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ABSTRACT 

 

Characterization of the rpoN Global Regulatory Gene   

of Pseudomonas syringae pv. syringae B728a and Its Impact on  

the Plant-Pathogen Interaction. (May 2009) 

Amber Lorge, B.S., Marian College 

Chair of Advisory Committee: Dr. Dennis Gross 

 

Gene regulation in bacteria is highly complex and requires the activity of sigma 

factors that function as transcriptional regulators.  In Pseudomonas syringae pv. syringae 

B728a, 14 sigma factors have been identified.  One of the more interesting is rpoN, 

encoding Sigma 54, which was initially described for its role in nitrogen utilization and 

later shown to be involved in regulating adhesion, motility, toxin production, and 

pathogenicity.  The only commonality identified amongst these genes is that gene 

regulation by Sigma 54 is not essential for normal growth and development because 

mutational inactivation of rpoN is not lethal.  Unlike Sigma 70, which recognizes 

promoter sites located at positions -10/-35 upstream of the transcription initiation site, 

Sigma 54 recognizes sites located at positions -12/-24.  P.s. pv. syringae B728a encodes 

an RpoN that shares 80-98% identity with other Pseudomonas species.  Promoter scans 

were conducted on the B728a genome to look for probable binding sites of RpoN.  

Analysis revealed that RpoN may be involved in regulating genes encoding ABC 

transporters, drug efflux pumps, flagella proteins, nitrate transporters, and several 
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regulatory proteins.  An insertional mutation in the rpoN gene was constructed in the 

B728a genome and a phenotypic analysis was initiated.  Decreased swarming and 

adhesion ability of the rpoN mutant was observed as compared to B728a.  The ability to 

utilize sole nitrogen sources was also affected.  The rpoN mutant showed little or no 

growth on sole nitrogen sources such as alanine, histidine, lysine, and serine.  

Pathogenicity was shown to require a functional RpoN, as both HR and disease 

development was effected by an rpoN mutation.  Pseudomonas syringae pv. syringae is 

most known for the production of two phytotoxins.  Unlike RpoN in other species, in 

P.s. pv. syringae B728a it appears to indirectly down regulate toxin production of 

syringomycin and syringopeptin.  The goal of this study was to characterize some of the 

important roles RpoN is known to possess and to understand its role in the plant 

pathogenic and epiphytic lifestyle of P. s. pv. syringae B728a. 
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CHAPTER I 

INTRODUCTION TO GENE REGULATION IN BACTERIA 

 

Gene regulation in bacteria is highly complex and requires the activity of sigma 

factors that function as transcriptional regulators.  Prokaryotes utilize several different 

sigma factors to aid in proper gene expression in coordination with RNA polymerase 

(RNAP).  Briefly, a sigma factor is a prokaryotic transcription initiation factor which is 

required to interact with RNA polymerase for specific binding to promoter sites on DNA 

upstream of a specific gene.  These sigma factors aid RNA polymerase in gene 

transcription by allowing RNAP to initiate unwinding and melting of the DNA strand, 

and begin transcription after activation.  It is the substitution of different types of sigma 

factors that redirects RNAP to activate transcription of different genes, which would not 

otherwise be transcribed (59).  Once gene transcription begins, the sigma factor is 

released and available to activate another RNA polymerase subunit (57).  Since RNAP is 

able to interact with many sigma factors and disassociate from RNAP after activation, 

the sigma cycle is able to adjust transcription levels rapidly in response to appropriate 

internal and external cues.  The types of genes transcribed are therefore not based on 

RNAP, but by the activation of specific sigma factors (40). 

Bacteria encode multiple sigma factors based on the complexity of its genome 

and life cycle.  The obligate pathogen Mycobacterium leprae encodes the least number,  
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only four sigma factors (49).  In contrast, 14 sigma factors have been identified in the 

non-obligate pathogen Pseudomonas syringae pv. syringae B728a genome.  In addition 

to the common sigma factor family, the Sigma 70 family, many alternative sigma factors 

exist to aid in gene regulation.  Some of these include: Sigma B, Sigma S, Sigma 28, 

Sigma E, and Sigma 54 (27).  Sigma 54, which is encoded by the gene rpoN (initially 

named ntrC), is a relatively rare alternative sigma factor that is not found in all bacterial 

genomes.  Several prokaryotes utilize Sigma 54 to control transcription of a diverse set 

of genes, although a physiological theme has not yet been identified (27).  Initially 

described for its role in nitrogen utilization, it was later shown to be involved in 

regulating adhesion, motility, toxin production, and pathogenicity (48).  The only 

commonality identified amongst these gene classes is that gene regulation by Sigma 54 

is not essential for normal growth and development because mutational inactivation of 

rpoN is not lethal (54).   

Sigma 54 is both structurally and functionally unique from Sigma 70 (27).  Its 

main differences include over-all protein structure, a unique promoter recognition site, 

and a requirement for activation.  Sigma 54 consists of three domains that are important 

in the regulatory process.  Domain I, the activator interacting domain (AID), interacts 

with various activator proteins.  In order to initiate transcription, it is required that Sigma 

54 is activated by an outside activator protein, which will allow for an open promoter 

complex.  Domain II, the core binding domain, directly contacts RNAP to form an 

enhancer dependent holeoenzyme.  Finally, domain III, the DNA binding domain, binds 

to the appropriate promoter sequence on the DNA strand.  The promoter site recognized 
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by Domain II of Sigma 54 is very unique, highly conserved, and consists of two short 

sequences at positions -24 and -12, upstream of the transcription initiation site.  Unlike 

the traditional TATA box recognized by Sigma 70, Sigma 54 recognizes TGGCAC-N5-

TTGC, where the underlined regions identify the -24/-12 position upstream of the gene 

of interest and are the most conserved nucleotides (4, 6). 

Sigma 54 is constitutively expressed and actively inhibiting gene transcription 

until activated.  Since this sigma factor governs expression of such a diverse set of 

genes, there are several activators present in the genome.  Specifically, Pseudomonas 

aeruginosa possesses 21 activators, 12 of which have a known function (55).  Regulation 

of Sigma 54 and RNAP requires specific binding to the appropriate promoter sequence 

and activation by specific activators known as enhancer binding proteins (EBP).  These 

EBPs bind to Domain 1 and have ATPase activity, which promotes conformation of 

changes of Sigma 54 by phosphorylation and allows for transcription to begin (18, 65).  

EBP regulation is controlled by its own signal transduction mechanism and involves 

cellular and environmental signals (31, 41, 53).  Leaky expression rarely occurs in the 

absence of EBP due to its involvement in DNA melting (10). 

As a species, about 50 Pseudomonas syringae pathovars exist with a wide range 

in pathogenicity and host range (23).  The complete sequence of P.s. pv. syringae B728a 

has been recently published.  Sequencing of this pathovar shows that it contains a 6.1 

Mb circular genome with no plasmid DNA.  It was predicted that 5,217 genes exist in its 

genome: 3,840 with known function, 1,271 with unknown function, and 80 RNA genes.  

When compared with the genome of P.s. pv. tomato strain DC3000, the P.s. pv. syringae 
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B728a genome contains an additional 976 genes and shares 4,273 genes (11), making 

this a very unique and specialized pathovar. 

In P.s. pv. syringae B728a, which causes brown spot in beans, 14 sigma genes 

have been identified.  Among these sigma factors, P.s. pv. syringae B728a encodes an 

RpoN (Sigma 54) which shares 80-98% identity with other Pseudomonas species.  

Comparison of RpoN from several Pseudomonas sp. and Vibrio fisheri indicated that the 

P.s. pv. syringae B728a RpoN is highly conserved and closely related to both P.s. pv. 

glycinea and P.s. pv. phaseolicola (Fig 1.1).  Although much work has been conducted 

on rpoN in other bacterial species, a detailed analysis of the genes controlled by Sigma 

54 in P.s. pv. syringae B728a has not been reported.  I hypothesized that rpoN in this 

species will fill roles similar to its homolog in other species. It was the goal of this work 

to further characterize the rpoN gene in P.s. pv syringae B782a and define its phenotype. 

This study also evaluated additional roles that RpoN plays in P.s. pv. syringae B782a 

gene regulation and assessed its involvement in the plant-pathogen interaction. 
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Ps glycinea 

Ps phaseolicola 

Ps syringae B728a 

Ps DC3000 

Ps maculicola 

P clororaphis 

P fluorescens 

P putida 

P alcaligenes 

P aeruginosa 

Vibrio fischeri 

 

Fig 1.1.  RpoN comparison between several species of Pseudomonas and Vibrio fischeri.  
Phylogenetic tree constructed based on a ClustalW alignment of the protein sequences of 
RpoN.  Species used in this analysis include: P.s. pv. glycinea, P.s. pv. phaseolicola 
1448A, P.s. pv. syringae B728a, P.s. pv. tomato DC3000, P.s. pv. maculicola, P. 
chlororaphis, P. fluorescens Pf-5, P. putida GB-1, P. alcaligenes, P. aeruginosa PAO1, 
and Vibrio fischeri ES114. 
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CHAPTER II 

CHARACTERIZATION OF THE rpoN GLOBAL REGULATORY 

GENE OF Pseudomonas syringae pv. syringae B728a  

 

INTRODUCTION 

 Pseudomonas syringae is a prevalent world wide pathogen in a wide range of 

crops.  Symptoms vary from leaf spots, foliar blight, stem cankers, and water soaked 

lesions.  As such a versatile pathogen, they are required to respond quickly to vastly 

changing environment conditions via proper gene regulation by use of various sigma 

factors.  These sigma factors rely on activators, which sense changing environmental 

conditions, to aid in regulation of necessary genes. One such sigma factor is RpoN 

(Sigma 54), which has been identified in P.s. pv. syringae B278a (Fig 2.1).  This sigma 

factor is known to be involved in regulating a vast type of unrelated genes (2, 54), 

recognizes a unique promoter region (2), and is of particular interest to the 

understanding of the global regulatory network.  

Much of the early work conducted on the Sigma 54 promoter recognition site 

was accomplished in Klebsiella pneumoniae, and it was proposed that Sigma 54 does not 

recognize the traditional -35/-10 promoter site (2).  Instead, it was shown that the 

recognition site is located at positions -24/-12 upstream of the transcriptional start site 

(1, 2).  As noted earlier, the conserved sequence Sigma 54 recognizes is: TGGCAC-N5-

TTGC.  Disruption to this conserved sequence often inhibits transcription (61).  The C- 

terminal region of Sigma 54 has been shown to be mostly involved in the binding to the 
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Psyr_4146                                       rpoN Psyr_4148     Psyr_4149   Psyr_4150                      Psyr_4151   

 

500 bp 

Fig 2.1. Genome organization surrounding rpoN in P.s. pv. syringae B728a.  Psyr_4147 
(rpoN) is located at the beginning of an operon.  Psyr_4146 is located 141-bp upstream, 
therefore rpoN likely has its own promoter region.  The closeness of genes located 
downstream of rpoN indicates that they are potentially regulated by the same promoter.  
This is likely since Psyr_4146 is a modulation protein for rpoN, and Psyr_4149 is a 
nitrogen regulatory protein. 
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promoter site (6).  DNA cleavage assays were conducted to show that the conserved 

RpoN box located in the C-terminal recognizes the -24 promoter element (5).  The -12 

promoter element is involved in both binding to Sigma 54 and interaction with an 

activator (66).  Knowledge of this unique promoter region was shown to be useful for 

prediction roles of RpoN in gene regulation.   

Sigma 54 was initially described for its involvement in nitrogen assimilation and 

the ability to utilize certain sole nitrogen sources (24).  The bacterial cell utilizes 

nitrogen assimilation to obtain intracellular nitrogen donors.  Sigma 54 is involved in 

regulation of several nitrogen-regulated (Ntr) genes.  These genes are specific to the 

nitrogen source they transport: for example argT-hisJMPQ transports arginine, lysine, 

ornithine, and histidine (48).  In several Pseudomonas species, decreased ability to 

utilize sole nitrogen sources has been observed (21) (Table 2.1).  In Pseudomonas 

putida, an rpoN mutant was unable to grow on plates containing nitrite, urea, alanine, 

glycine, isoleucine, or serine as the sole nitrogen source (29).  Also, Pseudomonas 

aeruginosa is unable to utilize proline, histidine, glutamate, and nitrite as its sole 

nitrogen source when containing a mutation in rpoN (56).  Similar results were observed 

in P.s. pv. maculicola (19), indicating that Sigma 54 is important to proper bacterial cell 

metabolism. 

As previously stated, an rpoN mutant often exhibits decreased motility and 

adhesion capability.  In P. putida, an rpoN mutation resulted in lose of motility (29).  

Based on such results, it was concluded that either Sigma 54 is involved in expressing 

genes directly involved in flagella biosynthesis or it disrupts bacterial cell surface  
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Table 2.1  Summary of an rpoN mutant�s ability to utilized sole nitrogen sources 
identified in previous studies   

Nitrogen utilization of Pseudomonas strains  
containing mutation in rpoNa: 

 Nitrogen Source 

P.s. pv. maculicola 
(DC3000) (20) 

P. putida KT2440 
(29) 

P. aeruginosa PA14 
(21, 56) 

Alanine - - ND 

Ammonia + + + 

Arginine + + + 

Asparagine + + ND 

Aspartate - + ND 

Glutamate + + - 

Glutamine + + + 

Glycine ND - ND 

Histidine - + - 

Isoleucine - - ND 

Leucine - - ND 

Lysine + + ND 

Methionine - ND ND 

Proline - + - 

Serine - - ND 

Threonine - ND ND 

a Growth (+) or lack of growth (-) on minimal media plates containing the specified 
nitrogen source. 
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components that must be present during flagella biosynthesis.  When grown on low agar 

plates (0.4%), this mutant showed decreased swarming ability due to loss of motility 

(29).  Lack of quorum sensing ability may also be attributed to this phenotype.  This 

suggestion is probable since RpoN is involved in rpoS regulation, and RpoS it known to 

be involved in regulation of quorum sensing genes (67).  Although this is generally the 

case in pseudomonads, a Xylella fastidiosa rpoN mutant showed no significant 

difference in motility after several days of growth (43).   

The ability for bacteria to attach to a plant cell surface and form a biofilm is 

important for pathogenicity (45).  Past studies have shown that Sigma 54 is involved in 

pili production via regulation of the hrp genes (12, 15).  Studies with a P.s. pv. 

maculicola (DC3000) rpoN mutant show decreased adhesion and infection capability 

due to defects in Hrp regulation (20).  In contrast, a Xylella rpoN mutant showed an 

increase in biofilm formation (43).   

In Pseudomonas aeruginosa, which is able to colonize cystic fibrosis patient�s 

lungs, Sigma 54 has been shown to be involved in virulence (3).  Alginate is a major 

virulence factor for this pathogen, and it has been shown to be regulated by Sigma 54 

(3).  It is known that Sigma 54 also regulates genes involved in both pili and flagella 

formation, and both are required for complete virulence (21, 56).  An rpoN mutant in P. 

aeruginosa showed decreased adhesion to host cells due to the inability to form pili (7, 

56).   Hendrickson et al (21) showed that a decrease in flagellar motility occurs in this 

mutant.  It is the combination of these two phenotypes, adhesion and motility, which is 

thought to decrease the ability of Pseudomonas to attach to the host cell, therefore 
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inhibiting infection.  Studies conducted in mice show that disease does not occur even 

when using a high dose of bacteria containing a mutation in rpoN, as compared to a low 

dose response in the wild type strain (21).  It is hypothesized that a decrease in disease 

development will be observed in bean plants infected in the rpoN mutant as compared to 

wild type strain. 

 It was suggested that RpoN is involved indirectly as a regulator of the 

hypersensitive response and pathogenicity (hrp) gene cluster, which encodes 

pathogenicity-related genes (12, 15).  These genes are required for pathogenicity and 

elicitation of a hypersensitive response by the plant (35).  A study by Hendrickson (19), 

showed that an rpoN mutant is unable to cause HR in Nicotiana tabacum.  Although, 

when the hrpL gene is expressed under an E. coli lacZ promoter in an rpoN mutant, HR 

was restored.  This indicated an involvement of RpoN in hrp regulation, which the 

authors suggest may be a result of the inability of the hrp genes to synthesis coronatine.  

Therefore, it will be important for this study to determine if RpoN is involved in P.s. pv. 

syringae B728a toxin regulation.  It was also noted that expression of hrpL through the 

lacZ promoter did not complement other rpoN phenotypes, including lack of motility, 

and nitrogen utilization (19).  Based on these studies, it is anticipated that the P.s. pv. 

syringae B728a rpoN mutant formed in this study will be unable to cause HR in N. 

tabaccum. 

It is known that RpoN plays a role in toxin production in several species, 

although its regulation may not be direct.  Coronatine is a phytotoxin known to be 

synthesized under the hrp pathway and contributes to a pathogenic phenotype in plants 
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(20).  P.s. pv. syringae is known for production of the toxins syringomycin and 

syringopeptin, and has been well characterized (13, 17, 25, 37, 38, 50-52, 62-64, 68).  

These are lipopeptide toxins; know for causing necrosis on plant tissue.  Although many 

studies have been conducted on toxin synthesis, it is not known if RpoN is involved in 

its regulation.    

In recent years, many studies have been conducted on the newly sequenced 

genome of P.s. pv. syringae B728a.  Sigma 54 is one of 14 sigma factors which have 

been identified is this bacterial species.  Although several studies have been conducted 

on Sigma 54 in other species, studies have not been conducted in P.s. pv. syringae 

B728a.  Therefore, it is important to begin to identify the role Sigma 54 plays in P.s. pv. 

syringae B728a.  This knowledge will allow us to understand what functions RpoN 

plays in both the non-pathogenic and pathogenic lifestyles of this organism.   

It is expected that similar phenotypic characteristics listed above will be observed 

in P.s. pv. syringae B728a, but some differences are likely.  The ability to utilize some 

nitrogen sources is likely to be a direct result of and rpoN mutation.  While a decreased 

swarming ability and adhesion may be part of a more complex regulatory pathway, 

involving the co-regulation with the hrp genes and rpoS.  This knowledge can then be 

used to unravel and further understand the gene regulatory network of P.s. pv. syringae 

B728a in which Sigma 54 may be involved.   
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RESULTS 

Sequence analysis of Psyr_4147 indicates that is encodes the alternative sigma 

factor RpoN 

 Genome analysis of P.s. pv. syringae B728a indicated that it encodes the 

alternative sigma factor RpoN and can be identified as gene number Psyr_4147 

(YP_237215).  Its location within the genome is at base pair 4934535-4936070 and is 

transcribed into 511 amino acids.  Using the blastP program at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi), it was indentified that the amino acid sequence 

of this gene shares 80-98% homology to RpoN in other pseudomonads. 

In silico characterization of the P.s. pv. syringae B728a genome for potential RpoN-

dependent binding sites 

In order to indentify genes directly regulated by RpoN, in silico analysis was 

conducted using two programs which were developed based on the known RpoN 

binding site.  Two programs have been developed to search bacterial genomes for this 

specific promoter region sequence: PromScan (55) and Virtual footprint (42).  Both of 

these programs were utilized to search the entire genome of P.s. pv. syringae B728a for 

potential promoter sites recognized by RpoN.  Data from PromScan was discarded 

unless it received a score of at least 90 out of 100.  Virtual footprint had a preset error 

score of 0.8 out of 1.0, therefore all data was retained.  Positive sequence matches from 

the retained data was then used to aid in identifying genes in which RpoN many regulate 

(Table 2.2).  In nearly all case, these positive hits were located -24/-12 location upstream 
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of the gene transcriptional initiation site.  The promoter binding site sequences from 

each search were compiled in order to develop sequence logos (Fig 2.2). 

Cloning and construction of an rpoN mutant in P.s. pv. syringae B728a 

As described in the Materials & Methods section, the rpoN gene of P.s. pv. 

syringae B728a was replaced by a Kmr gene using the Red Recombinase system.  Using 

this method, rpoN along with approximately 4 kb of flanking DNA was cloned in 

pENTr/D-TOPO using topoisomerase.  After plasmid confirmation in E. coli Mach1 

using digest and sequence analysis, the plasmid was named pErpoN.  After a gateway 

reaction into pLVC-D (producing: pLrpoN), the plasmid was cloned into E. coli SW101, 

which contained the heat shock activated Red Recombinase genes used to �flip� out rpoN 

and replace it with Kmr.  This plasmid was named pLrpoN-Km.  Triparental mating was 

set up between P.s. pv. syringae B728a and E. coli (pLCrpoN-Km) and the replacement 

of rpoN within the genome with selection for Kmr.  The rpoN mutant was confirmed by 

colony PCR and Southern blot analysis using both wild type and mutant DNA.  Colony 

PCR of mutant rpoN yields a PCR product approximately 400 bp shorter than wild type 

(Fig 2.3).  Southern blot analysis was also used to confirm that the rpoN mutant (Fig 2.4) 

lacked the gene and to confirm the presence of the Kmr cassette.  Sequencing of the 

rpoN mutant was also conducted to verify the exact location of the mutation (Fig 2.5).  

The rpoN mutant was named B728aAL01. 

Growth of P.s. pv. syringae B728a effected by a mutation to rpoN 

A growth curved analysis was conducted to look into the growth rate of 

B728aAL01 compared to B728a, since it was observed that B728aAL01 seemed to grow
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a. sequence logo developed from PromScan results 
 

 

 
b. sequence logo developed from Virtual footprint results 
 

Fig 2.2.  Sequence logos of RpoN binding regions.  Date obtained from both PromScan 
(a) and Virtual footprint (b) was individually compiled and used to develop sequence 
logos of the hypothesized promoter binding regions (larger letters represent high 
occurrence of that nucleotide).  In both logos, the basic known sequence of TGGCAC-
N5-TTGC is present with varying frequency.    
 

 

 

 

 

 

 



20 
 

 

           

11 Kb

9 Kb

WT rpoN-

11 Kb

9 Kb

WT rpoN-
 

Fig 2.3.  Mutational confirmation in rpoN of P.s. pv. syringae B728a using PCR.  
Primers were design to amplify outside of the genomic region used in the mutational 
process of rpoN that contained the gene of interest.  A 9.6 kb PCR product bands was 
expected for wild type, while a 9.2 kb band was expected in the rpoN mutant.  The 1 kb 
Plus DNA ladder (Invitrogen, Carlsbad, Calif) can bee seen in the left-hand lane. 



21 
 

 

  
 
 
Fig 2.4.  Confirmation of the P.s. pv. syringae B728a rpoN mutant using Southern Blot 
analysis.  The membrane used for the southern blot contained genomic DNA of wild and 
mutant rpoN DNA digested with XhoI.  Initially, the membrane was probed with a PCR 
segment of rpoN (A).  A band approximately 1 kb was expected and indicated by an 
arrow in the figure.  A band was not expected for the rpoN mutant.  In order to show that 
genomic DNA was present in the mutant lane, the membrane was stripped and re-probed 
with the Km cassette used in the mutation process to replace the rpoN gene (B).  In the 
second blot a 1.7 kb band was expected in the mutant lane and not in the wild type lane.  
Faint bands in the second blot are residual bands left after stripping the blot.  Faint bands 
on the right side of both blots are remnants of the ladder used while running the gel. 
 

 

 

 

 

 

A B 

WT           ∆rpoN WT           ∆rpoN 

1 kb 

0.5 kb

1.6 kb 

1 kb 

0.5 kb 
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cactgaccacaacgtccgggaaacgctggatatctgcgaaatggcctacatcgtcaacgatggacagctgattgcggaagg

cgactccgagaccattctggcgaatcagctggtgaaagaggtctacctcggccacgagttccgcctttaatcgactgccctttg

cgcttcgcagccgattgatgcctatgcagtgtattgacaacattttatttgtcatatctctctaggcaaacgcacaggtttc

aggcatataatttgcttaagttggcgccacggcgcctgtagtagatggcgcatgcgcgccggcgaataaggtgtttag

cccctgccatgaaaccatcgctagtcttgagaatgggccagcagctgacgatgacaccgcagctg 

 

a.  The upstream region and 5� end of rpoN showing location of the mutation. 

 

 
actggttgcggcggaaaatcagaaaaagccgttgagtgatagcaagatcgctggtttactggaggcacaaggcattc

aagtagcccgtcgcacagtcgccaagtaccgtgagtctctcgggatcgccccttccagtgagcgtaagcggctgatgt

gatgcaggccgagccacagcgtcccagaggcatgcgccatgcctgcctctttatgcactggcaaaggagaaagctgt

atgcaagtcaacatcagtggacaccaactggaagtgaccaaaccccttcgtgaatacgttgagctcaagctcaagaagctc

gaggggcattttgacaagattaccaacgtgcaggtcacgatgacggtcgaaaagctcaagcagaagatcgaagccacgttg

cacatc 

 

b.  The downstream region and 3� end of rpoN showing location of the mutation. 

 

Fig 2.5.  Location of the rpoN mutation with in P.s. pv. syringae B728a.  Sequence 
analysis was conducted on B7AL01 to identify the exact location of the mutation 
(insertion of the Kmr cassette).  (A) The gene coding region of rpoN begins at base-pair 
4934535 within the genome of P.s. pv. sryingae B782a and is underlined in the figure.  
Homology to this region using sequence analysis of the mutant ended at base-pair 
4934414.  This indicated the beginning of the mutation with in the genome (bold type 
face letters) and that 121 bp upstream of rpoN was also removed during the mutation 
process. (B) The gene coding region of rpoN ends at base-pair 4936070 within the 
genome of P.s. pv. sryingae B782a and is underlined in the figure.  Homology to this 
region using sequence analysis of the mutant ended at base-pair 4936165.  This indicated 
the end of the mutation with in the genome (bold type face letters) and that 95 bp 
upstream of rpoN was also removed during the mutation process. 
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slower then B728a.  It was clear, over the course of 9 hours that B728aAL01 grew much 

slower then the wild type strain (Fig. 2.6).  This data shows that, although RpoN is not 

required for normal growth of the bacteria, it does play an effect on growth and 

development at some level. 

rpoN mutant of P.s. pv. syringae B728a exhibited defects in nitrogen utilization 

 In order to test the rpoN mutants� ability to grow on various sole nitrogen 

sources, about 100 cell were plated on minimal media plates containing 5 mM of an 

individual nitrogen source.  All plates were observed daily, for a maximum of 7days, to 

look for the presence of colony formation.  Results of this assay are presented in Table 

2.3.  B728aAL01 grew best in media supplemented with glutamate, most similar to 

B728a growth.  The mutant was also able to utilized media supplemented with arginine, 

asparagine.  Although is did seem to be able to grow on leucine and praline, growth was 

very poor. 

Loss of motility was observed in mutant rpoN 

 A swarming assay was conducted on both B728a and B728aAl01 cultures to test 

motility.  107 and 108 CFU/ml of each culture was spotted into the middle of a 0.4% agar 

PDA plate and incubated in a moist chamber at 25ûC.  After overnight incubation, only 

B728a showed an ability to swarm at either concentration (Fig. 2.7).  B728aAL01 plates 

were further incubated for an addition four days, but showed to change in motility.  This 

data indicates B728aAL01 is non-motile. 
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Cumulative Growth Curve
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Fig 2.6. Growth of P.s. pv. syringae B728a affected by a mutation to rpoN.  Optical 
density (OD) values were taken over the course of 9 hours on B728a and B278aAL01 
liquid cultures.  Data obtained from this assay show that B728aAL01 has a decreased 
growth rate when compared to wild type B728a.  The data was obtained in replicate on 
two different days.  Error bars represent the standard deviation at that location. 
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Table 2.3. Nitrogen utilization of P.s. pv. syringae B728a strains 

 
Nitrogen utilization of straina: 

 Nitrogen source 
Wild type rpoN mutant  

 
Without nitrogen  + - 

Alanine + - 

Ammonia + - 

Arginine + + 

Asparagine + + 

Glutamate + ++ 

Glycine + - 

Histidine + - 

Isoleucine + - 

Lysine + - 

Leucine + - 

Methionine + - 

Phenylalanine + - 

Proline + - 

Serine + - 

Threonine + - 

a Growth (+) or lack of growth (-) on plates containing specified nitrogen source at a 
final concentration of 5 mM to at least 1 mm by 7 days.  Presence of ++ indicates wild-
type like growth of rpoN mutant.                                         
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Fig 2.7. Motility assay of P.s. pv. syringae B728a strains.  10 µl drops of 107 CFU of 
either B728a (A) and B728aAL01 (B) was placed in the center of 0.4% PDA plates (108 
data not shown).  Plants were incubated 24 hr at 25°C in a moist chamber before being 
photographed.  As expected, mutant rpoN was non-motile. 
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Mutant rpoN of P.s. pv. syringae B728a results in inability to form biofilm on a 

glass surface 

A slide adhesion assay was conducted on both B728a and B728aAL01 to test if a 

mutation to rpoN has an effect on biofilm formation.  The standard laboratory protocol 

assay used used liquid SRMAF as the medium of choice.  But, it was observed that 

B728aAL01 was unable to grow due to limited nitrogen sources.  This mutant was able 

to grow in HMM, so it was decided to use this medium since it was also a minimal 

media.  It was clear in this assay that B728aAL01 is defective in adhesion ability (Fig 

2.8).  Even after 72 hours of growth the formation of a biofilm did not occur (data not 

shown). 

Bioassay for toxin production 

 P.s. pv. syringae B728a is known to produce toxins syringomycin and 

syringopeptin.  Mutant strain, B728aAL01, was tested for production of these toxins and 

compared to control strains B728a and B728agacS (Fig 2.9).  Toxin production for strain 

B782aAL01 was slightly increased on PDA against Geotrichum, but the zone of 

inhibition was significantly larger against Bacillus when compared to B728a.  

B728agacS, which contains a mutation in toxin regulation, only produced zones of 

inhibition against Bacillus when grown on PDA.  Toxin production on modified HMM 

was poor, therefore the data is not shown. 
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Fig 2.8. Slide adhesion of B728a and B728aAL01.   Cultures were grown 3 days in 
HMM liquid media stationary at 25ûC.  Post incubation, slides were stained with crystal 
violet before microscopic observation and photographing.  As expected, B728a (A) was 
able to adhere to a glass surface, while an rpoN mutant (B) was unable to form a similar 
biofilm on a glass surface after incubation for 3 days.   
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Geotrichum Bacillus 

  

  

  
Fig. 2.9. RpoN is a negative regulator of P.s. pv. syringae B728a syringomycin and 
syringopeptin toxin production.  PDA plates spotted with B728a, B728aALl01, and 
B728agacS were lightly oversprayed with suspensions of Geotrichum and Bacillus after 
four days of incubation to analyze differences in development of zones of inhibition 
(measurments in millimeters).  After overnight incubation, a noticeable difference was 
observed between B728a and B728aAL01.  This results show that RpoN is a negative 
regulator of toxin expression in P.s. pv. syringae B728a. 
 

B728a B728a 

B728aAL01 B728aAL01 

B728agacS B728agacS 

1.00±0.00 2.06±0.53 

2.22±0.44 11.17±1.12

0.00±0.00 16.50±1.41
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Pathogenicity and ability to elicit HR affected by rpoN mutation in P.s. pv.   

syringae B728a 

 Pathogenicity assays were first conducted on Nicotiana tabacum to test for the 

ability of B728aAL01 to cause a hypersensitive (HR) on leaves.  Post inoculation and 

incubation overnight, only B728a was able to cause HR (Fig 2.10).  Since it was earlier 

observed that this mutant strain grows at a slower rate then B728a, incubation was 

increased, but no changes were observed.   

 Pathogenicity assays were also conducted in 3 week old bean seedlings using 

vacuum infiltration of bacterial cultures.  After 3-4 days of plant incubation, disease 

symptoms began to develop on wild type plants.  Symptoms never developed for 

B728aAL01 or B728agacS (Fig 2.11).  Population analysis was also conducted as part of 

this assay.  Bacterial levels in the plant leaf were analyzed at day zero and at sign of 

disease development on B728a.  At day 0, the bacterial levels in the plant leaf was 

approximately 6.1X103±5.2X102 for B728a and 4.2X100±9.6X10-1 CFU/cm2 of leaf 

tissue for B728aAL01.  At sign of disease development, generally by day 4, bacterial 

levels were approximately 6.4X107±1.0X108 for B728a and 0 CFU/cm2 of leaf tissue for 

B728aAL01.  These results indicate that B728aAL01 is unable to survive once 

introduced into the plant leaf. 
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Fig 2.10.  P.s. pv. syringae mutant rpoN defective in eliciting HR in Nicotiana tobacum.  
A N. tobacum plant was infiltrated with B728a, B728aAL01, and water after being 
punctured with a sterile needle.  To ensure that the leaf was being infiltrated with 
approximately the same amount of bacterial cultures, each culture was set to and OD600 
of 0.3 (equivalent to 5X108 CFU/mL).  Plants were incubated overnight at room 
temperature. 
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Fig 2.11.  Disease development in bean requires RpoN.  Vacuum infiltration studies 
were conducted with B728aAL01, and compared to B728a and B728agacS.  Plants were 
infiltrated with a bacterial culture containing approximately 1X105 CFU/mL and 
incubated until sign of disease development (3-4 days).  Development of disease 
symptoms only occurred on plants infiltrated with B728a, while B728aAL01 and 
B728agacS appeared healthy. 
 

 

B728a

B728agacS 

B728aAL01
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MATERIALS AND METHODS 

Bacterial strains and media 

 All bacterial strains used in this study are listed in Table 2.4.  General cloning 

was conducted in Escherichia coli Mach1 T1 cells (Invitrogen, Carlsbad, Calif) and was 

cultured at 37ûC in Luria-Bertani (LB) liquid or agar medium.  E. col SW105 was used 

in mutant formation to replace rpoN with the Kmr cassette, utilizing Red Recombinase 

genes.  This strain was cultured on LB liquid or agar medium and incubated at 30ûC.  

P.s. pv. syringae B728a strains were grown at 25°C in nutrient broth-yeast extract   

(NBY) liquid or agar (58) or on King�s B agar medium (KB) (28).  Swarming assays 

were conducted on 0.4% potato-dextrose agar (PDA) medium.  Nitrogen assays were 

conducted on minimal salts media (10% glucose, 1 M MgSO4 (anhydrous), & 10X salts 

[30 g/L KH2PO4 and 60 g/L Na2HPO4]) supplemented with 5mM of each nitrogen 

source.  Toxin assay were conducted on HMM (26) modified media (5 mL of 20% 

fructose, 5 mL of 20% mannitol, 5 mL of 20% succinate, 100 µL of 50 mM glutamate, 

and 250 µL of 20 mM FeCl3) and PDA.  Antibiotics were added at the following 

concentrations (µg /ml): rifampin, 100; kanamycin, 75; and tetracycline, 20. 

General DNA manipulations 

 Restriction enzymes and Phusion high-fidelity DNA polymerase were purchased 

from New England Biolabs (Beverly, Mass.).  Integrated DNA Technologies (Coralville, 

Iowa) sourced all oligonucleotides used in this study.  When cloning using Gateway 

technology (32), genes were first amplified by PCR and cloned into vector pENTR/D-

TOPO (Invitrogen).  LR clonase (Invitrogen) was used for recombination between 
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Table 2.4 Strains and plasmids 
Designation Relevant Characteristics Source 
Bacterial Strains   
  Escherichia coli   
    Mach1 T1 ∆recA1398 endA1 tonA Φ80∆lacM15 

∆lacX74 hsdR(rk
-mk

+) 
Invitrogen 

    SW105 DY380 (cro-bioA)<>araC-PBADCre 
∆galK 

National Cancer 
Institute 

   
  P.s. pv. syringae    
    B728a Wild type, bean pathogen, Rifr (36) 
    B728aAL01 rpoN-Kmr derivative of B728a, Rifr 

Kmr 
This Study 

    B728agacS P.s. pv. syringae B728a containing an 
insertion in gacS, Kmr 

Steve Lindow 

   
Plasmids   
    pENTER/D-TOPO Cloning vector, Kmr Invitrogen 
    pErpoN pENTr/D-TOPO carrying rpoN, Kmr This study 
    pKD13 Vector containing nptII cassette 

flanked by FRT sites, Apr, Kmr 
Bruce Wanner 

    pLVCD Gateway destination vector for mating 
with P. syringae, pBR322 derivative 
with mob genes from RSF1010, Tcr Apr 
Cmr 

Steve Lindow 
 

    pLrpoN pLVCD carrying rpoN, Tcr Apr Cmr This Study 
    pLrpoN-Km pLVCD carrying homology upstream 

& downstream to rpoN, Kmr, Tcr Apr 
Cmr 

This Study 

    pRHrpoN pRH002 carrying rpoN with its putative 
promoter region, Cmr 

This Study 

    pRK2073 Helper plasmid, Spr Trmr (34) 
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pENTR and the gateway destination vector, per manufacturer�s instruction.  Chemical 

transformation and electroporation was used to introduce plasmids into E. coli.  For 

introduction of plasmids into P.s. pv. syringae B278s strains, tri-parental mating was set 

up using helper plasmid pRK2073 (34).  Standard cycling conditions were used for PCR 

based on manufacturer�s instruction provided with the polymerase and primer sequences 

are listed in Table 2.5.  

Construction of P.s. pv. syringae rpoN knockout mutant 

Knockout mutation to rpoN was constructed using the Red Recombinase to form 

the mating plasmid (9). Using this method (summary Fig 2.12), the gene of interest was 

replaced by an antibiotic resistance gene contained in a plasmid while in E. coli.  The 

DNA sequence of the rpoN gene in B728a was obtained from NCBI, gene accession 

number YP_237215.  PCR was set up with P049 and P050 to amplify an 8.781 kb 

fragment of genomic DNA containing the rpoN with about 3-4 kb homology on each 

side (5�- 3797 bp & 3�- 3458bp).  The product was TOPO cloned into a gateway entry 

vector pENTR (Invitrogen) forming pErpoN.  This was followed by Gateway reaction 

into pLVC-D forming pLrpoN, using LR clonase (Invitrogen).  Electroporation then 

occurred to place this plasmid into competent cells of E. coli SW105, which contain the 

genes necessary for the flip recombinase system to function.  After confirmation, SW105 

E. coli containing rpoN:pLVC-D was electroporated with a short linear piece of DNA 

containing homology to both the 5� and 3� end of rpoN, along with a Kmr cassette 

obtained from pKd13.  This linear segment was formed by using P047 and P048 to PCR 

pKD13, which contains nptII (Kmr).  These primers were designed with tags at the end 
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Table 2.5. Primers used for PCR amplification 
Name Sequence 

P047 GTTCCGCCTTTAATCGACTGCCCTTTGCGCTTCGCAGTGTAGGCTGGAGCTGCTTCG 
P048 TTTCTCCTTTGCCAGTGCATAAAGAGGCAGGCATGGATTCCGGGGATCCGTCGACC 
P049 CACCCGATACAGCTTCCGCCACAA 
P050 GGGGTCTGTTCTGCACGAGTTGTC 
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Fig 2.12. Cloning and mutational process of rpoN gene of P.s. pv. syringae B728a in E. 
coli.  After PCR, ligation occurred in pENTR and was cloned into E. coli MachI, 
followed by gateway transformation into pLVCD.  After plasmid confirmation, pLrpoN 
was electroporated into E. coli SW105.  Red Recombinase genes were then activated, 
via heat shock, in order to replace rpoN with a non-polar Kanamycin resistance gene by 
double cross over of a linear piece of DNA, utilizing the Red Recombinase proteins 
located in E. coli SW105.  The linear piece of DNA was electroporated into E. coli 
SW105 and �flipped� into the pLVC-D construct after activation of recombinase genes. 
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which contain homology near rpoN in pLrpoN.  After activation of Red Recombinase 

genes located in the E. coli SW105 genome, this segment will recombine into pLrpoN 

resulting in the removal of rpoN and formation of pLrpoN-Km.  These genes are 

activated via heat shock at 42°C and result in leaving only the 3� and 5� homologous 

ends needed for integration back into B728a.  Within the genome, rpoN is located at 

position 4934535 to 4936070.  After completion of the Red recombination, the Km 

cassette replaced the segment located at 4934417-4936165.  This resulted in the removal 

of 121 bp upstream and 95 bp downstream of the gene, and insertion of the Kmr gene 

(Fig 2.13).  Once confirmed, rpoN:Kmr:pLVC-D in SW105 E. coli was used, along with 

helper E. coli pRK2073, for triparental mating into B728a.  All bacterial colonies which 

grow during the mating process were analyzed for a double crossover of the vector, 

resulting in the loss of Tcr and the replacement of a functional rpoN with a Kmr gene.  

The mutation was confirmed using PCR and Southern blot analysis.  Sequence analysis 

was also conducted to confirm the exact location of the mutation.  The rpoN mutant was 

named B728aAL01. 

Promoter scans 

Sigma 54 recognizes a -24/-12 consensus sequence which is different from 

Sigma 70.  Two online programs were employed to search for potential promoter regions 

recognized by this sigma factor within the genome: PromScan (http://molbiol-

tools.ca/promscan/) (55) and Virtual footprint (http://www.prodoric.de/vfp/) (42). Data 

received from PromScan was discarded unless it received a score of at least 90 out of 

100.  All data was retained from Virtual footprint analysis, as the program contained a 
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Sigma 54
P.s.s. B728a

pLVC-D::rpoN

14551 bp
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KmR

KmR

P.s.s. B728a rpoN

Note: Crossover removes 118 bp upstream and 35 bp downstream of the rpoN gene
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Note: Crossover removes 118 bp upstream and 35 bp downstream of the rpoN gene  

Fig 2.13.  Mating in P.s. pv. syringae B728a to result in the removal of rpoN and 
insertion of a non-polar kanamycin resistance gene.  Potential mutants were screened for 
a double crossover event of the plasmid, indicating that the wild type rpoN gene was 
removed from the genome. 
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preset score cutoff at 0.8 out of 1.0.  Although similarity existed between data sets, 

variation in data yield for both programs is the result of differences in programmed 

logarithms, with PromScan performing the most thorough search.   

Growth curve analysis 

A growth curved analysis was conducted to look at the growth rate of 

B728aAL01 compared to B728a.  Cultures were initially grown overnight at 25ûC in 

liquid NBY with appropriate antibiotics.  They were then added to 50 mL of fresh media 

and incubated at 25ûC, shacking (150 rpm).  An OD600 was taken at 1 hour intervals 

(including time zero), over the course of 9 hours.  This assay was conducted in replicate 

on two separate days.  Obtained values were graphed after calculating their average 

value and standard deviations. 

Phenotypic analysis 

Nitrogen utilization was tested by growing cultures on minimal salts media agar 

plates (10% glucose, 1 M MgSO4 (anhydrous), & 10X salts [30 g/L KH2PO4 and 60 g/L 

Na2HPO4]) containing a 5 mM nitrogen source.  This is the standard level of nitrogen 

source shown to be sufficient in other studies.  Nitrogen sources may include: NH4Cl, L-

alanine, arginine, asparagine, aspartate, cysteine, glutamine, glycine, histamine, 

isoleucine, leucine, lycine, methionine, phenylalanine, proline, serine, or threonine.  

Overnight cultures of B728a and B728aAL01 were initially diluted to and OD600 of 0.3 

(equivalent to 5X108 CFU/ml), then diluted to 1X104 CFU/ml, followed by plating of 10 

µl (equivalent to 10 CFU/ul).  Plates were incubated for a maximum of 10 days and 

observed daily for the presence of colonies measuring approximately 1mm. 
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Motility and quorum sensing was conducted by growing cultures overnight on 

low percent agar (0.4%) potato dextrose plates and observing spreading ability.  Plates 

were set up in duplicate at concentrations of 1X108 and 1X107, incubated overnight at 

25°C, and photographed.  In such a case in which swarming does not occur overnight, 

incubation was continued for 5 days. 

A qualitative approach was taken to test adhesion ability of B728aAL01. 

Cultures (B728a and B728aAL01) were initially set up in 2 mL of HMM liquid medium 

and incubated overnight, shaking, at 25ûC.  200 µL of the fresh overnight cultures was 

then added to 25 mL fresh HMM liquid medium in a 50 mL plastic tube.  A clean, sterile 

glass slide was placed into each tube.  Cultures were then incubated stagnant at 25ûC.  

Multiple replicates were set up per culture and observed at 24 and 72 hours.  Slides were 

stained with crystal violet and observed under a microscope to look for the presence of a 

biofilm at the liquid interface.  Microscopic photographs were taken for each culture.  

All the above phenotypic assays were conducted three times.  

Bioassays for toxin production 

 P.s. pv. syringae strains B728a, B728aAL01, and B728agacS (control) were 

tested for the production of toxins syringopeptin and syringomycin (16, 33) on two 

different types of media.  Briefly, strains were grown overnight in 5 mL of NBY liquid 

medium.  Bacterial cells were collected by centrifugation, washed once in sterile 

distilled water (SDW), and resuspended in SDW to approximately OD600 0.3 (equivalent 

to 5X108 CFU/ml).  Both PDA and modified HMM plates were spotted with 5 µL 

aliquots and incubated for 4 days at 25ûC.  Plates were set up in triplicate with three 
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spots per plate.  After incubating, plates were lightly oversprayed with a suspension of 

Geotrichum candidum spores or Bacillus megaterium.  Geotrichum is sensitive to 

syringomycin (14), while Bacillus is sensitive to syringopeptin (33).  After overnight 

incubation at 25ûC, zones of exclusion, in which the sprayed culture was not able to 

grow around the test strain, were measured and compared to the wild type strain.  One 

measurement was taken on each plate in millimeters, choosing one of the three colonies 

at random.  After repeating the assay three times, the nine obtained values for each 

scenario were averaged and standard deviations were calculated. 

Pathogenicity assays  

The model plant organism Nicotiana tabacum is also a host for P.s. pv. syringae 

B782a.  To test the role of B728aAL01 to cause disease symptoms (presence of a 

hypersensitive response) in mature N. tabaccum, spot infiltration tests was conducted on 

mature leaves with the inoculum.  Cultures (B728aAL01, water (positive control), and 

B728a (negative control)) were grown and incubated overnight in NBY with appropriate 

antibiotics (75 ug/µl kanamycin for the rpoN mutant).  Leaves were infiltrated with each 

culture (approximately 5X108 CFU/ml) after puncturing with a sterile needle.  A 

designated leaf was infected with each culture, spaced between the veins, by forcing the 

bacteria into the plant puncture wound site using a syringe.  Plants are incubated 

overnight at appropriate temperature and humidity levels.  Photographs were taken of 

infected leafs after about 18 hours post infection.   

Pathogenicity was conducted on 2-3 week old Blue Lake 274 bean seedlings 

(Phaseolus vulgaris) using standard laboratory vacuum infiltration.  After overnight 
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growth in 5 mL liquid media (NBY) with the appropriate media, the cultures 

(B728aAL01, B728agacS (positive control), and B728a (negative control)) were used to 

inoculate 200 mL fresh media, and grown to an OD600 of 0.6, followed by dilution to an 

OD600 of 0.3.  This OD value is equivalent to 5X108 CFU/ml.  The inoculum was 

prepared by adding 2 ml culture to 1,998 ml distilled water to obtain approximately 

1X105 CFU/ml.  After addition of Silwet L-77, plants were vacuum infiltrated by placing 

under 20 in. Hg. for 1.5 min twice, to force the plants to take up the inoculum.  All 

plants were incubated at appropriate temperature and humidity levels, and monitored 

daily for signs of disease development.  Photographs of all plants were taken at the sign 

of disease development in the wild type. 

 Population analysis was conducted at Day 0 and at sign of symptom development 

(brown lesions and chlorosis) on B728a control plants to analyze the population 

differences between WT bacterial levels and the rpoN mutant.  In order to analyze 

bacterial populations within the leaf, one trifoliate leaf was removed from each of the 

three plants inoculated per bacterial strain.  A 2 ml screw cap microcentrifuge tube (Bio 

Plas Inc., San Francisco, Calif.) was used to punch out 20 leaf discs (8 mm diameter).  

The discs where homogenized using a mortar and pestle in Silwet Phosphate Magnesium 

Buffer (SPM, 0.7% K2HPO4, 0.4% KH2PO4, 0.024% MgSO4·7 H2O), and 0.004% Silwet 

L-77).  Serial dilutions were set up in water and spread on KB plates with appropriate 

antibiotics.  Colonies were counted after incubation for 48-72 hours at 25ûC. 

For both the formation of HR in tobacco and bean infiltration assay, three 

replicates were conducted on different days. 
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CHAPTER III 

CONCLUSIONS  

 Gene regulation is very important in any cellular system and multiple sigma 

factors exist which are involved in gene transcription.  The regulatory gene Sigma 54, 

which is encoded by rpoN, has been extensively studied in many organisms including: 

Rhizobium (39), Vibrio (60), and several Pseudomonas species (27).  General 

characteristics of its regulatory network, basic phenotype, and pathogenicity in the 

animal system have been previously described in these and other bacterial organisms 

(27, 44, 48).  Unfortunately, minimal work has been conducted on P.s. pv. syringae 

B728a rpoN and how this sigma factor is involved in pathogenicity in the plant system.   

O�Toole (44) showed that an rpoN mutant in Vibrio anguillarum was not only 

deficient in flagellum function and motility, but also did not grow when nitrogen 

availability was low.  Research has shown that pathogenicity is affected in the human 

system due to lose of motility and adhesion ability (27).  It was expected that a mutation 

to this gene would both inhibit disease development and prevent growth of the bacteria 

in planta.  The ability to grow in the presence of minimal nutrients has also been shown 

to not occur in rpoN mutants.  Although past studies (24) have looked into utilization of 

sole carbon and nitrogen utilization, nitrogen utilization was the main focus of this study.  

These and other known characteristics may identify the possible roles the Sigma 54 

plays in activating genes involved in plant pathogenicity. 
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Results of the promoter scans yielded much expected data.  It was not surprising 

to identify nitrogen or flagella related genes.  In the promoter scan at least one result was 

not located at a -12/-24 position.  Instead, it was located in the reverse orientation near 

an ORF.  It is possible that in this case, Sigma 54 may be blocking gene transcription.  

Previous studies have shown that RpoN is able to negatively control itself (8, 30).  It was 

also proposed that the presence of putative oppositely oriented RpoN binding site may 

be overlapping the -10 promoter region and transcription start site of Sigma 70 (39).   

 It is important to note, that overall, RpoN of P.s. pv. syringae B278a seems to 

behave in a manner very similar to other pseudomonads.  Growth curve analysis of 

B728aAL01 showed that it grows much slower then wild type, which has been 

previously observed in other studies (20).  This phenotype may play a role in several 

aspects of bacterial development.  Numerous phenotypic assays were conducted as part 

of this project.  Results of the nitrogen utilization, adhesion, and motility assay were as 

expected, when compared to other studies.  The mutant showed a decreased ability to 

utilize several nitrogen sources, was not able to from a biofilm on a glass surface, or 

swarm on soft agar plates.  It was interesting to observe that B728aAL01 appears to 

fluoresce less then wild type on King�s B agar.  This may tie in a role of Sigma 54 in 

iron transport, especially since promoter scans identified TonB as potentially being 

regulating by Sigma 54.  To date, a correlation between iron regulation and Sigma 54 

has not been identified. 

Based on previous studies, it is expected the P.s. pv. syringae B728a RpoN will 

play a role in pathogenicity in both bean and N. tabacum.  It was anticipated that disease 
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and hypersensitive response formation would not occur in the mutant.  This may 

indirectly be due to several factors, such as, defects in adhesion and motility.  It was not 

unexpected to find that B728aAL01 was not able to elicit disease symptoms in bean.  A 

previous study in Arabidopsis (20) yielded similar results, and further showed that this 

phenotype was only partially due to lack of hrp gene expression. 

It was interesting to find that Sigma 54 may function as a negative regulator of 

toxin production in P.s. pv. syringae B728a.  As stated earlier, this bacterium is known 

to produce both syringopeptin and syringomycin.  Studies have shown that RpoN is 

involved in production of coronatine, and that an RpoN mutant is unable to produce this 

toxin and elicit plant disease (20).  A similar finding was not observed in B728aAL01.  

In this case, it appeared that toxin production was increased in the mutant strain.  Upon 

further literature search, it was found that similar results have been reported for P. 

fluorescens CHA0 (46).  This pathogen is known to produce metabolites which have 

been shown to posses broad range antibacterial and antifungal activity: 2,4-

diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) (47).  In Keel�s study (46), it was 

shown that Sigma 54 negatively regulated toxin production and may act as a control to 

balance toxin production.  This was also reported by Heurlier (22) in P. aeruginosa,, in 

which the biocide hydrogen cyanide was expressed in greater levels in an RpoN mutant 

line.  The mechanism for the regulatory pathway of these and many other toxins in still 

unclear, but this shows that Sigma 54 can act as an up regulator of toxin production in 

some species, and a suppressor in others.  In the case of this study, Sigma 54 acts as a 
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suppressor of syringopeptin and syringomycin production, although likely through an 

indirect pathway. 

This study shows that the involvement of any regulatory gene in a bacterial 

species is very elaborate and complex.  To my knowledge, this is the first analysis of 

Sigma 54 in P.s. pv. syringae B728a.  In general, results of this study show that the role 

of Sigma 54 in P.s. pv. syringae B728a is similar to other Pseudomonas pathovars.  

However, it is likely that further analysis would reveal differences among the different 

pathovars by use of RT-PCR and microarray analysis of the rpoN regulon.  Through the 

use of current technology, over the next few years the mysteries surrounding gene 

regulation and the impact of Sigma 54 in the plant-pathogen interaction will be resolved. 
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