K as the total number of nodes in the search tree. The set

of all zω that are set to 0 or 1 at node k are given by Lk and Uk respectively. The

set of open nodes in the search tree is given by N , while an individual node is given

by nk := (Lk,Uk). Finally, the current best upper bound on the optimal solution is

given by V .

IIS Branch-and-Cut Algorithm

Step 0: Initialize Set L1 = ∅, U1 = ∅, n1 = (L1,U1), N = {n1}, K = 1, and

V =∞

Step 1: Node Choice Pick some node nk ∈ N according to the search rules.



35

Step 2: Solve LP Solve the linear relaxation of formulation (2.2) including the

proper constraints for the scenarios that have been set in branch-and-bound.

This will either find an optimal solution (x̄, {z̄ω}ω∈Ω) or else that the problem

is infeasible.

Step 3: Fathoming Rules If the problem is infeasible or c>x̄k ≥ V fathom the

node and return to step 1.

Else, if constraint (2.2c) is satisfied, set V = c>x̄k, fathom the node and return

to step 1.

Else, continue to step 4.

Step 4: Cut Generation If cuts are to be generated, find extreme points of (3.6)

that give IISs. Generate and add the IIS cuts implied by these sets and go to

step 2.

If (3.6) is empty, improve the upper bound as allowed by Proposition B.3 and

go to step 5.

Step 5: Branching Pick a non-integer z̄kω. Create two new nodes nK+1 = (Lk ∪

zω,Uk) and nK+2 = (Lk,Uk ∪ zω). Add these nodes to N , set K = K + 2, and

return to step 1.

REMARK C.1. The finite convergence of the above algorithm is guaranteed by the

branching on the binary variables of formulation (3.2). By Theorem B.1 and Propo-

sition B.4, not all alternative optimal solutions are eliminated by the IIS cuts, hence

the algorithms is assured of converging to an optimal solution. Note that the IIS cuts

and upper bound improvement strategy cannot guarantee an optimal solution with-

out branching, however as computational results show, they are able to significantly

reduce the size of the search tree necessary to find an optimal solution and prove

optimality.



36

D. Computational Results

We now present some computational results showing the effectiveness of the IIS

branch-and-cut algorithm in solving formulation (3.2). We ran our tests on two test

sets, the first is an application developed in Chapter VI involving the optimal allo-

cation of vaccines under parameter uncertainty. The second is a chance-constrained

multistage production planning problem adapted from the standard models in the lit-

erature (Nemhauser and Wolsey, 1999). The implementation was completed in C++

on a Dell Optiplex GX620 with a 3.00 GHz dual processor and 4.0 GB of RAM. The

solution of any LPs in the algorithm was done using the CPLEX 9.1 callable library.

For these computational results, all solution times are given in seconds and a time

limit of 7200 seconds (2 hours) of CPU time was imposed.

Throughout our computational results, we compare three sets of tests. The first

is computations using the CPLEX MIP solver directly on the MIP formulation of the

problem to provide a benchmark. The second is computations with the IIS branch-

and-cut algorithm without adding the IIS cuts. This implementation is pure branch-

and-bound and was done to provide a benchmark to assess the effectiveness of the IIS

cuts. Finally, the third computations were performed with the IIS branch-and-cut

algorithm with the IIS cuts added.

1. Optimal Vaccine Allocation

Detailed background on this application is available in Chapter VI. We have provided

details of the formulation of the chance-constrained problem as well as the probability

distributions assumed for the random parameters of the original disease model in

Appendix A for the interested reader.

Table IV gives the results of the computational tests on the vaccination allocation



37

Table IV. IIS Branch-and-Cut Computations on Vaccination Problems
CPLEX Results B&B No IIS Cuts IIS Cuts Added

Instances Objval Gap Nodes Time Objval Nodes Objval Nodes Cuts Time
vac100a 65.28 0% 18 0.61 65.28 23 65.28 7 7 0.28
vac100b 62.39 0% 30 0.77 62.39 69 62.39 9 9 0.37
vac100c 65.15 0% 11 0.67 65.15 19 65.15 5 4 0.36
vac100d 69.81 0% 13 0.56 69.81 23 69.81 3 3 0.25
vac100e 65.99 0% 8 0.56 65.99 13 65.99 1 1 0.27
vac250a 63.69 0% 59 4.41 63.69 371 63.69 29 14 1.25
vac250b 62.34 0% 549 7.16 62.34 855 62.34 41 58 2.17
vac250c 65.52 0% 486 5.64 65.52 433 65.52 29 46 1.87
vac250d 62.92 0% 211 4.59 62.92 667 62.92 31 39 1.75
vac250e 66.59 0% 208 4.11 66.59 175 66.59 7 6 0.91
vac500a 64.53 0% 4074 30.82 64.53 3075 64.53 111 210 12.66
vac500b 65.49 0% 3249 30.82 65.49 3727 65.49 111 229 13.20
vac500c 66.41 0% 520 30.82 66.41 893 66.41 49 107 6.42
vac500d 66.63 0% 805 30.82 66.63 1863 66.63 57 121 7.72
vac500e 65.16 0% 784 30.82 65.16 931 65.16 47 88 6.92
vac750a 65.17 0% 2833 75.39 65.17 6207 65.17 211 335 31.69
vac750b 66.10 0% 3690 87.99 66.10 6353 66.10 175 275 27.04
vac750c 64.85 0% 1912 54.36 64.85 7967 64.85 115 223 21.68
vac750d 65.27 0% 7135 143.61 65.27 10815 65.27 211 330 33.34
vac750e 64.77 0% 8432 163.74 64.77 20387 64.77 155 294 27.27
vac1000a 65.11 0% 22505 469.16 65.11 85687 65.11 207 387 47.69
vac1000b 65.02 0% 74615 1527.72 65.02 58815 65.02 493 766 104.16
vac1000c 64.57 0% 32481 642.87 64.57 83623 64.57 387 645 72.08
vac1000d 65.50 0% 25604 678.98 65.50 27691 65.50 299 458 63.07
vac1000e 64.31 0% 23140 570.12 64.31 >110000 64.31 431 768 97.63
vac2000a 65.05 10.89% >71181 >7200 65.16 >54004 64.98 1643 2660 1001.31
vac2000b 65.50 2.10% >85385 >7200 65.50 >57729 65.48 1901 2829 1045.24
vac2000c 66.07 10.27% >71001 >7200 65.55 >55733 65.50 1895 3122 1109.76
vac2000d 64.95 3.18% >92311 >7200 65.58 >51927 64.95 1491 2432 837.00
vac2000e 65.06 5.24% >109881 >7200 66.05 >45497 65.06 1737 2660 1119.82

test instances. The first column of Table IV gives the name of the test instance. The

next four columns give the CPLEX results: the second column gives the best solution

found by CPLEX, the third column gives the optimality gap returned by CPLEX,

the fourth column gives the number of nodes searched in the branch-and-bound tree,

and the fifth column gives the time to prove optimality. The next two columns give

the results of our implementation of branch-and-bound without any added cuts or

upper bound improvement. The first of these columns gives the best solution found,

while the second of these columns gives the average number of nodes searched in the

branch-and-bound tree. For either CPLEX or the branch-and-bound implementation,

if the table shows that the number of nodes searched is greater than some number,

it means that the algorithm was unable to prove optimality within the 2 hours time



38

limit. The final four columns give the results of the IIS branch-and-cut algorithm on

these test instances. The first of these columns gives the best objective value found,

the second column gives the number of nodes searched, the third column gives the

number of cuts added to the formulation, and the fourth column gives the solution

time.

The IIS branch-and-cut algorithm is able to greatly reduce both the number of

nodes of the branch-and-bound tree that have to be searched in order to find the

optimal solution and the time that is required to prove optimality. The advantages

of the IIS methods hold over both CPLEX and our implementation of branch-and-

bound. A relatively few number of cuts allow for the optimal solution to be found

with much less computational effort. For example, notice that for the vac1000 test

instances, after two hours the branch-and-bound algorithm can only prove optimality

for four of the test instances, and these four require an average of about 63950 nodes

in the branch-and-bound tree. CPLEX requires an average of over 35,000 nodes and

about 770 seconds to prove optimality. With IIS branch-and-cut algorithm, we are

able to find an optimal solution by searching an average of about 360 nodes in an

average time of less than 80 seconds. This is a reduction of 99% in the nodes of the

branch-and-bound tree and a reduction of 90% in computation time. Even accounting

accounting for the number of cuts which each require solving an LP about the size

of an LP at a node, the total number of LPs solved by the IIS algorithm is less than

1000.

It is also interesting to note that the branch-and-bound algorithm without IIS

cuts actually identified the optimal solution for each of the five vac1000 test prob-

lems. However, without the IIS cuts added, the linear relaxations of these problems

were too weak for the algorithm to prove the optimality of the solutions. This gives

empirical evidence that the IIS cuts offer a significant increase in the strength of the



39

relaxations of the problem. The advantage of the IIS branch-and-cut algorithm is even

more significant for the larger test instances. For the vac2000 problems, CPLEX is

unable to identify optimal solutions for any of the test instances after two hours. The

branch-and-bound algorithm by itself does even worse and now searches an average

of over 50000 nodes but still cannot identify an optimal solution in two hours. The

IIS branch-and-cut algorithm finds the optimal solution in an average time of about

half an hour for each of the five replications. A final observation on the results is

that the IIS branch-and-cut algorithm results seem to have significantly less variation

in computation time than CPLEX. For the vac1000 problems, the CPLEX computa-

tion times vary by over 1000 seconds. With the IIS cuts, the variation in times for

the vac1000 test instances is only 40 seconds, the variation in time for the vac2000

problems is 300 seconds.

2. Production Planning Application

We also tested the IIS algorithm on a second set of test instances generated from

a standard production planning application from the literature (Nemhauser and

Wolsey, 1999). Details of the problem and formulation are given in Appendix B

including the probability distributions of the random parameters.

Table V gives the results of CPLEX, branch-and-bound, and the IIS branch-and-

cut algorithm on this set of test instances. The tables are organized the same as Table

IV with a final column added to give the percentage objective value improvement

found by the IIS branch-and-cut algorithm over CPLEX. This value is computed

using the equation percentage improvement = | IIS Ubound - CPLEX Ubound
CPLEX Ubound

|. As evidenced

by the inability of CPLEX to solve any of these problems except for the smallest,

these test problems are significantly more difficult to solve to optimality than the

vaccination application problems. For these problems, we stopped the cut generation



40

Table V. IIS Branch-and-Cut Computations on Production Planning Problems
CPLEX Results B&B No IIS Cuts IIS Cuts Added Improv

Instances Objval Gap Nodes Time Objval Nodes Objval Nodes Cuts Time CPLEX
Prod100a -93008.4 0% 28282 927.48 -93008.4 81207 -93008.4 48095 1000 2073.93 0%
Prod100b -92737.9 0% 42022 1011.07 -92737.9 79439 -92737.9 81199 1000 3235.13 0%
Prod100c -89277.4 0% 8917 346.79 -89277.4 67277 -89277.4 62355 1000 2382.24 0%
Prod100d -92382.8 0% 25594 812.57 -92382.8 66881 -92382.8 37487 1000 1910.96 0%
Prod100e -90293.4 0% 19025 733.90 -90293.4 85093 -90293.4 43927 1000 2041.24 0%
Prod250a -88675.8 15.04% >33063 >7200 -81489.1 >257981 -88463.1 >41968 1000 >7200 -0.24%
Prod250b -86388.4 14.26% >29526 >7200 -80666.5 >417253 -86836.7 >34947 1000 >7200 0.52%
Prod250c -86986.0 15.20% >35330 >7200 -81215.2 >200000 -87775.7 >91123 1000 >7200 0.91%
Prod250d -89248.6 15.95% >29415 >7200 -81492.6 >300000 -89508.6 >25348 1000 >7200 0.29%
Prod250e -86506.7 16.65% >26846 >7200 -81492.6 >353550 -87011.5 >42435 1000 >7200 0.58%
Prod500a -84932.3 31.03% >8987 >7200 -79109.6 >68970 -83620.3 >18912 1000 >7200 -1.55%
Prod500b -85810.2 31.23% >7500 >7200 -76886.2 >78324 -86021.0 >3424 1000 >7200 1.17%
Prod500c -85426.8 30.61% >7839 >7200 -78498.4 >60012 -86121.4 >6555 1000 >7200 0.81%
Prod500d -84501.7 31.03% >7877 >7200 -74826.6 >102613 -85003.4 >24994 500 >7200 0.59%
Prod500e -85441.9 29.96% >7055 >7200 -74637.2 >73964 -85195.8 >25631 500 >7200 -0.29%
Prod750a -84245.7 37.01% >3105 >7200 -75831.4 >45000 -84931.5 >6419 500 >7200 0.81%
Prod750b -85222.3 37.61% >2581 >7200 -78290.1 >43953 -86021.0 >25736 500 >7200 0.94%
Prod750c -84371.5 37.86% >2789 >7200 -75153.5 >40705 -84546.4 >12594 500 >7200 0.21%
Prod750d -82774.6 37.23% >2600 >7200 -72805.7 >41772 -82849.6 >16723 500 >7200 0.09%
Prod750e -84275.9 37.73% >3047 >7200 -76743.8 >45000 -85845.8 >20236 500 >7200 1.86%
Prod1000a -84411.0 41.67% >1100 >7200 -75793.3 >41436 -83129.1 >11531 500 >7200 -1.52%
Prod1000b -83005.5 43.21% >1640 >7200 -73462.6 >24535 -84145.0 >6160 500 >7200 1.37%
Prod1000c -81771.0 44.67% >1542 >7200 -72828.9 >38428 -83416.5 >8852 500 >7200 2.01%
Prod1000d -82814.3 43.20% >1559 >7200 -75918.7 >29629 -84921.5 >18587 500 >7200 2.54%
Prod1000e -80816.7 45.27% >1500 >7200 -75862.3 >26000 -83735.5 >2351 500 >7200 3.61%
Prod2000a -70779.3 70.71% >0 >7200 -70837.9 >16740 -82991.0 >1206 500 >7200 17.25%
Prod2000b -71890.6 67.26% >0 >7200 -71962.9 >17676 -82445.9 >2546 500 >7200 14.68%
Prod2000c -72090.4 85.26% >0 >7200 -72179.0 >14458 -82145.1 >856 500 >7200 13.95%
Prod2000d -73985.9 62.91% >0 >7200 -74041.9 >8250 -82849.0 >1833 500 >7200 11.98%
Prod2000e -71739.0 67.97% >0 >7200 -71793.1 >17154 -82990.7 >4540 500 >7200 15.68%

loop of the algorithm after a certain number of cuts had been generated in order to

reduce the extra computation time due to the cuts. Too many extra cuts slowed down

the solution time for linear relaxation of this problem and hence made the algorithm

ineffective.

All the three algorithms were able to solve the smallest test instances prod100

to optimality in the time allotted, however optimality cannot be proven on any of

the larger test problems. The results on Prod100 with our bare implementation of

branch-and-bound shows that use of the IIS branch-and-cut algorithm again result

in a significant decrease in the number of nodes searched by the branch-and-bound

algorithm in order to converge to an optimal solution. CPLEX is able to solve the

smallest test problems to optimality more quickly than the IIS methods. For the test



41

problems with more than 100 scenarios, the IIS branch-and-cut algorithm improves

upon the best solution found by CPLEX in 21 out of the 25 instances. For the

prod2000 test problems, the improvement is an average of over 14%.

E. Conclusion

In this chapter we have derived a class of optimality cuts for jointly chance-constrained

stochastic programs with random technology matrices. We have defined an upper

bound generating formulation of the problem that allows cuts to be generated at

every fractional point of the linear relaxation of the problem. The cuts are derived in

order to identify sets of scenarios that cannot all be satisfied in the optimal solution

to the problem. We also have given a method for quickly improving the upper bound

during a branch-and-bound method when there is a node for which no IIS cut can

be found. These IIS cuts are similar to the combinatorial Benders cuts of Codato

and Fischetti (2006), but they specifically derived for a problem with the objective

function depending on the continuous decision variables rather than on the integer

decision variables. This addresses some of the weakness of the CB cuts for our class of

problems. The chapter also gives some computational results from our algorithm on

two sets of test instances from two different applications. The computational results

are very promising as they show that the method can be used on its own to solve quite

large instances. Also, the results show that the IIS branch-and-cut algorithm requires

many fewer nodes in the search tree and much less computational effort in order to

prove optimality for the vaccination allocation test set than does CPLEX or our

implementation of branch-and-bound with no cuts added. The production planning

problems are more difficult to solve to optimality, however the IIS branch-and-cut

algorithm is able to find significantly improved solutions than either of the other



42

two algorithms. Possible extensions to this work include implementing the cuts in a

branch-and-bound framework including other cuts that have been derived for general

MIPs. It would also be important to study branching rules and other implementation

issues that may make for a more effective algorithm to solve this class of problems.

Another need is for a stronger formulation of the problem that gives stronger convex

relaxations.



43

CHAPTER IV

TABU SEARCH METAHEURISTIC

A. Introduction

Despite the positive computational results shown in Chapter III for solving prob-

lem (2.2) to optimality using the IIS branch-and-cut algorithm, problems with huge

numbers of scenarios are still intractable. A common approach to intractable combi-

natorial problems is through metaheuristics based on local search. The main function

of a combinatorial metaheuristic is to find a good feasible solution from among a finite

set of possible solutions for the case when exact solution of the problem is not compu-

tational feasible. The weakness of heuristic solutions is that there is no guarantee on

the quality of the solution found. For many instances of problem (1.5), the problem

is defined with an extremely large number of scenarios and it is important to at least

find some feasible solution.

The heuristic presented in this chapter is designed to exploit the scenario struc-

ture of the problem. Under the finite number of scenarios assumption, a point is

feasible for constraint (1.5b) if at least b|Ω| ∗ αc scenarios are satisfied at that point.

This suggests a combinatorial structure to the problem by looking at scenarios that

are satisfied or not satisfied. The basic idea behind our heuristic is to switch scenarios

in and out of the solution by requiring them to be satisfied or not.

The main contributions of this chapter are threefold. First, we give a refor-

mulation of the problem that suggests methods to exploit the scenario structure.

Second, we present methods to identify subsets of scenarios that are most important

in identifying good solutions, which lead to a new tabu search metaheuristic that can

quickly find good, feasible solutions for the problem using our reformulation. Finally,



44

we give some computational results on several test problem sets to demonstrate the

effectiveness of the algorithm.

The rest of this chapter is organized as follows: In Section B we give the re-

formulation and discuss some properties that allow us to restrict the solution search

space. We also define a neighborhood and describe methods for quickly searching

that neighborhood for improving solutions. Section C gives a metaheuristic based on

tabu search using our reformulation and our sampling methods. Section D gives some

randomly generated problem test sets and computational results using our heuristic.

We finish with some conclusions and future work.

B. Local Search

This section presents a reformulation of problem (1.5) that allows us to define a

finite solution set based on sets of scenarios to be satisfied. We then define a local

neighborhood that can be searched for improving solutions. Naive exploration of

this neighborhood is computationally infeasible and so the section concludes with a

discussion of how to efficiently search the neighborhood.

1. Defining the Neighborhood

DEFINITION B.1. A scenario ω is said to be satisfied by solution x if T (ω)x ≤

r(ω). Otherwise, the scenario ω is unsatisfied.

In the mixed integer formulation of problem (2.2a) - (2.2d), each scenario is

represented by a binary variable that defines whether or not the constraints associated

with that scenario are satisfied by the solution. Fixing a variable zω = 0 or zω =

1 means that the scenario ω corresponding to that variable must be satisfied or

unsatisfied respectively.



45

DEFINITION B.2. A candidate solution is a subset of scenarios C ⊆ Ω such that∑
ω∈C pω ≥ α. Define the set of feasible solutions Φ as the set of all candidate

solutions.

For any such candidate set C ⊆ Ω, a feasible solution to the problem can be

found by solving the linear relaxation of (2.2) with the variables zω ∀ω ∈ C fixed to

zero and all other binary variables fixed to one. This is true because in such a solution∑
ω pωzω ≤ 1−α by the definition of the set C. A reformulation of the problem based

on searching the scenario space is given below. Solving the linear program (4.1a) -

(4.1d) defined by a set C ∈ Φ gives an upper bound on the objective value to the

original problem.

Find C ∈ Φ such that f(C) is minimized

where,

f(C) = min c>x (4.1a)

s.t. Ax ≤ b (4.1b)

T (ω)x ≤ r(ω) ∀ω ∈ C (4.1c)

x ≥ 0 (4.1d)

Our algorithm searches the feasible space of candidate sets looking for improving

solutions. From here on, we refer to scenarios in the current candidate set C as being

forced into the problem, and scenarios outside of that set C as being forced out of

the problem.

DEFINITION B.3. A candidate solution C ∈ Φ is a minimal element of Φ if

∀ωj ∈ C,
∑

ω∈C\ωj pω < α.



46

REMARK B.4. Restricting the search space Φ to its minimal elements will not elim-

inate all optimal solutions of the problem.

REMARK B.5. In the case where every scenario has the same probability, remark B.4

implies that the search can be restricted to solutions where exactly dα|Ω|e scenarios

are forced to be satisfied.

DEFINITION B.6. Define the neighborhood N (C) of any element C ∈ Φ as all

sets C ′ that can be constructed by adding a scenario ω ∈ Ω\C and then removing

scenarios from C until C ′ is a minimal element of Φ.

The objective value of a candidate solution C, f(C) can be found by solving

problem (4.1). If formulation (4.1) is infeasible, then f(C) =∞. Define I(C) as the

sum of the infeasibilities of the constraints of formulation (4.1), with I(C) = 0 when

formulation (4.1) is feasible. Define g(C ′) as the evaluation function for a potential

solution C ′ ∈ N (C) with the goal of first finding feasible solutions and then improving

the objective function.

g(C ′) =

 I(C ′), if I(C) > 0;

f(C ′), otherwise.
(4.2)

2. Efficiently Searching the Neighborhood

The naive way to search the neighborhood of C is to evaluate g(C ′) ∀C ′ ∈ N (C).

This process is impractical because it requires solving O(|Ω|2) relatively large linear

programs. Computational results from an early implementation took up to 10 min-

utes to exhaustively search the neighborhood of a single candidate solution. This

subsection gives heuristic methods that allow us to solve a few greatly reduced linear

programs each iteration of our search algorithm to compute f(C), and to efficiently



47

search the neighborhood of C without having to solve any linear programs.

For knapsack problems, it has been observed computationally that a relatively

small “core” of variables can be identified such that solving a reduced problem with

just these variables gives the same optimal solution as the entire problem (Balas and

Zemel, 1980). We have observed a similar structure in discretely distributed chance-

constrained problems. Many scenarios are often redundant in the sense that their

constraints are much easier to satisfy than the constraints of a “core” set of scenarios.

Thus, such scenarios can be implicitly included in the candidate solution C, shrinking

the size of the linear program necessary to compute f(C).

DEFINITION B.7. A set of scenarios D(C) ⊆ Ω is a sufficient set for a candidate

solution C if all scenarios ω ∈ C are satisfied by the optimal solution to the following

LP.

f(C) = min c>x (4.3a)

s.t. Ax ≤ b (4.3b)

T (ω)x ≤ r(ω) ∀ω ∈ D(C) (4.3c)

x ≥ 0 (4.3d)

Clearly, given a valid sufficient set D(C), the optimal objective value for problem

(4.3) is equal to the optimal objective value of (4.1) and still gives a valid upper bound

on the optimal objective value of the original problem. In section 3, we show how to

construct an initial sufficient set D(C) and also give a method for quickly updating

D(C) as the algorithm progresses.

DEFINITION B.8. Define a scenario ω as tight if at least one of the slack variables

associated with the constraints of scenario ω has value 0.



48

The other computational intensive step in searching the neighborhood of a can-

didate solution C is evaluating f(C ′) ∀C ′ ∈ N (C). In the definition of N (C), for

any C ′ ∈ N (C) there is exactly one scenario ω(C ′) included in C that is outside

C ′. When f(C) < ∞, the only C ′ ∈ N (C) that can result in an improved objective

function are those for which at least one constraint of scenario ω(C ′) is tight. In

the case that f(C) = ∞, we only consider C ′ ∈ N (C) for which the constraints of

scenario ω(C ′) are most infeasible. To choose which C ′ ∈ N (C) are most likely to

result in an improved solution, it is necessary to identify scenarios not included in C

that are the best to include. One measure of the quality of a scenario to include is

the maximum infeasibility of the constraints associated with that scenario under the

optimal solution to formulation (4.3).

Using these criteria, the best C ′ ∈ N (C) are ranked first by choosing which

scenario ω(C ′) to remove from C. The leaving scenario is chosen as either a tight

scenario if f(C) <∞, or the maximally infeasible scenario if f(C) =∞. The entering

scenarios are chosen by ranking them by the least maximum infeasible constraint.

These search methods do not guarantee that the best possible move is chosen, however

it is more important to be able to search the neighborhood quickly as long as there

is a reasonable chance that improving solutions can be identified.

C. Tabu Search for Probabilistically Constrained Programs

In the previous section, we defined a finite set of candidate solutions and a neigh-

borhood for each solution. We also gave some methods for quickly searching the

neighborhood of a candidate solution C to identify search steps that are likely to

result in an improvement to the objective value. In this section, we define a new,

general heuristic for solving problems of the form (1.5) with discretely distributed



49

random parameters. Our algorithm uses a random tabu search (Glover and Laguna,

1997; Hoos and Stutzle, 2005) to identify candidate solutions with the goal of con-

verging to optimal or nearly optimal solutions. The algorithm includes preprocessing

steps that identify scenarios that can be completely dropped from consideration, a

construction heuristic to identify a good initial feasible solution, and a tabu search

method to improve the initial solution.

Define V as the objective value of the current incumbent solution found by

the algorithm. Define x̄ as the decision variable values associated with the current

candidate solution C̄. For each scenario ω ∈ C̄, define s̄ω as the minimum slack

variable value of the constraints of that scenario. Define lω as a lower bound for the

cost of including a given scenario in any solution.

1. Preprocessing

Before the main step of the algorithm, our method gathers information about the

respective costs of the different scenarios of the problem that can be used to improve

the speed of the algorithm and the quality of the solution that it finds. By solving

a linear relaxation of problem (2.2) for each scenario where only the deterministic

constraints and the constraint set of that one scenario are required to be satisfied, we

obtain a lower bound for any possible solution in the search space that includes that

scenario. A formulation the problem to compute lω is given below.

lω = min c>x (4.4a)

s.t. Ax ≤ b (4.4b)

T (ω)x ≤ r(ω) (4.4c)

x ≥ 0 (4.4d)



50

If V ≤ lω, then for all candidate solutions C : ω ∈ C, f(C) ≥ V . Thus the

scenario ω can be dropped from further consideration by the algorithm. Computing

lω is also useful because it allows for a rough sorting of the scenarios by “cost” of

satisfying them.

2. Construction

The goal of this construction heuristic is to quickly define a good candidate solution

to be sent to the main tabu search loop. The heuristic works by first selecting a

candidate solution C by greedily choosing scenarios in terms of the lowest values

lω as found in the preprocessing step. Then, the the objective value of solution C

is computed. Scenarios are put into C if they are satisfied by the optimal decision

variable values associated with solution C. Scenarios are removed from C in order to

keep the solution minimal. These steps are repeated until no more feasible solutions

can be added.

Construction Heuristic

Step 0: Initialization Set V = ∞. Sort the scenario lower bounds lω. Construct

an initial candidate solution C̄ by adding scenarios with the lowest lω until∑
ω∈C pω ≥ α.

Step 1: Update Compute f(C̄) by solving (4.1). Assign the optimal decision vari-

able values to x̄. Assign the minimum slack variable value for each scenario ω

to s̄ω. If f(C̄) ≤ V , set V = f(C̄).

Step 2: Add Scenarios For every ω ∈ Ω \ C̄, if scenario ω is satisfied by x̄ set

C̄ = C̄ ∪ω. If no such scenarios can be added, return C̄ as the initial candidate

solution for tabu search.



51

Step 3: Remove Scenarios Remove scenarios from C̄ until C̄ is a minimal element

of Φ. Remove scenarios in order of lowest minimum slack value s̄ω. Return to

Step 1.

3. A Tabu Search Algorithm

This section presents the tabu search and a routine for updating the sufficient set

D(C). In each step of the tabu search algorithm, a scenario that is in the candidate

solution C is exchanged with a scenario that is not a current member of our candidate

solution C. We use one tabu list to prevent scenarios that were recently put into C

from being removed, and another tabu list to prevent scenarios that were recently

taken out of C from being added. The sizes of the respective tabu lists are user

defined parameters set by computational experiments. The algorithm also includes

an element of randomness as the leaving scenario is chosen at random from among

the set of tight scenarios of C that are not on the tabu list. We choose the scenario

to remove using uniform probabilities on the set of tight scenarios.

In the following algorithm, the tabu lists are implemented with lengths defined

by the modeler. As the algorithm iterates, the first scenario on each tabu list is

removed from the list and the scenarios that were added or removed to C are added

to the end of the list respectively.

Tabu Search

Step 0: Initialization Use the construction heuristic to generate an initial feasible

solution with objective value V . Set D(C) to be the set of all tight scenarios in

the final solution of formulation (4.1).

Step 1: Calculate f(C) Update D(C) using the sufficient set subroutine. Assign

the optimal value returned by the subroutine to f(C) and assign the decision



52

variable values to x̄. If f(C) < V , set V = f(C).

Step 2: Choose Leaving Scenario Depending on f(C),

• If f(C) < ∞, pick a nontabu scenario ω ∈ D(C) at random from among

the set of tight scenarios. If no such scenario exists, pick the nontabu

scenario ω with the minimum sω.

• If f(C) =∞, pick the nontabu scenario ω with the maximum infeasibility.

Step 3: Choose Entering Scenarios While
∑

ω∈C pω < α, add scenarios to C in

order of minimum infeasibility under decisions x̄.

Step 4: Stopping Stop the algorithm if the maximum time is reached, otherwise

return to Step 1.

The sufficient set updating subroutine takes a candidate sufficient set as input.

Define kω as the number of iterations that a scenario ω has been included in D(C)

since that scenario was tight. Define K as the maximum value of kω before scenario

ω is removed from D(C).

Sufficient Set Updating

Step 1: Solve LP Solve formulation (4.3) using set D(C). Assign the optimal de-

cision variables to x̄.

Step 2: Add Scenarios For all scenarios ω ∈ C such that ω /∈ D(C), if scenario ω

is satisfied by x̄, then add scenario ω to D(C).

Step 3: Remove Scenarios For all scenarios ω ∈ D(C), if scenario kω > K remove

scenario ω from D(C).

Step 4: Stopping If no scenarios have been added to D(C) in Step 2 then stop.

Otherwise, return to Step 1.



53

D. Computational Results

1. Algorithm Results

This subsection gives the results of our algorithm on our two sets of test instances.

We used CPLEX on the MIP formulation of each test instance as a control case to

compare the effectiveness of our heuristic. Both heuristic and CPLEX tests were run

for 2 hours because that is around the time that CPLEX’s branch-and-bound tends

to run out of memory. This subsection gives tables of the respective results of the two

methods, a discussion of how we chose good parameter values for our tabu search,

and plots showing the convergence of the heuristic upper bounds that were found.

Table VI. Sampling Tabu Computations on Vaccination Test Instances

CPLEX Tabu Search

Instance Obj. Val. Time Opt. Gap Best Bound Improvement

vac500 65.64 30.82 0% 65.64 0

vac750 65.23 105.02 0% 65.23 0

vac1000 64.90 777.77 0% 64.90 0

vac2000 65.33 >7200 6.34% 65.19 0.13

vac3500 65.87 >7200 24.20% 65.34 0.53

vac5000 66.07 >7200 27.39% 65.11 0.96

vac10000 67.86 >7200 33.86% 65.27 2.59

vac20000 80.42 >7200 46.37% 65.35 14.60

Tables VI and VII give the basic results of CPLEX and our heuristic. For both



54

Table VII. Sampling Tabu Computations on Production Planning Instances

CPLEX Tabu Search

Instance Obj. Val. Time Opt. Gap Obj. Val. Improvement

Prod100 -91539.98 766.36 0% -91481.02 -58.96

Prod250 -87561.1 >7200 15.42% -88194.18 633.08

Prod500 -85222.58 >7200 30.77% -86311.62 1089.04

Prod750 -84178.00 >7200 37.49% -85443.88 1265.88

Prod1000 -82563.7 >7200 43.60% -85044.06 2480.36

Prod2000 -72097.04 >7200 70.82% -84451.22 12354.18

sets of test instances, the results are averaged over 5 test cases of each size problem.

In each table, the first column gives the name of the test instance. The second column

gives the average best objective value found by CPLEX. The third column gives the

average amount of time CPLEX took to find an optimal solution. The fourth column

gives the optimality gap of CPLEX using the relation upper bound - lower bound
upper bound

. The fifth

column gives the average best objective value found by our heuristic, while the last

column gives the average absolute improvement of our heuristic over the best bound

found by CPLEX.

The tables clearly show our heuristic consistently finds better solutions for both

instances of joint chance-constrained stochastic programs. For the vaccination test

cases in Table VI, CPLEX can prove optimality for all problems up to 1000 scenarios.

Our heuristic finds the same optimal solutions for each of these instances. For larger

problems CPLEX is unable to find optimal solutions and as the problem size increases,



55

the optimality gap of CPLEX quickly increases. Our heuristic is able to find improved

solutions in every test case that CPLEX in unable to solve in 2 hours. In the very

largest test instance, CPLEX stops with a gap of almost 50% while our heuristic is

able to find a much better solution.

Table VII shows a similar dynamic in the comparison of CPLEX and our heuristic

for the production planning problems. In this case, the problems are more difficult

and CPLEX is only able to prove optimality for the smallest test instances. Also,

the optimal gaps reported by CPLEX are much higher for these tests, culminating in

an average gap of 71% for the largest test problems. The heuristic was only able to

find the optimal solution in 4 out 5 of the problems with 100 scenarios which is why

the average improvement for those is negative. For the larger problems, the heuristic

is again able to find much better solutions in the two hours. Our heuristic finds an

improved solution for each of the larger problems in this set of test instances. For the

largest problems, the heuristic is able to find solutions with an average improvement

of over 10,000.

The two major user defined parameters of our tabu search heuristic that can

be set by the modeler are the sizes of the two tabu lists. For the vaccination test

instances, the algorithm gives the best results when the tabu list that prevents sce-

narios from being put back into the candidate solution C had size 5, while the tabu

list that keeps scenarios from being taken out of C had size 1. The interesting thing is

that these parameter values worked well regardless of problem size. The results were

relatively insensitive to the parameter values, although if the size of the first tabu

list was made a lot bigger or a lot smaller, then the algorithm returned much worse

solutions. The very small size of the tabu list for keeping scenarios from being taken

out of C is not actually surprising because there are often only a small number of

scenarios that are candidates for removal and picking from among those candidates



56

at random has much the same effect as a tabu list.

For the production planning test instances, choosing the correct sizes for the

tabu lists was more challenging. In these cases, the best of tabu list length was more

dependent on the size of the test problem. As a basic rule of thumb, we started with

each tabu list of size 2 for the smallest test problems, increasing the sizes by 1 for

each increase in the size of the problem. For the larger test instances, we used size 5

for both tabu lists. The heuristic has similar performance for a range around these

sizes, providing empirical evidence that the performance of our heuristic is relatively

insensitive to the exact sizes of the tabu lists.

Fig. 1. Plot of Best Feasible Solution vs. Time for Vac20000

Figures 1 and 2 show the best feasible solutions found by our heuristic as a

function of time. Figure 1 shows the results for vac20000. For this test instance,

our construction heuristic finds a good initial solution that is already much better

than the best bound found by CPLEX after only 85 seconds. The heuristic then

spends a long time searching without finding any improving solutions for over an



57

Fig. 2. Plot of Best Feasible Solution vs. Time for Prod2000

hour. Starting at around an hour, the heuristic found another improvement and then

quickly finds a series of slightly improving solutions. The algorithm was not able to

find any improvements over the final 3000 seconds of runtime.

Figure 2 shows the results for prod2000. The construction heuristic finds about

the same quality solution as CPLEX is able to find in the two hour test but it only

requires 4.5 seconds. The tabu search is then able to find a series of improving

solutions over 400 seconds that result in a final solution that is much better than

CPLEX was able to find. The heuristic does not find any improvements over the final

6000 seconds of runtime.

First, these charts show that our construction heuristic is quite effective at finding

good initial solutions. This means that we have an excellent starting point for tabu

search. Second, especially with production test instance, tabu search was able to

find improving solutions quickly. This shows the effectiveness of our neighborhood



58

search techniques and leads to the possibility of combining branch-and-bound with

our heuristic in order to make a more effective exact algorithm.

The results of our heuristic on these two sets of test instances provide evi-

dence that it can be used to effectively find good feasible solutions for joint chance-

constrained stochastic programs with random constraint matrices. This is a significant

result because few computational results exist for this class of problems because of

their intractability. Our heuristic is able to find good feasible solutions much quicker

than CPLEX. Also, it is more scalable than CPLEX because our neighborhood search

methods are effective at limiting the extra computation effort required during each

search step of the algorithm due to increasing problem size. It is also important to

note that our heuristic does not require much computer memory, so it can be used

effectively on much larger problem instances than can branch-and-bound on the MIP

formulation.

E. Conclusions and Future Work

We have presented a general metaheuristic for finding good, feasible solutions to joint

chance-constrained stochastic programs for the case in which the random parameters

have discrete distributions. Our algorithm is a random tabu search over a novel neigh-

borhood that we formulated for this class of problems. We gave some methods for

efficiently searching our neighborhood for likely improving solutions. We presented an

effective construction heuristic as well as our tabu search main loop. Computational

results showed that our heuristic is highly effective at finding good feasible solutions.

We were able to beat the best bound found by CPLEX for all test cases for which

CPLEX could not find the optimal solution. The computational results also show

that our heuristic is able to find improving solutions more quickly than the 2 hours



59

allotted suggesting that our heuristic could be used in tandem with a general MIP

algorithm to make an effective exact algorithm for this class of problems.



60

CHAPTER V

A MONOTONIC OPTIMIZATION ALGORITHM

A. Introduction

In both the IIS branch-and-cut algorithm of Chapter III and the tabu search heuristic

presented in Chapter IV, the computational difficulty of solving chance-constrained

programs increases dramatically with the number of scenarios. Up until now we have

tried to deal with this with preprocessing techniques and the identification of critical

subsets of scenarios. However, the number of scenarios that the methods can deal

with is still fundamentally limited. In this chapter, we derive an algorithm that deals

with the chance constraint implicitly in the hope that this will expand the size of

problems that can be solved.

In this chapter we show how to reformulate the problem so that the chance con-

straint is a monotonic function of the decision variables. This allows us to prove some

bounds on the optimal objective function within any hyper-rectangular partition of

the decision variables by solving small linear programs and evaluating the feasibil-

ity of the chance constraint at single points. The method is a branch-and-bound

algorithm on the continuous feasible space of the decision variables. The computa-

tionally efficient evaluation and bounding methods allow us to search a much larger

tree than is possible in traditional branch-and-bound on the MIP formulation of the

problem. Furthermore, the algorithm can be used on a more general class of chance-

constrained problems given by formulation (5.1). Note that there are significantly

less assumptions in this formulation, however a few extra ones will be added in the

next section.



61

Min f(x) (5.1a)

s.t. P
{
ω ∈ Ω : gi(x, ω) ≤ 0, i = 1 . . .m

}
≥ α (5.1b)

x ∈ X . (5.1c)

In formulation (5.1a) - (5.1c), x ∈ Rn is the decision variable vector, f(x) is the contin-

uous objective function, gi(x, ω), i = 1 . . .m are measurable, real valued, lower semi-

continuous functions that make up the random constraints within the joint chance-

constraint (5.1b), and X is the compact feasible space of the decision variables. In

this formulation, individual outcomes of the random variable are represented as re-

alizations ω ∈ Ω of the sample space. The aim of such a formulation is to find a

minimum cost strategy while allowing a subset of the constraints to be violated with

probability less than α ∈ [0, 1].

Monotonic optimization (Tuy, 2000) concerns the optimization of a monotonic

function over a constraint set characterized by monotonic functions. The main idea

is that the objective function of any point x1 dominates the objective value of any

point x2 in the cone of all points less than or equal to x1. This is used to partition the

feasible space of the constraint sets in a branch-and-bound algorithm and determine

the global optimum for this class of nonlinear, nonconvex optimization problems.

In Cheon et al. (2006), a chance-constrained program with fixed left-hand side is

reformulated as a monotonic optimization program. Then, monotonic optimization

concepts are used to develop a finitely convergent optimization algorithm for the

problem. The algorithm was shown to be effective computationally on a test set.

This chapter presents a generalization of monotonic optimization problems to

chance-constrained programs with random left-hand side. We are able to give some



62

conditions under which the more general problem can be reformulated as a monotonic

optimization problem. We give an algorithm that exploits this structure and prove

convergence. We finish with a discussion of some computational results which have

proven to be disappointing. We end the chapter with a discussion of some of the

reasons why the algorithm does not seem to work.

B. Background

In this section we present the assumptions necessary for our algorithm as well as

some properties of joint chance-constrained programs that we exploit in our solution

method. Second, we describe the classes of chance constrained problems for which our

assumptions hold and give an example of reformulating a linear chance-constrained

program with fixed left-hand side so that our assumptions hold. We then review

monotonic optimization and show how it relates to our problem. Finally, we present

results that allow us to fathom regions of the feasible space and identify locally optimal

solutions using ideas from monotone optimization (Cheon et al., 2006; Tuy, 2000).

DEFINITION B.1. For any x, y ∈ Rn, x � y if xi ≥ yi ∀i = 1 . . . n

DEFINITION B.2. A function f is increasing if for any x, y ∈ Rn such that x � y,

f(x) ≥ f(y).

DEFINITION B.3. A function f is decreasing if for any x, y ∈ Rn such that x � y,

f(x) ≤ f(y).

Assumptions

(A1) The random constraint functions gi(x, ω) are increasing for i = 1 . . .m or

decreasing for i = 1 . . .m for all ω ∈ Ω.



63

(A2) We have an oracle to evaluate P
{
ω ∈ Ω : gi(x, ω) ≤ 0, i = 1 . . .m

}
≥ α

for any point x ∈ Rn.

(A3) The feasible region of the chance constraint Π = {x : P
{
gi(x, ω) ≤ 0

}
≥

α, i = 1 . . .m} is contained within the hypercube {x : a � x � b} for some

a, b ∈ Rn.

Assumption (A1) is the main assumption needed for our algorithm. It allows us

to use the ideas of monotone optimization to solve chance-constrained programs with

random left-hand sides. While this assumption is limiting, it holds for an important

class of formulations and applications such as problems for which the decisions x

are investments in capacity subject to service requirements where the investments

increase the probability that the required service is met. An analogous situation is

when the decisions are investments in capacity subject to resource constraints and

an increase in capacity always increases resource use. These are classes of problems

with a wide number of applications. The assumption also holds for any problem with

polynomial constraints with either all positive or all negative coefficients.

Several types of problems can be reformulated so that Assumption (A1) holds.

First, any problem with fixed left-hand side can be reformulated by adding extra

decision variables y as used in (Cheon et al., 2006). Any problem with linear gi can

also be reformulated by using complements of the decision variables in the chance

constraint and extra constraints added to the deterministic constraint set. This is

proved in Proposition B.4. Finally, any combinations of the above cases can be

reformulated so that Assumption (A1) holds.

Assumption (A2) is needed so that our results hold for general probability distri-

butions of the random parameters the make up the chance-constraints. This assump-

tion is limiting in the sense that such an oracle does not exist for many problems with



64

continuously distributed parameters. Calculating the multi-dimensional integral that

is needed to evaluate the feasibility of a constraint of form (??) may be extremely

difficult. However, for any problem for which the parameters have discrete distri-

bution, possibly determined through sampling, evaluating the required probability is

not difficult. Assumption (A3) is needed in order to prove the convergence of our

algorithm. It is not particularly limiting.

PROPOSITION B.4. Under Assumption (A3), any joint chance-constrained prob-

lem for which gi is linear for all i = 1 . . .m and |Ω| <∞ can be reformulated so that

Assumption (A1) holds.

Proof. Since the feasible space of the problem is bounded, we can assume without

loss of generality that 0 ≤ xj ≤ mj for all j = 1 . . . n and some upper bound mj. The

linear chance constrained problem can be formulated as:

Min c>x (5.2a)

s.t. P
{
ω ∈ Ω

n∑
j=1

tij(ω)xj ≤ ri(ω)
}
≥ α, i = 1 . . .m (5.2b)

x ∈ X . (5.2c)

0 ≤ xj ≤ mj ∀j = 1 . . . n (5.2d)

For any tij(ω) : tij(ω) < 0, replace xj with mj − x̄j where x̄j is the complementary

decision variable to xj. Define the set Dω as the set of indices for which tij(ω) ≥ 0.

This leads to the following linear chance-constrained formulation with all positive



65

technology matrix which is sufficient for Assumption (A1) to hold.

Min c>x (5.3a)

s.t. P
{
ω ∈ Ω :

∑
j∈D

tij(ω)xj +
∑
j 6∈D

−tij(ω)x̄j ≤ ri(ω)

+
∑
j 6∈D

−tij(ω)mj

}
≥ α, i = 1 . . .m (5.3b)

x ∈ X . (5.3c)

0 ≤ xj ≤ mj ∀j = 1 . . . n (5.3d)

xj + x̄j = mj ∀j = 1 . . . n (5.3e)

Note that the reformulation given in Proposition B.4 only requires the addition

of n extra decision variables and n extra constraints. This is a useful result for the

computational effectiveness of our algorithm on a wide range of problems. Since our

feasible region is bounded, by using the complements of our decision variables we can

assume without loss of generality that gi(x, ω) are increasing for i = 1 . . .m. Now

we define some terminology that will be used throughout the development of the

algorithm.

DEFINITION B.5. A set H ⊆ Rn
+ is normal if for any x, y ∈ Rn

+ such that y � x

and x ∈ H, y ∈ H.

Using the definition of reverse normal sets as well as Assumption (A1) it is clear

that the feasible region of the chance constraint (5.1b) is a reverse normal set if

gi(x, ω) are increasing for i = 1 . . .m. Thus problem (5.1) can be reformulated as the

following, where G := {x : P
{
ω ∈ Ωgi(x, ω) ≤ 0, i = 1 . . .m

}
≥ α} is normal set:



66

Min f(x) (5.4a)

s.t. x ∈ X
⋂
G. (5.4b)

PROPOSITION B.6. The set G is closed.

Proof. See Proposition 14 in (Ruszczyński and Shapiro, 2003)

In our proposed algorithm, we partition the feasible space of the decision vari-

ables into hyper-rectangles {x : xl � x � xu} where a � xl � xu � b. Define

C(xl, xu) := minx{f(x) : x ∈ X
⋂

[xl, xu]}. The following proposition gives the im-

portant properties of formulation (5.4) that allows us to fathom partitions of the

feasible space. The proof follows from the properties of normal sets given in Tuy

(2000).

PROPOSITION B.7.

(i) C(xl, xu) gives a valid lower bound on the optimal objective value of formu-

lation (5.1) over the hyper-rectangle [xl, xu].

(ii) If argminx{C(xl, xu)} ∈ G, then C(xl, xu) gives a valid upper bound on the

optimal objective value of formulation (5.1).

(iii) If xl 6∈ G, then there is no feasible x ∈ [xl, xu].

Since C(xl, xu) can be computed by solving a mathematical program that avoids

the difficulty of the chance constraint, Proposition B.7 suggests a branch-and-bound

procedure on partitions of the continuous feasible space that will converge to an

optimal solution to the problem. The benefit of such an algorithm is that since the

chance-constraint is always dealt with implicitly, there is no need for the large number

of binary variables as was needed in previous exact solution methods. The weakness



67

of this type of algorithm is that the information given by the chance-constraint is

dropped when finding bounds at the nodes of the branch-and-bound tree. This could

prevent the bounding procedure from sufficiently pruning the tree thus making the

algorithm inefficient.

C. A Branch-and-Bound Algorithm

In this section, we formally present our Monotone Chance Constraints Algorithm

(MCC-Algorithm). The algorithm works by making refining partitions of the con-

tinuous feasible space of the decision variables and fathoming according to the rules

laid out in the previous section. The goal of this algorithm is to exploit the ability

to search a huge number of nodes quickly even for problems with large numbers of

scenarios. The hope is that this will allow for tight bounds on the optimal objective

value for a wide range of problems that are much bigger than more traditional MIP

methods can handle. In the second part of this section, we prove convergence of the

algorithm in the general case and give a modification to give finite convergence in

the case of a finite number of scenarios. We end the section with a discussion of our

implementation of the algorithm.

1. An Algorithm

In the following algorithm, N is the set of open nodes, v is the lower bound, V is the

upper bound, and x̄k is the current incumbent solution. For a given node η, xηl and

xηu are the upper and lower bounds, also xηl,i and xηu,i are the ith components of the

respective vectors and ei is a vector of zeroes with a one in position i. Also define

xη := argminx{C(xl, xu)}.



68

Monotone Chance Constraints Algorithm (MCC-Algorithm)

Step 0: Initialize Set N = {[a, b]}, v = C(a, b), V =∞, and k = 0.

Step 1: Choose Node Choose a node η = [xl, xu] ∈ N . Call the oracle to find

if xη := argminx{C(xl, xu)} ∈ G and/or if xu ∈ G.

Step 2: Fathoming

(i) If xη ∈ G, set V k = C(xηl , x
η
u), set x̄k = argminx{C(xηl , x

η
u)}. Fathom η

and set k = k + 1. Return to Step 1.

(ii) Else if xηu 6∈ G, fathom η. Return to Step 1.

(iii) Else, continue to Step 3.

Step 3: Branch Choose argmaxi{x
η
u,i − xηl,i}. Create two new nodes η1 =

[xηl , x
η
u − ( ei

2
xηu − x

η
l )] and η2 = [xηl + ( ei

2
xηu − x

η
l ), x

η
u].

Step 4: Updating Compute C(xη1

l , x
η1
u ) and C(xη2

l , x
η2
u ). Set v = minη∈N{C(xηl , x

η
u)}.

Fathom all η ∈ N such that C(xηl , x
η
u) ≥ V . Return to Step 1.

2. Convergence

Define k as the iteration index of the branch-and-bound algorithm with partition

ηk = [xl,k, xu,k]. Define vk and Vk as the lower and upper bounds on ηk. The following

definitions come from Horst et al. (2000).

DEFINITION C.1. A bounding operation is called consistent if at every step any

unfathomed partition element can be further refined, and if any infinite sequence {kq}

of successively refined partition elements satisfies

lim
q→∞

(Vkq − vkq) = 0

DEFINITION C.2. A selection operation is called complete if for every hyper-



69

rectangle [xl, xu] we have

min
x
{f(x) : x ∈ X

⋂
G
⋂

[xl, xu]} ≥ V := lim
k→∞

Vk

DEFINITION C.3. A branching strategy is exhaustive if

lim
q→∞
|xl,kq − xu,kq |1 = 0

for all infinite sequences {kq} of successively refined partition elements.

LEMMA C.4. The following is true of the MCC-Algorithm

(i) The branching strategy is exhaustive.

(ii) The bounding operation is consistent

(iii) The selection operation is complete

Proof.

(i) For any node η, we partition on the longest edge in Step 3 of the MCC-

Algorithm. This guarantees that the branching strategy is exhaustive.

(ii) The exhaustiveness of the branching strategy implies that the bounding

operation is consistent.

(iii) The completeness of the selection operation is guaranteed by the bounds

and fathoming given in Proposition B.7 as well as the bound improving strategy

of searching the node with the minimum lower bound each iteration.

Using these definitions and Lemma C.4, we can now show convergence using

standard convergence proofs for global optimization branch-and-bound algorithms.

The next theorem shows that if the algorithm terminates in a finite number of steps,

then the solution that it finds is the optimal solution. This theorem does not imply



70

that the algorithm necessarily terminates and it is left to the theorems following it

to show that the algorithm converges to the optimal solution in the case where it

requires an infinite number of steps.

THEOREM C.5. If the MCC-Algorithm terminates, then it terminates with a global

optimal solution to problem (5.1) or resolves that problem (5.1) is infeasible.

Proof. Suppose that the MCC-Algorithm finds a feasible point x̂ after finite steps

and has terminated. Since the feasible region is non-empty, problem (5.1) has an

optimal solution x∗. If f(x∗) < f(x̄), then by the exhaustiveness of the branching

rule there exists x∗ ∈ [xl, xu] such that [xl, xu] is some leaf node in the branch-and-

bound tree. Therefore since x∗ is feasible for the chance constraint (5.1b), xu is also

feasible for constraint (5.1b) so the node was not fathomed by infeasibility. Also

since C(xl, xu) ≤ f(x∗) < f(x̄), the node was not fathomed for being above the

upper bound. Therefore, the algorithm would not have terminated without further

refining the node [xl, xu] which is contradiction to our supposition that the algorithm

terminated so f(x∗) = f(x̄).

Suppose that the algorithm terminates without identifying any feasible solutions.

If x∗ is a feasible point for problem (5.1), then by the exhaustiveness of the branching

rule there exists x∗ ∈ [xl, xu] such that [xl, xu] is some leaf node in the branch-and-

bound tree. Since x∗ is a feasible point, xu is a feasible point for constraint (5.1b) so

the node would have been further refined. This contradicts our statement that the

algorithm terminated. Therefore, no feasible solution must exist.

The following two theorems from Horst et al. (2000) establish the convergence

of the MCC-Algorithm for the case when the algorithm does not terminate.

THEOREM C.6 ((Horst et al., 2000) Theorem IV.2). In the case where the branch-

and-bound continues for an infinite number of steps, suppose that the bounding op-



71

eration is consistent and the selection operation is complete. The the procedure is

convergent and

lim
k→∞

f(x̄k) = f(x∗)

where f(x∗) is an optimal solution to problem (5.1)

Proof.

COROLLARY C.7 ((Horst et al., 2000) Corollary IV.2). If f : Rn → R is con-

tinuous, X
⋂
G is closed, and Q(x0) := {x ∈ X

⋂
G : f(x) ≤ f(x0) is bounded. In

an infinite branch-and-bound procedure with a consistent bounding operation and a

complete selection operation, every accumulation point of {x̄k} solves problem (5.1).

Proof.

While this proof only guarantees that the algorithm will converge to the optimal

solution after a possibly infinite number of steps, it is still useful. The main goal of

this algorithm is to obtain tight bounds on the optimal objective value. Given that

the size of the problem that can be solved exactly is so limited, a tight bound on the

optimal objective for larger instances would be extremely useful.

However, computationally we would like to guarantee the convergence of this

algorithm to the optimal solution in a finite number of steps. To do this we take

advantage of the following property of the monotonic chance constraint (5.1b) for

the case when the random parameters are discretely distributed. Under the discrete

assumption, the realizations of the random variables ω ∈ Ω are known as scenarios.

Define a scenario as satisfied if the constraints associated with that scenario are sat-

isfied. Since |Ω| <∞, the chance constraint can be reformulated as the requirement

that at least dα ∗ |Ω|e of the scenarios be satisfied. Define Sx and Ux as the set of

scenarios satisfied and unsatisfied respectively at point x.



72

PROPOSITION C.8. Assuming |Ω| < ∞, for any node η = [xl, xu] of the MCC-

Algorithm, the following are true

(i) Sxl ⊆ Sxu

(ii) Uxu ⊆ Uxl

With Proposition C.8 an optimal solution for any node of the branch-and-bound

tree can be found by solving the following mixed-binary program. Where Z = Sxu \

Sxl , M is a large number, pω is the probability of scenario ω, and the chance constraint

is enforced with a knapsack constraint (5.5c).

Min f(x) (5.5a)

s.t. gi(x, ω)−Mzω ≤ 0 i = 1 . . .m ∀ω ∈ Z (5.5b)∑
ω∈Z

pωzω ≥ 1− α (5.5c)

x ∈ X
⋂

[xl, xu], zω ∈ {0, 1} ω ∈ Z (5.5d)

To make the MCC-algorithm finite, any node of the branch-and-bound tree can

be pruned by solving problem (5.5). This would be used to stop the branching once a

given level of fineness in the partition has been reached. Depending on the application

and the properties of the original problem, this may be too computationally intensive

to be useful. However, in many cases small mixed-binary problems (|Sxu \ Sxl | <

50) can be solved quickly be commercial solvers such as CPLEX. So the finiteness

modification may be computational feasible for guaranteeing finite convergence of the

algorithm or at least finding strong upper bounds.



73

3. Initial Implementation and Results

Our implementation of the algorithm centered around developing effective data struc-

tures to deal with the large number of branch-and-bound nodes that will need to be

searched. Each iteration, the algorithm searches the node with the lowest objective

value. This means that the nodes have to be arranges in order from lowest objective

to highest. After selection the node with the lowest objective function, it is parti-

tioned into two other nodes and the lower bound on both of those nodes is computed.

The LP solved at each node is small so this is not computationally intensive. The al-

gorithm then follows the fathoming and bounding rules and iterates until an optimal

solution is identified and optimality is proven.

Computationally, the algorithm did not succeed. For vac100, the algorithm

searches several hundred thousand nodes in an hour but still has a lower bound of 0.7

when the optimal solution is 65.2. No upper bound is found in this time either. Any

larger size instances would be even worse because the relaxation at each node is the

same for all test instances. This gets at the fundamental weakness of the algorithm

in that there is too much information being lost by dealing implicitly with the chance

constraint. Essentially, even though the basic design of the algorithm to be able to

search a large number of nodes quickly worked, branch-and-bound was not able to

fathom nodes quickly enough for this to make a difference. In the final section we

will give some insights into why the MCC-Algorithm failed.

D. Conclusions

The MCC-algorithm is significant in that it gives a reformulation of and an exact

solution method for joint chance-constrained programs. The benefit of this approach

is that the difficulty of the chance-constraint can largely be avoided by dealing with



74

it implicitly. The algorithm has potential for being scalable in terms of the number

of scenarios. However, the results from the implementation were disappointing and

we will give some explanations for why this might be the case. We will give some of

our insights into why this form of branching may be significantly less effective than

branching on the binary decision variables of the MIP formulation. Finally we will give

a few ideas for possibly modifying the MCC-Algorithm so that it is computationally

feasible.

The primary goal of the MCC-Algorithm was to have a method for solving joint

chance-constrained problems that is relatively insensitive to the number of scenarios

of the problem. This would avoid the scaling issue that we encountered in our earlier

methods. The implementation of the algorithm was in fact insensitive to the number

of scenarios in the sense that huge numbers of nodes could be searched quickly because

the chance constraint was dealt with implicitly. This is the main success of the

algorithm and the main reason that the idea is still attractive.

The main problem with the MCC-Algorithm is that it is a trade-off between

the advantages gained by dropping the chance-constraints and dealing with them

implicitly and the loss of information about the feasible space due to dropping the

chance-constraints. From looking at the best lower bound found by the algorithm,

there was a large amount of symmetry in the problem. Basically, without the chance-

constraint, there was not enough information left to differentiate between different

solutions. Thus the lower bound never improved. Some more evidence for why this

is the case is the fact that after every partition, the previous optimal solution to the

node LP is always optimal for one of the new nodes. This means that unless the

node can be fathomed because the upper righthand corner does not allow feasibility

of the chance constraint, the lower bound found by the algorithm will not improve.

We found that this is the primary failing of the algorithm. It can search millions of



75

nodes, but the lower bound improves extremely slowly.

The paper that inspired this research (Cheon et al., 2006) was able to solve some

test instances. It is interesting to contrast the two algorithms to figure out why one

worked and the other did not. Looking at the two algorithms, the main difference is

that the MCC-Algorithm is partitioning the continuous space of the original decision

variables while the earlier algorithm is partitioning the space defined by new variables

(one for each constraint of the joint chance-constraint). The test instances solved in

the earlier paper were limited to problems with 7 constraints within the joint chance-

constraint. There are a number of applications for which this would be enough, but

there are also many in which the size of the joint chance-constraint would be much

bigger.



76

CHAPTER VI

OPTIMAL VACCINE ALLOCATION UNDER UNCERTAINTY

A. Introduction

Vaccination is one of the primary strategies used by public health authorities to con-

trol human infectious diseases. Mathematical models have long played a major role in

identifying and evaluating strategies to allocate resources in order to guarantee max-

imum effectiveness of vaccination in controlling infectious disease outbreaks. Three

primary modeling approaches have been used in this effort – deterministic analytical

models, stochastic analytical models, and computer simulations. The determination

of optimal vaccination strategies may be sensitive to changes in model parameter

values, however, so there is a need for new methods that can take parameter uncer-

tainty into account in order to find more robust vaccination policies. We present here

a description of one such method, stochastic programming, and illustrate how this

method can improve our ability to find optimal vaccination strategies.

The goal of most deterministic and stochastic epidemiological models addressing

vaccination strategies is to derive appropriate strategies analytically. Deterministic

models focused on identifying reasonable vaccination strategies for the control of in-

fectious diseases date back to at least the 1960s (early papers include, for example,

Brogger, 1967; Hethcote and Waltman, 1973; Revelle et al., 1967; Waaler et al., 1962).

In general, deterministic vaccination models fall into two major groups. The majority

of these models are used to evaluate predetermined vaccination strategies to see which

of the proposed strategies may be most effective. Analysis of most of these models

generally involves exploration of the steady state behavior of the model system and

determination of an epidemic threshold. The effectiveness of different proposed vacci-



77

nation strategies in reducing the susceptible population below the epidemic threshold

for the minimum cost is then evaluated. In some of the recent more complex models,

computer simulation is used to assess the effectiveness of different strategies. Models

of this type have been developed for a number of infectious diseases, including tuber-

culosis (Brogger, 1967; Waaler et al., 1962), measles (Agur et al., 1993; Babad et al.,

1995; Hethcote, 1988; Shulgin et al., 1998), rubella (Anderson and May, 1983; Dietz,

1981; Hethcote, 1983; Knox, 1980), pertussis (Hethcote, 2002, 1997, 1999; Hethcote

et al., 2004), and respiratory illnesses (Pourbohloul et al., 2005).

The second group of deterministic vaccination models do not start with pre-

determined strategies; rather, they center on the use of optimization methods in

combination with deterministic epidemic models to identify the optimal vaccination

strategy. Optimization methods have been used both in a theoretical framework

(Hethcote and Waltman, 1973) and to guide the development of vaccination policies

for specific diseases, including tuberculosis (Revelle et al., 1967), influenza (Longini

et al., 1978), and smallpox (Frauenthal, 1981).

A number of stochastic models have also been developed to determine optimal

vaccination strategies. For example, Ball et al. (1997) develop an SIR epidemic model

with both local mixing at the household level and global mixing at the community

level. They introduce the notation, R∗, to represent the threshold parameter for a

community of households. They analyze the case of a perfect vaccine and show that

under this condition, a strategy that allocates vaccines to those households with the

Epidemiological models are often formulated as a series of compartments corre-
sponding to different disease states, e.g. susceptible, exposed, infectious, recovered,
etc. The models are then referred to by the series of capital letters that corresponds
to the compartments within the basic model structure. For example, an SIR model
considers individuals to be either susceptible (S), infectious (I), or recovered (R) and
to progress through the stages in that order; an SIS model would consist of the stages
susceptible - infectious - susceptible and would represent a disease for which there
was no immunity.



78

largest number of unvaccinated individuals is best for reducing R∗ to a level that

will control an epidemic. Becker and Starczak (1997) study vaccination policies in a

stochastic SIR model divided into a community of households. They derive a closed

form equation for the post-vaccination reproductive number, R∗, then formulate and

numerically solve a linear program to find the minimum vaccination coverage under

the constraint R∗ ≤ 1. This constraint ensures that the disease will tend to die out.

(Becker and Starczak (1997) use the notation RHV rather than R∗, but the concepts

are equivalent.) Drawing upon the earlier work of Ball et al. (1997), Ball and Lyne

(2002) consider the case of an all-or-nothing vaccine where a person is either totally

immune following vaccination or the vaccine does not work at all. They show that if

the sequence {nµn} is convex, where µn is the mean size of a local outbreak within

a household of size n, then the optimal solution to the linear programming problem

formulation of Becker and Starczak (1997) can be characterized explicitly. Ball et al.

(2004) use the model described by Ball and Lyne (2002) to address the question of

optimal allocation of vaccines. They show that an explicit characterization of the

optimal vaccination strategy is only possible in certain special cases, such as pro-

portionate mixing. Müller (1997) uses an SIRS epidemic model to derive optimal

vaccination strategies in an age structured population and compares the conditions

needed for optimal vaccination coverage of individuals as opposed to entire popula-

tions. Hill and Longini (2003) use a general framework that could apply to several

epidemic situations (e.g., diseases with permanent immunity (SIR models), incorpora-

tion of latent periods (SEIR models), or no immunity (SIS models) with and without

vital dynamics). They develop a method to derive optimal vaccination strategies for

populations divided into m heterogenous subgroups and fully examine the use of the

model in populations with two subgroups and proportionate mixing.

Very few of these analytical models include discussion of the effect of parameter



79

uncertainty on the vaccination policies identified and/or evaluated but this uncer-

tainty can have major consequences. For example, Longini et al. (1978) show that the

optimal allocation of vaccines derived from their influenza model is highly sensitive to

both the epidemiological characteristics of the virus and to the choice of the objective

function used in the optimization process. Similar conclusions about the sensitiv-

ity of model outcomes to epidemiological and structural uncertainty are reached by

Bansal et al. (2006), who use a contact network model to compare morbidity-based

strategies that target high prevalence populations and mortality-based strategies that

target high risk populations, Dushoff et al. (2007) who use a very simple model to

explore the consequences of different vaccine allocation strategies, and Clancy and

Green (2007) who use a Bayesian-decision theoretic approach and a general stochas-

tic SIR model with a homogenous population under parameter uncertainty.

Computer simulation models within a fully stochastic framework have also been

used to assess the effectiveness of various potential strategies to control infectious

disease spread. Most of these papers focus on pure control strategies, such as anti-

virals, vaccines, quarantine, and travel restrictions, that are implemented over the

entire population. The effect of these strategies used individually and in different

combinations are analyzed through simulation (see, for example, Ferguson et al.,

2006; Germann et al., 2006; Morris et al., 2001). As an example of a simulation

model focused specifically on the identification of an optimal vaccination strategy,

Patel et al. (2005) use a genetic algorithm within the framework of a simulation of

pandemic influenza. Their algorithm is a heuristic; in other words, it is designed to

find feasible solutions to the problem but there is no guarantee for how close those

solutions are to the true optimal solution. It is important to note that at the present

time heuristic approaches are all that are available for this class of problems. Also,

due to the large amount of computer time per simulation run, none of the simulation



80

papers discussed here consider the effects of parameter uncertainty.

Both analytical models and simulation models have weaknesses that must be

considered in light of the goals of a modeling project. A major criticism of analytical

deterministic and stochastic vaccination models that allow closed form representations

of R∗ is that many assumptions are needed to have this property. These assumptions

generally result in a model that is only a rough approximation of the actual spread of

a disease through a population. Despite this weakness, analytical models can still be

useful because they can give a clearer picture of the crucial parameters in a model (Ball

et al., 2004). For the task of identifying appropriate vaccination strategies, analytical

models provide a good way to find mixed strategies that can provide insight into

the groups that need to be particularly targeted by health authorities. Simulation

models, which generally incorporate more realistic assumptions about population

structure and disease transmission processes, are usually limited to pure or simple

strategies because of the time required to run simulations given their complexity

and the necessity of running them repeatedly because of their inherent randomness.

Another important use of optimal strategies derived from analytical disease models is

as a benchmark for strategies found via a heuristic on simulation models. The cost and

effectiveness of the heuristic strategies can be checked against the optimal strategies of

the analytical models to provide information on the quality of the heuristic strategies.

The complexity of human interactions means that parameter estimation for epi-

demiological models is notoriously difficult. Thus, vaccination policies found for any

kind of model should be considered very carefully, especially if the uncertainty of the

parameters is not taken into account. Policies derived from models with deterministic

parameters may not be robust in the sense that even an optimal strategy might be

highly suboptimal or even infeasible if parameters are changed slightly. Stochastic

programming is a popular method for incorporating uncertainty in mathematical op-



81

timization problems by finding optimal decisions given that some parameter values

are not deterministically known (Birge and Louveaux, 1997).

Using stochastic programming to include parameter uncertainty when finding

optimal vaccination strategies can give several clear benefits. The stochastic pro-

gramming framework allows for more robust vaccination strategies that are not as

reliant on point estimates of parameter values. Stochastic programming can also help

identify parameters to which optimal decisions are particularly sensitive, and so can

provide guidance for allocation of resources for estimating parameters of the model.

The formulations presented in this chapter include chance constraints to require

R∗ ≤ 1 with at least a minimum probability, a random objective to minimize the

probability that an epidemic will occur under resource constraints, and a cost-benefit

formulation making the required probability for R∗ ≤ 1 a decision variable. The prob-

lem is formulated in a general framework that is valid for a wide class of epidemic

models. We illustrate the stochastic programming formulation using the heteroge-

neous household model of Becker and Starczak (1997) and we provide a numerical

example to show why including parameter uncertainty is important when devising an

optimal vaccination strategy.

The rest of this chapter is organized as follows: Section B gives a short introduc-

tion to stochastic programming and presents a general problem framework for finding

optimal vaccination strategies under parameter uncertainty including a discussion of

applying this technique to a variety of disease spread models. Section C describes

the model of Becker and Starczak (1997) and some of the basic results and exten-

sions. The section continues with an example reformulation of their linear program

as a stochastic program with probabilistic constraints. Section D gives a numerical

illustration of this technique focusing on the value of information and the effects of

not including uncertainty. Section E finishes with some conclusions and future work.



82

B. Stochastic Programming

1. Stochastic Programming Formulations

For this chapter, we consider three possible formulations of the problem as a chance-

constrained program. We consider a disease to be controlled if R∗ ≤ 1 and not

controlled otherwise. Setting a reliability parameter α, the first formulation minimizes

the cost of vaccination under a chance constraint that requires R∗ ≤ 1 with at least

probability α. The second is the case where the vaccination supply is limited and

the probability that the vaccination is insufficient to control the disease spread is

minimized. The final formulation that we consider is a cost/benefit analysis with

α as a variable instead of a parameter. These formulations are general and can be

applied to a number of disease spread models; hence, the specific structures of the

decision variables and constraint sets are all problem dependent.

In the context of finding vaccination policies, decision variables x ∈ Rn define

possible vaccination policies implied by the model. These decision variables are con-

strained by an arbitrary set X, which defines allowable vaccination policies. The

post-vaccination reproductive number is a function both of the vaccination policy x

and the realization of the random variables ω and is given by R∗ = h(x, ω). The cost

of a vaccination policy is a function of x and is given by c(x).

Equations (6.1a)-(6.1c) give a general formulation of the problem as a chance

constrained stochastic program. The objective function (6.1a) is to minimize the

cost of the vaccination policy. The constraint (6.1b) is the probabilistic constraint

and requires that R∗ ≤ 1 with probability greater than or equal to the reliability

parameter, α. The constraint (6.1c) defines the feasible space of allowable vaccination

policies.



83

min c(x) (6.1a)

s.t. P
(
h(x, ω) ≤ 1

)
≥ α (6.1b)

x ∈ X (6.1c)

Higher values of α mean higher costs for the optimal prevention strategy since the

disease must be prevented for a larger number of scenarios. The parameter is often

chosen through computational experimentation, trading off the much higher cost of

policies under extreme values of α with the costs of allowing too many infeasible

policies.

A possible criticism of using chance constraints to formulate this problem is that

the goal of policy makers is to prevent a major epidemic from ever occurring. Explic-

itly finding a vaccination strategy that allows for an acceptable failure rate clearly

goes against this ideal. However, the problem of finding the vaccination strategy that

requires R∗ ≤ 1 for all scenarios consists of defining the worst possible parameter

values for the disease and solving the deterministic program for those values. The

weakness of this approach is that strategies that are feasible for the worst values

are often much more expensive than a strategy that is feasible for the vast majority

of cases. Therefore in terms of vaccination strategies, the strategy to prevent every

possible epidemic might just mean that everyone has to be vaccinated. This is not as

useful as knowing how many fewer vaccine doses are needed to control the spread of a

disease with high probability. Also, since estimating upper bounds is just as inexact

as estimating average values, there is no guarantee that the upper bound estimate will

actually mean that R∗ ≤ 1 in all cases. We feel that chance constraints allow for a

more natural way to plan for bad scenarios and better reflect disaster planning in the



84

real world. If failure rate of an optimal vaccination strategy found with formulation

(6.1) is too low, then the value of α can always be increased.

Another situation for which an optimal vaccination policy might be required is

when the vaccination budget is limited. In this case, it is not always possible to

vaccinate in a way that makes R∗ ≤ 1, but it is still necessary to distribute the vac-

cines effectively. A measure of the effectiveness of a vaccine distribution with limited

supplies that is analogous to the chance constraints is to optimally distribute the

vaccines while minimizing the probability that R∗ ≥ 1. Adding a budget parameter

B, equations (6.2a) - (6.2c) give a problem formulation to do this.

min P
(
h(x, ω) ≥ 1

)
(6.2a)

s.t. c(x) ≤ B (6.2b)

x ∈ X (6.2c)

A third possible problem formulation is to explicitly consider the costs and ben-

efits of lowering the probability that the reproductive number is less than one. Now,

instead of a problem parameter, the reliability α is a decision variable of the problem.

The costs of a less reliable vaccination strategy are modeled with the cost function

p(α) leading to the following mathematical program.

min c(x) + p(α) (6.3a)

s.t. P
(
h(x, ω) ≤ 1

)
− α ≥ 0 (6.3b)

x ∈ X, 0 ≤ α ≤ 1 (6.3c)



85

2. Application to Various Disease Spread Models

This section will give a short introduction to some of the types of disease spread

models for which stochastic optimization can be used to find optimal vaccination

strategies. We discuss two main types of models, those for which an explicit function

for h(x, ω) can be derived and those for which h(x, ω) can only be calculated implicitly

through simulation. We will include a few remarks on solution methods for these

different types of problems. The results here refer to problem (6.1), but they can

easily be extended for the other two formulations.

Under general random parameter distributions, even finding a feasible solution

to problem (6.1) may be impossible since computing the probability in constraint

(6.1b) may be too computationally intensive (Prékopa, 2003). In order to avoid this,

it is necessary to assume that the distributions are discrete. This assumption is not

too limiting as a discrete distribution can always be created from a continuous one

by sampling.

For problems with discretely distributed random data, Morgan et al. (1993) gives

a formulation of the problem as a mixed-binary program that is more amenable to

solution. There are a finite number of scenarios ω, each with a probability pω. Every

scenario has a corresponding binary variable zω ∈ B which takes the value of 0 if the

disease is controlled in that scenario by the optimal vaccination policy. The variable

takes a value of 1 if the disease is not controlled in that scenario. In the following

formulations M is a sufficiently large number to guarantee that constraint (6.4b) is

satisfied under scenario ω whenever zω = 1. A knapsack constraint (6.4c) ensures

that the probabilistic constraint is satisfied by forcing the sum of the probabilities of

scenarios where epidemics occur to be less than 1− α.



86

min c(x) (6.4a)

s.t. h(x, ω)−Mzω ≤ 1 ∀ω ∈ Ω (6.4b)∑
ω∈Ω

pωzω ≤ 1− α (6.4c)

x ∈ X, z ∈ B|Ω| (6.4d)

In the general case, the functions h(x, ω), c(x), and the constraints that define

the feasible set X are nonlinear, nonconvex functions in terms of the decision variables

x. However, solving such a nonlinear mathematical programming problem may not

possible. It is possible to use nonlinear programming techniques or heuristics to find

local minima or feasible solutions that one hopes will be good enough (Horst et al.,

2000), but these do not give any guarantee of solution quality. The formulation is

more computationally tractable in the case where X, c(x), and h(x, ω) are given by

convex functions in terms of x. Such problems can then be solved using commercial

optimization programs. Our example formulation gives an instance where X, c(x),

and h(x, ω) are given by linear functions.

The other class of epidemic models for which the stochastic programming frame-

work can possibly be used is that for which R∗ can only be calculated by means of

simulation. In this case, a problem of type (6.1) only exists implicitly and it is nec-

essary to use heuristic methods in the simulation optimization framework in order to

search for a feasible solution Tekin and Sabuncuoglo (2004). Simulation optimization

methods are usually not particularly good at finding optimal solutions, but even a

feasible solution to problem (6.1) can be valuable for defining a robust vaccination

policy.

REMARK B.1. Many of the diseases for which vaccination is an option vary sea-



87

sonally in their transmission, a feature that is usually modeled by incorporating a

sinusoidal or similarly varying transmission parameter. Most vaccine optimization

models do not take seasonality into account, however. One simple way to apply the

stochastic programming framework to find an optimal vaccination policy in such a

situation is to estimate the parameter distributions for the high season of the disease

when the transmission parameter is maximal. In this case, P(R∗ ≤ 1) ≥ α for the

worst season, which means that the reliability requirement is guaranteed to be sat-

isfied for the entire year. Of course using a strategy that guarantees reliability over

an entire year based on transmission rates during the worst part of the year can be

expensive, especially if resources are limited. In this case it might be more expedi-

tious to use a cost/benefit formulation that is tied to the cyclicity of the transmission

parameter.

C. Example Model

We next present an example formulation of a stochastic program in the case where

the constraints that define c(x), h(x, ω), and X are all linear. In Section 1, the

SIR epidemic model and a formulation of the optimal vaccination problem as a linear

program as given in Becker and Starczak (1997) are described. Note that although the

linear programming formulation given here is the same as their formulation, we have

changed the notation for clarity. In Section 2, our extension of this linear program to

a stochastic program is explained.

1. Linear Programming Formulation

As a first step in formulating their linear program for finding optimal vaccination

strategies, Becker and Starczak (1997) compute R0 and R∗ (the post-vaccination re-



88

production number) for their model. They assume in the model that the disease

spreads quickly within individual households and spreads more slowly between them

through close contacts between infected and susceptible members of different house-

holds. To ensure that the problem constraints are linear, they also assume propor-

tionate mixing between households. This allows them to find a closed form equation

for the post-vaccination reproduction number.

To formulate the program, it is necessary to define groups within the population

that have different susceptibilities and infectivities. It is also necessary to define

the different types of families that make up the overall population. The decision

variables xfv of the program represent the proportion of households of type f that

are vaccinated under policy v. The rest of the model parameters and their descriptions

are given in Table VIII.

The full formulation of the linear program is given in equations (6.5a)-(6.5d). The

objective function (6.5a) minimizes the vaccine coverage. The first constraint (6.5b)

balances all the decision variables for each family type, ensuring that the proportions

assigned sum to one. The second constraint (6.5c) requires that that reproductive

number of the disease be brought below one. This constraint is a linear function of afv,

which is itself a function of the parameters given by equation (6.6). The parameter

afv is derived in (Becker and Starczak, 1997) and the value
∑

f∈F
∑

v∈V afvxfv gives

the post-vaccination reproduction number of the model.



89

Table VIII. Vaccination Stochastic Programming Model Parameters
Sets

F set of family types
T set of types of people
V set of vaccine policies
Ω the set of scenarios

Indices
f index for a family type in F
v index for a vaccination policy in V
t index for a person type in T
ft index for the number of people of type t in a family of type f
vt index for the number of people of type t vaccinated in v
ω index for a particular scenario in Ω

Parameters
hf the proportion of households in the population that are of type f
anv computed parameter for impact of immunization decisions
µF the average size of a household

Parameters to compute anv(ω)
m the average contact rate of infected people
ut the relative infectivity of people of type t
st the relative susceptibility of people of type t
b the transmission proportion within a household
ε the vaccine efficacy

Decision Variables
xfv the proportion of families of type f vaccinated under policy v

min :
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv (6.5a)

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F (6.5b)∑
f∈F

∑
v∈V

afvxfv ≤ 1 (6.5c)

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V (6.5d)



90

afv(ω) =
mhf
µF

(∑
t∈T

utst
[
(1− b)(ft − vtε) + bvtε(1− ε)

]
(6.6)

+ b
∑
t∈T

∑
r∈T

urst(ft − vtε)(fr − vrε)
)

In the case where vaccination supplies are limited and planners wish to minimize

R∗, the formulation can be modified in the following manner. The left-hand side

of constraint (6.5c) is moved to the objective and is minimized, and a constraint

limiting the total number of vaccine doses that can be allotted to D is created from

the objective function (6.5a). This formulation is given by equations (6.7a) - (6.7d).

min
∑
f∈F

∑
v∈V

afvxfv (6.7a)

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F (6.7b)∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv ≤ D (6.7c)

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V (6.7d)

Becker and Starczak (1997) and Ball et al. (2004) show that this linear program

does not allow an easy characterization of the optimal strategy, meaning that the

optimal strategy may not be easy to implement. However, they claim that it is still

useful from a policy standpoint because it gives insight into groups that should be

targeted in any vaccination plan. Constraints can be added to the model if more im-

plementable plans are desired. For example, to limit policies to those where either an

entire household is vaccinated or no members are, all decision variables corresponding

to partially vaccinating a household are set to zero.



91

2. Stochastic Programming Formulation

We extend the linear programming model of Becker and Starczak (1997) to the

stochastic setting by considering the following parameters as random variables: the

vaccine efficacy ε, the average contact rate of infected people m, the relative infectiv-

ities and susceptibilities of people of different types ut and st, and the transmission

proportion within a household b. The rest of the parameters of the model can be

estimated more easily than these from census data and similar sources so they are

assumed to be deterministic in our model. Depending on the goals of the modeler,

a different number of random parameters could be included in the stochastic model.

Methods for estimating the distributions of the random parameters can be found in

Becker (1995).

We reformulate problem (6.5) as a stochastic program with probabilistic con-

straints considering the previously mentioned parameters as random variables. This

formulation is a special case of the general structure that was defined in Section 2.

The stochastic formulation is given by equations (6.8a) - (6.8d).

min
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv (6.8a)

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F (6.8b)

P
(∑
f∈F

∑
v∈V

afv(ω)xfv ≤ 1
)
≥ α (6.8c)

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V (6.8d)



92

where αfv now becomes a function of the random parameters that we have defined

afv(ω) =
m(ω)hf
µF

(∑
t∈T

ut(ω)st(ω)
[
(1− b(ω))(ft − vtε(ω)) + b(ω)vtε(1− ε)

]
(6.9)

+ b
∑
t∈T

∑
r∈T

ur(ω)st(ω)(ft − vtε(ω))(fr − vrε(ω))
)

Formulation (6.8) can be reformulated as a mixed-binary program as was de-

scribed in Chapter I. The remainder of this paper will be concerned with this mixed-

binary formulation (given in equations (6.10a) - (6.10e)), which can be solved without

any modification. A mixed-binary formulation can be similarly derived for the case

with a limited vaccination budget.

min
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv (6.10a)

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F (6.10b)∑
f∈F

∑
v∈V

afv(ω)xfv −Mzω ≤ 1 ∀ω ∈ Ω (6.10c)∑
ω∈Ω

pωzω ≤ 1− α (6.10d)

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V, zω ∈ {0, 1} ∀ω ∈ Ω (6.10e)

D. Numerical Example

We generated a small set of random test instances in order to illustrate the effect of

random parameter values on the optimal policies found by mathematical program-

ming. The goal of this section is to use example instances of the problem to show

why stochastic programming with probabilistic constraints is useful for finding opti-

mal vaccination policies. In particular, this section will show the importance of using

random distributions for the model parameters rather than point estimates in terms



93

of the cost and effectiveness of the vaccination policy given in the solution.

To set up our random test instances, we generated values and distributions for the

model parameters, which included family group parameters that define the makeup

of the population and parameters that control the spread of the disease. For this

example we chose parameter distributions that seemed plausible based on information

in the epidemiological literature; to properly estimate them is beyond the scope of

this project.

The family group parameters included three different types of people: children,

adults, and the elderly. We defined 30 possible family groupings comprised of different

numbers of these types, the details of which can be found in Appendix Table 3. The

disease parameters were more difficult to estimate. According to Longini et al. (2004)

a plausible value of R0 for influenza is estimated to be around 2.0. We defined our

parameters so that the distribution of the R0 values would be mostly in the interval

[1.5, 2.5]. For the efficacy of the vaccine we assumed a truncated normal distribution

with a mean of 0.85 and a standard deviation of 0.1. See Appendix Table 4 for the

assumed distributions of the remaining parameters.

Our test instances were created by independently sampling the parameters from

their defined distributions. We formulated the problem with probabilistic constraints

as given in formulation (6.10). We limited the number of scenarios of the instance to

500 so that the instance could be solved quickly by a commercial solver. We found

solutions to the problems by using the mixed-integer programming solver CPLEX

9.0. The objective values of the formulations were weighted so that the numerical

value was equal to the percentage of people who would need to be vaccinated in the

optimal strategy.

Figure 3 shows how increasing α affects the percentage of people who need to

be vaccinated in the optimal strategy. The striking detail in this plot is that the



94

percentage of people who need to be vaccinated increases relatively linearly when

the probability that R∗ ≤ 1 is between 20% and 95%. However, when α > 0.95,

the required number of vaccine doses increases at a much faster rate. The plot gives

evidence for why stochastic programming with probabilistic constraints is a good

framework for finding optimal vaccination policies. Since resources for the prevention

of disease are limited, it is important to be able to identify a level for which the

probability that R∗ > 1 is low, but the vaccination coverage is not too extreme. This

plot shows that this constraint can be satisfied with high probability using relatively

few doses of a vaccine, but that increasing the probability that R∗ ≤ 1 beyond that

requires a huge increase in vaccine supplies. A plot such as this can be used to set the

parameter α. Since the number of doses needed to prevent extra epidemics starts to

increase quickly above α = 0.95, this value is a reasonable choice for that parameter.

Fig. 3. Plot of Vaccine Proportion vs Epidemic Prevention Rate

We next solved all the test problems with α = 0.95, computed the expected



95

value of the expected solution, the wait-and-see solution, and the value of perfect

information. The results of these computations are given in Table IX. In this table

SPP designates the stochastic problem solution, EEV designates the expected value

of the expected value solution, WS designates the wait-and-see solution, and VPI

designates the value of perfect information respectively.

Table IX. Value of Information on Small Vaccination Example

Test Instance SPP EEV WS V PI

vac500a 64.53 0.52 40.64 23.89

vac500b 65.49 0.57 40.38 25.11

vac500c 66.41 0.56 41.42 25.00

vac500d 66.63 0.56 40.90 25.73

vac500e 65.16 0.56 41.37 23.79

Average 65.54 0.55 40.94 24.70

The SSP column of Table IX shows that R∗ ≤ 1 with probability 95% can be

achieved by vaccinating on average 65.54% of the population. This number gives the

absolute minimum percentage of the population that would have to be vaccinated in

order to guarantee that the chance constraint is satisfied, however this information

alone is not particularly valuable in terms of defining a vaccination strategy to prevent

a real disease. The optimal decision variable values give the exact proportion of

each family type f ∈ F that need to be vaccinated according vaccination policy

v ∈ V . This means that the optimal vaccination policy found by solving formulation

(6.1) is not likely to be implementable from a public policy standpoint because it is



96

unrealistically specific about which people need to be vaccinated. Nevertheless, the

optimal objective value is an absolute lower bound on the cost of any effective strategy

so it does give us a starting point for budgeting for a real vaccination program. Also,

the optimal decision variable values can be used to identify particular groups of people

that are crucial to vaccinate and hence should be specifically targeted in the actual

vaccination plan.

We computed the expected value of the expected value solution (EEV ) for the

test instance. To compute the expected value decision, formulation (6.5) was set up

and solved using the expected values of the parameter distributions to find optimal

decision variable x∗. Then for each scenario ω, we tested whether using the vaccination

policy given by x∗ satisfies the constraint h(x, ω) ≤ 1. As is shown in the EEV

column of the table, in this case, an R∗ > 1 occurs an average of 55.0% of the time.

This is clearly unacceptable for a vaccination policy. This result indicates that the

effectiveness of a vaccination policy is highly susceptible to how the parameters are

distributed. Using the traditional expected values of parameters gives a solution that

is not robust enough to be useful.

We also computed the value of perfect information V PI = WS − SPP for our

example. To compute this value it was necessary to compute the cost of the optimal

objective value using formulation (6.5) for each of the 500 scenarios and then take the

average of those values. The average optimal objective percentage of the population to

vaccinate when the stochastic data are known is 40.94%. Hence the value of perfect

information is 24.70%. This means that if parameters were able to be estimated

perfectly, R∗ ≤ 1 with an average of over a third fewer vaccine doses. From a policy

standpoint, this helps decide how much effort and resources should be spent finding

more exact estimates of the model parameters.

The purpose of setting up and solving a small example like this is to show that



97

traditional linear programming may be insufficient for finding good vaccination strate-

gies even under the assumptions for which it can be used. In particular, the expected

value solution shows that using point estimates of the epidemic parameters is not ro-

bust enough to be used to plan for actual epidemics. On the other hand, the stochastic

programming solution gives a vaccine allocation program that does not require the

vast majority of people to be vaccinated, but is robust enough to prevent most epi-

demics from occurring. Also, the value of perfect information shows that because

parameter uncertainty has a substantial effect on policies that the program returns

it may be worthwhile to expend significant effort to better estimate parameters.

E. Conclusions

This paper introduces stochastic programming with chance constraints as a frame-

work for including parameter uncertainty when finding optimal vaccination policies.

We give general stochastic programming formulations of the problem that can be

used for a wide class of epidemic models. As an example, the linear programming

formulation of Becker and Starczak (1997) is extended to this stochastic program-

ming framework. We then use a numerical example to show the large effect that

including parameter uncertainty has on the optimal vaccination strategies. We be-

lieve that since accurate parameter estimation can be extremely difficult for epidemic

models, ignoring parameter uncertainty is not a good assumption to make when cre-

ating a vaccination policy. Extensions of this work include creating realistic estimates

of the different parameter values and testing the robustness of the optimal vaccina-

tion schemes through simulation, as well as extending the stochastic programming

framework to other epidemic models.



98

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

This dissertation introduces new algorithmic methods for joint chance-constrained

programs with random left-hand side. Our solution techniques include both exact

MIP approaches, exact global optimization techniques, and some heuristic methods.

We present implementations of all these methods and report on computational results

from several sets of test instances. We also describe how to solve the problem of

optimally allocating vaccines under parameter uncertainty as a chance-constrained

program.

Joint chance-constrained programs are an important branch of stochastic pro-

gramming in which a subset of the problem constraints are allowed to be violated

with a user-defined probability. The applications for these problems include finance,

production planning, aquifer management, and many others. When the left-hand

side matrix of the problem is allowed to be random, few results exist for finding the

optimal solution to the problem. The primary goal of this dissertation is to expand

on the set of tools available to mathematical programmers for solving this important

class of problems. We also want to point future research in important directions that

may lead to fruitful advancements in algorithms for the problems.

One contribution of this work is that we showed how to find optimal vaccination

policies under parameter uncertainty using chance constrained programming. We

started with the linear programming formulation of the problem given by Becker and

Starczak (1997) and relaxed the assumption that the data are known. We showed

how this specific example could be reformulated as a chance constrained program and

presented a small numerical example showing that the chance constrained formulation

solution is much more robust than the traditional solution.



99

More importantly, we extended the chance constrained programming formulation

to the general problem of finding an optimal vaccination policy independent of the

underlying disease spread model. We showed how the problem can be formulated as

a traditional chance constrained problem, a problem maximizing the probability that

an epidemic is prevented, and a cost-benefit formulation. We also discussed various

solution techniques for different types of formulations dependent on the underlying

disease spread model. Our hope is that this formulation will lead to a new way

of dealing with the fundamental problem of parameter uncertainty in the disease

modeling and vaccination communities.

The results presented in this thesis are certainly not the final word on using

stochastic programming to find optimal vaccination strategies under parameter un-

certainty. There are several important extensions to these results. The first is to

develop practical vaccination policies using improved estimates of the random pa-

rameters and solving the chance-constrained programs that arise. The other major

extension is using stochastic programming techniques for finding optimal vaccina-

tion strategies in the case where the underlying disease spread model is a simulation.

There have been a few results applying simulation-optimization to this problem when

the parameter distributions are known. However, since parameters are inherently un-

certain in disease spread, it is necessary to look at robust and stochastic approaches

to the simulation-optimization of the problem.

Another contribution of this dissertation is our derivation of IIS cutting planes for

strengthening the relaxation of the MIP reformulation of the problem. The problem

is that the MIP reformulation contains “big-M” constraints which cause it to have

particularly weak relaxations. We used irreducibly infeasible subsets of constraints of

an upper bound generating formulation of the problem to derive subsets of constraints

that cannot all be satisfied in the optimal solution to the problem. We then use these



100

constraints to derive optimality cuts that can be added to the MIP formulation. In the

case in which no cut can be found, we should how the upper bound of the problem

can be quickly improved, thus helping with the computational effectiveness of the

algorithm. We combine all these results into a branch-and-cut algorithm that will

solve joint chance-constrained problems to optimality.

After deriving the IIS branch-and-cut algorithm, we implemented it to see how

effective it is at solving problems in our test sets. The implementation is much

less sophisticated than commercial branch-and-bound code with node choice simply

being most fractional and no other cuts added besides the IIS cuts. In computational

tests, we showed that the IIS cut-and-branch algorithm is effective at solving the

MIP formulation of joint chance-constraints. It was superior to commercial solvers

despite its lack of sophistication. On one set of test problems, the IIS branch-and-cut

algorithm was able to solve significantly larger problems than could the commercial

solver. On the other, more difficult set, it managed to improve upon the best solutions

found.

An important extension to this algorithm would be to implement the IIS cuts

within a good commercial solver to see how much it improves the workings of the

algorithm in that case. Much work needs to be done improving the generation proce-

dure of the cuts especially in terms of generating rounds of cuts, or deciding when to

stop or start generating cuts. It would also be useful to thoroughly test other types

of MIP cuts on the problem to see what cuts are most useful when used together.

There is also a need for more analysis of the polyhedral structure of the problem.

Ruszczyński (2002) provided a first cut at it, but with the success of (Luedtke and

Ahmed, 2007) similar results for chance-constrained programs with random left-hand

sides are needed.

This dissertation also includes a description of a tabu search heuristic that we



101

developed to find good feasible solutions to joint chance constrained problems. The

main problem encountered by the IIS branch-and-cut algorithm and other exact algo-

rithms for chance constrained programs is that they have scaling issues as the number

of scenarios increases. This makes sense because there is a binary variable for every

scenario. The goal of our heuristic is to develop a method to find good feasible solu-

tions for cases in which there are too many scenarios to allow exact solution. Such

a heuristic can give a decent bound on the optimal solution and also is “better than

nothing”.

The first need for our heuristic was to reformulate the problem so that it has a

finite solution space. This is important because there is a much wider range heuristic

results for problems with finite solution spaces as apposed to problems with infinite

solution spaces. We reformulated the problem as finding a minimal element of the set

of all sets of scenarios C such that the probability of C is sufficient. We then defined

the neighborhood of a solution as any other solution that can be found by putting a

scenario into the existing solution and then removing elements until it is minimal.

We had to make some modifications to existing tabu search methods in order to

ensure that our algorithm could iterate sufficiently quickly. We defined a sufficient

set of scenarios that imply the rest of the scenarios of the problem. Computationally

we showed that this sufficient set is often much smaller than the original set of the

problem. This allowed us to solve a relatively small linear program at each iteration.

We chose outgoing scenarios from the set of scenarios with a constraint with slack

value 0 and we chose incoming scenarios from the set of scenarios with minimum

infeasibility. Finally, we derived a new construction heuristic to give our algorithm a

good starting point.

Computational results show our heuristic to be effective in finding good feasible

solutions to the problems in our test sets. For one set of test instances, the heuristic



102

was able to find the optimal solution for every problem that it was known. It was

able to find significant improvements on the other problems. On the other set of

test problems, the heuristic was able to find significant improvements to the commer-

cial solver. We envision this heuristic being used in tandem with exact methods to

determine tight bounds on the optimal solutions to these problems.

The ideas that we used to make our heuristic effective could also be useful for

exact solution methods. A major issue with the branch-and-cut in the IIS cuts is

the computational expense of solving large linear programs at each node. Sufficient

sets could be used to shrink the size of these nodes and so allow for larger trees to

be searched. Combined with other computational improvements and cutting planes,

this could lead to big increases in the size of problems that can be solved.

The final contribution of this dissertation is showing how the chance constraint

can be reformulated so that it is monotonic and then using this fact to develop

a monotonic optimization algorithm for the problem. We derived the monotonic

branch-and-bound algorithm and proved that it converges to the optimal solution.

The computational experience with our implementation was negative. The algorithm

is successful in being able to search a large number of nodes quickly, however the

pruning is not effective enough to make the tree small enough to solve practical prob-

lems. Whether or not the reformulation of the problem as a monotone optimization

problem can be made useful remains an open question.

The main extension needed for the monotonic branch-and-bound is figuring out

improvements that allow it to be effective. The algorithm as it is currently devised

loses too much information by dropping the chance-constraints. It is necessary to

figure out a branching strategy or a cutting plane method that could be used in com-

bination with the monotonic structure of the problem that would take into account

the information present in the chance-constraint without too much computational



103

expense.



104

REFERENCES

Agur, Z., Danon, Y. L., Anderson, R. M., Cojocaru, L., and May, R. M. (1993).

Measles immunization strategies for an epidemiologically heterogeneous population

- the Israeli case-study. Proceedings of the Royal Society of London Series B-

Biological Sciences, 252(1334):81–84.

Amaldi, E., Pfetsch, M., and Trotter, L. (2003). On the maximum feasible subsys-

tem problem, IISs, and IIS-hypergraphs. Mathematical Programming, 95(3):533–

554.

An, H. and Eheart, J. (2007). A screening technique for joint chance-constrained

programming for air quality management. Operations Research, 55(4):792–798.

Anderson, R. M. and May, R. M. (1983). Vaccination against rubella and measles:

quantitative investigation of different policies. Journal of Hygiene-Cambridge,

90:259–325.

Aringhieri, R. (2004). A tabu search algorithm for solving chance-constrained

programs. Journal of the ACM, 5:1–14.

Babad, H. R., Nokes, D. J., Gay, N. J., Miller, E., Morgan-Capner, P., and An-

derson, R. M. (1995). Predicting the impact of measles vaccination in England

and Wales: model validation and analysis of policy options. Epidemiology and

Infection, 114:319–344.

Balas, E. and Zemel, E. (1980). An algorithm for large zero-one knapsack problems.

Operations Research, 28:1130–1155.

Ball, F., Britton, T., and Lyne, O. (2004). Stochastic multitype epidemics in a



105

community of households: estimation and form of optimal vaccination schemes.

Mathematical Biosciences, 191(1):19–40.

Ball, F., Mollison, D., and Scalia-Tomba, G. (1997). Epidemics with two levels of

mixing. Annals of Applied Probability, 7:46–89.

Ball, F. G. and Lyne, O. D. (2002). Optimal vaccination policies for stochastic

epidemics among a population of households. Mathematical Biosciences, 177-

178:333–354.

Bansal, S., Pourbohloul, B., and Meyers, L. A. (2006). A comparative analysis of

influenza vaccination programs. PLoS Medicine, 3:e387.

Bazaara, M. S., Jarvis, J. J., and Sherali, H. D. (1990). Linear Programming and

Network Flows. John Wiley & Sons, Inc., New York, NY.

Becker, N. (1995). Estimation of parameters relevant for vaccination strategies.

Bulletin de l’Institut International de Statistique, 56(2):1279–1289.

Becker, N. G. and Starczak, D. N. (1997). Optimal vaccination strategies for a

community of households. Mathematical Biosciences, 139(2):117–132.

Beraldi, P. and Ruszczyński, A. (2002a). A branch and bound method for stochas-

tic integer problems under probabilistic constraints. Optimization Methods and

Software, 17:359–382.

Beraldi, P. and Ruszczyński, A. (2002b). The probabilistic set covering problem.

Operations Research, 50:956–967.

Birge, J. R. and Louveaux, F. (1997). Introduction to Stochastic Programming.

Springer Series in Operations Research. Springer-Verlag, New York.

Brogger, S. (1967). Systems analysis in tuberculosis control: a model. American

Review of Respiratory Diseases, 95:419–434.



106

Calafiore, G. and Campi, M. C. (2005). Uncertain convex programs: Randomized

solutions and confidence levels. Mathematical Programming, 102:25–46.

Calafiore, G. and Campi, M. C. (2006). The scenario approach to robust control

design. IEEE Transactions on Automatic Control, 51:742–753.

Charnes, A. and Cooper, W. W. (1959). Chance-constrained programming. Man-

agement Science, 6:73–89.

Chen, X., Sim, M., and Sun, P. (2007). A robust optimization perspective on

stochastic programming. Operations Research, 55:1058–1071.

Cheon, M., Ahmed, S., and Al-Khayyal, F. (2006). A branch-reduce-cut algo-

rithm for the global optimization of probabilistically constrained linear programs.

Mathematical Programming, 108:617–634.

Chinnneck, J. W. (1997). Finding a useful subset of constraints for analysis in an

infeasible linear program. INFORMS Journal on Computing, 9:164–174.

Clancy, D. and Green, N. (2007). Optimal intervention for an epidemic model

under parameter uncertainty. Mathematical Biosciences, 205:297–314.

Codato, G. and Fischetti, M. (2006). Combinatorial benders cuts for mixed-integer

linear programming. Operations Research, 54:756–766.

Curry, G., Helm, J., and Clark, R. (1973). Chance-constrained model of system of

reservoirs. Journal of the Hydraulics Division, 12:2353–2366.

Dentcheva, D., Lai, B., and Ruszczyński, A. (2004). Dual methods for probabilistic

optimization problems. Mathematical Methods of Operations Research, 60:331–346.

Dentcheva, D., Prekopa, A., and Ruszczyński, A. (2000). Concavity and efficient

points of discrete distributions in probabilistic programming. Mathematical Pro-

gramming, 89(1):55–77.



107

Dentcheva, D., Prékopa, A., and Ruszczyński, A. (2002). Bounds for probabilistic

integer programming problems. Discrete Applied Mathematics, 124:55–65.

Dietz, K. (1981). The evaluation of rubella vaccination strategies. In Hiorns, R. W.

and Cooke, D., editors, The Mathematical Theory of the Dynamics of Biological

Populations II, pages 81–97. Academic Press, London.

Dushoff, J., Plotkin, J. B., Viboud, C., Simonsen, L., Miller, M., Loeb, M., and

Earn, D. J. D. (2007). Vaccinating to protect a vulnerable subpopulation. PLoS

Medicine, 4:e174.

Erdogan, E. and Iyengar, G. (2005). On two-stage convex chance constrained

programs. http://www.stoprog.org/.

Ferguson, N. M., Cummings, D. A. T., Fraser, C., Cajka, J. C., Cooley, P. C.,

and Burke, D. S. (2006). Strategies for mitigating an influenza pandemic. Nature,

442:448–452.

Frauenthal, J. C. (1981). When should routine vaccination be discontinued? The

UMAP Expository Monograph Series. Birkhäuser, Boston.

Germann, T. C., Kadau, K., Longini, Ira M., J., and Macken, C. A. (2006). Mit-

igation strategies for pandemic influenza in the United States. Proceedings of the

National Academy of Science, USA, 103(15):5935–5940.

Gleeson, J. and Ryan, J. (1990). Identifying minimally infeasible subsystems of

inequalities. ORSA Journal on Computing, 2(1):61–63.

Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers,

Boston.

Haneveld, W. and Vlerk, M. v. d. (2006). Integrate chance constraints: Reduced

forms and an algorithm. Computational Management Science, 3:245–269.



108

Henrion, R. and Möller, A. (2003). Optimization of a continuous distillation process

under random inflow rate. Computers and Mathematics with Applications, 45:247–

262.

Henrion, R. and Strugarek, C. (2006). Convexity of chance constraints with inde-

pendent random variables. http://www.stoprog.org/.

Hethcote, H. W. (1983). Measles and rubella in the united states. American Journal

of Epidemiology, 117:2–13.

Hethcote, H. W. (1988). Optimal ages of vaccination for measles. Mathematical

Biosciences, 89:29–52.

Hethcote, H. W. (1997). An age-structured model for pertussis transmission. Math-

ematical Biosciences, 145:89–136.

Hethcote, H. W. (1999). Simulations of pertussis epidemiology in the United States.

Mathematical Biosciences, 158:47–73.

Hethcote, H. W. (2002). New vaccination strategies for pertussis. In Castillo-

Chavez, C., Blower, S., van den Driessche, P., Kirschner, D., and Yakubu, A.-A.,

editors, Mathematical Approaches for Emerging and Reemerging Infectious Dis-

eases: An Introduction, The IMA Volumes in Mathematics and its Applications,

pages 97–118. Springer, New York.

Hethcote, H. W., Horby, P., and McIntyre, P. (2004). Using computer simulations

to compare pertussis vaccination strategies in Australia. Vaccine, 22:2181–2191.

Hethcote, H. W. and Waltman, P. (1973). Optimal vaccination schedules in a

deterministic epidemic model. Mathematical Biosciences, 18:365–381.

Hill, A. N. and Longini, Jr., I. M. (2003). The critical vaccination fraction for

heterogeneous epidemic models. Mathematical Biosciences, 181:85–106.



109

Hoos, H. and Stutzle, T. (2005). Stochastic Local Search: Foundations and Appli-

cations. Elsevier, San Francisco.

Horst, R., Pardalos, P. M., and Thoai, N. V. (2000). Introduction to Global Opti-

mization. Kluwer Academic Publishers, Dordtrecht, The Netherlands.

Iwamura, K. and Liu, B. (1996). A genetic algorithm for chance constrained pro-

gramming. Journal of Information and Optimization Sciences, 17(2):409–422.

Jagannathan, R. (1974). Chance-constrained programming with joint constraints.

Operations Research, 22:358–372.

Kataoka, S. (1963). A stochastic programming model. Econometrica, 31:181–196.

Knox, E. G. (1980). Strategy for rubella vaccination. International Journal of

Epidemiology, 9:13–23.

Lagoa, C., Li, X., and Sznaier, M. (2005). Probabilistically constrained linear pro-

grams and risk-adjusted controller design. SIAM Journal on Optimization, 15:938–

951.

Longini, Jr., I. M., Ackerman, E., and Elveback, L. R. (1978). An optimization

model for influenza A epidemics. Mathematical Biosciences, 38:141–157.

Longini, Jr., I. M., Halloran, M. E., Nizam, A., and Yang, Y. (2004). Contain-

ing pandemic influenza with antiviral agents. American Journal of Epidemiology,

159(7):623–633.

Loon, J. V. (1981). Irreducibly inconsistent systems of linear inequalities. European

Journal of Operational Research, 8:283–288.

Luedtke, J. and Ahmed, S. (2007). A sample approximation approach for opti-

mization with probabilistic constraints. Submitted to Mathematical Programming.



110

Luedtke, J., Ahmed, S., and Nemhauser, G. (2007). An integer programming

approach for linear programs with probabilistic constraints. Submitted to Mathe-

matical Programming.

Miller, B. and Wagner, H. (1965). Chance constrained programming with joint

constraints. Operations Research, 13:930–945.

Morgan, D., Eheart, J., and Valocchi, A. (1993). Aquifer remediation design un-

der uncertainty using a new chance constrained programming technique. Water

Resources Research, 29:551–561.

Morris, R. S., Wilesmith, J. W., Stern, M. W., Sanson, R. L., and Stevenson,

M. A. (2001). Predictive spatial modelling of alternative control strategies for

the foot-and-mouth disease epidemic in Great Britain, 2001. Veterinary Record,

149(5):137–144.

Müller, J. (1997). Optimal vaccination strategies–for whom? Mathematical Bio-

sciences, 139(2):133–154.

Nemhauser, G. and Wolsey, L. (1999). Integer and Combinatorial Optimization.

John Wiley & Sons, New York.

Nemirovski, A. and Shapiro, A. (2004). Scenario approximations of chance con-

straints. http://www.optimization-online.org/.

Nemirovski, A. and Shapiro, A. (2006). Convex approximation of chance con-

strained programs. SIAM Journal on Optimization, 17:969–996.

Pagnoncelli, B., Ahmed, S., and Shapiro, A. (2008). Computational study

of a chance constrained portfolio selection problem. http://www.optimization-

online.org/.



111

Pang, J. and Leyffer, S. (2004). On the global minimization of the value-at-risk.

Optimization Methods and Software, 19:611–631.

Parpas, P., Rustem, B., and Pistikopoulos, E. (2007). Global optimization of robust

chance constrained programs. to appear in Journal of Global Optimization.

Patel, R., Longini, Jr, I. M., and Halloran, E. M. (2005). Finding optimal vac-

cination strategies for pandemic influenza using genetic algorithms. Journal of

Theoretical Biology, 234(2):201–212.

Pfetsch, M. E. (2008). Branch-and-cut for the maximum feasible subset problem.

SIAM Journal on Optimization, 19:21–38.

Pintér (1989). Deterministic approximations of probability inequalities. Methods

and Models of Operations Research, 33:219–239.

Pourbohloul, B., Meyers, L. A., Skowronski, D. M., Krajden, M., Patrick, D. M.,

and Brunham, R. C. (2005). Modeling control strategies of respiratory pathogens.

Emerging Infectious Diseases, 11(8):1249–1256.

Prékopa, A. (1971). Logarithmic concave measures with application to stochastic

programming. Acta Scientiarum Mathematicarum, 32:301–316.

Prékopa, A. (1974). Programming under probabilistic constraints with a random

technology matrix. Mathematische Operationsforshung und Statistik, 5:109–116.

Prékopa, A. (1990). Dual method for the solution of a one-stage stochastic pro-

gramming problem with random rhs obeying a discrete probability distribution.

Methods and Models of Operations Research, 34:441–461.

Prékopa, A. (2003). Probabilistic programming. In Ruszczyński, A. and Shapiro,

A., editors, Stochastic Programming, Handbooks in Operations Research and Man-

agement Science, pages 267–345. Elsevier, Amsterdam, The Netherlands.



112

Revelle, C. S., Lynn, W. R., and Feldmann, F. (1967). Mathematical models for

the economic allocation of tuberculosis control activities in developing nations.

American Review of Respiratory Diseases, 96:893–909.

Ruszczyński, A. (2002). Probabilistic programming with discrete distributions

and precedence constrained knapsack polyhedra. Mathematical Programming,

93(2):195–215.

Ruszczyński, A. and Shapiro, A., editors (2003). Stochastic Programming, vol-

ume 10 of Handbooks in Operations Research and Management Science. Elsevier,

N. Holland, The Netherlands.

Saxena, A. (2007). A short note on the probabilistic set covering problem. Stochas-

tic Programming E-Print Series.

Sen, S. (1992). Relaxations for probabilistically constrained programs with discrete

random variables. Operations Research Letters, 11:81–86.

Shulgin, B., Stone, L., and Agur, Z. (1998). Pulse vaccination strategy in the sir

epidemic model. Bulletin of Mathematical Biology, 60:1–26.

Szegö, G. (2002). Measures of risk. Journal of Banking and Finance, 26:1253–1272.

Tanner, M. and Beier, E. (2008). A general heuristic method for joint chance-

constrained stochastic programs with discretely distributed parameters. submitted

to Computers and Operations Research.

Tanner, M. and Ntaimo, L. (2008). Iis branch-and-cut for joint chance-constrained

programs with random technology matrices. submitted to European Journal of

Operational Research.

Tanner, M., Sattenspiel, L., and Ntaimo, L. (2008). Finding optimal vaccination



113

strategies under parameter uncertainty using stochastic programming. Mathemat-

ical Biosciences, page doi:10.1016/j.mbs.2008.07.006.

Tayur, S. R., Thomas, R. R., and Natraj, N. (1995). An algebraic geometry algo-

rithm for scheduling in presence of setups and correlated demands. Mathematical

Programming, 69:369–401.

Tekin, E. and Sabuncuoglo, I. (2004). Simulation optimization: A comprehensive

review on theory and applications. IIE Transactions, 36:1067–1081.

Tuy, H. (2000). Monotonic optimization: Problems and solution approaches. Siam

Journal on Optimization, 11:464–494.

Uryasev, S. P., editor (2000). Probabilistic Constrained Optimization: Method-

ology and Application. Nonconvex Optimization and Its Applications. Springer,

Dordtrecht, The Netherlands.

Waaler, H., Geser, A., and Anderson, S. (1962). The use of mathematical models in

the study of the epidemiology of tuberculosis. American Journal of Public Health,

52:1002–1013.

Watanabe, T. and Ellis, H. (1993). A joint chance-constrained programming model

with row dependence. European Journal of Operational Research, 77:325–343.



114

APPENDIX A

OPTIMAL VACCINATION POLICY FORMULATION AND DATA

We use the deterministic linear program of Becker and Starczak (1997) as the basis

for a stochastic formulation for finding optimal vaccination strategies. The authors

model a community divided up into households, each of which contains a heteroge-

neous population. We consider the random elements of the model to be the vaccine

efficacy, the average contact rate of an infective, and the relative infectivities and

susceptibilities.

Table X. Problem Sizes for Vaccination Test Instances
Instance Rows Cont. Vars. Bin. Vars.
vac100 131 302 100
vac250 281 302 250
vac500 531 302 500
vac750 781 302 750
vac1000 1031 302 1000
vac2000 2031 302 2000

Table X gives the problem sizes for the set of optimal vaccination test instances.

We created 5 random replications of each problem size in order to ensure the robust-

ness of the computational results. The first column gives the name of the test instance

with the number of the test instance corresponding to the number of scenarios. The

second column gives the number of rows of the problem. The third column gives

the number of continuous variables in the problem. While the last column gives the

number of binary variables of the problem. For these test problems m1 = 31 and

m2 = 1. These instances tend to be difficult to solve because the MIP formulation is



115

extremely dense. The parameters and details of the stochastic program are given in

Table XI.

Table XI. Parameters for Vaccination Problem
Sets

F set of family types
T set of types of people
V set of vaccine policies
Ω the set of scenarios

Indices
f index for a family type in F
v index for a vaccination policy in V
t index for a person type in T
ft index for the number of people of type t in a family of type f
vt index for the number of people of type t vaccinated in v
ω index for a particular scenario in Ω

Parameters
hf the proportion of households in the population that are of type f
anv(ω) computed random parameter for impact of immunization decisions
µF the average size of a household

Parameters to compute aijkl(ω)
m(ω) the average contact rate of infected people
ut(ω) the relative infectivity of people of type t
st(ω) the relative susceptibility of people of type t
b(ω) the transmission proportion within a household
ε(ω) the vaccine efficacy

Decision Variables
xfv the proportion of families of type f vaccinated under policy v



116

min :
∑
f∈F

∑
v∈V

∑
t∈T

vthfxfv (A.1a)

s.t.
∑
v∈V

xfv = 1 ∀f ∈ F (A.1b)

P
(∑
f∈F

∑
v∈V

afv(ω)xfv ≤ 1
)
≥ α (A.1c)

0 ≤ xfv ≤ 1 ∀f ∈ F, v ∈ V (A.1d)

Equations (A.1a) - (A.1d) give the formulation of the stochastic programs. The

objective function minimizes the vaccine coverage. The first constraint (A.1b) bal-

ances all the decision variables for each family type, ensuring that the proportions

assigned sum to one. The second, probabilistic constraint (A.1c) requires that that

reproductive number of the disease be brought below one at least α proportion of the

time. afv(ω) is a function of the random variable realization given by (6.6).

afv(ω) is computed using the random infectivity, susceptibility, contact rate,

and vaccine efficacy parameters of the original model. The equation to compute

afv(ω) comes from Becker and Starczak (1997) and is given below. It includes the

assumption that between household contacts occur proportionately to the size of

the household. Table XII and Table XIII give the exact household makeups and

probability distributions that we assumed.

afv(ω) =
m(ω)hf
µF

(∑
t∈T

ut(ω)st(ω)
[
(1− b(ω))(ft − vtε(ω)) + b(ω)vtε(1− ε)

]
(A.2)

+b
∑
t∈T

∑
r∈T

ur(ω)st(ω)(ft − vtε(ω))(fr − vrε(ω))
)



117

Table XII. List of Family Types and Frequency
Household Size Children Adults Elderly Frequency

1 0 1 0 0.05
1 0 0 1 0.05
2 0 2 0 0.10
2 0 0 2 0.05
2 1 1 0 0.08
2 0 1 1 0.02
3 1 2 0 0.10
3 0 2 1 0.05
3 0 0 3 0.05
3 1 0 2 0.05
3 0 3 0 0.05
4 2 2 0 0.03
4 3 1 0 0.03
4 0 2 2 0.03
4 0 4 0 0.03
4 0 0 4 0.03
5 3 2 0 0.03
5 2 2 1 0.03
5 0 5 0 0.02
5 0 0 5 0.02
6 4 2 0 0.01
6 0 6 0 0.01
6 0 0 6 0.01
6 3 2 1 0.01
7 2 2 2 0.01
7 5 2 0 0.01
7 0 7 0 0.01
7 0 0 7 0.01
7 4 2 1 0.01
7 3 2 2 0.01

Table XIII. List of Vaccination Parameters and Distributions
Parameter Name Symbol Distribution
vaccine efficacy ε(ω) truncated Normal(0.85, 0.32) in interval [0,1]
inter-household contact rate m(ω) truncated Normal(1, 0.5) in interval [0,∞]
intra-household spread rate b(ω) truncated Normal(0.6, 0.32) in interval [0,1]
relative infectivity, person type t µt(ω) low value 0.7, p = 0.5, high value 1.3, p = 0.5
relative susceptibility, person type t µt(ω) low value 0.7, p = 0.5, high value 1.3, p = 0.5



118

APPENDIX B

PRODUCTION PLANNING FORMULATION AND DATA

The model is a standard multistage production planning problem with the goal of

maximizing profit. In this particular model, a company is producing and selling a

set of products over time. The company has limited production capacity and must

decide how much of each product to make, sell, or store in each time period. Also,

there is limited capacity for inventory storage and the company is constrained to sell a

minimum amount of each product in each time period. Furthermore, the company is

constrained by a maximum amount of each product that can be sold. The randomness

in this problem appears in the amount of resources that is required for the company

to produce each product during each time period, and in the maximum and minimum

amount of each product that must be sold.

Table XIV gives the details on the sizes of the production planning test instances.

The table is set up in the same way as Table 1. Again, we created a set of five test

instances for each size problem. In this case, m1 = 31 and m2 = 55. The joint chance-

constraint makes these problems difficult to solve as the MIP formulation becomes

extremely large as the number of scenarios increases.

The first constraint is a mass balance constraint (B.1b). The second constraint

is the joint chance-constraint (B.1c) made up of constraints that set the amount of

raw materials available in each time to produce all products and upper and lower

bounds on the production levels. The parameters and decision variables of the model

are given in Table XV, while the distributions of the random parameters are given in

Table XVI.



119

Table XIV. Problem Sizes for Production Planning Test Instances
Instance Rows Cont. Vars. Bin. Vars.
Prod100 5531 75 100
Prod250 13781 75 250
Prod500 27531 75 500
Prod750 41281 75 750
Prod1000 55031 75 1000
Prod2000 110031 75 2000

max
∑
kt

−cktmkt + pktskt (B.1a)

s.t. mkt + Ikt−1 − Ikt − skt = 0 ∀t ∈ T,∀k ∈ K (B.1b)

P


∑

k nkt(ω)mkt ≤ rkt ∀t ∈ T

skt ≤ maxkt(ω) ∀t ∈ T,∀k ∈ K

skt ≥ minkt(ω) ∀t ∈ T,∀k ∈ K

 ≥ α (B.1c)



120

Table XV. Parameters for Production Planning Problems
Sets

K set of product times
T time

Indices
k index for a product type K
t index for a time period in T

Deterministic Parameters
ckt cost of production
pkt selling price
rkt maximum production capacity

Random Parameters
nit(ω) resource requirement to make products
minit(ω) minimum production requirement
maxit(ω) maximum production level

Decision Variables
mkt production quantities
Ikt inventory levels
skt sales quantities

Table XVI. List of Production Parameters and Distributions
Parameter Name Symbol Distribution
resource requirement nit(ω) truncated Normal(3, 4) in interval [1,10]
minimum production minit(ω) truncated Normal(200, 50) in interval [50, 400]
maximum production maxit(ω) truncated Normal(800, 50) in interval [600,1000]



121

VITA

Matthew Wiley Tanner is from Columbia, Missouri. He received his B.S.E. in

operations research and financial engineering from Princeton University in 2004. This

dissertation is the culmination of 5 years of study in the Industrial and Systems

Engineering Department at Texas A&M. He graduated in May 2009. Matthew’s

mailing address is 241 Zachry, 3131 TAMU, College Station, TX 77843-3131. His

email address is mtanner@tamu.edu.

The typist for this thesis was the author.


