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ABSTRACT 

Development of a Reaction Signature for Combined Concrete Materials. (May 2009) 

Hassan A. Ghanem, B.E., M.E., Beirut Arab University, Lebanon; 

M.S., Texas Tech University 

Chair of Advisory Committee: Dr. Dan G. Zollinger 

 

Although concrete is widely considered a very durable material, if conditions are such, it 

can be vulnerable to deterioration and early distress development. Alkali-Silica Reaction 

(ASR) is a major durability problem in concrete structures. It is a chemical reaction 

between the reactive silica existent in some types of rocks and alkali hydroxides in the 

concrete pore water. The product of this reaction is a gel that is hygroscopic in nature. 

When the gel absorbs moisture, it swells leading to tensile stresses in concrete. When 

those stresses exceed the tensile strength of concrete, cracks occur. The main objective of 

this study was to address a method of testing concrete materials as a combination to assist 

engineers to effectively mitigate ASR in concrete. The research approach involved 

capturing the combined effects of concrete materials (water cement ratio, porosity, 

supplementary cementitious materials, etc.) through a method of testing to allow the 

formulation of mixture combinations resistant to ASR leading to an increase in the life 

span of concrete structures. 

To achieve this objective, a comprehensive study on different types of aggregates 

of different reactivity was conducted to formulate a robust approach that takes into 

account the factors affecting ASR; such as, temperature, moisture, calcium concentration 

and alkalinity. A kinetic model was proposed to determine aggregate ASR characteristics 

which were calculated using the System Identification Method. Analysis of the results 

validates that ASR is a thermally activated process and therefore, the reactivity of an 

aggregate can be characterized in terms of its activation energy (Ea) using the Arrhenius 

equation. Statistical analysis was conducted to determine that the test protocol is highly 

repeatable and reliable. 

 To relate the effect of material combinations to field performance, concrete 

samples with different w/cm’s and fly ash contents using selective aggregates were tested 

at different alkalinities. To combine aggregate and concrete characteristics, two models 
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were proposed and combined. The first model predicts the Ea of the aggregate at levels of 

alkalinity similar to field conditions. The second model, generated using the Juarez-

Badillo transform, connects the ultimate expansion of the concrete and aggregate, the 

water cement ratio, and the fly ash content to the Ea of the rock. The proposed models 

were validated through laboratory tests. To develop concrete mixtures highly resistant to 

ASR, a sequence of steps to determine threshold total alkali in concrete were presented 

with examples. It is expected that the knowledge gained through this work will assist 

government agencies, contractors, and material engineers, to select the optimum mixture 

combinations that fits best their needs or type of applications, and predict their effects on 

the concrete performance in the field. 
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CHAPTER I 

 

INTRODUCTION 

 

General  

Portland cement concrete being used in almost every structure, ranging from commercial 

buildings, bridges, to pavements is considered a very important structural material. 

Unfortunately, concrete like any other material is subjected to environmental conditions 

that make it vulnerable to deterioration, potentially reducing significantly its service life. 

As the cost of demolishing and reconstruction concrete structures continually increase, 

concrete durability becomes a key issue among engineers, owners, and government 

agencies. 

Alkali-silica reaction (ASR) is one of the most recognized durability issues in 

portland cement concrete that contributes to premature degradation. It is a chemical 

reaction between reactive silica existent in some types of rocks and alkali hydroxide in 

the concrete pore water. The product of this reaction is a gel that can be in a liquid or 

solid state depending on the concentrations of its components (sodium, potassium, 

calcium, hydroxide, silica, etc) (Mindess, Young, and Darwin 2006). The get itself is not 

harmful but at the same time, it is hygroscopic in nature. When the gel absorbs moisture, 

it swells. Swelling leads to tensile stresses in concrete. When those forces exceed the 

tensile strength of concrete, cracks occurs. Further damage occurs because ASR doesn’t 

stop at this point as those cracks create fresh surfaces and act as open passages for other 

chemicals (chloride ions, sulfate ions, etc) to attack the matrix of the concrete leading to 

more damage. Unfortunately, ASR damage may exponentially shorten the life of a 

concrete structure to survive at least 15 years to needing replacement only after 5 to 10 

years (Young, et al. 1998). Consequently, tremendous pressure is placed on the shoulder 

of design engineers and contractors to select the right materials (type of aggregate, type 

of cement, supplementary cementitious materials (SCM), chemical admixtures, etc) that 

will lead to the most durable concrete possible that lasts for many decades. 

 

This dissertation follows the style and format of Journal of Transportation Engineering.  
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This dissertation is the result of a research project sponsored by the Innovative 

Pavement Research Foundation (IPRF) entitled “Mitigation of ASR in Concrete - 

Combined Materials Test Procedure”. The main objective of this research is to address a 

method of testing concrete materials as a combination to assist engineers to effectively 

mitigate ASR in concrete. The research approach involved capturing the combined 

effects of concrete materials (water cement ratio, porosity, supplementary cementitious 

materials, etc) through a method of testing to allow the formulation of mixture 

combinations resistant to ASR leading to an increase in the life span of concrete 

structures. 

 

Research Significance and Problem Statement 

As mentioned above, ASR is a major issue of worldwide interest. Consequently, many 

researchers and agencies have invested significant amount of time and energy to develop 

test procedures and approaches to mitigate this chemical reaction.  

One technique was to use non-reactive aggregate removing a key component 

deemed necessary to initiate the ASR reaction. This solution is perhaps ideal, as long 

non-reactive aggregate are available however the majority of rocks contain some forms of 

reactive silica in different forms and structure (Swamy 1992). 

Another approach has been to use low alkali cement in concrete mixtures leading 

to a decrease of ASR potential. However, this may not be achievable as alkali may come 

from outside sources like deicers salts used during winter to remove ice formed at the top 

of the pavement. A study conducted by Rangaraju and Olek in 2007 indicated that the use 

of low alkali cement in concrete specimens subjected to deicers only delays ASR 

expansion and does not prevent it. 

A third approach is the introduction of supplementary cementitious materials 

(SCM) like fly ash, slag and silica fume in the mixtures to minimize the incidence of 

ASR. The results are promising although it is mentioned in the literature that SCM’s 

sometimes contribute to the total amount of alkali in the concrete matrix. The addition of 

lithium recently was seen an important tool in mitigating ASR (Desai 2007). 

Most of the available laboratory test methods are focused on aggregate reactivity. 

The most common procedure is ASTM C 1260 “Standard Test Method for Potential 
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Alkali Reactivity of Aggregates (Mortar- Bar Method)” (ASTM 2000b). However, results 

obtained from this test have little correlation to actual field performance. Most of the 

ASR research conducted using ASTM C1260 has involved some form of modification 

(i.e. increasing the testing duration) in order to predict the behavior of the tested 

aggregate field conditions. The result of this method of testing often only provides a clue 

as whether the aggregate is reactive or not. 

An alternative to ASTM C 1260 is ASTM C1293 “Standard Test Method for 

Concrete Aggregate by Determination of Length Change of Concrete Due to Alkali-

Silica Reaction” (ASTM 2000a).It is considered a good index of field performance 

however the duration of the test extends to one year and this is considered a major 

drawback. 

Clearly, these short comings warrant a completely different approach to ASR 

testing. Current testing methodology apply to only a narrow band of conditions making 

the risk associated with the use of a new source of untested aggregate unacceptably high. 

Better tools are needed to evaluate concrete materials for ASR that are both robust and 

useful in the prediction of concrete field performance of concrete subjected to ASR and 

this research is a step in this direction. The major outcome of this research is to provide 

an approach in which to develop recommendations for using combined concrete materials 

while keeping ASR in check. 

 
Objectives 

The ultimate objective of this study was to develop a method of testing to assist 

mitigation of ASR. This was achieved by developing a robust and reliable test protocol 

that can be performed within a reasonably short period of time and have the capability of 

capturing the effect of combined concrete materials on ASR potential. The developed 

protocol can assist pavement engineers, owners and government agencies to quantify the 

potential for concrete degradation as a consequence of ASR. To this end, the following 

steps are accomplished: 

• Development of a test protocol to measure ASR expansion using dilatometry. 

• Identifying key material related parameters that affect ASR. The parameters are 

determined using a mathematical procedure entitled “System Identification Method”. 
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• Predicting potential ASR aggregate reactivity in terms of their activation energy 

making use of the Arrhenius equation. 

• Determining of the ultimate expansion of aggregate subjected to ASR. 

• Determining of an alkali threshold for design that will lead eventually to the 

development of concrete mixtures highly resistant to ASR. 

 

Organization of the Dissertation 

This dissertation consists of seven chapters. Each chapter is briefly summarized below. 

Chapter I is an introduction addressing a statement of the research followed by a 

description of project objectives and outline. 

Chapter II presents a review of the available literature relevant to the study of 

ASR in pavement structures. The first part defines and introduces the main requirement 

deemed necessary by previous researchers to initiate the chemical reaction followed with 

a brief overview of the chemistry of ASR and the current mechanisms of ASR expansion. 

Chapter II also includes a complete review of the main experimental, technical, and 

traditional test methods to assess ASR. The last part of this chapter summarizes the role 

and effectiveness of using mineral admixtures like fly ash, slag and silica fume in 

decreasing the deleterious effects of ASR. 

 Chapter III describes the materials and their properties used in the test program 

undertaken for this project. It also includes the experimental design and the laboratory 

testing to achieve the objectives of the investigation. Description of the equipment and 

test procedures to measure ASR expansion for aggregate and concrete including the 

calibration procedure to calculate ASR expansion is also provided. 

Chapter IV describes the methodology proposed to develop a strategy in which to 

mitigate ASR. To this end, a kinetic model was developed taking into consideration the 

main parameters that have significant effect on ASR. Those variables are determined 

using the system identification procedure (SID). Also aggregate reactivity was 

characterized based on their measured activation energy. A new generalized model that 

connects aggregate reactivity, alkalinity of the pore water and the ratio of the ultimate 

expansion concrete to ultimate expansion of the aggregate is also introduced. The 
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algorithm used to determine the parameters of the above models are thoroughly discussed 

and outlined. 

Chapter V presents the analysis and interpretation of the aggregate solutions tests. 

The results of the analysis carried out are presented in the forms of graphs and tables. The 

chapter starts by displaying the ASR time-expansion data for aggregate expansion at 

different temperatures and alkalinities followed by a discussion of the effect of alkalinity 

on activation energy. Ranking of the four aggregates against each other based on their 

reactivity is also presented. The effect of temperature on the rate constant and the effect 

of calcium hydroxide on the ultimate expansion of aggregate are also discussed 

thoroughly. To check the reliability and the repeatability of the test protocol and 

procedure proposed in Chapter IV, an intra and inter-laboratory comparisons between 

Texas Transportation Institute (TTI) and University of New Hampshire (UNH) is 

conducted. Analysis is also performed on the chemistry of the pore water and results are 

tabulated.  

Chapter VI presents and discusses the results of the concrete tests proposed in the 

experimental plan. The parameters of the generalized concrete model were determined 

using the SID method. Using these parameters, a set of relationships linking alkalinity, 

aggregate reactivity, and the ratio of the ultimate expansion of concrete to the ultimate 

expansion of the aggregate are proposed. The effects of the combined concrete materials 

(water cement ratio, fly ash, etc) on ASR performance are also presented. Based on these 

effects, concrete mixtures highly resistant to ASR can be developed and formulated. 

Chapter VII is a summary of the knowledge obtained through this study. The 

main conclusions and findings are presented and discussed. Recommendations are 

proposed in this chapter to answer a key question of: “How to predict the ASR-related 

performance of concrete for a given set of exposure conditions?” This chapter also 

provides crucial information concerning the selection of concrete materials to mitigate 

ASR. Suggestions for further investigation are also provided. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

This chapter provides in 4 parts a comprehensive literature review of alkali-silica reaction 

(ASR) in concrete. The first part defines and introduces the nature of ASR in concrete 

and the main requirement needed for the ASR chemical reaction to initiate and spread. 

The second part deals specifically with the chemistry of the alkali ASR and its 

relationship to the chemistry of cement and aggregate. The third part provides a detailed 

explanation regarding current test methods for assessing ASR including both 

experimental and analytical techniques; traditional methods, and rapid test methods. 

Lastly, this chapter addresses the role and effectiveness of mineral admixtures (fly ash, 

silica fume and slag) in reducing or eliminating the deleterious effect of ASR expansion.  

 

Introduction 

Alkali-silica reaction is a combination of chemical reactions that occur within the 

microstructure of the concrete matrix. It involves alkali hydroxide coming most of the 

time, from the cement used in the concrete and some reactive form of silica existing 

within the aggregate structure. The product of this reaction is a gel known as “Alkali 

Silica Gel” which is not harmful. However, this gel has a tendency to swell in the vicinity 

of concrete moisture coming from the pores in the concrete, causing internal stresses 

within the matrix. These swelling pressures depend on many factors: gel composition, 

temperature, type and composition of reacting materials. With further absorption of 

moisture, these pressures increase and become high enough to induce the development of 

microcracks in the concrete and eventually its failure. A schematic drawing of ASR is 

shown in Figure 2.1. 

Typical characteristics of ASR include cracking (Figure 2.2), misalignment of 

structural elements (Figure 2.3), and spalling at the concrete surface. The alkali-silica 

reaction is slow and takes many years to develop and it is very devastating when alkalis 

are found in high concentration in the pore fluid. 
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Figure 2.1 Schematic of Alkali-Silica Reaction (Modified from Thomas et al. 2007). 
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Figure 2.2 Map Cracking, Portion of Concrete Road Pavement (Swamy 1992). 

 
 

 
Figure 2.3 Misalignment of Adjacent Sections of a Parapet Wall on a Highway Bridge 

Due to ASR (Strategic Highway Research Program (SHRP)-315, 1991). 
 
 

Alkali - Silica Reaction 

In early 1900, it was noticed that although concrete is a durable material, it was still 

susceptible to deterioration due to a combination of exposure to seawater and frost 
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thought at that time as the primary agent for degradation. At the same time however, 

many other cases of concrete failures were left without explanation. 

In California, late 1930’s, it was observed that relatively new concrete structures 

began developing severe cracking, although these new structures met the standard of 

construction at that time. It was Stanton in 1940 that established the existence of the 

alkali-silica-reaction as an internal deleterious process within the structure of concrete. 

From that point forward, it was clear to researchers and scientists that concrete exposure 

to harsh environment was of less importance than the characteristics and properties of the 

aggregate and cement used. Research studies followed and progressed rapidly in a couple 

of different directions, ranging from understanding the chemical reaction of alkali-silica 

reaction itself, assessing the reaction effects of ASR to identifying the aggregate mineral 

components involved in the reaction.  

 

Major Components of ASR 

Many researchers have different opinions about the mechanisms that govern ASR and 

different schools of thought are found in the literature about which mechanism is most 

prevalent in initiating ASR, but all researchers have agreed that the major components 

necessary for ASR-induced damage in the structure of the concrete are (Figure 2.4): 

a) Reactive Silica 

b) Sufficient Alkali 

c) Sufficient moisture 

 Reactive Silica 

Sufficient 
Alkali 

Sufficient 
Moisture  

Figure 2.4 The Three Necessary Components for ASR-induced Damage in Concrete     
(Folliard et al, 2006). 

 



 

 

10

Reactive Silica 

Silica (SiO2) constitutes about 65% by weight of the quantifiable components of the earth 

(Swamy 1992). Silica occurs mainly in nature as the mineral quartz. The physical 

property and atomic structure of silica is known. It consists of Silicon (Si) at the center of 

a tetrahedron of four oxygens. The bonds between oxygen and silicon are semi covalent. 

Each tetrahedron is connected to the one adjacent to it, in fact, the oxygen is shared 

among two other tetrahedrals. The tetrahedrals are fully cross linked into a three 

dimensional framework. The cross-linking of these frameworks is not the same among 

all; in fact, it depends on the temperature and pressure. Quartz, which is found in great 

quantity, is one of the polymorphs where the cross-linking is strong; hence it is dense and 

unreactive, being insensible to the presence of the majority of alkalis. On the other side, 

two other framework types, named tridymite and cristoballite are more open (i.e. less 

dense) relative to Quartz, and therefore, they expose significantly enhanced reactivity 

towards alkali (Swamy 1992). In addition to the above crystalline polymorph, some 

disordered frameworks also take place. These disordered structures increase the potential 

for reaction with cement alkali. 

In addition, silica displays a unique structural relationship with water. The 

structure of water molecule consists of an oxygen atom surrounded by two hydrogens 

atoms and two electrons in an approximately tetrahedral array. This geometric similarity 

between water and silica make it possible for water to be substituted to some degree in 

silica. In crystalline silica (i.e. Quartz), the amount of this substitution is extremely small 

(parts per million). However, these replacements in less crystalline silica will be much 

higher (several per cent or more). In reality, the Si-O-Si bonds which are considered 

strong are destroyed by hydroxylation and substituted by the more reactive Si-OH ***Si-

OH bonds where *** corresponds to a weak hydrogen bond. The mentioned amorphous 

hydrous silicas in contact with alkalis are very reactive. Their most common names, 

depending on their physical form and origin are: opal, chert and chalcedony. The above 

disordered silica have one main feature in common: they are extremely difficult to 

qualify and determine by methods such as X-ray diffraction because they have a low 

degree of crystallinity (Swamy 1992). 
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Although silica is present in the majority of rock, most aggregate used in concrete 

structures are composed of more than just one mineral. Limestone, which is a 

sedimentary rock composed largely of calcium carbonate, contains also a small amount 

of other minerals, and clay and quartz are the most common. Similarly, quartzites and 

sandstones, although considered monomineralic, contain also a small percentage of 

feldspar and micas (Swamy 1992). 

The majority of coarse aggregate used in concrete mixes contains small amounts 

of silica. But one of the most important requirements for the alkali-silica reaction to take 

place in concrete is the presence of “reactive silica”. The requirement for a siliceous 

material to be reactive is that the form of silica should be either a) poorly crystalline or 

contains a lot of lattice defects or b) glassy or amorphous in character. It was also 

mentioned that silica should be micro porous to provide a high surface area for the 

reaction. Therefore, most researchers state that it is inaccurate to consider the rock type as 

a criterion for aggregate reactivity, but rather attention should go to the reactivity of the 

mineral components of the rock itself. It was reported that as a little as 2 % of reactive 

silica is enough to observe distress in concrete structures (Swamy 1992). The most 

common type of rock and reactive minerals are compiled and summarized in Table 2.1. 

 

Table 2.1 Rock Types and Reactive Minerals Susceptible to ASR (CSA, 2000). 
 
Rocks Reactive Minerals 
Arenite 
Argillitequartz opal 
Arkose  
Chert  
Flint 
Gneiss 
Granite 
Greywacke 
Hornfels 
Quartz-arenite 
Quartzite 
Sandstone 
Shale 
Silicified carbonate 
Siltstone 
Limestone 

Crisobalite 
Cryptocrystalline (or 
microcrystalline) 
Strained quartz tridymite 
Volcanic glass 
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Sufficient Alkali 

Many concrete structures displaying severe distress due to alkali-silica reaction were 

made using high-alkali cement. The presence of alkali is necessary for the ASR to start. 

Alkalis are basic, ionic salt of an alkali metal. They are well known for being bases (i.e. 

their pH is higher than 7). They are located in the Group 1 in the periodic table (Figure 

2.5).  

 

 
Figure 2.5 Location of Alkali in the Periodic Table (group1). 

http://www.dayah.com/periodic/ 
 

The alkalis are: lithium, sodium, potassium, rubidium, cesium and francium. 

Alkali from concrete structures can come from: 

a) Ordinary Portland cement 

b) Aggregates 

c) Mineral admixtures (Fly Ash, Silica fume, slag) 

d) Chemical admixtures (Superplasticizers, etc) 

e) De-icing salts 
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f) Water 

Ordinary portland cement contains a small amount of alkali (sodium and 

potassium) present as sulphates (K, Ka)SO4. These alkalis originate from the raw material 

used in the cement manufacture. If the raw material contains illitic clay or mica, the 

clinker (product of the kiln) will be rich in potassium. If the material contains feldspar, 

the clinker will contain, depending on the composition of feldspar more sodium, 

potassium or both. The final proportion of alkali in the clinker will depend on the 

proportion of mineral in the rock and on the manufacture of cement in the plant referred.   

In general, alkali content in the clinker is divided into two types (Swamy 1992): 

alkali that are found and condensed on the clinker grain’s surface as sulfate salts, and 

alkali that are restricted and secured within the clinker mineral’s crystal structure. When 

clinker comes in contact with water, hydration occurs, and both types of alkalis behave 

differently from each other with respect to their release rates. The ones present as water 

soluble sulphates will be available for solution right away, but the ones secured into the 

grain becomes available in much slower rate during the process of hydration. The release 

rate is not constant and depends on the type of cement and the percentage of each type of 

alkali. Since alkali-silica reaction is a very slow process, Swamy assumes that it is safe to 

assume that all cement alkali will be available for release. 

The total amount of cement alkali is the summation of potassium and sodium 

oxide and is generally expressed in terms of “sodium equivalent” 

 

% Na2Oequivalent = %Na2O + 0.658 %K2O       (2.1) 

where:  

% Na2Oe = weight percentage of total sodium oxide equivalent 

% Na2O = weight percentage of sodium oxide content 

% K2O = weight percentage of potassium oxide content 

 

The alkali concentration needs to reach a certain threshold value if the alkali-silica 

reaction is to proceed. Stanton in 1940 in his research stated that ASR will likely not 

occur in the structure if the alkali content of cement is less than 0.6% Na2Oequivalent. Based 

on his work, the American Society for Testing and Materials (ASTM) C 150 recommend 
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the above threshold 0.6%. Experience with the mitigation of ASR, suggests that putting a 

threshold on the amount of alkali in cement is not effective in preventing the deleterious 

effects of ASR and is not the correct approach to specify alkali levels. The focus should 

rather be to control the total amount of alkali in concrete mixtures. Many agencies and 

countries specified that total permissible alkali to be between 2.5 and 4.5 kg/m3. They 

also stated that the previous boundaries are not rigid but depends on the aggregate 

reactivity (Nixon and Sims 1992).  

In his report in 2005, Folliard presented a plot (Figure 2.6) showing the 

relationship between the alkali content in concrete and the % expansion at 2 years. This 

plot shows clearly that the threshold of 3.0 kg/m3 Na2Oequivalent withstands expansion up 

to two years. However, others have reported continuing expansion even with the total 

alkali content less then 3 kg/m3 (Swamy 1992). It is interesting to notice that the curve 

follows an S-shape pattern. 

 

 
 

Figure 2.6 Effects of Alkali Content on Expansion of Prisms Stored Over Water at 38 °C 
(Folliard et al. 2006). 

 
Despite the fact that in some cases, the total alkali in the cement paste may be 

very low, reactive aggregate may contain large amounts of alkalis (French 1986). Some 

mineral components of the rock, mainly feldspar, mica and illitic clay contain some 

alkalis in their structure. Researchers are divided whether these alkalis will be available 
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for release in the concrete and therefore increasing the alkali amount in the matrix or, 

locked within the crystal lattice (Thomas, Blackwell, and Pettifer 1992). But there is a 

general agreement that where the aggregate is subjected to “geological weathering” for a 

long period of time, the debasement of the mineral inside the rock will help by leaching 

some of the alkali in the pore water of the concrete. Under extreme conditions, some 

aggregates can release up to 10% of the total alkali into the cement (Stark and Bhatty 

1986). 

Mineral admixtures (silica fume, slag, fly ash), as by-products of industrial 

processes, contain some alkali. The alkali content of each is different because the 

chemical and physical properties of the above admixtures are variable. Silica fume, a 

byproduct of producing silicon metal, has a simple composition. It consists mainly of 

silicon dioxide (SiO2) with a small amount of aluminum and magnesium, and its alkali 

content is normally low. Slag is a by-product of smelting ore. Depending on the plant 

practice and the ore origin, their composition is variable. The alkali content of slag is 

evenly distributed and reasonably high and may exceed 1% and is higher than the alkalis 

found in the portland cement. But at the same time, alkalis are restricted in slags and their 

release in the concrete is very slow and may take decades (Idorn 1967). Fly ash is a by-

product from the combustion of coal and its composition is even more variable than that 

of slag. Both types (silica rich fly ash designated Class F and calcium rich ash designated 

Class C) may contain significant alkalis located at the surface of the particles. 

Researchers agreed that the alkali content of both types should be considered available 

for release in the concrete and therefore increasing the total alkali content in the mixtures. 

(Swamy 1992). The effect of alkalis coming from fly ash, slag and silica fume on the 

alkali-silica reaction is a point of controversy among researchers even though in many 

instances their effect is simply ignored. Nonetheless, the Canadian Standards Association 

(CSA) guidelines limit the amount of alkali of supplementary cementitious materials 

based on their chemistry and replacement levels.  

The presence of alkalis in the pore fluid in concrete is well established in the 

literature and has led researchers to focus on the chemistry of the pore fluid (Diamond, 

1983). At the beginning, the pore solution is composed of calcium, sulphate and alkali 

hydroxides (Figure 2.7), but after two days, the concentration of those elements remains 
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constant for a long time period (Figure 2.8); around 0.8 N for hydroxide, 0.2 N for 

sodium and 0.4 N for potassium while the concentration of calcium is almost negligible. 

The above values are for a cement paste with w/cm = 0.5 and type I cement and 0.91% 

Na2Oe. 

 

 
Figure 2.7 Pore Solution Concentration for the First 24 h (Diamond 1983). 
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Figure 2.8 Pore Solution Concentration for the First Two-Years (Diamond 1983). 
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The Role and Effect of Moisture in Alkali-Silica Reactivity 

The presence and role of moisture is very important in ASR. Swamy (1992) mentioned 

that ASR may occur at a very low humidity, but for the gel to absorb water and expand, 

high moisture level is necessary. It was reported that in a very dry environment, ASR 

expansion was negligible, although a highly reactive aggregate and high alkali cement 

have been used (Folliard et al. 2006). Different areas in the same structure have displayed 

different kinds of performance: areas exposed to a high level of moisture displayed ASR-

induced damage, whereas areas that remained dry or not exposed to moisture showed 

little or no damage (Folliard et al. 2006). Therefore one can deduce that exposure to 

environmental conditions is an important parameter in the durability of concrete with 

respect to ASR. 

Most chemical reactions need water to proceed and the alkali-silica reaction is no 

different. In fact, water has a double role: first, water is the main carrier of hydroxyl and 

cations in the pore water to the reaction site and second, it is absorbed by the ASR gel 

causing swelling. This swelling can develop pressure high enough to produce cracks and 

eventually those will deteriorate the concrete.  

Although concrete looks dry during its service years, it still retains some pore 

fluids in the inner portions where the relative humidity (RH) is around 80-90%. In 1996, 

Pedneault described in detail the importance of moisture on expansion (Figure 2.9). As it 

can be seen from the plot, concrete made with four different types of aggregates 

displayed very small expansion at a relative humidity less then 80%. On the other side, 

expansion increases exponentially as the RH increases above 80%, emphasizing the 

enormous effect of RH on expansion.  

Reducing the exposure of concrete structures to moisture is helpful in reducing 

ASR-induced damage. Although it may be feasible to reduce the moisture level below 

80% in concrete, any effort to reduce any additional moisture, through the use of low 

permeability concrete or proper design of drainage, will ameliorate the durability aspects 

of concrete due to ASR. 
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Figure 2.9 Effects of Relative Humidity on Expansion Using the ASTM C 1293 Storage 

Regime (Pedneault 1996). 
 
 

Chemistry of Alkali-Silica Reaction 

The previous section covered the main components of ASR: a) reactive silica, b) 

sufficient alkali and c) sufficient moisture. This section will cover in detail the chemical 

mechanism of the ASR (dissolution of silica, formation of gel) and the current proposed 

mechanisms of expansion. 

First of all, one has to mention that the alkali-silica reaction is not a reaction 

between the alkalis (i.e. sodium, potassium and calcium) and the reactive siliceous 

components existent in some types of aggregate. The fact is that the main reaction is 

between the hydroxyl (OH-) ions found in the pore water and siliceous aggregates. The 

alkali metal cations are important because their presence in high concentration leads to an 

equally high concentration of hydroxyl to maintain equilibrium in the pore water. The 

role of alkali becomes relevant when they are incorporated into the gel. 

Mass transport is a prominent aspect of ASR. Studies have shown that aggregates 

containing SiO2 are considered in the concrete environment “thermodynamically 

unstable” (Swamy, 1992). When ASR begins, the free energy of the system decreases. 

This is accompanied by mass transport of alkali and hydroxyl ions. The main agent of the 
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transport mentioned above is the pore fluid which is perhaps in direct contact with 

aggregates and cement hydration product (Figure 2.10). 

 
 

Figure 2.10 Mass Transport in ASR (Swamy 1992). 
 
 

Figure 2.11 displays in detail the microstructure and mineralogy of the aggregate-

paste interface. As seen from the picture, the main cement hydration products are calcium 

silicate hydrate (C-S-H) and calcium hydroxide (CaOH2). The aggregate surface is 

composed of the siliceous mineral (SiO2) and the pore volume (i.e. meso and micropores) 

in the concrete is partially filled by water molecules (H2O). 

When water comes into contact with siliceous aggregate particle, the surface of 

the rock is hydroxylated. This leads to the development of a disturbed region at the 

surface of the aggregate which is several atoms deep. When the rock is placed into 

contact with high hydroxyl concentration solution, the hydroxylation is intensified. This 

hydroxylation occurs in all types of siliceous aggregates, but in well-crystallized quartz, 

the rate of this reaction is very slow. On the other hand, finely ground crystalline quartz is 

very reactive at high temperatures. 

The result of the above reaction is well documented in the literature and the 

chemical mechanisms are clarified by Dent-Glasser and Kataoka in 1981. The hydrolysis 

of reactive silica by OH- forms an alkali-silica gel located at the cement paste-aggregate 

interface. As this gel is formed, it absorbs water and other alkali cations, mainly sodium, 

potassium and calcium. Dent Glassier et al. mentioned that the ASR gel is not very 

soluble and is mainly located around susceptible siliceous aggregate. 
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Figure 2.11 Microstructure and Mineralogy of the Aggregate-paste Interface  

(Swamy 1992). 
 
 

The alkali-silica reaction is composed of three major components. In the first 

reaction, the pore fluid solution reacts with Si-O-Si bonds to create silanol bonds: 

2 ....Si O Si H O Si OH OH Si− − + → − −  

Some silanol bonds are already existent on the surface of hydrous silica aggregate. These 

silanol groups are considered acidic. The second reaction is an acid base reaction between 

the acidic silanol groups (Si-OH) and the hydroxyl ion (OH-) 

2Si OH OH Si O H O− −− + → − +  

The products of the above acid base reaction are a molecule of water and the negatively 

charged Si-O-. These negative charges attract positive alkali cations such as sodium, 

potassium, and calcium. The number of positive cations should be sufficient enough to 

maintain a charge equilibrium in the system. The third stage of this reaction occurs when 

the silixane bonds are attacked by hydroxyl ions. 

22Si O Si OH Si O O Si H O− − −− − + → − + − +  

The major consequence of the above three reactions is the dissolution of silica in 

the pore solution. The amount of this dissolution depends on many factors: a) temperature 

b) particle size of silica c) whether the silica inside the aggregate is well crystallized (i.e. 



 

 

21

macrocrystalline quartz) or amorphous (i.e. poorly crystallized like cristobalite, opal and 

volcanic glass). The main difference between the two mentioned categories is that the 

solubility of well crystallized silica is negligible in high alkali solution (High pH) and if it 

occurs, it would be only at the surface of the aggregate while the solubility of amorphous 

silica increments dramatically with pH, as shown in Figure 2.12. 
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Figure 2.12 Effects of pH on Dissolution of Amorphous Silica (Tang and Su-Fen 1980). 

 
 

As the Si O−−  are generated and to achieve balance, these negative charges begin 

attracting positive alkali cations such as sodium, potassium, etc to form ASR gel. The 

entire ASR chemical reaction was summarized by Dent-Glasser and Kataoka (1981) as: 

0.38 2.19 2 0.38 2.19 0.38 20.38H SiO Na O Na SiO H O+ → +  

As shown in the above equation, sodium was involved to achieve charge 

compensation, but at the same time, some other cations may also contribute. The major 

product of the above reaction is the ASR product. According to many researchers, this 

product may take the form of either a gel or crystalline material (Stewart 2005). This 

ASR product itself is not deleterious. The problem occurs when this gel absorbs water, 

resulting in greater volume than the one that it replaces, creating high swelling pressure 

and expansion, notorious of the alkali-silica reaction. The ASR product is composed of 

the main components: Silica (SiO2), Lime (CaO), Alkali (NaOe) and water. Studies have 
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shown these gels maintained quasi-state equilibrium with water. During drying cycles, 

the alkali concentration increases and therefore the ionic content of the gel increase. On 

the other side, during wetter cycles, the reverse reaction happens. Since these gels have 

different chemical composition and different densities at different periodic cycles, the 

amount of swelling is extremely difficult to predict. (Swamy 1992). 

 

Current Mechanisms of Expansion 

The main chemical reactions that govern ASR are well accepted and understood by the 

majority of researchers. However, the mechanism of expansion is a point of controversy 

among researchers. The five most common and circulated theories in the literature 

regarding the mechanism of expansion are: 

 

Hansen Theory 

In 1940, Hansen discovered that some cracking in concrete structures in California is due 

to chemical reaction between alkali hydroxide released by cement during its hydration 

and some siliceous types of aggregates. In his research following his discovery, Hansen 

(1944) proposed a new mechanism for ASR: osmotic pressure theory, in which the 

hardened cement paste plays the role of a semi-permeable membrane toward the complex 

silicate ions. The membrane will allow molecules of water in addition to alkali 

hydroxides ions to diffuse through, but will prevent the passage of silicate ions 

surrounding the grains to diffuse through. Therefore an osmotic pressure cell around the 

aggregate will be developed. As more solution is drawn from the cement paste to the 

reaction site around the grains, hydrostatic pressure increases dramatically against the 

confined cement paste leading unavoidably to cracking in the matrix of the cement paste. 

 

McGowan and Vivian Theory 

In 1952, McGowan and Vivian challenged the Hanson theory on the basis that cracking 

in cement paste will release pressure and rule out any further expansion and in case 

elastic distention of the paste impacts the mechanism of expansion, it will be to a very 

limited extent. Instead, they proposed the “Swelling theory” in which alkali-silica gel, 

product of reacted aggregates” absorb water, leading to swelling in the gel which causes 
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cracking and expansion in the mortar. Tang (1981) also mentioned that he is in agreement 

with the above theory. 

 

Powers and Steinour Theory 

In 1955, both researchers mentioned that the swelling theory introduced by McGowan 

and Vivian and the osmotic theory proposed by Hansen are fundamentally alike. They 

were of the belief that the key to the mechanism of ASR is the nature of the alkali-silica 

gel itself and whether it acts as a solid or fluid which depends on the ratio of calcium to 

alkali.  

When sodium hydroxide attacks an aggregate that is also reactive (in the presence 

of a high calcium concentration), the complex generated from the chemical reaction is a 

non-swelling lime-alkali-silica combination forming a layer around the reactive grains. 

This layer separates the reactive silica from the pore water rich in alkalis. The nature of 

the complex is fluid-like and its chemical composition is very close to C-S-H and in this 

case, it is considered non-expansive or at most a very limited swelling product as long as 

chemical equilibrium is reached between the alkali-silicate and lime.  

On the other hand, when calcium (unlike other alkalis such as sodium and 

potassium) was unable (probably because of the low solubility of calcium hydroxide in 

alkali solution) to diffuse through the cement paste to the reaction site where alkali 

silicate are generated, the calcium to alkali ratio becomes very low and an alkali-silica 

complex is formed in the dry state. This complex upon absorbing water, swells 

apparently without limit. Powers and Steinour (1955) added that expansion in concrete 

occurs when this reaction product is still solid and cracking occurs primarily because of 

the swelling of the gel. But in some isolated cracks inside the concrete matrix, the gel in 

the crack may generate hydraulic pressure produced by osmosis where the concrete plays 

the role of a semi-permeable membrane.   

 
Chatterji Theory 

The theory proposed by Powers and Steinour was challenged by Chatterji (Chatterji et al, 

1986, Chatterji 1989) in the 80’s based on: i) The expanding gel contains none or very 

little lime (ii) alkali does not play a role in the alkali-silica reaction, instead only alkali 



 

 

24

hydroxide takes part. To provide an explanation of the above two points and a better 

understanding of the alkali-silica reaction, Chatterji (1989) proposed another mechanism. 

The main points are summarized as follows: 

(i) As the PH and ionic strength of the pore solution increases, hydroxyl ions attack 

and penetrate reactive aggregates. The rate of (OH-) penetration depends on the 

size of the alkali hydrated cations in the pore solution. i.e. the rate decreases in the 

series potassium, to sodium, to lithium, to calcium. Chatterji mentioned that 

sodium ions are less aggressive than potassium ions and therefore cement 

containing a large amount of potassium is much more harmful than that 

containing sodium. This last point also suggests that the ASR reaction will lessen 

from potassium to lithium salt (Chatterji 1989). This previous deduction was 

confirmed: low ASR expansion using lithium salt (i.e. LiNO3, LiCl, etc) was 

noted by Folliard et al (2006). This inefficiency of lithium salt in producing ASR 

damage was attributed to the large size of hydrated lithium ions (Chatterji 1989) 

and to the fact that lithium salt does not increase the PH of the pore solution 

(Folliard et al. 2006).   

(ii) When both alkali metal salt (i.e. NaCl) and calcium hydroxide (Ca(OH)2) are 

found at the same time in the pore water, they penetrate the reactive grain leaving 

behind the calcium ions and anions in a liquid phase. The higher the concentration, 

the higher is the rate of penetration of alkali and hydroxyl ions (Chatterji, 

Thaulow, and Jensen 1988).  

(iii) This attack of the above mentioned ions leads to the destruction of the structure of 

the reactive grains (i.e. disruption of the siloxane bonds) according to the 

following chemical reaction: Si O Si OH Si OH Si O− −− − + → − + − . As a result 

of the structure breakdown, more hydrated ions and water molecules penetrate the 

interior of the aggregate, leading to the dissolution of silica. This dissolved silica 

has two roads to follow (i) either to migrate out of the reaction site or (ii) 

internally within the grain (Chatterji, Thaulow, and Jensen 1988). 

(iv) The rate of diffusion of silica out of the reactive grain is inversely proportional to 

the concentration of Ca(OH)2 in the pore water around the reactive aggregate. 

Chatterji (1979) in a previous research mentioned that the existence of free 
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Ca(OH)2 in the pore water is a prerequisite condition for the destruction of 

concrete structure because of the alkali-silica reaction. He added that ASR can be 

suppressed by a complete removal of Ca(OH)2 either by using a pozzolanic 

material (i.e. fly ash) or by leaching using calcium chloride concentrated solution. 

(v) Whether expansion occurs or not, depends on the rate of pumping and diffusion. 

Pumping refer to the penetration of Na+, OH-, Ca+2, and H2O and diffusion refers 

to migration of Si+4 out of the grain. Expansion happens when more materials 

penetrate the grain than the amount of silica outward diffusion. The rate of 

pumping and diffusion is completely controlled by the amount of Ca(OH)2 in the 

pore solution.  

When an ample amount of Ca(OH)2 is present with high alkali ion 

concentration, a minimal amount of Si+4 can diffuse out allowing for more Na+, 

OH-,  Ca+2, and H2O to be pumped in which yields expansion. On the other hand 

when the amount of Ca(OH)2 is very limited, the pumping of Na+, OH-,  Ca+2, and 

H2O will be at its minimum and at the same time, the amount of silica diffusing 

out increases significantly. This movement of silica from one place to another will 

stop the development of any expansive forces (Chatterji et al. 1986).  

In the mechanism proposed by Chatterji, Ca(OH)2 plays three major roles: 

(i) it restrains the diffusion of silica ions out of the reactive aggregates (ii) it 

speeds up the penetration Na+, OH-,  Ca+2, and H2O into the reactive grain, (iii) it 

encourages prejudiced penetration of Na+, OH-,  and H2O. 

 
Diffuse Double Layer Theory 

In an attempt to provide a better explanation of the mortar bar expansion containing 

reactive siliceous aggregate, Prezzi (1997) proposed a theoretical model based on Gouy-

Chapman double layer theory. Her model is mainly based on the chemical composition of 

the ASR gel and on the surface properties of colloidal systems. The expansion of the 

mortar bar was attributed to the gel swelling induced by electrical double layer repulsive 

theory. 

Since the ASR reaction is first of all a chemical reaction where ions from different 

chemical substances react together, the expansion of the gel should be related to the 
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surface characteristics of the reactants (Prezzi, 1997). In her proposed mechanism to 

explain concrete degradation, Prezzi mentioned that the interface between solid and 

liquid is charged with electricity and the surface of the solid material holds excess charge. 

Monteiro et al. (1997) mentioned that surface charges can be originated from ion 

adsorption. In his research, Monteiro et al. (1997) defines three modes of adsorption of 

monovalent cations by a glass surface (Figure 2.13) a) by an inner sphere complex where 

are water is not allowed between the surface and the ion, b) outer sphere complex where 

one H2O exists between the ion and the surface and c) ion adsorbed into the cloud of the 

double layer to offset the negative surface (silica) charges).  

 

 
 

Figure 2.13 Three Modes of Adsorption of Monovalent Cations by a Glass Surface           
(Monteiro et al. 1997). 

 
 

Very high negative charges are observed at the surface of the silica grains 

(Rodrigues, Monteiro, and Sposito 1999). These highly charged silicas react with the 

alkaline solution found in the pore solution of the concrete leading to the dissolution of 

the silica and the formation of gel. To counterbalance the negative silica charges, an 

electric double layer of positive charges (cations) develop and adsorb around the silica 

surface. The double layers are composed of calcium, potassium and sodium and some 

other onions, but the net charge of the whole system (sum of negative charges of silica + 

anions + sum of all cations) is equal to zero. This system will form a colloidal suspension 
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and then conglomerate into a gel (Prezzi, Monteiro, and and Sposito 1997). The 

chemistry of this gel depends on the chemistry of the pore solution, pore structure in the 

concrete and environmental condition. As this gel absorbs water, it expands leading to 

internal stresses in the concrete matrix. Once these stresses exceed the tensile strength of 

concrete, cracks occur leading to other processes of deterioration (Swamy 1992). 

Diamond (1989) indicates that the expansive pressures because of gel swelling are in the 

range 6-7 MPa, but expansive pressure of 10.3 MPa was calculated by Prezzi using 

conventional double layer equations (Rodrigues, 2001). 

The electric double layer developed is not static. In fact, it is affected by the alkali 

concentration in the pore solutions which is in turn affected by environmental conditions 

(Prezzi, Monteiro, and and Sposito 1997). Swamy indicates that cycles of wetting and 

drying greatly affect the alkali concentration in the pore solution.  

During drying cycles, the local alkali concentration tends to increase with time in 

the pore solution while the double layer thickness and the repulsive forces decrease 

(Prezzi, Monteiro, and and Sposito 1997). This will lead to localized alkali-silica reaction 

even though the amount of alkali in the concrete structure stays low.  As more silica 

grains dissolve and react with alkali, gels are formed in localized regions in the matrix of 

the concrete structure. However, this gel will not cause any damage or expansion since 

the likelihood of its interaction with water is very small (Swamy 1992).  

On the other hand, during wetting cycles, the opposite reaction occurs. Water 

percolates through the interior of the concrete and the local pore water is diluted and 

therefore its ionic content decreases (Swamy 1992). As water arrives to the reaction site, 

it adsorbs around the gel particles and the distance among gel particles increases. As 

more water is adsorbed, the electrical double layer thickness increases and the repulsion 

forces dominate leading to swelling of the gel which occupies the empty pores. No 

damage occurs up to this point. In the following drying cycle, as more silica is being 

continuously dissolved, more gel is produced. In the next wetting cycle, as the gel 

absorbs water, it expands trying to make room for itself. As no more empty pores are 

available to accommodate the gel, expansive pressures are developed. As these wetting 

and drying cycles occur, pressure increases until fracture and fissures occur in the 

concrete. Gels can then be developed in the cracks. As water is now more accessible to 
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the gel, the repulsion forces and the thickness of the double layer increase significantly, 

leading eventually with time to the failure of the concrete structure (Prezzi, Monteiro, and 

and Sposito 1997). 

Prezzi mentioned that the amount of repulsive forces and the thickness of the 

electric double layer depend on the valence of the cations in the gel and their 

concentration in the double layer. Rodrigues, Monteiro, and Sposito 2001 agrees with the 

above statement and cited that the amount of expansion increases as cations valence 

decrease following the sequence: Trivalent < divalent < monovalent. Consequently, 

bivalent ions (Ca++) will generate more repulsive forces and a larger electric double layer 

thickness than monovalent ions (Na+). Therefore gels with high concentration of calcium 

will produce lower expansive forces than those containing high amount of sodium and 

vice versa (Rodrigues, Monteiro, and Sposito 1999). 

Prezzi, Monteiro and Sposito (1998) based on her ASTM 1260 mortar bar tests 

showed that chloride salts with monovalent cations (NaCl) displayed the largest 

expansion followed by those with divalent and trivalent cations (CaCl2, AICI3). This 

difference in the behavior of monovalent and bivalent ions is caused by their effects on 

the surface charge density. i.e. monovalent cations produce much higher surface charge 

density than bivalent cations, leading to more expansive gels (Rodrigues, Monteiro, and 

Sposito 2001). Prezzi, Monteiro and Sposito (1998) also observed from her mortar bar 

tests that the gel that expands the most (using a NaCl solution) had the highest amount of 

Silica (SiO2) whereas its amount of calcium oxide is minimum. On the other side, the 

bars prepared using AICI3 solutions had the lowest amount of silica and the highest 

amount of calcium oxide. 

 
Testing for Alkali-Silica Reaction 

This section provides an overview of the main laboratory test methods that are currently 

used to recognize reactive aggregate and their expected role in the alkali-silica reaction 

that occur in the matrix of concrete structures. Since many aggregates are by nature 

heterogeneous, laboratory test methods of aggregate and/or cement aggregate- 

combinations are the only possible ways to measure aggregate reactivity prior to their use 

in concrete structures. At the same time, one has to acknowledge that lab procedures may 
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in some cases be time consuming and difficult to conduct, but are necessary to limit 

damage to concrete construction because of ASR. 

Today, there are many standard procedures to test reactivity of aggregate and/or 

cement-aggregate combinations. Of the many laboratory tests methods available to assess 

alkali-silica reaction, two procedures are the most common among researchers to conduct 

(a) ASTM C 1260 (Accelerated Detection of Potentially Deleterious Expansion of Mortar 

Bars due to Alkali-Silica Reaction), and (b) ASTM C 1293 (Test Method for Concrete 

Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica 

Reaction).  

In recent years, many researchers (Andersen and Thaulow 1989) have proposed 

and developed new and rapid test methods. Most of these procedures depend on 

accelerating the ASR reaction by increasing temperature and pressure.  

With the intent of reducing the test time, greater expansions were observed than 

those obtained with standards test methods (Swamy 1992). Lab tests may in some cases 

be inconclusive, especially when evaluating structures showing symptoms of ASR like 

map cracking or gel exudations. Such tests may lead to erroneous results; for instance, 

structures attacked by ASR can be mis-diagnosed as not to be suffering from ASR while 

others show serious of cracking and be diagnosed as ASR caused but is not (Tordoff, 

1990). Consequently, a petrographic study on the aggregate used, field performance, and 

a reliable test which can model the main parameters of ASR are highly desired. 

 

Rating the Alkali-Reactive Aggregates 

The first step in evaluating the suitability of an aggregate for concrete 

construction is to perform a petrographic analysis, together with other complementary 

techniques such as X-ray diffraction (XRD) and infra-red spectroscopy. The above 

mentioned tests will provide the necessary information to identify the deleterious 

components in the rock and what specific test needs to be conducted (Dolar-Mantuani 

1978). 

The different types of reactive aggregates, their mineral composition and the 

problems involved in their recognition are well established and documented in the 

literature. The majority of standards and codes like the American Society for Testing and 
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Materials (ASTM C 289, C295), and the British Code (British Standard (1984), British 

Standard (1989)) supply a lot of information about the origin and formation of the rocks 

and their mineral composition and classification including the siliceous phases, such as 

quartz, chert, flint and quartzite. Aggregates that contain at least 95% of a specific type 

are considered not reactive if they contain less than 2% by weight of flint, chalcedony or 

chert or if they are not contaminated by silica minerals like cristobalite, opal, etc. 

(Swamy 1992). 

To detect reactive aggregate and to confirm or reject the presence of ASR in 

concrete, two techniques are available. The first method is by examining reactive 

aggregate by petrographic scrutiny of thin sections of contaminated concrete. The 

objective of this study is to locate the different deleterious components, to locate (if any) 

the fracture in the rock, to identify any alteration zones around the siliceous grains and to 

look for any gel deposit. Petrographic study on virgin aggregates should include a full 

analysis of the fraction of the rock. Thin section study will also help identify any 

potential reactive components in the aggregate. The second technique is the use of XRD. 

The charts obtained from the analysis will provide a deep perception on the mineral 

present and the location and arrangement of secondary minerals (Swamy 1992). 

 Both methods are useful in providing information about the list of minerals found 

in the rock, but there is no guarantee if ASR will occur or not in the structure, in fact one 

has to keep in mind that other important characteristics of the aggregates such as particle 

size distribution, environmental effect, porosity, amount of reactive minerals, etc., have a 

significant effect on future observed expansions (Shon 2008). 

 
Established Mortar-Concrete Tests 

The four common tests for mortar-concrete tests are: 

a) ASTM C 227 “Standard Test Method for Potential Alkali Reactivity of Cement-

Aggregate Combinations (Mortar-Bar Method)”. 

b) ASTM C 441 “Effectiveness of Mineral Admixtures or GBFS in Preventing 

Excessive Expansion of Concrete due to Alkali-Silica Reaction. 

c) ASTM C 1260 “Standard Test Method for Potential Alkali Reactivity of Aggregates 

(Mortar- Bar Method). 



 

 

31

d) ASTM C 1293 “Standard Test Method for Concrete Aggregate by Determination of 

Length Change of Concrete Due to Alkali-Silica Reaction. 

The objective of the ASTM C 227 is to provide information about the probability 

that a cement-aggregate combination is capable of producing deleterious expansion in 

concrete because of ASR. The mortar bars in this test are composed of aggregates that are 

crushed to meet some grading requirements. Then the mortar bars are stored in closed 

containers with wicks above water at 100 F. Measurements are then taken at 1 and 14 

days. One, two, three, four, six and nine months are recommended.  In ASTM C33, it is 

stated in the appendix that the expansion limits are 0.05% at 3 months and 0.1% at 6 

months.  

The results of the mortar bar test were seen to be not always reliable (Grattan-

Bellew, P.E, 1989). Storage containers with efficient wick systems, were found to cause 

excessive leaching of alkali out of the mortar bar and consequently, the measured 

expansion was considerably reduced. However, bars sealed in plastic bags have displayed 

higher expansion (Rogers and Hooton 1989). The test period of this procedure is another 

disadvantage: in the case of opaline aggregate, a period of three to six months (six to 

twelve months in case of quartz bearing aggregate) is needed to obtain conclusive results 

(Oberholster and Davies 1986). 

ASTM C 411 is mainly used as a preliminary test to assess the efficiency of 

mineral admixture or slag in reducing expansion because of ASR. The bars are made with 

a combination of cement, mineral admixtures and reactive aggregate (pyrex glass) and 

then the bars are stored in closed containers above water at 100 F. Like ASTM C 227, 

readings were taken at 1 and 14 days. Hooton, R.D. (1986) had found that pyrex glass 

aggregates are not appropriate for this test because pyrex contains high amount of alkali 

and they maybe released during the test and contribute to the chemical reaction and 

therefore leading to higher expansion. Rogers, C.A. and Hooton, 1989, in their mortar bar 

test, measure a 0.3% expansion with pyrex glass aggregate, while less than 0.1% 

expansion was measured in the other containers. For the above two mortar tests to be 

successful, Swamy (1992) suggests the complete removal of wicks from the container 

and storage of the mortar samples in plastic bags. 
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The accelerated mortar bar test method (ASTM C1260) is very common and is a 

standard in the US and Canada. The procedure came originally from a method developed 

by Oberholster and Davies (1986). The test consists of casting mortar bars using 1:2.25 

parts of cement to sand with a water cement ratio of 0.47. The aggregate (whether it is 

course or fine) used in the test should be crushed to meet some grading requirement. The 

samples are kept in their molds for 24 hrs in the curing room at 100% RH. Then, the bars 

are removed from the molds and placed in a closed container in a water bath at 800C for 

another 24 hrs. After the first initial storage period, the bars were again removed from the 

water bath and an initial reading using a vertical comparator is taken. The bars are then 

fully submerged in 1N NaOH at 800C for 14-day period. Length measurements are taken 

during the 14 day storage period. Expansion limits are mentioned in the appendix of 

ASTM C 1260 as follows: less than 0.1% at 16 days for innocuous aggregates, 0.1-0.2% 

for slowly expansive aggregates and greater then 0.2% for potentially high expansive 

aggregates. This procedure has a couple of drawbacks: a) the test conditions are severe 

(1N NaOH at 800C) and b) the aggregate has to be crushed to meet certain gradation 

requirements and both previously mentioned factors make it difficult to interpret the 

results relative to the conditions that the concrete will be subjected to under field 

conditions. 
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The concrete prism test, described in ASTM C1293 is another popular procedure 

to evaluate the potential of an aggregate to deleterious expansion due to alkali-silica 

reaction. The test procedure consists of casting concrete prisms at a specific mix 

proportion. Following demolding, the prisms are then stored above water at 100 F and the 

length change of concrete prisms is measured at specific intervals. This method is seen as 

the best index for field performance but at the same time, the length of the procedure (12 

months) represents a major drawback. It was mentioned in the appendix of ASTM C1293 

that an average expansion equal to or greater than 0.04% at 1 year is a reasonable value to 

classify the deleterious reactive aggregate from those that are not reactive. 

The results obtained, whether they came from the mortar bar or the concrete prism 

test, may be problematic. Mortar bar incorporates high amount of cement, much higher 

then those used in concrete construction and consequently, the results obtained from the 

test can’t be applied to concrete (Swamy 1992). Although the use of high alkali levels in 

the concrete prism tests (1.25% by weight of cement) is unrealistic, there are other causes 

why researchers prefer this test over the mortar bar test (Swamy and Al-Asali 1988): a) 

alkali, not only comes from cement, but also from aggregate, mineral and chemical 

admixtures, water, de-icing salts and seawater (Stark et 1986) b) environmental 

conditions (relative humidity and temperature) have great power on the progress of 

alkali-silica reaction and its resulting expansion. And the concrete test is the test where 

all the above influences can be realistically modeled and reproduced (Swamy and Al-

Asali 1986). A summary of the American standards for Evaluating Alkali-Silica Reaction 

is presented in Table 2.2 (ASTM (2000a), ASTM (2000b), ASTM (2000c), ASTM (2000d), 

ASTM (2000e), ASTM (2000f), ASTM (2000g), ASTM (2000h), ASTM (2000i), ASTM 

(2000j), ASTM (2006)). 
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Table 2.2 Available Test Methods for Evaluating Alkali-Silica Reaction. 

 

Test 
Type Test Name Significance 

and use Test Procedure Test Duration Additional Comments 

ASTM C289 (2000d): 
Standard Test Method 
for Potential Alkali-
Silica Reactivity of 

Aggregates (Chemical 
Method) 

To assess the 
reactivity of 
Siliceous aggregate 
with Alkali in 
concrete 

o Aggregate should be 
sieved and crushed to pass 
a 300 um and retained on  
150 um sieve 

o Crushed agg soaked in a 
1N NaOH for 24 hrs. 

o Solution analyzed to 
determine alkali and 
dissolved silica 

24 hrs 

o Quick results 
o Not completely 

reliable 
o Severe test 
o During crushing, some 

reactive phases may be 
lost 

ASTM C294 (2000e): 
Standard Descriptive 

Nomenclature for 
Constituents of Concrete 

Aggregates 

To describe natural 
materials of which 
mineral aggregate 
are composed 

Visual Observation 

Short but 
depends on 
the examiner 
and its 
experience 

o The identification of 
rock and minerals 
should be made by 
qualified petrographer, 
geologist and 
mineralogist 

 

A
gg

re
ga

te
 

ASTM C 295 (2000f): 
Standard Guide for 

Petrographic 
Examination of 

Aggregates for Concrete 

o To recognize the 
reactive 
components in the 
rock 

o To determine the 
physical and 
chemical 
characteristics of 
the material 

o X-Ray diffraction (XRD) 
o Scanning electron 

microscopy (SEM) 
o Differential thermal 

Analysis (DTA) 
o Energy dispersive x-ray 

analysis (EDX) 

Short but 
depends on 
the examiner 
and its 
experience 

o Very useful to identify 
many reactive 
aggregates 

o Reliability depends on 
the quality of the 
petrographer. 

Other tests (1260 and 
1293) should be 
conducted to confirm the 
results 
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Table 2.2 (Cont’d). 

Test 
Type Test Name Significance 

and use Test Procedure Test Duration Additional Comments 

ASTM C227 (2000c): 
Standard Test Method 
for Potential Alkali-

Reactivity of Cement-
Aggregates 

Combinations 
(Mortar Bar Method) 

To provide 
information about the 
probability that a 
cement-aggregate 
combination is 
capable to produce 
deleterious expansion 
in concrete because of 
ASR 

Agg should be crushed to 
meet some grading 
requirements 
Mortar bars are stored in 
closed containers above 
water at 100 F 

Measurements 
are taken at 1 
and 14 days. 
1,2,3,4,6,9 and 
12 months are 
recommended 

o long test method 
 
o Expansion due to 

alkali-carbonate reaction 
is minimal compared to 
Alkali-silica reaction 

ASTM C856 (2000h): 
Standard Practice for 

Petrographic 
Examination of 

Hardened Concrete 

To describe the 
petrographic 
examination of 
concrete samples 
(from laboratory or 
field) and to identify 
the presence of 
reactive products in 
the specimens 

Visual and microscopic 
examinations 

Time depends 
on the sample 
preparation 
and 
microscopic 
examination. 

o Mandatory to relate 
aggregate reactivity to 
field performance. 

 
 
o Reliability depends on 

the petrographer 
qualifications 

C
em

en
t-A

gg
re

ga
te

 C
om

bi
na

tio
ns

 

ASTM C 441 (2000g) 
Effectiveness of Mineral 
Admixtures or GBFS in 
Preventing Excessive 

Expansion of Concrete 
due to Alkali-Silica 

Reaction 

To be used as a 
preliminary test to 
assess  the efficiency 
of mineral admixture 
or slag in reducing 
expansion because of 
ASR 

o Mortar bars made with 
a combination of 
cement, mineral 
admixtures and reactive 
aggregate (pyrex glass). 

o Mortar bars are stored 
in closed containers 
above water at 100 F 

 

Readings are 
taken at 1 and 
14 days. 
1,2,3,4,6,9 and 
12 months are 
recommended 

o High alkali cement. 
 
o Alkali maybe released 

from the Pyrex glass 
which is sensitive to test 
conditions. 
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Table 2.2 (Cont’d). 

Test 
Type Test Name Significance 

and use Test Procedure Test Duration Additional Comments 

ASTM C342 (2000i):  
Standard Test Method 
for Potential Volume 
Change of Cement-

Aggregate 
Combinations 

To find out the 
possibility of 
expansion of 
cement-aggregate 
combination 
subjected to changes 
of temp and water 
saturation 

o Mortar bars are stored in 
water at 23 C for 28 days. 

o The temp will be then 
raised to 55 C for 7 days 
followed by 24 hr at 23 C 
before taking reading. 

Any further reading will 
follow the above cycle 

52 weeks 

o Test used on 
aggregates coming from 
Kansas, Oklahoma, 
Iowa and Nebraska. 

 
o No limits for 

expansion have been 
developed  

ASTM C1260 
(2000b): Standard 

Test Method 
for Potential Alkali 

Reactivity of 
Aggregates (Mortar-

Bar Method) 
 

To give us a way to 
find the potential of 
the aggregate for 
experiencing ASR 
leading to 
deleterious 
expansion. 

o Aggregate are crushed to 
meet the grading 
requirements. 

 
o Mortar bars are soaked in 

1 N NaOH for 14 days. 

16 days 

 
o It is a considered a 

screening test 
o Very utile for slowly 

reacting aggregate. 
o Test conditions are 

very severe.  
o The fastest available 

test procedure 

C
em

en
t-A

gg
re

ga
te

 C
om

bi
na

tio
ns

 

ASTM C 1293 
(2000a):  Standard 

Test Method 
for Concrete 
Aggregate by 

Determination of 
Length Change of 
Concrete Due to 

Alkali-Silica 
Reaction. 

To assess the 
potential of an 
aggregate to 
deleterious 
expansion due to 
alkali-silica reaction 

o The length change of 
concrete prisms is 
measured. 

 
o Prisms are stored above 

water at 100 F. 
 

12 months 

o Considered the best 
index for field 
performance. 

 
o Main disadvantage is 

the test duration (12 
months). 
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Table 2.2 (Cont’d). 

Test 
Type Test Name Significance 

and use Test Procedure Test Duration Additional Comments 

C
em

en
t-A

gg
re

ga
te

 
C

om
bi

na
tio

ns
 

ASTM C1567 (2006) 
Potential alkali-silica 

reactivity of 
Combinations of 

cementitious materials 
and Aggregate 

(Accelerated mortar-
bar test) 

to assess the use of 
cementitious 
materials in 
controlling or 
reducing expansion 
due to ASR 

o Mortar bars at 80C 
soaked in alkaline solution 16 days Fast alternative to 1293 

 

G
el

 R
ec

og
ni

tio
n 

 
ASTM C856 (2000h): 

Annex A1 A 
Technique for 

Detecting Alkali 
Silica Gel Subject to 

Confirmation by 
Other Methods. 

 

To find alkali silica 
gel products coming 
from the reaction of 
silica with alkali in 
the cement 

o The surface of the 
specimens is treated with 
Uranyl-acetate solution. 

o The treated surfaces are 
subjected to ultraviolet 
light. 

o The ASR gel around the 
aggregate will glow bright 
greenish-yellow 

Quick 
Results 

o Ultraviolet light risky 
to the skin and eyes. 

o Uranyl-acetate needs 
special manipulation 
and disposition. 

o Test results not 
conclusive: should be 
confirmed by 
petrographic methods. 
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Kinetics Models 

Many researchers had focused over the years on the kinetics of alkali-silica reaction. 

Today, many models are available in the literature but each of those models has 

limitation in their scope and their applicability. The most current models are the ones 

developed by Sorrentino, Clement, and Golber 1992, Johnston, Stokes, and Surdahl 2000 

and Mukhopadhyay, Shon, and Zollinger 2006.  

The chemical method ASTM C289 “Standard Test Method for Potential Alkali-

Silica Reactivity of Aggregates” is very popular since it is fast, easy to conduct and 

requires small amount of material. It consists of measuring the amount of silica dissolved 

into 1 N NaOH at 80C for 24 hours. However, some researchers have mentioned that its 

results are in some cases unreliable (Bellew 1983) and the detection of slow/late reactive 

aggregate is difficult. Consequently, Sorrentino et al. in 1992 introduced the French 

kinetic chemical test. The procedure, almost similar to the chemical method, consists of 

measuring the dissolved silica for 96 hrs and therefore the time parameter is included in 

the chemical procedure. After conducting a huge number of tests, Sorrentino et al 

suggested a chart (Figure 2.14) displaying the different degree of reactivity. They also 

mentioned based on their test results that their new test procedure was able to detect 

aggregates that displayed a pessimum effect. 

To overcome some of the deficiencies run across using a % expansion for 

specifying reactive aggregates in ASTM C1260, Johnston, Stokes, and Surdahl 2000 

proposed a kinetic based method using the Kolmogorov-Avrami-Mehl-Johnson model. 

This procedure based on growth and nucleation where the power of time and the % 

expansion are related to each other exponentially as follows: 

                                            ( )0
0 0(1 ).(1 )

Mk t teα α α − −= + − −        (2.2) 

where: 0α  is the degree of reaction at time t0; k is the rate constant;  0t  is the time when 

growth and nucleation are dominant and M  is an exponential factor. The researchers 

found that by applying a least square fit to the logarithmic form of the kinetic model, two 

parameters were generated ln k and M. By plotting M  against ln k, two distinctive areas 

were noticed (see Figure 2.15). From their test data, they found that reactive aggregates 

are associated with ln k > -6 and non-reactive aggregates are associated with ln k < -6. In 

their conclusions, they mentioned that this new method was effective in determining the 
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amount of mineral admixtures necessary to mitigate ASR. The main disadvantage of this 

procedure is that the analysis was done using ASTM C1260 data which requires that the 

aggregate be crushed and therefore the surface area and the reactivity of the aggregate 

were altered and no longer represented real concrete. 
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Figure 2.14 Diagram of the Kinetic Test (Sorrentino, Clement, and Golber 1992). 
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Figure 2.15 Avrami Exponent Versus Rate Constant  

(Johnston, Stokes, and Surdahl 2000). 
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In 2006, Mukhopadhyay, Shon, and Zollinger introduced the concept of activation 

energy (Ea) for ASR. Ea was defined as the energy required to initiate ASR. To determine 

the (Ea) for aggregate, the following steps were followed. They proposed an empirical 

model based on the maturity concept (Carino and Lew 2001): 

T 0
a

T 0

K (t t )(t)
1 K (t t )

−
ε = ε

+ −
     (2.3) 

where: ( )tε = ASR expansion at time t; aε =ASR ultimate expansion of the aggregate; 

TK = rate constant; t = actual reactive age at temperature t; and 0t = theoretical initial 

reaction time.  

The rate constant and the ultimate expansion at three different temperatures from 

the above model were determined using linear regression (Figure 2.16). The Ea was then 

calculated from the slope of the linear regression of Ln (KT) versus 1/T (Figure 2.17) and 

therefore they were able to rank different types of aggregates based on their reactivity. 

Although this concept of ASR Ea was creative and innovative, the model has two major 

drawbacks: a) the fit of the model to the expansion data is poor and b) in some cases the 

intercept for some types of aggregate turns out to be negative resulting in a negative 

ultimate expansion. 
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Figure 2.16 Reciprocal of Expansion Versus Reciprocal of Age (Modified from 

Mukhopadhyay, Shon, and Zollinger 2006). 
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Figure 2.17 Plot for Determining the Value of Activation Energy  

(Mukhopadhyay, Shon, and Zollinger 2006). 
 
 

Chemical Shrinkage 

During chemical reaction between the participating components, there is a decrease in the 

volume of reactants and an increase in the volume of the products and consequently, the 

total volume of the reacting system before and after the chemical reaction is not the same. 

If the net volume difference is negative, this would be attributed to the occurrence of 

chemical shrinkage in the system. It should be mentioned that the idea of chemical 

shrinkage is not new as it was noticed during cement hydration in concrete as hydration 

products occupy less volume than the initial starting materials like water and cement 

(Geiker 1983). Powers in 1935, released chemical shrinkage data identifying the 

importance of chemical composition on cement hydration. Currently, there is no ASTM 

standard to measure chemical shrinkage but the volume change can be measured in two 

different means, either directly as an increase or decrease in the level of a liquid in a 

capillary tube or indirectly as a decrease in the buoyancy of a specimen soaked in oil 

(Geiker and Knudsen 1985). 

In the 1985’s, Geiker and Knudsen at the Technical University of Denmark 

extended the concept of chemical shrinkage that takes place in cement hydration to that 

which occurs in alkali-silica reaction for aggregate soaked in an alkaline solution in a 

closed system. They developed a commercial device called the Kanemeter to measure 
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chemical shrinkage (Knudsen 1986). The device is composed of a glass flask and a 

pipette closed by a piston connected to a data acquisition system (Figure 2.18). The test 

consists of placing reactive sand particles in a 10N NaOH solution. The flasks are then 

placed in a thermostatic bath at 500C. As ASR occurs in the pipette, they discovered that 

the height of oil in the piston falls resulting in the measured chemical shrinkage. The 

higher is the value, the more reactive is the aggregate. Based on this finding, they 

developed reaction curves for different sands widely used in Denmark. 

To provide an explanation for the apparent contradiction between the measured 

ASR contraction in their new test procedure and the well know ASR expansion in 

concrete, they stated that their measured chemical shrinkage is very similar to the cement 

hydration system where the total volume (cement + water) decreases whereas there is an 

increase in the volume of solids. On the other hand, in the alkali-silica reaction occurring 

in concrete, water coming from outside the system allows the gel to swell and to occupy a 

volume greater than the amount of water consumed in the initial reaction (Knudsen 1986). 

Although their proposed procedure is innovative, the two major difficulties while 

conducting this experiment lies in 1) removing completely the air void in their system as 

they used only vibrating table instead of using it with a closed vacuum system and 2) 

achieving complete water saturated samples. 



43 
 

 

 
Figure 2.18 Konometer to Measure the Chemical Shrinkage of Danish Sand 

(Geiker and Knudsen 1985). 
 
 
Mitigation of Alkali-Silica Reaction 

As mentioned earlier in this chapter, four prerequisites are needed for the alkali-silica 

reaction to proceed: a) reactive silica b) high concentration of alkali, c) water and d) the 

presence of calcium hydroxide. Any deficiency in any of the four components may lead 

to the reduction or elimination of the expected expansion. Currently, there are many ways 

to mitigate ASR. The most common ones are: 

a) Restricting the movement of water molecules and alkali ions. The amount of water 

molecules and ions can be reduced by decreasing the water cement ratio leading to a 

lower porosity and consequently, the movement of ions is much more restricted 

(Gjorv 1983). 
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b) Removing the calcium hydroxide from the pore solution. This can be obtained by 

using a slag portland cement or a cement-pozzolanic cement mixture. If the amount of 

these mineral admixtures is high enough to consume the calcium hydroxide in the 

concrete structure, expansion will be prevented, even if a high alkali concentration 

comes into contact with the structure (Chatterji, et al. 1986). 

c) Using air-entrained admixtures: the addition of air entrained admixture will create air 

bubbles into the concrete matrix and those bubbles may stick on the surface of the 

rock. Therefore, a partial isolation will be achieved between the aggregate and the 

matrix and the overall expansion will be reduced. It was shown that the air entrained 

performed much better and is more effective in fine aggregate than coarse rock 

mixtures (Jensen et al. 1984). 

d) Using nonreactive aggregates. One of the best methods to mitigate ASR is to use non-

reactive aggregate. However, this is not possible most of the time because non-

reactive aggregate are rare to find and the vast majority of aggregates contains some 

form of reactive silica. Even if nonreactive aggregates are found, they should be 

tested and have displayed good field performance before their use in concrete 

mixtures (Folliard et al, 2006). 

e) Using Supplementary Cementitious Materials (SCM). The use of SCM (fly ash, slag 

and silica fume) is very common not only to reduce the deleterious effect of ASR, but 

also to improve resistance of concrete structures to other durability problems such as 

freezing and thawing, corrosion and sulfate attack.  

Among the mineral admixtures mentioned above, fly ash is the most 

commonly used. Two different types of fly ash are available: Class C and Class F 

where the amount of lime, silica and alkali vary among them. Shehata and Thomas in 

2000 mentioned that Class F Fly ashes (low lime) are more effective in controlling 

ASR than the higher lime fly-ashes (Class C) because low lime fly ash has a greater 

amount of silica and therefore more CSH (with low calcium to silicon ratio) are 

generated during the hydration process (Glasser 1992). Diamond (1981) added that 

low calcium fly ash (Class F) are more effective in controlling ASR because the alkali 

of ashes will not be available in the pore water unlike high calcium ashes where alkali 

would be available. 
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Slag is also used to extenuate the effects of ASR, but its dosage is relatively 

high (35-50%) (Folliard et al, 2006). The exact amount needed depends on the total 

alkali content of concrete and on the reactivity of aggregate. Slag is rich in silica and 

its effect leads to a reduction of calcium hydroxide in the concrete matrix and 

enhance the alkali-binding capacity of concrete (Odler 2000). 

Silica fume can also be used to minimize the risk of ASR. The total amount of 

alkali and the reactivity of aggregate are two major factors that decide the efficiency 

of silica fume. Thomas and Bleszynski in 2001 proposed an upper and lower limit on 

the percentage of silica fume added to the concrete mixture: 

• Lower limit: % SF = 2 x (alkali expressed as kg of Na2Oe per m3 of concrete).  

• Upper limit: % SF = 3 x (alkali expressed as kg of Na2Oe per m3 of concrete).  

Attention should me made to the maximum amount of silica fume added to the 

concrete mixtures, as too much silica fume raises workability and shrinkage concerns 

during field applications (i.e. high water demand may be difficult to deal with).  

To reduce the amount of silica fume, the use of ternary blends, where silica 

fume is used in conjunction with fly ash and/or slag, was introduced and has gained 

popularity as of late. The advantage of these types of blend is early strength 

development, improved durability, better workability and economic (Folliard, et al. 

2006). Bleszynski, Thomas, and Hooton 2000 has found that adding slag (20 to 35%) 

combined with 4 to 6 % silica fume is very effective to mitigate ASR with a highly 

reactive aggregate. 

This literature review provides an overview about ASR, its chemical reaction, 

its major components, the main factors affecting it, the latest test procedures and 

methods developed to identify it and the mitigation techniques to reduce or eliminate 

its deleterious effect. Although some of the new methods and procedures showed 

some improvement over current standard test methods (ASTM C1260 and ASTM 

C1293), their application to field condition is very limited. It is obvious that there is a 

need to study the effect of different combinations of concrete materials (w/cm, SCM, 

etc) that affect ASR. Therefore, it is imperative to develop a protocol that captures the 

effect of different concrete materials which will lead ultimately to the development of 

concrete mixtures highly resistant to ASR. 
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CHAPTER III 

 

MATERIALS, TEST PROGRAM AND INSTRUMENTATION 

 

In a combined effort between Texas A&M University (TAMU) and Innovative Pavement 

Research Foundation (IPRF), TAMU researchers began a process that will potentially lead 

to the development of concrete mixtures highly resistant to ASR, therefore enhancing the 

concrete durability of pavement structures.  

To achieve this objective, different series of expansions measurements were 

conducted on different types of aggregates widely used in concrete mixtures. These 

aggregates originate form different locations in the United States and Canada, representing 

different mineralogies and reactivity. In addition, concrete samples with different water 

cement ratios and supplementary cementitious materials using selective types of 

aggregates were tested using the dilatometer to measure expansions. By casting and 

testing concrete, as opposed to simply testing aggregates, realistic field and environmental 

effects are inherently considered when evaluating the resistance of different concrete 

mixture to ASR. 

This chapter describes the materials, the test program, the test procedure and the 

different types of equipment used to carry out the above mentioned objective. The tests 

methods are classified into three categories: aggregates tests, concrete tests and other tests 

related to aggregates like pH measurements and chemical analysis of the soak solutions. 

 
Materials 

The material used in this study are a) four reactive aggregates (New Mexico Rhyolite, 

Platte River Gravel, Spratt Limestone, Sudbury Gravel), reagent grade sodium hydroxide 

(NaOH), low alkali type I/II cement and class F fly ash. This study also involved the use 

of hydrated lime (calcium hydroxide) to saturate alkali solutions with calcium. 

 

Aggregates 

In this research, four reactive aggregates having a record of their reactivity with 

respect to ASR were selected. The aggregates used in the study are listed below: 
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(a) New Mexico Rhyolite (NMR). This reactive aggregate was brought from New 

Mexico from Las Placitas Gravel Pit from the Bernalillo County in New Mexico. 

The major reactive component is Rhyolite (acid volcanic) and it is considered a 

highly reactive aggregate (Barringer 2000) 

(b) Platte River Gravel (PRG). This aggregate was brought from Nebraska. The main 

reactive constituent in this aggregate is strained quartz (Mukhopadhyay, Shon, and 

Zollinger 2006). 

(c) Spratt Limestone (SL). This aggregate came from the Spratt quarry in Ontario, 

Canada. It is used in many ASR studies. Like all sedimentary rocks, Spratt 

limestone is composed mainly of calcite with small amount of dolomite. 3 to 4% of 

microscopic chalcedony and black chert, found in the matrix of the aggregate is the 

reactive constituent of the rocks (Rogers 1999). 

(d) Sudbury Gravel (SuG). This aggregate is obtained from the Sudbury area of 

Ontario, Canada. It is considered a slow/late reactive aggregate. The major reactive 

aggregates in the gravel consist mainly of quartz arenites, argillites, quartz wackes 

and feldspathic quartzites (Swamy 1992). The major reactive component is 

microcrystalline quartz (Gillott, Duncan, and Swenson 1973). 

 

To check if the aggregates selected meets ASTM C33 Standard Specification for 

Concrete Aggregates, a sieve analysis was conducted on the four aggregates. The results 

are presented in Figure 3.1. As shown from the gradation curves, NMR, SL and SG falls 

within the limits specified by ASTM C33 (2000j), while the PRG fall out of the 

specifications indicating the gravel is slightly coarser than sand.  

An understanding of the material properties is an important parameter in order to 

measure ASR potential of aggregate and concrete. Therefore, all related properties 

(Specific Gravity, Absorption Capacity, Unit weight) are measured and summarized. The 

physical properties of aggregates tested are tabulated in Table 3.1. 
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Figure 3.1 Gradation Curves of Aggregates. 

 

Table 3.1 Properties of Aggregates. 

Aggregate 

Property 

New Mexico 

Rhyolite 

Platte River 

Gravel 

Sudbury 

Gravel 

Spratt 

Limestone 

Water    

absorption (%) 
1.06 0.72 0.50 0.64 

Bulk specific 

gravity (OD) 
2.54 2.47 2.62 2.67 

Bulk specific 

gravity (SSD) 
2.56 2.48 2.63 2.68 

Dry Rodded Unit 

Weight, lb/ft3 
99.45 129.4 99.09 98.54 
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Cement 

Low alkali cement (Type I/II) with a Na2O equivalent of 0.54% (Na2Oeq) and an 

autoclave expansion of -0.01% was used for this study. It was obtained from Texas 

Industries (TXI), TX. The source of the cement was from the Midlothian cement Plant in 

Midlothian, TX. The chemical and physical properties of cement are provided in Tables 

3.2 and 3.3 respectively. As shown from both tables, the cement meets the minimum 

requirements of ASTM C150 specifications. 

 

Table 3.2 Chemical Properties of Cement. 

Chemical 
Requirement 

Spec, Limit 
(ASTM C150) 

Test 
Result 

Al2O3 6 max 4.3 
Fe2O3 6 max 3.9 
MgO 6 max 1.4 
SO3 3 max 2.7 
Loss on Ignition, (%) 3 max 1 
Insoluble Residue, (%) 0.75 max 0.37 
C3A, (%) 8 max 5 
CO2, (%)  0 
Limestone, (%) 5 max 0 
CaCO3 in Limestone, (%) 70 min  
C3S + 4.75(C3A) 100 max 92.5 
Total Alkalies (Na2Oe), (%) 0.60 max 0.54 

 

Table 3.3 Physical Properties of Cement. 

Physical 
Requirement 

Spec, Limit 
(ASTM C150) 

Test  
Result 

Air Content, Volume, (%) 12 max 8 
Average Fineness (Blaine), 280 min 377 
Autoclave Expansion, (%) 0.80 max -0.01 
Vicat Initial Set 45 min 116 
Compressive Strength (psi) 3 max 1 
3 days 1740 min 3630 
7 days 2760 max 4450 
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Fly Ash 

The fly ash used in this study was Class F fly ash, as designated by ASTM-C-618-

99.  The lime (CaO) content was noted to be 10.39%, indicating very good cementitious 

potential.  The fly ash was obtained from Headwaters Resources, Jewett, Texas. The 

chemical and physical analysis of the fly ash is shown in Tables 3.4 and 3.5 respectively 

as provided by the manufacturer.  

 

Table 3.4 Chemical Analysis of Class F Fly Ash. 

CHEMICAL TESTS RESULTS 
ASTM C 618 

Class F Fly Ash 

Silicon Dioxide (SiO2), % 54.12  
Aluminum Oxide (Al2O3), % 18.90  
Iron Oxide (Fe2O3), % 8.36  
Sum of SiO2, Al2O3, Fe2O3, % 81.38 70 Min 
Calcium Oxide (CaO), % 10.39  
Magnesium Oxide (MgO), % 2.49  
Sulfur Trioxide (SO3), % 0.5 5.0 Max 
Moisture Content 0.14 2.0 Max 
Loss of Ignition 0.13 3.0 Max 
Available Alkalies (as Na2O), % 0.34  

 

Table 3.5 Physical Analysis of Fly Ash. 

PHYSICAL TESTS RESULTS 
ASTM C 618 

Class F Fly Ash 

Fineness (Amount retained on #325 sieve %) 11.21 34 % 
Water Requirement, % Control 95.00 105 % Max 

Specific Gravity 2.66  
Autoclave Expansion, % 0.00 0.8 % Max 

Strength Activity Index with Portland Cement,  

7 days  

81% 

88% 

75% Min 

75% Min 
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Sodium Hydroxide 

The sodium hydroxide used in this study was obtained from Mallinckrodt Baker, Inc., 

Phillipburg, NJ. It is a white, high purity pellet with 99 to 100 weight percent NaOH. An 

analysis of the sodium hydroxide is presented in Table 3.6 and was provided by 

Mallinckrodt Baker, Inc. 

 

Table 3.6 Physical and Chemical Properties of Sodium Hydroxide, Pellet. 

Property Description 

Appearance White, deliquescent pellets or flakes 
Odor Odorless 

Solubility  111 g/100 g of water 
Specific Gravity 2.13 

pH 13 - 14 (0.5% soln.) 
% Volatiles by volume @ 210C (70F) 0 

Boiling Point 1390C (2534F) 
Melting Point 318C (604F) 

Vapor Density (Air=1) > 1.0 
Vapor Pressure (mm Hg) Negligible 

 

 

Experimental Design and Laboratory Testing 

As described previously, to initiate ASR, some conditions (types of reactive aggregate, 

alkalinity, temperature and exposure conditions) must be available. Since the ultimate 

objective is to develop concrete mixtures highly resistant to ASR, it is extremely 

important to understand how the combinations of the above conditions affect and control 

ASR expansion. Consequently, the factors and the levels in the experimental program for 

both aggregate and concrete were chosen to take into account the effect of those on ASR. 

The design factors and levels for aggregates are presented in Table 3.7. For aggregates, 36 

test runs were made according to the factorial design, as listed in Table 3.8. The design 

factors for concrete are shown in Table 3.9. For concrete, 14 test runs were made 

according to the factorial design, as listed in Table 3.10. 
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Table 3.7 Experimental Design Factors for Aggregates. 

Factor No. of levels  

Aggregate type 4 

New Mexico Rhyolite 
Platt River Gravel 
Spratt Limestone 
Sudbury Gravel 

Temperature 3 60, 70 and 800C 

Normality (NaOH) 3 0.25, 0.5, and 1N 

Calcium Hydroxide Ca(OH)2 2 
NaOH with and without 

Ca(OH)2 

 
 
Table 3.8 Test Runs of Experimental Design for Aggregates. 
 

 Tests Aggregate type  Temperature  Normality  Ca(OH)2 
1.  60 
2.  70 
3.  80 

1 
 

4.  60 
5.  70 
6.  80 

0.5 

7.  60 
8.  70 
9.  

NMR 

80 
0.25 

With 

10-11. 60 
12-13.  70 
14-15.  80 

1 

16-17.  60 
18-19.  70 
20-21.  

PRG 

80 
0.5 

With and 
Without 

22-23.  60 
24-25.  70 
26-27.  80 

1 

28-29.  60 
30-31.  70 
32-33.  

PRG 

80 
0.5 

With and 
Without 

34. 60 
35. 70 
36. 

SL 
80 

1 Without 

All tests (except NMR) in Table 3.8 were repeated twice to establish intra-laboratory 
comparison 
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Table 3.9 Experimental Design Factors for Concrete. 

Factor No. 
of levels  

Aggregate type 2 New Mexico Rhyolite 
Platt River Gravel 

Water cement ratio (w/cm) 1 0.45 

Alkalinity 3 0.25, 0.5, and 1N NaOH + CH 

Fly Ash (% by weight           
replacement of cement 3 0, 25 and 50 % 

Fixed Parameters Cement factor, coarse aggregate factor, a 
non-reactive sand from lattimore materials 

 
 
Table 3.10 Test Runs of Experimental Design for Concrete. 
 

Tests Aggregate 
type (w/cm) Fly Ash 

(%) Alkalinity 

1.  0.25 N NaOH + CH 
2.  0.5 N NaOH + CH 
3.  

0.45 0 

1 N NaOH + CH 
4.  0.25 N NaOH + CH 
5.  0.5 N NaOH + CH 
6.  

NMR 

0.45 25 

1 N NaOH + CH 
7.  0.5 N NaOH + CH 
8.  

0.45 25 
1 N NaOH + CH 

9.  0.5 N NaOH + CH 
10.  

PRG 
0.45 50 

1 N NaOH + CH 
All combinations for mortar PRG tests were repeated twice to verify repeatability 
 

 

Equipment Description 

This section provides a detailed description of the apparatus and accessories used in the 

test program to measure ASR expansion of aggregate and concrete.  
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The device used in this study to measure ASR expansion is called “the 

dilatometer”. It was originally developed at Texas Transportation Institute and has shown 

great potential to be a successful and a rapid method for assessing aggregate reactivity. In 

fact, this procedure was included as an appendix in FAA’s recently published Advisory 

Circular “Handbook for Identification of Alkali Silica Reactivity in Airfield Pavement” by 

Sarkar et al. (2004).  

The modified dilatometer (Figure 3.2) used in this study consists of a pot, a 

Teflon-coated brass, a hollow tower and a steel float (Figure 3.3). The pot is made of 

Stainless steel. The type of brass used for the lid is the Naval brass; similar to admiralty 

brass; is a 40% zinc brass and 1% tin. To ensure that air bubbles can be easily removed, 

the inner surface of the lid will be designed at a specific angle upwards. 

The tower was made from Stainless steel S31600. At the top of the tower, a casing 

is installed to ensure proper alignment of the linear variable differential transducer 

(LVDT) and the float. The LVDT used is the SCHAEVITZ Model 1000 HCA, which has 

a maximum range of 2 inch. The LVDT is then pushed into an O-ring located at the 

bottom of the casing and then secured with six set screws that come though the side of the 

cylinder. A thermocouple is inserted from the side of the dilatometer to measure the 

temperature of the solution. The TJ36-CPSS-18G-6 T/C Assembly w/trans joint is used 

and it is tied to the dilatometer using the SSLK -18-18 1/8*1/8 Compression Fitting. A 

detailed drawing of the assembled parts of the dilatometer is shown in Figure 3.4. 

As the chemical reaction between the aggregate and the NaOH solution is in 

progress, ASR gel is formed. This gel absorbs water leading to an increase in total volume. 

As the stainless steel rod moves inside the LVDT, electrical signals are generated. 

Therefore the physical phenomenon (i.e. movement of the rod) is converted into a 

measurable signal. 
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Figure 3.2 Dilatometer Picture. 

 

 
Figure 3.3 Stainless Steel Float. 
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Figure 3.4 Cross-sectional Area of the Dilatometer. 
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The signals generated are so small in magnitude that the Analog-to-Digital. 

converter (ADC) of SCXI-1600, USB Data Acquisition and Control Module can’t process 

them. Therefore, signal conditioners are needed to: 

a) Amplify the current. 

b) Filter and/or remove the noise of a signal. 

c) Make the sensor output available for reading by computer boards.  

The signal conditioners for the thermocouple and LVDT used are the SCXI-1102 32 

Channel Thermocouple Amplifier and the SCXI-1540 8-Channel LVDT Input Module 

respectively. All signal conditioner and the DAQ card are hold together in the SCXI-1000 

4-Slot Chassis. The use of Chassis is to provide power to the signal conditioner and to 

hold the terminal block, the DAQ card and the SCXI’s tight together (Figure 3.5). All 

LVDT and thermocouples signals are then transferred though a USB cable to a 

workstation where a program in LabVIEW was developed to display, analyze and store 

the data generated. 

 

 

 
 

Figure 3.5 Test Setup. 
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Test Procedure to Measure ASR Expansion for Aggregate and Concrete 

This section covers the preparation of the test solution at a different alkalinity, the testing 

procedure of aggregate and concrete samples in the dilatometer, the calibration procedure 

and the calculation of ASR expansion. 

 

Preparation of Alkalinity Solutions 

The 1 N, 0.5N and 0.25N NaOH solutions mentioned in the experimental designs are 

prepared by diluting 40, 20 and 10g of sodium hydroxide crystals into 0.9 liter of distilled 

water. Then water is added to raise the total volume of solution to 1 liter. To achieve 

calcium hydroxide saturated solutions, 1 gram of Ca(OH)2 crystals is added to the above 

alkalinity solutions. To achieve homogeneity, all prepared solutions are stirred thoroughly 

on a magnetic stirrer for 1 minute. 

 

Aggregate Preparation 

It is known that the reactivity of aggregate decreases when the size of rock increases 

(Swamy 1992). Some test procedures like the ASTM C1260 require the aggregate to be 

crushed to meet certain gradation requirements, therefore changing the total surface area 

and therefore the reactivity of the aggregate is affected and may not represent anymore 

their true reactivity under field conditions. To solve the problem, the four types of 

aggregates in this study are tested uncrushed in the dilatometer and the amount retained on 

each sieve was kept constant for all types. This will allow a comparison of the activation 

energy of different aggregate and to rank them based on their reactivity. The amount of 

aggregate in the dilatometer was selected to be 80% by volume of the stainless steel pot. 

The sample preparation of aggregates is as follows: 

a) The weight of the oven dried aggregate is measured and then placed in the 

dilatometer. 

b) The aggregate is soaked for 24 hr into an alkaline solution at room temperature.  

c) The dilatometer is subjected to 3 hrs vacuuming the following day to remove 

entrapped air (Figure 3.6).  

d) The dilatometer is then placed in a water bath to raise the temperature to the 

target temperature.  
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e) A second round of vacuuming will be applied for 1 hr to remove any remaining 

or dissolved air bubbles into the solution.  

f) The stainless steel float is weighted and then inserted into the tower and the 

casing is securely placed at the top of the tower using set of screws that come 

through the side of the cylinder.  

g) The free movement is assured by rotating the LVDT and by shaking the whole 

system in a smoothly manner.  

h) The dilatometer is then placed in the oven (Figure 3.7). It takes around 4-5 hrs 

for the alkalinity solution to be equilibrated with the temperature of the oven. 

i) In Measurement and Automation Explorer (MAX); the driver software that 

recognize the DAQ card; the “rate” (Hz), the “Samples to Read” and the 

“Acquisition Mode” are selected based on the user needs. 

j) In LabVIEW, the “Samples to Read” and the “Timeout” are selected to match 

the setting inputted in MAX. 

k) LVDT readings after the stabilizing period represent the ASR LVDT movement. 

 

A summary of the above steps is presented in Table 3.11. 

 

Table 3.11 Sample Preparation of Aggregates. 

Step Time Temp. Purpose/ process 

Aggregate Saturation 24 hrs. Room Saturation 

Vacuuming (Agg. + sol.) 3 hrs. Room 

Preheating dilatometer 2 hrs Room to Target 

Vacuuming (Agg. + sol.) 1 hr. Target 

Remove entrapped air 

Dilatometer stabilization 5 hrs. Target Set LVDT 

ASR Measurement 75-100 hrs Target Measure  ASR expansion 

* For concrete, sample preparation begins from step 2. 
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Figure 3.6 Dilatometer under Vibration. 

 

 

 
Figure 3.7 Dilatometer Placed in the Oven. 
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Concrete Preparation 

Fourteen concrete samples were cast according to the experimental design (Table 3.9): 6 

specimens using New Mexico Rhyolite (NMR) and 8 specimens using Platte River Gravel 

(PRG). Two different types of molds are used: one for each type of aggregate. 

For concrete samples using the NMR aggregate, a special mold was designed. The 

cylindrical specimen consists of a 4 in diameter and 4.5 in length. To accelerate the ASR 

reaction, a stainless steel insert and a plastic pad with one inch diameter hole were 

constructed to increase the exposure area of concrete specimens to alkaline solutions. The 

insert and the pad are placed into the plastic container and concrete samples were cast 

based on the mixture design provided in Table 3.10. Three to four hours following casting, 

the inserts are removed and the concrete samples are covered by plastic sheets to reduce 

evaporation overnight. The following day, the concrete specimens are extracted by 

breaking the plastic mold from the sides and placed in a water bath at 230C saturated with 

calcium hydroxide to prevent leaching. The molds, the pad, the inset and the procedure of 

casting and de-molding the concrete specimens are shown in Figure 3.8. After 14 days of 

curing, concrete samples were taken out of the water bath, any excess water was dried off 

and the weight of the concrete specimens is recorded in order to calculate the specific 

gravity and the initial volume of concrete samples. The concrete sample preparation in the 

dilatometer is exactly the same as the aggregate sample preparation (Table 3.11). The 

specimens were tested in the dilatometer for 7-10 days. 

For concrete samples using the PRG aggregate, ASTM C1260 molds were used to 

cast the specimens. 8 mortar mixtures were cast using the paddle, mixing bowl and mixer. 

The mortar bars (1x1x11.25”) were prepared according to the experimental design. After 

casting, the ASTM C1260 molds were transferred to the 100% humidity chamber (Figure 

3.9). After 24 hours, specimens were demolded and fully immersed in a lime saturated 

water bath. After 14 days of curing, the mortars bars were retrieved from the bath and 

tested in the dilatometer for 4-5 days following the procedure outlined in Table 3.11.  
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Mold, Pad and Insert                             Insert and pad are assembled

All parts are assembled                                   Casting of the molds

Demolding of concrete samples                Concrete samples after demolding

 

 
Figure 3.8 Steps of Casting NMR Concrete Samples. 

 

 

 

 



 

 

63

 

Mortar mixer                                       ASTM 1260 molds + bars

ASTM 1260 mold in the Curing Room                     ASTM 1260 Bars  
Figure 3.9 Steps of Casting for Platte River Gravel Concrete Samples. 

 

Determination of ASR Expansion 

This section covers the calibration procedure and the calculation of ASR expansion 

followed for aggregate and concrete specimens. Additionally, this section covers the 

additional test conducted on the aggregate soak solutions. 

 

Calibration Procedure 

Since the dilatometer is a very sensitive test procedure, it is imperative to apply a 

calibration curve for both aggregate and concrete samples to ensure accurate measurement 

of the expected expansion. The steps below were followed:   

a) For each combination in the experimental design for aggregate, two dilatometer 

tests were conducted: the first is with aggregate soaked at a specific alkaline 

solution and the second with aggregate soaked in water at the same temperature. 
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b) For concrete tests, two dilatometer tests were conducted: the first contained a 

concrete sample soaked at a specific alkaline solution and the second concrete 

specimen was soaked in saturated calcium hydroxide solution at the same 

temperature. 

c) The data were recorded and monitored for at least 4-5 day. 

d) Once the test was stopped, the linear movement (inch) versus time (hours) was 

plotted for the above mentioned tests. 

e) A reference point was chosen when the dilatometer temperature reached the target 

temperature.  

f) All future LVDT readings were subtracted from the reference point reading. The 

above analysis was conducted on all aggregate and concrete solution test results.  

g) The expansion was determined by calculating the difference in the magnitude 

between the two movements (Figure 3.10).  
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Figure 3.10 Schematic Drawing of the Calibration Procedure. 
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Calculation of ASR Expansion 

The volume change of aggregate because of ASR expansion is an important parameter of 

internal cracking in concrete structures. The ASR expansion was calculated as follows 

(Figure 3.11). 

(%) 100ASR
n

aggregate

VE
V
Δ

= ×  

where: 

aggregate

ASR

(%)  Percent Expansion at n hours
V  Initial Volume of Aggregate

V  Volume change of Aggregate at n hours

nE =

=

Δ =

 

 

2 1ASRV h hΔ = −

1 0ThermalV h hΔ = −

2h

1h

0h

1.25 inchd =
0

Room 
Temperature (T )

1

Target
Temperature (T )

2

Target
Temperature (T )

 
 

Figure 3.11 ASR Expansion. 

 

pH Measurements 

As mentioned in Chapter II, to initiate ASR, a high pH environment is necessary. The 

selection in the experimental program of 1, 0.5 and 0.25 N NaOH provides a highly 
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alkaline environment (pH between 13 and 14). To check if any drastic change in hydroxyl 

ions occurs from the interaction of alkaline solution and the aggregate and concrete 

samples, it is vital to measure the pH of solution before and after conducting the 

dilatometer test to see if there is any correlation between the expected expansion observed 

during the test and pH. 

The pH of all soaked solutions was determined using a Fisher Scientific Accumet 

Excel XL25 pH meter, calibrated to buffer solutions 12 and 14 levels of pH. pH 14 was 

prepared by diluting 40 gm of NaOH into 1 Liter of distilled water and pH 12 buffer 

solutions was prepared by taking 1 mL of the above solution using a micropipette and then 

diluted it 100 times in a volumetric flask. 
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CHAPTER IV 

 

DEVELOPMENT OF A METHODOLOGY TO MITIGATE ASR 

 

To initiate ASR, certain conditions need to be met: nature and amount of reactive silica, 

sufficient alkali existent in the pore solution and sufficient moisture. ASR damage is 

directly linked to ultimate expansion of concrete. The expansion of concrete is a function 

of concrete material properties (i.e. pH of pore solution, aggregate reactivity, amount of 

coarse and fine aggregate, water cement ratio, amount and type of supplementary 

cementitious materials, types of admixtures, etc). To formulate concrete mixtures highly 

resistant to ASR, the complex interactions of the above concrete properties need to be 

evaluated thoroughly. Consequently, a methodology to mitigate ASR was developed and 

proposed in this chapter. 

This study will lead to the development of a reaction signature for combined 

concrete materials using dilatometer test. And this objective is accomplished though four 

main steps: 

• Step 1: Developing a model to determine ASR main parameters. 

• Step 2: Determination of the main parameters of the ASR model using system 

       identification method. 

• Step 3: Predicting potential ASR aggregate reactivity in terms of their activation 

       energy. 

• Step 4: Determination of alkaline reactive signature. 

 

Developing a Model to Determine ASR Expansion 

Any mathematical structure of any phenomena can take any of the following forms: non-

parametric models, differential equations, transfer functions, exponential functions, linear 

or nonlinear functions (Unbehauen 1982). To have an accurate and an optimized form of 

the proposed model, all major properties and characteristics of the phenomena (i.e. ASR) 

are identified and taken into account.   

An initial attempt to include the main parameters that affect ASR into a single 

model was made by Mukhopadhyay, Shon, and Zollinger 2006. In their paper, they 
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proposed a model (described in details in Chapter II) based on a maturity concept to 

predict the ultimate expansion of aggregate. For some types of aggregates, the ultimate 

expansion turned out to be negative because they used linear regression to fit non-linear 

expansion data from the dilatometer. Consequently, their model has very limited 

practicality. 

The ultimate expansion of aggregates, the theoretical initial time of ASR 

expansion, the rate constant (Beta) are all important parameters and have to be 

determined. Therefore the following model is used to fit the measured expansion data 

from the dilatometer (Figure 4.1). 

0
( )

0

1 1 . t te
βρ

ε ε
−=                      (4.1) 

0

0

0

where:
ASR Ultimate Expansion
 Rate Constant
 Initial time of ASR Expansion (hr)
 Time corresponding to an expansion ( / )

t
e

ε
β

ρ ε

=

=
=

=

 

ε

0( )t t−

0ε

0t

iε

0( )it t−

 
Figure 4.1 Proposed ASR Model to Fit the Expansion Data History of the Dilatometer. 

 
 

The parameters of the proposed model are determined using a mathematical 

procedure called System Identification (SID) method. The proposed kinetic model has 
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two major advantages over other models mentioned in the literature. The current kinetic 

model has two major advantages over other models mentioned in the literature: 

1. The model fit of the expansion data obtained by the dilatometer is of high quality. 

2. The parameter β, defined in the model as the “ASR rate constant” remains constant 

over the full range of collected data, asserting a basic law in chemistry that the rate of 

a chemical reaction is constant (β in this case). 

 
Revealing the threshold level of expansion where cracking will be initiated is of 

paramount importance. This can be achieved by taking the double natural logarithm of 

equation (4.1). Therefore, the above kinetic performance model is transformed into the 

following linear form: 

0
0

ε ( )
ε

Ln Ln Ln Ln t tβ α β
⎡ ⎤⎛ ⎞
− = − −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

     (4.2) 

 

Figure 4.2 displays the linear relationship between ( )0ε/εLn Ln⎡ ⎤−⎣ ⎦  and 0( )Ln t t− . 

Preliminary test results indicate that time expansion data falls on the linear regression line. 

Any expansion data that shows signs of double hump or major deviation in the slope (β) 

will be attributed to the initiation of microcracks in the concrete. This justifies only 

modeling the first hump since this is the behavior that most are interested in at least in 

terms of expansion related to cracking behavior. Thus, for each set of measured ASR 

concrete and aggregate data, the linear trends will be assessed and examined to make sure 

that the kinetic performance model will fit only the linear portion of the data. 
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Figure 4.2 Linearization of the Kinetic Performance Model. 

 

 

Determination of the Main Parameters of the ASR Model Using SID 

This section covers in details the background and the principle of the system 

identification procedure and the parameters calculations. 

 

Principle of the Method 

The advancement of computer technology in the last century has boosted the usage of 

computers to store, display, process and analyze huge amount of data in a very short 

period of time. A key point in the optimum process operation is the knowledge of the 

processes or phenomena (whether it is static, dynamic, linear, non linear, etc) in the past, 

present and in the future. Most processes are time continuous systems. 

The utilization of computers make it possible to identify the process by assessing 

the input and output signals of the system. The general consequence of the process 

identification is a mathematical model. The main reasons for setting up these models for 

processes are listed as follow (Unbehauen 1982): 
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a) The model gives us the chance to understand how the internal behavior of the system 

works. 

b) The model provides us an opportunity to simulate future process behavior in special 

conditions (i.e. simulation of malfunctions in an experiment or test). 

c) The determination of the main parameters affecting the process can be only 

determined accurately based on an accurate model. 

 

Depending on the types of processes and applications, the mathematical model 

can take many forms i.e. non-parametric models, differential equations, transfer functions, 

exponential functions, linear or nonlinear functions, etc. To have an accurate and an 

optimized form of the model, all major properties and characteristics of the phenomena 

should be identified and taken into account. Therefore, the objective of system 

identification is to formulate a mathematical model which describes in a sufficiently 

precise manner, the behavior of the system (Unbehauen 1982). The accuracy of the 

developed model is determined by a comparison of the system output (i.e. measured 

expansion) and the model output (i.e. predicted expansion) when both the system and the 

model are excited by the same input signal (Figure 4.3). The output signal error is 

calculated as: 

 

E = Y(t) -YM(t)       (4.3) 

where: 

Y = Measured System Output 

YM = Model Output 

 

When the output signal error is minimal, it will be assumed that the optimum 

model was obtained. If this is not the case (i.e. significant error), the parameters of the 

model must be adjusted and corrected by a parameter factor. This rectification will 

continue until the error is reduced to a minimum value. 
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Parameter Adjustment and 
Adaption algorithm
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Predicted Data Y M

Parameter Adjustment and 
adaption algorithm

 
 

Figure 4.3 System Identification Procedure Using Parameter Estimation Method 
(modified from Unbehauen 1982). 

 
 

When knowledge about the system is not available, the system identification is composed 

of three steps (Unbehauen 1982): 

a) Determination of the model equation. The choice of the model depends mainly on the 

physical characteristics of the phenomena under study. And this is determined during 

the first step of the identification procedure. 

b) Determination of the structural coefficients. These include the model order and the 

deadtime d of your signal. 

c) Calculation of the equation parameters in the proposed model. The parameters are 

determined using the parameter estimation methods. This is obtained by minimizing 

the quadratic function of the error. The numerical calculation of this optimization 

problem can be performed using many methods: Least square methods is the most 

common and is obtained from: 

 

New Old
Correction new

estimated estimated
vector sample

value value

⎧ ⎫ ⎧ ⎫
⎧ ⎫⎡ ⎤ ⎛ ⎞⎪ ⎪ ⎪ ⎪= + ×⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥

⎣ ⎦ ⎝ ⎠⎩ ⎭⎪ ⎪ ⎪ ⎪
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      (4.4) 
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Parameters Calculations 

As mentioned in section 4.1, the model used to fit the expansion data is: 

0
( )

0

1 1 . t te
βρ

ε ε
−=                   (4.5) 

To simplify the above equation, first define 1z
ε

=  and 0
0

1z
ε

= , the transformed equation 

becomes: 

0
( )

0. t t
iZ Z e

βρ
−=      (4.6) 

The coefficients to be determined are 0 0,  , , tz ρ β . As shown from Eq 4.5, it is a 

non-linear least square error problem, and for it, there is no closed-form solution. Instead, 

initial values must be chosen for the parameters. Then, the parameters are refined 

iteratively, that is, the values are obtained by successive approximation. Equation (4.7) 

displays the relationship between F , α  and r . F  is usually called the sensitivity matrix, 

because its elements reflect the sensitivity of the output. α  is defined as the parameter 

vector and represents the % change of the parameters ( 0 0,  , , tz ρ β ) to be determined. r  

is called the residual vector and represents the % change of the data (i.e. the ratio of the 

difference of the observed expansion and calculated expansion from the model to the 

calculated expansion). 

 

.F rα =                 (4.7) 

where:
 Sensitivity Matrix or Data Matrix

r   = Residual Vector
 Parameter Vector

F

α

=

=

 

 

Writing out Eq. 4.7 in detail, we obtain 



 

 

74

10 01 1 1

0 0
1 1 1 1

0 02 2 2 2

0 0
2 2 2 2

3 0 3 3 0 3

0 0
3 3 3 3

0 0

0 0

. . . .
( )

. . . .
( )

. . . .
( )

. . . .
( )

n n n n

n n n

ZZ tZ Z Z
Z tZ Z Z Z

Z tZ Z Z Z
Z tZ Z Z Z
Z Z Z Z t Z
Z tZ Z Z Z

Z Z Z Z t Z
Z tZ Z Z

δδ δ δρ β
δ δρ δ δβ

δ δ δ δρ β
δ δρ δ δβ

δ δ δ δρ β
δ δρ δ δβ

δ δ δ δρ
δ δρ δ δβ

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧ ∧ ∧

∧ ∧ ∧

M M M M

M M M M

M M M M

M M M M

M M M M

1 1

1

2 2
1

0 0
2

0
1

3 3

3
1

0 0

0

1

i i

i

i i

i

i i

i

i i

i

n n
n

n

Z Z

Z

Z Z
Z Z

Z
Z

Z Z

Z
t t

t

Z Z
Z

Z

ρ ρ
ρ

β β
β

β

∧

∧

∧

+ ∧

∧
+

∧

+

+

∧
∧

∧

⎡ ⎤−⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎢ ⎥⎢ ⎥

⎡ ⎤− ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

−⎢ ⎥ ⎢ ⎥−⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥× =⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ −⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎣ ⎦

⎢⎢ ⎥
⎢⎢ ⎥
⎢⎢ ⎥

−⎢⎢ ⎥
⎣ ⎦ ⎢

⎣ ⎦

M

M

M

M

M

                       Sensitivity Matrix                        Change        Residual
                                                                            Vector         Vector

⎥
⎥
⎥
⎥
⎥
⎥
⎥

 

To calculate the elements of the sensitivity matrix, the partial derivatives of Z with 

respect to the parameters are determined as follows: 
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The elements of the sensitivity matrix are determined as follows: 
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The above determined coefficients are used in the System Identification Method. The 

sensitivity matrix, change vector, and residual vectors becomes as follows: 
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Multiplying Eq. (4.7) by TF , the eq. can be written as: 

. . .T TF F F rα =      (4.8) 

Multiplying Eq (4.8) by
1

.TF F
−

⎡ ⎤⎣ ⎦ , it can be written as: 

1 1
. . . . . . .T T T TF F F F F F F rα

− −
⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦ ⎣ ⎦                (4.9) 

Simplifying the above Eq, the vector change is obtained 
1

. . .T TF F F rα
−

⎡ ⎤= ⎣ ⎦      (4.10) 

If every value in the α  vector is less than 0.01 (1%), it is assumed that optimum model is 

obtained. If this is not the case, the parameters of the model are adjusted and corrected by 

a parameter factor as follows: 
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The above constant value “0.6” used in the parameter adjustment was chosen to 

make the convergence toward the optimum solution faster. The core structure of all 

algorithmic estimation methods is presented in Figure 4.4. Since solving the above 

equations manually is very involved and time consuming, a program in matlab was 

generated for that purpose. 
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Figure 4.4 Flowchart of the Algorithm to Determine the Parameters of the ASR Model. 
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Predicting Potential ASR Aggregate Reactivity in Terms of Their Activation Energy 

In analytical chemistry, activation energy (Ea) is defined as the minimum energy required 

to overcome for a chemical reaction to proceed (Ebbing and Gammon 2005). 

Consequently, it can be considered as an energy barrier (Figure 4.5). For exothermic 

chemical reaction, more energy is needed to convert the products to reactants. On the 

other side, for an endothermic reaction (like ASR), Ea (X→Y) is higher than the Ea 

(Y→X). 

The concept of ASR related activation energy was introduced as a representative 

single parameter of the ASR (Shon 2008). For ASR, Ea is considered as the energy 

required to initiate ASR taking into account the combined effect of alkalinity, 

temperature and time. The Arrhenius equation provides us the relationship between the 

rate constant, temperature and activation energy (Ebbing et al. 2005). To solve the 

relationship, three tests are conducted at three temperatures (60, 70 and 800C) for 

different alkalinities mentioned in the experimental design in Chapter III to determine the 

rate constants. 
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Figure 4.5 Reaction Coordination Diagram (Ebbings and Gammon 2005). 
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Based on the proposed ASR model, the rate constant is defined as Beta. The activation 

energy is calculated by plotting ln (Beta) versus (1/T). The slope of this equation is 

obtained by linear regression and is equal to (-Ea/R) where R is the universal gas constant 

(Figure 4.6). 
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Figure 4.6 Determination of Activation Energy. 

 
 
Determination of Alkaline Reactive Signature 

One of the ultimate objectives of this study is to incorporate the effect of aggregate 

reactivity, water cement ratio and supplementary cementitious materials on ASR to 

develop concrete mixtures highly resistant to ASR. To achieve this objective, the ultimate 

expansion of concrete, alkalinity and activation energy of aggregate should be related and 

this was performed into two steps. 

 

Proposed Model to Determine Ea of Aggregate under Field Conditions 

It is known that the natural pH of concrete is around 12.4. If the cement contains a high 

amount of alkali, the concentration of sodium and potassium hydroxide in the pore 

solution will be significant and the pH may reach well above 13. An increase in pH will 

increase the rate of ASR. The normality of sodium hydroxide in this study is 0.5 and 1 N 
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corresponding to a pH of 13.7 and 14 respectively, well above the pH of concrete in field 

conditions. Therefore, it is important to determine the activation energy of the aggregate 

covering the whole pH spectrum that the concrete will be subjected to. Therefore the 

following model is used determine Ea at different levels of alkalinity (Figure 4.7). 

0

1
a aE E n

C
C

+=      (4.11) 

0

1 1-n

where:
KJActivation Energy 
mol

KJActivation Energy - Threshold 
mol

KJ Activation Energy Curvature Coefficient 
(mol)
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C = Alkalinity (mo
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Figure 4.7 Activation Energy vs. Alkalinity. 
 

The coefficients to be ascertained are 
0 1,  C , naE  and are determined using the system 

identification method. The sensitivity matrix, change vector, and residual vectors are 

defined as follows: 
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The partial derivatives of Ea with respect to the coefficients are: 
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These above relative coefficients are used in the System Identification Method. The 

sensitivity matrix, change vector, and residual vectors becomes as follows: 
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The change vector is previously mentioned in the first model

1
. . .T TF F F rα

−
⎡ ⎤= ⎣ ⎦ . 

To determine the optimum values of the parameters (
0 1,  C , naE ), a matlab program was 

developed, following the below flowchart (Figure 4.8). 
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Figure 4.8 Flowchart to Determine the Parameter of the Model (Alkalinity vs. Ea). 
 
 
Development of a Reaction Signature for Combined Concrete Materials 
 
The ultimate expansion of concrete depends on many factors: a) aggregate reactivity b) 

alkalinity of the pore solution, water cement ratio, fly ash, etc. The aggregate reactivity is 

in turn directly related to alkalinity and activation energy. The variable r is introduced 

and defined as the ratio of the ultimate expansion of concrete to ultimate expansion of 
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aggregate ( )u

a

ε
ε

. Both uε  and aε  are determined, from concrete and aggregate tests using 

the model proposed in step 1. The minimum value rmin can be equal to zero which 

corresponds to “no cracking in the pavement” and this can be achieved theoretically by 

using non-reactive aggregate, very low water cement ratio, high percentage of 

supplementary cementitious materials. On the other side, rmax, which corresponds to 

“complete cracking in the pavement” can be achieved by choosing highly reactive 

aggregate, high water cement ratio and without using any pozzolanic materials. It should 

be mentioned here that r is unlikely to exceed 1 since aggregate in concrete is always 

surrounded partially or totally by the cement paste depending on the porosity of the 

mixture. Therefore, aggregate in the concrete is always in the restrained stage unlike 

aggregate tested alone in the dilatometer where expansion can freely occur depending on 

the amount of gel formed. 

Introducing a universal equation connecting the combined effects of concrete 

materials on ASR has been a dream for decades. The solution to the previous statement is 

to find the infinitesimal change in the ratio ( )u

a

ε
ε

 under an infinitesimal change in 

activation energy (Ea), fly ash (f) and water cement ratio (w). The above philosophical 

idea of relating variables to each other is not new. Juarez-Badillo (1981) used the above 

principle to determine the general compressibility equations for soils under isotropic 

stresses, where he related the change in volume of the soil to the change of stress through 

a non dimensional parameter. In this study, a general relationship was developed to 

connect the above four parameters (r, Ea, f and w). The connection of those parameters is 

not direct because each one has a different boundary condition. The domain of r, Ea, f and 

w are from minr  to maxr , Eamin to ∞, 0 to fmax, and wmin to wmax respectively. Consequently, 

a set of functions for all parameters has to be found with the boundary conditions (i.e. 0 

to ∞) the same for all proposed functions. For example, choose the variable r. The 

simplest form of f(r) is: 
max max min

1 1( )f r
r r r r

= −
− −

 obtained as shown Figure 4.9. New 

functions were developed for the other parameters to make the domain and limits for all 

functions the same (Figure 4.10). 
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Figure 4.10 Domain of Variables and Their Functions. 
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Now that all functions are defined with their domain, straight and complete, the 

mathematical relationship connecting r to Ea, f and w is as follows: 

( )( ) ( ) ( )
( ) ( ) ( ) ( )

a

a

dg Edf r dh f df w
f r g E h f f w

λ β γ= + +     (4.12) 

where: 

, ,β λ γ  are non dimensional parameters of proportionality. 

Integrating the above equation as follows: 

1 1 11

( )( ) ( ) ( )
( ) ( ) ( ) ( )

a

a

E fr w
a

ar E f w

dg Edf r dh f df w
f r g E h f f w

λ β γ= + +∫ ∫ ∫ ∫    (4.13) 

11 1 1where: , , ,ar E f w  are the expansion ratio, the aggregate activation energy, the amount 

of ash and the water cement ratio for a specific concrete mixture. 

Expanding (eq. 4.13) yields the following: 
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1 min

max max min
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Eq 4.14 may be written as: 

min

1 min

min max 1 min max 11

max 1 min 1 max 1 min

( )( ) ( )( )(1 ). .
( )( ) (1 ) ( )( )

a a
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  (4.15) 

After simplifying and arranging the terms, Eq. 4.15 may be written as: 
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min

max
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Figure 4.11 displays the shape of the generalized concrete model. The parameters 

of proportionality are determined using the system identification method. Like the 

previous model, the sensitivity matrix, change vector, and residual vectors are set up as 

seen below. The algorithm used is shown in Figure 4.12. A matlab routine was developed 

for that purpose. 
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Figure 4.11 Generalized Concrete Model. 
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Figure 4.12 Flowchart to Determine the Generalized Concrete Model. 
 

Once the parameters of the generalized concrete model are determined, a design 

procedure can be outlined leading to the formulation of ASR safe concrete mixtures. To 

achieve this objective, the following steps should be followed. 
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a) The concrete and aggregate model and combined together where the x axis 

represents the activation energy (Ea) for both models as shown in Figure 4.13. 

b) The concrete reactivity model leads to the following relationship: 

a( ) function (f, E , w)u

a

ε
ε

=      (4.17) 

where: 

f   = Fly ash 

Ea = Activation energy of aggregate at a specific alkalinity 

W = Water cement ratio 

 

For a specific concrete mixture, the amount of fly ash and water cement ratio is known 

from the design procedure and therefore, those variables are constant in Eq. 4.16 which 

yields the following: 

a( ) function (f, E )u

a

ε
ε

=                 (4.18) 

a( ) function (E , w)u

a

ε
ε

=      (4.19) 

Each of the above equations leads to the generation of: 

i) A set of curves between ( / )u aε ε  and aE  for different fly ash content for concrete 

mixtures with a specific water cement ratio. 

ii) A set of curves between ( / )u aε ε  and aE  for different water cement ratio for concrete 

mixtures with a specific fly ash content. 

c) The designer will select the appropriate ( )u

a

ε
ε

 which represents the percentage 

cracking over the life span of the pavement, the fly ash content and the water 

cement ratio and based on the aggregate model, he will select the corresponding 

alkalinity of the mixture. The above outlined procedure is shown in Figure 4.14. 

The main benefits of the above method is that it allows the user to determine the 

effect of fly ash and water cement ratio on the without physically conducting the 

dilatometer test, thus saving invaluable amount of time for the contractor who 

needs the optimum safe mix as soon as possible. 
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Figure 4.13 Combined Concrete and Aggregate Model. 
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Figure 4.14 Design Procedure (w = constant). 
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CHAPTER V 

 

DETERMINATION OF AGGREGATE ASR MATERIALS PROPERTIES  

 

The interpretation and analysis of the four aggregates conducted in this research study are 

presented in this chapter. This chapter begins by presenting the ASR time-expansion data 

for the rocks at different temperature and alkalinities, followed by a discussion of the 

effect of test conditions (calcium hydroxide, temperature and alkalinity) on the main ASR 

materials properties. Using the Arrhenius equation, the aggregate activation energy was 

determined and the aggregates ranking based on their reactivity was presented.  Results 

of the chemistry of the test solution before and after each test are included in the 

following section. To check the reliability of the test protocol and procedure presented in 

Chapter IV, an intra and inter-laboratory comparisons between Texas A&M University 

(TAMU) and University of New Hampshire (UNH) was conducted and results were 

presented in the last section of this chapter. 

 

Expansion Characteristics 

This section presents the generated ASR time expansion data using the dilatometer for 

New Mexico Rhyolite, Spratt Limestone, Platte River Gravel and Sudbury Gravel. 

 

New Mexico Rhyolite (NMR) 

For the NMR aggregate, the tests were conducted at three different alkalinities (1 NaOH 

+ CH, 0.5 NaOH + CH, and 0.25 NaOH + CH) to illustrate the effect of alkalinity on 

ASR expansion. For each alkalinity, three tests were performed at three different 

temperatures (600C, 700C and 800C) to determine the rate constant and consequently the 

reactivity of the rock. The time expansion data of NMR are shown in Figures 5.1, 5.2 and 

5.3. Also displayed in the plots, are the calculated volumetric ASR expansions using the 

model proposed in Chapter IV. As it can be seen from the plots, the model fit to the 

measured data is very promising and the difference between the measured and the 

predicted expansion is negligible, demonstrating the accuracy of the proposed model.
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(a) NMR expansion at 60 0C                                            (b) NMR expansion at 70 0C 
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(c) NMR expansion at 80 0C              (d) Determination of activation energy 

 
Figure 5.1 NMR Characteristics (1N NaOH + CH). 
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(c) NMR expansion at 80 0C              (d) Determination of activation energy 

 
Figure 5.2 NMR Characteristics (0.5 N NaOH + CH). 
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    (c) NMR expansion at 80 0C              (d) Determination of activation energy 

 
Figure 5.3 NMR Characteristics (0.25N NaOH + CH). 
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As shown in Figures 5.1 through 5.3, all plots show similar characteristic patterns. 

Almost no expansion was measured in the initial hours. This was followed by a rapid 

increase in volume expansion up to 60-80 hrs. Then the expansion was stabilized around 

the 90-100 hrs. For example, for NMR tested in 1 NaOH + CH at 80C, the expansion was 

negligible in the first 5-7 hrs, followed by a sharp increase in the expansion between 10-

50 hrs, then a mild increase was noticed after that where expansion reached the 0.12% 

level at the 100 hrs. This increase in volumetric expansion with time is due to the 

following set of reactions. At the beginning of the test, some silanol bonds are already 

existent on the surface of hydrous NMR aggregate. As hydroxyl ions coming from the 

NaOH solutions attack the surface of the rock, an acid-base reaction occurs resulting in 

the release of one molecule of water and the negatively charged Si-O-. As the above 

reaction progresses, the silixane bonds are also attacked by hydroxyl ions. The output of 

the previous reactions is the dissolution of the silica, creating a negative charge on the 

surface of the aggregate. Since the whole system needs to be in equilibrium all the time, 

positive cations are attracted from the surrounding (sodium ions coming from the NaOH 

solution) forming the gel around the aggregate. When the latter absorbs water, the 

resultant is a volume greater then the original one. Consequently, expansion occurs and it 

is this expansion that was recorded by the data acquisition system during the dilatometer 

test. 

The dissolution of silica depends on many parameters: a) temperature, b) 

alkalinity and c) the silica inside the aggregate whether it is amorphous or well 

crystallized. It should be mentioned here that the reactive component in NMR aggregate 

is the volcanic glassy material (amorphous). To illustrate the effect of both temperature 

and alkalinity on NMR ASR expansion, the main parameters of the proposed model in 

Chapter IV were determined using the system identification procedure. 

0
( )

0

1 1 . t te
βρ

ε ε
−=  

The results are shown in Table 5.1. The fourth, fifth, sixth and seventh column show the 

ultimate expansion 0ε  (%), the time scale parameter ρ , the theoretical initial time 0t  and 

the rate constant β  respectively. As shown from the table, the effect of test solution 
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alkalinity is evident on the ultimate expansion of NMR; e.g. at 600C, the 0ε  (%) increases 

from 0.0418% at 0.25N + CH to 0.0695% at 0.5N + CH and then jumps to 0.1030% at 

1N + CH. This increase in volumetric expansion is simple to understand. In fact, the more 

alkaline the solution, the more the hydroxyl ions becomes available; i.e. 1N + CH contain 

almost double the amount of hydroxyl ions than the 0.5N + CH solution. and as more 

OH- are available, the reaction sites around the aggregates increase leading to a quicker 

chemical reaction and this in turn leads to the formation to a large quantity of gel, and 

thus higher expansion. 

 The effect of temperature on ASR characteristics is very important to observe. As 

shown from Table 5.1, as temperature increases, the ultimate expansion increases; i.e. for 

NMR tested at 0.5N+CH, the 0ε  increase from 0.0695% at 600C to 0.1070% at 800C. 

Same deduction can be made for other tests conducted at different alkalinities. This 

previous finding leaves no choice other than to conclude with confidence that ASR is a 

thermally activated process. This means that for ASR to go forward, the whole system 

has to overcome an energy barrier. Increasing the temperature will provide the energy 

necessary for the chemical reaction to occur. As a result, the rate of reaction as well as 

the rate constant will increase with temperature. Results in Table 5.1 are consistent with 

the findings. For example, for NMR tested at 0.5N+CH, the rate constants β  are 0.87, 

1.23 and 1.75 for T = 600C, 700C and 800C. 

 One of the objectives of this study is to rank the different type of aggregates based 

on their reactivity. Shon (2008) introduced the concept of activation energy (Ea) for 

aggregate as a single parameter. Ea will be determined using the same concept and based 

on the new proposed kinetic model in Chapter IV. Since ASR was shown above to follow 

a “Thermally activated process”, the Arrhenius equation is used to determine the Ea of the 

rock. The Ea was determined from the slope of the plot of Ln (β ) versus 1/T. the results 

are displayed in Table 5.1 (eighth column) and Figure 5.1.d, 5.2.d and 5.3.d. As shown 

from the three plots, the coefficient of determination R2 is around 0.99 for tests conducted 

at different alkalinities, illustrating the dependence of the rate constant β  on temperature. 

The Ea values for NMR aggregate were 34.28, 18.09 and 10.72 (KJ/mol) for tests 

performed at 0.25N+CH, 0.5N+CH, and 1N+CH. These results indicate that the 
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activation energy of aggregate is a function of alkalinity. As alkalinity of the solution 

increase, the Ea decreases. This deduction is consistent with the activation energy of ASR 

as the energy necessary to initiate this reaction. As a result, aggregate tests conducted at 

higher alkalinity (i.e. 1N+CH) needs less energy (10.72 KJ/mol) to initiate the ASR 

reaction, since there is an abundant amount of hydroxyl ions in the solution. On the other 

side, at lower alkalinity solution (i.e. 0.25N+CH) higher energy is required for the 

reaction to proceed (i.e. 34.28 KJ/mol). From a practical point of view, it is would be 

very interesting to determine the minimum activation energy required to initiate this 

reaction as well as its corresponding level of alkalinity. This last point will be elaborated 

in detail in the first section of Chapter VI. 

 
 
Table 5.1 New Mexico Rhyolite Main Parameters. 
 

ASR aggregate parameters  
Aggregate 

type 
Alkalinity 
(NaOH) 

Temp 
(0C) 

0ε  (%) ρ  
0t  β  Ea 

(KJ/mol) 

60 0.0418 16.8 5.43 0.87 
70 0.0537 12.6 5.40 1.23 0.25N + CH 
80 0.0625 12.9 3.52 1.75 

34.28 

60 0.0695 21.8 0.52 1.82 
70 0.1023 20.5 0.68 2.14 0.5N + CH 
80 0.1070 13.3 1.85 2.64 

18.09 

60 0.1030 20.1 3.04 1.90 
70 0.1134 16.4 1.65 2.13 

New  
Mexico 
Rhyolite 

1N + CH 
80 0.1190 11.5 4.41 2.36 

10.72 

* CH = calcium hydroxide 
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Spratt Limestone (SL) 

For the SL aggregate, the tests were conducted at three different temperatures (600C, 

700C and 800C) in 1 N sodium hydroxide solution. It should be mentioned here that 3 to 

4% of microscopic chalcedony and black chert imbedded within the rock matrix are the 

reactive component of the SL (Rogers 1999). Figure 5.4 shows the time expansion 

history up to 100 hrs for S.L. As shown in the figure, the plots at the three temperatures 

display similar trend. In the first 10 hr of testing, negligible expansion was recorded. This 

was followed by an irregular increase up to the 80 hrs. The readings then stabilize around 

90-100 hrs. This non uniform increase in the SL expansion maybe possibly due to non-

homogenous distribution of the reactive component in the SL. Also superimposed on the 

plots in Figure 5.4, are the calculated ASR expansions using the kinetic model. It can be 

seen from the plots that the model fit to the measured data is pretty good. 

ASR characteristics are presented in Table 5.2. The effect of temperature is very 

evident on the theoretical initial time of expansion t0. As the temperature of the test 

solutions increase, t0 decreases; i.e. for SL conducted at 600C, t0 was 7.16 hrs, while t0 

was equal to 3.12 hrs at 800C. This can be explained from a kinetic point of view. As the 

temperature of the system (i.e. dilatometer) increases, the amount of additional energy 

needed to initiate ASR decreases because the energy barrier that the system has to 

overcome is much smaller at a higher temperature and consequently the time that it takes 

for ASR to initiate will be smaller. On the other side, when the temperature is low, the 

energy barrier is higher and therefore more time is needed for ASR to proceed and 

therefore the theoretical initial time of expansion is higher. The results obtained are 

consistent with the above analysis. 

The consequence of increasing the temperature can also be seen on the rate 

constant (β ). As shown from Table 5.2, the relationship between β  and temperature is 

proportional. At 800C, β  was 2.92 while at 600C, it was 0.92. The results are logical with 

our previous conclusion that ASR is a “Thermally Activated Process”. The Arrhenius 

equation was used to calculate the activation energy. From the relationship between log 

( β ) and 1/T, the Ea was calculated to be 53.46 KJ/mol. The high value of the coefficient 

of determination (R2
 = 93.5%) indicates the strength and the almost linear relationship 

between the two variables: log of the rate constant and 1/T. 
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The significance of the above method is not limited to calculating the Ea. Since 

the Ea  will be ultimately a material property for an aggregate and by knowing the rate 

constant at a specific temperature, the rate constant and the time to initiation at any other 

temperature can be determined using the Arrhenius equation. This is extremely important 

as the aggregate in concrete structures will be subjected probably to ambient temperature. 

The temperature selection of 600C, 700C and 800C were only chosen to increase the rate 

of reaction in order to measure significant ASR expansion within a short period of time. 

Consequently, the rate constant at ambient temperature can be calculated and the 

theoretical initial time of expansion in the field can be determined. 

 
 
Table 5.2 Spratt Limestone Characteristics. 
 

ASR aggregate parameters  
Aggregate 

type 
Alkalinity 
(NaOH) 

Temp 
(0C) 

0ε  (%) ρ  
0t  β  Ea 

(KJ/mol) 

60 0.033 51.5 7.16 0.98 
70 0.032 31.8 4.21 2.21 

Spratt 
Limestone 1 N 

80 0.039 45.2 3.12 2.92 
53.46 
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(a) SL expansion at 60 0C       (b) SL expansion at 70 0C   
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(c) SL expansion at 80 0C       (d) Determination of activation energy 
 

Figure 5.4 Spratt Limestone (SL) (1 NaOH).
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Platte River Gravel (PRG) 

For PRG aggregate, the tests were conducted at four different alkalinities: 1 N NaOH + 

CH, 1 N NaOH, 0.5 N NaOH + CH and 0.5 N NaOH. For each alkalinity, three tests 

were conducted to determine the reactivity of the aggregate. Expansion data were 

collected to the 100 hrs. One has to mention here that strained quartz is the reactive 

component of PRG. Also, it should be stated here that the addition of calcium hydroxide 

(CH) to the alkaline solution was to simulate the pore solution of the concrete and to 

study the effect (if any) of CH on the ASR expansion since the role of CH is a point of 

controversy among researchers in the field. 

Figures 5.5, 5.6, 5.7 and 5.8 show the measured volumetric expansion of Platte 

river gravel. It can be seen that although all plots display similar behavior, the ultimate 

measured expansion is different depending on the alkalinity of the solution. The % 

expansion increases with an increase of the alkalinity of the test solutions; i.e. for PRG 

tested at 800C, the % expansion was 0.05% and 0.042% for experiments conducted at 1 N 

NaOH and 0.5 NaOH respectively. This can be explained as follows: as more hydroxyl 

ions become available, the sooner the reaction will take place and therefore more gel will 

be formed and thus more expansion is measured. As a result, pavement structures 

subjected to high alkali environment will exhibit earlier expansion and consequently, 

earlier cracking can be expected as opposed to other concrete structures subjected to mild 

alkali environment. Another important conclusion can be made. The % ASR expansion 

was recorded and measured without the presence of calcium hydroxide. This indicates 

that the ASR can be expansive without the existence of CH. It would be interesting to 

determine the contribution of CH on ASR expansion. 
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(a) PRG expansion at 60 0C       (b) PRG expansion at 70 0C   
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(c) PRG expansion at 80 0C              (d) Determination of activation energy 

 
Figure 5.5 Platte River Gravel (PRG) Characteristics (1 NaOH). 
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(a) PRG expansion at 60 0C       (b) PRG expansion at 70 0C   

 

PRG
T = 80 C

0.5 N NaOH

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 20 40 60 80 100

Time (hrs)

A
SR

 E
xp

an
si

on
 (%

) .

Measured Exp Data
Calculated Exp Data

  

y = -8966.5x + 26.937
R2 = 0.9999

Ea = 74.54 KJ/mol  

-0.4

0.0

0.4

0.8

1.2

1.6

2.0

0.0028 0.0029 0.0029 0.0030 0.0030 0.0031

1/Temp

Ln
 (B

et
a)

 .

 
(c) PRG expansion at 80 0C              (d) Determination of activation energy 

 
Figure 5.6 Platte River Gravel (PRG) Characteristics (0.5 NaOH). 
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(a) PRG expansion at 60 0C       (b) PRG expansion at 70 0C  
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(c)  PRG expansion at 80 0C      (d) Determination of activation energy 

 
Figure 5.7 Platte River Gravel (PRG) Characteristics (1 NaOH + CH). 
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(a) PRG expansion at 60 0C       (b) PRG expansion at 70 0C   
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(c) NMR expansion at 80 0C       (d) Determination of activation energy 

 
Figure 5.8 Platte River Gravel (PRG) Characteristics (0.5 NaOH + CH).
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To determine PRG characteristics, the measured expansion data were fitted using 

the proposed kinetic model mentioned previously and the calculated expansion plots were 

superimposed on the measured data in Figures 5.5, 5.6, 5.7 and 5.8. The main parameters 

of PRG gravel are presented in Table 5.3. Important conclusion can be made by looking 

at the results. It can be seen that the presence of calcium hydroxide enhances ASR 

expansion; i.e. for tests conducted at 800C, the ultimate expansion ( 0ε ) at 1 N NaOH + 

CH was 0.053% while it was only 0.049% at 1N NaOH. This is equivalent to 8.16% 

increase in expansion. The same comparison can also be made for runs at 0.5 N NaOH + 

CH and 0.5N NaOH. At 0.5 N NaOH + CH, the 0ε  was 0.053% while at 0.5 N NaOH, 

the 0ε  was 0.049%. This corresponds to a 9.75% growth. Therefore, from the previous 

results, it can be deduced that the presence of CH increases ASR expansion slightly, but 

is not major a factor or a prerequisite to initiate ASR as expansion was recorded without 

CH in the solution. 

The importance of temperature as an accelerator of ASR is also illustrated in 

Table 5.3. It can be seen as that the ultimate expansion increases when the temperature 

goes up from 600C to 700C and then from 700C to 800C. This is attributed to the fact the 

speed of the reaction increases with temperature leading to the formation to larger 

amount of reaction products (gel) around the rock. This last deduction is consistent with 

the results of the rate constant ( β ) calculated. The 0ε (%) and β  have a proportional 

relationship with temperature. As temperature decreases, both parameters ( 0ε ) and β  go 

down as well; i.e. for PRG at 0.5 N NaOH, the 0ε (%) and β  were 0.041% and 4.63 at 

80C while at 600C, they were equal to 0.027% and 1. This indicates that any change in 

temperature affects all of the parameters of the kinetic model, mainly the rate constant 

since ASR is first of all a chemical reaction. Accordingly, a set of relationships can be 

developed for 0ε (%), ρ , 0t  as function of β  and the latter can be calculated at any other 

temperature using the Arrhenius equation.   

To determine the Ea of PRG, the rate constant β  was plotted against (1/T), and 

best-fit was performed using linear regression analysis (Figures 5.5.d, 5.6.d, 5.7.d and 

5.8.d). The coefficient of determination R2 was 0.99 (i.e. the three points almost lay on a 

straight line) for all cases indicating a strong correlation between the variables. The Ea 
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was determined by multiplying the slope of the regression line by the gas constant. As 

shown from Table 5.3, the Ea for PRG was equal to 60.84, 74.55, 46.46, 56.68 KJ/mol for 

tests conducted at 1N, 0.5N, 1N + CH and 0.5N + CH respectively. It can be seen from 

the results that the Ea decreases as the alkalinity of solution increases. This deduction is 

made for both set of tests conducted with and without CH. The results look logical and 

can be explained as follows: less energy (46.46 KJ/mol) is required at higher alkalinity 

(1N+CH) to overcome the barrier to initiate ASR. On the other side, at lower alkalinity 

(0.5N+CH), the system needs more energy to overcome the barrier and thus the Ea is 

higher (56.68 kJ/mol). 

The results also indicate that there is a possibility that a relationship exists 

between the alkalinity of test solution and Ea of the aggregate. Also, it would be of great 

interest for the pavement engineer to determine the alkalinity and its corresponding Ea to 

initiate ASR as this will help in developing concrete mixtures highly resistant to ASR. 

The above mentioned points will be discussed in detail in the following chapter (Chapter 

VI). 

 
 
Table 5.3 Platte River Gravel Characteristics. 
 

ASR aggregate parameters  
Aggregate 

type 
Alkalinity 
(NaOH) 

Temp 
(0C) 

0ε  (%) ρ  
0t  β  Ea 

(KJ/mol) 

60 0.024 37.6 5.33 1.05 
70 0.031 24.2 5.88 2.06 1N 
80 0.049 25.4 2.01 3.67 

60.84 

60 0.027 45.1 5.21 1.00 
70 0.024 18.0 5.85 2.23 0.5N 
80 0.041 23.5 1.13 4.63 

74.55 

60 0.030 33.2 4.30 1.37 
70 0.036 25.0 5.91 2.03 1N + CH 
80 0.053 25.9 2.20 3.55 

46.46 

60 0.022 35.8 5.02 1.13 
70 0.027 20.4 5.86 2.10 

Platt 
River 

Gravel 

0.5N + CH 
80 0.045 24.0 2.16 3.60 

56.68 

* CH = calcium hydroxide 
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Sudbury Gravel (SuG) 

For the SuG aggregate, the major reactive component is microcrystalline quartz (Gillott, 

Duncan, and Swenson 1973). To emphasize the effect of alkalinity on ASR, the SuG 

were tested at realistic levels of alkalinity (1 NaOH + CH, 0.5 NaOH + CH, 1 NaOH, 0.5 

NaOH) to which the concrete will be subjected in the field conditions. To accelerate the 

chemical reaction, three temperatures were selected: 600C, 700C and 800C. All tests were 

conducted for a period of four days. 

The results of SuG are presented in Figure 5.9, 5.10, 5.10 and 5.11 for tests 

conducted at 1 NaOH, 0.5 NaOH, 1 NaOH + CH and 0.5 NaOH + CH respectively. It can 

be seen from the figure that all expansion data curve follow an S-curve; i.e. minimum or 

negligible expansion was recorded in the initial hours (0-15 hrs), then a steep rise occurs 

(20-70 hrs). Then the % expansion values stabilize around the 4 days. This S-curve shape 

can be explained as follow: initially, the hydroxyl attacks and penetrates the surface of 

the aggregate resulting in the dissolution of silica. No expansion is measured in this 

initial period. This dissolution of silica leads to the creation of negative charge. To 

maintain equilibrium around the particle, cations around the particle (i.e. sodium) are 

attracted to achieve neutrality forming a hygroscopic gel, resulting in the rapid expansion. 

The stabilizing period following the 70 hr testing period maybe due to the following: as 

silica from the aggregate dissolves, at the same time, some calcium and potassium cations 

leach out of the aggregate (PRG contains small amount of CaO) and are absorbed by the 

gel. The gel surrounding the aggregate prevents the dissolution of any more silica, 

therefore preventing temporarily any further gel development.  
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(a) SuG expansion at 60 0C       (b) SuG expansion at 70 0C   
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(c) SuG expansion at 80 0C       (d) Determination of activation energy 

 
Figure 5.9 Sudbury Gravel (SuG) Characteristics (1 NaOH). 
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(c) SuG expansion at 80 0C       (d) Determination of activation energy 
 

Figure 5.10 Sudbury Gravel (SuG) Characteristics (0.5 NaOH). 
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(a) SuG expansion at 60 0C       (b) SuG expansion at 70 0C   
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(c) SuG expansion at 80 0C       (d) Determination of activation energy 
 

Figure 5.11 Sudbury Gravel (SuG) Characteristics (1 NaOH + CH). 
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(a) SuG expansion at 60 0C       (b) SuG expansion at 70 0C   
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(c) SuG expansion at 80 0C       (d) Determination of activation energy 
 

Figure 5.12 Sudbury Gravel (SuG) Characteristics (0.5 NaOH + CH). 
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Using the system identification procedure, SuG characteristics were determined. 

The results are shown in Table 5.4. The difference in ultimate expansion 0ε (%) between 

tests conducted at 1N+CH and 1N NaOH are important to observe and illustrate the effect 

of calcium hydroxide on ASR. i.e. at 600C, the 0ε (%) is 0.02% at 0.5N+CH while it is 

0.016% at 0.5N. This corresponds to 25% increase. This is due to the fact that calcium 

hydroxide speeds up the penetration of hydroxyl ions into the aggregate grains leading to 

a quicker reaction. This conclusion on the role of CH is also supported by the values of 

the rate constant ( β ). At 600C, β  is 1.44 at 0.5N+CH while it is 1.32 at 0.5N. The 

results are also consistent with Chatterji theory regarding this point (Chatterji et al, 1986, 

Chatterji 1989). 

The activation energy for SuG was calculated by plotting ln(β ) versus (1/T). The 

plots are displayed in Figures 5.9.d, 5.10.d, 5.11.d and 5.12.d. The coefficient of 

determination R2 was 0.99. Its importance is that it provides us an indication about the 

regression line. Theoretically, if the regression line passes exactly through the three 

points, all variation in the data would be explained by the line. As the point scatter away 

from the regression line, the variation can’t be explained. The high value of R2 indicates 

that the dilatometer test and the new proposed kinetic model are very promising tools 

within the hands of the researchers and practitioners. Both (dilatometer + kinetic) model 

will have the capability to determine the speed of ASR at temperature close to the field 

conditions. It is highly unlikely that the dilatometer test will be performed at room 

temperature as this will require a significant amount of time (i.e. weeks or months) before 

any volumetric expansion is recorded. Since R2 is almost close to 1 for all vast majority 

of tests, the rate constant (β ) can be predicted from the regression equation at any other 

temperature. As shown from Table 5.4, the Ea for SuG was equal to 44.62, 48.44, 35.49 

and 38.42 KJ/mol for tests conducted at 1N, 0.5N, 1N + CH and 0.5N + CH respectively. 

The results indicate that the activation energy of aggregate is inversely proportional to 

alkalinity of the test solution for both sets of testing, with and without calcium hydroxide. 

This suggests the presence of an equation relating the two parameters together and also 

implies that the concept of ASR activation energy can be very useful in detecting the 

reactivity of aggregate in concrete subjected to different level of alkalinity. 
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Aggregate reactivity can be determined by either comparing the ultimate 

expansion of the rock at a specific alkalinity or by comparing their activation energy at 

the same level of alkalinity. For tests conducted at 800C in 1 N NaOH+CH, the 0ε (%) for 

NMR, PRG and SuG were 0.1190%, 0.053% and 0.059%. As seen from the data, NMR 

displays the highest volumetric expansion among other aggregate in this study, therefore 

NMR is more reactive than PRG and SuG. On the other side, the 0ε (%) of PRG is less 

than the 0ε (%) of SuG. Consequently, PRG is less reactive than SuG. From the above 

results, it can be stated that the 0ε (%) is a good index number to predict ASR reactivity 

of aggregate. 

 
 
 
Table 5.4 Sudbury Gravel Characteristics. 
 

ASR aggregate parameters  
Aggregate 

type 
Alkalinity 
(NaOH) 

Temp 
(0C) 

0ε  (%) ρ  
0t  β  Ea 

(KJ/mol) 

60 0.019 31.2 3.70 1.57 
70 0.029 22.2 5.61 2.2 1N 
80 0.054 27.5 1.29 3.94 

44.62 

60 0.016 32.7 4.59 1.32 
70 0.030 24.5 5.89 2.05 0.5N 
80 0.048 24.3 2.17 3.57 

48.44 

60 0.025 30.7 3.31 1.67 
70 0.034 23.6 5.85 2.10 1N + CH 
80 0.059 25.4 2.75 3.47 

35.49 

60 0.020 32.1 4.14 1.44 
70 0.036 24.2 5.88 2.07 

Sudbury 
Gravel 

0.5N + CH 
80 0.057 27.1 3.20 3.17 

38.42 

* CH = calcium hydroxide 
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Effect of Test Condition on ASR Expansion 

As shown in Chapter II, there are certain requirements or conditions that need to be 

present in concrete structures for ASR to proceed. Those are: a) reactive silica, b) 

alkalinity and c) moisture. Temperature is also considered a factor since it helps 

accelerate the chemical reaction. Since the main target of this research is to mitigate ASR 

and to study the combination of the above conditions to control ASR, the above factors 

with their corresponding levels were chosen in the experimental program to study their 

effect on ASR. The effect of reactive silica was taken into account by selecting four 

different types of aggregates with different reactivity. Three different alkali concentration 

were selected (0.25 N, 0.5N and 1N NaOH) to simulate alkalinity of the pore solution of 

concrete. Calcium hydroxide was also added to selected alkali solution to study its 

outcome on ASR. To speed up the ASR reaction, three levels of temperatures were 

chosen: 600C, 700C and 800C. The effect of alkalinity was covered in detail in the 

previous part of this chapter. This section covers the effect of temperature and calcium 

hydroxide on ASR characteristics. 

 

Effect of Temperature 

It is known that the rate of reaction depends on the temperature. The rate of reaction and 

the rate constant (β ) are related through the rate law. The effect of temperature on β  

and on the theoretical initiation time of ASR ( 0t ) is presented in Figures 5.13 and 5.14 

respectively. As seen from the results (without any exception), the rate constant and 

temperature have a proportional relationship; i.e. when temperature increases from 600C 

to 700C, β  goes up as well.  A similar deduction can be made when the temperature 

increases from 700C to 800C.  

The dependence of β  on temperature is important to observe and can be 

explained by the collision theory. This theory which was proposed in 1916 and 1918 by 

Max Trautz and William Lewis, was based on the concept that reactant molecules must 

collide for the reaction to occur, but only a proportion of the total number of collisions 

will have the energy necessary for the molecules to react effectively and for the products 

to be transformed into products. This minimum amount of energy required for the 

collision to occur effectively is called the activation energy (Ea) (Ebbing and Gammon 
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2005). The rate constant in the collision theory is composed of three elements and is as 

follows (Ebbing and Gammon 2005): 

 

 = Z f pβ × ×  

where: 

Z = The collision frequency. 

f  = The % of collisions having energy greater than Ea 

p = The % of collision that takes place when the reactant particles are properly oriented. 

 

The collision frequency depends on temperature. This can be easily explained in 

the case of aggregate soaked in alkaline solution. As temperature goes up, the hydroxyl 

ions moves faster because their kinetic energy increases and thus, they collide more 

frequently with the reactive silica located at the surface of the aggregate. 

The second factor f is highly dependent on temperature and is related to the activation 

energy (Ea) through the following equation: 

 

.
aE

R Tf e
−

=  

where: 

T = Temperature 

R = Gas constant, which is equal to 8.314 J/(mol.K)  

 

In the dilatometer test, this is explained as follows. When there is rise in the 

temperature, the fraction of particles possessing energy higher than the (Ea) is much 

higher than those having that energy at lower temperature. The third factor p, which 

depends on the orientation on the reactant particles, does not depend on temperature, 

although it is an important parameter. 
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In this study, the four types of aggregates have different reactivity and this is well 

illustrated by the values of the rate constant at different temperature for each type of 

aggregate. For example, for NMR at 1N NaOH+CH, the rate constant increase from 1.9 

at 600C to 2.5 at 800C. This corresponds to a 26.3% increase. However, for PRG at 1N 

NaOH+CH, the rate constant increases from 1.1 at 600C to 3.7 at 800C. This is equivalent 

to 236% growth. As a result, it can be concluded that the rate constant for PRG is much 

more sensitive to temperature comparing to NMR and consequently, it can be stated that 

NMR is more reactive than PRG. The same analogy can be made for the other types of 

rocks and it can be determined that New Mexico Rhyolite is the most reactive among all 

aggregates tested, followed by Spratt Limestone, Sudbury Gravel and then Platte River 

Gravel.  

By looking at Figure 5.14 and by comparing 0t  at 600C and 800C, it can be seen 

that 0t  is much lower at 800C than at 600C. This is due to the fact that when temperature 

increases, the rate constant goes up as well, resulting in the ASR occurring sooner, thus 

the lower 0t  value of at 800C. 
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Figure 5.13 Effect of Temperature on the Rate Constant (Beta). 
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Figure 5.14 Effect of Temperature on the Theoretical Initial Time (t0).
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Effect of Calcium Hydroxide 

When cement comes into contact with water, hydration begins. The major hydration 

products are calcium silicate hydrate (C-S-H) and calcium hydroxide (CH). The initial 

theories (McGowan and Vivian, 1952) didn’t consider calcium to play a role in the 

chemistry of ASR. However, later research conducted by Power and Steinour (1955) 

showed that the main factor affecting the “expansivity” of ASR is the ratio of calcium to 

silica. They found that if the ratio is very low, the gel can be very expansive; however, if 

this ratio is high, the gel won’t be expansive. Other researchers in later years had 

different thoughts about this issue. Since the role of CH has been a point of controversy 

among researchers since Hanson discovered ASR in 1940, CH was introduced as a 

parameter in the experimental design. 

The effect of CH on ASR characteristics is presented in Figure 5.15. As seen from 

the figure, the ultimate expansion increases slightly when CH is present in the alkaline 

solution. For example, for SuG conducted at 800C, the 0ε (%) is 0.057% at 0.5N 

NaOH+CH, while the 0ε (%) is 0.049 at 0.5N NaOH. This is equivalent to a 16.3% 

increase. The same conclusion on the effect of ASR can be made for other types of 

aggregates tested at different alkalinities at all temperatures. This increase may be due to 

the following reason: as the gel is formed around the rock, calcium ions in the alkaline 

solution in addition to calcium leaching out from the aggregate, are taken into the gel and 

prevent the diffusion of dissolved silica ion into the solution, therefore creating a barrier 

around the aggregate. Pore solution chemistry (provided in the next section) supports this 

point of view. Results show calcium concentration reduces significantly after the test 

indicating that it participated in the chemical reaction. The above results are consistent 

with the ASR theory developed by Chatterji. In his theory, Chatterji et al. 1986 and 

Chatterji 1989 mentioned that the rate of diffusion of silica out of the reactive grain is 

inversely proportional to the concentration of Ca(OH)2 in the pore solution around the 

reactive aggregate. He added that when there is an ample amount of CH, a minimal 

quantity of Si+4 can diffuse out of the grain. Another important conclusion that can be 

stated here is that expansion is also measured in the absence of CH. This indicates that at 

least the gel did not dissolve into the high alkaline solution. Otherwise, shrinkage would 

have been measured instead of expansion.  
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Figure 5.15 Effect of Calcium Hydroxide (CH) on Ultimate Expansion.
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Chemistry of Test Solution 

As described previously in Chapter II, a high pH value facilitates the development of 

ASR, as high pH values increase the dissolution of amorphous silica in the aggregate. 

Therefore, it is imperative to measure pH values to check if there is any correlation 

between pH values and ASR characteristics. For that reason, pH values were measured 

before and after each test using an Accumet pH meter. It is also known that the presence 

of alkali ions is mandatory for ASR gel development; consequently, it is vital to study the 

change in alkali concentration after the dilatometer test. Sodium (Na+), potassium (K+) 

and calcium (Ca+2) were measured before and after each experiment using a four element 

flame photometer. This section presents the results and discussion of the pH and of the 

chemistry of the test solution before and after testing. 

pH test results are presented in Table 5.5. It should be mentioned here that pH 

values are a representation of the hydroxyl ions in the solution. As shown in the table, the 

pH values decrease for all tests, regardless of the alkalinity and temperature of the test 

solutions. This is a clear indication that hydroxyl ions were consumed in the chemical 

reaction. However, the rate of decrease of pH values is different for each type of 

aggregate. For example, the pH value for New Mexico Rhyolite at 1N NaOH+CH at 

800C was measured to be 14.009 before testing. Then it dropped significantly to 13.087. 

One has to mention here that 1N NaOH yields a pH 14 and 0.1 N NaOH gives a pH of 13. 

Thus, from NMR pH results, this drop in pH values is equivalent to a 90% reduction in 

hydroxyl ions concentration. On the other side, for Platt River Gravel, the pH values at 1 

N NaOH+CH at 800C dropped from 14.009 to 13.514. This is equal to a 70% decrease in 

OH-. Based on the above pH measurements, it can be seen that (OH-) ions were 

consumed more during the chemical reaction in the dilatometer test where NMR is the 

aggregate. Consequently more gel is expected to be formed in the NMR case, and more 

expansion is anticipated to be measured, which was the case. This comparison of the % 

decrease of OH- concentration is very consistent with ASR characteristics discussed 

earlier in the chapter. In fact, the ultimate expansion 0ε  was 0.1190 % for NMR at 1N 

NaOH+CH at 800C while it was 0.053 % for PRG at the same alkalinity and temperature. 

This clearly indicates that NMR is more reactive than PRG as more (OH-) were 

consumed (lower pH values) and higher measured expansion was recorded. 
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An important piece of information can be deduced from the analysis of the test 

solution. (K+) was measured in all tests, although the alkali test solutions before the test 

don’t contain any (K+) ions. This is an indication that those ions were leached out from 

the aggregate during testing. This finding is consistent with a previous study by Berube et 

al. 2002 that shows that some types of aggregate (i.e. volcanic glass, micas, alterated 

feldspars, etc) can supply a substantial amount of alkalis into the pore solution of 

concrete. 

Ca(OH)2 was added to the NaOH solutions of respective strengths (e.g., 1N, 0.5N, 

and 0.25N) at room temperature. It is known that CH solubility is very low in water (i.e., 

around 1gm / liter) which matches with concrete pore solution. A comparison is 

conducted between the amount of calcium measured after the test for NMR at 1N 

NaOH+CH at 60, 70 and 80 0C. Results indicate that Ca+2 ions concentrations decrease as 

temperature increases. This is an indication that more Ca+2 ions have participated in the 

reaction. The results are consistent with pH values obtained at 60 0C (pH = 13.141) and 

80 0C (pH = 13.087). This indicates that more OH- ions were consumed and more gel was 

formed. Therefore, one can conclude that the presence of CH enhances ASR expansion 

slightly. But this increase is not significant. Results of ASR characteristics support this 

point of view. It is also interesting to notice that higher Ca+2 ions concentration are 

measured in PRG than NMR. Consequently, it can be concluded that more calcium has 

participated in the case of NMR. Therefore, it can be deducted from this observation that 

NMR is more reactive than PRG (pH values after the test supports this deduction). 

The solubility of gel in alkali solution is a point of interest. Therefore, alkali ions 

were measured after the test. Results are presented in Table 5.5. It can be seen that (Na+) 

concentration decreases significantly, irrespective of the test conditions (i.e. temperature, 

alkalinity, CH). This can be explained as follows: as hydroxyl ions attack the grains of 

the aggregate, siloxane bridges are broken and eventually silica dissolves creating a 

negative charge (SiO-). To maintain equilibrium in the system, Na+ ions were attracted 

and taken into the gel, resulting in the measured decrease of (Na+) concentration after the 

test. Another conclusion can be stated here is that the gel did not dissolve (at least fully) 

in the alkali solution, otherwise (Na+) should be at least the same or maybe higher as 

some (Na+) ions may also leach out of the rock. To investigate the effect of test 
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parameters on the alkali concentration, the % decrease in Na+ was determined using the 

following equation: 

+Na
% R 100Na Na

Na
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C C

C
+ +
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The results are displayed in Figure 5.16. It can be seen that % Na+ reduction increases 

with increasing alkalinity and temperature of test solution; i.e. the % 
Na

R +  was 23% for 

Spratt Limestone at 80C whereas it was 10% at 600C. Similar behavior for other 

aggregates tested at different alkalinity was noticed. Thus, it can be concluded that 

increasing temperature and alkalinity enhance ASR, as the driving force of the diffusion 

of the alkali hydroxide ions into the aggregate grains becomes higher and faster. 
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Table 5.5 Test Solution Chemistry Before and After the Test. 
 

Alkali Concentration (ppm) before testing Alkali Concentration (ppm) after testing Aggregate 
type 

Alkalinity 
N = NaOH 

Temp 
(0C) pH Na+ K+ Ca+2 pH Na+ K+ Ca+2 

60 14.009 23605 0 486 13.141 16068 52.8 68.7 
70 14.009 23605 0 486 13.135 14481 55.9 59.5 1N + CH 
80 14.009 23605 0 486 13.087 13438 51.7 51.4 
60 13.708 11755 0 486 13.319 8911 62.8 106.2 
70 13.708 11755 0 486 13.271 7916 54.5 93.4 0.5N + CH 
80 13.708 11755 0 486 13.201 7394 62.6 85.8 
60 13.399 5877 0 486 13.291 5124 12.0 137.5 
70 13.399 5877 0 486 13.277 4982 13.7 119.0 

New 
Mexico 
Rhyolite 

0.25N + CH 
80 13.399 5877 0 486 13.189 4674 35.6 102.9 
60 14.004 23605 0 0 13.778 22183 5.1 1.3 
70 14.004 23605 0 0 13.687 21804 5.8 1.6 1N 
80 14.004 23605 0 0 13.652 20666 5.6 2.9 
60 13.701 11755 0 0 13.356 11329 1.3 1.7 
70 13.701 11755 0 0 13.381 11080 1.3 1.6 0.5N 
80 13.701 11755 0 0 13.369 10475 1.2 1.5 
60 14.009 23605 0 486 13.71 21377 3.7 339.9 
70 14.009 23605 0 486 13.617 19813 3.9 285.3 1N + CH 
80 14.009 23605 0 486 13.514 19244 3.6 276.8 
60 13.708 11755 0 486 13.303 11092 1.5 374.5 
70 13.708 11755 0 486 13.354 10582 1.3 311.4 

Platte 
River 
Gravel 

0.5N + CH 
80 13.708 11755 0 486 13.305 10215 1.5 291.5 
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Table 5.5. (Cont). 
 

Alkali Concentration (ppm) before testing Alkali Concentration (ppm) after testing Aggregate 
type 

Alkalinity 
(NaOH) 

Temp 
(0C) pH Na+ K+ Ca+2 pH Na+ K+ Ca+2 

60 14.004 23605 0 0 13.603 21093 465.5 1.5 
70 14.004 23605 0 0 13.576 20074 421.9 1.2 1N 
80 14.004 23605 0 0 13.558 19339 448.2 1.4 
60 13.701 11755 0 0 13.31 10463 312.4 1.5 
70 13.701 11755 0 0 13.265 9978 359.5 1.6 0.5N 
80 13.701 11755 0 0 13.253 9504 347.7 1.1 
60 14.009 23605 0 486 13.701 18320 420.0 340.3 
70 14.009 23605 0 486 13.669 17727 430.6 296.2 1N + CH 
80 14.009 23605 0 486 13.507 16898 480.2 258.8 
60 13.708 11755 0 486 13.251 10333 241.3 274.4 
70 13.708 11755 0 486 13.252 9907 310.9 247.9 

Sudbury 
Gravel 

0.5N + CH 
80 13.708 11755 0 486 13.217 9018 342.7 221.4 
60 14.004 23605 0 0 13.687 21211 1.2 1.8 
70 14.004 23605 0 0 13.683 19505 1.0 3.2 Spratt 

Limestone 1 N 
80 14.004 23605 0 0 13.609 18107 1.1 3.8 
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Figure 5.16 Effect of Temperature and Alkalinity on Sodium Concentration.



128 
 

 

Comparison of ASR Activation Energy (Ea) for Aggregate 

The Arrhenius equation which was formulated after the Swedish chemist Svante 

Arrhenius, was used to determine the Ea of aggregate. The Ea was determined from the 

slope of the plot of ln(β ) versus 1/T. the plots and the results of Ea were displayed and 

calculated earlier in the chapter. To compare the reactivity of the aggregate, the Ea of all 

aggregates in this study were compared against each other.  

A summary of the comparison is shown in Figure 5.17. As seen from the figure, 

the Ea of NMR (10.7 KJ/mol) conducted at 1N NaOH+CH is less than the Ea of SuG 

(35.5 KJ/mol) and the latter is less than the Ea of PRG (45.6 KJ/mol). Therefore it can be 

concluded that NMR is more reactive than SuG and PRG, and SuG is in turn more 

reactive than PRG as a lower Ea indicates that less energy is needed to initiate ASR and 

less energy is required to overcome the barrier. Another comparison can be made 

between S.L and SuG at 1 N NaOH alkalinity. The Ea was 53.2 and 43.7 KJ/mol 

respectively. This indicates that SuG is more reactive than SL. From the above two 

comparisons, one can deduct that NMR is the most reactive aggregate tested in this 

research, followed by SuG, S.L and then PRG. Therefore, one can conclude that the 

concept of Ea is a very useful tool and can be used as a screening indicator to determine 

the reactivity of the rock. 

The alkalinity of test solutions appears to play a major role in the Ea values and 

this is very interesting to notice. Regardless of the type of aggregate tested and 

irrespective of the presence or absence of CH in the solution, Ea increases when alkalinity 

decreases. For example, the Ea of PRG at 1 N NaOH is 58.08 KJ/mol and then goes up to 

77.04 KJ/mol at 0.5 N NaOH. This signals the presence of a relationship between Ea and 

alkalinity. Since aggregate in concrete structures will be subjected to different alkali level 

during the lifetime of the structure, it will be very beneficial to relate these two 

parameters through a mathematical model. 
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Figure 5.17 Comparison of Ea for All Aggregates at Different Alkalinities. 

 
 
Intra and Inter-laboratory Comparison (TTI and UNH) 

This IPRF project is a joint study between Texas Transportation Institute (TTI) and 

University of New Hampshire (UNH). One of the main objectives of this study is to 

develop a reliable test protocol that can be conducted within a short period of time. 

Consequently, the repeatability of this test protocol (i.e. dilatometer test method) and the 

reliability of the new kinetic model proposed in Chapter IV becomes a point of interest 

and an important component. To validate the proposed test protocol, two comparisons 

were conducted. The first is an intra-laboratory comparison of TTI activation energy (Ea) 

results obtained from the previous sections. The second is an inter-laboratory comparison 

between TTI and UNH (Ea) results. This section provides the results of the above two 

comparisons in addition to the results of the statistical analysis performed to find out if 
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the difference within TTI results and between the TTI-UNH results are statistically 

significant or not. All analysis was conducted using Microsoft Excel software packages. 

 

Intra-laboratory comparisons 

As mentioned previously in the experimental design, selected tests with different types of 

aggregates were repeated to check the procedure validation and the laboratory 

proficiency. Average, standard deviation and coefficient of variation of Ea (TTI) were 

determined for all repeated tests. Results are presented in Table 5.6. It can be seen from 

the analysis that the COV is less than 7% indicating that the results are highly repeatable. 

 
Table 5.6 Intra-Laboratory Comparisons (Ea) - TTI. 
 

Aggregate 
Type 

Alkalinity 
(NaOH) 

Average (μ ) Standard 
Deviation (σ ) 

COV(%) =σ
μ

 

1N 58.08 3.90 6.72 
0.5N 77.04 3.52 4.57 

1N + CH 45.64 1.15 2.52 

Platt 
River 
Gravel 

0.5N +CH 56.22 0.64 1.14 
1N 43.71 1.28 2.94 

0.5N 47.17 1.79 3.80 
1N + CH 34.09 1.97 5.78 

Sudbury Gravel 

0.5N +CH 38.86 0.62 1.60 
Spratt 

Limestone 1 N 53.21 1.01 1.9 

* CH = calcium hydroxide 
 
 
Inter-laboratory Comparisons 

Inter-laboratory comparison is essential for standard reference material certification. To 

check the multi-laboratory precision, UNH conducted the dilatometer test under the same 

conditions as TTI for Platt River Gravel and Spratt Limestone at 1N NaOH. A summary 

of this comparison is presented in Table 5.7. As shown, this test procedure, although 

conducted in different laboratories by different personnel, can be easily described as 

highly reproducible as the average multi-laboratory coefficient of variation for Platte 

River gravel is less than 10%. 
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Table 5.7 Inter-Laboratory Comparisons of Ea (TTI versus UNH). 

Type of Aggregate 
Alkalinity

(NaOH) 

Ea 

TTI 

Ea 

UNH

Ea 

Average

Standard 

Deviation 

Ea 

COV

Platt River Gravel (PRG) 1N 58.08 66.4 62.24 5.88 9.45 

Spratt Limestone (SL) 1N 53.2 54.3 53.75 0.78 1.45 

• CH = calcium hydroxide 
 

 
Although the results of the above intra and inter-laboratory are very promising, 

questions remain as a) whether the new test protocol and the new kinetic model used in 

the analysis are capable of distinguishing aggregates with different reactivity and b) 

whether this procedure can capture the effect of alkalinity and calcium hydroxide on the 

activation energy (Ea). In other words, from a statistical point of view, is the mean Ea for 

PRG conducted at TTI (58.08 KJ/mol) different than the mean Ea of PRG conducted at 

UNH (66.4 KJ/mol).  

To answer the above questions, a detailed analysis on the data needs to be 

performed using appropriate statistical methods. Consequently, a hypothesis test (T test) 

for the two population means was performed. If the variance were equal, pooled method 

can be used. Since this was not the case, the Satterthwaite method was used to analyze 

the results. The level of significance (α ) for all hypothesis testing was 0.05. α  is 

considered the type 1 error probability. The Null hypothesis (Ho) assumes that the mean 

(Ea) for PRG at TTI is equal to mean (Ea) of PRG at UNH and the alternate hypothesis 

(Ha) was that the mean (Ea) of PRG for both universities are different. If the t value 

obtained from statistical tables (Montgomery and Runger 2002) was less than test 

statistics (T0), the null hypothesis statement was rejected. On the other hand, if it was 

greater than or equal to T0, we will say that there is not enough evidence to reject the (Ho). 

The above statistical procedure is outlined below in a step by step approach.  
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Results of the analysis are presented in Table 5.8. Several points can be observed. 

For the inter-laboratory comparison, it can be seen from the hypothesis testing that there 

was not enough evidence to reject the Ho since 0-t = -4.3 < T = -2.1 < t 4.3= . Since 0T  

falls within the acceptance region, it can be concluded from a statistical point of view that 

(Ea) for PRG of TTI and UNH are equal.  
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Table 5.8 Statistical (Hypothesis Test) Results for Both Inter and Intra-laboratory 
Comparison Using PRG and S.L. Aggregate. 
 

 Combinations T0 t0 
T-test 

Output Conclusion 

1N (TTI) vs. 1 N (UNH) -2.1 4.3 
Fail to reject 

Null 
hypothesis 

Means are 
equal 

1N (TTI) vs. 0.5N (TTI) -5.1 4.3 Reject Null 
hypothesis 

Means are 
not equal 

1N (TTI) vs. 1N+CH (TTI) -4.36 4.3 Reject Null 
hypothesis 

Means are 
not equal 

Pl
at

te
 R

iv
er

 G
ra

ve
l 

1N (TTI) vs. 0.5N+CH (TTI) 0.52 4.3 
Fail to reject 

Null 
hypothesis 

Means are 
equal 

Sp
ra

tt 
Li

m
es

to
ne

 

1N (TTI) vs. 1 N (UNH) -0.74 4.3 
Fail to reject 

Null 
hypothesis 

Means are 
equal 

 

For the intra-laboratory tests, hypothesis tests were done to check if the means 

(Ea) of PRG calculated at different alkalinities are significantly different from each other 

or not. Results are also displayed in Table 5.8. For all cases, the Ho was rejected ( 0T  falls 

within the rejection region), indicating that the means are significantly different. Thus, it 

can be deduced that the new proposed protocol can distinguish the rock based on their 

reactivity and can capture the effect of alkalinity and CH on Ea. 

 
Summary  

This chapter presents the analysis and the interpretation of four aggregate types (NMR, 

PRG, SuG, SL) tested in the dilatometer test at different temperatures under different 

alkali levels with and without calcium hydroxide. A new kinetic model was introduced 

and used to rank the aggregates based on their reactivity using the activation energy 

concept (Ea). The latter was seen as the energy necessary to initiate ASR. Based on the 

analysis conducted, several conclusions can be made: 
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a) Results indicate that ASR expansion increases as the alkalinity of test solutions and 

time goes up and this gain was attributed to the formation and then expansion of 

ASR gel. 

b) Increasing the temperature leads to an increase in the rate constant. This indicates 

that ASR is a thermally activated process. 

c) From ASR characteristics and from the chemistry of the test solution, ASR was 

found to be expansive without the presence of calcium hydroxide, as the major ions 

(sodium and hydroxyls) were consumed during the chemical reaction. It should be 

noted that the presence of CH in the solution increases slightly the ASR expansion. 

d) The Ea concept of ASR was seen to be a useful parameter and has the potential of 

playing the role of a screening parameter for rocks with different reactivity. 

e) From the statistical analysis conducted on the mean Ea, this new test protocol is seen 

to be highly repeatable and reliable. 
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CHAPTER VI 

 

DETERMINATION OF COMBINED CONCRETE  

ASR MATERIAL PROPERTIES USING DILATOMETER 

 

This chapter is divided into four major parts. The first division presents the results and 

analysis of the tests of concrete made with New Mexico Rhyolite (NMR) and Platte River 

Gravel (PRG) aggregates. The second section shows the results of the proposed model in 

Chapter IV linking the activation energy and the alkalinity of test solution. The third 

portion displays the results of the generalized ASR concrete generated from the Badillo 

transform and the additional concrete tests performed to corroborate the suggested model. 

To formulate concrete mixtures highly resistant to ASR, a sequence of steps to determine 

threshold total alkali are presented in the last section of this chapter. 

 

Concrete Characteristics 

The interpretation of NMR and PRG concrete expansion tests are presented in this 

section. For each experiment, pH readings were recorded using a pH meter. Following 

each test, alkali ions measurements (Na+, Ca+2, and K+) were conducted using a flame 

photometer. 

 

New Mexico Rhyolite 

For New Mexico Rhyolite (NMR) testing, concrete was mixed at a water cement ratio of 

0.45 and 25% of the cement content was replaced with class F Fly ash. Type I/II low 

alkali cement and non reactive sand were used in the mixture and the coarse aggregate 

factor was 0.7. The cement: fly ash: fine aggregate: coarse aggregate ratio was 

1.00:0.46:5.51:3.69 (volumetric). To determine the effect of alkalinity on the concrete 

samples, three tests were conducted at three different alkalinity levels: 1 NaOH + CH, 0.5 

NaOH + CH, and 0.25 NaOH + CH (CH = calcium hydroxide). All concrete tests were 

performed at 70 0C. The volume expansion test results for the NMR concrete are shown 

in Figure 6.1. For the concrete tested in the 1 NaOH + CH solution (Figure 6.1a), 

measurable expansion started after 12 hours. This was followed by a rapid increase in the  
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(a) NMR expansion at 1N NaOH + CH 
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(b) NMR expansion at 0.5N NaOH + CH 
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(c) NMR expansion at 0.25N NaOH + CH 

 
Figure 6.1 Concrete NMR Expansion. 
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volume expansion until the end of the testing period of 100 hrs culminating at 0.1% 

volume expansion. On the other hand, the concrete specimens tested in 0.25 NaOH + CH 

solution showed no expansion until 40 hrs followed by an increase in expansion with 

constant slow rate till 100 hrs reaching around 0.03% volume expansion until 100 hrs. 

This difference between the time necessary to initiate ASR expansion for 1 NaOH + CH 

and 0.25 NaOH + CH is mainly because of the difference in concentration (e.g., 

normality) of the soak solutions. The higher the alkalinity of the solutions, the sooner the 

ASR is developed and consequently the ASR gel is formed. Therefore, one can expect 

that concrete structures in the field which are subjected to a high alkali environment will 

display expansion and cracking earlier as opposed to pavement structures exposed to mild 

alkali conditions.  

To illustrate the effect of alkalinity of the test solution on NMR concrete, the 

ultimate expansion was determined for the three tests. The expansion data was fitted 

using the same numerical model proposed for the aggregate. The plots of the calculated 

ASR expansion are superimposed on the measured ASR expansion data as shown in 

Figure 6.1 and a reasonably good fit between calculated and measured plots is manifested. 

The model parameters [ε0, ρ , t0, β] corresponding to the calculated expansion are 

presented in Table 6.1. Those were determined using the system identification method. A 

comparison of the ε0 at three different alkalinities is presented in Figure 6.2. As shown, 

the concrete tested in the 1 NaOH + CH solution shows the highest ultimate expansion 

(i.e. 0.1126) and the one tested in 0.25 NaOH + CH solutions shows the lowest ultimate 

expansion ((i.e., 0.0345). The ultimate expansion of the concrete tested in the 0.5 NaOH 

+ CH solution is 0.0756, which is in between the two limiting values. This observation 

suggests that alkalinity plays a major role in the expansion characteristics of concrete. As 

the alkalinity of the test solutions increase, more hydroxyl ions become available and 

diffuse into the matrix of the concrete along with the available alkali ions (e.g., Na+) and 

attack the reactive aggregate leading to the dissolution of the silica. This is confirmed by 

the chemistry of the soak solutions presented in Table 6.2. For example, for the NMR 

concrete tested in the 1 NaOH + CH solutions, the pH was 14.009 at the beginning of the 

test, and then dropped down to 13.718, indicating that hydroxyl ions were consumed in 

the reaction and therefore, their concentration in the soak solutions diminish. 
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Table 6.1 NMR Concrete Parameters Results. 
 

0.25N NaOH + CH 0.5N NaOH + CH 1N NaOH + CH
ε0 (%) 0.0345 0.0756 0.1126
ρ 49.936 36.131 33.536

t0 (hrs) 8.623 11.758 9.707
β 2.102 0.919 1.952

Alkalinity of Test Solution
NMR Concrete - Type I/II cement - 25% FA (class F) - w/cm = 0.45 
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Figure 6.2 Effect of Test Solution Alkalinity on the 0ε  of NMR Concrete. 

 
 

Since CH, one of the main chemical products of the hydration of cement is 

available in the concrete, it is possible that it blocks the diffusion of dissolved silica and 

consequently a thin layer of gel will be formed around the surface of the rock. The above 

theory is not new as it is initially proposed by previous research conducted with ASR 

(Chatterji et al. 1988, Chatterji et al 1986). In the case of test solutions with higher 

concentration than the concrete pore solution, a continuous supply of OH-, Na+, Ca2+ ions 

from the soak solution to the concrete specimens is maintained. The thickness of the gel 

layer increases with time. Since the ASR gel is hygroscopic, it absorbs water leading to 
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its expansion. Since the aggregate is surrounded by the mortar, tension stresses develop. 

As pressure builds up, micro-cracks appear in the paste as well as the aggregate. The gel 

diffuses through the cracks, absorbs more water and expands the concrete as a result. It 

should be mentioned here that all concrete samples were cured for 14 days after casting. 

Accordingly, the concrete is in a saturated condition and the diffusion of ions in or out of 

the concrete becomes much faster.  

In a previous part of this study, the NMR aggregates were tested in the 

dilatometer at 70 0C in three different alkali solutions (1 NaOH + CH, 0.5 NaOH + CH, 

and 0.25 NaOH + CH) similar to the concrete testing. CH was added to the NaOH 

solution to simulate the pore solution of the concrete. The ultimate expansion of the 

aggregate was equal to 0.0537 %, 0.1023 %, 0.1134 % for 0.25 NaOH + CH, 0.5 NaOH 

+ CH, and 1 NaOH + CH respectively.  

To compare the ultimate expansion of aggregate and concrete, the expansion ratio 
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 introduced previously in Chapter IV is calculated. The results are shown 

in Figure 6.3. Some important observations can be made based on the results in Figure 

6.3. The ratio r at 1 NaOH + CH is equal to 0.987 indicating that the ultimate expansion 

of concrete is almost equal to the ultimate expansion of aggregate. This appears to be 

surprising because the aggregate is surrounded by the cement paste and the latter was 

expected to provide restraining effects as well as some barrier against hydroxyl and other 

ions coming from the alkali solutions. But this doesn’t look to be the case. The most 

reasonable explanation is the concrete at this stage is still very porous, especially at a 

water/cement ratio of 0.45 and the transition zone between the aggregate and the paste is 

still very weak, although the mix contains 25% class F fly ash. It is known that fly ash 

increases the durability of concrete through the pozzolanic reaction. At the same time, it 

is known from the literature, that the mechanical properties of concrete (i.e. compressive 

strength) are much weaker in its earlier stage than the concrete containing no fly ash. But 

once the pozzolanic reaction initiates, concrete microstructure becomes more dense with 

time as calcium hydroxide is transformed to calcium silicate hydrate. The same analogy 

can be applied here, in relation to the diffusion of ions though the interior of the concrete. 
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Table 6.2 NMR Soak Solution Chemistry Before and After the Test. 
 

Alkali Concentration 
(ppm) before testing 

Alkali Concentration 
(ppm) after testing 

A
gg

re
ga

te
 

ty
pe

  
Test 

Conditions 

Alkalinity 
(NaOH) 

Temp 
(0C) pH 

Na+ K+ Ca+2 
pH 

Na+ k+ Ca+2 

1N + CH 70 14.009 23605 0 486 13.718 18770 79.9 253.1 

0.5N + CH 70 13.708 11755 0 486 13.611 9883 71.1 240.8 w/cm = 0.45  
FA =25% 

0.25N + CH 70 13.399 5877 0 486 13.354 5962 94.3 255.5 

1N + CH 70 14.009 23605 0 486 13.651 17372 83.4 262.1 

0.5N + CH 70 13.708 11755 0 486 13.433 8887 74.4 270.7 N
ew

 M
ex

ic
o 

R
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ite

 

w/cm = 0.45  
FA =0% 

0.25N + CH 70 13.399 5877 0 486 13.411 5811 77.0 280.8 
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Figure 6.3 Effect of Alkalinity on the Expansion Ratio 0
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 of NMR Concrete. 

 
 

It appears that the concrete remains highly permeable to ions coming from outside 

the matrix, resulting in an excessive expansion (more porous and permeable concrete 

may allow more ion migration, thereby inducing a higher rate of reaction but it can also 

offer more space to accommodate the gel that is formed and thereby, may cause less 

expansion. The high recorded volumetric expansion of the NMR concrete indicates that 

the pozzolanic reaction is still at its early age.  

Another complementary explanation to the similar volume expansion of aggregate 

and concrete is the presence of an alkali gradient. It is known that the pH of the pore 

solution of concrete is around 13.5 and this corresponds to a value between the 0.5N 

NaOH + CH and 0.25 NaOH + CH solutions. For the concrete test conducted at 1NaOH 

+ CH, the pH of the alkali solution is slightly higher than 14 while the pH of the pore 

solution is expected to be around 13.25-13.5. Consequently, an alkali gradient was 

developed leading to the forced migration of hydroxyl ions. The pH decreases from 

14.009 to 13.718 toward the inner of concrete in order to achieve equilibrium. The above 
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mentioned gradient is demonstrated by a sharp decrease in the Na+ concentration from 

23605 ppm to 18770 ppm at the end of the test; this is equivalent to a 20% decrease. As a 

result of the above two possible explanations, the concrete resistance is weakened by 1) 

the presence of fly ash and 2) the presence of an alkali gradient.  

For the second concrete test performed at 0.5N NaOH + CH, the ultimate 

expansion of the concrete decreases from 0.1126 % to 0.0756% and the expansion ratio r 

decreases as well from 0.987 to 0.738. This was expected as the effect of the alkali 

gradient is reduced to a minimum since the difference in pH between the alkali solution 

and the pore solution of the concrete is also reduced. Solution chemistry confirms this 

gradient decrease as the Na+ concentration decreases from 11755 ppm to 9883 ppm and 

this corresponds to a 15.9% reduction.  

For the third concrete test conducted in a 0.25 N NaOH + CH solution, the 

gradient is expected to occur in the opposite direction (i.e. the alkali concentration of the 

pore solution is higher than the alkali concentration of the test solution). As a result, the 

ultimate expansion was recorded at 0.0345% and the expansion ratio decreases again 

from 0.738 to 0.642. This point of view is supported from the results of Table 6.2 as there 

is very little difference in the pH value before and after the test (13.399 versus 13.354). A 

similar deduction can be made concerning the Na+ concentration (5877 ppm before the 

test versus 5962 ppm after the test). This suggests that equilibrium is achieved between 

the pore solution of concrete and soak solution. It should be mentioned here that the 

volume expansion of concrete is a result of hydroxyl and alkali attack coming from two 

different sources: the first from the cement itself and the second from the alkali solutions 

in which the concrete is immersed. 

 
 

Platte River Gravel 

For the concrete made with Platte River Gravel (PRG), ASTM C1260 molds were used 

during casting. In order to make a comparison between the NMR and PRG results, 

similar mix design factors were selected; i.e. (CF = 6, w/cm = 0.45). To illustrate the 

significance of the alkali solutions on the PRG mortar, two experiments at 700C were 

performed at 1 NaOH + CH and 0.5 NaOH + CH. The volumetric expansion results of 
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the PRG concrete are shown in Figure 6.4. It should be noted that each plot is an average 

of two as each test was repeated twice to check the repeatability of the procedure. As 

shown in the plots, both curves at both alkalinities show similar characteristic patterns. 

Almost no expansion is measured in the first couple of hours. This first phase can be 

called the dormant period as alkali ions from the soak solutions begin to diffuse through 

the interior of the concrete and attack the reactive siliceous gravel. The second period 

extends from the 10-15 hrs up to the 100 hrs where the % expansion reaches 0.035% and 

0.02% for PRG conducted at 1 NaOH + CH and 0.5 NaOH + CH solutions, respectively. 

As shown from the plots, the alkali content of the soak solution has a significant 

influence on the expansion of mortar bars. 

In order to make a quantitative comparison of the effect of alkalinity on mortar, 

the expansion characteristics were calculated using the numerical model proposed 

previously for the aggregate. The parameters of the model were calculated using the 

system identification method. The calculated expansion data were superimposed on the 

measured data in Figure 6.4 it can be seen that the model fits the data well. The PRG 

mortar characteristics are presented in Table 6.3. As shown from the table, the 

consequence of increasing the alkalinity of the soak solution is evident in the ultimate 

expansion ( 0ε ), the theoretical initial time ( 0t ) and on the rate constant (β ); i.e. at in the 

1 NaOH + CH solution, the 0ε  is 0.035% while it is 0.024% in the 0.5 NaOH + CH 

solution (Figure 6.4) and β  also goes up as well from 1.274 to 1.332. This is explained 

as follows: as higher alkalinity indicates a higher abundance of hydroxyl ions in soak 

solution, the sooner the hydroxyl ions penetrate through the mortar pores, the sooner the 

ASR is started and gel is formed. Consequently, a greater amount of expansion is 

recorded by the data acquisition system. This is manifested by a higher rate constant and 

lower initiation time at higher alkalinity ( 0t  =7.48 hrs at 1 NaOH + CH versus 0t  = 8.379 

hrs at 0.5 NaOH + CH).  
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(a) PRG expansion in 1N NaOH + CH solution 
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(b) PRG expansion in 0.5N NaOH + CH solution 
 

Figure 6.4 Mortar Expansion. 
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Table 6.3 PRG Mortar Parameters Results (First Set). 
 

0.5N NaOH + CH 1N NaOH + CH
εu 0.0236 0.0353
ρ 26.962 29.493
te 8.379 7.480
β 1.274 1.332

PRG Mortar - Type I/II cement - 25% FA (class F) - w/cm = 0.45 
Alkalinity of Test Solution

 
 
 

The previous explanation is supported by the chemistry of the soak solutions 

before and after the tests. The results are presented in Table 6.4. As shown in the table, 

pH values decreases from 14.009 before the test to 13.805 after the test. This corresponds 

to a 20% decrease in hydroxyl ion concentration. This indicates that hydroxyl ions were 

consumed in the reaction. However, it is important to observe that the pH values did not 

change after the test for the PRG mortar conducted at 0.5 NaOH + CH (13.708 before 

versus 13.709 after), although measured expansion was recorded. This is a clear 

indication that mortar made with reactive aggregate can be expansive despite the use of 

low alkali cement (type I/II) and 25% class F fly ash. This suggests that mortar is still 

permeable at this stage and therefore a higher percentage of supplementary cementitious 

materials may be needed or this may be an indication that the pozzolanic reaction did not 

yet achieve its peak. The occurrence of the reaction is further manifested by the decrease 

of Na+ ions after the test with both alkalinities. For example, for PRG conducted at 1 

NaOH + CH, the Na+ ions concentration drops down from 23605 ppm to 21164 ppm, this 

is equivalent to 2441 ppm while the decrease is 1280 ppm for PRG conducted at 0.5 

NaOH + CH. Thus it can be concluded that increasing alkalinity enhances ASR, as the 

power of diffusion of alkali ions becomes higher and faster and consequently, a higher 

ultimate expansion is expected. Results of ASR characteristics support this point of view 

(Figure 6.5).It can also be seen from Table 6.4 that (K+) ions were measured after the test 

although the initial alkali soak solution did not contain potassium. This suggests that (K+) 

ions leach out from the mortar bars.  
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Table 6.4 PRG Soak Solution Chemistry Before and After the Test. 
 

Alkali Concentration 
(ppm) before testing 

Alkali Concentration 
(ppm) after testing 

A
gg

re
ga

te
 

ty
pe

  
Test 

Conditions 

Alkalinity 
(NaOH) 

Temp 
(0C) pH 

Na+ K+ Ca+2 

pH 

Na+ k+ Ca+2 

1N + CH 70 14.009 23605 0 486 13.805 21164 27.8 259.5 w/cm = 0.45  
FA =25% 

0.5N + CH 70 13.708 11755 0 486 13.709 10475 23.2 267.3 

1N + CH 70 14.009 23605 0 486 13.985 23878 25.4 415.2 

Pl
at

te
 R

iv
er

 G
ra
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l 

w/cm = 0.45  
FA =50% 

0.5N + CH 70 13.708 11755 0 486 13.703 11603 15.9 427.5 
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Figure 6.5 Effect of Test Solution Alkalinity on the 0ε  of PRG Mortar (with FA). 
 

 

A comparison is made between the ultimate expansion of NMR concrete and PRG 

mortar. This is possible since all mix design parameters are the same. By comparing 

Figures 6.2 and 6.5 for tests conducted at 1N NaOH + CH, the 0ε for NMR concrete was 

0.112 % while it was 0.035% for PRG mortar. Similar deduction can be made for tests 

performed at 0.5N NaOH + CH. Therefore it can be deduced that NMR concrete is more 

reactive than PRG mortar. The results of NMR concrete and PRG mortar corroborated 

the previous results shown in Chapter V. In other words, the above comparison of the  0ε  

of NMR concrete and PRG mortar is very consistent with ASR aggregate characteristics 

results determined at 700C earlier in Chapter V where the 0ε  of NMR aggregate 

(0.1134 %) is much higher than the 0ε  of PRG aggregate (0.036 %). A similar deduction 

is also possible by comparing the Ea of both aggregates (46.46 KJ/mol for PRG versus 

10.72 KJ/mol for NMR). Consequently, it can be concluded that the type of reactive 

aggregate used in concrete mixtures is the main parameter that determines the expansion 

that may occur in concrete pavement. Although, the above comparison is made, it is 
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necessary to comment that the 0ε  comparison may not be entirely appropriate because 

the NMR and PRG molds are different. 

In a previous part of this study, the PRG aggregates were tested in the dilatometer 

at 70 0C at two different alkali solutions (1 NaOH + CH and 0.5 NaOH + CH) similar to 

the concrete testing. Calcium hydroxide was added to the NaOH solution to simulate the 

pore solution of the concrete. The ultimate expansion of the aggregate was equal to 

0.034 %, 0.036 %, for 1 NaOH + CH and 0.5 NaOH + CH solutions, respectively. As in 

the previous section, the expansion ratio 0
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 was determined. It should be 

stated here that the factors that effect ASR is different for each. When the PRG aggregate 

is tested in the dilatometer, the progress of the chemical reaction is totally determined by 

the degree of crystallinity and the number of the reaction sites exposed to alkali 

hydroxide ions. On the other side, the reaction in mortar samples depends on the 

availability of alkali ions in the matrix in addition to the permeability of the mortar. 

Temperature is also a factor in both cases. 

The expansion ratio results are presented in Figure 6.6. Several points need to 

point out based on the plots. The ratio r for both experiments is 0.957 and 0.868 for tests 

performed with 1 NaOH + CH and 0.5 NaOH + CH solutions, respectively. This is 

considered significantly high. This can be explained as the combined effects of two 

concurrent causes: the first is that it is known that siliceous gravel has a smooth surface 

texture. This will lead to the formation of weak bond between the cement paste and the 

aggregate. This weaker bond will eventually help the formation of a weak transition zone. 

Thus, the permeability of concrete will increase by providing channels to the alkali ions 

in the soak solution to diffuse through the interior of the concrete. Another possible 

reason is as follows: in general, in concrete mixtures, solid materials settle while excess 

water migrates to the surface. Although this will result in the formation of a thin weak 

layer at the surface of the pavement, it is highly possible that this surface can provide a 

shielding effect for the top surface, avoiding direct contact between aggressive ions from 

the environment and the interface zone at top of the concrete pavement. In the case of the 

NMR concrete and PRG mortar, this possible protective layer does not exist since the 

dimensions of the molds (1×1×1.25”) doesn’t permit this stratum to be formed and 
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consequently, the aggregate surface is in direct contact with the alkali ions from the 

solutions, resulting in a higher diffusion rate and as a result higher permeability of the 

concrete. Therefore, restraint provided by the cement paste is at a minimum relative to 

concrete. 
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Figure 6.6 Effect of Alkalinity on the Ratio 0
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 of PRG Mortar (with FA). 

 
 

 

Determination of Ea Matching with Field Conditions of Alkalinity - NMR 

To formulate concrete mixtures highly resistant to ASR, the aggregate activation energy 

(Ea), alkalinity, and the concrete mixture design parameters (water cement ratio, fly ash, 

etc) need to be linked through a robust and reliable approach. The first step in this 

approach is to link the alkalinity of the soak solution and the (Ea) of aggregate. In the test 

program outlined in Chapter III, NMR aggregates were tested at three different 

alkalinities (1 NaOH + CH, 0.5 NaOH + CH, 0.25 NaOH + CH). This corresponds to pH 

values between 13.39 and 14. The pore solution in concrete may achieve these high 

values depending on a) the form of reactive silica in the aggregate (amorphous, etc), b) 
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the permeability of the concrete and c) the availability of alkali ions in the matrix. 

However, in other cases where the presence of supplementary cementitious materials 

binds the movement of alkali ions in the matrix, the concentration of hydroxyl ions drops 

down to achieve equilibrium and therefore the pH of the solution goes down as well. 

Since the dilatometer test is unlikely to be conducted at a very low alkalinity (i.e. less 

than 0.1N NaOH or pH =13) because no measurable expansion can be recorded within a 

reasonable period of time. Consequently, it becomes vital to predict the activation energy 

needed to initiate ASR at lower pH values.  

To achieve this objective, the following model; linking the alkali of the soak 

solution and alkalinity; introduced initially in Chapter IV is used.  

0

1
a aE E n

C
C

+=      (6.1)  

0

1 1-n

where:
KJActivation Energy 
mol

KJActivation Energy - Threshold 
mol
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As shown from the proposed model, the and CaE  are known values and those 

correspond to the activation energy of the aggregate at a specific levels of alkalinity. 

Those were determined previously in Chapter V. The parameters to be determined are 

0 1,  ,  and aE C n . System identification method was used in this case. For this reason, the 

sensitivity matrix, change vector and residual vectors were defined and set up. Since the 

process of determining those parameters is an iteration process, a matlab routine was 

developed for that purpose. The detailed description of the algorithm followed is 

presented in Chapter IV. The results obtained are presented below: 

0 15.956,   4.821,  1.327aE C n= = =  

By substituting the above calculated parameters in the model, Eq. 6.1 becomes as follows  
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a 1.33

4.82E 5.95
C

+=      (6.2)  

To demonstrate the accuracy of the proposed model, the predicted aE  is plotted 

versus the measured aE . Results are presented in Figure 6.7. As shown from the plots, 

the model fit to the measured data is appropriate and accurate. 

The shape of the curve (“POWER CURVE”) is important and illustrates the effect 

of alkalinity on aE . As shown, the alkalinity and the aE  have an inversely proportional 

relationship. For example, the aE  is 34.2 kJ/mol at 0.25 N NaOH+CH whereas it is 10.7 

KJ/mol at 1 N NaOH+CH. Two valuable pieces of information can be noticed by looking 

at the values of aE  at low (i.e. less than 0.25N) and at high alkalinity (i.e. higher than 1N).  

The first point noticed is that the aE  values decrease slightly once the alkalinity 

increases above 1N as it approaches the threshold value of 5.95 KJ/mol. For example, at 

the 1N levels, the aE  is 10.7 KJ/mol while it is 7.9 KJ/mol from the predicted model at 2 

N. This can be explained as follows: the amount of aggregate tested in the dilatometer is 

constant and therefore the total surface area of the reactive aggregate is constant as well. 

Therefore increasing the alkalinity beyond a specific amount will not decrease the 

amount of aE  significantly since the reaction sites on the surface of the aggregate were 

fully saturated by the hydroxyl ions coming from the soak solutions. Thus increasing 

alkalinity will induce only minimal change on the aE  values. 

On the other side, the aE  values increase greatly as alkalinity of the soak 

solutions decreases below 0.25 N. For example, the aE  is 34.27 KJ/mol at 0.25 N while it 

is 108.5 KJ/mol (from the predicted model) at 0.1N. This significant increase can be 

explained as follows: at lower alkalinity (0.1N), the amount of hydroxyl ions is smaller 

than at higher alkalinity (0.25N) and therefore the number of aggregate reaction sites is 

considerably lower than the number at higher alkalinity. To compensate for this decrease, 

larger values of aE  are expected. It should be mentioned that from a theoretical point of 

view, the necessary aE  may reach infinity at very low alkalinity. These two above 
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explanations are very consistent with the definition of aE  mentioned earlier in Chapter V, 

as the energy required to initiate ASR. 
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Figure 6.7 Effect of Alkalinity on the aE  of NMR. 
 
 

Development of a Reaction Signature for NMR Combined Concrete Materials 

The price of repairing and/or demolishing concrete structures has increased over the years. 

Therefore, it becomes vital to select for our concrete mixtures, sound materials resulting 

in maintenance free service structures that last for long periods of time.  

As mentioned before in Chapter II, ASR is a durability problem. The main 

parameter that affects durability of concrete is its permeability. Higher permeability 

indicates that alkali ions can move freely though the concrete matrix. The main parameter 

that controls the permeability of concrete is the water cement ratio (w/cm) as higher 

w/cm results in highly permeable concrete and consequently, structures will be more 

susceptible to ASR. 

To mitigate the detrimental effects of ASR, agencies and contractors used 

supplementary cementitious materials (SCM’s) (e.g. fly ash) in different amounts based 
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on previous field performance, but their selection is mainly empirical and the effect of 

adding different amount of those SCM’s on ASR remains unknown. Therefore, it 

becomes very beneficial for designers to have a tool and/or test protocol within their 

hands to predict the effect of the main factors (w/cm, SCM’s) that control ASR in 

concrete structures.  

To achieve this objective, a model was developed following the Juarez-Badillo 

procedure (Juarez-Badillo 1981). The deduction of the model was presented in details in 

Chapter IV. The proposed model below links the expansion ratio r, the aE  of the 

aggregate, w/cm and the % of fly ash used in concrete mixtures. 
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As shown from the proposed model, the and raE  are known values and those 

corresponds to the activation energy of aggregate and the expansion ratio at a specific 

alkalinity. Those were determined in the previous section of this chapter. The parameters 
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to be determined are C, β,  and γα . Before determining, the boundary conditions were 

set up as follows: 

(a) It is known that the first component of ASR is the dissolution of silica from the 

aggregate. The amount dissolved is directly related to the pH of the pore solution as 

high pH values increases the dissolution process. Tang and Su-Fen in 1980 found that 

the solubility of amorphous silica increases dramatically from 10 mm/L at pH 12.6 to 

70 mm/L at pH 13. Therefore, pH values of 12.6 were chosen as a threshold for the 

pore solution of concrete and this corresponds to an aE  equal to 400 (based on the 

previous model). Thus 
maxaE  = 400 KJ/mol. 

(b) As noted earlier, the use of fly ash is common to control ASR and to improve the 

durability of concrete. Chatterji, et al. 1986 mentioned that if sufficient amount of 

mineral admixtures are added, ASR may be restrained as calcium hydroxide is 

consumed during the pozzolanic reaction. Therefore, there is interest in predicting the 

effect of high dosage of fly ash on ASR. So, the max (Max % of Fly Ash)f  was 

assumed to be 55%. 

(c) The presence of water is essential for ASR gel to expand and this is governed by the 

amount of water available in the concrete matrix after hydration occurs. The 

minimum and maximum water cement ratio were selected close to ones used in 

concrete mixture on the job-site ( min 0.4w =  max 0.55w = ). 

 

By substituting the values of  min ,w  maxw , 
minaE , 

maxaE  maxf  in the proposed model, Eq. 

(6.3) becomes as follows: 
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6 2 (400 )

( 5.95)5 11 . .
6 2 (400 )

a

a

a

a

EC
E

r
EC

E

αβ γ

αβ γ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤−⎡ ⎤ ⎡ ⎤+ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                (6.4) 
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To determine C, β,  and γα , the system identification method is used. The 

detailed description of the algorithm followed is presented in Chapter IV. A matlab 

routine was developed to facilitate the calculation of the parameters. The results obtained 

are presented below: 

2.617,  2.823,  4.905,  0.925C β γ α= = − = = −  

By substituting the calculated parameters in the generalized model (Eq 6.3), the 

expression becomes as follows: 
0.9252.8234 4.9051

0.9252.8234 4.9051

( 5.95)0.42.6178. .
0.55 0.55 (400 )

( 5.95)0.41 2.6178. .
0.55 0.55 (400 )

a

a

a

a

Ef w
f w E

r
Ef w

f w E

−−

−−

⎡ ⎤⎡ ⎤ −−⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦=

⎡ ⎤⎡ ⎤⎡ ⎤ −−⎡ ⎤⎢ ⎥+ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

 (6.5) 

The above equation can be expressed as follows: 

a( ) function (f, E , w)u

a

ε
ε

=      (6.6) 

where: 

f  = fly ash 

aE  = activation energy of aggregate at a specific alkalinity 

w  = water cement ratio  

For NMR concrete mixtures, the amount of fly ash and water cement ratio is 

known from the design combinations (w/cm = 0.45 and FA = 25%) and therefore, those 

variables are constant in Eq. 6.6 which yields the following:   

(a) a( ) function (f, E )u

a

ε
ε

=     (6.7) 

Eq. 6.7 can be expanded as follows:  
0.9252.8234

3

0.9252.8234
3

( 5.95)87.36 10 . .
0.55 (400 )

( 5.95)1 87.36 10 . .
0.55 (400 )

a

a

a

a

Ef
f E

r
Ef

f E

−−
−

−−
−

⎡ ⎤⎡ ⎤ −
× ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦=

⎡ ⎤⎡ ⎤⎡ ⎤ −⎢ ⎥+ × ⎢ ⎥⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  (6.8) 

 

(b) a( ) function (E , w)u

a

ε
ε

=      (6.9) 
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Eq. 6.9 can be expanded as follows:  
0.9254.9051

0.9254.9051

( 5.95)0.44.38 .
0.55 (400 )

( 5.95)0.41 4.38 .
0.55 (400 )

a

a

a

a

Ew
w E

r
Ew

w E

−

−

⎡ ⎤−−⎡ ⎤× ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎡ ⎤−−⎡ ⎤⎢ ⎥+ × ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

   (6.10) 

 
Each of the above equations (6.8) and (6.10) leads to the development of  

i) A set of curves between ( )u

a

ε
ε

 and aE  for different FA content (w = 0.45) (Figure 6.8). 

ii) A set of curves between ( )u

a

ε
ε

 and aE  for different w/cm (f = 25%) (Figure 6.9). 

 
Figure 6.8 displays a set of relationships between the activation energy ( aE ) and 

the expansion ratio (r) for NMR concrete mixtures with a w/cm = 0.45. As shown in the 

figure, some points are important to observe. The ratio r decreases as the aE  of the rock 

increases. A decrease in aE  is an indication that the rock is more reactive, thus the uε  of 

NMR concrete will be higher, while the aε  of aggregate will remain constant at a specific 

alkalinity and consequently r increases. The above deduction can be made irrespective of 

the amount of fly ash in the mixture. 

Since the whole objective of this study is to find ways to mitigate ASR, the effect 

of SCM’s (i.e. Fly ash, class F in this case) on ASR is of paramount importance. Thus, 

two comparisons can be made: a) The first between mixtures with and without fly ash 

and b) between concrete mixtures with different percents of fly ash content. Those 

comparisons can be made looking at the r values at a specific values of aE . For example, 

at aE  = 150KJ/mol, the expansion ratio r is equal to 0.99 for concrete mixtures without 

fly ash, while it is 0.91 at 10% fly ash content. This is illustrated in Figure 6.8. This is 

likely due to the fact that the fly ash has reacted with the calcium hydroxide. As a result, 

the structure of the hydrated cement paste becomes denser, which blocks the movement 

of ions from one place to another. This decrease may also be due from the preferential 

reaction of the alkali coming from the fly ash and these alkalis may not be available to 

react with the dissolved silica of the rock (K. Wesche 1991). One has to mention here that 

fly ash also contains alkali, but only 16.66% of those are water soluble and therefore can 
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potentially contribute to ASR and the remaining alkalis are combined (Neville 1996). In 

addition, P.J. Nixon et al. 1986 mentioned fly ash alkali contribution to the pore water in 

concrete depends on the alkalinity of the cement used.  

The second comparison is possible by comparing the r values at higher fly ash 

contents. For example, in Figure 6.8 at aE  = 150KJ/mol, the expansion ratio r is equal to 

0.98, 0.91, 0.69, 0.41, 0.19, 0.07, 0.02 for mixtures containing 5%, 10%, 15%, 20%, 25%, 

30%, 35% Fly Ash Class F respectively (Figure 6.8). It should be noticed here that the 

decrease in r values becomes negligible once the fly ash content reaches the 30% level 

(i.e. r is equal to 0.07 at 30% FA whereas it is 0.02 at 35% FA). This may be an 

indication that calcium hydroxide is almost consumed in the pozzolanic reaction at this 

percent of the fly ash amount. 

Figure 6.9 exhibits a set of relationship between the activation energy ( aE ) and 

the expansion ratio (r) for NMR concrete mixtures with 25 % fly ash. As shown in the 

figure, two points need to be mentioned. Similar to Figure 6.8, it can be observed that the 

expansion ratio r increases when aE  decreases. This is a clear indication that the 

boundary conditions were set properly using the Juarrez-Badillo Transform, as a higher 

value of aE  suggests that the aggregate reactivity is low. So, concrete mixtures made 

with this type of rock will display minimum expansion if any and therefore lower r values 

are obtained. 
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Figure 6.8 NMR Concrete Model (w/cm = 0.45). 
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Figure 6.9 NMR Concrete Model (FA = 25%).
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To be deleterious, ASR gel needs to be expansive. For ASR gel to swell, it needs 

to be in the vicinity of moisture. The water in concrete is found in the capillary and gel 

pores. The pores should be interconnected for water to diffuse toward the reaction sites 

around the aggregates. Therefore, high permeability is required for ASR to proceed. The 

water cement ratio (w/cm) is the main factor controlling the permeability, as high w/cm 

yields a highly porous system and therefore the movement of water molecules and other 

aggressive agents is rapid. As a result of the above, the effect of different w/cm on ASR 

characteristics is important to observe. For example, at aE  = 200KJ/mol, the expansion 

ratio r is equal to 0.048, 0.127, 0.694, 0.969, 0.998 for concrete mixtures at w/cm 0.43, 

0.45, 0.47, 0.49, 0.51 respectively (Figure 6.9). It can be seen from the results that there 

is a sharp increase in r values at a w/cm ratios in excess of 0.45. One has to mention here 

that high r values indicate high concrete permeability as the aε  of aggregate tested in the 

dilatometer is close to those of concrete. Neville 1996 mentioned that it is possible that 

the mature paste around the 0.4 w/cm ratio becomes segmented so that there is a huge 

difference in permeability above and below this number. Powers et al (1954) mentioned 

that the coefficient of permeability increases exponentially for mature cement paste at 

w/cm ratios higher than 0.45. The above are possible reasons for the high r values 

obtained for mixtures with w/cm above 0.45. 
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Validation of the NMR Concrete Model 

To corroborate the previous NMR concrete model, measuredr  values should be compared 

with predictedr  values. To accomplish this task, three concrete tests were conducted at 1 

NaOH + CH, 0.5 NaOH + CH, and 0.25 NaOH + CH. Concrete was mixed at a water 

cement ratio of 0.45. Type I/II low alkali cement and non reactive sand were used in the 

mixture and the coarse aggregate factor was 0.7. No fly ash was used. The cement: fly 

ash: fine aggregate: coarse aggregate ratio was 1.00:0.00:5.51:1.48 (volumetric). All tests 

were conducted at 70 0C. The volume expansion test results for the NMR concrete are 

shown in Figure 6.10. In the initial hours, no expansion is recorded. This was followed by 

a rapid increase in the volume expansion until the end of the testing period of 100 hrs. 

The occurrence of the ASR is confirmed by comparing the pH of the alkali solution 

before and after the test (Table 6.2). For example, for the NMR concrete tested in the 1 

NaOH + CH solutions, the pH was 14.009 at the beginning of the test, and then dropped 

down to 13.651, indicating that hydroxyl ions were consumed in the reaction and 

therefore, their concentration in the soak solutions were diminished. Similar pH 

observation can be made for NMR tested at 0.5 NaOH + CH while the difference in pH 

values before and after the test at 0.25 NaOH + CH is negligible. This maybe due to the 

equilibrium maintained between the pore solution of concrete and alkali soak solutions.  

The time expansion data for NMR at 1N NaOH+CH and 0.5N NaOH+CH shows 

a sign of “double hump”. The second abrupt expansion occurs at time equal to 70 and 78 

hrs for NMR concrete tested at 1 and 0.5N NaOH+CH respectively. Those times 

corresponds to 550-650 micro-strains. This could be very well due to microcracking. To 

check this possibility, the nature of the linear trend between ( )0ε/εLn Ln⎡ ⎤−⎣ ⎦  and 

0( )Ln t t−  is examined. Results are shown in Figure 6.11. It should be mentioned that the 

slope of the line represents the rate constant (β).  
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(a) NMR expansion at 1N NaOH + CH 
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(b) NMR expansion at 0.5N NaOH + CH 
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(c) NMR expansion at 0.25N NaOH + CH 

 
Figure 6.10 Concrete NMR Expansion. 
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(b) NMR - 1N NaOH+CH 
 

Figure 6.11 Determination of NMR Threshold Level of Expansion. 
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The plots indicate a major deviation in β values after 78 hrs for NMR tested at 0.5 

N NaOH+CH. For example, the rate constant is 0.382 for the (15-78 hrs) time expansion 

data whereas it is 11.21 for the (79-100 hrs) data. Similar observation was noticed for 

NMR tested at 1 N NaOH+CH (i.e. β is equal to 0.51 for the first 70 hrs). This was 

followed by a dramatic jump (i.e. 19.032) in the second 71-100 hrs time expansion data. 

This huge difference in (β) values is probably due to microcracking that either: a) allows 

for a higher rate of expansion due to a reduction in stiffness of the matrix or b) allows for 

a higher rate of reaction due to increased fresh surfaces and chemical reactivity. Based on 

the above findings, we can deduct that the threshold level of expansion where cracking 

maybe initiated, occurs in the concrete structures at 550-650 micro-strains. 

To determine the effect of alkalinity on the uε  of concrete, ASR characteristics 

were determined using system identification method. The measured data were fitted using 

the same model proposed previously for the aggregate. The model parameters [ε0, ρ , t0, 

β] corresponding to the calculated expansion are presented in Table 6.5. Looking at the 

results obtained, it can be seen that the level of alkalinity has a significant effect on the 

uε  of concrete. For example, the uε  is equal to 0.1084 % at 1 N NaOH + CH whereas it 

is 0.0498 % at 0.25 N NaOH + CH. This is mainly due to the abundance of alkali ions in 

the soak solutions leading to higher alkali gradient at higher alkalinity. This is confirmed 

by the soak solution chemistry conducted after the test. The (Na+) ions decreases from 

23605 ppm to 17372 ppm at 1 N NaOH + CH (26.4% decrease) whereas this reduction is 

almost non-existent at 0.25 N NaOH + CH (5877 ppm before versus 5811 ppm after).  

 
 

Table 6.5 NMR Concrete Parameters Results (Second Set). 
 

0.25N NaOH + CH 0.5N NaOH + CH 1N NaOH + CH
ε0 0.0498 0.0944 0.1084
ρ 46.297 18.895 20.898
t0 9.656 14.445 14.583
β 2.453 0.617 0.757

NMR Concrete - Type I/II cement - 0% FA (class F) - w/cm = 0.45 
Alkalinity of Test Solution
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Since the uε  of concrete is determined, r-values determinations for all alkalinities 

is possible. The results are shown in Figure 6.12. One crucial point can be made from the 

plots: the calculated r values are close to 1 irrespective of the alkalinity of the soak 

solutions. One has to mention here that high r values indicate that the concrete tested is 

permeable which is highly undesirable in field conditions. The results suggest that he 

mortar surrounding the rock provides minimal restraint at a water cement ratio of 0.45. 

Since the absence of fly ash in all three tests is characterized by a high ultimate expansion 

and consequently high r values, it can be concluded that the presence of a mineral 

admixture is essential in concrete mixtures to mitigate ASR. The recommended percent 

of fly ash used in concrete mixture to mitigate ASR is presented in the following section. 

A comparison is made between the measured and predicted r values. The results 

are presented in Table 6.6. It is evident from the results that the measuredr  values are very 

close to predictedr  values. This comparison leads us to conclude that the proposed NMR 

concrete model has the capability of capturing with high accuracy the combined effects 

of concrete materials (aggregate reactivity, diffusion, w/cm, % fly ash, on ASR 

expansion). 
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Table 6.6 Comparisons of Measured Versus Predicted r Values (NMR). 
 

Alkalinity measuredr  predictedr  
1 NaOH + CH 0.955 0.999 

0.5 NaOH + CH 0.922 0.999 
0.25 NaOH + CH 0.927 0.998 

 
 
 

Development of a Threshold Alkalinity for Design (NMR) 

In the previous sections of this chapter, two models were proposed. Each model was 

generated from a different set of tests. The first model which links the Ea of the aggregate 

and the alkalinity of the pore solution at levels close to those at field conditions was 

brought forth by a set of aggregate-solution tests representing aggregate reactivity with 

pore solution in concrete without the presence of mortar. The second model developed 

using the Juarez-Badillo transform which links the expansion ratio r and the Ea of the 

aggregate for different water cement ratios and fly ash contents was generated by 

conducting concrete tests simulating the effect of SCM’s, w/cm, diffusion, etc as in 

concrete in field conditions. To determine the threshold alkalinity for design for NMR 

concrete for water cement ratio equal to 0.45, the concrete (Figure 6.8) and the aggregate 

model (Figure 6.7) were combined together in the same plot where the x axis represents 

the activation energy for both models as shown in Figure 6.13. The procedure for 

determining the threshold alkalinity for a concrete mixture is described below:  

a) The concrete designer will select the appropriate expansion ratio r. R may represent 

the percentage cracking over the lifetime of the concrete structure. The expansion 

ratio may also be selected based on field experience accumulated over the years. It 

should be mentioned here that theoretically, the designer would like to select an r 

equal to zero and this corresponds to no cracking in the pavement. To achieve that 

purpose, one has to select a type of cement with no alkali content and therefore 

removing an essential component needed for the development of the gel. Since 

cement plants will not be able to produce this type of cement because the raw 

materials used in the cement manufacture already contain alkalis, it becomes 

necessary to select an appropriate value of r based on field experience. For 

demonstration purposes, r is selected in this case to be equal to 0.4. Therefore, a 
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dotted horizontal line is drawn at r = 0.4 (Figure 6.13). The points where this line 

crosses the curves for the different levels of fly ash are indicated as steps 1.1, 2.1, 3.1, 

4.1, and 5.1. The -.1 indicates the first step in this process. 

b) Practically, the designer will select one optimum percent of fly ash needed to control 

the alkalinity of the pore solution of the concrete. In this demonstration, several fly 

ash contents are selected: 10%, 15%, 20%, 25%, 30%. The -.2 indicates the second 

step in this process. The dotted line at r equal to 0.4 crosses the (r- aE ) curves at five 

points. Those correspond to Ea equal to 367 (1.2), 277 (2.2), 156 (3.2), 70 (4.2), 29 

(5.2) KJ/mol respectively. From each of the five points, a vertical dotted line was 

drawn. Those lines cross the aggregate reactivity model at five points. Those are 

equivalent to 0.04N (1.3), 0.05N (2.3). 0.075N (3.3), 0.14N (4.3), 0.31N (5.3) 

respectively. The -.3 indicates the third, and final step in this process. 

c) Since the total amount of cement alkali is generally expressed in terms of “sodium 

equivalent”, the determined threshold alkalinities for different fly ash content were 

converted to % Na2Oequivalent. The results are as follows: for concrete mixtures with a 

w/cm equal to 0.45, the % Na2Oequivalent is equal to 0.046%, 0.0575%, 0.086%, 

0.161% and 1.18% for mixtures containing 10%, 15%, 20%, 25%, 30% class F fly 

ash respectively. It is important to mention that the threshold alkali content, above 

which ASR expansion occurs, is not a fixed value. In fact, it depends on the type of 

reactive aggregate.  
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Figure 6.13 NMR Threshold Design for Alkalinity (w/cm = 0.45).
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One has to state that the type I/II cement used in this research program contains 

0.54% Na2Oequivalent. This number is well above the threshold alkalinities mentioned 

above. Since alkalis can come from many sources, like cement, SCM’s, aggregate, etc, 

achieving a total threshold alkalinity below 0.28% is not possible. Consequently, it 

maybe from a practical point of view better to select the type of cement that contains the 

minimum amount of alkali (Type I/II) or select the total allowed alkalinity of the pore 

solution and determine the percent of fly ash required to keep r values to minimum. 

It is mentioned earlier that dissolution of silica is a function of the pH of the pore 

concrete solution. pH is directly related to alkalinity of the solution. Lab tests have shown 

that although limited expansion is possible using total alkali content below 3 kg/m3, 

concrete structures in the field have displayed damage at lower alkali values, specially 

when aggregate and other sources (i.e. deicing salts) has contributed to the total alkali of 

the mixtures (Folliard et al, 2006). Therefore, there is interest in keeping the total alkali 

content below the 3 kg/m3 (5 lb/yd3). 

For example, the total alkali is chosen to be equal to 0.648 lb/yd3. Assuming a 

cement factor equal to 6, this corresponds to a 0.1N NaOH pore solution and a pH of 13. 

Therefore, a horizontal dotted line is drawn (Figure 6.14-step 1) at 0.1 N alkalinity. The 

designer will have the option to choose the minimum % of fly ash to obtain reasonable r 

values. The r values determined by the second step from the combined material model are 

as follows: 0.993, 0.941, 0.786, 0.528, 0.278, 0.12, and 0.045 for NMR concrete mixtures 

with 5%, 10%, 15%, 20%, 25%, 30% and 35% class F fly ash content respectively. The 

results obtained indicate the importance of SCM’s (i.e. fly ash) to mitigate ASR as r 

values decrease significantly above 15% replacement levels. Although the higher % of 

fly ash is used, the lower r values are obtained, the designer while making his selection 

should take into consideration some of the disadvantages of using fly ash. It is known that 

the use of pozzolan reduces the heat of hydration of the concrete and thus concrete 

mixtures take more time to attain the required strength. Therefore the possibility of 

opening the structures (pavement, bridge deck, etc) to traffic is impeded. In general, the 

nature of the structure and its lifetime play a major role in controlling the design. 
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Figure 6.14 Combined Concrete and Aggregate Model for NMR (w/cm = 0.45).
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American Standard of Testing and Materials (ASTM) C150 specifications limits 

is 0.6% Na2Oequivalent for low alkali cement (type I/II). One of the advantages of using fly 

ash in the mixtures is that the alkalis in fly ash are less soluble than those in cement and 

consequently, the total amount of alkalis of the blend (cement + fly ash) is less than that 

in the cement alone. To be on the safe side, one can assume that all alkalis in the fly ash 

will eventually dissolve into the pore solution of concrete. Assuming that cement with 

0.3% Na2Oequivalent is used, this is equivalent to 0.26 N alkaline solutions. Therefore the 

same steps outlined above can be followed (Figure 6.15). The r values obtained are as 

follows: 0.98, 093, 0.81, 0.60, 0.35, 0.15, and 0.05 for NMR concrete mixtures with 5%, 

10%, 15%, 20%, 25%, 30%, 35% and 40% class F fly ash content respectively. The 

results obtained re-assured the importance of fly ash in mitigating ASR as fly ash blocks 

the capillary voids which in turn reduces the permeability of concrete. In this particular 

case 35% fly ash is needed to bring the expansion ratio to reasonable values (r = 0.15). 
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Figure 6.15 – Design Procedure for NMR Using ASTM C150 (w/mc = 0.45). 
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A similar procedure is used to determine the threshold alkalinity for design for 

NMR concrete mixtures containing 25% fly ash. To achieve this objective, the concrete 

(Figure 6.9) and the aggregate model (Figure 6.7) were combined together in the same 

plot where the x axis represents the aE  for both models as shown in Figure 6.16.  The 

threshold alkalinity is determined as follows: 

a) r value is selected. For illustration propose, r was selected equal to 0.4. Therefore, a 

dotted horizontal line is drawn at r = 0.4 (Figure 6.16 - step1).  The line crosses the (r-

aE ) curves at three points. These correspond to w/cm = 0.49, 0.47, and 0.45 and to 

aE  = 394, 317, and 69 KJ/mol respectively (step 2). 

b) The designer selects among one the above w/cm’s. Theoretically, he can select the 

minimum water cement ratio (i.e.  0.4 in this case) and determine its threshold total 

alkalinity. Low w/cm will reduce the permeability of the concrete and impede the 

movement of the moisture inside the concrete and consequently, mitigating ASR. 

However, selecting low w/cm will decrease the workability of the concrete and 

therefore its placement. Thus, it maybe more appropriate to select the max water 

cement ratio possible while keeping the alkalinity of the pore solution in check by 

adding mineral admixtures. 

c) The threshold level alkalinities for concrete mixtures with a w/cm of 0.49, 0.47 and 

0.45 are 0.035N, 0.045N, and 0.145N respectively (step 3). Those values are 

equivalent to 0.04, 0.05, and 0.166 Na2Oeq.  Those values are below the threshold 

values (3 kg/m3) mentioned by researchers that expansion is unlikely to occur below 

this value. Therefore, the user can chose any w/cm values between 0.4 and 0.5 with 

25% class F fly ash. A comparison among the threshold alkalinities indicate that 

lower w/cm is associated with higher threshold. In other words, there is more 

tolerance concerning the level of alkalinity in the solution when low w/cm is used in 

the mixture, as low w/cm values yield concrete with low permeability and therefore 

the movement of alkali ions even in high concentrations is impeded by the denser 

concrete matrix. 
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Figure 6.16 NMR Threshold Design for Alkalinity (fly ash = 25%). 
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Determination of aE  Matching with Field Conditions of Alkalinity - PRG 

For PRG aggregates, similar steps were followed as in the NMR case. To anticipate the 

activation energy needed to initiate ASR at lower pH values, the alkalinity of the soak 

solutions and the aE  of the aggregate were connected using the previously proposed 

model (Eq 6.1).  

0

1
a aE E n

C
C

+=                 (6.1) 

For PRG gravel, the aggregates tests were conducted at two alkalinities: 1N 

NaOH + CH and 0.5N NaOH + CH and thus two aE  values were determined. The data is 

fitted using equation 6.1. 

The results obtained are presented below: 

0 140.7,   5.79,  1.451aE C n= = =  
By substituting the above calculated parameters in the model, Eq. 6.1 becomes as follows  

                                          a 1.45

5.79E 40.7
C

+=                    (6.11) 

The predicted aE  values are plotted versus the measured aE  values. The results 

are presented in Figure 6.17. A good fit between the measured and predicted aE  values is 

manifested and this demonstrates the applicability of the proposed model. As shown from 

the plot, as alkalinity increases, the aE  decreases underlining the relationship between 

these two variables. 

As in the NMR case, two major and similar observations can be made from 

Figure 6.17: a) it appears that there exists a threshold level of alkalinity for PRG above 

which the effect of alkalinity on the aE  is minimum. For example, at the 1N+CH solution 

the aE  is 46.5 KJ/mol whereas it is 42.8 KJ/mol from the predicted model at 2 N. This is 

equivalent to 7.95% decrease. This is likely attributed to the saturation of the reaction 

sites by hydroxyl ions at the aggregate surfaces at high alkalinity, b) on the other side, the 

relationship between the aE  and alkalinity (below 0.5 N+CH) seems to follow a power 

curve. For example, the aE  is 84 KJ/mol at 0.25 N+CH while it is 56.5 KJ/mol at 

0.5N+CH from the predicted model at 2 N. This is equivalent to a 48.9% increase. This is 

attributed to the fact that much more energy is needed a low alkalinity. It is also possible 
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that temperature becomes the major factor that determines the rate of reaction at low 

alkalinity. The previous statement is supported by the PRG characteristics determined in 

Chapter V. The rate constant β  at 1N+CH increases from 1.37 at 600C to 3.55 at 800C. 

This is equivalent to 159.1% increase. On the other side, β  growth from 60 to 800C is 

221.1% at 0.5N+CH. This comparison emphasizes the importance of temperature on the 

aE  of the rock at low alkali levels. 
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Figure 6.17 Alkalinity versus Activation Energy (PRG). 
 

 

 

 

 

 

 

 

 

 

 



 

  

177

Development of a Reaction Signature for PRG Combined Concrete Materials 

To predict the combined effect of concrete materials on ASR, the Juarez-Badillo 

transform was used to generate the PRG concrete model. 

min

max

min

max

min
min max

max max

min

max max

.( ) .( ) .( )

1 .( ) .( ) .( ) )

a a

a a

a a

a a

E E w wfr r C
f f E E w w

r E E w wfC
f f E E w w

β α γ

β α γ

⎡ ⎤− −
+ ⎢ ⎥

− − −⎢ ⎥⎣ ⎦=
− −

+
− − −

   (6.3) 

The aE  values for PRG were determined in Chapter V and the expansion ratio 

values “r” were calculated in the first section of this chapter. The parameters to be 

determined are C, β, λ and γ . Before proceeding with the calculation, the boundary 

conditions were chosen as follows:  

min 0.4w = , max 0.55w = , 
min

40.7aE = , 
max

400aE =  and max 0.55f =  

By substituting the values of the above parameters in the proposed concrete model, 

Eq. (6.3) becomes as follows: 

 

    

( 40.7)5 1. .
6 2 (400 )

( 40.7)5 11 . .
6 2 (400 )

a

a

a

a

EC
E

r
EC

E

αβ γ

αβ γ

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦=
⎡ ⎤−⎡ ⎤ ⎡ ⎤+ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

               (6.12) 

The parameters C, β,  and γα  were determined using system identification procedure. 

The results obtained are presented below: 

3.566,  2.942,  4.331,  1.008C β γ α= = − = = −  

By substituting the calculated parameters in the generalized model (Eq 6.3), the 

expression becomes as follows: 
1.0082.942 4.331

1.0082.942 4.331

( 40.7)0.43.566. .
0.55 0.55 (400 )

( 40.7)0.41 3.566. .
0.55 0.55 (400 )

a

a

a

a

Ef w
f w E

r
Ef w

f w E

−−

−−

⎡ ⎤⎡ ⎤ −−⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎣ ⎦ ⎣ ⎦=

⎡ ⎤⎡ ⎤⎡ ⎤ −−⎡ ⎤⎢ ⎥+ ⎢ ⎥⎢ ⎥ ⎢ ⎥− − −⎣ ⎦⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

          (6.13) 

The above equation can be expressed as follows: 
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a( ) function (f, E , w)u

a

ε
ε

=      (6.14) 

where: 

f  = fly ash 

aE  = activation energy of aggregate at a specific alkalinity 

w  = water cement ratio  

For PRG concrete mixtures, the amount of fly ash and water cement ratio is known from 

the design combinations (w/cm = 0.45 and FA = 25%) and therefore, those variables are 

constant in Eq. 6.13 which yields the following:   

(a) a( ) function (f, E )u

a

ε
ε

=     (6.15) 

Eq. 6.15 can be expanded as follows:  
1.0082.942

3

1.0082.942
3

( 40.7)177.2 10 . .
0.55 (400 )

( 40.7)1 177.2 10 . .
0.55 (400 )

a

a

a

a

Ef
f E

r
Ef

f E

−−
−

−−
−

⎡ ⎤⎡ ⎤ −
× ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦=

⎡ ⎤⎡ ⎤⎡ ⎤ −⎢ ⎥+ × ⎢ ⎥⎢ ⎥− −⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

  (6.16) 

(b) a( ) function (E , w)u

a

ε
ε

=      (6.17) 

Eq. 6.17 can be expanded as follows:  

     

1.0084.331

1.0084.331

( 40.7)0.46.1 .
0.55 (400 )

( 40.7)0.41 6.1 .
0.55 (400 )

a

a

a

a

Ew
w E

r
Ew

w E

−

−

⎡ ⎤−−⎡ ⎤× ⎢ ⎥⎢ ⎥− −⎣ ⎦ ⎣ ⎦=
⎡ ⎤⎡ ⎤−−⎡ ⎤⎢ ⎥+ × ⎢ ⎥⎢ ⎥− −⎣ ⎦⎢ ⎥⎣ ⎦⎣ ⎦

              (6.18) 

Each of the above equations (6.16) and (6.18) leads to the development of: 

i) A set of curves between ( )u

a

ε
ε

 and aE  for different FA content (w = 0.45) (Figure 

6.18). 

ii) A set of curves between ( )u

a

ε
ε

 and aE  for different w/cm (f = 25%) (Figure 6.19). 
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Figure 6.18 PRG Mortar Model (w/cm = 0.45). 
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Figure 6.19 PRG Mortar Model (w/cm = 0.45). 
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Figure 6.18 exhibits a set of theoretical curves between aE  and r  for PRG mortar 

with a w/cm equal to 0.45. In general, similar observations can be made as in the case of 

NMR. As shown in the figure, the relationship between these two parameters is inversely 

proportional irrespective of the amount of fly ash in the mixture. A low aE  value indicate 

that the aggregate is very reactive and since reactivity of aggregate is the major factor 

that determine the ultimate expansion in the field, he expansion ratio “r” is expected to be 

close to one as the alkali levels govern the rate of expansion. The previous statement is 

manifested by the high expansion ratio obtained previously at 25% fly ash. It is also 

possible that these high “r” values are due to the presence of alkali gradient between the 

pore solution of the mortar and the alkali of the soak solutions. On the other side, at 

higher aE  values, the ratio is at its minimum as the pH of the pore solution of mortar will 

likely be higher than the alkalinity of the soak solution and therefore, the presence of 

alkali gradient mentioned above is practically not existent. 

The presence of class F fly ash on concrete characteristics is again demonstrated 

by its effects on the “r” values. For example, at aE  = 90KJ/mol, the pH of the alkali 

solution is 13.36. From the theoretical curves, the corresponding expansion ratios r are 

equal to 0.953, 0.854, 0.659, 0.399, 0.178, 0.059, for mixtures containing 15%, 20%, 

25%, 30%, 35% and 40% Fly Ash Class F respectively. As shown from the results, the 

ratios decrease as the percent of fly ash increase. This is maybe due to the occurrence of 

the pozzolanic reaction. Furthermore, it is known that fly ash solid particles are finer than 

those of concrete. Therefore, concrete permeability will decrease since the movement of 

alkali ions in the concrete matrix will be much more restricted. The amount of fly ash 

needed is also a point of interest. It seems that 15 to 20% fly ash has a minimum effect as 

the expansion ratio remains high. On the other side, increasing the amount of fly ash 

above 35%, yields only minimal amelioration on the “r” values. Thus, preliminary results 

indicate that 30% fly ash appears to be the optimum number. 

A set of theoretical curves between aE  and r  for PRG mortar with 25% class F 

fly ash at different water cement ratios are presented in Figure 6.19. As shown, the 

consequence of adding or reducing slightly the w/cm yields huge variation in “r” values. 

For example, at aE  = 100KJ/mol, the expansion ratio r is equal to 0.0714, 0.608, 0.946 
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for concrete mixtures with w/cm equal to 0.43, 0.45, and 0.47 respectively (Figure 6.19). 

It appears that the 0.45 w/cm value is a transition phase between low and high permeable 

concrete as w/cm above 0.47 or lower than 0.41 generate almost similar “r values”.  

 

 

Validation of the PRG Mortar Model 

To substantiate the previous PRG mortar model, additional tests were conducted to 

measure measuredr  and then compare it with predictedr . To achieve this objective, two mortar 

tests were performed at 1 NaOH + CH, 0.5 NaOH + CH. Mortar was mixed at water 

cement ratio of 0.45. Type I/II low alkali cement was used in the mixture and 50% of the 

cement content was replaced with class F Fly ash. All tests were conducted at 70 0C.  

The volume expansion test results for the PRG mortar are shown in Figure 6.20. It 

should be noted that each measured plot in Figure 6.20 represents an average of two 

replicas (each test was repeated twice to check the repeatability). As shown, measurable 

expansions are recorded for both tests from the 10 h period until the 100 hrs where the % 

expansion reaches 0.001% and 0.0005% for PRG conducted at 1 NaOH + CH and 0.5 

NaOH + CH solutions, respectively. A critical observation can be made by comparing the 

chemistry of the soak solutions before and after the test. For example, for PRG mortar 

tested at 1 NaOH + CH solutions, the pH was 14.009 at the beginning of the test and then 

measured 13.985 at the end of the test (Table 6.4). Similar pH observation can be made 

for PRG mortar tested at 0.5 NaOH + CH. This difference in pH value is negligible and 

within the error of the pH meter. There is also no significant change in alkali 

concentration before (23605 ppm) and after (23878 ppm) the test. Consequently, two 

conclusions can be made: a) the hydroxyl and alkali ions of the alkali solutions did not 

penetrate the mortar matrix b) mortar can be expansive although type I/II low alkali 

cement is used. 
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(a) PRG expansion at 1N NaOH + CH 
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(b) PRG expansion at 0.5N NaOH + CH 
 

Figure 6.20 Mortar PRG Expansion. 
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To calculate measuredr , the ultimate expansion of PRG at both alkalinities was 

determined. System identification procedure was used to find the mortar characteristics. 

Results are presented in Table 6.7. The calculated expansions are super-imposed on the 

measured expansion in Figure 6.20. A very good fit is manifested. The measured r values 

at both alkalinities are presented in Figure 6.21. Although the combined model capture to 

a reasonable degree the effect of the fly on the mortar characteristics as predictedr  exhibits 

very small values similar to those measuredr , it underestimates the values (Table 6.8). This 

maybe due to the relatively limited applicability of the Juarez-Badillo procedure at values 

close to the boundary conditions set initially. Therefore, it is recommended that future 

tests be conducted at values close to the mid-range of the boundary conditions. 

 
 

Table 6.7 PRG Mortar Parameters Results (Second Set). 
 

0.5N NaOH + CH 1N NaOH + CH
ε0 0.0006 0.0032
ρ 22.1 59.8
t0 8.0 9.1
β 1.2 3.0

PRG mortar - Type I/II cement - 50% FA (class F) - w/cm = 0.45 
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Table 6.8 Comparisons of Measured Versus Predicted r Values (PRG). 
 

Alkalinity measuredr  predictedr  
1 NaOH + CH 0.035 0.0138 

0.5 NaOH + CH 0.021 0.00464 
 
 
 

 

Development of a Threshold Alkalinity for Design (PRG) 

The determination of a threshold alkali level under which ASR deleterious expansion will 

not occur, necessitate the connection between the aE  of the aggregate, the expansion 

ratio “r” and the alkalinity of soak solution. It should be mentioned that here the soak 

solution simulates the pore solution in concrete. To achieve the above target, the mortar 

model (Figures 6.18 and 6.19) and the aggregate model (Figure 6.17) were combined 

together in the same plot where the x axis represents the aE  for both models. The results 

are presented in Figures 6.22 and 6.23. As in the NMR case, a similar approach was 
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followed. The steps can be summarized as follows: the user selects the appropriate 

expansion ratio and determines from the mortar model the corresponding aE . Once the 

aE  is determined, the calculation of the alkalinity of the soak is possible from the 

aggregate model. The alkalinity is then converted to % Na2Oequivalent or to lb/yd3. The 

latest figures are considered the maximum total amount of alkalis allowed in the concrete 

matrix corresponding to the initial expansion ratio assumed earlier. An example is 

presented in Figures 6.22 and 6.23 and is elaborated below. It should be stated that values 

selected for the parameters in the example are subject to individual discretion or 

preference and the user doesn’t have to abide by them: 

(a) Based on the expected lifetime of the structure and its importance, the user selects an 

expansion ratio equal to 0.4 (step 1). 

(b) From the (r- aE ) curves, the designer can select the amount of fly ash and its 

corresponding aE . In this example, the aE  values are 334, 337, 248, 153 and 89 

KJ/mol for mixtures containing 10%, 15%, 20%, 25% and 30%. Class F fly ash (step 

2).  

(c) The computed alkalinities from the aggregate model at the above aE  values are 0.06 

N, 0.07N, 0.085, 0.13, and 0.23N respectively (step 3). 

(d) Assuming the cement factor equal to 6, the above alkalinities are equivalent to 

0.069%, 0.08%, 0.097%, 0.149% and 0.264% Na2Oequivalent. These values are also 

equivalent to 0.23, 0.27, 0.32, 0.50 and 0.88 kg/m3 respectively. 

(e) The above threshold indicates that alkalinities can’t exceed those levels for specific 

mixtures if the expansion ratio is assumed equal to 0.4. 

(f) Assuming type I/II low alkali cement is used in the mixture, the maximum allowable 

by ASTM C150 is 0.6% Na2Oequivalent. This number is well above most of the 

threshold alkali determined above. 

(g) pH values of concrete depend on many factors. Assume that a minimum pH of 

concrete of 13.2 is required. This is equivalent to 0.575%Na2Oequivalent. From the 

above results, only mixtures with 30% class F fly ash had a threshold above this value, 

while other mixtures with lower percents of fly ash will not be able to control the total 
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alkalinity for the mix as the expected %Na2Oequivalent is higher than the threshold alkali 

level. 

(h) From that specific example, it can be concluded that to maintain a 0.4 expansion ratio, 

30% class F fly ash is needed to keep to alkalinity of the pore solution in check. 

 

As seen from the above demonstrative examples in the NMR and PRG cases, the 

proposed combined approach is sufficiently flexible that the user has the choice of either: 

a) selecting the expansion ratio based on field experience, lifetime and/or importance of 

the structure, then choosing the appropriate amount of fly ash and determine the 

corresponding threshold alkalinity or b) choosing the maximum allowed alkalinity in the 

pore solution and then selecting the percent of fly ash to achieve the required expansion 

ratio.  

One of the advantages of this approach is that the user does not have to select a 

specific water cement ratio or a percent fly ash. In fact, he can select any combination 

(w/cm & fly ash) that fits best his need or type of applications. 

Another advantage of the proposed procedure is to allow the user to determine the 

effect of fly ash and water cement ratio on concrete characteristics without physically 

conducting the test. This efficiently assists agencies, contractors and material engineers in 

selecting the optimum concrete mixture combinations within the shortest period possible. 
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Figure 6.22 PRG Threshold Design for Alkalinity (w/cm = 0.45). 
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Figure 6.23 PRG Threshold Design for Alkalinity (fly ash = 25%). 
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CHAPTER VII 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

Introduction 

Alkali-silica reaction has become in concrete structures (pavement, bridges, dams, etc) a 

growing and annoying problem for engineers, contractors and government agencies. As 

mentioned in Chapter II, the presence of a reactive siliceous component in some types of 

aggregate, high alkali content in the concrete matrix and a sufficient amount of moisture 

are the three major requirements needed for the ASR to initiate and spread. Therefore, the 

current logical approaches to tackle the problem were to use non-reactive aggregate, low 

alkali cement and to add a sufficient amount of supplementary cementitious materials (fly 

ash, etc) based on empirical history.  

Laboratory standards tests are available and are currently used by researchers and 

agencies. The two most recognized tests are ASTM C1260 (Mortar- Bar Method) and 

ASTM C1293 (concrete prisms). The first test is a relatively short procedure and can be 

conducted within 16 days. But it is considered an aggregate test and its test conditions (i.e. 

crushing the aggregate and temperature) yield results that have very limited relevance to 

field conditions. The second standard procedure prism is very popular and is widely 

considered a good index of field performance. However, the minimum one year test 

duration is considered a serious setback. Consequently, a completely different approach; 

preferably a performance based approach is necessary.  

To achieve this ultimate objective, a four year research project was conducted to 

develop a reliable test protocol that will assist the engineers, contractors and owners to 

identify and measure the potential for concrete pavement degradation because of ASR. 

Hence a comprehensive study on different types of aggregates of different reactivity was 

conducted to formulate a robust approach that takes into account the factors affecting 

ASR such as temperature, moisture, calcium concentration and alkalinity. This chapter 

presents the conclusions of this study based on the analysis of the results and discussions 

presented in chapters V and VI. In addition some recommendations for further research 
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and implementing this research into practical use are also provided at the end of this 

chapter. 

 

Conclusions 

Different series of expansion measurements were conducted on different types of 

aggregates (New Mexico Rhyolite, Platte River Gravel, Spratt Limestone, Sudbury 

Gravel) using a new apparatus developed at the Texas Transportation Institute referred to 

as “Dilatometer”. A new model was proposed to determine ASR characteristics (the 

ultimate expansion of aggregates/concrete, the theoretical initial time of ASR expansion, 

the rate constant and the time scale parameter). The parameters were determined using a 

mathematical procedure entitled “System Identification Method”. The ASR aggregates 

reactivity was predicted in terms of their activation energy using the Arrhenius equation. 

Some of the main findings from this part are: 

a) All expansion-time plots display similar characteristic patterns. Almost no expansion 

was recordable in the initial hours (0-15 hrs). This was followed by a rapid increase in 

volume expansion up to 60-75 hrs. Then the expansion was stabilized around the four 

day period. This may be due to leaching of some calcium and potassium cations out 

of the aggregate. The gel absorbs those ions and blocks the dissolution of silica, and 

consequently impedes any further gel development. 

b) Results indicate that alkalinity of the soak solution is a major factor that affects ASR 

expansion. An increase in alkalinity yields an increase in ASR expansion. This gain 

was attributed to the formation and then expansion of the ASR gel around the reaction 

sites of the aggregates. 

c) The effect of temperature on ASR characteristics is very important to notice. It was 

observed for all types of aggregates at different alkalinities that increasing 

temperature from 600C to 700C, and 700C to 800C increases the rate constant. This 

indicates that ASR is a thermally activated process. 

d) The importance of temperature as an accelerator of ASR is also evident. This can be 

observed by its effect on the theoretical on the time of expansion, t0. This is explained 

from a kinetic point of view. As temperature increases, the amount of additional 

energy needed to initiate ASR decreases because the energy barrier that the system 
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has to overcome is much smaller at a higher temperature and therefore the time that it 

takes for ASR to initiate and develop is shorter. 

e) Experimental results indicate that the addition of calcium hydroxide to the alkaline 

solution enhances ASR as more volumetric expansion was recorded. The previous is 

confirmed by the chemistry of the test solution where a sharp decline of sodium and 

hydroxyls ions was observed after the test compared to those in only sodium 

hydroxide solution. 

f) From the analysis, it can be stated that ASR was found to be expansive without the 

presence of calcium hydroxide. Otherwise, both shrinkage and an increase in alkali 

ions would have been measured, which was not the case. The chemistry of the alkali 

solution supports this point of view. 

g) To compare the reactivity of the aggregates in this study, the Ea of the rocks, 
determined using the Arrhenius equation, were compared against each other. From 

this comparison, it can be concluded that NMR is the most reactive aggregate tested 

in this research, followed by S.L, SuG and then PRG. By comparing the Ea at 

different alkalinities, it was also found that the Ea decreases when alkalinity increases. 

This observation signals the presence of a relationship between these two parameters 

and is very consistent with the definition of Ea as the minimum energy required to 

overcome for a chemical reaction to proceed. 

h) To check the procedure validation and the laboratory proficiency, intra and inter-

laboratory comparisons were conducted. Results are very promising as the covariance 

was less than 7% indicating that the results are highly repeatable and reliable. To 

check the capability of the new proposed kinetic model for distinguishing aggregates 

with different reactivity, hypothesis tests on the mean Ea of each type of aggregate at 

different alkalinity is conducted. Statistical results (two-samples T-Test) indicate that 

the means are different at 5% significance level. Therefore, it can be concluded that 

the Ea can serve as an overall indicator of ASR potential and can be used as a 

potential screening parameter for ASR in field performance. 

 In addition to the aggregate tests conducted, concrete samples with different 

w/cm’s and fly ash contents using NMR and PRG aggregates were tested using the 

dilatometer at different alkalinities to determine concrete characteristics. By testing 
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concrete, as opposed to simply testing aggregates, realistic field and environmental 

effects are inherently considered when evaluating the resistance of different concrete 

mixtures to ASR. To relate the effect of material combinations to field performance, two 

models (aggregate and concrete) were combined together. The first model predicts the Ea 

of the aggregate at levels of alkalinity similar to field conditions. The second model, 

generated using the Juarez-Badillo transform, connects the concrete-to-aggregate 

expansion ratio, the w/cm, the fly ash content and the Ea of the aggregate. Some of the 

major findings from this part are: 

a) Concrete expansion time plots show similar patterns. They begin with a dormant 

phase, followed by a steady increase. This was attributed to development of the gel in 

the concrete. 

b) It was observed that concrete tested in a high alkali solution displays the highest 

ultimate expansion. This is likely due to the presence of an alkali gradient between 

the pore solution and the soak solution. This gradient in non existent at low alkalinity 

levels. Chemistry of the alkali before and after the test supports this point of view. 

Therefore, it can be concluded that concrete in the field subjected to a high alkali 

environment will display cracking earlier than to structures exposed to mild alkali 

conditions. 

c) Experimental results show that the expansion ratio for NMR and PRG is close to one 

at 1N NaOH + CH. This can be explained as the combined effects of two concurrent 

causes: 1) The first is that the concrete is highly permeable at a water cement ratio of 

0.45 and 2) the pozzolanic reaction is still at its early age. Thus, it can be stated that 

the expected restraining effects of the mortar around the aggregate is minimum in the 

initial period (2 weeks). 

d) NMR concrete displays higher expansion than PRG at all alkalinities. The results are 

very consistent with ASR aggregate characteristics results (Ea). Therefore, it can be 

concluded that the type of reactive aggregate used in concrete mixtures is the main 

factor that determines the expansion that may occur in concrete pavement. 

e) The relationship between the Ea and alkalinity appears to follow a “power curve”. In 

other words, they have an inversely proportional relationship. The proposed model 

indicates that increasing the alkalinity of the solution beyond a certain level will only 
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induce minimal change on the aE  values. This is likely due to the fact that the 

reaction sites on the surface of the aggregate were fully saturated by the hydroxyl ions 

coming from the soak solutions at high alkalinity. 

f) In all tests conducted for NMR and PRG, it appears that the absence of fly ash in all 

tests is characterized by a high ultimate expansion. Therefore, the use of mineral 

admixtures is vital to mitigate ASR as fly ash increases the durability of concrete 

through the pozzolanic reaction resulting in a denser concrete matrix and thus 

reducing its permeability. 

g) A comparison conducted between measuredr  and predictedr  values leads us to conclude that 

the proposed concrete model has the capability of capturing with high accuracy the 

combined effects of concrete materials (aggregate reactivity, diffusion, w/cm, % fly 

ash, on ASR expansion).  

h) Through demonstrated numerical examples, it was seen that the proposed combined 

approach in this study is so flexible that the user can select the proper expansion ratio 

based on the importance of the structure and/or lifetime of the pavement and then 

select the percent fly ash needed to keep the total alkalinity level below the threshold 

of 5 lb/yd3. Researchers have mentioned that expansion is unlikely to occur below 

this value. It was found in this study that concrete with water cement ratio of 0.45 and 

30% class F fly ash are the optimum mixture combinations to mitigate ASR. 

i) This new procedure will give the material engineer the capability of selecting any 

combination (w/cm & fly ash) that best fits his need or type of application, and of 

predicting its effect on the concrete characteristics (alkalinity of the pore solution, 

expansion ratio, etc) without physically conducting the dilatometer tests. This 

consistency and efficiency will help agencies save invaluable time. 

 

Recommendations for Future Research 

Based on the knowledge gained from this research project, it is recommended that the 

following additional studies be conducted to broaden the concepts and the strategies 

developed in this study to mitigate ASR: 

a) This study was based on limited number of reactive aggregates, one type of cement 

and one type of fly ash. Additional sources of aggregates and different types of fly 
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ash should be investigated thoroughly before the findings from this research can be 

generalized on a broader scale. 

b) The results obtained are based on four known high reactive aggregate. It is unlikely 

that the aggregates used across the states are as reactive as those in this study. 

Therefore, it is recommended that agencies conduct the dilatometer test using their 

local materials under local field conditions and determine the optimum mixture 

combinations using the procedures and theories introduced this study. 

c) Although the mechanisms are not fully understood, current research indicates that the 

use of lithium compounds suppresses ASR expansion. Research is needed to 

determine the effect of lithium compounds on the activation energy of aggregate and 

consequently on the ultimate expansion of concrete. Since the exact amount of 

lithium needed to mitigate ASR is not known, it would be beneficial to conduct 

concrete tests treated with lithium products in the dilatometer and determine the 

minimum amount of lithium requited to reduce the alkalinity of the pore solution 

below the threshold level. The amount of lithium can be included in the Jauarez-

Badillo transform as was the w/cm ratio, the fly ash content, and the activation energy. 

d) Work should be furthered to normalize aggregate reactivity according to size 

distribution and other related factors. 

e) Since crack initiation in some concrete mixtures was identified, it would be extremely 

beneficial to determine the minimum expansion ratio (rL) as a function of the main 

concrete parameters that will lead to the identification of a boundary area for safe 

design. 
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