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ABSTRACT 

 

Stratigraphy and Geochronology of the Vernor Mammoth Site, Clute, Brazoria County,  

Texas.  (May 2009) 

Juan Carlos Urista, B.A., San Francisco State University 

Chair of Advisory Committee:  Dr. Michael R. Waters 

 
Remains of a mammoth, other Pleistocene fauna, and a wooden bowl were 

recovered from the Vernor site located in Clute, Brazoria County on the Texas Gulf 

Coast.  Stratigraphy, sedimentology, and geochronology were used to establish the 

depositional history of the site.  The geologic evidence suggests that these sediments 

were deposited during a period of fluvial activity by an ancient meander belt of the 

Brazos River, known today as Oyster Creek, which characterized this region during the 

Late Pleistocene and Early Holocene.  Organics associated with the wooden bowl were 

radiocarbon dated to 4205 + 30 yr B.P. (UCIAMS-12039), while sand grains associated 

with the remains of the mammoth were dated using the luminescence technique to 

66,000 + 7000 yr B.P. (UIC1383).  According to these dates and their positions in the 

stratigraphic record, it was established that the mammoth and other Pleistocene age 

fauna preceded human occupation, and are not contemporaneous with the wooden bowl. 
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1. INTRODUCTION  

 In late 2003, a set of mammoth tusks was found in a commercial sand pit in 

Clute, Brazoria County, Texas.  Drs. Robson Bonnichsen and Michael Waters, of the 

Center for the Study of the First Americans at Texas A&M University, went to Brazoria 

County to investigate the discovery.  Dr. Bonnichsen believed that the arrangement of 

the tusks and other mammoth bones found might have suggested human butchering.  On 

this premise, Dr. Bonnichsen organized an excavation to begin in January 2004.  Along 

with the remains of the two mammoths, other Ice Age fossils and a wooden bowl were 

recovered from the sand quarry.  The mammoth remains were eventually dated to about 

66,000 + 7000 yr B.P. (UIC1383) using the luminescence dating technique, and the bowl 

was radiocarbon dated to 4205 + 30 yr B.P. (UCIAMS-12039), placing it in the Middle 

Archaic.  The mammoth remains thus preceded the human occupation of North America 

by several tens of thousands of years. 

 A series of stratigraphic profiles were recorded within the sand pit in order to 

elucidate the geologic history of the site.  This also helped to define the geochronology 

of the site so that the mammoth remains and the wooden bowl could be understood in 

their proper stratigraphic and temporal contexts.  Because the mammoth remains pre-

date human occupation in the Americas, whereas the wooden bowl is evidence of human 

activity, their temporal association was crucial in defining the geochronology of this site.  

As Aten (1983: 143-144) states,  

… the late Quaternary geologic history of the upper (Texas) coast… 

makes clear that many sequential sedimentary deposits and landforms are 

laterally offset rather than just superimposed.  Because of this relationship, 

the geologic stratigraphy and morphostratigraphy provides both a 

chronological and spatial organizing framework for the area based on field 

observations that lead directly to interpretation of ancient geography, 

climates, habitats, and archaeological data.   

                                                 
This thesis follows the style of Quaternary Research. 
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Thus, stratigraphic work at the Vernor site will aid not only in the reconstruction of the 

geologic history, but this will also contribute to the overall understanding of the area 

during the late Quaternary. 
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2. LOCATION 

 The Vernor Mammoth site lies within the Gulf Coast Plain physiographic area 

(Abbott, 2001) and occurs within the meander belt of an abandoned channel of the 

Brazos River called Oyster Creek (Bernard et al., 1970; Epps, 1973) at 29°1’49”N, 

95°24’58”W (see Figure 2.1).  This area of the Texas coast is denoted as the “upper 

coast” by some researchers (Aten, 1983; Dering and Ayers, 1977) and its boundary 

stretches from the Brazos River to the Sabine River.  During the Quaternary period, the 

Brazos River constructed a series of large fluvial-dominated deltas across the continental 

shelf as a result of changes in sea level, sediment supply, and climate, which shifted the 

position of the coastline (Abdulah et al., 2004).  During the time of the mammoth, at 

about 66,000 yr B.P., the coastline experienced a transgression as sea level rose.  Even 

though this period was marked by a rise in sea level, its magnitude was not as great as 

the present-day sea level (Abdulah et al., 2004).  Later, during the Holocene, the area of 

the Vernor pit was within the confines of the Oyster Creek meander belt of the Brazos 

River.  This meander belt was active from about 4000 yr B.P. to about 1000 yr B.P. 

when it was abandoned due to the avulsion that created the present meander belt of the 

Brazos River (Abbott, 2001; Aten, 1983; Bernard et al., 1970).  Although it is about 18 

kilometers inland from the coast, today, the Vernor Mammoth site lies about 7.5 meters 

below sea level and about 3 kilometers east of the Brazos River.   
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 Figure 2.1 – Location of the Vernor Mammoth site and late Quaternary meander belts of 

the Brazos River (after Aten, 1971: 2). 
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3. OBJECTIVES 

 According to Gagliano (1984: 8), a relict system is that which shows “physical 

evidence of former repetitive movement of energy and materials in a given geographic 

area, but (whose)… flows no longer occur.”  The goal of this thesis is to decipher what 

type of relict system was in operation throughout the history of the Vernor Mammoth 

site (Gagliano, 1984).  Therefore, in order to shed light on this phenomenon the main 

objective of this study is to define the stratigraphy and geochronology of the Vernor 

Mammoth site in order to better understand the type of relic system at work at the site.   

The stratigraphy and geochronology will help define (1) the depositional history of the 

site, and (2) the context of the mammoth remains and of the wooden bowl.  

Stratigaphically, the mammoth remains and the wooden bowl are about 1.5 meters 

vertically apart from each other.  However, they differ in age by about 62,000 years.  

Therefore, they were deposited at very different stages in the geologic history of the site.  

Both seem to have been deposited in a fluvial environment, but because this area is 

characterized by much fluvial activity, the origin and mechanism for each context is 

unique, especially as it is known that the climate has changed drastically throughout the 

history of this site.  Periods of warm and cold have alternated throughout the Quaternary 

period, which has induced changes in eustasy and fluvial discharge.  Therefore, the 

stratigraphy and geochronology at this site will shed light on the factors that not only 

define geology, but also those that have shaped the geology throughout time.  Thus, a 

reconstruction of the climatic changes that are known on the Texas coast will help in 

understanding the interplay between glaciation and fluctuating sea levels, and this should 

be reflected in the stratigraphic record.  This information is used as a framework in order 

to tease out a coherent geochronologic record.   

The geologic reconstruction of the site was done by creating profiles from 

trenches dug from within the fenced enclosure in which the mammoth remains were 

found.  These profiles are immediately associated with the mammoth remains (see 

Figure 3.1).  Profiles were also created from around the pit, outside of the fenced 
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enclosure, in order to get a better general understanding of the site’s stratigraphy.  These 

profiles were obtained from outcrops found throughout the pit (see Figure 3.2).  

 

 

 
Figure 3.1 – Drawing of mammoth pit within fenced enclosure showing location of 

profiles. 
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Figure 3.2 – Location of profiles and columns at the Vernor Mammoth site.  See Figure 

3.1 for a detailed description of profiles located within the fenced enclosure of the 

mammoth pit. 
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4. DEPOSITIONAL UNITS OF THE TEXAS GULF COASTAL PLAIN 

   The literature recognizes two major groups of deposits that make up the Late 

Quaternary on the Texas coast (Abbott, 2001; Bernard and LeBlanc, 1965; Bernard et 

al., 1970; Blum, 1990; Blum, 1994; Blum et al., 1995; Blum and Price, 1994; Blum and 

Price, 1998; Epps, 1973; Van Siclen, 1985; Waters and Nordt, 1995).  The older of the 

two is the Beaumont Formation, and the latter is actually two different sets of deposits 

known collectively as post-Beaumont deposits.  The post-Beaumont deposits include the 

late Pleistocene Deweyville sediments and younger Holocene sediment package.  

  Originally, the geology of the Texas Coastal Plain was interpreted according to 

the four glacial and four interglacial periods that at one point were believed to 

characterize the climate of the Pleistocene (Fisk, 1944).  The glacial periods were 

characterized by low sea level stands, and the interglacial periods were characterized by 

high sea level stands.  Fisk (1944) developed a model for the Mississippi Valley and the 

Louisiana coast in which glacial periods with low sea level stands were characterized by 

valley entrenchment and sediment bypass, whereas interglacial periods were associated 

with transgression and high sea level stands characterized by the construction of alluvial 

terraces and deltaic plains (Bernard and LeBlanc, 1965; Blum and Price, 1994; Doering, 

1956).  According to Fisk’s model, the Beaumont Formation was assigned to the 

“Sangamon” interglacial, the last interglacial of the Pleistocene (Blum and Price, 1994; 

Fisk, 1944).  The importance of this model is evident as it persisted for a long period of 

time (Aronow, 1971; Bernard and LeBlanc, 1965; Bernard et al., 1970).  

However, more recent studies suggest that the geologic history of the Pleistocene 

is now more complicated than previously thought. To begin with, according to studies 

done with oxygen isotopes, the partitioning of the Pleistocene into four 

glacial/interglacial periods has been proven to be inaccurate (Blum, 1990; Blum et al., 

1995; Blum and Price, 1994; Williams et al., 1988).  According to these studies, it is 

now known that there were more than four glacial/interglacial periods during the 1.8 

million years that make up the Pleistocene.  Also, eustasy due to glaciation alone is not 

responsible for all of the characteristic alluvial deposits.  While it is the case that eustasy 
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plays a significant role in the geometry of alluvial deposits near the shoreline, according 

to several studies done on the Colorado River system (Blum, 1990; Blum, 1994; Blum 

and Price, 1994), climatic effects in the continental interior determine the amount of 

discharge and sediment rates delivered to the coastal plain.   

 Blum and Price (1994) offer a model describing Texas Gulf Coastal alluvial plain 

deposits according to the interplay between glacio-eustasy and climate.  According to 

this model: (1) Beaumont and post-Beaumont deposits consist of multiple cross-cutting 

and/or superimposed valley fill complexes; (2) these deposits vary widely in age, 

possibly representing the last 600 ka; (3) partitioning of valley fill complexes occurs 

during the initial phase of the low sea level stand; (4) during lowstands, the newly 

exposed subaerial shelf becomes incised by the channels and so valley axes become 

fixed in place; (5) soils develop on the remainder of alluvial plain because no deposition 

occurs; (6) within the extended and incised valley, multiple episodes of lateral migration, 

aggradation, degredation, and/or floodplain abandonment occur; (7) composite basal 

valley fill unconformity and minor allostratigraphic units are created within the valley 

fill complex; (8) transgression and subsequent high sea level stand occur, causing valley 

complexes to become filled; (9) upstream controls on sediment delivery set the pace at 

which these alluvial valleys fill; (10) upstream controls on sediment delivery are 

influenced by climatic factors; (11) near completion of valley fills causes deposition and 

lateral spread of floodplain sediments; and (12) complete valley filling promotes 

avulsion.   

 As mentioned above, stratigraphic architecture in the Texas Gulf Coastal Plain 

reflects the interaction between glacio-eustasy and climatic factors that affect the rate of 

discharge and amount of sediment supply (Alford and Holmes, 1985; Blum and Price, 

1994; Saucier, 1981).  While glacio-eustasy affects the geomorphology and subsequent 

stratigraphy near the coast, climatic influences in the interior of the continent affect the 

amount of sediment fed to fluvial process at and near the coast.  The valley fill 

complexes that are formed after incision of the newly exposed continental shelf during 

periods of low sea stand illustrate this point.  Periods of large sediment influx are 
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characterized by the development of meanderbelts, channel aggradation, and floodplain 

construction.  However, periods of low sediment influx are characterized by channel 

incision and the development of relict terraces as a result of floodplain abandonment, 

which can also lead to avulsion.  Because no deposition occurs on an abandoned 

floodplain, this in turn causes the formation of soils.  Thus, stratigraphy related to 

periods of low sediment influx is characterized by unconformities.  Therefore, 

allostratigraphic units characterize valley fill complexes.  As the sea begins its 

transgression of the coast during interglacial periods, sediments forming the base of new 

allostratigraphic units begin to onlap those allostratigraphic units deposited during the 

lowstand (Blum and Price, 1994). 

 

4.1 Beaumont Formation 

Three major units from each set of these Late Quaternary deposits are recognized 

within the Vernor Mammoth site.  The oldest unit (Unit I) excavated is a poorly-drained, 

bluish, and mottled clay.  This is consistent with the description for the Beaumont 

Formation given by Van Siclen (1985) which consists of fluvial deposits comprised of 

sandy channels, argillic backswamps, floodplains, and deltaic sediments.  These units are 

more thoroughly described in the Geologic Atlas of Texas (Barnes, 1982; Barnes, 1987).   

Barnes, in the Geologic Atlas of Texas, Houston Sheet (1982), mapped three 

lithostratigraphic units within the Beaumont Formation east of the Vernor Mammoth 

site.  One of the deposits Barnes (1982) describes as “dominantly clay and mud of low 

permeability, high water holding capacity, high compressibility, high to very high 

shrink-swell potential, poor drainage, level to depressed relief, low shear strength, and 

high plasticity.”  The geologic units that he associated with this lithstratigraphic unit are 

interdistributary muds, abandoned channel-fill muds, and overbank fluvial muds.  East 

of the Vernor Mammoth site, Barnes, in the Geologic Atlas of Texas, Beeville-Bay City 

Sheet (1987), describes Beaumont sediments as being “mostly clay, backswamp 

deposits, and to a lesser extent coastal marsh, mud flat, lagoonal, Recent (Holocene) and 

older lake, clay dune, and sand dune deposits.”  
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The Beaumont Formation has been described as a series of alluvial and deltaic 

deposits found near the coast from the Rio Grande in Texas to the Mississippi River in 

Louisiana (Aronow, 1971).  Blum and Price (1994) describe the Beaumont Formation as 

a series of multiple cross-cutting and superimposed valley fill complexes according to 

three major observations they made on a study on the Colorado River.  In the first of 

these observations, they state that Beaumont alluvial plains have a “much greater” areal 

extent than those constructed by the same rivers of the present interglacial stage; both 

interglacial stages are similar in duration.  Secondly, Beaumont stratigraphic units have a 

series of paleosols, which denote periods of non-deposition and soil formation, followed 

by periods of deposition in which these soils become buried.  Thirdly, the Beaumont 

Formation is three to four times as thick at the shelf edge than at the shoreline.  They 

also state that deposition of the Beaumont was not confined to one interglacial period as 

Fisk (1944) had suggested, but rather spanned several 100-kyr periods in which several 

glacial and interglacials intervals took place over the Middle to Late Pleistocene. 

Several estimates have been given by different authors for the age of the 

Beaumont Formation.  Fisk (1944) and DuBar et al. (1991) correlate the Beaumont 

Formation with the Sangamon Interglacial (~250 – 125 ka) (DuBar et al., 1991; Kurtén 

and Anderson, 1980).   Alford and Holmes (1985) cite evidence from meander scars in 

the Sabine River, carbon-14 dates from fill near the Red River, and the absence of more 

than one loess deposit from the last glacial period to assign a Middle Wisconsin age to 

the Beaumont.  Blum and Price (1994) offer luminescence dates roughly between 102 

and 120 ka from the two youngest Beaumont meanderbelts of the Colorado River, that 

they believe may represent the maximum last interglacial highstand (ca. 129-120 ka) 

(Chen et al., 1991).  However, Blum and Price believe that the Beaumont may extend as 

far back as 600 ka or more.  Therefore, according to all of this data, the age of the 

Beaumont Formation may be anywhere from 600 to 102 ka, which would put it in the 

Middle to Late Pleistocene. 
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4. 2 Post-Beaumont Deposits – Deweyville Alloformation Complex 

 Although post-Beaumont deposits have not been formally named, researchers 

note two separate sets of deposits.  Those deposits that supersede the Beaumont 

Formation on the Texas Gulf Coastal Plain, but are older than modern floodplain 

deposits are known informally as Deweyville.  Deweyville deposits are characterized by 

a series of valley fill complexes which are expressed as terraces (Blum et al., 1995; 

Blum and Price, 1994; Blum and Price, 1998).  These terraces can be seen on the surface 

as large meander scars with channels that are much bigger than the ones that present 

rivers occupy, indicating a greater discharge regime during that time (Alford and 

Holmes, 1985; Aten, 1983; Bernard et al., 1970; Blum et al., 1995).  However, these 

deposits do not find surface expression everywhere.  Near the mouth of the Brazos 

River, they are overlain by Holocene deposits (Bernard et al., 1970; Blum et al., 1995).   

Blum et al. (1995) suggest putting quotation marks around the name, Deweyville 

(i.e. “Deweyville”), because they believe there is not one single unit that describes what 

several authors refer to as Deweyville deposits.  Due to regional differences they argue 

that not everybody is talking about the same thing when referring to deposits that date 

between the Beaumont Formation and modern floodplain deposits.  For example, 

Saucier and Fleetwood (1970) assign two lacustrine terraces along the Ouchita River of 

Arkansas and Louisiana as Deweyville.  This ambiguity is the main reason researchers 

have not ascribed it as a formal formation name according to the North American 

Stratigraphic Code (North American Commission on Stratigraphic Nomenclature, 1983).  

However, all Deweyville deposits have several characteristics in common.  The first 

shared feature is their age, all Deweyville deposits are younger than the Beaumont 

Formation which they unconformably overlie, but older than Holocene deposits.  

Thomas (1990) dates these deposits to about 100 ka.  Blum (1994) dates a Deweyville 

terrace of the Colorado River from about 18,000 – 15,000 yr B.P. , and is believed by 

him to represent the end of the Deweyville range.  In Galveston Bay and Sabine Pass, 

Deweyville deposits are capped by a peat horizon that is about 9000 years old (Aten, 

1983; Nelson and Bray, 1970; Rehkemper, 1969).  Therefore, these deposits have a 
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range within the Late Pleistocene, from about 100 to 9 ka yr B.P.  Second, Deweyville 

deposits usually consist of a series of fluvial terraces that become smaller over time due 

to a waning flow regime.  Third, these deposits are laid down in a lateral fashion, rather 

than being vertically stacked.  Finally, Deweyville deposits are part of valley fill 

complexes that form a string of allostratigraphic units.          

 Blum and others (Blum, 1990; Blum, 1994; Blum et al., 1995; Blum and Price, 

1994; Blum and Price, 1998) have identified the above characteristics of the Deweyville 

deposits and summarize them as valley fill complexes that form a network of 

allostratigraphic units; each valley fill complex bounded by an unconformity.  These 

allostratigraphic units are expressed on the landscape as terraces; older terraces 

overlying younger ones.  A unique feature of Deweyville deposits is their scarcity of 

overbank flood deposits.  It is believed that this is the main reason that these deposits are 

laterally rather than vertically stacked.  Without bank-stabilizing muds, or oxbow lakes 

to form resistant clay plugs (Waters, 1992), these mostly sandy deposits accrete laterally, 

and as result, may be partially responsible for the much larger channels that characterize 

this time period.  Due to this absence of muds, Blum et al. (1995) note that there is a 

frequent occurrence of sand and gravel quarries on Deweyville surfaces, and as 

mentioned earlier, the Vernor Mammoth site is located in a sand quarry. 

 

4.3 Post-Beaumont Deposits – Holocene Deposits 

 Modern deposits from the Texas Gulf Coastal Plain consist of various 

environments including streams, deltas, barrier islands, wetlands, lagoons, and 

strandplains among others (Abbott, 2001).  Modern fluvial deposits differ form those of 

the Deweyville period by being vertically stacked rather than laterally accreted.  Waters 

and Nordt (1995) studied fluvial deposits from the Brazos River within a 75 km segment 

of the floodplain between Hearne and Navasota, Texas.  This Holocene deposit consists 

of an alternating series of channel and floodplain sediments.  They identified five units 

that correspond to avulsion episodes.  All of the units have the same general attributes: 

alternating deposits of channel (thalweg and point bar) and floodplain sediments capped 
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by a soil.  However, the oldest unit suggests that the Brazos River at this time (during the 

terminal Pleistocene) had a much greater flow regime, and thus had greater free-reign as 

a meandering stream.  As a result the deposits during this time were laterally accreted 

rather than vertically stacked as are all subsequent units.  As the flow regime waned after 

the deposition of the first unit, the river was then confined to a meander belt due to the 

presence of bank-stabilizing muds which caused it to cut deeper channels, and then 

deposit its sediments in a vertical fashion. 

 These deposits have been dated to about 8500 – 250 yr B.P. (A.D. 1700) by 

Waters and Nordt (1995) and 12,000 – 1000 yr B.P. (A.D. 950) by Blum (1994).  It was 

during the Holocene that the Brazos River occupied the present-day Oyster Creek 

meander belt.  As mentioned above, this meander belt was active from about 4000 BP to 

about 1000 BP when it was abandoned due to the avulsion that created the present 

meander belt of the Brazos River (Abbott, 2001; Aten, 1983; Bernard et al., 1970).  The 

point of avulsion is believed to have occurred a few kilometers upstream from Sealy, 

Texas (Bernard et al., 1970). 
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5. CLIMATE 

 Geology and geomorphology are greatly affected by climate.  For example, 

during the Late Pleistocene the Texas coast extended about 100 km out into the 

continental shelf (Aten, 1983; Gagliano, 1977; Gagliano and Thom, 1967) due to 

glaciation.  Valley entrenchment by the stream throughout the exposed continental shelf 

during this period had a unique impact on stream morphology, which in turn left a 

unique impression on the landscape.  Thus, changes seen on the geologic and 

geomorphologic architecture are a reflection of changes in climate.  The cooler climate 

of the Late Pleistocene on the Texas coast was markedly different from that of today 

which has been classified as subtropical subhumid to subtropical humid (Abbott, 2001; 

Larkin and Bomar, 1983; Nordt et al., 1994).  For a complete summary on the nature of 

the causes and effects of the last glacial period refer to Williams et al. (1998).  On the 

Gulf of Mexico coastal region it has been suggested that periods of marine regression 

during cooler climates are associated with valley downcutting, in which streams 

entrench their channels and the process of erosion predominates.  During periods of 

marine transgression associated with warmer climatic episodes, the shoreline moves 

further inland and submerges part of the previously exposed continental shelf, and as a 

result the newly submerged channels are infilled with sediment and aggradation is 

believed to predominate during this time.     

Evidence for climate during the Late Quaternary can be discerned through the 

use of various agents that serve as proxies (Dincauze, 2000; Williams et al., 1998).  

These agents include stream channel geometry (Alford and Holmes, 1985; Aten, 1983), 

soils (Aten, 1983; Mandel and Bettis, 2001), carbon isotopes (Nordt et al., 1994), and 

pollen (Bryant and Holloway, 1985).  The limitations and pitfalls of using proxies to 

interpret past climates have been discussed elsewhere (Smiley et al., 1991).  Although 

caution must be exercised when using proxies to interpret past climates, nonetheless they 

are indispensable in that they offer the only insight into discerning past climates.  The 

various studies done on theses agents all show a similar trend: climate during the Late 

Pleistocene was cooler and dryer than that of the Holocene, which conversely has been 
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warmer and wetter.  While pollen and carbon isotope studies have not been conducted on 

the upper Texas coast, studies dealing with stream geometry and soils have.  As 

mentioned above, these studies show the same trend of cooler/dryer climate during the 

Late Pleistocene, and warmer/wetter climate during the Holocene, i.e. cooler/dryer 

climate during glacial periods, and warmer/wetter climate during interglacial periods.   

Meander scars that date to the Deweyville period have been identified on the 

Texas coast (Bernard and LeBlanc, 1965; Bernard et al., 1970)  The unique 

characteristic of these meander scars are that they represent relict channels of the Brazos 

River, and are much bigger than the present Brazos River channel (Epps, 1973).    This 

has been shown to be the case from measurements taken from meander wavelength and 

meander radii, two meander dimensions taken from relict channels that can be used to 

assess paleodischarge (Alford and Holmes, 1985; Carlston, 1965).  These measures 

indicates that stream channel geometry during deposition of the Deweyville 

alloformation was much greater than that occupied by the Brazos River today, 

suggesting that the present-day Brazos River is an underfit stream (Aten, 1983; Epps, 

1973; Waters and Nordt, 1995).  Large relict channels in the period from 14,000 – 9,000 

yr B.P. have also been identified elsewhere (Dury, 1977; Knighton, 1998).   

The dynamic nature of the stream channel geometry as illustrated between the 

Late Pleistocene and the Holocene seems to be a consequence of changes in climate that 

had an effect upon stream discharge.  The period between 14,000 and 9,000 yr B.P. 

coincides with a warming trend after the late glacial maximum at 18,000 yr B.P., with a 

slight interruption due to the Younger Dryas at about 11,000 yr B.P.  It is worth noting 

that during this transitional period from the Late Pleistocene to early Holocene, heavy 

precipitation characterized lower latitudes.  This period is characterized by the formation 

of pluvial lakes, such as Lake Bonneville in Utah and Lake Lahontan in Nevada.  

Although these massive interior lakes seemed to be formed by the enormous 

precipitation during this period, other factors such as diminished evaporation, greater 

cloud cover, or change in vegetation that may have induced runoff may have 

contributed, or been largely responsible for their formation (Williams et al., 1998).  
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Either heavy rainfall or any of the reasons given above, possibly in conjunction with 

rainfall, seem to be the reason(s) why the Brazos River may have had a discharge many 

times greater, and hence greater channel dimensions than those of today.  Another reason 

may be an absence of bank-stabilizing muds as Blum et al. (1995) have suggested.                 

While a larger Brazos River is associated with the colder Late Pleistocene, and a 

smaller Brazos River with the warmer Holocene, this would imply that greater stream 

discharges occur during periods of cooler climate versus lesser stream discharges 

occurring during warmer periods.  It is tempting to explain this simply as increased 

discharge due to a wetter climate resulting from decreased evapotranspiration and 

increased precipitation as a result of cooler weather (Alford and Holmes, 1985); 

however, this is not the case.  According to studies done along the Gulf Coast (Alford 

and Holmes, 1985; Coleman, 1980; Delcourt, 1980; Moran, 1975; Otvos, 1975; Wright, 

1981), during the Late Pleistocene, at the time of deposition of the Deweyville 

alloformation complex, climate in this region was dryer.  So an increase in precipitation 

due to glaciation seems unlikely.   

Alford and Holmes (1985) suggest that during the Late Pleistocene the climate in 

the Gulf coast region was probably even warmer than today.  They suggest that this 

increase in temperature may have led to a higher frequency of tropical storms in the Gulf 

of Mexico which may have resulted an increase in precipitation.  Several studies 

(Coleman, 1980; Moran, 1975; Wendland, 1977) have shown a strong correlation 

“between increased surface water temperatures and incidence of tropical storms” (Alford 

and Holmes, 1985: 400).  Therefore, increased precipitation from Gulf storms during this 

warmer period could have contributed to the large meander scars found in the 

southeastern United States.  The magnitude of such an impact would require, according 

to Alford and Holmes (1985), twice the amount of precipitation, if evapotranspiration 

were to remain constant or slightly increased.  These large meander scars can be seen 

from Texas to North Carolina, but none, with the exception of some found in Illinois 

(Bolduc, 1982), have been located further north (Gagliano and Thom, 1967). This gives 

further credence to the idea that warmer waters from the Gulf of Mexico and Atlantic 
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Ocean may have had a significant impact on stream channel geometry.  Large meander 

scars found in Illinois are the result of channels acting as sluice conduits for glacial 

meltwater (Alford and Holmes, 1985; Bolduc, 1982), something that would be 

impossible for the smaller rivers of the Gulf coast, such as the Brazos River, that are too 

far south to be directly impacted by glacial meltwater.    

This suggests that streams active during periods associated with a warmer 

climatic regime will have a greater stream channel geometry than streams active during 

periods associated with a cooler climatic regime.  On the other hand, several studies 

suggest that sea surface temperatures in the tropics during the last glacial maximum 

(~18,000 yr B. P.) may have been cooler than today by about 5° C (Colinvaux et al., 

1996; Guilderson et al., 1994; Stute et al., 1995; Thompson et al., 1995; Williams et al., 

1998).  This is more in line with conventional thinking that climate was cooler during 

the Late Pleistocene.  This, however, is an overgeneralization.  It may be that this 

particular region of the Gulf coast of Texas was warmer in the Late Pleistocene than 

today.             

It seems that periods with the greatest amount of discharge happen in the 

transitional period between glacial and interglacial periods.  It is during this period of 

climatic warming that glaciers begin to ablate and release more water into streams, and 

into the atmosphere as water vapor, thereby increasing their discharge.  The greatest 

amount of discharge by the Brazos River during the Late Quaternary occurred during the 

deposition of the Deweyville alloformation complex in the period between 30,000 and 

9,000 B.P.  The last glacial maximum occurred about 18,000 years ago (Williams et al., 

1998).  From that time to about 11,000 yr. B.P., a warming trend occurred punctuated by 

an episode of major ice loss occurring between 14,000 – 12,000 yr B.P. (Jansen and 

Veum, 1990; Mix, 1987; Williams et al., 1998)   This warming trend ended with the 

Younger Dryas stadial at about 11,000 yr. B.P., a period that saw the climate return to 

cold conditions reminiscent of the last glacial maximum (Williams et al., 1998).  The 

end of the Younger Dryas stadial marks the boundary between the Pleistocene and the 

Holocene at about 10,500 yr. B.P.  The Holocene has been punctuated by two more 
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episodes of rapid ice loss from about 10,000 – 9,000 yr. B.P.  and another one from 

8,000 – 6,000 yr. B.P. (Jansen and Veum, 1990; Mix, 1987; Williams et al., 1998), but 

there was less discharge during this time due smaller ice sheets.  Thus, the Brazos River 

at the time of Deweyville deposition experienced a major warming trend that may have 

lead to increased precipitation, and thus was wholly or partly responsible for the extreme 

channels characteristic of that time.  As we move closer to the present the meander scars 

show a propensity towards smaller channels due to a waning flow regime.  As described 

above, when glaciers released more water due to a warming trend, and this water found 

its way into the Brazos River through increased precipitation, the channels swelled in 

proportion.  However, as the glaciers that fed this precipitation became smaller and 

eventually disappeared, a threshold was reached in which discharge could no longer 

accommodate the increased channel geometry.  The Brazos River responded to this 

change in regime by entrenching its channel to form a narrower one that could better 

accommodate a decreased discharge (Waters and Nordt, 1995).              

 According to the above data, a general picture of climate during the site’s history 

can be deduced.  The general trend is that cooler/drier periods prevailed during 

deposition of the Beaumont Formation, while warmer/wetter periods have characterized 

Post-Beaumont deposits with transitional periods from glacial to interglacial being the 

wettest.  Thus, during deposition of the Deweyville Alloformation complex, the climate 

was much wetter, even more so than today.  This likely lead to increased precipitation, 

which in turn maintained a Brazos River with a much bigger stream channel geometry.  

As precipitation decreased, the Brazos River became an underfit stream as its reduced 

discharge could not accommodate its former channel dimensions.  This drier climate 

caused the river to entrench itself and occupy a much smaller channel.       
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6. SEA LEVEL 

 The fluctuating sea level that has characterized the Quaternary period has been 

responsible, as described above, for changes in the channel form of the Brazos River.  In 

particular, these fluctuations in sea level have been most expressed in baselevel 

adjustments that the river has responded to.  As previously mentioned, the Brazos River 

constructed a series of large fluvial-dominated deltas across the continental shelf as a 

result of changes in sea level, sediment supply, and climate which shifted the position of 

the coastline (Abdulah et al., 2004).   

Sea level curves have been created to measure the amount of sea water available 

during a certain period of time in relation to present sea level (Abdulah et al., 2004; 

Bloom, 1983; Chen et al., 1991; Williams et al., 1988).  Eustatic sea level changes are 

not uniform throughout the world due to the nature of the geoid – the three-dimensional, 

uneven form of the ocean basin characterized by topographic highs (ridges) and lows 

(valleys) (Williams et al., 1998).  Therefore, sea level curves represent the average sea 

level for a given period, since, “no single history of sea-level necessarily applies to in 

exact detail to any other place” (Williams et al., 1998: 120).  During the last glacial 

maximum, worldwide sea level was anywhere from 120-150 meters below present 

conditions (Williams et al., 1998).   

On the Gulf coast, formation of the Vernor Mammoth site occurred during 

Oxygen Isotope Stage 5e – at about 125,000 yr B.P. (Abdulah et al., 2004; Williams et 

al., 1998).  The Gulf coast began to reach its present level at about 20,000 yr B.P. during 

Oxygen Isotope Stage 2.  The period between 20,000 and 9,500 yr B.P. was 

characterized by a rapid rise in sea level, interrupted temporarily by the Younger Dryas 

from about 11,000 and 10,500 yr B.P. This period of coastal transgression is 

characterized by wetter conditions as peat deposits from this period suggest (Gagliano, 

1984). Coastal transgression seemed to halt from about 9,500 to 8,000 yr B.P.   and 

finally reached its present sea level in the upper Texas coast at about 3,000 yr B.P. 

(Blum et al., 2002; Gagliano, 1984).  During this time, the mean sea level was about 50 
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meters below present sea level.  Refer to Table 6.1 for a synthesis of sea level, geologic 

ages, Oxygen Isotope stages, and climate. 

 

Table 6.1 – Chronology linking geologic age, climate, oxygen isotope 

stages, and sea level (Abdulah et al., 2004). 
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7. DESCRIPTION OF UNITS 

There are three allostratigraphic units identified at this site that correspond to the 

major depositional units of the Texas Gulf Coast Plain.  Figure 7.1 shows a generalized 

geologic column composed of these units and Figure 7.2 shows the profiles and columns 

that were used to construct this generalized profile.  Table 7.1 gives a summary of the 

sedimentary features that characterize each unit.  For a full sedimentary description of 

each locality see Appendix IV.   Unit I represents an eustarine deposit of the Beaumont 

Formation which dates from the Middle to Late Pleistocene.  The unit itself is a bed of 

mud, thickness undetermined, that shows evidence of redoximorphic features that 

resulted from repeated cycles of wetting and drying.  A bed of in situ oysters 

(Crassostrea virginica) is found within this unit.  This type of oyster flourishes in 

brackish waters (Andrews, 1977; Paine, 1993).  This evidence coupled with the fact that 

the unit shows anywhere between 30 and 40 percent of redoximorphic features suggests 

that it was subjected to repeated cycles of saturation followed by limited aeration, and 

thus this unit was deposited in an estuary.  A paleosol is also found within the top of the 

unit in one of the exposures.  A photograph and illustration of the paleosol horizons is 

illustrated in Figures 7.3 and 7.4.  The level of soil horizon development suggests that 

the paleosol in Unit I experienced an episode of prolonged stability for soil formation as 

the sea level retreated.  This soil must have at one point capped most of Unit I.  As the 

river meandered, the soil was eroded away in some parts of Unit I.   

The paleosol found at the Vernor site is located in an outcrop in the southern 

portion of the pit (see Figure 3.2).  Table 7.2 shows a field description and laboratory 

analysis of the paleosol horizons.  For a complete list of features, refer to Table 1 in the 

Appendix IV.  Five soil horizons were identified at this outcrop, with a total solum 

thickness of 90 cm (see Figure 7.3 and 7.4).  Most of the colors are brown to yellowish 

brown with the exception of horizon Ck, the deepest horizon, being yellowish red.  All 

horizons are high in clay content (> 36% clay). The surface and subsoil horizons, A1, A2, 

and Ck are clays, while the illuviated horizons, Bw and Bk are clay loams.  All horizons 
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reacted violently with 10% HCl, indicating that they are all calcareous.  The bottom two 

horizons had soft secondary concretions of calcium carbonate.  The textural changes in  

 

 
Figure 7.1 – Generalized stratigraphic column of the Vernor Mammoth site. 
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the horizons and the presence of secondary calcium carbonate indicate that the texture 

differences between horizons is depositional, not pedogenic.  In other words, the soil  

 

Table 7.1 – Selected sedimentary features of units. 

 
 

was not weathered to the extent that clay was translocating in the profile.  The organic 

carbon content is very high in the A horizons, > 10g kg -1, indicating a large  
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Figure 7.2  - Elevations and distances for profiles and columns. 

 

accumulation of organic matter, most probably because of the wetness of the soil, 

estuary environment.  Many redoximorphic features present in the two deepest horizons 

further indicate soil formation under very wet soil conditions.  Additionally, horizon Bk 

contains several remains of the eastern oyster, Crassostrea virginica. 

The paleosol found at the Vernor Mammoth site is identified as an Inceptisol, 

which is characteristic of estuaries, with a Calcic horizon and Ochric epipedon, which is  
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Table 7.2. – Selected horizon characteristics of the paleosol.  See Table 1 in the 

Appendix III for a complete of list of features.  

 
 

characteristic of estuaries.  It is worth noting that the surface horizons meet all the 

criteria of a Mollic epipedon, except for color.  Owing to the subjective nature of using a 

Munsell book to determine color, this soil may well contain a Mollic epipedon.  If so, it 

would be classified as a Mollisol. 

Some evidence exists that the B horizons for this soil were deposited at different 

times.  Multiple depositions are common in alluvial environments.  Soil properties 

including multiple textures, and oyster shells in the fourth horizon (Bk) provide evidence 

of multiple depositions.  There may be four depositional episodes.  The first is 

represented by the clay Ck horizon, the second by clay Bk horizon with oyster shells, the 

third by the clay loam without oyster shells, and the fourth by the clay A horizons.  

Though deposition occurred at different times, the organic and organic soil 

profiles show the main pedogenesis of the soil occurring over all five horizons.  This 

evidence includes organic carbon accumulating primarily in the A horizon and inorganic 

carbon increasing with depth as inorganic carbon is leached through the profile.  The 
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slightly higher inorganic carbon in the surface could be from later translocations from 

material deposited above the paleosol, or from subsequent events. 

The soil’s parent material was initially deposited in an estuary, characterized as a 

wet, low-energy environment, during the Pleistocene.  The parent material appears to be 

 

 
Figure 7.3- Photograph of the paleosol found at the Vernor Mammoth site with horizon 

designations.  It is 6.92 meters below sea level.    
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estuarine muds of the Prairie Coast which contain in-situ remains of the eastern oyster 

(Crassostrea virginica).  Thus, the paleosol initially formed in a subhumid environment 

as sea level rose creating an estuary.  Pedogenesis occurred as this area occupied a 

floodplain and sea level continued to drop.  Later, this soil was buried under channel 

deposits.  All of the surrounding material at higher elevations than the paleosol are all 

channel deposits, either fluvial sands or gravel.              

 

 

 
Figure 7.4 – Photograph of Locality 2 – the paleosol facing south. 
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According to Bernard and LeBlanc (1965), Pleistocene and Holocene sediments 

are separated by a conspicuous unconformity.  They describe the sediments immediately 

below the unconformity as containing less water than the Holocene deposits and as being 

stiffer, mottled, oxidized and/or leached and containing nodules, caliche, and concretions 

in most cases.  This description fits the paleosol capping Unit I and the area below where 

the paleosol was eroded.  While the paleosol is oxidized and contains many gastropods 

and nodules, the area below the paleosol is composed mostly of a greenish-gray clay that 

contains yellowish-red mottles with some nodules.  This type of color scheme is 

characteristic of gleying in which the soil was formed in a reduced environment (Waters, 

1992).               

 Unit II represents a series of fluvial deposits, most likely a point bar sequence 

that represents the Deweyville Alloformation Complex.  Muds are rare in this unit as 

expected in Deweyville deposits.  Although several different deposits have been 

identified in this unit, two deposits are worth noting.  The first deposit is a massive 

loamy sand whose color ranges from grayish brown to pale brown.  This deposit appears 

in every profile and column recorded.  Clay rip-ups from Unit I are found in this deposit, 

thus it appears that this unit represents a sandy channel.  The other deposit worth noting 

is a gravel deposit that contains gleyed rip-ups from Unit I.  Although this deposit does 

not appear in every profile or column that was recorded, it is important for its association 

with the mammoth remains.   

The mammoth remains and remains of other extinct Pleistocene fauna were 

recovered from Unit II.  Exactly which deposit the mammoth remains rest on is a bit 

nebulous.   One of the tusks seems to be resting within the sandy deposit, while the other 

one seems to be resting on the gravel (see Figures 7.5 through 7.8).  It could be that both 

tusks originally were deposited with the sand, and at a later time, the gravel undercut the 

sand where the tusks were resting on.  The sand associated with the mammoth tusks 

were luminescence dated to 66,000 ± 7000 yr B.P (UIC-1383).  This luminescence age 

conforms to Oxygen Isotope Stage 4 (~75 – 58 ka B.P.)  in which sea level was 

dropping, although it did not drop as low as during the Late Glacial Maximum at about 
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18,000 yr B.P., which conforms to Oxygen Isotope Stage 2 (~25 – 12 ka B.P.) (Abdulah 

et al., 2004).  A radiocarbon age was also taken from woody debris found in another 

sandy deposit that is higher in elevation than those associated with the mammoth 

remains (see Figures 7.9 and 7.10).  This woody debris was radiocarbon dated to 38,820 

+ 2,840 - 2090 yr B.P. (GX-30701), and most likely represents an infinite age, and as 

such represents the minimum age of the basal portion of Unit II. 

 

 
                    Figure 7.5 – Profile of eastside of mammoth tusks. 
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 Figure 7.6 – Photograph of eastside of mammoth tusks showing stratigraphy and units. 

                                    

Walther’s Law states that what we see in the vertical stratigraphic record does 

not reflect the synchronous nature of lateral deposits (Boggs, 2001; Middleton, 1973), 

and Unit II represents this idea in its extremity as it lacks bank-stabilizing muds.  In Unit 

II, the overall arrangement of deposits from this unit clearly suggests lateral rather than 

vertical accretion.  This conforms to the characteristic that Deweyville deposits display 

which Blum and others (Blum, 1990; Blum, 1994; Blum et al., 1995; Blum and Price, 

1994; Blum and Price, 1998) have identified.  As mentioned above, the lack of clay in 

this unit suggests an absence of bank stabilizing muds that would cause the deposits to 

accrete vertically.  Instead these deposits seem to accrete laterally.  For other profiles 

and columns featuring Unit II refer to Appendices I and II.           

Unit III corresponds to Holocene-age deposits and is represented by a series of 

fining-upward fluvial deposits which vary according to their location in the pit, and are 

usually represented by a point bar sequence.  This point bar sequence is illustrated in 



 32

Figures 7.11 – 7.15, which represent Locality 4,and show a series of units with the 

following general sequence: massive sand that grades into weakly laminated sand, which 

in turn grades into laminated sand and mud, followed by an erosional contact in which 

channel sands and rip-ups are deposited, then a layer of laminated mud, followed by a 

series of sands bounded by gravels, then sand with weak lamination, and finally more 

strongly laminated sand and mud capped by flame structure.  Thus this sequence 

suggests deposition of a point bar, in particular the top part of a point bar.  The erosional 

contact that occurs between the laminations and channel sands represents a chute 

channel rather than a disconformity.  The laminated mud represents overbank deposits. 

Other columns and profiles from Unit III (refer to Appendices I and II) show this 

general sequence of fluvial deposits as well, although there is a distinction between 

deposits at the bottom versus those at the top of Unit III.  Deposits at the bottom tend to 

show less vertical stacking and more lateral accretion, whereas those at the top show the 

opposite.  It is important to point out that even those deposits at the bottom tend to show 

more lateral accretion, they still contain overbank muds, which differentiates them from 

the laterally accreted deposits of Unit II.  Unit II and Unit III are also differentiated by a 

disconformity which separates them.  This erosional contact is illustrated in places such 

as Locality 4 (see Figures 7.11 and 7.13), Locality 5 (see Figures 9.2 and 9.3), and 

Locality 6 (see Figures 8.3 and 8.4).  This erosional contact is usually demarcated by 

gravel lag deposits that represent a channel cutting into the older massive, loamy sand 

deposits.               
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       Figure 7.7 – Profile of westside of mammoth tusks. 
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Figure 7.8 – Photograph of westside of mammoth tusks showing stratigraphy and units. 
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Figure 7.10 – Photograph of Log Trench 1 – West Wall showing unit designations and 

showing location of where infinite age was sampled from. 
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Figure 7.11 – Stratigraphic column of Locality 4 showing the typical stratigraphic 

sequence of Unit III.  It is 1.76 meters below sea level. 
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Figure 7.12 – Photograph of Locality 4 facing north showing all three steps. 
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Figure 7.13 – Photograph of Locality 4 facing north showing stratigraphy of lowest step.  

Unit I is missing. 



 40

 
Figure 7.14 – Photograph of Locality 4 facing north showing stratigraphy of middle step. 
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Figure 7.15 – Photograph of Locality 4 facing north showing stratigraphy of highest 

step.  
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8. FAUNAL REMAINS 

 Remains of Pleistocene fauna, including Columbian mammoths have been found 

throughout Texas (Lundelius, 1972; Steele and Carlson, 1989; Suhm, 1980).   The 

mammoth remains discussed here were deposited in the sands, and possibly also, the 

gravels of Unit II.  Although two individual mammoths (Mammuthus columbi) were 

found, the one excavated within the fenced enclosure, which comprises the main 

excavation pit, was better preserved and was more complete (see Figures 8.1 and 8.2). 

 

 

 
Figure 8.1- Drawing of mammoth remains with each part labeled.  
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Figure 8.2 – Photograph of mammoth remains facing west with each part labeled. 

 

 

The remains recovered from the excavation pit include both tusks, mandible, 

ulna, radius, distal femur, teeth and other smaller bones.  Because Unit II comprises a 

fluvial channel, these remains are oriented toward direction of flow, which is south-west 

for the tusks and south-east for the other remains.  It is likely that the animal died and its 

carcass floated downstream.  This could also account for much of the skeletal material 

being missing.  In this scenario the heaviest remains sank, and possibly remained close 

to where the carcass came to rest, while the other bones, especially the smaller ones were 

transported downstream.  Another scenario could be that the mammoth died near the 

banks of the ancient Brazos River the remains were then scavenged by carnivores, and 

thus the bones became dispersed.  As the hydrology of the river changed, part of the 

remains were swept by the current, and transported downstream to the location where 

they were ultimately found.   
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As mentioned previously, the sand in which these remains were found in has 

been dated to 66,000 ± 7000 yr B.P. (UIC1383) using luminescence dating, thus 

predating the human occupation in the Americas by several tens of thousands of years 

(Dillehay, 2000; Fiedel, 1999; Fiedel, 2000; Waters and Stafford, 2007).  However, this 

age is significant because it suggests that these are some of the oldest mammoth remains 

in Texas (see (Lundelius, 1972).  Remains of other Pleistocene fauna were also 

recovered throughout the pit including camelids, bovids, and equids.  For a complete list 

of the fauna, refer to Table 8.1.  Most of these other faunal remains were surface finds.  

Apart from the mammoth remains, bones of two other animals were found in their 

stratigraphic context.  One bone was found within the main excavation unit in Profile 

Trench 5 West, and the other was found in Locality 6 (see Figures 8.3 – 8.5).  Both of 

these bones are most likely bovid remains and are associated with channel deposits.  

However, the bone found in Profile Trench 5 West is associated with Deweyville 

deposits, while the one found in Locality 6 is associated with Holocene deposits.   

All remains recovered from the site are typical of fauna found on the Texas coast 

during the late Quaternary.  Two species were identified – Mammuthus columbi and 

Procyon lotor (common name: raccoon), and the ecological niche that each occupied has 

been documented.  The stomach contents of Columbian mammoths, as well as studies on 

their tooth enamel, and pollen found in association with them suggest that they were 

occupying grasslands (Hoppe, 2004; Mead et al., 1994; Owen-Smith, 1987), but some 

research also suggests that they may have been occupying forested, or more woody areas 

(Gillette and Madsen, 1993; Van Devender et al., 1987).  The raccoon (Procyon lotor) 

today is known to inhabit woody areas, although it is extremely adaptable to other 

environments (Kurtén and Anderson, 1980; Mugaas et al., 1993), and that it probably 

occupied this ecological niche in the past as well (Martinez-Meyer et al., 2004).  While 

this may suggest that the environment may have been a mix of a grassland with some 

wooded areas, however, these faunal remains were found in a fluvial environment, 

which suggests that they may have come from a different environment further upstream.          
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Table 8.1- Vernor Mammoth site faunal list. 
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Figure 8.3 – Profile of Locality 6 showing location of bone.  It is 13.95 meters below the 

top of the pit. 
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Figure 8.4 – Photograph of Locality 6 facing north and showing unit designations with 

trowel used for scale.  Bone is not visible here. 
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Figure 8.5 – Profile of Trench 5 West – North Wall showing location of bone.  

 

Different types of invertebrates were recovered from this site.  However, only 

Crassostrea virginica – the eastern oyster, was found in situ (see Figures 8.6 and 8.7).  
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C. virginica lives in estuaries and can tolerate a wide range in temperature and salinity.  

Normally, it lives in areas where the annual temperature range is between -2° C and 

36°C, and the salinity is between 5 and 40 ppt (Shumway, 1996).  Although C. virginica 

is neither a good proxy for climate or salinity due to its sizable range for each of those 

attributes, it is, however, still useful as an environmental indicator.  Since it thrives in 

estuaries, it occupies a specific niche, the confluence of fresh and salt water.  This 

species was found in the gleyed muds of the Beaumont Formation in situ as mentioned 

above.  Therefore, this is compelling evidence that this unit was deposited in an 

 

 
Figure 8.6 – Photograph of Locality 3 facing west showing location of Crassostrea 

virginica in situ.  It is 7.0 meters below sea level.  Trowel used for scale. 
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Figure 8.7 – Crassostrea virginica in situ facing west.  Trowel used for scale. 

 

 

estuarine environment, and based on this can be correlated to Oxygen Isotope Stage 5e 

(~125,000 yr B.P.), which represents the maximum flooding surface (Abdulah et al., 

2004).  During this time, sea level was at its highest and formed a delta inland from 

today’s coast in the vicinity of the Vernor Mammoth site.  Here an estuary formed in 

which the eastern oyster thrived.         

Also recovered was Rangia flexuosa (common name – brown rangia) (see Figure 

8.8).  This species was recovered from the gravel of Unit II on which at least one of the 

mammoth tusks was resting on.  This species is important to the study because it 

occurrence is uncommon and it was found closely associated with the mammoth tusks.  

This type of species is found in river-influenced areas (Andrews, 1977), and thus gives 

further credence that the deposits associated with the mammoth are fluvial in nature. 
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Figure 8.8 – Photographs of Crassostrea virginica and Rangia flexuosa (shown lower 

right) specimens. 8.6A- Dorsal side, 8.6B- Ventral side. 

A

B



 52

9. WOODEN BOWL 

 The wooden bowl was recovered from a sandy deposit, overlain by mud, which 

contained a high concentration of wooden debris in Unit III.  The bowl measures 20.0 x 

17.5 cm length-to-width and is about 6 cm deep (see Figure 9.1).  Due to the site being 

located in a commercial sand pit, the original context of the bowl was destroyed by a 

backhoe.  However using approximate estimates, a profile (Locality 5), near the original 

context was dug, cleaned, and recorded (see Figures 9.2 and 9.3).  From pictures taken 

of the original context, a similar deposit was identified in Locality 5.  This deposit 

contains a large amount of wooden debris and is associated with sandy deposits overlain 

by mud.  

 

  

 
Figure 9.1- Photographs of the wooden bowl. 

   

 

There are several reasons why the wooden bowl is significant.  First, it is evidence of 

human activity at, or somewhere upstream from the site.  Second, two radiocarbon dates, 



 53

one from the wooden bowl, and another associated with the bowl were radiocarbon 

dated to 4205 ± 30 yr B.P (UCIAMS-12039), and 3760 + 60 (GX-30849) respectively .  

These dates place the bowl somewhere in the Middle Holocene, far much younger than 

the Pleistocene date for the sands associated with the mammoth remains, or even the 

youngest deposits from within the main excavation unit, in which wood was radiocarbon 

dated to about 40,000 yr B.P.  Vertically, the deposits are only about 1.5 meters apart, a 

very small amount considering the great time difference.  This implies that there is a 

geological unconformity somewhere between the deposits found in the main excavation 

unit and those associated with the bowl.  Lastly, the fact that it preserved so well is 

important given that wood is rarely preserved at sites in subtropical subhumid to humid 

environments.  Preservation in this case occurred because the artifact was water logged, 

and it was water logged because, a) it was deposited in a fluvial environment, and b) the 

site rests below sea level.   

As mentioned above, the wooden bowl was discovered in a sandy deposit, overlain 

by mud, which contained a high concentration of wooden debris.  This context suggests 

that the bowl floated downstream from the location where it was recovered, and 

eventually it was buried by mud either from a floodplain or an oxbow lake.  Although 

the exact distance it traveled is unknown, the fact that it was found intact and with no 

highly discernable damage may suggest that it did not travel very far, although this 

remains uncertain. According to the radiocarbon age, the cultural context of this bowl 

falls within the Middle Archaic (Aten, 1983; Hester, 1977; Jelks, 1978; Story, 1980), 

although the exact cultural group is unknown.  This is due to the rather sparse amount of 

cultural evidence found in the upper Texas coast.  Aten (1983: 155) believes that this 

scant amount of evidence is due to “unrecognizable diagnostic artifacts for the period.”  

He believes that these groups must have occupied floodplains and estuaries, features for 

which archaeological evidence is not readily observable.   
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Figure 9.2 - Profile of Locality 5 showing layer associated with the location of the 

wooden bowl.  It is 7.64 meters below sea level – approximately 16 meters below the top 

of the pit.   
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Figure 9.3 – Photograph of Locality 5 showing unit designations and layer associated 

with the location of wooden bowl. 
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10. GEOCHRONOLOGY 

 According to the faunal and artifact materials recovered and the avulsion event 

that caused the Brazos River to abandon the Oyster Creek meander belt, the geologic age 

for the Vernor Mammoth site ranges from about 125,000 to 1,000 yr B.P.  This time 

period spans the Quaternary.  Deposition at this site began during Oxygen Isotope Stage 

5 (~125,000 yr B.P.), the period of maximum flooding stage when the sea level was 

highest in this area.  An estuary was formed in which the eastern oyster, Crassostrea 

virginica, thrived, and deposition of the Beaumont Formation was occurring at this time.  

Also during this time the paleosol was formed. 

 At about 100,000 yr B.P., the sea level had dropped and culminated in Oxygen 

Isotope Stage 5c.  This coastal regression created a fluvial/deltaic system seaward from 

the earlier delta, and caused what Nordt et al. (2004) have referred to as a dewatering 

effect.  With further regression the river began to migrate seaward and began to erode 

the paleosol.  Floodplain deposits characterize this period.   

At about 70,000 yr B.P., during oxygen isotope Stage 4 (~75 – 58 ka B.P.), 

deposition of the Deweyville sediments began; this is the time period associated with the 

Vernor mammoth, and other Pleistocene megafauna.  Sea level continued to fall during 

Stage 4, with a slight transgression leading up to Stage 3.  Throughout Stage 3 (~58 – 25 

ka B.P.), after a slight sea level rise, the trend was a general fall in sea level, which 

culminated in the Stage 2 lowstand.  Therefore, deposition of the Deweyville 

alloformation complex lasted until oxygen isotope Stage 2.  During this period (~25 – 12 

ka B.P.) sea level was characterized by a lowstand that reached its nadir during the Late 

Glacial Maximum at about 18,000 yr B.P.  These oxygen isotope periods are dominated 

by fluvial sediments cutting into the pre-existing Beaumont floodplain as the paleosol 

capping these deposits became eroded in some places yet buried in others.  This began 

the construction of the Deweyville alloformation during the Late Pleistocene and 

continued until the end of the Pleistocene at about 10,000 yr B.P. (Farrand, 1990).  Point 

bar deposits make up the majority of sediments at this site during deposition of the 

Deweyville.     
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After 10,000 yr B.P. , during Oxygen Isotope Stage 1 (~12 ka B.P. to present), as the 

Pleistocene comes to an end, the climate begins to warm and sea level begins to rise, 

culminating in the present-day sea level at about 3,500 yr B.P. (Aten, 1983).  It is during 

the Holocene that the Oyster Creek meander belt of the Brazos River is active from 

about 4,000 to 1,000 yr B.P.  It is also during this period that the wooden bowl comes to 

rest in the fluvial sediments of the Oyster Creek meander belt by some unknown Middle 

Archaic group somewhere upstream from its final resting place at about 4,000 yr B.P., 

during the initial phase of the Brazos River/Oyster Creek meander belt.  Continued use 

of the meander belt by the river caused rapid burial of the wooden bowl, which 

contributed to its remarkable preservation.  At about 1000 yr B.P., the Brazos River 

avulsed, thus abandoning the Oyster Creek meander belt and occupying the meander belt 

in which it is presently found.    
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11. CONCLUSION 

 The Vernor Mammoth site offers a glimpse into conditions that prevailed during 

the Late Pleistocene and throughout the Holocene.  The stratigraphy shows a sequence 

of fluvial deposits throughout the history of the site that illustrates the conditions that 

once operated and make up the relict system found at the site.  These sediments were 

deposited by an ancient Brazos River that once occupied the Oyster Creek meander belt.  

Luminescence and radiocarbon ages were used to demonstrate that there is no 

contemporaneous association between the mammoth remains and the wooden bowl – the 

mammoth remains date to the Late Pleistocene, to a time before humans had arrived in 

the Americas, while the bowl dates to the Middle Archaic by some unknown group.  

These dates in turn helped organize the Pleistocene faunal remains, paleosol, and a 

wooden bowl to act as reference points that help in ordering the stratigraphy into a 

geochronology that helps in understanding major episodes in the site’s formation.   

The recognition of unconformities was paramount to this study.  The mammoth 

remains, paleosol, and wooden bowl aided in the recognition of periods where stability 

and non-deposition prevailed.  This allowed for the site to be broken into three periods 

that coincide with known depositional units – Beaumont Formation, Deweyville 

allostratigraphic complex, and Holocene deposits.  The Beaumont Formation dates to the 

Late Pleistocene and is composed of estuarine and floodplain deposits.  The Deweyville 

allostratigraphic complex dates for the Late Pleistocene to the beginning of the 

Holocene.  This set of deposits is characterized by a series of channel and point bar 

sediments that are laterally accreted rather than vertically stacked.  This period of time is 

characterized by large meander scars that reflect a period of much greater discharge.  

The Holocene deposits are composed of channel, mostly point bar deposits that differ 

from Deweyville deposits in that they are vertically stacked. 

This thesis has contributed to our understanding of the upper Texas Gulf Coast 

Plain during the Late Quaternary. In addition, the geochronology presented here 

provides important contexts for two rare finds: the mammoth and the wooden bowl.  The 

mammoth is one of the earliest mammoth remains found in Texas, and the wooden bowl 
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helps shed light on the cultures of the Middle Archaic, a group that is underrepresented 

in the archaeological record.  Future studies involving more radiocarbon dates from 

organic materials from various layers of Units II and III will help further refine the 

geochronology presented here.   
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APPENDIX A 

The following figures represent columns of localities shown in Figure 3.2 that were not 

mentioned in the main body of the text.  They were included to offer a clearer picture of 

stratigraphy of the site. 

 

 
Figure A.1 – Stratigraphic column of Locality 1.  It is 4.59 meters above sea level. 
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Figure A.2 – Stratigraphic column of Locality 7.  It is 6.16 meters below sea level. 
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Figure A.3 – Stratigraphic profile of Locality 8.  It is 2.4 meters below sea level. 
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APPENDIX B 

The following figures represent profiles from within the main excavation unit which 

appears as “Mammoth Pit” in Figure 3.2, and whose location within the main excavation 

unit is shown in Figure 3.1, but were not mentioned in the main body of the text.  These 

figures were included to offer a clearer picture of stratigraphy immediately associated 

with the mammoth remains. 
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Figure B.1 – Profile of Log Trench 2 – South Wall located within main excavation 

unit. 
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Figure B.2 – Profile of Mammoth Pit – West Wall located within main excavation unit. 
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APPENDIX C 

Presented here are the soil characterization lab results of various attributes of the 

paleosol which were summarized in Table 7.1. 

 

 
Table C.1 – Table showing soil characterization of “Vernor” paleosol. 
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APPENDIX D 

Presented here are the various attributes of the stratigraphic layers and their sediments.  

Information gathered from the field includes length, thickness, structure, presence, size, 

and shape of gravels, presence and size of concretions, presence of shells, presence of 

organics, and presence and size of rip-ups.  Information gathered in the lab includes 

texture, plasticity, stickiness, color, sorting, sphericity, angularity, size, and reaction to 

HCl.  Texture, plasticity, and stickiness were done by hand.  Color was identified using a 

Munsell Color book, using moist samples, and although done in the lab, always next to 

window under natural light.  Sorting, sphericity, angularity, and size were done using a 

10x  hand lens; size was determined according to the Wentworth scale (Wentworth, 

1922).  10 M HCl was used to test for presence of calcium carbonate.  Also included are 

comments, notes, and observations mainly from the field, but otherwise stated if any of 

these comments were made in the lab.  Locality 3 is not included here because no 

information on the attributes of the sediments were collected – only its location, 

distance, depth, the fact that it correlates to Unit I, and that it contains many remains of 

Crassostrea virginica were noted as previously mentioned in the main body of the text.   
 
 
Table D.1 – Table showing length, thickness, texture, and plasticity of layers and 

sediments. 
 
Profile/Column Layer Length 

(m) 
Thickness (cm) Texture Plasticity 

Log Trench 1 - 
West Wall N-S 

 6.51    
1   Clay Plastic 
2   Sandy loam Nonplastic 
3   Clay loam (maybe 

silty clay loam) 
Plastic 

4   Sandy clay loam Nonplastic 
5   Sandy clay loam Nonplastic 
6   Sandy loam Nonplastic 
7   Sandy loam Nonplastic 
8   Sandy clay loam Nonplastic 
9   Sandy clay loam Nonplastic 
10   Sandy clay loam Nonplastic 
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Profile/Column Layer Length 
(m) 

Thickness (cm) Texture Plasticity 

Log Trench 1 - 
West Wall N-S 
Contd.  

11   Sandy loam Nonplastic 
     
12   Sandy loam Nonplastic 
13   Sandy clay loam Nonplastic 

Log Trench 2 - 
South Wall 

 4.8    
1   Clay Plastic 
2   Sandy loam Nonplastic 
3   Sandy clay loam Nonplastic 
4   Clay Plastic 
5   Sandy clay loam Nonplastic 
6   Silty clay loam Plastic 
7   Sandy loam Nonplastic 

Mammoth Pit - 
West Wall 

 6    
1   matrix - Sandy clay 

loam 
Nonplastic 

2   Sandy clay loam Nonplastic 
3   Sandy loam Nonplastic  

Trench 5 West  2    
1   Clay Plastic 
2   Sandy loam Nonplastic 
3   Sandy clay loam Nonplastic 
4   Sandy loam Nonplastic 

Eastside of 
Mammoth 
Tusks 

 1.2    
1   Sandy loam Nonplastic 
2   Sandy clay loam Plastic ??? 
3   Loamy sand Nonplastic 

Westside of 
Mammoth 
Tusks 

 1.5    
1   Clay Plastic 
2   Sandy clay loam Plastic ??? 
3   Loamy sand Nonplastic 

Locality 1 
 

  > 428   
1  ??? Sandy loam Nonplastic 
2   Sandy clay loam Nonplastic 
3  100 Sandy loam (scl?) Nonplastic 
     
4  100   
Lighter   Sandy loam Nonplastic 
Darker   Sandy loam Nonplastic 
5  12 Clay or clay loam Plastic 
6  4 Sandy clay loam Nonplastic 
7  40 Sandy loam Nonplastic 
8  48   

Locality 2 - 
Paleosol 

  119   
A1  34   
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Profile/Column Layer Length 
(m) 

Thickness (cm) Texture Plasticity 

Locality 2 – 
Paleosol Contd. 

A2  20   
Bw  9   
Bk  27   
Ck  29   

Locality 4  0.655    
Step 1A  ???   
Step 1B  18 scl or cl Plastic 
Step 1C  20 Sandy loam Nonplastic 
Step 1D  47 ??? No texture ??? 
Step 1E  14 Sandy loam Nonplastic 
Step 2A1  36 Sandy loam Nonplastic 
Step 2A2  60 Sandy clay loam Nonplastic 
Step 2B1  31 Sandy clay loam Nonplastic 
Step 2B2  10 Sandy clay loam Nonplastic 
Step 3A     
Step 3B1  40 Sandy loam Nonplastic 
Step 3B2  27 Sandy clay loam Nonplastic 
Step 3B/C  16 Sandy loam Nonplastic 
Step 3C1  36 Sandy loam Nonplastic 
Step 3C2  43 Sandy clay loam Nonplastic 
Step 3C3  32 ??? Nonplastic 

Locality 5  2    
1   Sandy loam Plastic ??? 
2   Sandy clay loam Plastic ??? 
3   Sandy clay loam Plastic ??? 
4   Loamy sand Nonplastic 
5   Sandy clay loam Plastic ??? 
6   Sandy clay loam Plastic 
7   Sand - scl; mud - clay Plastic/plasti

c 
8   Sandy clay loam Plastic 
9   Sandy clay loam Plastic 
10   Unable to texture  
11   Sandy loam Nonplastic 
12   Sandy loam Nonplastic 
13   Sandy clay Plastic 
 14a   Sandy loam Nonplastic 
 14b   Sandy loam Nonplastic 
 14c   Sandy loam Nonplastic 
 14d   Sandy loam Nonplastic 
15   Mud, unable to adeg. 

texture 
Plastic 

16   Sandy clay loam Plastic 
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Profile/Column Layer Length 
(m) 

Thickness (cm) Texture Plasticity 

Locality 5 
Contd. 

17   Sandy loam Plastic 

18   Silty clay loam or silty 
loam 

Plastic 

Locality 6  4    
1   Mud, unable to adeq. 

texture 
Plastic 

2   Sandy loam Nonplastic 
3   sl or scl Plastic 
4   Sandy loam Nomplastic 
5   Sandy loam Nonplastic 
6   Sandy loam Nonplastic 
7   Sandy loam Plastic ??? 
8   Sandy loam Nonplastic 
9   ??? ??? 
10   Clay Plastic 
11   Sandy loam Nonplastic 
12   ???  
13   Sandy loam Nonplastic 

Locality 7  0.9    
1  ???   
2  124 Sandy loam Nonplastic 
3  44 ??? Sand/loam combo  
4  14 Clay Plastic 
5  22 Sandy loam, maybe 

loamy sand 
Nonplastic 

6  10 Sandy loam, maybe 
loamy sand 

Nonplastic 

7  10 Maybe sandy loam Nonplastic 
8  8 Sandy loam Nonplastic 
9  16 Sandy loam; maybe 

loamy sand 
Nonplastic 

10  30 Difficult to texture ??? 
11  18 Some type of loam  
12  12 Sandy loam  - higher 

clay content 
Nonplastic 

13  20 Difficult to texture ??? 
14  12 Difficult to texture ??? 
15  20 Sandy clay loam Nonplastic 

Locality 8 
 

 0.645    
Lower Step A  47 Sandy clay loam Nonplastic 

Lower Step B  35 (entire Unit 
B) 

Sandy loam Nonplastic 
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Profile/Column Layer Length 
(m) 

Thickness (cm) Texture Plasticity 

Locality 8 
Contd.  

Lower Step B  see above Sandy clay Plastic 
Lower Step C  34 Sandy clay loam Plastic ??? 
Lower Step D  28 Sandy loam or loamy 

sand 
Nonplastic 

Lower Step E  7 Sandy loam Nonplastic 
Lower Step F1  17 Sandy clay loam Nonplastic 
Lower Step F2  19 Sandy clay loam Nonplastic 
Lower Step G   21 scl and clay np and p 
Lower Step H   3 Clay loam Nonplastic 
Lower Step I  5 Sandy loam Nonplastic 
Lower Step J   3 Sandy loam Nonplastic 
Lower Step K   17 Sandy clay loam Nonplastic 
Higher Step A  19 Sandy loam Nonplastic 
Higher Step B  29 Sandy loam Nonplastic 
Higher Step C  12 and 7 Sandy loam Nonplastic 
Higher Step D  19 Sandy loam Nonplastic 
Higher Step E  14 Sandy loam Nonplastic 
Higher Step F  10 Sandy clay loam Nonplastic 
Higher Step G  50 Sandy loam Nonplastic 
Higher Step H  94 Sandy loam Nonplastic 
Higher Step I  72 Sandy loam Nonplastic 
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Table D.2 – Table showing stickiness, color, and sorting of the sediments. 
 
 
Profile/Column Layer Stickiness Color Sorting 
Log Trench 1 - 
West Wall N-S 

1 Very sticky 5BG 6/1 (Greenish Gray) - 
70%; 5YR 3/4 (Yellowish Red) 
- 30% 

 

2 Slightly sticky 10YR 5/3 (Brown) Moderately 
sorted 

3 Moderately 
sticky 

7.5YR 3/4 (Dark brown) Moderately 
sorted 

4 Slightly sticky Between 10YR 4/2 (dark 
grayish brown) and 10YR 4/3 
(brown/dark brown) 

Poorly sorted 

5 slightly sticky 10YR 5/3 (brown); clay rip-
ups? - 5YR 4/4 (reddish brown) 

Moderately 
sorted 

6 Slightly sticky 10YR 6/3 (pale brown) well sorted 
7 Slightly sticky 10YR 5/3 (brown) Very poorly 

sorted 
8 Slightly sticky 10YR 5/2 (grayish brown) Well sorted 
9 Slightly sticky matrix - 10YR 4/3 (brown/dark 

brown); gley - 2.5Y 6/2 (light 
brownish gray); mud rip-ups - 
7.5YR 4/4 (brown/dark brown) 

??? 

10 Slightly sticky 10YR 4/3 (brown/dark brown) Poorly sorted 
11 Nonsticky 10YR 6/3 (pale brown) Well sorted 
12 Slightly sticky 10YR 5/2 (grayish brown) Very well 

sorted 
13 Slightly sticky matrix - 10YR 4/3 (brown/dark 

brown); clay - 7.5YR 5/4 
(brown) 

Very poorly 
sorted 

Log Trench 2 - 
South Wall 
 
 

1 Very sticky 5BG 6/1 (greenish gray) - 70%; 
5YR 3/4 (yellowish red) - 30% 
 

 

2 Slightly sticky 10YR 5/2 (grayish brown) Very well 
sorted 

3 Slightly sticky matrix - 10YR 4/3 (brown/dark 
brown); gley - 2.5Y 6/2 (light 
brownish gray); mud rip-ups - 
7.5YR 4/4 (brown/dark brown) 

??? 

4 Very sticky Between 10YR 4/3 (brown/dark 
brown) and 10YR 3/3 (dark 
brown) 

 

5 Slightly sticky ~10YR 5/3 (brown) Very well 
sorted 

6 Moderately 
sticky 

7.5YR 3/4 (dark brown); gleyed 
balls - 5Y 6/1 (gray) 
 
 

??? 
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Profile/Column Layer Stickiness Color Sorting 
Log Trench 2 - 
South Wall 
Contd.  

7 Nonsticky Between10YR 5/3 (brown) and 
10YR 4/3 (brown/dark brown); 
gleyed balls - 5Y 5/1 (gray) 

Well sorted 

Mammoth Pit - 
West Wall 
 
 

1 Slightly sticky 10YR 4/3 (brown/dark brown)  
2 Slightly sticky 10YR 4/3 (brown/dark brown) Poorly sorted 

3 Slightly sticky Between 10YR 5/3 (brown) and 
10YR 4/3 (brown/dark brown) 

Well sorted 

Trench 5 West 
 
 
 
 
 
 
 

1 Very sticky 5BG 6/1 (greenish gray) - 70%; 
5YR 3/4 (yellowish red) 

 

2 Slightly sticky 10YR 5/3 (brown) Moderately 
sorted 

3 Slightly sticky 10YR 4/3 (brown/dark brown) Poorly sorted 
4 Slightly sticky Between 10YR 5/3 (brown) and 

10YR 4/3 (brown/dark brown) 
Well sorted 

Eastside of 
Mammoth 
Tusks 
  
 
 

1 Slightly sticky 10YR 5/2 (grayish brown) Very well 
sorted 

2 Slightly sticky matrix - 10YR 4/3 (brown/dark 
brown); clay balls - 2.5Y 6/2 
(light brownish gray) 

??? 

3 Slightly sticky 10YR 4/3 (brown/dark brown) Well sorted 
Westside of 
Mammoth 
Tusks 
 
 
 
 

1 Very sticky 5BG 6/1 (greenish gray) - 70%; 
5YR 3/4 (yellowish red) - 30% 

 

2 Slightly sticky matrix - 10YR 4/3 (brown/dark 
brown); clay balls - 2.5Y 6/2 
(light brownish gray) 

??? 

3 Slightly sticky 10YR 4/3 (brown/dark brown) Well sorted 

Locality 1 
 
 
 
 
 
 

1 Slightly sticky 2.5Y 6/2 (light brownish gray) Very well 
sorted 

2 Slightly sticky 10YR 5/4 (yellowish brown) Very well 
sorted 

3 Slightly sticky ~2.5Y 6/2 (light brownish gray) Well sorted 

4    
Lighter Slightly sticky 2.5Y 6/2 (light brownish gray) Very well 

sorted 
Darker Slightly sticky 2.5Y 6/4 (light yellowish 

brown) 
Very well 
sorted 

           Lighter Slightly sticky 2.5Y 6/2 (light brownish gray)  

5 Very sticky? 7.5YR 5/4 (brown); mottles - 
10YR 7/1 (light gray) 

 

6 Slightly sticky 10YR 5/8 (yellowish brown) Well sorted 
 

7 Nonsticky 10YR 5/4 (yellowish brown) Well sorted ??? 
                     8    
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Profile/Column 
 

Layer Stickiness Color Sorting 

Locality 2 - 
Paleosol 
 
 
 
 
 
 
 
 

A1  10YR 4/3 (brown/dark brown)  

A2  10YR 4/4 (dark yellowish 
brown) 

 

Bw  10YR 5/6 (yellowish brown)  
Bk  10YR 5/6 (yellowish brown); 

mottles - 5Y 7/1 (light gray) 
 

Ck  5YR 4/6 (yellowish red) or 4/4 
(reddish brown); mottles - 5Y 
7/1 (light gray) 

 

Locality 4 
 
 
  
 
 

Step 1A    
Step 1B Moderately 

sticky 
5YR 4/3 (reddish brown)  

Step 1C Slightly sticky 10YR 4/4 (dark yellowish 
brown) 

Very well 
sorted 

Step 1D ??? 10YR 4/4 (dark yellowish 
brown) 

Very well 
sorted 

Step 1E Slightly sticky 10YR 5/4 (yellowish brown) 
(closer to) or 10YR 4/4 (dark 
yellowish brown); lighter than 
previous layer 

Very well 
sorted 

Step 2A1 Slightly sticky 10YR 4/4 (dark yellowish 
brown) 

Very well 
sorted 

Step 2A2 Slightly sticky Either 10YR 5/4 (yellowish 
brown) or 10YR 4/4 (dark 
yellowish brown) 

Very well 
sorted 

Step 2B1 Slightly sticky 7.5YR 5/4 (brown); rip-ups - 
7.5YR 4/4 (brown/dark brown) 

Mod. Sorted 
??? 

Step 2B2 Slightly sticky 7.5YR 4/4 (brown/dark brown) Very well 
sorted 

Step 3A    
Step 3B1 Slightly sticky 10YR 5/4 (yellowish brown) Very well 

sorted 
Step 3B2 ss to ms 10YR 5/4 (yellowish brown) grv. Lenses - ps 
Step 3B/C ss to ms 10YR 5/4 (yellowish brown) Moderately 

sorted 
Step 3C1 Slightly sticky Between 10YR 6/4 (light 

yellowish brown) and 10YR 
5/4 (yellowish brown) 

Very well 
sorted 

Step 3C2 Moderately 
sticky 

10YR 5/4 (yellowish brown) Very well 
sorted 

Step 3C3 ss to ms 10YR 4/4 (dark yellowish 
brown) 

Very well 
sorted 

Locality 5 1 Slightly sticky 10YR 6/3 (pale brown) Well sorted ??? 
2 Moderately 

sticky 
10YR 5/3 (brown) Well sorted 
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Profile/Column Layer Stickiness Color Sorting 
Locality 5 
Contd. 

3 Moderately 
sticky 

10YR 5/3 (brown) Mod. well 
sorted 

4 Slightly sticky 10YR 6/3 (pale brown) Poorly sorted 
5 Slightly sticky 10YR 5/4 (yellowish brown) Well sorted 
6 Slightly sticky 10YR 5/4 (yellowish brown) Well sorted 
7 ss/vs 10YR 5/3 (brown); 10YR 4/3 

(brown/dark brown) 
Moderately 
sorted 

8 Moderately 
sticky 

10YR 5/3 (brown) Well sorted 

9 Slightly sticky 10YR 5/3 (brown) Poorly sorted 
10 ??? All - 10YR 5/4 (yellowish 

brown); clay balls - 5YR 4/4 
(reddish brown) 

Poorly sorted 

11 Slightly sticky 10YR 5/3 (brown) Well sorted 
12 Slightly sticky 10YR 5/3 (brown) Poorly sorted 
13 Moderately 

sticky 
5YR 4/3 (reddish brown)  

 14a Slightly sticky 10YR 6/3 (pale brown) Very well 
sorted 

 14b Slightly sticky 10YR 4/3 (dark brown) Very poorly 
sorted 

 14c Slightly sticky 10YR 5/3 (brown) Well sorted 
 14d Slightly sticky 10YR 5/3 (brown) Well sorted 
15 Moderately 

sticky 
7.5YR 4/2 (brown/dark brown)  

16 Slightly sticky 10YR 5/4 (yellowish brown) Moderately 
sorted 

17 Slightly sticky 7.5YR 4/4 (brown/dark brown) Moderately 
sorted 

18 ss to ms 7.5YR 4/4 (brown/dark brown)  

Locality 6 
 
 

1 ms to vs 5YR 4/3 (reddish brown); 
mottles - 5Y 7/1 (light gray) 

 

2 Slightly sticky 2.5Y 5/2 (grayish brown) Well sorted ??? 
3 Slightly sticky All - 10YR 4/3 (brown/dark 

brown) 
Poorly sorted 

4 Slightly sticky 10YR 6/2 (light brownish gray) Well sorted 
5 Slightly sticky 10YR 5/3 (brown) Moderately 

sorted 
6 Slightly sticky Sand - 10YR 6/2; clay - 7.5YR 

4/4 (brown/dark brown) 
Moderately 
sorted 

7 Slightly sticky Sand - 10YR 4/4 (dark 
yellowish brown); clay - 7.5YR 
5/4 (brown) 

Poorly sorted 

8 Slightly sticky 10YR 5/3 (brown) Very well 
sorted 
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Profile/Column Layer Stickiness Color Sorting 
Locality 6 
Contd.  
 
 

9 ??? Gravel - 10YR 5/4 (yellowish 
brown); mud - 5YR 3/4 (dark 
reddish brown) 

Very poorly 
sorted 

10 Moderately 
sticky 

5YR 4/3 (reddish brown)  

11 Slightly sticky 10YR 5/3 (brown); clay balls - 
7.5YR 4/2 (brown/dark brown) 

Poorly sorted 

12  10YR 5/4 (yellowish brown) Very poorly 
sorted 

13 Slightly sticky 10YR 5/3 (brown) Poorly sorted 
Locality 7 
 
 

1    

2 Slightly sticky Bet. 10YR 6/2 (light brownish 
gray) and 10YR 6/3 (pale 
brown); mud - 7.5YR 3/4 (dark 
brown) 

 

3  10YR 4/3 (brown/dark brown) Very poorly 
sorted 

4 Very sticky 10YR 4/3 (brown/dark brown)  
5 Slightly sticky 10YR 5/3 (brown) Well sorted 

6 Slightly sticky 10YR 4/3 (brown/dark brown) Moderately 
sorted 

7 Slightly sticky 10YR 5/4 (yellowish brown) Very poorly 
sorted 

8 Slightly sticky 10YR 5/3 (brown); Mud balls - 
10YR 4/3 (brown/dark brown) 

Well sorted 

9 Slightly sticky ~10YR 6/3 (pale brown) Well sorted 

10 ??? 7.5YR 3/2 (dark brown) Very poorly 
sorted 

11  10YR 4/3 (brown/dark brown); 
mud - 7.5YR 3/4 (dark brown) 

 

12 Slightly sticky 10YR 4/3 (brown/dark brown) Moderately 
sorted 

13 ??? 7.5YR 3/4 (dark brown) Very poorly 
sorted 

14 ??? 10YR 5/3 (brown) Very poorly 
sorted 

15 Slightly sticky ~10YR 4/3 (brown/dark brown) 
(bit lighter than this) 

Moderately 
sorted 
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Profile/Column 
 

Layer Stickiness Color Sorting 

Locality 8 
 
 
 

Lower Step A Slightly sticky 10YR 5/3 (brown); clay balls -  Moderately  
  7.5YR 4/4 (dark brown/brown) sorted 
Lower Step B Slightly sticky 10YR 5/4 (yellowish brown) Well sorted 

Lower Step B Very sticky 7.5YR 4/4 (brown/dark brown)  
Lower Step C Slightly sticky 10YR 4/4 (dark yellowish 

brown) 
Poorly sorted 

Lower Step D Nonsticky 10YR 5/3 (brown); mud - 
10YR 4/4 (dark yellowish 
brown) 

Well sorted 

Lower Step E Nonsticky 10YR 5/4 (yellowish brown) Very well 
sorted 

Lower Step 
F1 

Slightly sticky 10YR 5/3 (brown) Well sorted 

Lower Step 
F2 

Slightly sticky 10YR 5/3 (brown) Well sorted 

Lower Step G  sl and ??? sand  - 10YR 5/4 (yellowish 
brown); clay - 10YR 4/4 (dark 
yellowish brown) 

Well sorted 

Lower Step H  Moderately 
sticky 

10YR 4/3 (brown/dark brown) Very well 
sorted 

Lower Step I Slightly sticky 10YR 4/4 (dark yellowish 
brown) 

Poorly sorted 

Lower Step J  Slightly sticky 10YR 4/4 (dark yellowish 
brown); fleck - 10YR 3/2 (very 
dark grayish brown) 

Moderately 
sorted 

Lower Step K  Slightly sticky 10YR 4/3 (brown/dark brown) Poorly sorted 

Higher Step A Slightly sticky Between 10YR 5/4 (yellowish 
brown) and 10YR 4/4 (dark 
yellowish brown) 

Well sorted 

Higher Step B Slightly sticky ~10YR 4/4 (dark yellowish 
brown) 

Well sorted 

Higher Step C Slightly sticky 10YR 4/3 (brown/dark brown) ??? 

Higher Step D Slightly sticky 10YR 4/4 (dark yellowish 
brown) 

Very well 
sorted 

Higher Step E Moderately 
sticky 

10YR 5/4 (yellowish brown) Very well 
sorted 

Higher Step F Slightly sticky Sand - 10YR 4/4 (dark 
yellowish brown); clay - 7.5YR 
4/4 (brown/dark brown) 

Well sorted 

Higher Step G Slightly sticky Sand - 10YR 4/3 (brown/dark 
brown) 
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Profile/Column 
 

Layer Stickiness Color Sorting 

Locality 8 
Contd.  

Higher Step H Slightly sticky Sand - 10YR 4/4 (dark  
yellowish brown); mud - 10YR 
2/1 (black); other mud - 7.5YR 
3/4 (dark brown) 

 

Higher Step I Slightly sticky Sand - bet. 10YR 5/4 
(yellowish brown) and 10YR 
4/4 (dark yellowish brown); 
mud - 10YR 4/3 (brown/dark 
brown) 
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Table D.3 – Table showing sorting (matrix), sphericity, angularity and size of sediments. 
 
 
Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Log Trench 1 - 
West Wall N-S 

1     
2 Very well sorted High Subangular to 

subrounded 
medium (lower) to 
medium (upper) 

3     
4 Very well sorted High Subangular to 

subrounded 
fine (upper) to 
medium (lower) 

5 Moderately 
sorted 

High subangular to 
subrounded 

fine (lower) to 
medium (upper) 

6  High Subrounded fine (upper) to 
medium (upper) 

7 Poorly sorted High Subangular to 
subrounded 

fine (lower) to very 
coarse (upper) 

8  High Subangular to 
subrounded 

fine (lower) to 
medium (upper) 

9 well sorted High angular to 
subrounded 

fine (lower) (most) 
to medium (lower) 
(rare) 

10 Moderately 
sorted 

High subangular to 
subrounded 

fine (lower) to 
medium (upper) 
(rare) 

11  High subangular to 
subrounded 

fine (lower) to 
medium (upper) 
(rare) 

12  High Subangular medium (lower) to 
medium (upper) 

13 Well sorted High subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Log Trench 2 - 
South Wall  

1     
2  High Subangular medium (lower) to 

medium (upper) 
3 Well sorted High angular to 

subrounded 
fine (lower) (most) 
to medium (lower) 
(rare) 

4     
5  High Mostly 

subrounded 
very fine (upper) to 
fine (lower) 

6 Well sorted mostly low subangular to 
subrounded 

very fine (upper) to 
medium (upper) 

7  High mostly 
subrounded 

very fine (upper) to 
fine (upper) 

Mammoth Pit - 
West Wall 

1 Well sorted mostly high Subangular to 
subrounded 

fine (lower) to 
medium (lower) 
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Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Mammoth Pit - 
West Wall 
Contd.  

2 Well sorted in between Mostly 
subangular 

fine (lower) to 
medium (upper) 

3 Well sorted High Subangular to 
subrounded 

fine (lower) to 
medium (lower) 

Trench 5 West 1     
2 Very well sorted High Subangular to 

subrounded 
Medium (lower) to 
medium (upper) 

3 Well sorted in between Mostly 
subangular 

 

4  High Subangular to 
subrounded 

fine (lower) to 
medium (lower) 

Eastside of 
Mammoth Tusks 

1  High Subangular medium (lower) to 
medium (upper) 

2 Well sorted High subrounded to 
subangular 

fine (upper) to 
medium (upper) 

3  Low to 
high 

subangular to 
rounded 

fine (lower) to 
medium (lower) 

Westside of 
Mammoth Tusks 

1     
2 Well sorted High Subrounded 

to subangular 
fine (upper) to 
medium (upper) 

3  Low to 
high 

Subangular to 
rounded 

fine (lower) to 
medium (lower) 

Locality 1 1  High Subangular to 
subrounded 

fine (lower) 

2  High Undetermined fine (lower) to fine 
(upper) 

3  High Subangular to 
subrounded 

fine (lower) to 
medium (lower); 
coarser than Unit 7 

4     
Lighter  High Subangular to 

subrounded 
fine (upper) to 
medium (lower) 

Darker  High Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

5     
6  High Subangular to 

subrounded 
fine (lower) to fine 
(upper) 

7  High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

8     
Locality 2 - 
Paleosol 

A1     
A2     
Bw     
Bk     
Ck     
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Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Locality 4 Step 1A     

Step 1B     
Step 1C  High Subangular to 

subrounded 
fine (lower) 

Step 1D  High angular to 
subronded 

very fine (upper) to 
fine (lower) 

Step 1E  High Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

Step 2A1  High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Step 2A2  High Angular to 
subrounded 

fine (lower) to fine 
(upper) 

Step 2B1 Very well 
sorted? 

High Angular to 
subrounded 

fine (lower) to 
medium (lower) 

Step 2B2  High Angular to 
subangular 

very fine (upper) to 
fine (lower) 

Step 3A     
Step 3B1  High Angular to 

subangular 
fine (lower) to 
medium (lower) 

Step 3B2 Very well sorted High Angular to 
subrounded 

fine (lower) to 
medium (lower) 

Step 3B/C  High Angular to 
subangular 

fine (lower) to 
medium (lower) 
(mostly) 

Step 3C1  High Angular to 
subrounded 

fine (lower) to 
medium (lower) 

Step 3C2  High Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

Step 3C3  High Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

Locality 5 1  High Subrounded 
to rounded 

fine (lower) to fine 
(upper) 

2  High angular to 
subrounded 

very fine (upper) to 
fine (upper) 

3  High subangular to 
subrounded 

fine (upper) to 
medium (upper) 

4 Well sorted High subangular to 
subrounded 

very fine (upper) to 
medium (lower) - 
mostly fine (lower) 

5  High subangular to 
subrounded 

very fine (upper) to 
fine (lower) 

6  High subangular to 
subrounded 

very fine (upper) to 
fine (upper) 
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Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Locality 5 Contd. 7  High subangular to 

subrounded 
very fine (upper) 
(mostly) to 
medium (lower) w/ 
few vc (u) grains 

8  Low subrounded to 
rounded 

fine (lower) to 
medium (lower) 

9 ??? Hard to say subangular to 
subrounded 

Matrix - fine 
(lower) to medium 
(lower) 

10 ??? Hard to say subangular to 
subrounded 

Matrix - fine 
(upper) to coarse 
(lower) 

11  Mostly 
high 

subangular to 
subrounded 

fine (upper) to 
medium (lower) 

12 ??? High subangular to 
subrounded 

fine (upper) to 
medium (lower) 

13     
 14a  Mostly low Angular to 

subangular 
fine (upper) to 
medium (lower) 

 14b Very well sorted Hard to say Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

 14c  Mostly 
high 

subrounded to 
rounded 

fine (upper) to 
medium (lower) 

 14d  Mostly 
high 

subrounded to 
rounded 

medium (lower) to 
medium (upper) 

15     
16  High subangular to 

subrounded 
fine (low) to 
medium (low) 

17  High subangular to 
angular 

Medium (low) ??? 

18     
Locality 6 1     

2  Mostly 
high 

angular to 
subrounded 

fine (upper) 

3  High - low Angular to 
subrounded 

fine (lower) to 
~2.51 cm 

4  High Subangular to 
subrounded 

medium (lower) to 
medium (upper) 

5  High Subangular to 
subrounded 

medium (lower) to 
medium (upper) 

6  High Subangular to 
subrounded 

fine (lower) to very 
coarse (clay balls) 

7  Low Angular to 
subrounded 

medium (lower) to 
very coarse 

8  high - low Subangular to 
subrounded 

fine (lower) to fine 
(upper) 
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Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Locality 6 Contd. 9  ??? Rounded to 

angular 
 

fine (lower) to 4.64 

10 sand - md. sorted Mostly 
high 

subangular to 
subrounded 

Medium 

11  High Subangular to 
subrounded 

fine (upper) to very 
coarse - upt to 3.12 
cm 

12    fine (lower) to 3.46 
cm 

13 Well sorted Mostly low Angular to 
subangular 

fine (upper) to 
medium (lower) 

Locality 7 1     
2 Very well sorted High Subangular to 

subrounded 
fine (upper) to 
medium (lower) 

3  High Angular to 
subangular 

fine (upper) to very 
coarse (lower) 

4     
5  High Subangular to 

subrounded 
fine (upper) to 
medium (upper) 

6  High Angular to 
subrounded 

fine (lower) to 
medium (lower) 

7 Moderately 
sorted 

High Angular to 
subangular 

fine (lower) to very 
coarse (???) 

8  High Subangular to 
subrounded 

fine (lower) to 
medium (upper) 

9  High Angular to 
subrounded 

fine (lower) to 
medium (lower) 

10  High Angular to 
subangular 

fine (lower) to very 
coarse (???) 

11 Well sorted High Subangular to 
subrounded 

fine (lower) to 
medium (lower) 

12  High Angular to 
subangular 

very fine (upper) to 
coarse (low) 

13 Moderately 
sorted 

High Angular to 
subangular 

medium (lower) tp 
coarse (upper) 

14 Well sorted High Angular to 
subangular 

very fine (upper) to 
medium (upper) 

15  High Angular to 
subangular 

fine (lower) to 
coarse (lower) 

Locality 8 Lower 
Step A 

Very well sorted High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Lower 
Step B 

 High angular to 
subangular 

fine (upper) to 
medium (upper) 

Lower 
Step B 
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Profile/Column Layer Sorting (matrix) Sphericity Angularity Size 
Locality 8 Contd.  Lower 

Step C 
 High Angular to 

subangular 
medium (lower) to 
medium (upper) 

Lower 
Step D 

 Mostly 
high 

subangular to 
subrounded 

fine (upper) to 
medium (lower) 

Lower 
Step E 

 High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Lower 
Step F1 

 High Subangular to 
subrounded 

fine (upper) to 
medium (lower) 

Lower 
Step F2 

 High angular to 
subangular 

fine (lower) to 
medium (lower) 

Lower 
Step G  

 High angular to 
subangular 

fine (lower) to 
medium (upper) 

Lower 
Step H  

 High Subangular to 
subrounded 

fine (upper) 

Lower 
Step I 

Well sorted High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Lower 
Step J  

 Mostly 
high 

angular to 
subangular 

fine (lower) to 
coarse (upper) - 
mostly bet fn (lwr) 
& med (lwr) 

Lower 
Step K  

Well sorted High subangular to 
subrounded 

fine (lower) to 
medium (lower) 

Higher 
Step A 

 High subangular to 
subrounded 

fine (lower) 
(mostly) to 
medium (lower) 

Higher 
Step B 

 High Subangular to 
subrounded 

fine (lower) to 
medium (upper) - 
mostly fn (lwr) to 
fn (upr) 

Higher 
Step C 

Very well sorted High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Higher 
Step D 

 High Subangular to 
subrounded 

fine (lower) to fine 
(upper) 

Higher 
Step E 

 High Angular to 
subrounded 

fine (upper) to fine 
(lower) 

Higher 
Step F 

 High Subangular to 
subrounded 

 

Higher 
Step G 

Well sorted High Subangular to 
subrounded 

fine (lower) to 
medium (lower) 

Higher 
Step H 

Well sorted High Angular to 
subrounded 

very fine (upper) to 
fine (upper) 

Higher 
Step I 

Well sorted High Angular to 
subrounded 

fine (lower) to 
medium (upper) 
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Table D.4 – Table showing structure, gravel size, gravel shape, and concretions of the 

sediments. 
 
Profile/Column Layer Structure Gravel size (cm) Gravel 

shape 
Concretions 
(cm) 

Log Trench 1 - 
West Wall N-S 

1 Massive    
2 Massive Clay balls - 1.54   
3   Equant  
4 Massive Clay balls - ~1.07 Equant  
5  Clay balls - gravel 

size 
Bladed? ~0.82 

6 Massive    
7  clay balls up to 5.36   
8 Laminations    
9  ~4.0   
10 Laminations clay balls - ~0.5 cm Equant?  
11 Massive    
12     
13 Massive average - 2.43  Up to 5.9 

Log Trench 2 - 
South Wall 

1 Massive    
2     
3  ~4.0   
4 Massive    
5 Laminated    
6  gleyed ball - ~2.15 Prolate  
7 Laminated gleyed balls - ???   

Mammoth Pit - 
West Wall 

1   up to 2.87 Eqnt./Blded.  
2  clay balls up to 5.3 

cm 
sl. prol. to 
eq. 

 

3 Laminated Only two - ~3.5 & 
~5.0 

  

Trench 5 West 1 Massive    
2 Massive clay balls - ~1.54    
3  clay balls - up to 5.3 sl. pro. to 

eq. 
 

4 Laminated    
Eastside of 
Mammoth Tusks 

1     
2  0.6 to 3.5   
3 Laminated    

Westside of 
Mammoth Tusks 

1 Massive    
2  0.6 - 3.5   
3 Laminated    

Locality 1 1     
2 Cross-

bedded 
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Profile/Column Layer Structure Gravel size (cm) Gravel 
shape 

Concretions 
(cm) 

Locality 1 Contd. 3 Cross-
bedded 

   

4     
Lighter ???    
Darker ???    
5     
6  mottled mud - ~0.40 ???  
7     
8     

Locality 2 - 
Paleosol 

A1     
A2     
Bw     
Bk     
Ck     

Locality 4 Step 1A     
Step 1B    Yes 
Step 1C     
Step 1D ??? ???   
Step 1E Laminated clay balls - ~1.0 Equant  
Step 2A1 Laminated    
Step 2A2 Laminated    
Step 2B1     
Step 2B2     
Step 3A     
Step 3B1     
Step 3B2  coarse to 1.89   
Step 3B/C     
Step 3C1     
Step 3C2     
Step 3C3 Laminated    

Locality 5 1     
2 Laminated    
3 Laminated    
4  1.21 Bladed 5.85 
5 Laminated    
6 Laminated    
7 Laminated? Clay balls - 4.7     
8 Cross-

bedded 
   

9     
10  ~2.0; clay bs. ~5.0 gr. - bl. to 

eq. 
 

11 Laminated    
12  1.5 ???  
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Profile/Column Layer Structure Gravel size (cm) Gravel 
shape 

Concretions 
(cm) 

Locality 5 Contd.  13     
 14a Laminated    
 14b  up to 2.6  ???  
 14c Cross-

bedded 
   

 14d Cross-
bedded 

   

15     
16     
17     
18     

Locality 6 
 

1     
2 Massive    
3  up to 2.51 bld. To eq.  
4 Laminated    
5 Flaser? clay balls - ~0.71 Equant  
6  clay balls - ~2.6 Equant  
7 Melange??? ??? Eq. to blded.  
8 Massive    
9 ??? up to 4.64 Eq. to prol.  
10 Massive    
11 Laminated up to 3.12 Eq. to 

angular 
 

12 Cross-
bedded 

cb - ~3.46; gr. ~0.78 Angular  

13 Laminated clay - up to 2.66 Bladed  
Locality 7 1     

2     
3  2.09 Eq., pr., bl ~6.56 h, 6.44 

w 
4     
5     
6  ~1.60 ??? ~3.36 
7  3.22 or 3.55 Various  
8 Laminated mud balls - ~1.95 ???  
9 Cross-

bedded 
   

10  ~0.54 ???  
11  avg. - ~1.13 Eq., ob, pr.  
12 Laminated    
13  avg. ~0.51 and up to 

1.88 
Eq., ob, pr.  

14  Up to 1.71 Eq., ob., bl.  
15 Cross-

bedded 
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Profile/Column Layer Structure Gravel size (cm) Gravel 
shape 

Concretions 
(cm) 

Locality 8 
 

Lower Step 
A 

 clay balls - ~2.95 ???  

Lower Step 
B 

    

Lower Step 
B 

 ??? Equant ~3.04 

Lower Step 
C 

 5.53 bladed Yes 

Lower Step 
D 

Laminated    

Lower Step 
E 

Laminated    

Lower Step 
F1 

Cross-
bedded 

   

Lower Step 
F2 

Cross-
bedded 

   

Lower Step 
G  

 clay balls - up to 3.85 
 

???  

Lower Step 
H  

    

Lower Step 
I 

 0.88 blded & oblt  

Lower Step 
J  

    

Lower Step 
K  

Laminated ~0.68 blded & eq  

Higher 
Step A 

Laminated    

Higher 
Step B 

Massive    

Higher 
Step C 

 clay balls - ~1.80 ???  

Higher 
Step D 

Laminated    

Higher 
Step E 

Laminated    

Higher 
Step F 

 clay balls - ~1.42  ???  

Higher 
Step G 

 clay balls - ~ 12.0 ???  

Higher 
Step H 

 clay balls - ~1.84 ???  

Higher 
Step I 

 clay balls - ~ 4.0 ???  
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Table D.5 – Table showing presence of shells, reaction to HCl, organics, and rip-ups. 
 
Profile/Column Layer Shells Reaction to HCl Organics Rip-ups (cm) 
Log Trench 1 - West 
Wall N-S 

1 Yes Violently   
2 Yes/Coll. Violently   
3 Yes Violently   
4 Yes/Coll. Violently   
5 Yes Violently  ~4.0 
6 Yes Strongly   
7 Yes/Coll. Violently   
8 Yes Strongly   
9 Yes Violently  ~9.0 
10 Yes Strongly   
11 Yes Very slightly   
12 Yes Slightly   
13 Yes/Coll. Slightly   

Log Trench 2 - 
South Wall 
 

1 Yes Violently   
2 Yes Slightly   
3 Yes Violently  ~9.0 
4 Not visible Violently   
5 Not visible Very slightly   
6 Not visible Slightly   
7 Yes Very slightly   

Mammoth Pit - West 
Wall 

1 Yes/Coll. Violently   
2 ??? ???   
3 Yes Violently   

Trench 5 West 1 Yes Violently   
2 Yes/Coll. Violently   
3  ??? ???  
4 Yes Violently   

Eastside of 
Mammoth Tusks 

1 Yes Slightly   
2 Yes/Coll. Violently   
3 Yes Strongly   

Westside of 
Mammoth Tusks 

1 Yes Violently   
2 Yes/Coll. Violently   
3 Yes Strongly   

Locality 1 
 

1 Not visible None   
2 Not visible None   
3 Not visible None   
4     
Lighter Not visible None   
Darker Not visible None   
5 Not visible None   
6 Not visible None 
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Profile/Column Layer Shells Reaction to HCl Organics Rip-ups (cm) 
Locality 1 Contd.  7 Not visible 

None 
   

8     
Locality 2 - Paleosol A1  Violently   

A2  Violently   
Bw  Violently   
Bk Yes/Coll. Violently   
Ck Not visible Violently   

Locality 4 
 

Step 1A     
Step 1B Not visible V   
Step 1C Not visible None  Yes 
Step 1D Not visible V  ??? 
Step 1E Not visible V   
Step 2A1 Not visible V   
Step 2A2 Yes V   
Step 2B1 Yes V  Up to ~22.0 
Step 2B2 Not visible V   
Step 3A     
Step 3B1 Yes V   
Step 3B2 Yes V   
Step 3B/C Yes V   
Step 3C1 Yes St   
Step 3C2 Not visible V   
Step 3C3 Not visible V   

Locality 5 1 No  ???   
2 Yes V   
3 Yes V   
4 Yes V   
5 Yes V   
6 Yes V   
7 Yes V Yes  
8 Yes V   
9     
10 Yes V Yes  
11 Yes V   
12 Yes ???   
13  V   
 14a Yes V   
 14b Yes V   
 14c Yes V   
 14d Yes V   
15 Not visible V Yes  
16 Yes V   
17 Yes V   
18 Not visible V Yes  
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Profile/Column Layer Shells Reaction to HCl Organics Rip-ups (cm) 
Locality 6 1 Not visible ???   

2 Yes V   
3 Yes V   
4 Yes V   
5 Yes V   
6 ??? ???   
7 Yes V Yes 1.0 - 25.0 
8 Yes V   
9 Yes V   
10 Yes V   
11 Yes V   
12 Yes V   
13 Yes V   

Locality 7 
 

1     
2 not visible Slightly  ~2.27 
3 Not visible Strongly   
4 Not visible Violently   
5 Not visible Strongly   
6 Yes/Coll. ??? Yes/Coll.  
7 Yes Violently   
8 Not visible Strongly   
9 Yes Strongly   
10 Yes/Coll. ???   
11 Yes Strongly   
12 Yes Strongly   
13 Yes/Coll. Violently   
14 Yes/Coll. Strongly   
15 Yes Strongly   

Locality 8 Lower 
Step A 

Yes V   

Lower 
Step B 

Yes V   

Lower 
Step B 

Not visible V   

Lower 
Step C 

Yes    

Lower 
Step D 

Not visible V   

Lower 
Step E 

Yes V   

Lower 
Step F1 

Yes V   

Lower 
Step F2 
 

Yes V   
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Profile/Column Layer Shells Reaction to HCl Organics Rip-ups (cm) 
 Lower 

Step G  
Yes ???   

Lower 
Step H  

Yes ???   

Lower 
Step I 

Yes V   

Lower 
Step J  

Yes V   

Lower 
Step K  

Yes V   

Higher 
Step A 

Not visible V   

Higher 
Step B 

Not visible Strongly   

Higher 
Step C 

Yes Violently   

Higher 
Step D 

Not visible Strongly   

Higher 
Step E 

Not visible Violently   

Higher 
Step F 

Yes Violently   

Higher 
Step G 

Not visible More Viol.   

Higher 
Step H 

Not visible More still   

Higher 
Step I 

Not visible Violently  Possibly 
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Table D.6 – Table showing field observations, notes, and comments of the layers and 

their sediments. 
 

Profile/Column Layer Field Observations/Notes/Comments 
Log Trench 1 - 
West Wall N-S 

1 Slickensides; redox features 
2  
3 Clay balls; coarse (upper) bits of shell 
4  
5 Can't find gray clay balls from field observation; coarse (upper) bits 

of shell; accurate size for rip-up cannot be determined 
6 Coarse (many scales of coarse) bits of shell 
7 Angular fragments about 0.3 cm; iron staining the matrix; - Shell bits 

up to 0.99 cm 
8 Coarse (lower) bits of shell 
9 Medium (upper) bits of shell; size of clay balls and rip-ups difficult to 

determine in lab - thus will use field observation 
10 Could be the same as the "clay ball" layer, but larger clay balls, plus 

its mainly composed of sand; - medium (lower) bits of shell; actual 
size and and shape of clay inclusions difficult to determine 

11 Very little iron staining - medium (upper) bits of shell 
12 Medium (upper) bits of shell 
13 Used 16x hand lens for sphericity, angularity and size 

Log Trench 2 - 
South Wall 

1 Slickensides; redox features 
2 Medium (upper) bits of shell 
3 Medium (upper) bits of shell; size of clay balls and rip-ups difficult to 

determine in lab - thus will use field observation 
4 Load structures or bioturbation? 
5  
6  
7 Did not see gleyed observed in field in the lab sample; very coarse 

shell bits 
Mammoth Pit - 
West Wall 

1 Gravel - composed of clay balls and possibly sandstone; - very coarse 
bits of shell also present. 

2 Clay balls brown to gleyed 
3 The only two clay balls found could be rip-ups; - very coarse to 

smaller bits of shell 
Trench 5 West 1 Slickensides; redox features 

2  
3 Bone found; Clay balls brown to gleyed 
4 Two clay balls were found in West Wall Unit 3; - very coarse to 

smaller bits of shell 
Eastside of 
Mammoth Tusks 
.  

1 Medium (upper) bits of shell 
2  
3 Up to very coarse (upper) bits of shell 
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Profile/Column Layer Field Observations/Notes/Comments 
Westside of 
Mammoth Tusks 

1 Slickensides; redox features 
2  
3 Up to very coarse (upper) bits of shell 

Locality 1 
 

1  
2 Cross-bedded sand; white at top to yellowish down further… then 

returns to white 
3 Flaser? 
4 Two samples. 
Lighter  
Darker  
5 Redox features 
6  
7  
8 Spoil - not collected. 

Locality 2 - 
Paleosol 

A1  
A2  
Bw  
Bk Redox features; shells 
Ck Redox features 

Locality 4 Step 1A  
Step 1B No shells found in lab, instead could be concretions; concretions and 

sediments fizz 
Step 1C Few clay ball rip-ups 
Step 1D Few laminations; color same as darker brown laminations from above 

and sand from below; few clay ball rip-ups 
Step 1E Laminations about 1mm in width; some oxidation present very few 

clay balls 
Step 2A1 Permanent dark brown laminations ~2 mm in width 
Step 2A2 Laminations less than A1, same as last unit (continuation); bits of 

shell 
Step 2B1 Light brown like the one from the laminations; brown clay rip-ups are 

laminated; very few bits of shell 
Step 2B2 Brown clay band w/ some sand, possibly from same unit as below; 

sand not same from previous layer 
Step 3A Highest; same as previous layer, not collected. 
Step 3B1 Light brown sand w/ gravelly lenses; very few darker intertongues; 

didn't see gravel in sample collected; coarse bits of shell 
Step 3B2 Light brown sand w/ gravelly lenses; fewer bits of coarse shell; 

 
Step 
3B/C 

Gradual boundary; few bits of shell present; very few coarse to very 
coarse grains 

Step 3C1 Light brown sand w/ darker intertongues; very few bits of shell 
Step 3C2 Darker brown intertongues grade into the laminations in layer above 

(not previous layer) 
Step 3C3 Darker brown laminations with flame or load structures 
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Profile/Column Layer Field Observations/Notes/Comments 
Locality 5 1  

2 Medium bits of shell 
3 Medium bits of shell 
4 Concretions and nodules present; Small ??? Pieces of broken shell; 

gravel not very rounded 
5 Medium bits of shell 
6 Very few medium bits of shell 
7 Seven alternating layers of sand and mud - seems to start and end 

with mud; layers are about 9.0 cm thick; very few medium to coarse 
bits of shell 

8 Cross-bedded structure - ripples?; coarse flecks of shell 
9  

 
10 Texture hard to determine due to high volume of gravel; greater 

abundance of gravel than previous layer, but could be same layer, 
also larger; clay balls make up base; only matrix description is size 

11 Medium bits of shell 
12 Shell size not determined 
13  
 14a Very few specks of shell 
 14b Medium to coarse bits of shell 
 14c Medium to very coarse bits of shell 
 14d Medium bits of shell 
15  
16 Fine (low) to medium (low) bits of shell (very few) 
17 Coarse bits of shell (few) 
18 Unable to get enough material to properly texture 

Locality 6 1 Hard to texture, most likely clay; mottles - iron reduction 
2 Fine (upper) bits of shell 
3 Up to 1.87 cm bits of shell 
4 Most likely sand lams. are pure sand and clay lams. some type of 

loam; very few bits of shell, but field obs. Noted some shell, so 
possibly. bigger, but more detected in sample 

5 Lots of small shells 
6 Interbeds of sand and clay resemble laminations, but are bigger; sand 

contains some clay balls 
7 Bone at top, possibly cervid; melange??? - marble clay rip-ups mixed 

w/ gravels and sand; no appreciable structure - there's no order 
8 Oxidized banding; medium bits of shell 
9 Bone found?????; there seems to be some kind of structure 
10 Clay w/ some sandy clay, but mostly clay; few bits of shell 

 
11 Mostly sand; bits of shell; gravel comes in many shapes from 

somewhat rounded (equant) to highly angular 
12 ratio of sand to gravel seems to be ~50%/50%; bits of shell 
13 Bits of shell 
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Profile/Column Layer Field Observations/Notes/Comments 
Locality 7 
 

1 Not collected. 
2 Some mud rip-ups present 
3 Mostly gravel; difficult to texture 
4  
5  
6 Some mud balls, concretions, shells; thin lens between Units 10 and 9 
7 Bits of shell present; difficult to texture 
8 Much finer than Units 10 and 11 
9 Medium to coarse bits of shell 
10 Mostly gravel; difficult to texture;; mud balls present; very little 

sands 
11 Coarse gravel; difficult to texture; greater amount of sand versus 

gravel than Unit 6; bits of shell; gravel; rip-up - 9.0 x 5.0 cm 
12 Laminations of sand and mud w a thick band of mud; seems no mud 

was collected 
13  
14 More sand than gravel 
15 Medium bits of shell 

Locality 8 Lower 
Step A 

Water table; 2.20 m below is gleyed, marble clay; few very fine bits 
of shell; clay balls not noticed in field; mud also fizzes 

Lower 
Step B 

Alternating gray sand and mud; bits of shell 

Lower 
Step B 

alternating gray sand and mud; gravelly; shells observed in field are 
actually concretions 

Lower 
Step C 

Gravelly; gravel composed of clay balls (largest), concretions and 
other minerals/rocks; field observation noted lots of shells, but are 
concretions instead, but also small bits of shell 

Lower 
Step D 

Fine laminations of light brown sand and dark brown sand; planar 
laminations; darker laminations are mud 

Lower 
Step E 

Laminations w/ load or flame structure?, structure at top of unit; fine 
bits of shell (few) 

Lower 
Step F1 

Cross-bedding of light brown sand and dark brown sand; coarse bits 
of shell 

Lower 
Step F2 

Cross-bedding of light brown sand and dark brown sand; coarse bits 
of shell 

Lower 
Step G  

Clay ball layer mostly in dark brown sand; clay ball up to 3.85 cm; 
bits of shell smaller, but more abundant 

Lower 
Step H  

Band of dark brown sand; coarse bits of shell (very few) 

Lower 
Step I 

Light brown sands with gravels and clay balls; coarse bits of shell 

Lower 
Step J 

Massive light brown sand; coarse dark flecks; bits of shell 

Lower 
Step K  

Fine laminations of sand and gravel ~1 cm in width; light brown 
sand; darker brown gravels; lots of coarse- and gravel-sized flecks - 
no organics; possible seed found; coarse bits of shell 
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Profile/Column Layer Field Observations/Notes/Comments 
Locality 8 Contd.  Higher 

Step A 
Laminations, possibly continued from unit below; 

Higher 
Step B 

Mid brown sand; no structure - massive 

Higher 
Step C 

Lighter color with lots of gravel-sized clay balls; medium bits of shell 
(very few) 

Higher 
Step D 

Tightly packed laminations of light and dark brown that doesn't 
resemble any others 

Higher 
Step E 

Light band (whitish) with laminations; oxidation on top 

Higher 
Step F 

Lots of tightly packed small clay balls (~2 cm); oxidation?; scl with 
clay balls, sl w/o; very few bits of shell present 

Higher 
Step G 

Light brown sand with ots of large clay balls; clay balls ~12 cm high; 
mud - clay, plastic, very sticky 

Higher 
Step H 

Dark brown sand with lots of clay balls - Mn stained 

Higher 
Step I 

Light brown sand with clay balls; rip-ups? 
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