
POWER AND MEMORY EFFICIENT HASHING SCHEMES

FOR SOME NETWORK APPLICATIONS

A Dissertation

by

HEEYEOL YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2009

Major Subject: Computer Science

POWER AND MEMORY EFFICIENT HASHING SCHEMES

FOR SOME NETWORK APPLICATIONS

A Dissertation

by

HEEYEOL YU

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Rabi Mahapatra
Committee Members, Duncan M. Walker

Riccardo Bettati
Gwan Choi

Head of Department, Valerie E. Taylor

May 2009

Major Subject: Computer Science

iii

ABSTRACT

Power and Memory Efficient Hashing Schemes

for Some Network Applications. (May 2009)

Heeyeol Yu, B.S., Korea Advanced Institute of Science and Technology;

M.S., University of California, Los Angeles

Chair of Advisory Committee: Dr. Rabi Mahapatra

Hash tables (HTs) are used to implement various lookup schemes and they need

to be efficient in terms of speed, space utilization, and power consumptions. For IP

lookup, the hashing schemes are attractive due to their deterministic O(1) lookup

performance and low power consumptions, in contrast to the TCAM and Trie based

approaches. As the size of IP lookup table grows exponentially, scalable lookup

performance is highly desirable. For next generation high-speed routers, this is a

vital requirement when IP lookup remains in the critical data path and demands a

predictable throughput. However, recently proposed hash schemes, like a Bloomier

filter HT and a Fast HT (FHT) suffer from a number of flaws, including setup failures,

update overheads, duplicate keys, and pointer overheads. In this dissertation, four

novel hashing schemes and their architectures are proposed to address the above

concerns by using pipelined Bloom filters and a Fingerprint filter which are designed

for a memory-efficient approximate match. For IP lookups, two new hash schemes

such as a Hierarchically Indexed Hash Table (HIHT) and Fingerprint-based Hash

Table (FPHT) are introduced to achieve a a perfect match is assured without pointer

overhead. Further, two hash mechanisms are also proposed to provide memory and

power efficient lookup for packet processing applications.

Among four proposed schemes, the HIHT and the FPHT schemes are evaluated

iv

for their performance and compared with TCAM and Trie based IP lookup schemes.

Various sizes of IP lookup tables are considered to demonstrate scalability in terms

of speed, memory use, and power consumptions. While an FPHT uses less memory

than an HIHT, an FPHT-based IP lookup scheme reduces power consumption by a

factor of 51 and requires 1.8 times memory compared to TCAM-based and trie-based

IP lookup schemes, respectively. In dissertation, a multi-tiered packet classifier has

been proposed that saves at most 3.2 times power compared to the existing parallel

packet classifier.

Intrinsic hashing schemes lack of high throughput, unlike partitioned Ternary

Content Addressable Memory (TCAM)-based scheme that are capable of parallel

lookups despite large power consumption. A hybrid CAM (HCAM) architecture has

been introduced. Simulation results indicate HCAM to achieve the same throughput

as contemporary schemes while it uses 2.8 times less memory and 3.6 times less power

compared to the contemporary schemes.

v

To my family

vi

ACKNOWLEDGMENTS

I would like to thank Dr. Mahapatra for his direction and support over the last

3 years. His faith in my abilities helped mould my transition from a graduate student

into a researcher. I would also like to thank Drs. Walker, Bettati, and Choi for

serving on my committee and being excellent teachers.

I want to thank my family who support me mentally and financially. In addition,

my soccer club, the Korean Aggies Soccer Association (KASA), gave me wonderful joy

during my study at Texas A&M University. In particular, I miss Bong Su Koh who

always gave me a smile, Sanghyub Kang who was an ex-professional soccer player,

Jaewoo Suh who always loves an over-night drink, Won Ju Sung who I just met for

one semester, and Hyeongil Kwak who gave spiritual help. Furthermore, I want to

give a life-lasting appreciation to Uichin Lee at University of California Los Angeles

who helped me in many ways

vii

NOMENCLATURE

HT Hash Table

LHT Legacy Hash Table

FHT Fast Hash Table

TCAM Ternary Content Addressable Memory

CTCAM Cool TCAM

UTCAM Ultra TCAM

STCAM Selective TCAM

BTCAM Beyond TCAM

ACSM Approximate Concurrent State Machines

SRAM Static Random Access Memory

DRAM Dynamic Random Access Memory

PC Prefix Collapse

CPE Controlled Prefix Expansion

TCP Transport Control Protocol

IP Internet Protocol

SIP Source IP

DIP Destination IP

BF Bloom Filter

MBF Multi-predicate Bloom Filter

FF Fingerprint Filter

SBF Segmented Bloom Filter

SL Successful Lookup

UL Unsuccessful Lookup

viii

SS Successful Search

US Unsuccessful Search

BMF Bloomier Filter

PPC Parallel Packet Classifier

MPC Multi-tiered Packet Classifier

2TPC 2-tiered Packet Classifier

3TPC 3-tiered Packet Classifier

MBHT Multi-predicate Bloom filter Hash Table

HIHT Hierarchically Indexed Hash Table

IT Indexing Tree

HIT Hierarchical Indexing Tree

FPHT Fingerprint-based Hash Table

HCAM Hybrid CAM

SMT Segmented Multibit Trie

ix

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II RELATED WORKS IN PACKET PROCESSING 9

A. IP Lookup . 9

B. Packet Classification . 11

C. Other Packet Processing Applications 11

D. Parallel IP Lookup Using TCAM or SRAM 13

III BASICS ON HASH FOR PACKET PROCESSING 15

A. Basic Bloom Filter Theory 15

B. A Memory- and Power-Efficient Fingerprint Filter 18

C. IP Lookup Using Hashing 20

1. Controlled Prefix Expansion 20

2. Prefix Collapse . 21

3. IPv6 IP Lookup . 22

D. Packet Classification Using Hashing 23

IV A MULTI-TIERED PACKET CLASSIFIER WITH N BFS . . . 26

A. Building a Multi-tiered Packet Classifier 27

B. Insert Operation in an MPC 31

C. Query Operation in an MPC 31

1. False classification in a successful lookup 33

2. False classification in an unsuccessful lookup 34

D. Delete Operation in an MPC 36

E. Simulation Result for an MPC 36

1. Experiment for Power 37

2. Experiment for Throughput 39

V MULTI-PREDICATE BLOOM-FILTERED HASH TABLE . . . 41

A. Index Address to a Key Table in Base-b 42

B. Memory Efficiency with a Larger Base-b 45

C. Insert Operation in an MBHT 46

D. Query Operation in an MBHT 47

x

CHAPTER Page

1. False indexing for an SS in an MBHT 50

2. False indexing in a US in an MBHT 52

3. Hardware consideration for pipelining 55

E. Delete Operation in MBHTs 57

F. Analysis and Simulation for an MBHT 58

1. Average access time of query 59

2. Memory usage . 61

VI A HIERARCHICALLY INDEXED HASH TABLE 65

A. Building a Conceptual HIT in Stacked SRAMs 65

B. Insert Operation in an HIT 66

C. Delete Operation in dual HITs 67

D. Query Operation Making Index Paths in Dual HITs 69

1. False indexing to a key table in on-chip for a US . . . 72

2. False indexing to a key table in on-chip for an SS . . . 73

3. Detailed procedures for query and delete 76

4. Parallel accesses to a key table in an interleave way . . 78

E. Simulation Result for an HIHT 79

1. Memory comparison with other hash mechanisms . . . 79

2. Power comparison with TCAM for IP lookup 81

3. Memory comparison with Trie for IP lookup 81

VII HASHING USING BLOOM AND FINGERPRINT FILTERS . . 84

A. Building a Conceptual IT of a Binary Prefix Tree 85

B. Insert Operation in an IT 87

C. Query Operation Making Indexes in an IT 88

1. False indexing to a key table for a UL 90

2. False indexing to a key table for an SL 91

3. Detailed algorithm for query 92

D. Delete Operation with Counting BFs 93

E. FPHT Optimization in a b-ary Prefix Tree 95

F. Simulation Results for an FPHT 95

1. Memory size in consideration of speed and scalability . 96

2. Power comparison with TCAM for IP lookup 97

3. Memory comparison with Trie for IP lookup 97

VIII HASH-BASED IP LOOKUP ARCHITECTURE 100

A. Hash-based IP Lookup Architecture Build 100

xi

CHAPTER Page

B. Simulation Result of HIHT and FPHT-based IP Lookup

Schemes . 102

1. Power-efficient hash-based IP lookup 102

2. Memory-efficient hash-based IP lookup 103

IX HYBRID CAMS OF CAM AND SRAM FOR IP LOOKUP . . . 105

A. HCAM-based IP Lookup Architecture 105

B. Prefix Transformation with CAM & SRAM 107

1. Prefix collapse . 107

2. A complete prefix match through an STB in SRAM . 108

C. A Bloom Filter-based Lookup Distributor 110

D. Experimental Results for an HCAM-based Scheme 111

1. Throughput . 112

2. Power . 114

X SUMMARY . 116

A. Conclusion . 116

B. Future Works . 118

REFERENCES . 120

VITA . 131

xii

LIST OF TABLES

TABLE Page

I Lookup & update complexities. 6

II Hardware features of each scheme. 6

III Power value by CACTI in PPC(31Kx1, 20 ports), 2TPC(29Kx1,

19 ports), and 3TPC(14Kx1,18 ports). 38

IV Complexities of operations to off-chip in four schemes. 61

V On-chip memory usage for three traces. The load factor is 0.034,

K=1024. 64

VI AAS in a successful search of NLANR trace for three schemes. f=2−10. 64

xiii

LIST OF FIGURES

FIGURE Page

1 Comparison of power and area for a BF and an FF through CACTI. 19

2 Prefix conversion of a CPE with 3 prefixes in stride 3. 20

3 Prefix conversion of PC with the same 3 prefixes of Fig. 2. 21

4 Parallel packet classifier engine of n BFs in a given packet. 23

5 Throughput comparison in a different number of BFs, ps, and k. . . . 25

6 Power and area in multi memory read ports for 64K×1-bit memory. . 26

7 Pipeline memory architecture of a 2TPC in a forest. S1 and S2

are pipeline stages. Bi
j means the j-th BF at layer i. n=4. k=w

due to Eq. (3.3). w2=1, w1=k-1. b is a buffer size. 27

8 Memory architecture of a 3TPC in a forest and in pipeline. Bi
j

means the j-th BF at layer i. n=8. k=w due to Eq. (3.3). 28

9 (a) The total number of read ports in different number of BFs.

w3=w2=1, w1=13 for a 3TPC. w2=1, w1=14 for a 2TPC. f=2−15.

(b) 2TPC and PPC area costs with n=8 in .13μm process technology. 29

10 The average packet misclassification for a PPC-n and a 3TPC-n in

a different SL rate. f=2−w=2−30, w1=28, w2=w3=1. n ∈ {32, 64, 128}. 35

11 The number of read ports and average number of memory reads

in different number of BFs. w3=w2=1, w1=13 for a 3TPC. w2=1,
w1=14 for a 2TPC. f=2−15. 37

12 Power consumption by two traces in PPCs, 2TPCs, and 3TPCs.

Also, n ∈ {8, 16, 32}. 38

13 Throughput ratios of a 2TPC against a PPC with four traces in

different number of buffer size b and n BFs. w1=28, w2=2. 40

xiv

FIGURE Page

14 Macro view of an MBHT in on/off-chip memory of base-2. n=22. . . 41

15 Partitioning of 8 elements in base-2 with 0-BF s and 1-BF s. 43

16 Conversion of the base-2 number system to base-4 and base-8 for

64 elements. n = 26. By (X), X means the number of the same

digits in a BF. 44

17 Memory size Mb for b = 2, 4, 8, 16, and 32 with f and n. 46

18 Probability of Xs, the number of f -indexes, in an SS. n = 216.

Required f=2−10 for b=2. 51

19 Probability of Xu, false memory access, in a US. n = 216. Re-

quired f=2−10 for b=2. 54

20 The benefit of pipeline in an MBF returning ’no’ in a query for

two cases of k=12 or 24. 56

21 An example of delete for item e located at 0124 in base-4. 57

22 Probabilities of memory access in an SS and a US and the average

access time to off-chip for an LHT, an FHT, and an MBHT with

the same memory 128K log2 n to fully utilize the saved memory

for increase in precisions of base-8 and base-16. k=10, and n=64K. . 59

23 Memory efficiency ratios of RM,L and RMF with various b and n.

wF =wM=20. Note that although an MBHT is set to have the

same average access as others, the actual average access times are

different each other as shown in Fig. 22. 62

24 Basic configuration of hierarchical indexing tree of 0- and 1-tree. . . . 65

25 Dual configuration of HITs for delete operation. 68

26 Examples of an i-path, f -segments, and f -paths. Probability of

f -paths. 71

27 An i-path and d-trees in an SS, and P i(n) of Eq. (7.1) for each

d-tree in an HIT. 74

xv

FIGURE Page

28 Memory efficiency ratios of RH,B and RH,F with various s and w.

Note a corrected-FHT is considered. 79

29 Consumed energy per read clock in 0.09μm process technology. . . . 82

30 Memory comparison of Tree Bitmap and an HIHT in different

table sizes. 83

31 An pipelined FPHT architecture with s stages. 84

32 Conceptual IT construction with BFs and tables of FPs and keys. . . 85

33 Examples of an i-path and f -paths for a given query of key e4 in

an IT without a virtual root. 89

34 An IT of 3 layers (or stages) with an i-path and dangling trees. . . . 92

35 A sample configuration of a 4-SBF in k=2 banks. A 4-SBF rep-

resents S0 through S3. The memory size is 2×4×4. 95

36 Memory efficiency ratios of an FPHT over an MBHT and an HIHT

at various n and w. In an FPHT, a lookup precision of a CBF is

set to 6 for a 16-ary prefix tree. 96

37 Consumed energy per read clock in 0.09μm process technology. . . . 98

38 Memory comparison of Tree Bitmap and an FPHT in different

table sizes. 99

39 The number of collapsed prefixes and the average number of du-

plicate next-hops at various stride s. The prefix number for AS

65000 and AS 6447 are 233451 and 235307, respectively. 100

40 IP lookup architecture with parallel Hash Lookup Engines (HLEs)

for a wildcard support. Each HLE has different c and s values. . . . 101

41 Consumed energy per read clock in 0.09μm process technology. . . . 103

42 Memory size comparison of Tree Bitmap, an HIHT, and an FPHT

in different table sizes. 104

xvi

FIGURE Page

43 HCAM-based IP lookup architecture for a prefix set. Stride s=2.

The collapsed prefix lengths,d1, d2, d3, are 2,5, and 8, respectively. . . 105

44 A sample prefix set and a subtrie in a uni-bit trie for the set. 107

45 The number of collapsed prefixes and the number of transistors

at various stride s. 108

46 A stride tree for 2 prefix strides and an index method to an NH table. 109

47 The memory comparison of all schemes in terms of a transistor.

Lookup precision w=10. Note that ’HCAM’ includes all CPs,

STBs, and BFs. 111

48 Queuing model of nc pipelines in an HCAM. nc=3. 113

49 Goodput vs. measured throughput of a CAM block in an SDA

trace. ρ=0.95. 114

50 a) Total energy consumption in one clock for an NTCAM, a UT-

CAM, and an HCAM. Symbols ’N’, ’U.14’, and ’H.6’ denote NT-

CAM with a block of whole prefixes, UTCAM with 16 blocks of

14K prefixes, and HCAM with 16 blocks of 6K prefixes, respec-

tively. .13μm process technology is used. b) The energy consump-

tions for a single lookup operation in a block for three schemes. . . . 115

1

CHAPTER I

INTRODUCTION

In packet processing, a router fast associates packets with a set of rules for packet

forwarding or various network services. Provision of such a fast packet processing like

IP lookup and packet classification becomes harder, as the demand for high-speed

and large-scale routers continues to surge in networking. It has been reported that

the traffic of the Internet is doubling every two years by Moore’s law of data traffic

[1] and the number of hosts is tripling every two years [2].

These rapidly increased traffic and host numbers lead to two major packet pro-

cessing related problems for core routers. 1) Speed: a high-speed router needs to look

up a rule table at the rate that satisfies its bandwidth requirement. For example,

IP lookup at the rate of 160Gbps must process 500M lookups in a second, and this

implies that a packet of minimum 40 bytes must be forwarded to a next hop in 2ns

in the worst case. 2) Scalability: a fast packet processing must be made in searching

an associated rule even with hundreds of thousands of rules. For instance, in packet

classification domain the maximum number of rules is up to 2 to 104 due to the

104-bit length of a tuple of source, destination IPs, etc.

Since a fast packet processing is a in the router’s critical data path, literature

on packet processing has developed numerous fast lookup schemes using three major

techniques, Ternary Content Addressable Memory (TCAM) [3–6], trie [7–10], and

hashing [11–17]. Although a TCAM provides a deterministic and high-speed packet

lookup [5, 6], due to its non-commodity nature and brute-force search method, its die

area cost and power dissipation tend to become prohibitive for packets with a large

This dissertation follows the style of IEEE Transactions on Networking

2

number of rules and high line rates. Unlike TCAM, trie-based scheme uses a tree-like

data structure to successively classify a packet a few bits at a time [7–10], but it

inherently suffers from space to hold pointers from nodes to their children and the

sequential memory accesses introduced by these pointers. In addition, an imbalanced

memory access hinders the high IP lookup performance due to an irregular prefix

distribution in a trie’s tree structure. In contrast, the hash-based schemes neither

perform brute-force lookups as in TCAM nor suffer from imbalanced memory access,

so they can potentially receive an order-of-magnitude power and memory savings,

respectively.

Traditionally, a hash table (HT) is popularly used for a fast search and this is

due to its O(1) average memory access per lookup under reasonable assumptions.

Recently, HTs are used in a wide variety of packet processing applications such as

intrusion detection systems [18], packet classification [19, 20], TCP/IP system man-

agement [21], and IP lookup [12, 16].

In particular, the binary search on prefix lengths algorithm [22] has the best

theoretical performance of any sequential algorithm for the longest prefix match in

IP lookup by using HTs. In addition, packet classification applications utilize HTs

[23, 24], so they first perform a lookup on a single header field and later leverage the

results to narrow down the search to a smaller subset of packet classifiers. These use

HTs with the expectation of O(1) memory access and encompass a more predictable

worst-case lookup scheme.

However, as the table occupancy, or load, increases, collision occurs frequently,

which in turn reduces the performance by increasing the cost of the primitive opera-

tions. Although there are two collision resolutions (i.e. open address and chaining),

schemes in open address are not suitable for a fast lookup because of the worst case

performance. In addition, a chaining suffers from pointers’ overhead as it maintains

3

a set of linked lists.

While these solutions are designed to maintain a good average performance de-

spite their high loads and increased collisions, their performance nevertheless meets

the packet processing needs: high speed and scalability. To satisfy such needs, an on-

chip Bloom filter (BF) is widely used because the BF of an m-bit vector can provide

both the memory efficiency and the high throughput using an approximate member-

ship testing. Packet processing applications using such a BF include IP lookup in

[12], an intrusion detection system in [13], or packet classifications [19, 20]. Also, in

trading off space, computation, and the impact of false positive lookup, an efficient

lookup using a fingerprint filter (FF) or d-left hashing has been considered preferable

in the literature on networking [21, 25, 26]. The reason is that even though a BF pro-

vides memory-efficient approximate lookup, an FF is found more efficient in power

and memory usages for set representation than its counterpart.

However, such an approximate match is not suitable for all packet processing

applications; the exception includes IP lookup, where its packets are required strictly

to be forwarded to a next hop according to a prefix table. For instance, the recently-

proposed IP lookup approaches [12, 16] have the following design flaws that are not

suitable for a high-speed and large-scale router: 1) A Bloomier filter-based hash table

(BFHT) [16] utilizes a Bloomier filter [27]. However, it inherits two disadvantages of

a Blooimer filter: a setup failure in saving n keys and O(n log n) setup complexity

for n keys. 2) Authors in [12] propose a memory-efficient IP lookup by using BFs,

each assigned to a set of the same-length prefixes. Although this scheme provides fast

approximate matches in on-chip, the perfect prefix match is achieved in an off-chip

HT due to the BFs’ false positive match. Thus, the lookup time is bounded in a slow

off-chip memory access.

A supportive scheme to [12]’s scheme is made to provide a fast off-chip HT

4

access in [15]. However, this scheme suffers from duplicate keys saved in off-chip

memory, and the number of duplicates is depending on k which is the number of hash

functions and it controls the lookup precision. Also, the insert and delete operations

take approximately k times. Such a depending fact k of a large value is not suitable

for performing fast lookups and key updates in high speed routers. Other Peacock

and multilevel hash schemes for packet processing [28, 29] suffer from setup failures

as well.

To address these flaws, such as key duplicates, complicated key updates, and

setup failures, we propose scalable hash schemes for maintaining a fast packet pro-

cessing by using BFs and an FF in pipeline. The four hash schemes in this disserta-

tion are 1) a multi-tiered packet classifier (MPC), 2) a multi-predicate Bloom-filter

HT (MBHT), 3) a hierarchically indexed HT (HIHT), and 4) a fingerprint-based

HT (FPHT). The first two schemes are designed for general packet processing ap-

plications while the last 2 schemes are designed for IP lookup application due to a

memory-efficient perfect match. These four schemes’ overviews are the following:

A multi-tiered packet classifier (MPC) with n BFs provides a lookup distribution

for higher power and throughput efficiencies, compared to a parallel packet classifier

(PPC) of n parallel BFs [12–14, 17]. A PPC accesses n BFs for one lookup every

cycle while an MPC accesses n BFs for several lookups every cycle with the same

BFs’ memory amount as that of a PPC. To build 2-tiered BFs, for an example of an

MPC, the total PPC memory is split between a pre-stage of small-sized BFs with one

read port and a post-stage of large-sized BFs with k-1 read ports. Then, a small-sized

BF is logically connected to two large-sized BFs, so that a forest of binary trees is

built [30].

Secondly, a multi-predicate Bloom-filtered HT (MBHT) with a set of multi-

predicate BFs (MBFs) generates index addresses which have different base number

5

systems to a key table. The generated indexes are geared to in parallel access to

a key table on-chip with simple switching circuitry, so that for a successful query

at most one off-chip memory access is guaranteed for bandwidth requirement of a

router. There are two benefits of an MBHT as regards to both on-chip and off-chip

memory. For the on-chip memory, an MBF reduces the memory size in the base-2x

number system by x times compared to that of the base-21 number system with a

binary predicate BF, where x is a positive integer larger than 1 [31].

Thirdly, a hierarchically indexed hash table (HIHT) is proposed and is used for

approximate testing on keys’ index paths in trees. Once the BFs of the last step

of pipelining complete their index addresses to entries in a table, a perfect match is

made by comparing the saved keys in the indexed entries with a given key, so that at

the most one off-chip access is made to a known associated rule with the given key

[32].

Finally, a f ingerprint-based HT (FPHT) generates indexes to a key table with

the help of both memory-efficient BFs which are approximate membership testers

and an FF which is the most memory-efficient set representation. Specifically, in

an FPHT with no pointers, BFs play a role in key searching in a b-ary prefix tree,

b∈{2, 4, 8, · · · }, and an FF ensures a fewer number of false indexes to a key table in

the worst lookup case [33].

In addition to hash-based approaches in packet processing, the TCAMs have

become the de facto industrial standard solution for a high-speed IP lookup. More

than 6 million TCAM devices were deployed worldwide in 2004 [34], and TCAMs

are projected to be increasingly used as the next generation network search engines.

Part of the TCAMs success is that they are developed with the abilities to store a

“don’t care” state for a prefix and to compare an input key against every TCAM

entry, thereby enabling them to retain a single clock cycle lookup.

6

Table I. Lookup & update com-

plexities.

schemes
Trie O(W) †

Hash O(1)
TCAM 1

†
W : # of IP address bits

Table II. Hardware features of each

scheme.

TCAM CAM SRAM
clock† 266 333 400

Power ‡ ≈15 ≈1 ≈0.1
Cell◦ 16 8 6

†
MHz unit

‡
Watts unit◦

of transistors per bit

Despite TCAMs’ popularity and simplicity, TCAMs have their own limitations

with respect to IP lookup. 1) Throughput: parallel searches in all prefixes are made

in one clock cycle for a single lookup, so that the throughput is simply 1 as shown in

Table I. 2) Power: although a TCAM provides an one-cycle lookup, such an one-cycle

lookup, which is made in parallel searches on all prefixes, requires at most 150 times

more in power consumption than any SRAM-based scheme does. Table II shows

such power consumption difference measured by CACTI [35]. Thus, reducing TCAM

power usage is a paramount goal for a deterministic TCAM lookup.

A high TCAM throughput has been achieved through a partitioning technique

[36, 37]. Its principle with pipelining depends on a parallel architecture that fulfills

multiple lookups per clock cycle. Likewise, a SRAM-based parallel scheme [38] parti-

tions a trie and maps subtries to pipelines using a solution of a NP-complete problem

for a high throughput. However, these kinds of approaches suffer from a high power

consumption and a complicated mapping algorithm complexity, respectively.

In dissertation we proposes a hybrid CAM (HCAM) IP lookup architecture for

maintaining a high throughput and power efficiency. Our approach adopts prefix

collapse and partitioning schemes with Bloom filters (BFs). A prefix collapse (PC)

reduces the number of prefixes as opposed to the prefixes expansion. In such prefix

collapse, the collapsed prefixes can be put in a deterministic lookup-capable CAM

7

to demonstrate further hardware efficiencies for power and the number of transistors

per cell than a TCAM can as shown in Table II. A complete prefix match beyond the

collapsed prefix match is made through a stride tree bitmap (STB) saved in SRAM.

Also, the CAM for the same-length collapsed prefixes can be partitioned into CAM

blocks to provide multiple lookups on the collapsed prefixes per clock cycle.

This dissertation has the following contributions of the four hash schemes.

• An MPC hashing scheme with n BFs is proposed in a multi-tiered configuration

of BFs with the same memory capacity as that of a PPC.

• An MBHT scheme is proposed using a contiguous memory space in off-chip

memory without using pointers to conduct a perfect match and a fast search.

• An HIHT scheme for fast and memory-efficient packet processing is introduced.

It provides per-key information lookup to be used as an index to a key table in

on-chip memory without pointer operation.

• An FPHT scheme provides indexes to a key table using BFs and an FF without

incurring pointer operations.

• For each of the above schemes, new algorithms on insert, query, and delete

operations are proposed, and they are as easy to implement as those of a BF or

an LHT.

• In an MPC evaluation, it has been shown that the proposed MPC scheme has

4.2 and 2 times power and throughput efficiencies against a PPC, respectively.

• In comparison for scalability and speed, analyses on memory efficiency for an

MBHT, an HIHT, and an FPHT are made and multi-fold times memory effi-

ciency is achieved over other contemporary schemes.

8

• In IP lookup application of the proposed hash schemes, the HIHT and the

FPHT, memory and power comparisons with TCAM-based and trie-based IP

lookups are made. The proposed hash-based IP lookup schemes show at least

51 times power efficiency and 1.8 times memory efficiency, compared to TCAM-

and tried-based schemes.

• In addition, the proposed HCAM-based IP lookup scheme achieves the same

throughput as contemporary schemes while it uses 2.8 times less memory and

3.6 times less power compared to contemporary schemes

The rest of the paper is organized as follows. Sec. II presents several hash-

based schemes for packet processing, such as an FHT, a BFHT, and the Peacock

hashing. Sec. III discusses the basics of a BF and an FF in terms of their memory

size and power consumption. Also, this section shows two applications of an HT to

IP lookup and packet classification. Then, a detailed MPC build with n BFs for

a packet classification is shown in Sec. IV. In the following Sec. V, the detail of

an MBHT for a perfect match is discussed. In Sec. VI, the detail of an HIHT for

a perfect match is explained. A detailed FPHT build in a binary prefix tree for a

perfect match is illustrated in Sec. VII. As the last scheme, an HCAM is proposed

for a high throughput and power saving in Sec. IX. In each of Secs. IV, V, VI, VII,

and IX, the analysis on memory, power, or throughput efficiencies in comparison to

other contemporary schemes is made. A conclusion and future work are presented in

the following Sec. X.

9

CHAPTER II

RELATED WORKS IN PACKET PROCESSING

Packet processing has different objectives in each networking layer. For instance, in

layer 2 a router needs to forward a packet to a corresponding port in a limited time

with a large-scale routing table. In layer 3 a packet is classified into a flow for various

purposes like firewall or qualify of service. In this chapter, related major research

works on packet processings like IP lookup and packet classification are enumerated.

A. IP Lookup

Song et al. [15] claimed that for a perfect match an FHT with help of a BF improves

the performance over an LHT by reducing the number of off-chip memory accesses

needed for the most time-consuming lookups. This benefit is possible by combining

hashed linked lists with k hash functions so that only the shortest linked list is used in

the search. Although chaining in a linked list for resolving a collision is one solution,

accessing a key in a linked list costs the same memory accesses as the number of

keys in the linked list because of pointer operation. Beyond the generic limitation of

linked list implementation, overlapping k linked lists in an FHT suffers from several

others described here. First of all, due to merging k linked lists there is a chance

that duplicate keys are saved in off-chip memory, depending on k. In that case,

k is reversely proportional to collision rate, a need of very low collision rate for a

high-speed router makes a number of copies of a key, proportional to k, in off-chip.

Although searching for a key is expedited by choosing the shortest linked list, the

insert and delete operations take at least k times memory accesses due to the k

shared linked lists. These operations are not suitable for a dynamically changing set

because any change in the set needs 2k times of off-chip memory access. Besides

10

time complexities of insert and delete operations, to obtain better performance over

an LHT in terms of reduced collisions, an FHT needs a plethora of buckets used as

pointers to off-chip memory and it holds a large wasted portion of buckets in on-chip

memory. Also, perfect match is made in off-chip memory, so that every query needs

at least one access to off-chip memory. Furthermore, due to the inherent drawback of

a BF, the delete operation was designed by introducing a 4-bit counter in each bucket

[39]. Yet, they did not consider the memory size of the counters, but just the number

of buckets.

There is a fundamental limitation in a HT using a linked list: a sequential access

to a key along the linked list. For example, to access key e located at the end of a

linked list of t keys, t sequential accesses are necessary in t cycles, because memory

address of key e is known after a previous key e′ with a pointer to the next key

e is obtained in the previous cycle. However, accessing a few entries with known

indexes in a table can be processed in one cycle with a simple switching circuitry.

To provide collision-free lookup with a key table, a BFHT [16] utilizes a Bloomier

filter [27] capable of per-key information lookup. Per-key information by a Bloomier

filer is considered as an index address of a key table given a packet, so that a BFHT

performs perfect match to make a deterministic IP lookup with a key table. Although

a BFHT contributes prefix collapsing as well, it also inherits two disadvantages of a

Blooimer filter: first, there is a setup failure in saving per-key informations of n keys

in a BFHT, so that another lookup mechanism is used for the failed keys in the setup.

Thus the number of hash functions gets increased to reduce setup failure rate, leading

to more memory need. Second, the setup complexity of n keys is O(n log n), implying

that a copy of a BFHT works for update of a new key in the rear of the BFHT for

seamless lookups of other keys.

11

B. Packet Classification

The packet classification goal is to identify a flow characterized with a 5-tuple of

source IP (SIP), destination IP (DIP), protocol, source port (SP), destination port

(DP) and to forward the flow to a corresponding output port. Several types of packet

classifiers like TCAM-based and SRAM-based ones are suggested [6, 20, 40–42]. In a

hash-based approach, a packet classifier in [14] uses BFs in parallel, so that in a given

packet lookup all BFs need to be checked to find the packet-associated flow and the

packet is forwarded to a corresponding port where a BF returns ’yes’. However, in a

high-speed lookup to a BF, the number of memory read ports in the BF is considerably

large. Also, the number of BFs to be probed is as large as the number of a high-speed

router’s ports. Unlike the above schemes of the Θ(n) BF access complexity among

n BFs, our MPC needs probabilistically less complexity than Θ(n) for a lookup

C. Other Packet Processing Applications

Besides BF applications for packet processing in the previous section, applications of

other domains have utilized the benefit of BFs, such as dynamic BF for data man-

agement [17], wide-area web caching [39], content delivery across overlay networks

[43], IP traceback [11], query routing in peer-to-peer networks [44]. Even in a wire-

less sensor networks where power saving is a paramount issue, a coordinated packet

traceback mechanism in [45] is introduced with the concept of dimensions in hash

algorithms in which a dimension can expand by the number of either hash functions,

hash tables, or both.

A legacy BF does not support deletion operation because a bit-location in a

bit-vector indexed by hash functions can be overlapped by more than one key. To

avoid this problem, Fan et al. [39] introduced the idea of a counting BF in which

12

each entry in the BF is not a single bit, but rather a small counter in a couple of bits.

Bonomi et al. [21] introduced Approximate Concurrent State Machines (ACSM).

While similar in spirit to BFs, the scheme is based on a combination of hashing and

fingerprints, using d-left hashing to obtain a near -perfect hash function in a dynamic

setting. Although it is found that its data structure takes much less space than

a comparable counting BF, the fundamental problem in their approach is that in

an f -positive there is no way to verify a result given by a ACSM. In contrast, our

three schemes (MBHT, HIHT, FPHT) provide a perfect match mechanism without a

pointer. Cohen and Mattias [46] introduce Spectral Bloom Filter (SBF), an extension

of the original BF to multi-sets, allowing the filtering of elements whose multiplicities

are below a threshold given at query time. However, SBF does not support a function

of relationship between a key and arbitrary per-key information.

Unlike previous BF approaches for approximate membership testing, for the first

time, Bloomier filter in [27] provides storage and retrieval of arbitrary per-key infor-

mation. It guarantees perfect-hashing for a constant-time lookup in the worst case.

However, a disadvantage lies in static support of membership. Also, there is setup

failure probability of encoding all keys depending on k, the number of hash functions.

In an application of overlay networks, continuous reconfiguration of virtual topol-

ogy by overlay management strives to establish paths with the most desirable end-

to-end characteristics. The approximate reconciliation tree for overlay networks by

Byers et al. [43] uses BFs on top of a tree structure to minimize the amount of data

transmitted for verification.

13

D. Parallel IP Lookup Using TCAM or SRAM

Except a parallel SRAM scheme in [38], most parallel IP lookup engines for high

throughput are TCAM-based due to benefit of employing parallel searches on TCAM

prefixes [36, 37]. They partition the full routing table into several TCAM blocks and

make parallel lookups on different blocks. This parallelism obtains power efficiency

and throughput improvement.

Cool TCAM (CTCAM) was proposed in two separate schemes: bit-selection and

trie-based schemes [47]. In the former, selected bits are used to index different TCAM

blocks directly. The latter scheme splits the trie by carving subtries out of the full

trie. However, the prefix distribution imbalance among the TCAM blocks can be

noticeably high, resulting in low worst case performance.

Ultra TCAM (UTCAM) in [36] increases the throughput 4.0 times with a 25%

TCAM entry redundancy. It uses distributed and parallel TCAM blocks aided by

having an index logic to choose the destination TCAM block for a given packet.

Likewise, Selective TCAM (STCAM) in [37] uses the multiple TCAM-block selectors

with prefix TCAM caches. A collision among TCAM-block selection attributes a

STCAM’s need to resolve TCAM block contentions with arbiters, and these arbiters

prevent from receiving a new lookup request. Thus, the STCAM throughput gain was

reported to be at most 1.5 times even with multiple TCAM blocks without caches.

Unlike TCAM partitioning, beyond TCAM (BTCAM) scheme in [38, 48] is in-

troduced for trie-partitioning using SRAMs where subtries were mapped to SRAM

blocks with consideration of memory balance. However, such a mapping is proved to

be NP-complete, so that remapping for prefix update during lookup operation is not

feasible. Furthermore, leaf-pushing causes the increase number of trie nodes resulting

in memory overhead.

14

Trie- and hash-based schemes shown in the above subsections are lack of high

lookup performance. In contrast, a TCAM’s lookup complexity is 1 and a TCAM

has been considered as a natural choice of multi lookups due to its parallel searches

through partitioning [36, 37]. The same characteristic is preserved in a CAM except

the prefix match. After discussing an issue in prefix match by prefix collapse or

expansion in Sec. C, a hybrid CAM (HCAM) scheme using CAM blocks is presented

for high throughput in Sec. D.

15

CHAPTER III

BASICS ON HASH FOR PACKET PROCESSING

This chapter introduces the basics of a BF and an FF as well as their applications to

packet processings, IP lookup and packet classification.

A. Basic Bloom Filter Theory

To understand the fundamental relationship among the number of buckets, m; the

number of items, n; and the number of hash functions, k, the mathematics about a

BF and a false positive, or f -positive are presented.

A legacy BF for representing set S={e0, e1, ..., en-1} of n elements is described by

an array of m bits with each initially set to 0. A BF uses set H of k independent hash

functions h0, h1, ..., hk-1 with range [0:m-1], implying that in hardware implementa-

tion a memory module for a BF needs k ports for memory read. For mathematical

convenience, a natural assumption is made that these hash functions map each item

in the universe to a random number uniform over the range. For each element ej′∈S,

the bits indexed by hk′(ej′) are set to 1 for 0≤k′≤k-1, 0≤j′≤n-1. To verify that item

e′ is in S, it is checked whether k bits in a BF indicated by hk′(e′) are 1. If not, then

clearly e′ is not a member of S. Even if chosen bits indexed by hk′(y) have a value 1,

there may be a probability called f -positive that item y is falsely believed to belong

to set S due to the random gathering of k bits of value 1 set by independent items.

The above probability f of f -positive can be formulated in a straightforward way,

given our assumption that hash functions are perfectly random. Among m bits, the

chance of a bit being value 0 by one hk is 1/m. After all n elements of S are hashed

k times into the BF, i.e. totaling k·n times, the probability that a specific bit is still

0 is asymptotically p=(1-1/m)kn≈e−kn/m. Then, the probability of an f -positive by

16

randomly choosing k bits among m bits is

f ≥ {1 − (1 − 1/m)kn}k ≈ (1 − p)k ≥ (1/2)m ln 2/n (3.1)

because k bits with probability of becoming 0, or p, could independently become

more than 0 when a membership test is requested. This probability is bounded

and the optimal k, the number of hash functions, that minimizes f is easily found

k= ln 2(̇m/n) according to the results of Broder and Mitzenmacher [49]. After some

algebraic manipulation, Broder and Mitzenmacher [49] claimed that the requirement

of f≤ε=2−w suggests

m ≥ n
log2(1/ε)

ln 2
≈ 1.44n log2(1/ε) = 1.44nw, (3.2)

where w is a precision in query operation. Furthermore, in an optimal configuration,

k becomes w according to the following derivation:

k = ln 2
m

ni
= ln 2

(
ni

log2(1/f)
ln 2

)
/ni = w. (3.3)

Also, k needs to be at least 29 (≈ log2 1/500M) to be a scheme of a deterministic

O(1) lookup processing 500M packets a second for a 160Gbps router.

Two important lemmas can be derived from Eq. (3.2), described as follows

Lemma 1 (Linear Property) Linear property between m and n exists in Eq. (3.2)

because given f requires that variable n is linearly proportionate to variable m. There-

fore, if n is reduced by half or decreased by constant α, the desired m for a given f is

reduced by half or decreased by the constant of α·1.44 log2(1/ε), respectively.

Proof: Suppose function Fm(n, f) of Eq. (3.2) has domain variables n and f . Once

f is set to a constant ε as requirement, this function becomes a polynomial of variable

n, F ′
m(n)=a·n, with degree one, where a=1.44·log2(1/ε). Therefore,

F ′
m(n/2) = a · (n/2) = an · 1/2 = F ′

m(n)/2 and
F ′

m(n − α) = a · (n − α) = an − aα = F ′
m(n) − aα,

17

proving Linear Property.

Lemma 2 (Reverse Exponential Property) The change of m has an exponen-

tial effect on f for a given n from Eq. (3.2). That is, if m is increased by constant α

or multiplied x times, f is exponentially divided on base-2 by the power of constant

α/c or powered by x times where x>1, constant c=1.44n.

Proof: Suppose function Ff (n,m) is derived from Eq. (3.2) and rearranged in 2−m/c,

where c=1.44.n. Once n is set to a constant, this function becomes a exponential

function of m, F ′
f (m). Therefore,

F ′
f (m + α) = 2−(m+α)/c = 2−m/c−α/c = F ′

f (m)/2α/c and

F ′
f (xm) = 2−xm/c = (2−m/c)x = F ′

f (m)x,

proving Reverse Exponential Property. These Linear and Reverse Exponential

Properties are used in introducing an MBF, so that an MBHT has the benefit of

memory saving in on-chip memory by the Linear Property, and, thereinafter the

saved memory is designed to decrease f exponentially by the Reverse Exponential

Property.

We have linked the theoretical relationships between k, m, n for the required

f -positive, ε, in a query. If a BF is to be used for IP lookup despite producing an

approximate query result, a lookup precision w should be at least 29 (≈ - log2 1/500M)

for 160Gbps routers because a collision in 500M lookups in a second is not tolerable

in bandwidth requirement satisfaction. Also, Eq. (3.3) suggests that a BF memory

implementation for 160Gbps routers needs 29 read ports for the same number of hash

functions, but this is not feasible in terms of cost and power concerns. To lessen

these overheads, we adopt a segmented BF (SBF) [14] with memory banking. Using

this scheme with commodity memory is more practical since IDT currently produces

high-speed bank-switchable memory organized into a 64-bank memory array.

18

In an SBF, an m-bit vector is divided into k m′(=m/k)-bit subvectors, each

put in an independent memory bank. k hash functions with the range [0:m’-1] are

assigned to their corresponding subvectors, and an one-clock query in an SBF is based

on k indexed values in k subvectors (or banks) together as in a legacy BF. Although

a SBF’s memory banking scheme removes the multiport overhead, the SBF’s false

positive probability, f ′, becomes the same BF’s f as follows:

f =
(
1- (1-1/m)kn

)k
=
(
1-
(
1-1/km′)kn

)k

=
(
1-
(
1-k/km′+o(1)

)n)k ≈ (1- (1-1/m′)n)k = f ′ (3.4)

where a small o function is negligible at a large m′ value.

B. A Memory- and Power-Efficient Fingerprint Filter

Authors in [49, 50] claim that an FF is the most memory-efficient set representation

scheme. In this section, beyond the theoretical FF benefit, it will be claimed that an

FF is the power-efficient data structure in hardware implementation as well.

One method to determine the efficiency of a set representation scheme is to

consider how many bits, m, are necessary for a set of n keys from a universe. An

efficient scheme must not allow any false negative but can at most allow an f -positive

of a fraction ε of the universe. As claimed in [49], the following inequality of m for a

given required ε is made:

m ≥ n log2(1/ε)=nw=w + · · · + w=
∑n

i=1 w. (3.5)

Thus, an FF can be regarded as an array of n fingerprints (FPs) of log2(1/ε) bits

for the approximate set representation. Since an FF does not have a constant time

indexing mechanism like hash functions in a BF, knowing an index to a key’s FP is

other complicated search. However, once an index to the key’s FP is known, the same

19

index can be used in a key table for a perfect match. Also, an FF needs 1.44 times

less memory than a BF for required ε, based on Eq. (3.2) and Eq. (3.5).

In addition to the theoretical benefit, in terms of memory architecture using an

FF SRAM requires a simpler memory read port design than an SBF SRAM does, so

that area and power benefits in memory architecture are gained. Suppose there are

two SRAMs for an SBF and an FF and the required false positive ε is 2-29 for 160Gbps.

The SBF requires 29 read ports to query a key as a result of its simultaneous accesses

while the FF needs only one read port to an FP of 29 bits. That is, an SBF SRAM

with n keys is designed as a w×1.44n×1-bit memory array with w read ports of 1-bit

output width while an FF SRAM is made of an 1×n×w-bit memory array with one

read port of w-bit output width.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 2 4 6 8 10

T
ot

al
 r

ea
d

po
w

er

of ports in a BF or output bit-width in a FP

BF
FF

(a) Power (W)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 2 4 6 8 10

T
ot

al
 a

re
a

of ports in a BF or output bit-width in a FP

BF
FF

(b) Area (mm2) for cost

Fig. 1. Comparison of power and area for a BF and an FF through CACTI.

Fig. 1 shows the power and area comparisons for an 11520-bit SBF and an

8000-bit FF in different ports or output bit widths. .09μm process technology in

CACTI 4.2 [35] is used. In Fig. 1 a) and b), gaps between the SBF and the FF

are significant as w get larger. or example, an FF memory consumes 9.5 times less

power, compared to an SBF while the former needs 76 times less area. Thus, for a

20

perfect match query, utilizing few-port SBFs in a binary search for a key’s fingerprint

in an FF and accessing a key table through the indexed fingerprint is a memory- and

power-efficient hash scheme, and this scheme is introduced in the following section.

C. IP Lookup Using Hashing

Hash function maps a value in domain to a specific value in range uniformly. Thus,

hash-based schemes, like a BFHT and an FHT, do not address the issue of supporting

wildcard bits in prefixes. In this section, we present two kinds of schemes to support

prefix match in a hash-based IP lookup: Controlled Prefix Expansion (CPE) and

Prefix Collapse (PC).

1. Controlled Prefix Expansion

1001100

1001010
1001011

1001000
1001001

1001101
1001110
1001111

P1

−
−
−

−

P3
P1
P1

1010100

1010010
1010011

1010000
1010001

1010101
1010110
1010111

−

−
−
−

P2

−

−
P2

1001100
1001101
1001110
1001111

P1
P3
P1
P1

1010110
1010111 P2

P2

P1: 1001 1*

P3: 1001 101

stride 3

new
database

expanded prefixesP2: 1010 11*

Fig. 2. Prefix conversion of a CPE with 3 prefixes in stride 3.

A CPE in [7, 16] is to transform a set of prefixes by combining prefix expansion

and prefix capture to reduce any set of arbitrary length prefixes into an expanded

set of prefixes in optimized sequence of length. With dynamic programming, it was

applied to tries where the worst-case IP lookup time is O(W), where W is the length

21

of IP address. For a hash-based scheme, CPE was used in [16] to support wildcards

in prefixes.

Fig. 2 shows a CPE mechanism with prefix database of 3 prefixes as a running

example. In expanding bits and wildcard of 3 prefixes, prefix 1001101 is overlapped

with prefix 10011*, so that the total number of expanded prefixes is 6. The 6 expanded

prefixes in a new database are keyed to a hash function in hash-based IP lookup

schemes. Although a CPE removes wildcards in prefixes for the hashing mechanism,

the number of expanded prefixes along with the same number of next hops can become

2 times larger compared to the original prefix set. In general, the expansion is made

in multi-fold and by simulation work on BGP tables, AS65000 and AS6447 [51, 52].

We found that the number of expanded prefixes increases as the stride size gets larger

and that the number is about 5 times larger in stride 5. The reason is that a given

prefix of stride l can be expanded to 2l prefixes if there is no overlapping with other

prefix, unlike prefix 10011* and 1001101.

2. Prefix Collapse

100 : P1
101 : P3
110 : P1
111 : P1

110 : P2
111 : P2

P1: 1001 1*

P3: 1001 101
P2: 1001 11*

stride 3

pointer

pointer

P3

P1

P1

P1

P2

P2

000 : −
001 : −
010 : −
011 : −1001

000 : −
001 : −
010 : −
011 : −
100 : −
101 : −

1010

1001

1010

1
1
1

1

1
1

0
0

0
0

0
0

0
0

0
0

in bit−vec.
count 1’s

collapsed prefix

bit vector

Fig. 3. Prefix conversion of PC with the same 3 prefixes of Fig. 2.

Unlike inflating the number of expanded prefixes and the next-hop informations

22

in a CPE, a PC converts a prefix of length x into a single prefix of shorter length

x-l by replacing its l least significant bits with a wildcard [16]. The truncated prefix

of length x-l is collapsed with others of the same x-l bits, so that the number of

collapsed prefixes is reduced. Fig. 3 shows the prefix collapse mechanism with the

same set of prefixes as in Fig. 2 for a CPE. Although the first conversion expands

wildcards of the prefixes in stride 3 like a CPE, the second conversion adopts a bit

vector indicating the relative index to a next-hop table. In addition, after expansion

of the wildcard, the first and the third prefixes are same among 3 truncated prefixes

of length 4. Thus, the final collapsed prefixes are prefix 1001 and 1010 with bit

vectors (00001111) and (00000011). Compared to the example in Fig. 2, the number

of collapsed prefixes is reduced, while the number of next-hops maintains the same

as that for a CPE but yet it still increased 2 times than the original set.

3. IPv6 IP Lookup

The addressing architecture for IPv6 is detailed in RFC 3513. In terms of the number

of prefix lengths in forwarding tables, the important address type is the global unicast

address which many be aggregated. RFC 3513 states that IPv6 unicast addresses may

be aggregated with arbitrary prefix lengths like IPv4 address under classless inter-

domain routing. While this provides extensive flexibility, it is not foreseen that this

flexibility necessarily results in an explosion of unique prefix lengths. The global

unicast address format has three fields: a global routing prefix, a subnet ID, and an

interface ID. All global unicast addresses, other than those that begin with 000, must

have a 64-bit interface ID in the Modifed EUI-64 format. These identifiers may be of

global or local scope; however, we are only interested in the structure they impose on

routing databases. In such cases, the global routing prefix and subnet ID fields must

consume a total of 64 bits. If these policies are followed, it could be anticipated that

23

IPv6 routing tables will not contain a significant difference from the current IPv4

tables except a prefix length distribution. Thus, hash-based IP lookup schemes can

play a major role in saving memory and power for IPv6 as for IPv4, compared to

TCAM- and trie-based IP lookup schemes.

D. Packet Classification Using Hashing

The issue of how to reduce the number of used BFs in processing a packet with n

BFs is a paramount power concern in any packet processing [12, 14, 53] as well as

network application including wireless sensor network [45]. However, in this section

we formalize and restrict the issue to packet classification domain.

Bi

BnB1 B2

���� ����

LeavingEntering

hash table
to confirm results

on−chip
off−chip

one packet

(SIP DP)

a 5−tuple

i−th BF

packets packets

Fig. 4. Parallel packet classifier engine of n BFs in a given packet.

A parallel lookup with n BFs is a common configuration in packet classification

[14] as shown in Fig. 4 where a 5-tuple of SIP, DIP, protocol, SP, and DP is extracted

from a packet and a lookup of the 5-tuple is made among n BFs. Fast on-chip

packet processing with n BFs is beneficial because it reduces the number of off-chip

hash probes [12, 22]. Due to f -positives from the BFs, all positives are required to

24

be confirmed by a hash table of recorded flows. Due to QoS and security concern,

providing a perfect match is necessary in packet classification. Thus, there is BFs’

access contention to the hash table. BFs can be fabricated in on-chip due to memory

efficiency while the hash table is located in off-chip due to its large size as in other

schemes [12, 13, 20]. Thus, the packet lookup throughput is bounded to the processing

time in the off-chip hash table.

The worst case throughput can be calculated in the following way: given a lookup

of a minimum 40-byte packet, there are two kinds of lookups, an unsuccessful lookup

(UL) in which a key is relentlessly searched although it does not exist in BFs, and a

successful but time-consuming lookup (SL) in which a key is to be searched in BFs.

Let ts and tu denote processing times in an off-chip hash table (HT) for an SL and a

UL, respectively. Then, the packet lookup throughput in n BFs is calculated as

T =
40 · 8

ps{ts + tu · (n-1)f} + (1-ps){tu · nf}bits/sec., (3.6)

where ps is an SL rate and the nf and (n-1)f terms explain the expected numbers of

f -positives which is based on the binomial distribution of identical and independent

BFs in an SL and a UL, respectively.

Based on Eq. (3.6), Fig. 5 shows the throughput where HT’s processing time in

an SL, ts, is 1.001 times of 2ns in a modern T-RAM [54] and tu is set to 0.5 times

of 2ns. In the worst case of ps=1, the lookup throughput with BFs of k=10 read

ports can barely keep up with 160Gbps while BFs of k=15 read ports can meet the

bandwidth. Thus, a large number of read ports in a BF memory are required for a

high throughput, and avoiding irrelevant BFs of such a large number of ports for a

lookup is preferable. In the following section, such an avoidance is made by a PPC

which distributes lookups through small-sized BFs of a few ports, so that a subset

of the lookups are processed in large-sized BFs in one clock cycle for a higher power

25

50 75 100 125 150
1

1.5

2

2.5

3

3.5
x 10

11

The number of BFs

T
hr

ou
gh

pu
t i

n
bi

ts
/s

ec
.

k=10,p
s
=1

k=10,p
s
=0.5

k=15,p
s
=1

k=15,p
s
=0.5

160Gbps

Fig. 5. Throughput comparison in a different number of BFs, ps, and k.

and throughput efficiencies.

26

CHAPTER IV

A MULTI-TIERED PACKET CLASSIFIER WITH N BFS

This chapter introduces how to build an MPC and implement insert, query, and

delete operations in an MPC for better lookup performance.

2 4 6 8
0.01

0.02

0.03

0.04

0.05

of read ports

Po
w

er
 (

W
)

2 4 6 8
0

20

40
45

of read ports
A

re
a

(m
m

2)

Fig. 6. Power and area in multi memory read ports for 64K×1-bit memory.

Each hash function corresponds to one random lookup in an m-bit BF. Thus, a

BF having k hash functions for high throughput needs the exact same k of memory

read ports in an m-bit memory module. Although state-of-the-art VLSI technol-

ogy can fabricate memory with multiple ports, supporting more than 10 ports is

tremendously hard as noted in a concise summary of the recent embedded memory

technologies [55]. Fig. 6 shows such a difficulty in terms of the power and area costs

measured by CACTI [35], according to the number of read ports in a single memory

module. The conclusion from the figure is that the power and area costs is superlinear

to the number of read ports. Thus, a BF is considered as a high computation element

due to the large value of k for the high-speed router, and thereby reconfiguring such

BFs for a power- and throughput-efficient lookup is necessary.

27

1
1B 1

2B 1
3B

1 read

A
D

1 read

A
D

D : data port

: address port

2
1B 2

2B

���
���
���
���

k−1 k−1 k−1 k−1
reads readsreads reads

B 1
4

? == 1 ? == 1
hashes hashes hashes hashes

layer 1

layer 2

BF memory with D & A

hashhash
b b

buffer
packets

2TPC

S1

S2 A A A A
DD D D

A
D

A

Fig. 7. Pipeline memory architecture of a 2TPC in a forest. S1 and S2 are pipeline

stages. Bi
j means the j-th BF at layer i. n=4. k=w due to Eq. (3.3). w2=1,

w1=k-1. b is a buffer size.

A. Building a Multi-tiered Packet Classifier

In this section, we derive mathematical proof that an MPC uses the same memory

size as that of a PPC while the detailed insertion and query are mentioned in Secs. B

and C. Fig. 7 shows a configuration example of an MPC, a 2-tiered PC (2TPC) on

top of 4 BFs, in place of a PPC used in a dashed box of Fig. 4. Also, Fig. 8 shows

a 3-tiered PC (3TPC) on top of 8 BFs. Given desired f -positive f=2-w, the total

PPC memory in bits with n BFs is n·m, where m is a BF’s memory based on Eq.

(3.2). However, with linear property between m and ni and an additive operation on

memory size mt, we can reconfigure BFs in a (r+1)-tiered way, r>0, while the same

memory size, mM , for an MPC is used as follows:

28

B 1
8

����
����
����

����
����
����

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

1
1

layer 2

layer 1

1 read

hash

k−2 k−2
reads reads

? == 1
hashes hashes

k−2
reads reads

hashes

1 read
hash

? == 1

B

1 read
hash

? == 1
hashes

1 read

hash

k−2 k−2
reads reads

? == 1
hashes hashes

k−2 k−2
reads reads

hashes

1 read
hash

? == 1

1 read

D

hash

A

? == 1
hashes

layer 3

k−2

3TPC

packets buffer

bb

S2

S3

S1

A A
D

A A A A
D

A
D D

A

A

A

D
A A

A
D

D

D D

D

DD

D

Fig. 8. Memory architecture of a 3TPC in a forest and in pipeline. Bi
j means the j-th

BF at layer i. n=8. k=w due to Eq. (3.3).

n × m = n × {1.44 · ni · log2(1/f)}
= n × {1.44 · ni · w} = n × {1.44 · ni · (w − r + r)}

= n · 1.44 · ni · (w − r) +
r∑

t=1

{n · 1.44 · ni · 1}

=
n∑

i=1

(1.44 · ni · (w-r))+
r∑

t=1

n/2t∑
i=1

(1.44 · (2tni) · 1) (4.1)

= m1 +
r∑

t=1

mt+1 = mM ,

where mt is the total memory of BFs on layer t, r+1 is the number of tiers, 2tni is

the number of keys in Bt
i , and the lookup precisions of a BF on layer 1 and t, w1 and

wt, are w-r and 1, respectively. Based on Eq. (3.2), the f -positives of BFs on layer

1 and 2 in a 3TPC are expected to be 2-(w-2) and 2-1, respectively, and the second

term,
∑r

t=1

∑n/2t

i=1 (1.44 · (2tni) · 1), in Eq. (4.1) is the sum of small-sized BFs from

29

8 16 32 64

200

400

600

800

1000

of BFs, n (log scale)

T
ot

al
 #

 o
f

m
em

or
y

re
ad

 p
or

ts PPC
2TPC
3TPC

(a) The read port number

3
4

5

16

20

24
0

2

4
5

n
k
 (x104)w(=k)

A
re

a
(m

m
2)

(x
10

3)

PPC

2TPC

(b) The area cost (w2=1)

Fig. 9. (a) The total number of read ports in different number of BFs. w3=w2=1,

w1=13 for a 3TPC. w2=1, w1=14 for a 2TPC. f=2−15. (b) 2TPC and PPC

area costs with n=8 in .13μm process technology.

layer 2 to layer r+1. Also, a BF from layer 1 covers ni elements, and a BF from layer

2 covers 2ni keys. Generally, Bj
i covers all keys from Bj-1

2i and Bj-1
2i+1, 1≤i≤n/2,

1<j≤r in an MPC.

In this multi-tiered and pipelined configuration with b=1, power in accessing

memory (or probing BFs) can be saved. For example, B1
2 has a key and there is a

lookup for the key. By preprocessing the lookup in stage S1 with B2
1 and B2

2 , if B2
2

returns ’no’ in the lookup there is no need to probe B1
3 and B1

4 . Thus, a power used

to probe them can be saved.

In addition to the power concern, simply setting b to more than 1 does not achieve

a higher throughput efficiency. Although Eq. (4.1)’s derivation shows that an MPC

has the same memory size as a PPC, processing a lookup in small-sized BFs of one

read port does not provide a higher throughput in large-sized BFs on a lower layer.

For instance, even if b in Fig. 7 with w2=1 is set to 2, a one-read-port BF on layer 2

cannot process 2 lookups in one cycle. Thus, the number of read ports in the small-

30

sized BF needs to be the same as b. In general, the number needs to be b · w2 for a

throughput-efficient MPC. As suggested in [12], using mini-BFs with few read ports is

the solution without degrading lookup accuracy. However, even if a BF is broken into

several mini-BFs, the total number of read ports in the mini-BFs is the same as that

of a PPC. Thus, breaking a BF into mini-BFs only gives the possibility of fabricating

BFs for packet processing, not the benefit of high throughput. However, a proposed

MPC has two benefits of few number of read ports and an area cost which can lead

to fabricate small-sized BFs of multi read ports for a high throughput without area

overhead.

Figs. 9(a) and 9(b) show such two benefits: the smaller number of fabricated

read ports and the smaller area for a 2TPC. Fig. 9(a) shows the required numbers of

read ports in fabricating a different number of BFs for a PPC, a 2TPC, and a 3TPC,

respectively. In fabricating, a 2TPC and a 3TPC use 4% and 10% less number of

read ports than a PPC in all cases. Fig. 9(b) shows 2TPC and PPC area costs in a

different number of w and ni, and in each case the area costs of using 4 mini-BFs for

a BF are measured by using CACTI model [35].

Now, we show how to fabricate multi-ports in a small-sized BF without hardware

overhead. There is a noticeable gap between dotted and solid meshes in Fig. 9(b),

and the reason is that fabricating multi-ports in a small-sized memory does not need

area as much as in a large-sized memory. Due to page limit, we did not plot the area

costs for 2 through 5 read ports in a small-sized BF memory on layer 2. However,

there is a small area increase for the multi-port memory, compared to a PPC’s area.

Thus, it is clear that the buffer size b can amount to 5 at the most. Also, utilizing dual

reads on falling and rising edges in a clock [56] can double the memory read capacity

and a lookup throughput (i.e. double data rate scheme does in DRAM and AMD

Athlon64). Thus, the buffer size becomes twice and the maximum b is 10 without

31

memory overhead in an MPC.

B. Insert Operation in an MPC

Insert operation of a key in a BF on layer 1 is as simple as the key’s insertion in

a legacy BF. Similarly, on layer j, if a key to hash is assigned to Bj
i , the key is

given to Bj+1
�i/2� for insert operation, 1<j≤s. The detailed procedure is shown in

Procedure insert which does kj times memory write on layer j. Therefore, the

memory write complexity of one key insertion is
∑s

t=1 kt=w=kP which is the same as

a PPC, where kP is based on Eq. (3.3). Also, note that the first vertically lined for

can be in pipeline because BF memories on a layer are independent ones from other

layers. Thus, in every cycle one key insertion is performed on the condition that B1
i

on layer 1, 1≤i≤n, supports multiports.

Procedure insert
Input: Key e and index i for a BF on layer 1
Output: Encoded 2TPC for key e
for layer j = 1 to s do1

for t = 0 to kj − 1 do // ht is t-th hash func.2

Bj
�i/2j-1�[ht(e)]=1; // B is Mem. on SRAM for BF44

end5

end6

C. Query Operation in an MPC

Unlike insert operation where only the involved BFs are accessed, query operation

needs to access all BFs to find which BFs return ’yes’. Because except one involved

BF the rest of irrelevant BFs give f -positives leading to packet misclassification, the

irrelevant BFs in an MPC are not considered for probing, so that the BF access

complexity in processing a lookup with n BFs is far less than n. To provide such a

32

complexity, we split the memory of a PPC into small-sized BFs and large-sized BFs

in multi-tiers, and they are connected in binary trees. Then, accesses to large-sized

BFs are made only if their parents of small-sized BFs return ’yes’ (or value 1 in D)

as shown in Fig. 7. Also, BFs in multi-tiers can be in pipeline so that there is no

performance degradation. Before the detail procedure, let us introduce definitions of

a true path and a false path entangled in an MPC.

Definition 1 (True Path)

In query operation among a forest shown in Fig. 7, a true path, t-path, occurs. It is

composed of shadowed BFs from a root of a tree to return ’yes’. These were involved

in the previous insert operation for a key. The length of a t-path is 2 in case of

2TPCs.

For example, if a key is assigned to set B2 in PBFs, the BFs on a t-path for 2TPCs

are B2
1 , B1

2 as shown in Fig. 7. From the above definition, in query operation all BFs

on the t-path should return ’yes’ for a given key as a legacy BF returns ’yes’ because

each BF has the key as a member.

Unlike a t-path, a false path is made from a group of BFs giving f -positives

so that packet misclassification occurs. The detailed definition of a false path is as

follows:

Definition 2 (False Path)

In query along consecutive layers, a group of BFs giving f -positives makes a false

path, f -path. The series of BFs can be from either the off-branch BFs from a t-path

or a root of a tree to the bottom of the tree as shown in the checked boxes of Fig. 7

and 8.

33

The f -positives by the BFs, neither stemming from a branch of a t-path nor being a

complete path in a tree among a forest, can not contribute an f -path by the definition.

Also, the number of f -paths means the number of packet misclassifications. An

important fact from the above definition is that the probability of misclassification

for an f -path contributing one packet misclassification is cumulatively calculated in

product of each f -positive on the f -path.

1. False classification in a successful lookup

We divide a lookup in two ways: 1) a successful lookup and 2) an unsuccessful lookup.

In network application, given a packet a router needs to determine the destination

based on a flow table about classification information. If there is a flow in the table,

we call the lookup an SL. Now, we show the misclassification probability in an SL.

By a recursive definition, the probability Pa(i) that root a in a binary tree has

i packet misclassifications is the product of the following three: the probability of

an f -positive in root a of the binary tree, the probability that a left subtree has

i-j packet misclassifications, and the probability that a right subtree has j packet

misclassifications as the following:

Pa(i) =
i∑

j=0

fa × Pl(i − j) × Pr(j), (4.2)

where fa is the probability of an f -positive from BF a, and as a base case, PB1
1
(1)=fB1

1
.

Finally, the dominant probability, Ps(1) that a single packet misclassification occurs

across a forest is the following:

Ps(1) =
r−1∑
j=1

P
Bj

t
(1) +

n/2r-1∑
i=2

PBr
i
(1), (4.3)

where r is the number of tiers, the first term is the summation of Eq. (4.3)’s

probabilities of BFs attached on a t-path and the second term is the summation of

34

probabilities of the remaining trees among the forest.

2. False classification in an unsuccessful lookup

Since all packets are not under specific flows based on a flow table, a UL is important

as much as an SL. Unlike an SL, in a UL there is no t-path. This means that what

a BF returns, if any, is an f -positive. The dominant probability, Pu(1) that a single

packet misclassification happens in a UL is

Pu(1) =
n/2r-1∑
i=1

PBr
i
(1). (4.4)

Procedure query shows the details of query operation on an MPC. The code in

Procedure query

Input: Forest F of binary trees for an MPC and key e
Output: Set S for a true path and a group of false paths
for tree T ∈ in forest F do1

S = S ∪ query BT(T, e) ;2

end3

return S;4

the vertical line of Procedure query can be implemented in parallel. Also, it calls

subroutine query BT which is working recursively and in pipeline on each layer in a

binary tree to check a BF for the key e as a legacy BF does. Also, pipelining on

layers in a binary tree makes it sure that the query complexity is Θ(1) as a PPC’

complexity is.

Based on Eqs. (4.3) and (4.4), the expected packet misclassification considering

SL and UL rates is

ps

n−1∑
i=1

i · Ps(i) + (1 − ps)
n∑

i=1

i · Pu(i) = ps · Es + (1 − ps)Eu, (4.5)

where ps is an SL rate, and Es and Eu are the average packet misclassifications for

35

an SL and a UL, respectively.

There is a minuscule classification performance degradation in using an MPC.

Fig. 10 shows the average packet misclassification of a PPC and a 2TPC based on Eq.

(4.5) with a rate of successful lookup ps. There are three important considerations: 1)

-4

-3

-2

-1

0

1

-4 -3 -2 -1 0

A
vg

. a
cc

es
s

a
se

ar
ch

 (
lo

g
sc

al
e)

Successful search probability(Ps) (log scale)

AL for an LHT
AF for a corrected FHT

AF for an FHT
AM for an MBHT

Fig. 10. The average packet misclassification for a PPC-n and a 3TPC-n in a different

SL rate. f=2−w=2−30, w1=28, w2=w3=1. n ∈ {32, 64, 128}.

Given desired f -positive, f , as long as the n is larger, the value of the average packet

misclassification is getting larger due to bigger binomial coefficient value B(f, n).

2) Given the same memory size, the probabilities of PPC-n and 2TPC-n for a UL

are the same while in a dominant rate of an SL, there is a minuscule difference,

2E-9, between them. 3) The difference gets smaller as long as the n is larger. In

conclusion, as long as the number of BFs, n, and the rate ps are larger, the difference

of packet misclassifications between a PPC and a 2TPC is negligible. The one-packet

misclassifications of Eqs. (4.3) and (4.4) show the same phenomenon shown in Fig.

10.

36

D. Delete Operation in an MPC

Delete operation is not as easy as insert because a basic BF in [12–14, 17] does not

support deletion of a key which was encoded in the BF. If a counting BF [39] or a

low power counting BF (L-CBF) [57] is adopted, delete operation can be as easy as

the basic BF. Line 4 in Insert procedure, Bj
�i/2j-1�[ht(e)]=1, shows bit setting for the

basic BF. However, if delete operation is provided the line needs to be changed to

Bj
�i/2j-1�[ht(e)]++ as a counting BF is used at line 4 for delete procedure.

Procedure delete
Input: Key e and index i for a BF on layer 1
Output: Deleted 2TPC for key e
for layer j = 1 to s do1

for t = 0 to kj − 1 do // ht is t-th hash func.2

Bj
�i/2j-1�[ht(e)] −−; // B is Mem. on SRAM for BF44

end5

end6

E. Simulation Result for an MPC

CACTI [35] models SRAM architecture in terms of area, access time, and power.

With the help of CACTI model, we measured throughputs and powers of PPC and

MPC with IP traces which are from NLANR PMA and Internet Traffic Research

Group [58]. We assume that a PPC needs one cycle to process a packet lookup to n

parallel BFs, and in an MPC a small-sized BF with multiports can process a group

of lookups in one cycle while a large-sized BF with multiports processes a lookup in

high precision. The used IP traces are PUR, SDA, FRG, and PSC which have 19.4K,

29.5K, 39.7K, and 37.9K flows as rules, respectively. The simulation used 193.3K,

292.2K, 337K, and 314.3K packets in flow identification with different number of router

ports, each having the same number of flows equally.

37

8 16 32 64
0

2

4

6

8

10

of BFs (log scale)

of

 f
ab

ri
ca

te
d

re
ad

 p
or

ts
 (

x1
02)

0

2

4

6

8

10

A
vg

. #
 o

f
M

. r
ea

ds
 p

er
 lo

ok
up

(x
10

2)

PPC
2TPC
3TPC

Avg. read # in 2TPC
Avg. read # in 3TPC

Fig. 11. The number of read ports and average number of memory reads in different

number of BFs. w3=w2=1, w1=13 for a 3TPC. w2=1, w1=14 for a 2TPC.

f=2−15.

1. Experiment for Power

For power estimation, each pipeline stage is designed to process a single lookup,

contrast to a multi-lookup capability in a throughput experiment of the following

section. For theoretical comparison, we calculate the average number of memory

reads per lookup in MPCs based on Eq. (4.5). As suggested in [12], using mini-BFs

with few read ports is the solution without degrading lookup accuracy. However, even

if a BF is broken into several mini-BFs, the total number of read ports in the mini-

BFs is the same as the number of the original BF. Thus, breaking a BF into mini-BFs

gives only the possibility of fabricating BFs for high throughput in packet processing,

but it does not benefit reducing power and area costs. However, the propose MPCs

offer benefits such as fewer number of read ports and reduced power during lookup

operation.

Fig. 11 shows such two benefits: the smaller number of fabricated read ports and

38

PPC 2TPC 3TPC
0

2

4

6

8

10

Po
w

er
(m

W
)

n=8
n=16
n=32

(a) AMP

PPC 2TPC 3TPC
0

0.5

1

1.5

2

2.5

Po
w

er
(m

W
)

n=8
n=16
n=32

(b) PSC

Fig. 12. Power consumption by two traces in PPCs, 2TPCs, and 3TPCs. Also,

n ∈ {8, 16, 32}.

the smaller number of memory reads for a lookup in 2TPCs and 3TPCs. Suppose 15

ports are required in a BF’s fabrication in PPCs. The first three solid lines show the

required number of read ports in fabrication of different number of BFs for PPCs,

2TPCs, and 3TPCs, respectively. The other two marked lines are the number of

operational memory reads for a given lookup. In fabricating, 2TPCs and 3TPCs use

4% and 10% fewer number of read ports than PPCs. In addition, for a given packet

lookup, the average number of operational memory reads in 64 BFs is rapidly reduced

to 1.9 and 3.8 times memory reads for 2TPCs and 3TPCs, respectively, compared to

PPCs. Thus, we are certain that during a lookup in MPCs less power is consumed in

a real packet classification.

Table III. Power value by CACTI in PPC(31Kx1, 20 ports), 2TPC(29Kx1, 19 ports),

and 3TPC(14Kx1,18 ports).
A BF power(W) A small-sized BF power(W)

PPC 0.120 N/A
2TPC 0.110 0.002
3TPC 0.097 0.008

39

Table III shows the typical power value used in CACTI in the case of AMP trace.

Based on these values, we measure the power for other trace PSC as shown in Fig. 12.

Fig. 12 shows the average power of four traces by 10 runs in different configurations

(PPCs, 2TPCs, and 3TPCs). We set w=20 for a PPC, and the lookup precisions of

a large-sized BF in layer 1 are set to 19 and 18 for 2TPCs and 3TPCs, respectively.

The power efficiency ratios of 3TPCs against PPCs in AMP and PSC are at most 4.2,

4.1, 3.7, 3.2, respectively. Also, the power efficiency ratios of 3TPCs against 2TPCs

in AMP and PSC are 1.9, 1.9, 1.7, and 1,5, respectively. From these results, it is clear

that an MPC is more power efficient that a PPC, and as the number of multi-tiers

becomes larger, the power efficiency becomes better.

2. Experiment for Throughput

The throughput is defined as the number of packets over the number of simulation

cycles to process the whole IP traces, and we assume that each small- or large-sized

BF takes one clock cycle to process a lookup. Fig. 13 shows the average throughput

ratios of four traces by 10 runs in a 2PC architecture where each small-sized BF on

layer 2 has a b-sized buffer to process b packets in the buffer in one cycle. Once they

process packets in the their buffers, the results are forwarded to large-sized BFs on

layer 1. A BF on layer 1 works on a partially processed packet only if a parent BF of

the BF returns ’yes’ to the packet. Thus, if a BF on layer 2 returns ’no’ for a packet,

the children BFs of large size can process other following packets, leading to a higher

throughput. In each subfigure, in all different numbers of BFs the larger is the buffer

size, the higher throughput ratio is, proving that our MPC gives a higher throughput

performance than a PPC. At most 2.0 times throughput was observed in PSC trace.

Although we simulated a case of, at most, 64 BFs, our MPC shows higher throughput

than those in Fig. 13 if a larger number of BFs and buffer size b is used.

40

3 4 5 6 7 8

1.4

1.5

1.6

1.7

b, (PUR)

T
hr

ou
gh

pu
t r

at
io

3 4 5 6 7 8
1.3

1.4

1.5

1.6

b, (SDA)

T
hr

ou
gh

pu
t r

at
io

3 4 5 6 7 8
1.4

1.5

1.6

1.7

1.8

1.9

b, (FRG)

T
hr

ou
gh

pu
t r

at
io

3 4 5 6 7 8

1.6

1.8

2

b, (PSC)

T
hr

ou
gh

pu
t r

at
io

n=16
n=32
n=64

n=16
n=32
n=64

n=16
n=32
n=64

n=16
n=32
n=64

Fig. 13. Throughput ratios of a 2TPC against a PPC with four traces in different

number of buffer size b and n BFs. w1=28, w2=2.

41

CHAPTER V

MULTI-PREDICATE BLOOM-FILTERED HASH TABLE

In this chapter, we propose a novel hash architecture that uses a set of BFs in parallel

for a perfect match. BFs used in our hash mechanism are designed to support a

multi-predicate rather than a simple membership tester, i.e. binary-predicate, of a

legacy BF. Our scheme using multi-predicate BFs reduces the memory size in base-2x

number system by x times compared to that of base-21 number system with a binary

predicate BF, where x is a positive integer larger than 1.

�
�
�
�

�
�
�
�

�
�
�
�

00

01

10

11

10 w
indow11

01

00

free addr.
queue of

00

01

10

11

l−MBHT

r−MBHT

key table

on−chipempty entry

rule table

l/r−reg.

used indexoff−chip

Fig. 14. Macro view of an MBHT in on/off-chip memory of base-2. n=22.

Fig. 14 shows the macro view of our architecture with two MBHTs, l-MBHT

and r-MBHT , and a key table residing in on-chip memory while there are a rule table

of n=22 entries and a queue of free addresses in off-chip memory. One of MBHTs is

involved in insert operation depending on l/r-register. This register is to be switched

l or r whenever n inserts are made on one MBHT, so that once a window of the queue

is used up the peer MBHT is cleaned up for future insert. Through this rotation,

without counting BFs costing 4 times memory, dual MBHTs can provide seamlessly

insert and delete operations for incremental updates of rules. In contrast, both of

MBHTs are involved in query and delete operations because it is not known where

42

a wanted key is located.

A. Index Address to a Key Table in Base-b

Unlike a legacy BF [12–14], a new hashing architecture is proposed, and it is capable

of indexing a key table of on-chip memory in the base-b number system for perfect

match, and accessing to a rule table in off-chip by the index address of the matched

entry for a given key. Although the BF is returning ’yes’ approximately, a MBF is

capable of telling arbitrary per-key information associated with a given key when a

membership test is met.

Assume there are n keys to hash in key and rule tables where the keys are saved

in contiguous and flat memory space. In perfect hash like an LHT and an FHT [15],

the buckets are an array of pointers to linked lists in off-chip. These pointers are

in the form of a binary address and the total number of buckets, nb, is determined

in relation to collision rate. Thus, a HT in an LHT and an FHT is an array of nb

pointers of length log2 n. However, on-chip memory for the array partitioned to MBFs

and MBFs are grouped column-wise The n keys are saved in an arbitrary order at

index Ab of the two tables, where b is the base-b number system in a positive integer.

Given n keys and the base-b number system, there are r= logb n digits in an index for

a key in a key table, and each of r digits in the index Ab=a0a1 · · · ar-1 is expressed

in log2 b bits, i.e. ai∈{0, · · · , b-1}. Denote a-BF a multi-predicate BF embedded in

on-chip memory module, implying that if a membership test is met value a in log2 b

bits for the base-b number system is considered for a part of an index of a given query.

Provided that the address space is based on a number system of base-b, partitioning

the address space with a set of a-BF s, a∈{0, · · · , b-1}, is made so that each ai of

base-b in Ab is to be covered by ai-BF i, 0≤i≤r-1. After the digits are partitioned

43

column-wise by the set of MBFs, ai-BF i in them is involved for ai in an insert

operation described in Sec. C, and the relevant a-BF from each column is to imply

value a in the query operation explained in Sec. C.

1−BF :

1−BF :

0−BF :
1−BF :

0−BF :

0−BF :

1−BF
0−BF

e0
e1

e7

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

addr. bits
1
1

2
2

0
0

MSB

Grouped and partitioned address bits by BFs

MSB: Most significant bit

LSB: Least significant bit

generated bits for addr.

path for

LSB

id
x.

 a
dd

re
ss

 s
pa

ce {e , e , e , e }0 1{e , e , e , e }4

{e , e , e , e }0 1
2

{e , e , e , e }0 2
{e , e , e , e }1 3 75

4

7{e , e , e , e }6

7
32

65

3

4 5

6

e1

key table

hash table
on−chip

111

000

100

Fig. 15. Partitioning of 8 elements in base-2 with 0-BF s and 1-BF s.

Fig. 15 shows an example of the base-2 number system with 23 keys and three

pairs of 0-BF s and 1-BF s. The indexes in the upper figure are drawn in a rectangle

of 0- and 1-bits based on the base-2 number system, where each column has the same

number of 0/1 digits as shown to the right table. Below, 8 keys are regrouped in every

column according to their bits in the column, so that each of 0-BF vs and 1-BF vs, v∈
{0, 1, 2}, has its own set for insert as shown in the right side. For instance, suppose

e1=e0012 is to be saved at address 0012 of off-chip memory. In an MBHT, 0-BF 0,

0-BF 1, and 1-BF 2 from column 0, 1, and 2, respectively, are involved in saving e1 as

shown in the figure.

The base-2 number system used in Fig. 15 can be expanded into an arbitrary

number system for the benefit of memory efficiency, as shown in Fig. 16. All address

44

r

e0

1−BF
(32)

(32)
0−BF

t−indexe63

0−BF
(8)

1−BF
(8)

2−BF
(8)

3−BF
(8)

4−BF
(8)

5−BF
(8)

6−BF
(8)

7−BF
(8)

(16)
0−BF

1−BF
(16)

2−BF
(16)

(16)
3−BF

122 4
e

e32
8

a2a1a0 a0 a1a2 a50a a1 a4a3

0

index address space

MBHT

index address space

index address space

n−1

00

(b) Base−4 number system(a) Base−2 number system (c) Base−8 number system

n−1 n−1

.. ..
.. ..

00
0 1

77
7 6333

3
3 13

3 2

000
0
0

0
0 2

1

1 1 1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 1

010000
110000

1 1 1 1 1 0
1 1 1 1 0 1

01 0111

Fig. 16. Conversion of the base-2 number system to base-4 and base-8 for 64 elements.

n = 26. By (X), X means the number of the same digits in a BF.

spaces in subfigures are partitioned column-wise and grouped by MBFs. The address

space for 26 elements in the base-2 number system in Fig. 16 (a) is transformed to

other address spaces of base-4 and base-8 number systems in Fig. 16 (b) and (c),

respectively, resulting in the fewer columns in each address space. However, this

transformation does not affect addressing an index to a key table. For example,

suppose item e0110102 for base-2 is located at 0110102. This can be at 1224 and 328

of base-22 and base-23, respectively, as shown in Fig. 16 (b) and (c).

Even if the address space in one column is partitioned by b MBFs in base-b

system, they can be accessed with the same memory address by stacking MBFs in

the following way for hardware implementation: On-chip memory for b MBFs is an

array of words of b bits so that given an address to on-chip memory indicated by a

hash function b MBFs are involved. Therefore, if all k words indicated by k hash

functions for a-BF have bits of value 1 in offset of a in the words, a-BF has a correct

membership test in query for a given key and the offset a is used for a part of address

Ab. In this way the number of on-chip memory modules is r and they work in parallel

for insert.

45

B. Memory Efficiency with a Larger Base-b

With an invariant about addressing systems shown in Fig. 16, given the base-b1

number system and requirement of f , Linear Property of Lemma 1 regarding variables

m and n claims that even if the number of new BFs, b2, is increased in a column in

new base-b2, the total memory size for the column remains the same. The reason

is that although the number of elements to hash for each new BF in the column is

reduced, the total number of items for the new column in base-b2 is the same as that

for base-b1.

In general, considering two MBHTs the total memory usage in bits for the base-b

number system as a function of a requirement of f=2−wM is calculated as follows:

Mb(f)=2 × C × B = 2 ×
{

logb n

}
×
{

b (1.44(n/b) log2(1/fM))
}

=2 ·
{

log2 n

log2 b

}
·
{

1.44n log2(1/fM)
}

=2.88
nwM log2 n

log2 b
, (5.1)

where wM is the precision of query operation, C is the number of columns, and

B is the number of bits for a series of MBFs in one column. From this equation,

denominator term log2 b makes Mb smaller as it increases provided that n and f

are constants. This is manifested in Fig. 17 showing the total memory usage in bits

considering only MBFs in several number systems based on Eq. (5.1). Along with n

axis of b=2, Mb increases greatly for a given f due to log2 n and n terms in Eq. (5.1).

Similarly, the change rates in axes of f and n for a smaller b are much larger than those

of a larger b. Furthermore, the gap of Mbs among different bs is large enough that

the saved memory can be used to reduce an f -positive of each MBF. Thus, rather

than using base-b1, using a larger base-b2 number system is advantageous because

of log2 b2/ log2 b1 times on-chip memory saving, that is, Mb1/Mb2=log2 b2/ log2 b1.

However, choosing the appropriate base system depends on the current technology

46

of memory hardware. For example, b=220, the largest base system, could be the

best choice for n=220 because that gives the highest memory efficiency. In contrast

to a theoretical benefit, in real hardware implementation it is very hard to probe

sequentially all 220 bits in a word indicated by a hash function to find a bit position

having value 1. Even worse, such k words by k hash functions need to be checked for

returning multi-predicate value for the involved MBF, taking an unsupportable time

in hardware.

0
1

2
3

4
5

x 10
8

0

1

2

3

x 10
−5

0

2

4

6

8

x 10
11

The # of items, nf−positive, f

M
em

or
y

si
ze

 in
 b

its

b=32

b=16

b=8

b=4

b=2

Fig. 17. Memory size Mb for b = 2, 4, 8, 16, and 32 with f and n.

C. Insert Operation in an MBHT

The detailed procedure of the insert operation is described in Algorithm insert

where r on-chip memory Mons of m words of b bits, m=1.44nwM by Eq. (3.2),

are involved. Address A fed to Algorithm insert is provided by a queue of free

addresses. The first vertically-lined for loop in it is executed in parallel at each

column. Also, the second for loop is done in parallel, as long as a conventional

47

BF support k hash functions in parallel. [55] asserts that fabrication of 6 to 8 read

ports in on-chip memory is attainable. Even if the needed hash functions are larger

than the attainable number of ports, splitting into several on-chip memories with

the attainable port numbers is a solution as suggested in [12]. Therefore, the time

complexity in on-chip memory is Θ(1) on the conditions that hash functions return

indexes in constant time, and each column conducts hashing in parallel. Moreover,

the number of off-chip memory accesses through Moff [A] is exactly 1 because a rule

for item e is saved in the designated address A as shown in the last line. Thus, the

complexity of Algorithm insert for off-chip memory access is Θ(1). In contrast, an

FHT was calculated to be a time complexity of O(nk2/m + k), which is not suitable

for a dynamic update in packet processing [8].

Algorithm 4: insert(x, e, rule, A)

Input: x-MBHT x ∈ {l, r}, key e, its rule, and address A = a0a1 · · · ar-1 in base-b
Result: Encoded MBHT for key e
for column i = 0 to r − 1 do /* On-chip Op. */1

for t = 0 to k − 1 do2

g = ht(e); /* hashing, g ∈ {0, · · ·m-1} */3

M i
on[g][ai] = 1; /* the size of M i

on=m × b */4

end5

end6

Mkey[A] = e ; /* a key table in on-chip */7

Moff [A] = rule ; /* Off-chip memory access */8

D. Query Operation in an MBHT

After all elements are saved contiguously in off-chip memory and encoded in a set

of MBFs in on-chip memory, the remaining and ultimate goal of an HT is to search

for an item by a fast query operation. There are two kinds of search patterns: a

successful search (SS) in which an item is found; and an unsuccessful time-consuming

search (US) for an item that does not exist in an HT.

48

Before two kinds of searches with possible false access to off-chip memory are

examined, let definitions of a true index and a false index introduced.

Definition 3 (True Index)

A true index, or t-index, is defined as a series of MBFs assigned to encode a key.

They are interconnected and back-to-back of each other from column 0 to column r-1,

where r is the number of columns in the base-b number system, making a sequence of

full index address bits. The sequence of bits is also matched with an arbitrary memory

address associated with a key saved in key and rule tables.

For instance, key e is to be saved at address 1224 in base-4 and 328 in base-8 as

shown in Fig. 16 (b) and (c), respectively. In base-4, for sequence 1224 1-BF 0,

2-BF 1, and 2-BF 2 are involved to save the key e while in base-8 for sequence 328

3-BF 0 and 2-BF 1 are for a t-index of key e. From the definition of a t-index, the

following corollary can be concluded:

Corollary 1 Once key e is saved at index A with a series of r=logb n MBFs,

i.e. a0-BF 0 · · · ar-1-BF r-1, in base-b, the involved BFs should return ’yes’ mak-

ing a0 · · ·ar-1 in the query of key e as a legacy BF always returns ’yes’ for true

membership.

Due to the independent and identically distributed (i.i.d) property of BFs, it is pos-

sible that irrelevant BFs could return their f -positives in the query operation. Thus,

due to the irrelevant f -positives, a false index, which is defined as the following,

happens:

Definition 4 (False Index)

In query of key e, in each column i of an MBHT, a group of MBF s in column i

not pertaining to a t-index for insert of the key can return their f -positives. By

49

the f -positives, the indexes in a word of b bits in the column i could lead to a false

index, f -index, with other MBF js, j �=i involved in the insert. Thus, an f -index is

a combination of index values of MBFs irrelevant and relevant to the insert of the

key and MBFs responding to a membership test for the key return their indexes in a

word of b bits. Also, the length of an f -index should be r=logb n.

Given query of a key, a set of a t-index and f -indexes should be probed to

guarantee that the key exists or not in a key table, implying perfect match unlike

approximate match in [12, 14, 17]. In our query for perfect match, the numbers of

f -indexes for an SS and a US are at most n-1 and n, respectively. These numbers

are comparable to the numbers of memory accesses for an SS and a US in a linked

list of an LHT and an FHT. However, the difference between an indexing to a key

table in an MBHT and a sequential access in a linked list of an FHT is that a key

table resides in on-chip while a pair of a key and its rule exists in off-chip, so that

at most one off-chip memory access is made in a MBHT while more than one access

are necessary in an FHT. Most importantly, to find a matched key a few number of

indexes to a key table in an MBHT can be processed in one cycle in parallel while in

a sequential access in a linked list of length t, at most t cycles are necessary. Thus, it

is possible that although an MBHT with less memory can give more f -indexes, they

are processed in one cycle, so that less memory can be used while high bandwidth is

preserved with low collision rate. The next important step is to recognize a t-index

and annul a series of false positives randomly scattered in an MBHT so that the

possibility of an f -index can be reduced.

50

1. False indexing for an SS in an MBHT

We have explained the definitions of a t-index and an f -index and how they can

both occur in the query operations on an MBHT. Now, we derive and calculate the

probability of the number of false accesses, i.e. f -indexes, in an SS. In a query for

an SS, at least one MBF in each column needs to return its index value in k words,

so that a sequence of a0a1 · · · ar-1 of length r forms the full address A, i.e. t-index.

Furthermore, in case of an f -index, false addresses can be created through f -positives

by each irrelevant MBF in each column.

Suppose Xs
i is a random variable of the number of f -positives from MBF i

irrelevant to a t-index of an SS. Due to the i.i.d f -positives of b-1 BFs in a MBF, the

probability density function of Xs
i is a binomial distribution, B(b-1, f). Also, assume

that the random variable Xs for an SS denotes for the total number of f -indexes

in a given query operation. Then, random variable Xs is defined as the product

of random variable Xs
i s, i.e. (

∏r−1
i=0 (Xs

i +1))-1, because of the i.i.d property of each

column and the probability of Xs = x is the following

Pr{Xs=x}=
∑

(x0+1)···(xr-1+1)=x+1

Pr{Xs
0=x0, · · · ,Xs

r−1=xr−1} (5.2)

=
∑

(x0+1)···(xr-1+1)=x+1

Pr{Xs
0=x0} · Pr{Xs

1=x1} · · ·Pr{Xs
r-1=xr-1}.

For example, Xs=0 means that each layer i does not have any random variable Xs
i

larger than 0. Therefore, the probability becomes

Pr{Xs = 0} =Pr{Xs
0 = 0} · Pr{Xs

1 = 0} · · · Pr{Xs
r−1 = 0}. (5.3)

Also, in the cases of one and two f -indexes their probabilities are derived from the

following:

51

Pr{Xs = v} =
r−1∑
t=0

Pr{Xs
t = v}

r−1∏
t′ �=t

Pr{Xs
t′ = 1},

where v∈{1, 2} because prime numbers 2 and 3 can be factored in the only one way:

2×1×· · · ×1 and 3×1×· · · ×1. Also, the mean of Xs is calculated based on the i.i.d

property of Xs
i as shown

E[Xs] =
n−1∑
t=0

t · Pr{Xs = t} = E[(
r−1∏
i=0

(Xs
i + 1)) − 1]

=
r−1∏
i=0

E[Xs
i + 1] − 1 = [(b − 1)f + 1]r − 1. (5.4)

-40

-35

-30

-25

-20

-15

-10

 1 2 3 4

Pr
ob

. o
f

X
s a

nd
 E

[X
s]

(l
og

 s
ca

le
)

Xs

b=8
b=16
b=32

E[Xs].b=8
E[Xs].b=16
E[Xs].b=32

Fig. 18. Probability of Xs, the number of f -indexes, in an SS. n = 216. Required

f=2−10 for b=2.

Fig. 18 shows the probabilities for three base systems (23, 24, and 25) derived

from Eqs. (5.2) and (5.4). For a fair comparison, each memory size of M23 , M24 ,

and M25 are set equally so that inequality f23>f24>f25 is satisfied based on Lemma

2 where f23 , f24 , and f25 are f -positives of each MBF in base-23, base-24, and base-

52

25, respectively. The lines in Fig. 18 are not shown in monotonic decrease due to

binomial coefficient in binomial distribution B(b-1, f). However, the average value of

Xs from Eq. (5.4) is decreased as the number system of base-b increases, and in case

of b>32 probability of Eq. (5.2) decreases monotonically due to memory gain by a

larger base number system.

2. False indexing in a US in an MBHT

In addition to ensuring a low probability of more than one access to a key table in

an SS, a design of an HT must also ensure the low probability of a US is. Unlike

an SS, a US has no valid index, which means that all MBFs returning ’yes’ make

f -positives. However, by definition of an f -index, each column should have at least

one BF returning ’yes’ as an f -positive, otherwise a group of f -positives can not

constitute an f -index. Therefore, we expect a much lower probability because of the

product of each independent f -positive probability of BFs.

Let Xu
i denote a random variable of the number of f -positives from BFs at

column i. Then, the probability density function of Xu
i follows a binomial distribution

B(b, f) due to the i.i.d f -positives of the BFs. Also, suppose random variable Xu is

the number of f -indexes in a US on an MBHT. Then, random variable Xu can be

formulated with random variable Xu
i into

∏r-1
i=0 Xu

i . In general, the probability of

Xu becomes

Pr{Xu = x} =
∑

x0···xr-1=x

Pr{Xu
0 = x0, · · · ,Xu

r-1 = xr-1} (5.5)

=
∑

x0···xr-1=x

Pr{Xu
0 =x0} · Pr{Xu

1 =x1} · · ·Pr{Xu
r-1=xr-1}.

For example, the probability that there is no f -index can be calculated in the com-

plementary way, as in the following:

53

Pr{Xu = 0} =1 −
r−1∏
t=0

Pr{Xt ≥ 1} = 1 −
r−1∏
t=0

(1 − Pr{Xt=0}) .

Also, in the cases of one, two, and three f -indexes, their probabilities are derived

as Pr{Xs} is by factorization. Similarly, in the case of four f -indexes, there are two

possibilities of factoring, i.e. 4×1×· · · ×1 and 2×2×1×· · · ×1. Thus, the probability

becomes the summation of two cases as follows:

Pr{Xu=4}=
r−1∑

t1,t2,t1 �=t2

⎛
⎝Pr{Xu

t1=2} · Pr{Xu
t2=2}

r−1∏
t′ �=t1,t2

Pr{Xu
t′=1}

⎞
⎠

+
r−1∑
t=0

⎛
⎝Pr{Xu

t = 4}
r−1∏
t′ �=t

Pr{Xu
t′ = 1}

⎞
⎠ .

Finally, the mean of random variable Xu can be calculated with i.i.d property:

E[Xu]=
n∑

t=0

t · Pr{Xu = t} = E[
r−1∏
i=0

Xu
i] = [bf]r. (5.6)

Fig. 19 shows the probabilities for three base systems (23, 24, and 25) derived from

Eqs. (5.5) and (5.6) as Fig. 18 does.

Algorithm 5: query(MBHT,e)

Input: An MBHT and key e
Output: Set of Ab = a0 · · · ar−1 including false indexes
for column i = 0 to r − 1 in an MBHT do1

for t = 0 to b − 1 do2

if e ∈ t-BF i then /* i.e. M i
on[][t]==1 */3

SAi = SAi ∪ {t};4

end5

end6

end7

SA = ∅; /* Set of an i-index and f-indexes */8

SA = make paths(SA0, · · · , SAr−1);9

return SA; /* No off-chip memory access */10

The query operation shown in the Algorithm query only considers on-chip

54

-70

-65

-60

-55

-50

-45

 1 2 3

Pr
ob

. o
f

X
u a

nd
 E

[X
u]

(l
og

 s
ca

le
)

Xu

b=8
b=16
b=32

E[Xu].b=8
E[Xu].b=16
E[Xu].b=32

Fig. 19. Probability of Xu, false memory access, in a US. n = 216. Required f=2−10

for b=2.

operation and it needs to be called twice on l-MBHT and r-MBHT. Therefore, the

average of random variables X u and X s for a US and an SS, respectively, using two

MBHTs are the following based on Eqs. (5.6) and (5.4)

E[X u] = 2 · E[Xu] and E[X s] = E[Xu] + E[Xs], (5.7)

because for a US both MBHTs do not have a wanted key and for an SS one of

MBHTs does not have a wanted key. Function make paths makes f -indexes based

on set SAi
, 0≤i≤r-1. For example, given inputs {24}, {14, 34}, {04} for SA0, SA1,

and SA2 in base-4 system, it returns address set {2104,2304} by concatenating each

member from all SAi. The time complexity of overall query is Θ(1) on the condition

that function make paths is performed in constant time, which is possible. Also, time

complexities of accessing off-chip memory depend on Eq. (5.4) and (5.6) for an SS

and a US.

The query described above returns set SA of candidates indexes to probe in a

key table. However, the size of set SA is geared to be probabilistically 1 to sustain

55

the bandwidth requirement of a high-speed router. According to Eq. (3.2), once each

MBF has the memory size appropriate to wM for a given bandwidth requirement,

it does not give any f -positives, resulting in no f -index. That is, the requirement of

160Gbps needs deterministic lookups of 500M keys (packets) in a second without an

f -positive, implying that a f -positive rate should be as low as 1/500M=2n without

consideration of binomial coefficients in Xu and Xu.

3. Hardware consideration for pipelining

Previsously in insert and query, parallel MBFs have been used. However, in hard-

ware configuration, pipelining on MBFs from column 0 to column r-1 is better than

parallel on MBFs in terms of operational power regardless of an SS and a US. The

reason is that in one column shown in Fig. 16 only one MBF among b MBFs of base-b

is involved for insert and to return ’yes’ in a query, while the rest are to return ’no’.

Also, in case of a US, all b MBFs in one column are to return ’no’ in a query. These

situations are true in all MBFs in a column-wise view. That is, although an SS needs

to search all columns, in case of a US if anyone of MBFs at previous columns does

not give ’yes’ ensuing MBFs in the next column do not have to perform query and

there is no t-index and f -index by Definitions 3 and 4. Thus, two ways of pipelining,

i.e. in order of MBFs in one column and then in order of columns, can maximize the

power efficiency rather than probing all MBFs at the same time.

Fig. 20 shows the benefit of a pipelined MBF by measuring the average number

of steps to proceed and the average number of bits to probe under one MBF. Given a

required precision w=k for an MBF based on Eq. 3.2, ks-bit locations are probed in

one step so that there are k/ks steps to proceed in a query of a US. The upper figure

shows how many steps to proceed until the last step returns ’no’ in a US. By virtue

56

2 3 4 5 6
1

1.2

1.4

1.6

A
vg

. #
 o

f
st

ep
s

2 3 4 5 6
3

4

5

6

k
s

A
vg

. #
 o

f
bi

ts
 to

 p
ro

be

k=12
k=24

k=12

k=24

Fig. 20. The benefit of pipeline in an MBF returning ’no’ in a query for two cases of

k=12 or 24.

of principle of a BF, i.e. several hash functions, using a larger value of ks shows the

less number of steps to proceed. However, the average number of total bits to probe

until the last step of ’no’ shows the reverse way as shown in the bottom figure where

the average number of bits to probe is calculated ks×(average # of steps). That is,

probing a smaller number of bits step by step shows the less number of memory reads,

implying that pipelining in an MBF needs less power. Note that this benefit happens

only to an MBF returning ’no’ in a query. However, this benefit is multiplied by the

rest of b-1 MBFs in one column as well as other MBFs in other columns, so that the

total benefit of a pipelined MBHT becomes (b-1)×r times in an SS and b×r times in

a US larger than a single pipelined MBF, where r=log2 n.

57

��
��
��
��

��
��
��
��

������

132

113

head

tail012

132
113

queuer−MBHT

l−MBHT

After delete
l/r reg.

head

tail

Fig. 21. An example of delete for item e located at 0124 in base-4.

E. Delete Operation in MBHTs

Unlike the two kinds of searches in query operations, we consider delete operation

for a successful deletion. The delete operation needs two query operations on both

l-MBHT and r-MBHT, where only one of MBHTs has a relevant key. Fig. 21 shows

an example with n=64 for delete. Initially, l-MBHT has been fully used for insert,

l/r-reg. indicates the r-MBHT for future n insert. Now after deletions of keys

located at indexes 1134 and 1324 of a key table, the stack has 1134 and 1324 as

candidate indexes further insertions. Suppose key e was inserted in 0-BF 0, 1-BF 1

and 2-BF 2 in checked boxes as shown in the figure. Once key e for delete operation

is confirmed by accessing a key table with the address 0124, the address is to be put

on the stack for future insert.

Like the query operation, if there are an f -index and a t-index associated with

a key, two accesses to a key table in delete are necessary. Therefore, when random

variable Z is denoted as the number of accesses to a key table with both MBHTs,

the average memory access for a delete operation on the condition that the item

exists, i.e. a successful delete, is

58

E[Z] =

(
n∑

v=1

v · Pr{Xu = v}
)

+

(
1 +

n−1∑
v=1

v · Pr{Xs = v}
)

(5.8)

= [bf]r + [1 + (b − 1)f]r,

where the first term accounts for a US in one of MBHTs based on Eq. (5.2) while

the second term explains the an SS in the other based on Eq. (5.5).

The detailed procedure of the delete operation is shown in Algorithm delete.

The complexity in on-chip memory is O(1) because the complexity of query used in

the algorithm is O(1). The complexity of memory access is O(E[Z]) on average for

a successful delete, and it is to be constant as E[X s] is O(1) while the complexity

for an FHT is O(nk2/m + k).

Algorithm 6: delete(l-MBHT,r-MBHT,e)

Input: Two MBHTs and key e
Result: Update associated BF in each column
Sl-MBHT =query(l-MBHT ,e) ; /* Only on-chip Op. */1

Sr-MBHT =query(r-MBHT ,e) ; /* Only on-chip Op. */2

for A ∈ Sl-MBHT ∪ Sr-MBHT do /* A = a0a1 · · · ar−1 */3

if Mkey[A] == e then /* On-chip Mem. Acc. */4

Mkey[A] = ∅;5

push(A,queue); /* push A to Q. for insert */6

end7

end8

F. Analysis and Simulation for an MBHT

This section presents analyses of memory efficiency and the average access time per

query to a key table for four schemes; an LHT, an FHT, and an MBHT. Also, a

phenomenon of duplicated keys in an FHT is analyzed. Finally, one simulation is

performed for determining the on-chip memory usage for IP lookup application with

BGP tables available from [51, 52]. Among a class of universal hash functions, a

59

hardware scheme in [59] is adapted for simulation.

1. Average access time of query

-20

-15

-10

-5

0

 1 2 3

Pr
ob

ab
ili

ty
 (

lo
g

sc
al

e)

of cycles to process memory reads

LHT
c-FHT

FHT
MBHT.b=8

MBHT.b=16

(a) Probability of cycles to
process mem. reads to a ta-
ble or a linked list in an SS.
For an MBHT Pr{X s}.

-60

-50

-40

-30

-20

-10

 1 2 3
Pr

ob
ab

ili
ty

 (
lo

g
sc

al
e)

of cycles to process memory reads

LHT
c-FHT

FHT
MBHT.b=8

(b) Probability of cycles to
process mem. reads to a ta-
ble or a linked list in a US.
For an MBHT Pr{Xu}.

-4

-3

-2

-1

0

1

-4 -3 -2 -1 0

A
vg

. a
cc

es
s

a
se

ar
ch

 (
lo

g
sc

al
e)

Successful search probability(Ps) (log scale)

AL for an LHT
AF for a corrected FHT

AF for an FHT
AM for an MBHT

(c) Avg. access time as a
function of successful-search
rate.

Fig. 22. Probabilities of memory access in an SS and a US and the average access

time to off-chip for an LHT, an FHT, and an MBHT with the same memory

128K log2 n to fully utilize the saved memory for increase in precisions of

base-8 and base-16. k=10, and n=64K.

Let us define the average access time to off-chip as the number of accesses to

off-chip given query operation. For an LHT with chaining, the load factor, αL, can

be given as n/mL where n is the number of items and mL is the number of buckets

used to point an address of off-chip memory after hashing. Let T s
L and T u

L denote the

average access time for an SS and a US, respectively, which are defined in [60] as

T s
L = 1 + αL/2 − 1/2mL, T u

L = αL.

To evaluate the average access time regardless of an SS and a US, another parameter

ps, which denotes the frequency of an SS of a key in off-chip memory, is introduced.

With these notations, the average access time TL for an LHT can be expressed as

TL = psT
s
L + (1-ps)T u

L = ps

(
1 +

n − 1
2mL

)
+ (1-ps)

n1

mL
. (5.9)

60

For an FHT, let Ep be the expected length of a linked list in the FHT for an

item in a positive match and Ef be the expected length of a linked list in the FHT for

a f -positive match. Ep can be derived from the average number of items for which

all buckets’ length > j, or n · B((n-1) · k, 1/mF , > (j-1))k where B(n, 1/mF , > j) =

1 −∑j
i=0

(
n
i

)
(1/mF)i(1-1/m2)n−i and mF is the number of buckets in an FHT. Also,

Ef can be derived from Eq. (9) in [15]. Therefore, the average access time TF for an

FHT is

TF = psEp + (1-ps)fEf = psEp + (1-ps) (1/2)(mF /n) ln 2 Ef , (5.10)

where f is the f -positive probability in a shared linked list.

Finally, for an MBHT, Eqs. (5.7) are used to get an average access time TM as

the following

TM = psE[Xs] + (1 − ps)E[Xu]. (5.11)

The average access times of other schemes can be calculated as easily as Eq. (5.11) of

an MBHT. Based on [60] and [15], those of an LHT and an FHT are related with the

load factor defined as the number of keys over the number of buckets, i.e. n/m. Note

that an FHT considers neither buckets in bits used for pointers to off-chip memory

nor counters of linked lists in bits.

Fig. 22 shows the probabilities of memory access in an SS and a US and the

average access time calculated from Eq. (5.11), in terms of the number of off-chip

memory accesses for four schemes under different successful search rates. Note that

a modified FHT is marked as c-FHT, considering counters and the existing FHT is

marked as FHT, not considering counters as memory. In Fig. 22 (a) it is shown that

Pr{Xs} of an MBHT is always less than those of an LHT and an FHT. Fig. 22 (b)

61

shows the probabilities Pr{Xu} of an MBHT and other schemes. Particularly, the

result in Fig. 22 (c) indicates that the lower the successful search rate, the better the

performance of the proposed MBHT is than those of an LHT and an FHT.

Table IV. Complexities of operations to off-chip in four schemes.

Operation insert query delete

LHT O(1) O(1) O(1)

FHT O(nk2/m + k) * O(1) O(nk2/m + k)*

MBHT Θ(1)◦ Θ(1) † Θ(1)
*
In optimal configuration, O(k).

◦
In detail, that is just 1.

†
In detail, Θ(ps(1 + E[X s]) + (1 − ps)E[X u]).

Table IV summarizes the complexities of off-chip memory access regarding insert,

query and delete operations in an LHT, an FHT, and an MBHT. The big differ-

ence is in an FHT, which involves the labored complexities of insert and delete

operations depending on variables n, k, b, and m. In contrast, the complexities of an

MBHT and an LHT are constant.

2. Memory usage

This section presents and compares the on-chip and off-chip memory usage for each

scheme. Given f -positive f=2-w and the number of elements n, the memory usages

in bits of an FHT are the following:

ML= log2 n × 1.44nwL, and MF =
{

log2 n + 4
}
×
{

1.44nwF

}
,

respectively, where 4 in MF accounts for the number of bits in a counter, and

wF=wB=w. Memory efficiency ratio RM,F of MM to MF whose value is derived

from Eq. (5.1) becomes

62

RM,F =
MF

2{logb n · 1.44n(log2(1/f)+α)}
=

x(log2 n+4)w
2 · log2 n(w+α)

≈ x(log2 n+4)
2 log2 n

, (5.12)

where α=log2(b-1) due to coefficients in the binomial functions of Xs and Xu, and

the size of a queue for free addresses in off-chip, n log n is not considered. Also, the

memory efficiency ratio RMB of MM to MB are

RM,L=
ML

2 × {logb n · 1.44n(log2(1/f)+α)} =
x

2
· w

w + α
≈ x

2
. (5.13)

where wF and wM need to be set to w of given precision requirement for a fair

comparison to each other.

1
2

3
4

5
6

12
16

20
24

28
32

0

0.5

1

1.5

2

2.5

3

3.5

b (log
2
 scale)n (log

2
 scale)

M
em

or
y

ef
fi

ci
en

cy
 r

at
io

R
M,L

R
M,F

Fig. 23. Memory efficiency ratios of RM,L and RMF with various b and n. wF=wM=20.

Note that although an MBHT is set to have the same average access as others,

the actual average access times are different each other as shown in Fig. 22.

Fig. 23 shows two ratios, RMF and RML, calculated from Eqs. (5.12) and (5.13)

in the range [2:26] for base-b and in the range [210:230] for n. The figure shows that

63

without a doubt the turning point for a better memory efficiency ratio surely begins

at b=23 due to a set of two MBHTs. Also, even with large values of coefficients in

binomial functions B(b-1, f) and B(b, f) the acquired memory gains of four ratios

increase as b increases. Given b, the memory gain in a range of n does not change

much as shown in the figure, although the change rate of memory gain for a given n is

manifested along the b axis. Thus, compared to an LHT and an FHT, Fig. 23 proves

that an MBHT approach can gain much memory as long as a larger base number

system is used.

As one application of an MBHT to packet processing, i.e. URL switching, we

used NePSim [61] for URL switching where all the incoming packets to a switch are

parsed and forwarded according to URL. This kind of switching is a commonly used

content-based load balancing mechanism [62, 63]. Kachris et al. [63] used a simple

XOR hash to reduce the collisions among Block RAMs in connection manager for

web switching, and Prodanoff et al. in [64] proposed URL signatures using CRC32

to reduce the size of routing tables and aggressive hashing with chaining of a linked

list to speed-up routing lookups in large-scale content distribution networks.

Table V shows the memory size in bytes of an LHT, an FHT, and an MBHT for

three trace databases on the condition that requirement of f is 2−20 and the load

factor becomes 0.034 accordingly. Each trace of UC Berkeley, NLANR, and CA*netII

has 149,344, 504,967, and 2,552,045 URLs, respectively. The result shows at most 1.7

times on-chip memory reduction at an MBHT in base-16 against an LHT as shown

in the table. If comparison is set for an FHT, about 2 times of the memory reduction

is observed due to consideration of counter bits in an FHT.

While authors in [61] validated NePSim with SDRAM, SRAM and six micro-

engines against the IXP 12000 architecture in terms of performance and power, the

number of accesses to SDRAM with NLANR trace is measured on the condition that

64

Table V. On-chip memory usage for three traces. The load factor is 0.034, K=1024.

URL Traces LHT FHT MBHT MBHT

base-8 base-16

UC Berkeley[65] 9024KB 11124KB 6860KB 5393KB

NLANR[66] 33634KB 40735KB 25570KB 20102KB

CA*netII[67] 190953KB 226841KB1145171KB 114127KB

an LHT, an FHT, and an MBHT were implemented in SRAMs. Especially, given

a query an MBHT is to return indexes with a set of SRAMs. Table VI shows the

Table VI. AAS in a successful search of NLANR trace for three schemes. f=2−10.

Schemes LHT FHT MBHT (b=8) MBHT (b=16)

AAS* 1.026306 1.002472 1.002411 1.000092

of Acc.◦ 968861.7 946231.9 946303.9 944114.4
◦
It means the total number of off-chip accesses provided the

URL queries of NLANR.

measured accesses to SDRAM in NePSim with NLANR. The first row is the average

access for a successful search. While an FHT needs 2.4E-3 extra accesses on average

for a successful search, the proposed MBHT with b=16 asks 9.2E-5. Although this

value could be minuscule, when it comes to the difference between the numbers of

off-chip accesses in an FHT and an MBHT, the gap between them is 2117.

65

CHAPTER VI

A HIERARCHICALLY INDEXED HASH TABLE

Unlike an FHT using a BF, with a set of BFs a hierarchical indexing tree (HIT)

is conceptually embedded into an HT of less memory size than an FHT. That is,

memory area for an HT used for pointers to a key table is partitioned to make an

HIT. An HIT for n keys in power of 2 is composed of s=log2 n layers (i.e. SRAM

modules) and partitions the address space in a rectangle of n×s 0/1 bits, so that a

BF covers a column group of the same bits, either 0 or 1, in the index address space

to a key table. The detail of how to build an HIT is as follows

A. Building a Conceptual HIT in Stacked SRAMs

: {e , e , e , e } : {e , e } : {e }

B1
1

B2
0 B2

1 B2
2 B2

3

B1
2 B1

3

B2
4 B2

5 B2
6 B2

7

1B0

onM i Mkey

B0
0

B1
0

onM 0

e e e e4 5 6 7e0 e1 e 2 e 3

1
0
0

1
0
1

1
1
0

1
1
1

0
0
0 0

0
1

0
1
0

0
1
1

0
0B 0 1 2 3

1
2B 4 5 7

2
7B

r

r
r

3

r
4

r
r
r

0

r

7

6

5

2

1

Moff
iBj BFe4Path for Mem. module

B0
0

B0
1

1

e
2

e
3

e
4

e
e
e

e0

e

7

6

5

0

0

0

1

1

1

1

0

B
in

ar
y

in
de

x
sp

ac
e

1−tree0−treeMSB LSB

layer 0

on−chip

MSB

LSB

conceptual tree construction

off−chip

rule tablekey table

Memory architecture

s

0

0

1

1

0

1

1

0

0

1

0

1

0

1

1

0

Fig. 24. Basic configuration of hierarchical indexing tree of 0- and 1-tree.

Fig. 24 shows a hierarchical partition for an HIHT. Let Bi
j denotes j-th BF

in layer i, hereinafter 0≤i≤s-1, and let all n keys be filled in a key table in on-chip

memory sequentially from index 00...0s-1 to index 10...1s-1. If key e∈S is to be inserted

at index address A= a0a1...as-1, where at∈{0, 1}, 0≤t≤s-1, a BF, denoted Bi
a0···ai

at

66

each layer i, is involved to encode key e as a legacy BF does. In this hierarchical

partitioning and encoding, Bi
j at each layer i takes care of ni=n/2i+1 keys of set S.

That is, Bi
j covers ni=n/2i+1 keys starting from j·2s-1-i to (j+1)·2s-1-i-1 in index

address space. For instance, B0
0 , B1

2 , and B2
7 take care of sets {e0, · · · e3}, {e4, e5} and

{e7}, respectively. Eq. (3.2) states that m is linearly proportional to n in a given f .

Thus, given f i=2-wi
for a BF on layer i, where wi is a precision of a BF on layer i,

the total size in bits of memory M i
on for BFs on layer i is 2i+1(1.44niwi)×1. Finally

an embedded HIT is comprised of a 0-tree and 1-tree covering half of n keys located

in 0x1...xs-1 of a key table and the remaining half in 1x′
1...x

′
s-1, where xt, x′

t∈ {0, 1},

1≤t≤s-1.

B. Insert Operation in an HIT

Fig. 24 shows a basic structure of our HIT consisting of 3 layers of BFs for 8 keys.

The left side of Fig. 24 shows the binary address space with a set of BFs partitioning

the address space of a key table, and the right side shows the transformed dual trees,

0-tree and 1-tree, where each node represents Bi
j . For an example of the insertion

of key e4 at index address 1002, B0
1 at layer 0, B1

2 at layer 1, and B2
5 at layer 2 are

involved.

Procedure insert shows the detailed insert operation and is as simple as that

for a BF. Although conceptually all BFs are separate each other in an HIT, for

hardware implementation assume that BFs on layer i are embedded in one on-chip

memory module M i
on as shown in Fig. 24, and there are s=log2 n memory modules.

Finding a base address for Bi
j is easily calculated as shown in line 3. The first

vertically-lined for loop in Procedure insert is executed in parallel and pipelining

at each layer. Also, the second for loop is done in parallel, as does a legacy BF.

67

Procedure insert
Input: key e, rule r, and its given address A = a0a1 · · · as−1 in a binary mode
Output: Encoded HIT for key e
for layer i = 0 to s − 1 do /* On-chip Op. */1

mi=1.44niwi; j=a0 · · · ai;2

idx=j · mi; /* Find right base index idx for Bi
j */3

for t=0 to k-1 do /* One M. for BFs on layer i */4

M i
on[idx+ht(e)]=1;5

/* ht(e) ∈ {0, · · ·mi-1}, M i
on of 2i+1mi×1 bits */

end6

end7

Moff [A]=r ; Mkey[A]=e;8

Therefore, the time complexity in on-chip memory is Θ(1) on the condition that

hash functions return indexes in a constant time, and each layer conducts hashing

in parallel. Moreover, the number of off-chip memory accesses to Moff , is exactly 1

because key e and its associated rule are saved in Mkey and Moff at the designated

address A, as shown in line 8. Thus, the complexity of Procedure insert for off-

chip memory access is Θ(1). In contrast, an FHT claimed a time complexity of

O(nk2/m + k).

C. Delete Operation in dual HITs

delete operation is not as easy as insert because a basic BF does not support

deletion of a key which was inserted in the BF. However, dual HITs, an l-HIT and a

r-HIT, in on-chip memory is used to rotate a target HIT for insert operation and

another target HIT for delete operation, as shown in Fig. 25. Once one HIT is full

for previous n keys, query operation stays with the HIT. But if set S is dynamic, but

limited in size n, a new HIT takes care of insert for a new key by setting BFs in

a new HIT as well as a bit in a valid bit array (VBA). An index for the new key is

indicated by ’next’ which is updated every time from a free address stack (FAS) in

68

off-chip memory. Also, the old HIT handles delete operation by simply setting off a

bit in a VBA coupled with the corresponding HIT. Updating ’next’ and an FAS is not

a burden because whenever there are insert or delete operations, these operations

need off-chip access, thus, ’next’ and an FAS can be updated without another cost.

Checking Vl and Vr with indexes given by two HITs makes it sure that an unnecessary

access to off-chip memory is blocked within on-chip for HITs. Also, when all n keys

are encoded in one HIT, i.e. the moment that an FAS is empty, the other HIT needs

to be initialized 0 for the next set of insert operations with the initialized BF.

Vl rV001

B 0
0

B 1
0 B 1

1 B 1
2 B 1

3

B 0
1

B 2
1 B 2

6 B 2
7B 2

2 B 2
5B 2

3 B 2
4B 2

0

B 0
0

B 1
0 B 1

1 B 1
2 B 1

3

B 0
1

B 2
1 B 2

6 B 2
7B 2

2 B 2
5B 2

3 B 2
4B 2

0

100delete

on−chip

off−chip

next

l−HIT r−HIT0−tree 1−tree 0−tree 1−tree

FAS

e
6
r

00 00 0 1 00

e0
l

2el e l
3 e4

l e5
l e7

l
1e l e6

l

1 0 1 1 1 0 10

Fig. 25. Dual configuration of HITs for delete operation.

Suppose, for example, 8 keys, el
0, ..., and el

7, are inserted in an l-HIT as shown

in Fig. 25. Then, after the 8 keys, a target HIT for new insertion becomes a r-

HIT. Now the ensuing operations are deletions of el
4, el

1, and el
6. After the deletions,

suppose the next operation is insertion of er
6 in a r-HIT with proper setting a bit

for er
6 in array Vr as shown in Fig. 25 where next and an FAS have 001 and 100,

respectively. By rotating a target HIT for insertion among dual HITs and confirming

an index returned by each HIT with a VBA, the operations of insert and deletion

are processed seamlessly. Also, by using two rotated HITs, an HIT does not need

69

counters in each BF, i.e. a counting BF, which costs 4 times more memory size than

a BF. Thus, using two HITs saves 2 times the memory. The detailed procedure and

complexity of delete are provided in Sec. C.

D. Query Operation Making Index Paths in Dual HITs

Once all keys are saved in a key table and encoded in a set of BFs in on-chip memory,

the remaining and ultimate goal of an HIT is to search a key in it by query operation

fast. There are two kinds of search patterns, an unsuccessful search (US) in which a

key is relentlessly searched although it is not in an HIT, and a successful but time-

consuming search (SS) in which a key is to be searched out in an HIT. Before a

discussion of these two kinds of searches, let definitions of index path, index segment,

false index path, and false segment introduced.

Definition 5 (Index Path)

In an HIT, an index path, or i-path, is defined as a series of Bi
js used in insert

operation and hierarchically connected each other from layer 0 to layer s-1, making a

sequence of address bits. The sequence of indexing bits in Bi
js is also matched with

an arbitrary index for a key saved in a key table and the size of the sequence of bits

from the series of Bi
js must be s.

As a corollary, it can be concluded that in query for key e previously encoded by

insert for the key e, an i-path for the key e should show up as a BF returns ’yes’ in

true membership testing.

In an HIT, besides an i-path dedicated to a key, due to f -positives from irrelevant

BFs a false index to a key table is possible. For example, suppose key e4 is inserted

with i-path 100102 in Fig. 24 and then a query to e4 is requested. The result of the

query may give an ambiguous 1001x2, x2∈{0, 1}, due to an f -positive of B2
5 . Thus,

70

this ambiguity needs two accesses to a key table. Given a query for an i -path of size

s, there are totally 2s-1 false indexes because each Bi
j is independent and identically

distributed, i.i.d. Besides the definition of an i-path, a false index path is defined

by result of query operation, leading to a false indexing to a key table in on-chip

memory.

Definition 6 (False Index Path and False Segment)

In query, from hierarchically consecutive layers, a group of Bi
js not pertaining to an

i-path can be formed in a series of at most size s, and to become a false index path, or

f-path, this series needs to be either connected to an i-path or a completely different

path of size s, i.e. independent of an i-path in an HIT. Also, the group attached to an

i-path is called a false segment, or f-segment. The number of f -paths plus an i-path

is compatible with the length of shared linked list used for query of a key in an FHT.

Even if it is possible that there is a set of BFs giving f -positives in query, BFs

that are only hierarchically connected to each other and an i-path can be part of

an f -segment. Thus, f -positives from the rest BFs can be ignored. For example of

previous 1002 for e4 in Fig. 24, even if B1
1 and B1

3 randomly make f -positives right

after query, there is no f -segment starting from the B1
1 and B1

3 . By the definition of

an f -path, the probability of the f -path is cumulatively calculated as the product of

f -positives from BFs along the f -path.

Figs. 26(a) and 26(b) show an example of the calculation of probability of an

f -path in an HIT with one i-path and three f -paths. A series of a0a1a2a3 in the dark

boxes is an i-path. The probability of the f -segment b2b3 foaming f -path a0a1b2b3

is
∏3

t=2 f t where f t is the f -positive of a BF on layer t. Also, the probabilities of

the remaining f -paths, c0c1c2c3 and c0c1c2d3, are the same as
∏3

t=0 f t because the

probabilities of f -positives of BFs on the same layer are the same each other.

71

BF in i−path false positive

0−tree 1−tree

a3

a2

a1

a0

b2

b3

ai

c2

c0

c3 d3

bi

c1

(a) Examples of an i-path, f -
segments, and f -paths.

s−i

TrTl

T
Bi

TrTl

T
Bi

f−segment Case 2Case 1

(b) Probability of cumulative f positives
in an HIT.

Fig. 26. Examples of an i-path, f -segments, and f -paths. Probability of f -paths.

Once the probability of an individual f -path is known, the final attention is paid

to the probability that an HIT has t f -paths, 0<t<n. Suppose binary tree T of height

l has two sub-trees, Tl and Tr of height l-1 with cumulative false positives FTl
and FTr ,

respectively, as shown in Fig. 26(b). Also, let Tl and Tr have nl and nr f -segments

of size l-1. To have nl+nr f -segments of size l, the binary tree T rooted at Bi with

height l needs itself to be an f -positive. Therefore, the probability FT that the binary

tree T with its sub-trees has nl+nr f -paths is the product of three: the probability

that T needs to be an f -positive, the probability that Tl has nl f -paths, and the

probability that Tr has nr f -paths, i.e. f i·FTl
·FTr . Fig. 26(b) shows the cases of the

probability that tree T has 2 or 3 f -paths as follows:

Case 1 : The right child tree Tr does not have any f -segment. By definition, for an

f -segment to exist in T , Bi rooted in T must be an f -positive. Now that Bi is

an f -positive, f -segment in Tl of size l-1 become part of an f -segment of size l.

Therefore, automatically T has the same number of f -segments from Tl due to

its f -positive.

Case 2 : Both Tr and Tl have a few f -segments and contribute f -segments of tree

T in the summation of f -segments in Tl and Tr, in total 3 f -segments, because

72

Bi is an f -positive and both Tl and Tr have their own f -segments.

Suppose P i(t) is defined as the probability of t f -segments starting on layer i in an

HIT of height s and it is calculated as the following in a recursive way:

P i(t) ≥
t∑

v=0

P i+1(t) · P i+1(t − v) · f i if t ≤ 2i+1, (6.1)

where base cases of t > 2i+1 and i=s are 0 and 1, respectively. Also, as f i based on

Eq. (3.1) is bounded and has a global minimum at ki=mi ln 2/ni=wi of Eq. (3.3), an

inequality in Eq. (7.1) for layer i can be removed at the optimal configuration of ki.

1. False indexing to a key table in on-chip for a US

Besides the design issue of low probability of more than one access to a key table for

an SS, it is also equally important that the probability of f -indexes in a US is lower.

Unlike an SS, in a US there is no i-path for a given key, meaning that all BFs in

query return ’yes’ as f -positives. However, there is a chance that each of 0-tree and

1-tree can give plural f -paths. In contrast to one f -positive in an FHT [15] leading

to off-chip memory accesses, one f -path by a series of f -positives of hierarchically

connected Bi
js in each layer i of an HIT becomes one index access to a key table.

Thus, far less probability is expected because of the product of f -positive probabilities

of BFs.

Suppose random variable Xu is the number of f -paths in a US on an HIHT.

Then, it is the number of entries in a key table and equally the number of memory

accesses if one memory access can do one memory read to an entry. The probability

Pr{Xu = v}, v>0 can be easily derived based on Eq. (7.1) of an optimal configuration

of k=w as the following

73

Pr{Xu = v} =
∑

v=t0+t1+t2+t3

P 0(t0) · P 0(t1) · P 0(t2) · P 0(t3) (6.2)

because there are two HITs, l-HIT and r-HIT , each having 0- and 1-trees. The

sum in Eq. (7.2) accounts for the combination of becoming v among t0, t1, t2, and t3.

That is, if v=1, there are four cases: 0+0+0+1, 0+0+1+0, 0+1+0+0, and 1+0+0+0.

Although choosing a large value for precision wi for layer i>0 is possible, the

number of BFs on each layer in a HIT must be upper bounded, so that the total

number of memory reads to M i
on for the BFs must be sustainable in hardware im-

plementation. The expected number of BFs to probe on layer i>0 for a US becomes

N i
B,U = 2 × {2i−1

i−1∏
t=0

f t × 2} = 2 × {2i−1 × 2−2i × 2} = 21−i, (6.3)

where f i=2-wi
=2-2 except layer s-1. On layer s-1, f s-1=2-ws−1

is set a collision rate

as low as one for a high-speed router like 2−29 for 160Gbps. In convergence,

lim
i→∞

N i
B,U = 0, (6.4)

meaning that as long as i for a layer index increases, the expected number of BFs

on the layer i is minuscule enough that simple memory hardware can support the

request of a small number of memory reads.

2. False indexing to a key table in on-chip for an SS

The probability of f -paths in a US has been derived. Now, the probability of the

number of f -paths in an SS is derived and calculated. The situation in an SS is very

different from that of a US because there must be one i-path and several possible

f -paths while there is no i-path in a US. Fig. 27(a) shows an example of 5 layers

for 25 keys where along an i-path there are 5 dangling trees, d-trees, contributing

74

f -paths, if any. All d-trees except one rooted on layer 0 are attached to the i-path

and they contribute a number of f -paths with different probabilities related to P i(n)

of Eq. (7.1).

a0

a1

a3

a2

4a

a −tree0 0a −tree

dangling tree i−pathBF on i−path

f−posv. on f−segment

4P (n)

3P (n)

(a) An HIT of 5 layers with an i-path and
dangling trees.

0 1 2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

The number of f−segments, t

Pr
ob

ab
ili

ty
 P

i (n
)

P4 (n), w4 =5

P3 (n), w4 =5

P4 (n), w4 =6

P3 (n), w4 =6

P4 (n), w4 =7

P3 (n), w4 =7

(b) P i(t) of Eq. (7.1). wj=3, j<4, s=5,
and n=25. Note that as to P 4(t), there is
only one possible f -segment, i.e. t=1.

Fig. 27. An i-path and d-trees in an SS, and P i(n) of Eq. (7.1) for each d-tree in an

HIT.

Fig. 27(b) shows the P i(t) in an HIT with various w4 for n=25 keys. Two

lines for w4=5 have a big difference of 4 times between them, meaning that P 4(t) is

the dominant one contributing the number of f -segments. This is true for all other

cases of w4=6, 7. Now, for comparison of the difference in precision choices about

ws-1, i.e. w4, look at three solid lines with markers located at the top of the figure.

The difference ratio of P 4(1) between two precision choices for layer 4, w1 and w2,

is determined by 2 to power of w1-w2. Therefore, no matter what precision of wj is

chosen for the layer j, 0≤j≤s-2, a dominant probability of f -segments in a HIT comes

from the layer 4. Based on this result, it can be concluded that choosing reasonably

lower precision for layer j, 0≤j≤s-2, does not affect the probability of the number of

f -paths, but results in saving memory for these layers.

75

Besides decision rule of wi for layer i, it is necessary to calculate the number

of partially found f -segments on each layer in an SS. Two times this number is

considered as the number of BFs needed to probe on the next layer, like the expected

number of BFs in Eq. (6.3) for a US. Note that in an SS, there is an i-path and at

least two children BFs probe from a BF on the i-path due to a binary property. The

expected number of BFs to probe on layer i>0, except layer s-1, for an SS becomes

N i
B,S = 2 + f i−1 · 2 + 2 · f i−1f i−2 · 22 + · · · + 2i−1 · f i−1 · · · f0 · 2i (6.5)

= 2 +
i−1∑
t=0

2t
t∏

v=0

f i−v−12t+1 = 2 +
(
1 − 2−i

)
,

where 2 accounts for two BFs on an i-path and f i=2−2. With Eq. (6.3), the

maximum in convergence among the expected numbers of BFs to probe in an SS and

a US becomes 3 as

lim
i→∞

max{N i
B,U , N i

B,S} = 3. (6.6)

Thus, the total number of memory reads to M i
on for layer i, 0<i<s-1, is ki times 3

because for each BF ki hash functions are necessary. In conclusion, in a query, either

unsuccessful or successful, the expected number of memory reads on M i
on for layer i,

0≤i<s-1, is upper bounded to 3ki, where ki is set 2. On layer s-1, ks-1=ws-1 is set to

the log of reverse collision rate, i.e. 29 for 160Gbps, so that bandwidth requirement

is secured by our deterministic Θ(1) lookup. The ks-1 memory reads of random

locations by ks-1 hash functions can be supported by a simple switching circuitry in

one cycle. Even if a commodity of SRAM has a limit in the number of memory reads,

a large SRAM can be divided into a smaller SRAM with the less number of memory

reads without worsening an f -positive as suggested in [15].

Based on the observation from Fig. 27(b), calculating the number of f -paths,

i.e. false indexes to a key table in on-chip memory in an SS, is necessary. Let random

variable Xs be the number of f -paths from an HIHT, given an i -path for a key in

76

query operation. Then, Xs+ 1 is the total number of entries in a key table to check

in an SS and is equal to the length of searched linked list of an FHT [15]. The detailed

probability of Xs for an SS without f -paths is defined as following

Pr{Xs = 0} = P 0(0) · P 1(0) · P 2(0) · · · P s−1(0), (6.7)

because each d-tree along an i-path and two of 0- and 1-trees are independent to each

another. In general, the Pr{Xs=v} is calculated based on the independent property

of each d-tree along a i-path as the following

Pr{Xs = v} =
∑

v=t0+···+ts-1

P 0(t0) · P 1(t1) · P 2(t2) · · ·P s-1(ts-1). (6.8)

3. Detailed procedures for query and delete

Complete query operation consists of query-i shown in Procedure query-i only

considering on-chip operation for layer i. The time complexity of this procedure is

Θ(1) on the condition that 2‖L‖, 2 times of the size of L, is bounded to the number

of memory reads that hardware supports without burden. The reason for this is that

given candidates for partial addresses in L, the number of BFs to probe is doubled

due to two children of each node in a binary tree. Thus, by pipelining on each layer

starting layer 0, query is performed in one cycle, so that query-s-1 returns complete

indexes to a key table for a given query. On the last layer s-1, the average numbers

of complete indexes are calculated as E[Xs]+1 or E[Xu] on average for an SS and a

US, respectively, where E[Xs] and E[Xu] can be derived from Eqs. (7.4) and (7.2) as

E[Xs] =
n−1∑
t=0

t · Pr{Xs = t}, E[Xu] =
n∑

t=0

t · Pr{Xs = t}, (6.9)

77

and they are considered Θ(1) because Pr{Xs=1}
1 and Pr{Xu=1}
1. Moreover,

Pr{Xs = 1}�Pr{Xs=t} and Pr{Xu = 1}�Pr{Xu=t}, t > 1 as recognized in Fig.

27(b).

Procedure query-i

Input: M i
on for layer i, list L of partial indexes found on up to layer i-1, including

i-path, and key e
Output: A set of partial A = a0 · · · ai of i+1 bits, including f -segments
S = ∅; n=‖L‖; /* S: Set of partial paths. L={A0, · · ·An-1} */1

for t = 0 to n-1 do2

mi=1.44niwi; At = L[t]; idx0=2At · mi; idx1=(2At + 1) · mi;3

cnt 0=cnt 1=0;
for t=0 to ki-1 do /* One Mem. for BFs on layer i. ki hash funcs.4

*/
if M i

on[idx0+ht(e)]==1 then cnt 0++; /* idx0, idx1 indicate Bi
j */5

if M i
on[idx1+ht(e)]==1 then cnt 1++; /* Two sets of ki accesses6

due to binary children BFs in an HIT */

end7

if cnt 0==ki then S=S∪ At · 0; /* concatenate 0 or 1 bit to the end8

of At */
else if cnt 1==ki then S=S∪ At · 1;9

end10

return S; /* No off-chip memory access */11

As with delete, like query operation, if there is an f -path beside an i-path

associated with a key, two accesses to a key table are necessary. Thus, when random

variable Z is denoted as the number of accesses to a key table in on-chip memory,

the average memory access for delete operation on the condition of existence of a

target key, i.e. in an successful deletion, is

E[Z] = 1 +
n−1∑
v=1

v · Pr{Xs = v} = 1 + E[Xs].

The detailed procedure is shown in Procedure delete. The complexity of it in

on-chip memory is Θ(1) based on the complexity of query is Θ(1). The complexity

of indexes to access a key table is Θ(E[Z]) on average for a successful deletion and

78

it is to be constant as E[Xs] is Θ(1).

Procedure delete
Input: Two HITs of l- and r-HIT and key e
Output: Updated valid bit array Vl or Vr for l- and r-HIHT
Sl=query(l-HIT,e) ;1

Sr=query(r-HIT,e) ; /* Only on-chip Op. */2

if ‖Sl ∪ Sr‖ == 1 then3

A ∈ St; Vt[A] = 0; /* t s.t. ‖St‖==1 */4

else if ‖Sl ∪ Sr‖ > 1 then5

foreach A in St, t ∈ {l, r} do /* Off-chip M. Acc. */6

if Vt[A]==1 and Mkey[A]==e then7

Vt[A] = 0; /* Save A in FAS via ’next’ */8

end9

4. Parallel accesses to a key table in an interleave way

In a linked list used in an LHT and an FHT, accessing the last key in the linked list

of t keys takes t cycles in sequence, because memory address of key e is known after

a previous key e′ with a pointer to the next key e is obtained in the previous cycle.

In contrast, in an HIHT, the candidate indexes to a key table are generated at the

last layer s-1 in every cycle, so that parallel accesses to the key table are possible,

as shown in query-i. Thus, unlike the sequential access in a linked list, our memory

access is different as follows: every cycle, a set of indexes is generated for a given

query and there is no other index to access the key table for the query as an i-path

exists in the set. Also, by a simple interleaving or switching circuitry in SRAM for a

key table, a group of memory reads to entries in the key table via the indexes can be

processed in parallel in one cycle because indexes are different from each other and

known in advance. For instance of interleaving, Garcia et al. [68] provide worst-case

bandwidth guarantee by utilizing potential of bank interleaving in a SRAM/DRAM

hybrid for packet buffer. Once perfect match is complete with a set of indexes to a key

79

table in on-chip in one cycle, an HIHT can provide a deterministic lookup needing

only one access to off-chip memory to know rule about every query of an SS. If a

query is a US, there is no access to off-chip memory. The detailed analysis of the size

of a set of indexes in SS and US queries is shown in the following section.

E. Simulation Result for an HIHT

This section presents an analysis on a memory efficiency for three schemes: an FHT

[15], a BFHT [16], and an HIHT. As to a perfect hash function, Mitzenmacher and

Vadhan [69] claimed that simple hash function can provide a truly random hash

function. A class of universal hash functions are suitable for hardware implementation

and thus a scheme from [59] is chosen.

1. Memory comparison with other hash mechanisms

10
14

18
22

26
30

10
15

20
25

30
1

2

3

4

5

6

The # of layers, s=log
2
 nprecision w = log

2
 1/f

M
em

or
y

ef
fi

ci
en

cy
 r

at
io

R
HB

R
HF

Fig. 28. Memory efficiency ratios of RH,B and RH,F with various s and w. Note a

corrected-FHT is considered.

80

To maximize memory efficiency of an HIHT, the precision of layer t is set to 2,

0≤t<s-1 and that of layer s-1 is set to w as the same as precisions of an FHT and

a BFHT. The precision value 2 is chosen based on the hardware consideration for

pipelining and memory read ports as stated in Sec. 2. Also, for a fair comparison,

the on-chip memory tables were considered in a BFTH and an HIHT. According to

Eq. (3.2) for the requirement of f=2-w, the total HIHT memory usage, M3, counts

two copies of HITs plus two VBAs and a key table and is calculated as the following

MH=2{2βn0w0+ · · ·+2s-1βns-1ws-1+n}+n log2 n (6.10)

=2βn

s−1∑
i=0

wi+2n+n log2 n=2βn

(
s−2∑
i=0

2+ws-1

)
+2n+n log2 n,

where β=1.44. In contrast, the FHT memory usage is MF =βwns+4βwn=βw(s+4)n

by considering 4-bit counters while an FHT in [15] did not consider the counters

for a fair memory comparison. The memory size MB for a BFHT is 2 times

kn(2 log2 n+log2 k+w) due to the seamless update in O(n log n) complexity. Thus,

considering n log2 n for an on-chip key table, memory efficiency ratios RH,F and

RH,B of MH over MF and MB become

RH,F =
βnw(s + 4)

2βn
∑s−1

i=0 wi+2n+n log2 n
(6.11)

RH,B=
2kn(log2 n+log2 k+w) + n log2 n

2βn
∑s−1

i=0 wi+2n+n log2 n
. (6.12)

Fig. 28 shows two ratios, RH,F and RH,B, calculated from Eqs. (6.12) and (6.11)

in the range [10:30] for w with the required precision of each scheme and in the range

[10:30] for s. Note that the LHT memory size against MH is not considered nor

drawn in the figure, because with given high precision w of 29, the LHT memory size

is more than a hundred times larger than that of an HIHT. The change in w provides

81

a greater benefit in RH,F than the change in s does, implying that as long as the

collision rate stays lower for a high bandwidth, our HIHT maintains multi-integer-

fold, not fractional-fold, efficiency gain. For instance, 160Gbps needs to set w to be

at least 29 (≈ log2 500M). However, RH,B shows the minor change according to w

and s, and it gives around two times memory efficiency over all ranges. These results

on RH,F and RH,B support our claim that our HIT offers a better space-efficient

hashing architecture shown in the previous section.

2. Power comparison with TCAM for IP lookup

In addition to memory comparison among hash mechanisms, power comparison be-

tween an HIHT-based IP lookup and TCAM-based IP lookup is made. Although the

detailed hash-based IP lookup architecture with proposed hash schemes, an HIHT

and an FPHT, will be shown in Sec. VIII, this section and the following section show

preliminary power and memory comparisons with TCAM and a trie for IP lookup.

Fig. 29 shows the consumed energy per read clock in two IP lookup schemes: a

TCAM-based IP lookup and an HIHT-based IP lookup. The consumed energy per

read clock is measured by CACTI [35] and a tool [70]. The table size was varied from

236K to 1M entries. The first table of 236K entries is taken from [51] and the rest

tables are created by random. It is found that the proposed HIHT-based IP lookup

scheme consumed 51 times less power compared to the TCAM-based IP lookup. It is

shown that the TCAM uses a tremendous power amount as the table size is increased

while the proposed HIHT-based schemes uses a small power amount.

3. Memory comparison with Trie for IP lookup

Fig. 30 shows the total memory for IP Lookup in three schemes: a Tree Bitmap

[71] and an HIHT. As Table I discussed, trie-based IP lookup schemes suffer O(W)

82

236029 500000 750000 1000000
10

−1

10
0

10
1

10
2

Routing table size

E
ne

rg
y

pe
r

re
ad

 c
lo

ck

TCAM
HIHT

Fig. 29. Consumed energy per read clock in 0.09μm process technology.

lookup complexity where W is the IP address length while hash-based schemes provide

O(W) lookup complexity. Comparing memory efficiencies of IP lookup schemes with

different lookup complexities is not fair because hash-based schemes can provide a

higher throughput. However, the proposed HIHT-based hash scheme can provide

O(1) lookup complexity as well as memory efficiency as follows. The table size was

varied from 236K to 1M entries. The first table of 236K entries is taken from [51]

and the rest tables are created by random as in the previous section. In each memory

calculation, other bitmaps and pointer memory overhead for hash-based and trie-

based approaches are considered. It is found that the HIHT-bases IP lookup scheme

consumed 1.75 times less memory compared to Tree bitmap. Furthermore, as the

table size increases, the HIHT-based IP lookup scheme saves at most 2.15 times

memory.

83

253371 500000 750000 1000000
0

2

4

6

8

10
x 10

7

routable table size

M
em

or
y

in
 b

its

Tree Bitmap
HIHT

Fig. 30. Memory comparison of Tree Bitmap and an HIHT in different table sizes.

84

CHAPTER VII

HASHING USING BLOOM AND FINGERPRINT FILTERS

Sec. III.B shows that an SBF and an FF are memory- and power-efficient approximate

membership testers. Such membership testers are used to propose an FPHT in this

chapter. In an FPHT, a group of SBFs is used to do a pipelined binary search for

a key’s FP, and subsequently the found FP of w bits is used to access a key table

with a desired lookup precision w. Suppose there exists no f -positive in a SBF and

an FP. Then, there exists only one found FP in a FPHT’s binary search. However,

since a SBF and an FP can produce an f -positive, there exist candidate FPs and key

indexes in the binary search result. Since the number of key table accesses through

FPs is considered as the reverse of the lookup throughput, the probability of the fewer

number of key table access is desirable for performing a high speed packet processing.

Fig. 31 illustrates our FPHT pipeline architecture where a set of SRAM modules

is in pipeline and key and rule tables are accessed by an FPHT’s generated indexes

for a perfect match lookup. Based on a key’s query results from SBFs which are

designed through a SRAM module in Sec. A, each stage logic decides SBFs’ base

addresses based on Eq. (3.2) and accesses SBFs in the next stage.

logic0 logic1

SRAM0 SRAM1 SRAMs−1

logics−1

==?
match
perfect

rule table
key table

yes

Pipeline

key indexes
generated

Fig. 31. An pipelined FPHT architecture with s stages.

85

In a logic view, a tree in multiple memory modules with a set of SBFs is concep-

tually embedded into a memory (Hereafter a BF or an SBF is used interchangeably).

In the tree, nodes (or BFs) are used for a binary search where a BF’s key query result

choose the next BF nodes to probe. With BFs’ and an FP’ query results, the em-

bedded tree generates indexes to a key table. The tree, called an indexing tree (IT),

is memory efficient while preserving a required lookup speed, because it never uses

pointers in implementing a tree for FP and key table accesses through the same in-

dexes. In addition, the memory cost for BFs and an FF in an IT is far less than other

schemes because BFs’ role is limited to a binary search for a key’s FP and an FF.

This ensures one access to a key table with a high probability. This memory saving

is beneficial to modern fast packet processing that are challenged with a scalability

issue. The detailed IT build is as follows.

A. Building a Conceptual IT of a Binary Prefix Tree

e e e e eeee

F F F F F FF F

B0
0

B1
0 B1

1 B1
2 B1

3

VR

s

B0
1

1 4 5 6 7320key table

0
0

0
0
0

1
1
0

0
1
0

1
0
1

0
0
1

1
1
1

0
1
1

1

00

0 10 0 1 0 1

VR: virtual root

4 5 6 70 1 2 3
stage 2

stage 1

stage 0

0 1

1

1 1

FP table

addr.
bits

MSB

LSB

or layer 0

Fig. 32. Conceptual IT construction with BFs and tables of FPs and keys.

Suppose n is in power of 2. Then, an IT in a binary prefix tree is built as

follows: An IT for n keys is composed of s=log2 n stages and a prefix tree is built

86

based on index bits bits for a key table, so that a BF in the prefix tree is shared by a

prefix among indexes. Fig. 32 shows the IT partition where keys are stored in a key

table consecutively and the keys’ index addresses are partitioned by BFs on stage j,

0≤j≤s-2 or FPs on stage s-1, so that each key has its own BF-FP path in the IT.

In general, n keys are filled in an key table sequentially from index 00...0s-1 to index

10...1s-1. Let Bi
j denotes j-th BF in stage i, hereafter 0≤i≤s-1 while F s-1

j denotes

j-th FP on stage s-1. Then, if key e is to be inserted at index A= a0a1...as-1, where

at∈{0, 1}, 0≤t≤s-1, a BF, denoted Bi
a0···ai

at each layer i, is involved to encode key e

just like a legacy BF. In this hierarchical binary encoding, Bi
j covers ni=n/2i+1 keys

whose indexes in a key table range from j·2s-i-1 to (j+1)·2s-i-1-1. For instance, B0
0

and F 3
5 cover key sets {e0,· · · ,e3} and {e5}, respectively.

Regarding memory hardware, although BFs are conceptually partitioned in a

layer (or a stage) for their key sets, they concatenate each other in a SRAM module

while separated by their base addresses. That is, as Eq. (3.2) specifies the required BF

memory size for a bounded f -positive, Bi
j has base address j·1.44ni in each memory

bank of M i
on[k]. Also, as it states that for a given f m is linearly proportional to n

based on Eq. (3.2), given fi=2-wi for a BF on stage i, the total memory of M i
on for

BFs on layer i is of size 2i+1(1.44niwi). Finally, the index order of keys’ FPs in an

FP table is exactly corresponding to that of keys in a key table, and the an FP table

size in bits is nw based on Eq. (3.5).

An IT is named after a tree outlook because each stage in pipelining has a

sequence of bits and sub-block of bits for a BF on stage i makes a binary relationship

with sub-blocks on stage i-1 and i+1. Yet, to maintain a tree an IT does not use

explicit pointers as in a binary search tree [60], but an implicit index for each BF

sub-block in M i
on. That is, Bi

j is located at j·1.44niwi in memory M i
on. Also, all 2i+1

BFs, independent each other, on layer i contribute the memory size of M i
on. Thus, a

87

large memory volume reserved for pointers is saved.

B. Insert Operation in an IT

Fig. 32 shows the binary address space with a set of BFs that hierarchically partition

a key table’s address space. In this tree structure, the insertion of key e0 at index

1002, for example, means B0
1 , B1

0 , and F 2
0 of layer 0, 1, and 2 are involved. Algorithm

insert-i shows the detailed insert operation on stage i as simple as that for a BF.

Algorithm 10: insert-i()

Input: key e, rule r, and partial index A=a0a1· · · ai in binary bits
Output: Encoded IT for key e on stage i
mi=1.44niwi; j=a0 · · · ai;1

for t=0 to k-1 do2

// ht(e) ∈{0,· · · ,m′
i-1}, M i

on of 2i+1mi× bits
M i

on[k][ht(e)][j]==1; // M i
on: BFs on layer i3

end4

Albeit conceptually all BFs are separate from each other in an IT, their hardware

implementation assumes that BFs on layer i are embedded in one memory M i
on and

there exist s memory modules. Finding base address for Bi
j is easily calculated as

shown in line 1. The first for loop is done in parallel, as does a legacy BF and

Algorithm insert-i works on stage i in pipeline. Thus, the time complexity is O(1)

under the condition that hash functions return indexes within a constant time, and

each layer conducts hashing in parallel. This condition is made possible in hardware

implementation as noted in [15]. After the last stage s-1, key e and its associated

rule are saved as Mrule[A]=r and Mkey[A]=e, where A is the designated address.

The complexity of Algorithm insert for memory access to key and rule tables is

O(1), because key e and its associated rule are saved in Mkey and Mrule with A.

In contrast, an FHT claims a time complexity of O(nk2/m+k), while a BFHT does

88

O(n log n).

C. Query Operation Making Indexes in an IT

Once all the keys are saved in a key table and encoded in a set of BF and FP memory

modules, the ultimate remaining IT goal is to search a key by performing fast query

operation. There are two kinds of search patterns, an unsuccessful search (UL) in

which a key is relentlessly searched although it does not exist in an IT, and a successful

but time-consuming lookup (SL) in which a key is to be searched in an IT. Before

a discussion of these two kinds of searches, let definitions of an index path, a false

index path, and a false segment introduced.

Definition 7 (Index Path)

In an IT, an index path, or i-path, is defined as a series of Bi
js used in insert

operation and hierarchically connected each other from layer 0 to layer s-1 to produce

an index bit sequence. The sequence of indexing bits in Bi
js is also matched with an

arbitrary index of a key saved in a key table and the size of the bit sequence from the

series of Bi
js must be s.

As a corollary, it can be concluded that in query for key that is e previously encoded

by insert, an i-path for the key e should show up as BFs return ’yes’ for their true

membership.

A false index to a key table, other than an i-path dedicated to a key, is made

possible due to the f -positives from irrelevant BFs or FPs in an IT. For example,

suppose key e4 is inserted with i-path 100102 in Fig. 32 and then a query to e4

is requested. This query result may give an ambiguous 00xx′, x, x′∈{0, 1}, due to

f -positives of B1
1 and other FPs. Thus, this ambiguity needs to be resolved with

other accesses to a key table. Given a query for an i -path of size s, there are totally

89

2s-1 false indexes because each Bi
j is independent and identically distributed, or i.i.d.

Besides the i-path definition, I define a false index path in query operation, leading

to a false index to a key table.

Definition 8 (False Index Path and False Segment)

In query, a group of Bi
js or F i

j not pertaining to an i-path can be formed in a series of

at most size s from hierarchically consecutive layers. To become a false index path, or

f-path, this series needs to be either connected to an i-path or a completely different

path of size s, i.e. independent of an i-path in an IT. Also, the group attached to an

i-path is called a false segment, or f-segment. The number of f -paths plus an i-path is

the total number of key table accesses which was is the shared-linked-list length used

for an FHT key query.

Even if it is possible that there is a set of BFs giving f -positives in query, BFs that

are only hierarchically mutually connected to BFs and an i-path can be a part of an

f -segment. Thus, f -positives from the rest BFs can be ignored. For the previous

example of 1002 for e4, even if B1
1 and B1

3 randomly make f -positives right after

query, there is no f -segment starting from the B1
1 and B1

3 . By the definition of an

f -path, the probability of the f -path is cumulatively calculated as the product of

f -positives from BFs along the f -path.

�
�
�
�B 0

0

B 1
1

B 0
1

B 1
0 B 1

2
B 1

3

F 2
0

F 2
1 F 2

2 F 2
3 F 2

4
F 2

5
F 2

6 F 2
7
����

��

in ’no’
BF or FF

in ’yes’ on i−path

in ’yes’ out of i−path
BF or FF

BF or FF

��
��
��
��

���� ��

Fig. 33. Examples of an i-path and f -paths for a given query of key e4 in an IT without

a virtual root.

90

Fig. 33 shows an example of calculating the probability of an f -path in an IT

with one i-path and two f -paths. A series of B0
1B1

2F 2
4 in the dark boxes is an i-path.

The probability of the f -segment B1
3F 2

7 forming f -path B0
1B1

3F 2
7 is

∏2
t=1 ft where ft

is the f -positive of a BF or an FP on layer t. Also, the probability of the remaining

f -path, B0
0B1

0F 2
0 , is

∏2
t=0 ft since the probabilities of f -positives of BFs or FPs on

the same layer are the same each other.

Once the probability of an individual f -path is known, the final attention is paid

to the probability that an IT may have t f -paths, 0<t<n. Suppose a binary tree T

of height � has sub-trees Tl and Tr of height �-1 which have nl and nr f -segments

of size �-1. Also, let Tl and Tr have probabilities FTl
and FTr for their f -segments.

To obtain nl+nr f -segments of size �, the binary tree T with height � needs to

be an f -positive. Thus, the probability FT of the binary tree T with its sub-trees

having nl+nr f -segments is the product of three: the probability that T needs to be

an f -positive, the probability that Tl has nl f -segments, and the probability that Tr

has nr f -segments, i.e. fi·FTl
·FTr . Based on this recursive way, the probability Pi(t)

of t f -segments starting on layer i for an IT of height s is calculated as the following:

Pi(t) =
t∑

v=0

Pi+1(v) · Pi+1(t − v) · fi if t ≤ 2i+1, (7.1)

where base cases of t > 2i+1 and i=s are 0 and 1, respectively.

1. False indexing to a key table for a UL

Besides the design issue of producing a low probability of multiple accesses to a key

table in an SL, it is equally important that the probability of f -indexes in a UL is also

lower. Unlike an SL, there is no i-path for a given key in a UL, meaning that all BFs

in query return ’yes’ as f -positives. However, there is a chance that an IT may give

plural f -paths. In contrast to an f -positive in an FHT [15] leading to off-chip memory

91

accesses, an f -path by a series of f -positives with hierarchically connected Bi
js in

each layer i becomes one index access to a key table. Thus, a far less probability is

expected due to the product of f -positive probabilities of BFs.

Suppose random variable Xu is the number of f -paths in a UL on an IT. Then,

the probability Pr{Xu = v}, v>0 can be easily derived based on Eq. (7.1) as the

following

Pr{Xu = v} =
∑

v=t0+t1

P0(t0) · P0(t1) (7.2)

because an IT has two children trees on layer 0. The sum in Eq. (7.2) accounts for

the combination of deriving v among t0 and t1. That is, if v=1, there are two cases:

0+1 and 1+0.

2. False indexing to a key table for an SL

The probability of f -paths in a UL is derived. Now, the probability of the f -paths

number in an SL is calculated. The situation in an SL is very different from that

of a UL, because there must exist one i-path with possible f -paths of highly low

probability while there is no i-path in a UL. Fig. 34 shows an example of 3 layers

for 23 keys where along an i-path there are 3 dangling trees, labeled as d-trees,

contributing to f -paths, if any. All d-trees except one rooted on layer 0 are attached

to the i-path and they contribute to the f -paths number with different probabilities

related to Pi(n) of Eq. (7.1).

Based on the observation from Fig. 34, to calculate the f -paths number, i.e.

false indexes to a key table in an SL, is necessary. Let random variable Xs be the

number of f -paths in query operation with an i -path for a key. Then, Xs+ 1 is the

total indexes in an SL which equals to the searched-linked-list length of an FHT [15].

The detailed probability of Xs for an SL without f -paths is defined as following:

92

P (n)0

P (n)2

a1

0a

a2

P (n)1

0a a1a2

dangling tree

BF or FF on i−path

f−posv. on f−segment

i−path =100

Fig. 34. An IT of 3 layers (or stages) with an i-path and dangling trees.

Pr{Xs = 0} = P0(0) · P1(0) · P2(0) · · · Ps-1(0), (7.3)

because each d-tree along an i-path are mutually independent to each another. In

general, the Pr{Xs=v} is calculated based on the independent property of each d-tree

along an i-path as the following

Pr{Xs = v} =
∑

v=t0+···+ts-1

P0(t0) · P1(t1) · P2(t2) · · ·Ps-1(ts-1). (7.4)

3. Detailed algorithm for query

A complete query operation consists of query-i for layer i, 0≤i≤s-1, shown in Algo-

rithm query-i. The time complexity of this algorithm is Θ(1) under the condition

that ‖L‖ is bounded by the number of memory reads supported by the hardware

without overhead. The reason for this is that given candidates for partial indexes in

L, the number of BFs to probe doubles due to having two children to each binary

tree node.

By pipelining starting layer 0, a query is performed in one cycle, so that query-s-

1 returns complete indexes to a key table for a given query. On the last layer s-1, the

average numbers of complete indexes are calculated as E[Xs]+1 or E[Xu] on average

93

Algorithm 11: query-i()

Input: M i
on for layer i≤s-1, list L of partial indexes found on up to layer i-1

including i-path, and key e
Output: A set of partial A = a0 · · · ai of i+1 bits, including f -segments
// S: Set of partial paths. L={A0, · · ·An-1}
S = ∅; n=‖L‖; // ‖L‖ is the size of L1

for t = 0 to n-1 do2

mi=1.44niwi; At = L[t]; j0=At·0; j1=At·1; cnt 0=cnt 1=0;3

// One M. for BFs on layer i. ki hash funcs.
for t=0 to ki-1 do4

// idx0, idx1 indicate Bi
j

if M i
on[t][ht(e)][j0]==1 then cnt 0++;5

if M i
on[t][ht(e)][j1]==1 then cnt 1++;6

end7

// concatenate 0 or 1 bit at the end of At

if cnt 0==ki then S=S∪ At · 0;8

else if cnt 1==ki then S=S∪ At · 1;9

end10

return S; /* No memory access for a key table */11

for an SL and a UL, respectively, where E[Xs] and E[Xu] can be derived from Eqs.

(7.4) and (7.2) as

E[Xs] =
n−1∑
t=0

t · Pr{Xs = t}, E[Xu] =
n∑

t=0

t · Pr{Xs = t}. (7.5)

These equations are considered O(1) because having one f -path, Pr{Xs=1}
o(1)

and Pr{Xu=1}
o(1), is very unlikely because of the way a high-speed router is

designed.

D. Delete Operation with Counting BFs

A BMF in [27] suffers from a dynamic membership change, because an index table

stores a key’s k hash values of based on its neighborhood with other keys and this

neighborhood is collected by avoiding collision with other keys’ hash values. Thus,

an index-table setup in a Blooimer filter takes O(n log n) complexity, implying that

94

a BFHT using a Bloomier filter needs the same time complexity for updating keys.

However, our FPHT takes O(1) for update. Unlike an MBHT [31] and an HIHT [32],

CBFs for a dynamic update is adopted. Since CBFs are used for delete operation,

insert operation needs to be modified at line 3 as query operation does at lines 5

and 6 for counter operations. The detail is the following.

To remove a key with an i-path, all CBFs on the i-path need to delete the key.

Deleting the key in a CBF is as easy as decreasing counters indexed by hash functions.

Also, an FP for the key is reset to 0 to indicate an empty FP. Since an i-path for the

key is known, resetting the FP is easy. If a membership of a key to remove is not

known, a lookup on the key is necessary to find an associated i-path. In this query, if

there are any f -paths besides an i-path associated with a key, the necessary number

of key table accesses is one plus the number of f -paths. Once CBFs and an FP is

updated for the key deletion, the i-path (or the FP index) is saved in an index pool,

so that when a new key insertion is asked, one from the index pool is used for the

next key’s insertion as an i-path.

When random variable Z is denoted as the number of accesses to a key table,

the average memory access for delete operation on the condition of a target key’s

existence, i.e. a successful deletion, is

E[Z] = 1 +
n−1∑
v=1

v · Pr{Xs = v} = 1 + E[Xs]. (7.6)

The delete complexity is O(1) based on the query’s O(1) complexity. The com-

plexity of indexes to access a key table is Θ(E[Z]) on average for a successful deletion

and it is to be constant as E[Xs] is O(1).

95

0
h (e) h (e)

1

S0 S1 S2 S3

bank 0
0

0

0

0
0

1

1

1

1

1 1

11

1

1

1

1

1
1

11

1

1
0 0 0

0

0 0 0
1

bank 1

0

selector selector

2 2
MUX MUX

Fig. 35. A sample configuration of a 4-SBF in k=2 banks. A 4-SBF represents S0

through S3. The memory size is 2×4×4.

E. FPHT Optimization in a b-ary Prefix Tree

The IT so far is built as a binary prefix tree in a 2-base number system. Since a

BF acts as a binary-predicate in an IT, a BF assigned for bit 0 in its index bits

returns ’yes’ like a BF assigned for bit 1 does. However, when a b-ary prefix tree,

b∈{22, 23, · · · }, is adopted in an IT, a BF is assigned for bit x, x∈{0,· · · ,b-1}, and a

node in a b-ary prefix tree is implemented in a b-SBF as a 4-SBF is shown in Fig.

35. Also, the IT height, i.e. the number of pipeline stages, is reduced to s=log2 n,

thereby the total IT memory is. According to b-base number, using a b-ary prefix tree

requires a bit change in an key table index of 2-base number system. For instance,

index 01002 for e4 in a binary prefix tree is simply transformed to 104 in a 4-ary

prefix tree. However, this change does not create index addressing disturbance. Thus,

without any key table change memory saving is observed by adopting a b-ary prefix

tree.

F. Simulation Results for an FPHT

This section presents an analysis on memory efficiency for three schemes; an MBHT

[31], an HIHT [32], and an FPHT.

96

1. Memory size in consideration of speed and scalability

18
22

26
30

10
14

18
22

1

2

3

w (lookup precision)log
2
 n (# of keys)

M
em

or
y

ef
fi

ci
en

cy
 r

at
io R

M

R
H

Fig. 36. Memory efficiency ratios of an FPHT over an MBHT and an HIHT at various

n and w. In an FPHT, a lookup precision of a CBF is set to 6 for a 16-ary

prefix tree.

This section shows calculation of the memory efficiency ratio among an MBHT,

an HIHT, and an FPHT to properly address speed and scalability. Since authors

in [31, 32] made memory efficiency by comparison of their schemes against an FHT

[15] and an BFHT [16], the memory comparison is not considered again. Also, a

16-ary prefix tree is used for an FPHT optimization. The MBHT memory size is

MM=2βn(w+log2 b) logb n+2n+n log2 n, b=16, and the HIHT memory size, MH , is

calculated as 2βn·(3(log2 n-1)+w)+2n+n log2 n. In contrast, the FPHT memory size

becomes βn(3+ log2 b)×(logb n-1)×C+nw+n log2 n where logb n is a prefix tree height

and C=3 for counter bits.

Fig. 36 shows two memory efficiency ratios, RM and RH of an FPHT over

an MBHT and a HIHT based on Eqs. (3.2) and (3.5). As shown in this figure, an

MBHT is not suitable for speed and scalability concerns. Although RM at small w

and n values is smaller than that of higher w and n values, it is evident that in the

97

overall range of w and n an FPHT approximately needs smaller memory size than a

MBHT, and the highest memory efficiency is 3.0. In case of RH , 2.1 times memory

efficiency is shown. The memory capacities of an MBHT and an FPHT at the highest

efficiency with n=210 and w=30 are 262,964 and 87,409 bits, respectively.

2. Power comparison with TCAM for IP lookup

In addition to memory comparison among hash mechanisms, power comparison be-

tween an FPHT-based IP lookup and TCAM-based IP lookup is made. Although the

detailed hash-based IP lookup architecture with proposed hash schemes, an HIHT

and an FPHT, will be shown in Sec. VIII, this section and the following section show

preliminary power and memory comparisons with TCAM and a trie for IP lookup.

Fig. 37 shows the consumed energy per read clock in two IP lookup schemes: a

TCAM-based IP lookup and an FPHT-based IP lookup. The consumed energy per

read clock is measured by CACTI [35] and a tool [70] The table size was varied from

236K to 1M entries. The first table of 236K entries is taken from [51] and the rest

tables are created by random. It is found that the proposed FPHT-based IP lookup

scheme consumed 51 times less power compared to the TCAM-based IP lookup. It is

shown that the TCAM uses a tremendous power amount as the table size is increased

while the proposed FPHT-based schemes uses a small power amount.

3. Memory comparison with Trie for IP lookup

Fig. 38 shows the total memory for IP Lookup in three schemes: a Tree Bitmap

[71] and an FPHT. As Table I discussed, trie-based IP lookup schemes suffer O(W)

lookup complexity where W is the IP address length while hash-based schemes pro-

vide O(W) lookup complexity. Comparing memory efficiencies of IP lookup schemes

with different lookup complexities is not fair because hash-based schemes can provide

98

236029 500000 750000 1000000
10

−1

10
0

10
1

10
2

Routing table size

E
ne

rg
y

pe
r

re
ad

 c
lo

ck

TCAM
FPHT

Fig. 37. Consumed energy per read clock in 0.09μm process technology.

a higher throughput. However, the proposed FPHT-based hash scheme can provide

O(1) lookup complexity as well as memory efficiency as follows. The table size was

varied from 236K to 1M entries. The first table of 236K entries is taken from [51]

and the rest tables are created by random as in the previous section. In each memory

calculation, other bitmap and pointer memory overhead for hash-based and trie-based

approaches are considered. It is found that the FPHT-bases IP lookup scheme con-

sumed 1.75 times less memory compared to Tree bitmap. Furthermore, as the table

size increases, the FPHT-based IP lookup scheme saves at most 2.4 times memory.

99

253371 500000 750000 1000000
0

2

4

6

8

10
x 10

7

routable table size

M
em

or
y

in
 b

its

Tree Bitmap
FPHT

Fig. 38. Memory comparison of Tree Bitmap and an FPHT in different table sizes.

100

CHAPTER VIII

HASH-BASED IP LOOKUP ARCHITECTURE

This chapter presents HIHT and FPHT IP lookup architectures based on the proposed

hashing schemes and compares their performances with contemporary IP lookup ar-

chitectures in terms of power consumption and memory overhead.

A. Hash-based IP Lookup Architecture Build

Authors in [15, 16] show that hash-based IP lookup schemes are capable of providing

better memory and power performance. However, since a hash only supports a sin-

gleton match, either a prefix collapse in Sec. III.C.2 or a controlled prefix extension

in Sec. III.C.1 is necessary if hash schemes are applied to IP lookup. Since a con-

trolled prefix extension inflates the number of next-hops, a prefix collapse scheme is

a better way in build hash-based IP lookup architecture when proposed HIHT and

FPHT schemes are applied to IP lookup.

2 3 4 5

1

1.2

1.4

1.6

1.8x 10
5

stride s

of

 c
ol

la
ps

ed
 p

re
fi

xe
s AS65000

AS6447

(a) The # of collapsed prefixes

2 3 4 5
2.5

3

3.5

4

4.5

5

5.5

6

stride s

R
at

io
 o

f
du

pl
ic

at
es

AS65000
AS6447

(b) Avg. ratio of duplicate next-hops

Fig. 39. The number of collapsed prefixes and the average number of duplicate nex-

t-hops at various stride s. The prefix number for AS 65000 and AS 6447 are

233451 and 235307, respectively.

101

Fig. 39(a) shows the benefit of using the prefix collapse. In the figure, the

number of collapsed prefixes gets smaller than the number of the original prefixes at

various stride s. As the stride size increases, the number of collapsed prefixes reduces

and it is 2.7 times smaller than that of an original prefix set at stride 5 as shown in

Fig. 39(a). However, just as the stride size increases, there exists a problem with

the number of next-hops. When a bitmap for the prefix collapse is used, the ratio of

next-hop duplicates is increased as shown in Fig. 39(b). For example, the duplicate

ratio of 5.8 at stride 4 indicates that a bitmap of size 24 has 5.8 times duplicate

next-hops on average. The used BGP tables, AS 65000 and AS 6447, are obtained

from [51] and other BGP tables also show the similar pattern. However, since this

dissertation aims for power and memory efficiencies in hash itself, we leave the issue

of next-hop inflation open for hash-based IP lookup.

HLE

key
table ?=

table
NH

HLE

engine

hash

bitmap

bitmap
table

parse
bitmap

dst. IP

idx.

stride s

base pnt.

perfect match?

c

collapsed pref.

Fig. 40. IP lookup architecture with parallel Hash Lookup Engines (HLEs) for a wild-

card support. Each HLE has different c and s values.

Fig. 40 illustrates a general hash-based IP lookup architecture using the prefix

collapse and the bitmap scheme. Prefixes are divided into collapsed prefixes and

bitmaps. Later, each HLE saves collapsed prefixes of the same length c in a key table

for a perfect match and its corresponding bitmaps in a bitmap table in order to index

102

the next-hop table. In the figure, an HIHT or an FPHT is substituted for an HLE.

For each IP lookup operation, an HLE strips the first c bits and the following s bits

from a destination IP, does hash based on c bits, and accesses a next-hop table by

parsing an indexed bitmap, if perfectly matched. A match with a longest collapsed

prefix is the final match for a given IP lookup among perfect matches.

B. Simulation Result of HIHT and FPHT-based IP Lookup Schemes

This section shows comparison result of HIHT and FPHT-based IP lookup schemes

against contemporary schemes in terms of power and memory. For a scalability issue

of routing table size, we consider four sizes: 236,029, 500K, 750K, and 1M.

1. Power-efficient hash-based IP lookup

Fig. 41 shows the consumed energy per read clock in three schemes: a TCAM, an

HIHT shown in Sec. VI, and an FPHT shown in Sec. VII. We use CACTI [35] and

a tool [70] to measure the consumed energy per read clock. The table size was varied

from 236K to 1M entries. The first table of 236K entries is taken from [51] and the

rest tables are created by random. It is found that the proposed scheme consumed 51

times less power compared to the TCAM-based IP lookup and 1.5 times less power

compared to the HIHT-based scheme for the first table. It is shown that the TCAM

uses a tremendous power amount as the table size is increased while our hash-based

schemes of an HIHT and an FPHT use a small power amount. Furthermore, an

FPHT-based scheme always uses less power amount than an HIHT-based scheme in

all table sizes since an FF uses a smaller power than an BF as discussed in Sec. B.

103

236029 500000 750000 1000000
10

−1

10
0

10
1

10
2

Routing table size

E
ne

rg
y(

nJ
)

 p
er

 r
ea

d
cl

oc
k

(l
og

)

TCAM
HIHT
FPHT

Fig. 41. Consumed energy per read clock in 0.09μm process technology.

2. Memory-efficient hash-based IP lookup

Fig. 42 shows the total memory size for IP Lookup in three schemes: a Tree Bitmap

[71], an HIHT, and an FPHT. As Table I discussed, trie-based IP lookup schemes

suffer O(W) lookup complexity where W is the IP address length while hash-based

schemes provide O(1) lookup complexity. Comparing memory efficiencies of IP lookup

schemes with different lookup complexities is not fair because hash-based schemes can

provide a higher throughput. However, our hash-based schemes can provide O(1)

lookup complexity as well as memory efficiency as follows. The table size was varied

from 236K to 1M entries. The first table of 236K entries is taken from [51] and the

rest tables are created by random as in the previous section. In each memory size

calculation for hash-based and trie-based approaches, other bitmaps, pointer memory

overhead, and hash-engine memory are considered. It is found that the HIHT-based

scheme consumed 1.8 times less memory compared to Tree Bitmap scheme and the

FPHT-based scheme used 1.1 less memory compared to the HIHT-based scheme for

the first table. In conclusion, it is shown that the FPHT-based scheme is the most

104

memory-efficient IP lookup scheme in this result. Furthermore, as the table size

increases, the FPHT-based scheme saves at most 2.4 times memory.

253371 500000 750000 1000000
0

2

4

6

8

10
x 10

7

routable table size

M
em

or
y

in
 b

its

Tree Bitmap
HIHT
FPHT

Fig. 42. Memory size comparison of Tree Bitmap, an HIHT, and an FPHT in different

table sizes.

105

CHAPTER IX

HYBRID CAMS OF CAM AND SRAM FOR IP LOOKUP

In this chapter, we propose a hybrid CAM (HCAM) IP lookup architecture for high

throughput and power efficiency. Our approach adopts both a prefix collapse scheme

and a circuit level redundancy in multi-ports to a Bloom filter (BF). A prefix collapse

reduces the number of prefixes while a collapsed prefix does not have a prefix feature.

In such prefix collapse, the collapsed prefixes (CPs) can be put in a deterministic

lookup-capable CAM to demonstrate further hardware efficiencies on power and the

number of transistors per cell than a TCAM. The detail is the following.

A. HCAM-based IP Lookup Architecture

Using TCAM for a prefix match has been considered as a prohibitive scheme despite

TCAM’s advantages in a deterministic lookup and partitioning for multi-lookups.

This section presents the detail of HCAM-based architecture with high throughput

and power efficiency.
lo

ng
es

t p
re

fi
x

m
at

ch
ta

bl
e

fo
r

: SRAM for STBs: CAM for CPs

pkt
3

pkt
2

pkt
1

P4: 100101*

P6: 100110101*

P2: 101*

P5: 1011001*

P7: 101010100*

P1: 100*

P3: 1101*

P8: 1010101001*

prefix set

10110

10011010

10010

10 0000110
0100000

0000010
0100000

0000010
0100100

NH idx.

NH idx.

NH idx.

SRAMs

B
L

D

Qs & CAMson−chip

one clk one clk

10101010

11

Fig. 43. HCAM-based IP lookup architecture for a prefix set. Stride s=2. The col-

lapsed prefix lengths,d1, d2, d3, are 2,5, and 8, respectively.

A pipeline in an HCAM-based scheme has three stages in pipeline; a distributor

106

with BFs, CAMs with queues, and SRAMs as in Fig. 43. To provide a high through-

put, multiple pipelines can be used working in parallel. In the figure, 3 packets are

fed into a distributor together, and the distributor disseminate the packets to their

associated queues. A queue is buffer zone between a fast-distributor stage and a

slow-CAM stage as in [36, 38]. A Bloom filter is well known for a binary approxi-

mate membership query [49], and it removes irrelevant lookup queries to collapsed

prefixes which are saved in a CAM block. Thus, a high-power-consuming CAM query

is avoided. Once a CAM block entry is perfectly matched with a collapsed prefix, we

retrieve an SRAM block entry at the same index. The retrieved entry indicates an

STB associated with the collapsed prefix for stride match. Thus, the prefix match is

achieved by performing CAM and STB matches.

As to completing the longest prefix match, a table is used to record all CAM

matches for a given lookup. Once a lookup is forwarded to associated queues by a

distributor, a record of match statuses in all pipelines is created in the table. When-

ever a match is found in any pipeline, the match is recorded in the lookup’s record.

Once a found match is considered as the longest prefix match in the record, a packet

associated with the lookup is forwarded without waiting for other query results of the

lookup.

By IP lookup policy, a router forwards packets based in a prefix set while pre-

serving a packet order. Although packet disorder can happen due to queues’ delay

in parallel lookups, the disorder does not disturb an order of packets belonging to

a single flow. A flow is defined as a set of packets between applications on two end

hosts identified by two IP addresses, and a prefix represents a set of IP addresses to

forward packets if the prefix is the longest. As long as a match order of packets which

are associated with the longest prefix is preserved, the same order of the outgoing

packets is. Since our HCAM scheme preserves an packet order in a pipeline queue by

107

selectors, the match order after a SRAM is the same as the order of packets in a flow.

B. Prefix Transformation with CAM & SRAM

A proposed PC uses one bitmap and one pointer to encode a subtrie in a uni-bit

trie, so that the number of prefixes is reduced and the need of ’don’t care’ (or *) bit

comparison is eliminated. Now, the collapsed prefixes can be put in a CAM which

has less hardware complexity than a TCAM and provides a singleton match, but

the same parallel lookups through partitioning. As to comply with a prefix match

on stride bits, we build an STB in a SRAM, so that the overhead of TCAM usage

disappears. The details of a PC and an STB are shown in the following sections.

1. Prefix collapse

P4: 100101*

P6: 100110101*

P2: 101*

P5: 1011001*

P7: 101010100*

P1: 100*

P3: 1101*

P8: 1010101001*

1

00

0

11

1

1

1

00

depth 2
prefix set

P1 P2

root

depth 5

a

Fig. 44. A sample prefix set and a subtrie in a uni-bit trie for the set.

Given a uni-bit trie for a prefix set, our PC encodes every subtrie which is rooted

at specific trie-depth and whose depth is s, so that prefixes in a subtrie share a

common path from a trie root to the subtrie root. Suppose there are 8 prefixes and

a subtrie with root node a at trie-depth 2 is encoded as in Fig. 44. Since prefix P1

and P2 share a common prefix part, i.e. ’10’, one collapsed prefix ’10’ is used in a

108

CAM. Thus, the number of collapsed prefixes for a CAM can be far smaller than the

number of original prefixes.

2 3 4 5
0

1

2

3

Stride s

of

 c
ol

la
ps

ed
 p

re
fi

xe
s(

x1
05)

AS39202, PC
AS39202

(a) The # of collapsed prefixes

2 3 4 5

4

6

8

10

12

14

Stride s

of

 tr
an

si
st

or
s(

x1
07)

TCAM
HCAM(CAM+SRAM)
SMT(SRAM)

(b) Memory size in terms of
transt.

Fig. 45. The number of collapsed prefixes and the number of transistors at various

stride s.

Such PC’s benefit is shown in Fig. 45(a) by counting collapsed prefixes from a

routing table AS 39202 [72] whose prefix number of prefixes is 252,951. The rela-

tionship between the stride size and the number of collapsed prefixes is that as the

stride size gets larger, the number of collapsed prefixes is getting smaller. At stride 5,

the number of collapsed prefixes is 4.5 times fewer than that of the original prefixes

marked as a line, and for the stride 5 66, 3376, 52254, and 63 collapsed prefixes are

found at depth 7, 13, 19, and 25, respectively. Other stride sizes do not cause any

significant reduction.

2. A complete prefix match through an STB in SRAM

Since a CAM does not support a prefix match, a supplementary match is necessary

even after a CAM match occurs. Given a collapsed prefix, there are 2s+1-1 possible

prefixes at stride s, and they can be presented at a subtrie bitmap. Fig. 46 a) shows

two prefix strides at stride s=3 and a stride tree for them. In a stride tree, a node

109

is marked as ’1’ when there is a corresponding prefix stride. Thus, when scanning

nodes’ bits in the horizontal order followed by the vertical order, we get an 15-bit

STB (00100000,0010,01,0) for three prefix strides.

1

2 1

x

1 2 scan order

2

3

P1: 1*
P2: 101

0

0

0 0 00

1

1 1

1111

0

pref. nodestride set

STB:

pkt stride: 100
1? 1?

NH table

1? h2
h1

Σ+base

first x bits used

a) Stride tree

P1

b) Index calculation for a given packet stride

P2

(00000100, 0000, 01, 0)

for 2 prefixes

index to find bit 1 & scan to sum bit 1s

Fig. 46. A stride tree for 2 prefix strides and an index method to an NH table.

Given an STB for the stride s, there are s+1 groups of bits, each designated for

bits on the same layer in a stride tree. In each group, bits are scanned while the

number of bits of value 1 is counted, and when a bit indexed by the most significant

bits in a stride is 1, the counting stops. Then, the summed number of bits of 1,
∑

,

becomes a relative index to an NH table. Fig. 46 b) shows such an index calculation

in STB (00100000,0010,01,0) for the packet stride 100. Once a CAM block match

happens, the match’s index in the CAM block is used to access an STB in the corre-

sponding SRAM block. Once the STB is known by one SRAM access, calculating an

index
∑

can be made shortly at one CPU-clock speed. Procedure stride match

shows the detailed steps.

As to subtrie memory in Fig. 44, a proposed PC needs an (22+1-1)-bit STB

with one base pointer to an NH table for a 2-bit stride subtrie. In general, the

STB size is 2s+1-1 bits for a subtrie of s stride bits. However, the subtrie size for a

110

Procedure stride match
Input: Stride S of a0 · · · as−1, stride size s, and STB B of b0 · · · b2s+1−2

Output: Relative index
∑

to an NH table, or “no match”
for (idx B=s-1, sum=0; idx B≥0 ; idx B−−) do1

idx S = a0 · · · aidx B ;2

if idx B=s-1 then scan B=0;3

else scan B=
∑idx B-1

t=0 2s−t; // Set base in B to scan4

for (idx scan=0;idx scan≤idx S+scan B;idx scan++) do5

if B[idx scan]==1 then sum++;6

end7

if B[idx scan]==1 then // match happens8

return sum;9

end10

return “no match”;11

segmented multibit trie (SMT) in [20] is 19 bits which is 2.7 times more than the STB

size. Generally, an SMT needs 3k+1(=2k+k+k+1) bits for k neighboring nodes. In

addition, an SMT needs two pointers to maintain connectivities among SMTs and an

NH table.

Such pointer overhead is manifest in Fig. 45(b). In general, as the stride is

larger, the numbers of transistors for an SMT scheme and an HCAM are reduced

significantly except at stride 5, and the numbers are, at most 3.9 times, smaller than

that of a native TCAM scheme. In comparison between a SMT and an HCAM, an

HCAM uses 1.7 times less memory at stride 4 because an SMT is designed to encode

a lightly loaded subtrie and to maintain connectivity with others through pointers.

C. A Bloom Filter-based Lookup Distributor

STCAM [37] and BTCAM [38] schemes use a distributor forwarding multiple packets

per clock cycle. Such a packet distribution to corresponding pipelines is necessary for

high throughput. Such a distributor adopts a multi-tiered BLD with a set of nc BFs

[30], each forwarding a packet to a corresponding pipeline. Such a BLD is designed

111

to distribute lookups for multi-lookups per cycle and remove unnecessary lookups in

queues for a power efficiency lookup.

The total memory usage of various contemporary schemes is differentiated from a

proposed HCAM-based scheme as shown in Fig. 47. TCAM or SRAM blocks of other

schemes are only considered, and not memory block selectors, to store prefixes for

prefix match in this comparison. However, BFs’ memory is included in the HCAM

memory calculation. Although the BTCAM shows the highest throughput among

other contemporary schemes, our HCAM uses 2.8 times less memory while achieving

the same throughput as the BTCAM.

CTCAM STCAM UTCAM BTCAM HCAM
0

0.5

1

1.5

2
2.1

x 10
8

of

 tr
an

si
st

or
s

AS3257

Fig. 47. The memory comparison of all schemes in terms of a transistor. Lookup

precision w=10. Note that ’HCAM’ includes all CPs, STBs, and BFs.

D. Experimental Results for an HCAM-based Scheme

This section presents an analysis on throughput and power efficiencies for an HCAM-

based scheme and other contemporary schemes.

112

1. Throughput

It is difficult to theoretically analyze the HCAM’s throughput performance because

the non-determinacy of the lookup traffic. However, the upper and the lower bound of

its performance can be estimated based on the following lookup traffic assumptions.

1) Queuing theory is used to model the lookup engine and assume that the arrival

process of the incoming IP addresses is a Poisson process with the average arrival rate

λ. 2) The service process of the lookup operation follows a deterministic distribution

with a constant service rate μ due to CAM’s deterministic lookup. Then, a service

time to process lookups in a queue becomes Ts=1/μ, and it is independent of the

arrival processes. 3) The queue size in each pipeline is finite with nq lookup requests.

It is obvious that if nc CAM blocks perform independent IP lookups, the system

can be modeled as an M/D/nc/nqnc queuing. In this case, the lookup traffic can be

always balanced among all nc CAMs. Thus, the M/D/nc/nqC queuing model should

be the upper throughput bound.

However, the lower throughput bound is more interesting since it affects the

practicality of the proposed scheme to a real field. By neglecting the adaptive load

balancing process and assuming that the traffic is evenly distributed to nc CAMs

by BFs, an HCAM can be modeled as nc independently and identically distributed

M/D/1/nq queuing network for nc pipelines as in Fig. 48.

Now, an analysis is made on one of the identically distributed M/D/1/nq queues

by considering an increased arrival rate in a queue due to a BF’s f -positive. That

is, the arrival rate λ/nc is increased by a probabilistic value f because a BF falsely

assigns a lookup to each queue due to a BF’s f -positive. Once such a look exists in a

queue, a CAM block needs to proceed a lookup operation for the unsuccessful look,

and this consequently undermines throughput and wastes power. Thus, the traffic

113

λ/3+f

λ/3+f

λ/3
λ/3

λ/3+f

λ
λ/3

B

B

B

nq

μ

μ

μ

Fig. 48. Queuing model of nc pipelines in an HCAM. nc=3.

intensity of each queue is defined as

ρ′ = (1 + f)λ/nc × Ts, (9.1)

while a successful lookup’ traffic intensity to a queue is ρ=λ/nc×Ts.

Let {Qi}∞i=1 be the stochastic process of the number of the IP addresses in the

queue at the time of the i-th arrival. Then, a queue’s loss probability which can be

derived from [36, 73, 74] is the following:

PL = P (Q = nq) = {1 + (ρ′-1)αnq (ρ
′)}/{1+ρ′αnq(ρ

′)}, (9.2)

where

αnq(ρ
′) =

∑
i+m=nq−2

eρ′(i+1)(−1)mρ′m(i + 1)m

m!
, nq ≥ 2. (9.3)

Now, since processing ULs is considered as wasting the lookup time in a CAM block,

a throughput of our concern, Goodput, is defined as

Goodput = ρ(1 − PL), (9.4)

because under the probability that a queue is not full, 1-PL, a CAM block processes

successful lookups in traffic intensity ρ, not ρ′. Also, the overall goodput with nc

CAM blocks is calculated by multiplying Eq. (9.4) with nc.

In addition to the theoretical analysis, a series of experiments is also made to

measure an HCAM-based scheme’s throughput performance. Due to a difficulty in

114

2^−3 2^−7 2^−10
0.7

0.8

0.9

1

f

T
hr

ou
gh

pu
t

SDA

Goodput

Fig. 49. Goodput vs. measured throughput of a CAM block in an SDA trace. ρ=0.95.

getting a pair of a BGP table and its corresponding IP trace, an SDA trace from [58]

is utilized to extract prefixes from packet streams by considering a unique destination

IP as a prefix. In experiment runs, it is assumed that a distributor disseminates

lookup requests fast enough that queues of successful or unsuccessful lookups are full

and a CAM block processes a lookup from a queue in one clock. Also, four CAM

blocks are used, each with a queue size nq=5. Fig. 49 shows Goodput defined by Eq.

(9.4) and a CAM block’s throughput defined by the number of SLs in a queue over

the total clocks to process packets. The figure shows that the smaller an f -positive

f is, the higher throughput is achieved. Also, the total Goodput of 4 CAM blocks is

marked as 3.7.

2. Power

By using the TCAM and CAM modeling tools [35, 70], we measured the total energy

in one clock and individual energy for a single lookup in a TCAM or CAM block

in three approaches: a naive TCAM (NTCAM), a UTCAM, and an HCAM. Such

energy consumptions are shown in Fig. 50 for AS 3257 and AS 3333 routing tables.

An NTCAM in the figure provides only one lookup with the entire prefixes while

115

N U.14 H.6 N U.14 H.6
0

10

20

30

40

50

60

T
ot

al
 e

ne
rg

y
(n

J)

AS3257 AS3333

(a) Total energy per clock cycle

N U.14 H.6 N U.14 H.6
0

10

20

30

40

50

60

In
di

vi
du

al
 e

ne
rg

y
(n

J)

AS3257 AS3333

(b) Energy in a TCAM- or CAM-
block

Fig. 50. a) Total energy consumption in one clock for an NTCAM, a UTCAM, and an

HCAM. Symbols ’N’, ’U.14’, and ’H.6’ denote NTCAM with a block of whole

prefixes, UTCAM with 16 blocks of 14K prefixes, and HCAM with 16 blocks

of 6K prefixes, respectively. .13μm process technology is used. b) The energy

consumptions for a single lookup operation in a block for three schemes.

a UTCAM and an HCAM can provide multiple lookups with 16 TCAM or CAM

blocks, respectively. To make the number of blocks in UTCAM and HCAM even,

UTCAM and HCAM block sizes are set to 14K and 6K entries, respectively. In this

configuration, the same throughput can be achieved. On average, an HCAM saves 3.6

and 4.6 times total energies compared to a UTCAM and an NTCAM, respectively,

even if an HCAM and a UTCAM have the same number of blocks. The power usage

can be easily calculated by dividing a consumed energy by a lookup access time which

depends on the process technology of memory chip fabrication.

116

CHAPTER X

SUMMARY

A. Conclusion

It was discussed that the existing hash schemes for packet processing, like an FHT,

a BFHT, and Peacock hashing suffer from key duplicates, a complicated update, and

setup failure and they are not scalable in terms of scalability and speed. To overcome

these problems, one packet classifier and three hashing schemes are proposed: an

MPC, an MBHT, an HIHT, and an FPHT, for large-scale and high-speed packet

processing.

An MPC is proposed by reconfiguring BFs into small-sized BFs and large-sized

BFs in a multi-tiered way without memory overhead, compared to a PPC. By Linear

Property 1 in Sec. III.A, it is shown that how an MPC is built with the same memory

capacity as that of a PPC in Sec. A. It is observed that the number of fabricated

read ports in BFs’ memory as well as the MPC area cost are reduced with the same

memory. In simulation with NLANR’s IP traces for flow identification, an MPC shows

higher efficiencies in all traces than a PPC, at most 2.0 and 4.2 times of throughput

and power, respectively.

Also, an MBHT of a novel hash architecture is proposed, generating indexes to a

key table with a set of MBFs in base-b number system. The MBFs work in pipelining

in query so that a subset of them in row i determine Ai, which is a part of a whole

index address Ab=a0 · · · ar-1 of base-b number system. From Lemmas 1 and 2, it is

realized that adapting a larger base number system saves significant on-chip memory

against an LHT and an FHT, and showed that base-23 is the starting point of better

memory efficiency for an MBHT as shown in Fig. 23. A novel hash architecture is

117

proposed, generating indexes to a key table with a set of MBFs in base-b number

system. The MBFs work in pipelining in query so that a subset of them in row

i determine Ai, which is a part of a whole index address Ab=a0 · · · ar-1 of base-b

number system. From Lemmas 1 and 2, it is realized that adapting a larger base

number system saves significant on-chip memory against an LHT and an FHT, and

showed that base-23 is the starting point of better memory efficiency for an MBHT

as shown in Fig. 23.

Thirdly, a novel hash architecture with two HITs is proposed, generating indexes

to a key table with a set of BFs. The BFs in two HITs work systematically, or in

pipeline and hierarchical fashion to minimize the number of indexes Only one off-

chip memory access is required in addition to achieving efficiency in on-chip access.

For insert, an i-path is assigned to a key and one BF on each layer is involved in

encoding the key in one of HITs. For query, one on-chip memory module for each

layer is probed for candidate BFs having their base indexes on the memory derived

from Eq. (3.2). After the last probing in layer s-1, the returned indexes are used

for perfect match in a on-chip key table, so that a deterministic Θ(1) lookup is

guaranteed. For delete, by rotating two HITs, seamless update of keys is provided

without counters costing four times the memory, so that only half of the memory is

used.

As the last hash scheme, an FPHT, by using CBFs in a binary search for a

key’s fingerprint and utilizing an keys’ FF in a high-precision query for a high-speed

router, a proposed FPHT produces an i-path and no f -path to a key table with a

high probability and memory efficiency. In throughput comparison against Peacock

hashing, it was shown that while Peacock hashing suffers from a lower throughput in

a UL, an FPHT throughput is proportional to the number of threads regardless of

lookup kinds.

118

In hash-based IP lookup architectures with an HIHT or an FPHT, it is observed

that an FPHT-based IP lookup saves 51 times power and 1.8 times memory compared

to TCAM and trie-based IP lookup, respectively.

In addition to these power- and memory-efficient hash schemes, a hybrid CAM is

also proposed where a high performance lookup can be achieved by parallel lookups

among CAM and SRAM blocks. In an HCAM, a prefix is broken into a collapsed

prefix in CAM and a stride in SRAM. The prefix collapse reduces the number of

prefixes that results in reduced memory usage by a factor of 2.8. High throughput is

achieved by storing the collapsed prefixes in partitioned CAMs that perform multiple

IP lookups per cycle. A stride tree bitmap with a matched collapsed prefix completes

the longest prefix match.

B. Future Works

Since hashing provides only a singleton match for a one-dimension key, any hash-based

packet processing application needs a lookup-key transformation for its application

domain. For instance, since IP lookup needs a prefix match, the hash-based IP lookup

needs prefix expansion or collapse as discussed in Sec. C. Although this dissertation

proposed one packet classifier and three hashing schemes proven with memory and

power efficiencies, these belong to a one-dimension singleton match. As future work,

a hashing scheme for a two-dimension key in packet classification will be considered.

Power- and memory-efficient hash mechanisms have been shown in this disser-

tation. However, the reviewing on the importance of a throughput metric in a high-

speed router implementation encourages us to consider mapping a m-trie, which was

developed for IP lookup, onto multiple pipelines. Since the principle of a pipeline is to

give an one-clock throughput, multiple m-trie-mapped pipelines can give multi-folds

119

throughput for IP lookup or packet classification.

120

REFERENCES

[1] K. G. Coffman and A. M. Odlyzko, Internet Growth: Is There a ”Moore’s Law”

for Data Traffic?, Handbook of Massive Data Sets, Kluwer, New York, 2002.

[2] M. Gray, (1996), [Online]. Available: http://www.mit.edu/people/mkgray/net/

internet-growth-summary.html.

[3] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using Extended

TCAMs,” in ICNP ’03: Proceedings of the 11th IEEE International Conference

on Network Protocols, 2003, p. 120.

[4] V.C. Ravikumar and R.N. Mahapatra, “TCAM Architecture for IP Lookup

Using Prefix Properties,” MICRO, IEEE, vol. 24, no. 2, pp. 60–69, 2004.

[5] V. C. Ravikumar, R. N. Mahapatra, and L. N. Bhuyan, “EaseCAM: An Energy

and Storage Efficient TCAM-Based Router Architecture for IP Lookup,” IEEE

Trans. Comput., vol. 54, no. 5, pp. 521–533, 2005.

[6] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms for

Advanced Packet Classification with Ternary CAMs,” in SIGCOMM ’05: Pro-

ceedings of the 2005 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communications, 2005, pp. 193–204.

[7] V. Srinivasan and G. Varghese, “Fast Address Lookups Using Controlled Prefix

Expansion,” ACM Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40, 1999.

[8] A. Basu and G. Narlikar, “Fast Incremental Updates for Pipelined Forwarding

Engines,” IEEE/ACM Trans. Netw., vol. 13, pp. 690–703, 2005.

121

[9] S. Sahni and K.S. Kim, “Efficient Construction of Multibit Tries for IP Lookup,”

IEEE/ACM Trans. Netw., vol. 11, no. 4, pp. 650–662, 2003.

[10] S. Sahni and K.S. Kim, “Efficient Construction of Pipelined Multibit-trie

Router-Tables,” IEEE Trans. Comput., vol. 56, no. 1, pp. 32–43, 2007.

[11] A.C. Snoeren, “Hash-based IP Traceback,” in SIGCOMM ’01: Proceedings of

the 2001 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, 2001, pp. 3–14.

[12] S. Dharmapurikar, P. Krishnamurthy and D.E. Taylor, “Longest Prefix Match-

ing Using Bloom Filters,” in SIGCOMM ’03: Proceedings of the 2003 Confer-

ence on Applications, Technologies, Architectures, and Protocols for Computer

Communications, 2003, pp. 201–212.

[13] S. Dharmapurikar, P. Krishnamurthy, T.S. Sproull, and J.W. Lockwood, “Deep

Packet Inspection Using Parallel Bloom Filters,” in MICRO 37: Proceedings

of the 37th Annual ACM/IEEE International Symposium on Microarchitecture,

New York, 2004, pp. 52–61.

[14] F. Chang, W-C. Feng, and K. Li, “Approximate Caches for Packet Classifica-

tion,” in INFOCOM 2004. 23rd Annual Joint Conference of the IEEE Computer

and Communications Societies. Proceedings IEEE, Hong Kong, Chnia, 2004,

vol. 4, pp. 2196–2207.

[15] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash Table

Lookup Using Extended Bloom Filter: An Aid to Network Processing,” in SIG-

COMM ’05: Proceedings of the 2005 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communications, 2005, pp. 181–192.

122

[16] J. Hasan, S. Cadambi, V. Jakkula, and S. Chakradhar, “Chisel: A Storage-

Efficient, Collision-free Hash-based Network Processing Architecture,” in ISCA

’06: Proceedings of the 33rd International Symposium on Computer Architec-

ture, 2006, pp. 203–215.

[17] D. Guo, J. Wu, G. Chen, and X. Luo, “Theory and Network Applications of

Dynamic Bloom Filters,” in INFOCOM 2006. 25th Annual Joint Conference

of the IEEE Computer and Communications Societies. Proceedings IEEE, 2006,

pp. 1233–1242.

[18] J. Moscola D.V. Schuehler and J.W. Lockwood, “Architecture for a Hardware-

based TCP/IP Content Scanning System,” in Hot Interconnect: IEEE Sympo-

sium on High Performance Interconnects, 2003.

[19] S. Dharmapurikar, H. Song, J. Turner and J. Lockwood, “Fast Packet Classifi-

cation Using Bloom Filters,” in ANCS ’06: Proceedings of the 2006 ACM/IEEE

Symposium on Architecture for Networking and Communications Systems, San

Jose, 2006, pp. 61–70.

[20] H. Song, J. Turner, and S. Dharmapurikar, “Packet Classification Using Coarse-

grained Tuple Spaces,” in ANCS ’06: Proceedings of the 2006 ACM/IEEE

Symposium on Architecture for Networking and Communications Systems, San

Jose, 2006, pp. 41–50.

[21] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and G. Varghese, “Be-

yond Bloom Filters: From Approximate Membership Checks to Approximate

State Machines,” in SIGCOMM ’06: Proceedings of the 2006 Conference on

Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, Pisa, Italy, 2006, pp. 315–326.

123

[22] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable High Speed

IP Routing Lookups,” in SIGCOMM ’97: Proceedings of the ACM SIGCOMM

’97 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, Seattle, 1997, pp. 25–36.

[23] F. Baboescu and G. Varghese, “Scalable Packet Classification,” IEEE/ACM

Trans. Netw., vol. 13, no. 1, pp. 2–14, 2005.

[24] T. V. Lakshman and D. Stiliadis, “High-speed Policy-based Packet Forwarding

Using Efficient Multi-dimensional Range Matching,” in SIGCOMM ’98: Pro-

ceedings of the ACM SIGCOMM ’98 Conference on Applications, Technologies,

Architectures, and Protocols for Computer Communication, Vancouver, Canada,

1998, pp. 203–214.

[25] A.Z. Broder and M. Mitzenmacher, “Using Multiple Hash Functions to Improve

IP Lookups,” in INFOCOM 2001. 20th Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings IEEE, 2001, pp. 1454–

1463.

[26] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, “An

Improved Construction for Counting Bloom Filters,” in ESA’06: Proceedings of

the 14th Conference on Annual European Symposium, 2006, pp. 684–695.

[27] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier Filter: An Effi-

cient Data Structure for Static Support Lookup Tables,” in SODA ’04: Proceed-

ings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms,

2004, pp. 30–39.

[28] S. Kumar, J. Turner, and P. Crowley, “Peacock Hashing: Deterministic and

Updatable Hashing for High Performance Networking,” in INFOCOM 2008. 27th

124

Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE, pp. 101 – 105.

[29] A. Kirsch and M. Mitzenmacher, “Simple Summaries for Hashing with Choices,”

IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 218–231, 2008.

[30] H. Yu and R. Mahapatra, “A Throughput-efficient Packet Classifier with n

Bloom Filters,” in Proc. of IEEE Global Communications Conference (GLOBE-

COM), New Orleans, 2008, pp. 1 – 5.

[31] H. Yu and R. Mahapatra, “A Memory-efficient Hashing by Multi-predicate

Bloom Filters for Packet Classification,” in INFOCOM 2008. 27th Annual Joint

Conference of the IEEE Computer and Communications Societies. Proceedings

IEEE, Phoenix, 2008, pp. 1795 – 1803.

[32] H. Yu and R. Mahapatra, “A Space- and Time-efficient Hash Table Hierarchi-

cally Indexed by Bloom Filters,” in IPDPS 2008. IEEE International Symposium

on Parallel and Distributed Processing, 2008, pp. 1 – 12.

[33] H. Yu and R. Mahapatra, “A Pipelined Indexing Hash Table Using Bloom and

Fingerprint Filters for IP Lookup,” in SIGCOMM 2008, pp. 463 – 464.

[34] The Linley Group, A Guide to Search Engines and Networking Memory, (2006,

Nov.), [Online]. Available: http://www.linleygroup.com/pdf/NMv4.pdf.

[35] CACTI, (2001, Feb.), [Online]. Available: http://www.hpl.hp.co.uk/personal/

Norman Jouppi/cacti5.html.

[36] K. Zheng, C. Hu, H. Lu and B. Liu, “An Ultra High Throughput and Power

Efficient TCAM-based IP Lookup Engine,” in INFOCOM 2004. Proceedings

125

IEEE 23rd Annual Joint Conference of the IEEE Computer and Communications

Societies, 2004, pp. 7–11.

[37] J. Akhbarizadeh, M.M. Nourani, R. Panigrahy, and S. Sharma, “A TCAM-

Based Parallel Architecture for High-speed Packet Forwarding,” IEEE Trans.

Comput., vol. 56, no. 1, pp. 58–72, 2007.

[38] W. Jiang, Q. Wang, and V. Prasanna, “Beyond TCAMs: An SRAM-based

Parallel Multi-pipeline Architecture for Terabit IP Lookup,” in INFOCOM ’08.

Proceedings of IEEE 27th Annual Joint Conference of the IEEE Computer and

Communications Societies.

[39] L. Fan, P. Cao, J. Almeida, and A.Z. Broder, “Summary Cache: A Scalable

Wide-area Web Cache Sharing Protocol,” IEEE/ACM Trans. Netw., vol. 8, no.

3, pp. 281–293, 2000.

[40] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel, “Fast and Scalable

Layer Four Switching,” in SIGCOMM ’98: Proceedings of the ACM SIGCOMM

’98 Conference on Applications, Technologies, Architectures, and Protocols for

Computer Communication, New York, 1998, pp. 191–202.

[41] M. Nourani and M. Faezipour, “A Single-Cycle Multi-Match Packet Classifi-

cation Engine Using TCAMs,” in HOTI ’06: Proceedings of the 14th IEEE

Symposium on High-Performance Interconnects, Washington, DC, 2006, pp. 73–

80.

[42] M. Singhal, J. Xu and J. Degroat, “A Novel Cache Architecture to Support

Layer-Four Packet Classification at Memory Access Speeds,” in INFOCOM

2000. Proceedings IEEE of the 19th Annual Joint Conference of the IEEE Com-

puter and Communications Societies, 2000, pp. 1445–1454.

126

[43] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed Content De-

livery Across Adaptive Overlay Networks,” in SIGCOMM ’02: Proceedings of

the 2002 Conference on Applications, Technologies, Architectures, and Protocols

for Computer Communications, 2002, pp. 47–60.

[44] A. Kumar, J. Xu and E. W. Zegura, “Efficient and Scalable Query Routing for

Unstructured Peer-to-Peer Networks,” in INFOCOM 2005. Proceedings IEEE

24th Annual Joint Conference of the IEEE Computer and Communications So-

cieties, 2005, pp. 13–17.

[45] D. Sy and L. Bao, “CAPTRA: Coordinated Packet Traceback,” in IPSN ’06:

Proceedings of the Fifth International Conference on Information Processing in

Sensor Networks, 2006, pp. 152–159.

[46] S. Cohen and Y. Matias, “Spectral Bloom Filters,” in SIGMOD ’03: Proceedings

of the 2003 ACM SIGMOD International Conference on Management of Data,

2003, pp. 241–252.

[47] F. Zane, G. Narlikar, and A. Basu, “CoolCAM: Power-efficient TCAMs for

Forwarding Engines,” in INFOCOM 2003. Proceedings of IEEE the 22nd Annual

Joint Conference of the IEEE Computer and Communications Societies, 2003,

pp. 42 – 52.

[48] W. Jiang and V. Prasanna, “Parallel IP Lookup Multiple SRAM-based

Pipelines,” in IPDPS ’08. 22nd IEEE International Parallel and Distributed

Processing Symposium, 2008, pp. 1–14.

[49] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A

Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2002.

127

[50] A. Pagh, R. Pagh, and S. S. Rao, “An Optimal Bloom Filter Replacement,”

in SODA ’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on

Discrete Algorithms, Philadelphia, PA, 2005, pp. 823–829.

[51] BGP Routing Tables Analysis Report, (2008), [Online]. Avail-

able:http://bgp.potaroo.net.

[52] University of Oregon Route Views Project, (2005, Jan.), [Online]. Available:

http://www.routeviews.org/.

[53] I. Kaya and T. Kocak, “Energy-efficient Pipelined Bloom Filters for Network

Intrusion Detection,” in IEEE International Conference on Communications,

2006, pp. 2382 – 2387.

[54] F. Nemati, H.-J. Cho, S. Robins, R. Gupta, M. Tarabbia, K.J. Yang, D. Hayes,

and V. Gopalakrishnan, “Fully Planar 0.562μm2 T-RAM Cell in a 130nm SOI

CMOS Logic Technology for High-density High-performance SRAMs,” in IEEE

International Electron Devices Meeting ’04, 2004, pp. 273–276.

[55] B. Dipert, “Special Purpose SRAM Smooth the Ride,” Electronics Design,

Strategy, News, 1999, pp. 9–13.

[56] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative

Approach, Morgan Kaufmann Publishers Inc., San Francisco, CA, 1990.

[57] E. Safi, A. Moshovos, and A. Veneris, “L-CBF: a Low-Power, Fast Counting

Bloom Filter Architecture,” in ISLPED ’06: Proceedings of the 2006 Interna-

tional Symposium on Low Power Electronics and Design, Tegernsee, Germany,

2006, pp. 250–255.

128

[58] Passive Measurement and Analysis Project, National Laboratory for Ap-

plied Network Research (NLANR), (2006, July), [Online]. Avail-

able:http://pma.nlanr.net/traces/traces.

[59] M. V. Ramakrishna, E. Fu, and E. Bahcekapili, “A Performance Study of Hash-

ing functions for Hardware Applications,” in Proceedings of Int. Conf. on Com-

puting and Information, 1994, pp. 1621–1636.

[60] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,

McGraw-Hill, New York, 1990.

[61] Y. Luo, J. Yang, L. N. Bhuyan, and L. Zhao, “NePSim: A Network Processor

Simulator with a Power Evaluation Framework,” IEEE Micro, vol. 24, no. 5,

pp. 34–44, 2004.

[62] A. Apostolopoulos, D. Aubespin, V. Peris, P. Pradhan, and D. Saha, “Design,

Implementation, and Performance of a Content-based Switch,” in INFOCOM

2000. Proceedings of IEEE the 19th Annual Joint Conference of the IEEE Com-

puter and Communications Societies, 2000, pp. 1117 – 1126.

[63] C. Kachris and S. Vassiliadis, “Design of a Web Switch in a Reconfigurable

Platform,” in ANCS ’06: Proceedings of the 2006 ACM/IEEE Symposium on

Architecture for Networking and Communications Systems, San Jose, 2006, pp.

31–40.

[64] Z. G. Prodanoff and K. J. Christensen, “Managing Routing Rables for URL

Routers in Content Distribution Networks,” Int. J. Netw. Manag., vol. 14, no.

3, pp. 177–192, 2004.

129

[65] Monthly Log Files 2000, Computer Science Division, University of California,

Berkeley.

[66] NLANR Sanitized Cache Access Logs, (2006), [Online]. Available:

ftp://ircache.nlanr.net/Traces/.

[67] Sanitized Log Files from Canada’s Coast to Coast Broadband Research Network

(CA*netII), (2000), [Online]. Available: ftp://ircache. nlanr.net/ Traces.

[68] J. Garćıa, J. Corbal, L. Cerdà and M. Valero, “Design and Implementation

of High-performance Memory Systems for Future Packet Buffers,” in MICRO

36: Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, 2003, p. 373.

[69] M. Mitzenmacher and S. Vadhan, “Why Simple Hash Functions Work: Exploit-

ing the Entropy in a Data Stream,” in SODA ’08: Proceedings of the Nineteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, Philadelphia, PA, 2008.

[70] B. Agrawal and T. Sherwood, “Modeling TCAM Power for Next Generation

Network Devices,” in ISPASS ’06: IEEE International Symposium on Perfor-

mance Analysis of Systems and Software, 2006.

[71] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hardware/Software

IP Lookups with Incremental Updates,” SIGCOMM Comput. Commun. Rev.,

vol. 34, no. 2, pp. 97–122, 2004.

[72] RIPE Network Coordination Centre, (2006), [Online]. Avail-

able:http://www.ripe.net/.

[73] K.S. Trivedi, Probability & Statistics with Reliability, Queueing, and Computer

Science Applications, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1990.

130

[74] S. Alouf, P. Nain, and D. Towsley, “Inferring Network Characteristics via

Moment-based Estimators,” in INFOCOM 2001. Proceedings of IEEE the 20th

Annual Joint Conference of Computer and Communications Societies, 2001, pp.

1045 – 1054.

131

VITA

Heeyeol Yu was born in Kimje, Korea. After completing his schooling at Po-

hang Jechul High School, he went on to obtain his Bachelor of Science in Computer

Science from Korea Advanced Institute of Science and Technology, Taejon, Korea in

February 1994. He graduated with his Master of Science in Computer Science from

the University of California, Los Angeles in December 2003.

Contact address:

Department of Computer Science and Engineering

Texas A&M University

TAMU 3112

College Station, TX 77843-3112

The typist for this dissertation was Heeyeol Yu.

