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ABSTRACT 

Optimal Control of Projects Based on Kalman Filter Approach for Tracking & 

Forecasting the Project Performance. 

(May 2009) 

Srikant Bondugula, B. Tech., Indian Institute of Technology, Guwahati, India 

Chair of Advisory Committee: Dr. Kenneth F. Reinschmidt 

 

Traditional scheduling tools like Gantt Charts and CPM while useful in planning and 

execution of complex construction projects with multiple interdependent activities 

haven’t been of much help in implementing effective control systems for the same 

projects in case of deviation from their desired or assumed behavior. Further, in case of 

such deviations project managers in most cases make decisions which might be guided 

either by the prospects of short term gains or the intension of forcing the project to 

follow the original schedule or plan, inadvertently increasing the overall project cost.  

Many deterministic project control methods have been proposed by various 

researchers for calculating optimal resource schedules considering the time-cost as well 

as the time-cost-quality trade-off analysis. But the need is for a project control system 

which optimizes the effort or cost required for controlling the project by incorporating 

the stochastic dynamic nature of the construction-production process. Further, such a 

system must include a method for updating and revising the beliefs or models used for 

representing the dynamics of the project using the actual progress data of the project. 
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This research develops such an optimal project control method using Kalman 

Filter forecasting method for updating and using the assumed project dynamics model 

for forecasting the Estimated Cost at Completion (EAC) and the Estimated Duration at 

Completion (EDAC) taking into account the inherent uncertainties in the project 

progress and progress measurements. The controller is then formulated for iteratively 

calculating the optimal resource allocation schedule that minimizes either the EAC or 

both the EAC and EDAC together using the evolutionary optimization algorithm 

Covariance Matrix Adaption Evolution Strategy (CMA-ES).  The implementation of the 

developed framework is used with a hypothetical project and tested for its robustness in 

updating the assumed initial project dynamics model and yielding the optimal control 

policy considering some hypothetical cases of uncertainties in the project progress and 

progress measurements. 

Based on the tests and demonstrations firstly it is concluded that a project 

dynamics model based on the project Gantt chart for spatial interdependencies of sub-

tasks with triangular progress rates is a good representation of a typical construction 

project; and secondly, it is shown that the use of CMA-ES in conjunction with the 

Kalman Filter estimation and forecasting method provides a robust framework that can 

be implemented for any kind of complex construction process for yielding the optimal 

control policies. 
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NOMENCLATURE 

 

 

BAC Budget at Completion 

BCWS Budgeted Cost of Work Scheduled 

BCWP Budgeted Cost of Work Performed 

CMA-ES Covariance Matrix Adaption Evolution Strategy 

COV Coefficient of Variation 

DAC Duration at Completion 

EAC Estimated Cost at Completion 

EDAC Estimated Duration at Completion 

EKF Extended Kalman Filter 

UKF Unscented Kalman Filter 
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1. INTRODUCTION 

 

1.1 Importance of the Research 

It has been shown by Bellman (Kirk 2004) that in case of deviations the optimal system 

or project trajectory for the remaining duration is different from the original optimal 

trajectory, and hence needs to be recalculated after every such deviation from the 

expected trajectory. The optimal project control policy will be a resource allocation 

schedule that minimizes this overall cost of completion of the project over the remaining 

duration. Several dynamic project control methods have been proposed for achieving 

this objective yielding the optimal resource allocation schedule for the rest of the 

duration of the project by minimization of the cost to complete.  

All these methods are based on the assumption that the cost at completion is 

deterministic in nature. But the need is for a project control system which optimizes the 

expected value of the effort or cost required for controlling the project by incorporating 

the stochastic dynamical nature of the construction-production process. Further, even 

after the observation of apparent delays and deviation in the construction process the 

managers still rely on the initially assumed project dynamics model for making future 

control decisions. Hence we need a method for effectively updating the assumed 

progress model  and using it with the project control methods to derive the control 

decisions. 

____________ 
This thesis follows the style of Journal of Computing in Civil Engineering. 
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This research aims to develop such an optimal project control method using 

Kalman Filtering algorithm for updating the assumed project progress model and using it 

for forecasting the progress of the project taking into account the inherent uncertainties 

in the project progress and progress measurements. The optimal resource allocation 

schedule can then be calculated by optimizing the future progress estimates using a 

suitable optimization algorithm. 

 

1.2 Problem Statement 

Project control of a typical project is a recursive process involving a) measurement and 

monitoring of the actual progress performance, b) revision of the assumed progress 

models to reflect the actual progress performance, c) forecasting future progress 

performance based on the revised or updated progress model, and finally, d) 

identification, quantification and optimization of the project controls that will steer the 

project towards the desired performance. The basic structure of such a controller is 

shown in Figure 1. 

Firstly, an appropriate project progress model needs to be selected to represent 

the behavior of the project by explaining all the observable progress measurements in 

relation to all the project controls or resources. Using feedback from the actual project 

progress any approximate system or project model can be refined using an appropriate 

filtering technique for filtering out the process and measurement noises, disturbances 

and uncertainties.  
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Figure 1    Basic structure of a project controller. 

By  recursively using the filtering technique the assumed model can be refined by 

updating the model parameters so that the outputs of the assumed model can be made to 

track the outputs of the actual project. The refined project model is then used for 

forecasting the future progress performance of the project. The purpose of a project 

controller is to determine the resource inputs for the project that produce the desired 

progress performance. The refined project model can be used for iteratively calculating 

these resource inputs. 

For construction projects the progress performance measures are the Estimated 

Cost at Completion (EAC) and the Estimated Duration at Completion (EDAC). The 

desired project performance is a) conformance to the project schedule requirements, and 
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b) minimum possible EAC. It is not uncommon for construction projects to overshoot 

the project deadline. Hence the conformance to schedule requirements is forced by 

imposing a penalty for schedule overruns. The estimated cost at completion (EAC) along 

with the cost of schedule overrun together constitutes the overall cost at completion of 

the project. At the start of the project the project activity schedule and resource 

allocation schedule are optimized by minimizing this overall cost at completion. But 

more often than not the actual project performance doesn’t conform to the originally 

planned performance and necessary control measures need to be implemented so that the 

predicted future performance will be within the acceptable limits of the desired 

performance. Usually the main control measure in such cases is the change in current 

resource allocation schedule in the form of a revised resource acquisition and de-

acquisition schedule. 

But considering the stochastic nature of actual construction projects, the need is 

for a project control system which optimizes the effort or cost required for controlling 

the project by incorporating the stochastic dynamical nature of the construction-

production process. The main component of such a stochastic optimal controller 

(Goodwin and Sin 1984) is the objective based forecasting algorithm that can forecast or 

predict the EAC and EDAC of the project given a resource allocation schedule. An 

offline controller can be devised that can iteratively and adaptively vary the resource 

allocation schedule for optimizing these forecasts.  Any of the evolutionary algorithms 
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can be used in conjunction with a robust forecasting algorithm to devise such an optimal 

project controller. 

 

1.3 Research Objectives 

The main objective of this research is to develop an optimal project control method for 

application to construction projects taking into account the inherent uncertainties in the 

project progress and progress measurements. As mentioned in previous sections, this 

includes the recursive processes of progress measurement, revision of the progress 

models, forecasting future progress, and optimizing the necessary project controls.  

These sub-objectives that need to be addressed for achieving the main research 

objective are summarized below: 

1. Investigation of Project Progress Models: The first and foremost objective is to 

investigate the usability of the three kinds of project models – the polynomial 

progress model, the sigmoid or logistic progress model, and the comprehensive 

model based on baseline plan and individual triangular progress rates – with the 

tracking and filtering framework. The evaluation of the model usability will be 

based on the tracking and forecasting performance observed by comparing the 

actual project performance with the tracked and forecasted performance in 

conjunction with the tracking and forecasting errors. 

2. Development of Filtering, Tracking and Forecasting Framework: The next step 

in achieving the research objective is to develop a robust tracking and forecasting 
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framework capable of handling multiple project states and project model 

parameters while efficiently incorporating the model, process and the 

measurement uncertainties. The tracking system should be able to track both the 

project states – the progress of individual tasks – as well as the project values – 

the budgeted cost of work performed (BCWP) and the actual cost of work 

performed (ACWP). To handle nonlinear project progress models the Extended 

Kalman Filter as well as the Unscented Kalman Filter will need to be 

implemented.  

3. Development of Optimal Project Controller: The final objective is to implement 

a framework for iterative optimization of the future progress performance 

estimates using a suitable optimization algorithm to yield the optimal resource 

allocation schedule. The performance estimate in this case is the overall cost at 

completion of the project including the resource costs as well as the cost of 

schedule overrun. 
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2. BACKGROUND AND LITERATURE REVIEW 

 

Depending on the theoretical nature and background the overall process of project 

control can be separated into three sub-processes: a) tracking the actual progress 

performance and revision of the assumed progress models to reflect the actual progress 

performance, b) forecasting future progress performance based on the revised or updated 

progress model, and finally, c) identification, quantification and optimization of the 

project controls that will steer the project towards the desired performance. The 

following sections discuss in brief the theoretical background and literature review for 

each of these aspects. 

 

2.1 Project Progress Models 

The main objective of any general project progress model is to represent the complete 

behavior of the project by explaining all the observable progress measurements in 

relation to all the project resources. These models representing the project transition and 

project outputs are usually complex nonlinear functions. Due to their complexity it might 

be cumbersome to use these models with the tracking, forecasting and optimization 

system. To overcome this problem simpler models are chosen to represent the general 

dynamics of the system.  

The first and the simplest of the models is based on the assumption that at any 

discrete time k  the rate of progress ( )x k of a project can be represented using a higher 
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order polynomial (2.1) of the present project state ( )x k with ,   and a b c  as the model 

parameters. This assumption is justified by the fact that any continuous function can be 

approximated to arbitrary precision on a finite interval using a suitable polynomial. 

 2( ) [ ( )] [ ( )] . . .x k a b x k c x k= + + +  (2.1) 

The second model (2.2) is based on the conjecture that the rate of progress is 

directly proportional to the cumulative work completed and the amount of work to-be-

completed (Reinschmidt 2007) (Barraza et al. 2000) (Barraza et al. 2004). In these 

models a particular Sigmoidal, Logistic or Triangular rate function (Reinschmidt 2007) 

is used to represent the progress of the whole project.  

 ( ) [100 ( )] [ ( )][100 ( )]x k a x k b x k x k= − + −  (2.2) 

In the above mentioned generalized models it is assumed that the whole 

construction project can be represented as a single continuous process. But in reality the 

construction projects have multiple subtasks each with nonlinear spatial 

interdependencies. A typical representation of such a model is the project Gantt chart or 

the baseline project plan. In a typical Gantt chart all the spatial interdependencies 

between the sub-tasks are accurately modeled. Such models have been extensively used 

in related works for the purpose of optimization and control of projects (Moselhi and 

Hassanein 2003) (Lee and Jong Min 2006) (Eldin and Senouci 1994). But the Gantt 

chart lacks the information about the progress dynamics of individual tasks. The rate of 

progress of the tasks is assumed to be linear and constant throughout the duration of the 

task. 
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2.2 Tracking, Filtering and Estimation 

Filtering is the process of estimating the true value of the model parameter by removing 

the disturbances taking into account the inherent system  and measurement noise 

(Goodwin and Sin 1984). The criterion for filtering depends on the intended purpose of 

the model and this criterion influences the choice of the filtering method. The simplest 

filtering techniques involve Least Square Estimates (Zarchan and Musoff 2005) and 

Recursive Least Square Estimates (Zarchan and Musoff 2005) which can be used to 

quickly estimate the actual model parameters as well as the variance of the error in their 

estimation by minimizing the square of the deviation between the model output and 

actual system outputs for a certain extent of time. Comprehensive filtering techniques 

like Maximum Likelihood Estimation and Bayesian Filtering (Goodwin and Sin 1984) 

can be used to give the best description of the nature of the project progress as well as 

the inherent disturbances and noise along with the model parameters.  

Kalman Filter (Zarchan and Musoff 2005) (Goodwin and Sin 1984) is another 

such filtering algorithm used for estimation of the true state of a dynamic system with 

process and measurement uncertainties. It is usually used for tracking, prediction and 

control of complex dynamic systems such as spacecraft, satellites or missiles (Zarchan 

and Musoff 2005) and econometric modeling (Harvey 1987) . Kalman Filter can be used 

with any kind of models with accurate or subjective information about the uncertainties 

in the model, process and the measurement. Kalman Filter is a recursive algorithm that 

can be efficiently used with a large number of system states and model parameters. 
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Further it is an optimal filtering technique minimizing the variance of error in estimates. 

Thus it is better suited for use with simple as well as complex project progress models 

where the aim is to estimate mean and error variance of the model parameters. Though 

the actual Kalman Filter was designed for linear dynamic systems, other extensions of 

the Kalman Filter such as the Extended Kalman Filter (Zarchan and Musoff 2005) 

(Goodwin and Sin 1984) and Unscented Kalman Filter (Julier et al. 1995) have been 

developed to deal with nonlinear continuous and nonlinear non-differentiable dynamic 

systems respectively. 

Tracking involves the revision of the system or project model - specifically the 

model parameters - using feedback from the actual project progress. The process of 

parameter estimation is repeated whenever there is an update from the actual progress of 

the system. By recursively using the filtering technique the assumed model can be 

refined by updating the model parameters so that the outputs of the assumed model can 

be made to track the outputs of the actual project. The project model is then used for 

forecasting the future performance of the project, but only after it has been recursively 

updated by using all the available data about the actual progress of the project.  

 

2.3 Forecasting Project Performance 

Forecasting is the process of extrapolation of the present performance of the project or 

system into the future (Goodwin and Sin 1984). The reliability of the forecasts is 

dependent on the accuracy to which the project model is able to represent the actual 
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project. Hence before using an approximate project dynamics model for extrapolation of 

the future forecasts, it has to be updated periodically by using a recursive filtering 

algorithm on all the available data about the actual progress of the project.  

The forecast can be either description oriented or application oriented (Goodwin 

and Sin 1984) depending on the objective and context of the forecast. In descriptive 

forecasting the emphasis is on the general behavior of the system. Hence all the 

descriptive properties of the future system parameters are estimated by extrapolating the 

current properties of the same parameters. But, it is not always necessary to forecast the 

complete behavior of the system. In application oriented forecasting the emphasis is on 

estimating a particular prominent system parameter and the properties of the estimates of 

the other parameters are not important.  

The forecast objective influences the choice of project model and the filtering- 

tracking algorithm. For description oriented forecasting comprehensive filtering 

techniques such as Maximum Likelihood Estimation and Bayesian Filtering will need to 

be used to give the best description of the behavior of the system along with the 

estimates of the system parameters. For objective oriented forecasting the much simpler 

filtering techniques such as Least Square Estimation, Recursive Least Square Estimation 

and Kalman Filtering will be sufficient.  

Several forecasting methods and approaches have been proposed for predicting 

the estimated cost at completion and the estimated duration at completion. Most of these 

methods are based on the assumption that a) the estimates of the cost and duration at 
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completion of the project can be modeled using a single continuous model for the entire 

project, and b) the model parameters can be estimated by analysis the past progress data 

(Barraza et al. 2004; Gardoni et al. 2007; Kim 2007; Teicholz 1993; Touran 1993). 

 

2.4 Optimal Project Control 

The purpose of a project controller is to determine the resource inputs for the project that 

produce the desired progress performance. For construction projects the progress 

performance measures are the estimated cost at completion (EAC) and the estimated 

duration at completion (EDAC). The desired project performance is a) conformance to 

the project schedule requirements, and b) minimum possible EAC. It is not uncommon 

for construction projects to overshoot the project deadline. Hence the conformance to 

schedule requirements is forced by imposing a penalty for schedule overruns. The 

estimated cost at completion (EAC) along with the cost of schedule overrun together 

constitutes the overall cost at completion of the project. 

 At the start of the project the project activity schedule and resource allocation 

schedule are optimized by minimizing this overall cost at completion. But more often 

than not the actual project performance doesn’t conform to the originally planned 

performance and necessary control measures need to be implemented so that the 

predicted future performance will be within the acceptable limits of the desired 

performance. Usually the main control measure in such cases is the change in the current 
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resource allocation schedule in the form of a revised resource acquisition and de-

acquisition schedule. 

It has been shown by Bellman (Kirk 2004) that in case of deviations the optimal 

system or project trajectory for the remaining duration is different from the original 

optimal trajectory, and hence needs to be recalculated after every such deviation from 

the expected trajectory. The optimal project control policy will be a resource allocation 

schedule that minimizes this overall cost of completion of the project over the remaining 

duration. Several dynamic project control methods have been proposed for achieving 

this objective (Handa and Barcia 1986) (Eldin and Senouci 1994) (Hegazy and Petzold 

2003) (Lee and Jong Min 2006) yielding the optimal resource allocation schedule for the 

rest of the duration of the project by minimization of the cost to complete. All these 

methods are based on the assumption that the cost at completion is deterministic in 

nature. Further, in spite of apparent deviations and delays these project control methods 

use the initially assumed project progress models for deriving the optimal control policy 

leading to erroneous control. 

But considering the stochastic nature of actual construction projects, the need is 

for a project control system which updates the assumed project progress model before 

using it for optimizing the expected value of the effort or cost required for controlling 

the project while incorporating the stochastic dynamical nature of the construction-

production process. The main component of such a stochastic optimal controller 

(Goodwin and Sin 1984) is the objective based forecasting algorithm that can forecast or 
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predict the EAC and EDAC of the project given a resource allocation schedule. An 

offline controller can be devised that can iteratively and adaptively varying the resource 

allocation schedule for optimizing these forecasts.  Any of the evolutionary algorithms 

can be used in conjunction with a robust forecasting algorithm to devise such an optimal 

project controller (Hegazy and Petzold 2003; Zheng et al. 2004). 
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3. CONSTRUCTION AS A STOCHASTIC DYNAMIC PROCESS 

 

The main objective of any general system model is to represent the complete behavior of 

a system by explaining all the observable outputs in relation to all the influencing 

factors. These models representing the project transition and project outputs are usually 

complex nonlinear functions. Due to their complexity it might be cumbersome to use 

these models with the tracking, forecasting and optimization system. To overcome this 

problem simpler models are chosen to represent the general dynamics of the system. If 

necessary these general dynamics of the system are further approximated. Further, even 

though the model used depicts the general dynamics of the system, the parameters within 

the model might not be deterministic (Maybeck 1979). The models of the dynamic 

systems are also influenced by many external disturbances which are nondeterministic or 

chaotic. The measurement of the outputs of simplified stochastic dynamic system model 

is equivalent to the random sampling of a stochastic process. Hence the measured system 

outputs don’t show the whole response of the system. 

Most of the construction processes with multiple spatially interdependent 

components involving nonlinear feedbacks need to be considered as stochastic dynamic 

systems. Like any typical stochastic dynamic system a construction project can be 

considered as a system with a particular state vector ( )x t indicating the state of the 

project at time t . The rate of change of state ( )x t will be a function of the current state 

and applied controls ( )u t as represented using the continuous time equation (3.1), where 
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( )v t represents the process noise, usually a zero mean Gaussian noise (Zarchan and 

Musoff 2005) attributed to simplification of the system mechanical models and model 

parameters (Goodwin and Sin 1984). 

 ( ) [ ( ), ( ), ( ), ]x t f x t u t v t t=  (3.1) 

For convenience and practicality it is appropriate to consider the construction 

process as a discrete dynamic system with each of the state and control variables taking 

discrete values and varying at discrete time intervals along the course of the project. By 

dividing the project duration into N time periods with each period of length t∆  – usually 

the sampling or the measurement interval – this discrete dynamic system can be 

represented at any time period k using (3.2). The observation or measurements ( )z k from 

the projects are also functions of the state and control vectors as represented in (3.3) 

where ( )w t represents the measurement noise – usually zero mean Gaussian noise –  

attributed to either the actual error in measuring the outputs or the inherent error in the 

outputs of the system. 

 ( 1) [ ( ), ( ), ( ), ]x k f x k u k v k k+ =  (3.2) 

 ( ) [ ( ), ( ), ] ( )z k h x k u k k w k= +  (3.3) 

 

3.1 Project Progress Models 

For construction projects these models can either be comprehensive representing the 

complete dynamics of the project with provisions for all the degrees of freedom, or can 

be arbitrary with just the description of the basic and prominent dynamics of the project. 
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A complex project model might be successful in incorporating all the controllable inputs 

and subsequently accounting for all the measureable outputs provided the dynamics of 

the project are perfectly known. But the practical limitations of human visualization and 

intuition restrict the accuracy of estimation of the system dynamics. Due to this reason 

the actual response of the project might be much different from that of the project model. 

The actual progress trajectory of the project too often deviates from the planned or 

modeled progress trajectory. Hence even an approximate project dynamics model might 

be enough depending on the objective of the application using the model. But a 

comprehensive model will always provide better estimates than an approximated model. 

Hence a more complete model should be used where ever possible or necessary.   

The current research studies the use of three different types of project models for 

use with the filtering, tracking and forecasting implementation. The first model (3.4)

assumes that the progress of a project can be represented using a higher order 

polynomial. This assumption is justified by the fact that any nonlinear function can be 

approximated to arbitrary precision using a suitable polynomial. The second model (3.5) 

is based on the basic dynamics of the construction project that the rate of progress is 

directly proportional to the amount of work completed and the amount of work to be 

completed (Reinschmidt 2007). In these models a particular Sigmoid or Triangular rate 

function (Reinschmidt 2007) is used to represent the progress of the whole project. The 

third project model is more comprehensive based on the spatial activity 
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interdependencies from the Gantt chart or the baseline plan as well as the nonlinear 

progress dynamics of each sub-activity.  

 2( ) [ ( )] [ ( )]x k a b x k c x k= + +  (3.4) 

 ( ) [100 ( )] [ ( )][100 ( )]x k a x k b x k x k= − + −  (3.5) 

In all these models it is assumed that in spite of the model specification error or 

lack of it, there is some inherent process noise as well as measurement noise that needs 

to be taken into consideration while tracking and forecasting the future performance. 

Hence the model parameters representing the project progress are also considered a part 

of the state vector so that any change in these parameters can also be modeled. The 

outputs ( )z k  of the system can represent either the states of the subtasks or the budgeted 

and actual costs of the project. The choice of the output depends on the application in 

which the model is used. In the present study both types of output models are used. 

 

3.2 Project Control Models 

The rate of progress of the work increases with increase in the quantity of resources. But 

more often than not this increase in the rate of progress of work decreases with the 

increase in the quantity of resources. This effect is model using a Rate of Progress 

Factor ( )ir k  which influences the rate of progress ( )ix k  of the task i at time k  

according to (3.6),  ( )nix k  being the nominal rate of progress of the task i  governed by 

(3.8).  The diminishing increase of this Rate of Progress Factor ( )ir k  with the increase 
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in quantity of resources is modeled using (3.7), where ( )iju k  is the quantity of resource 

j  assigned to task i  at time k .  

 ( ) ( ) ( )i i nix k r k x k=   (3.6) 

 
( )

( )

1( )            1.6    for 1, 2,3
ii

ii

u k

i i iu k
er k c c i

e
 −

= = = 
 

 (3.7) 

 

3.3 Test Project 

For the purpose of demonstrating and testing the optimal control methodology, a simple 

construction project is assembled with three interdependent sub-tasks – Task 1, Task 2 

and Task 3 – reflecting the general nature of actual construction projects. 

 

3.3.1 The Test Project – Project Schedule 

Any subsequent task is allowed to start only after 90% of the previous task has been 

complete. Further it is assumed that the nominal rate of progress of each of these tasks is 

variable following the general conjecture about project dynamics that the rate of 

progress of a task is proportional to the quantity of the task completed as well as the 

quantity to be completed. A Sigmoid or Triangular function can be used to represent this 

rate of progress. In this research the Triangular function is used to demonstrate the 

usability of the proposed method with non-linear and non-differentiable project models. 

The triangular functions for the rate of progress of the sub-tasks are as shown in (3.8), 

where for each Task i , ( )ix k  represents its state at time k  in terms of the percentage of 
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task complete, ( )nix k  the nominal rate of progress in terms of rate of change in 

percentage of task complete, and  and i ia b  the rate parameters mentioned in Table 1.  

 

0.001 ( ) 0
( ) ( )        0 ( ) 5 0

( ) 100100 ( )

i

ni i i i

ii i

x k
x k a x k x k

x kb x k

 ≤
= < ≤
 ≤−

  (3.8) 

 

Table 1    The model parameters for the rate of progress of sub-tasks in the test project. 

Parameter Task 1 Task 2 Task 3 

:a  0.30 0.10 0.25 

:b  0.30 0.10 0.25 

 

The Gantt chart for this test project based on the progress model (3.8) with 

corresponding model parameters  and a b from Table 1 is shown in Figure 2. The 

nominal rates of progress and the progress trajectories of the tasks - simulated discretely 

with intervals of 10 time units - are shown in Figure 3 and in Figure 4 respectively. 
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Figure 2    The Gantt chart for the test project. 

 

Figure 3    Triangular rates of progress of the sub-tasks in the test project. 
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Figure 4    The nominal progress trajectories of sub-tasks in the test project. 

 

3.3.2 Test Project – The Project Controls 

For modeling the project controls it was assumed that each of the three sub-tasks of the 

test project needs one type of resource each for their progress. The assignment of the 

resources for each of the sub-tasks is as shown in Table 2.  

 

Table 2    The resources required for progress of each of the sub-tasks in the test project. 

 Task 1 Task 2 Task 3 

Resource : Resource 1 Resource 2 Resource 3 
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This relation between the quantity of resources and Rate of Progress Factor 

defined by (3.7) is depicted in Figure 5. This model has been specifically chosen so that 

the rate of progress Rate of Progress Factor ir  is equal to 1 for a unit quantity of resource 

for all the tasks at any point of time. In this numerical example the relation (3.7) is 

assumed to be of continuous nature for simplicity sake. But in actual projects it is 

discrete with the Rate of Progress factor discretely increasing with the continuous 

increase in the quantity of resources. Further, in reality the quantity of resources can 

only be increased in discrete quantities.  

 

Figure 5    The rate of progress factor as a function of the quantity of resources. 
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the number of crews assigned to a particular sub-task at a particular time along the 

course of the project. The reasons for this choice are: a) for most of the construction 

activities the concerned crews are main operators and users of the other indirect 

resources such as material, tools & machinery and hence directly influence activity 

progress, b) acquisition and de-acquisition of crews is the most viable form of control 

vested with the construction managers, and c) data for the productivity and influence of 

construction crews on the rate of progress of activities is consistently documented for all 

projects and hence can be used for formulation and revision of the progress models like 

(3.7) & (3.6). 

 

3.3.3 Test Project – The Project Cost 

The overall cost of the project is divided into two parts a) the Resource Cost for 

including the cost of all the project controls and b) the Other Cost to include all the other 

costs during the course of the project. The Resource Cost is the cost of the project 

resources – the manpower and crew for all the sub-tasks. For this test project the unit 

costs of the three resources in terms of cost units per unit crew per time period are as 

shown in Table 3. The Resource Cost till a point of time T  - ( )RC T  -  is given by (3.9), 

where ( )iiu k  is the quantity of resource i  assigned to task i  ( as mentioned in the 

previous section, task i  only uses resource i ) at time k  and irc  the unit cost of the 

resource i  as mentioned inTable 3. 

 
1

( ) ( ).
T

ii i
k i

RC T u k rc
=

=∑∑  (3.9) 
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Table 3    The unit costs of the direct resources for the sub-tasks in the test project. 

 Resource 1 Resource 2 Resource 3 
Unit Cost ( irc ) : 

/ crew / time period 0.20 0.30 0.50 

 

The Other Cost is defined to include all the remaining project costs such as a) the 

cost of materials for the sub-tasks, b) the cost of other indirect resources like tools and 

machinery, and c) the project overhead and other intangible costs. For simplicity it is 

assumed that these costs are all directly proportional to the quantity of work completed. 

This Other Cost till a point of time T  - ( )OC T  - is given by (3.10) where ioc  is the 

cumulative unit cost of the above mentioned indirect resources & costs in terms of cost 

units per unit progress of task i . The values of ioc  are mentioned in Table 4. At any 

time T  along the course of the project, the Total Project Cost ( )C T  is the sum of the 

Resource Cost ( )RC T  and Other Cost ( )OC T . 

 ( ) ( ).i i
i

OC T x T oc=∑  (3.10) 

 

Table 4    The unit costs of the indirect resources for the sub-tasks in the test project. 

 Task 1 Task 2 Task 3 
Unit Cost ( ioc ) : 

/ unit progress 1.00 4.00 7.00 
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3.3.4 Test Project – The Original Project Plan 

An original baseline project plan was created with the intent of forcing all the sub-tasks 

of the project to follow their nominal progress trajectories as represented by the progress 

model (3.8) and progress parameters in Table 1. With such a baseline project schedule 

the rates of progress and progress trajectories for the sub-tasks will be as shown in 

Figure 3 and Figure 4 respectively. The resources are assigned so that the progress rates 

( )ix k of the tasks will be same as nominal progress rates ( )nix k . Using (3.6) it can be 

observed that such a project progress can be achieved when the Rate of Progress Factor 

( )ir k  is equal to 1 for all the sub-tasks at every time k . As mentioned earlier the project 

control model has been specifically chosen so that the rate of progress Rate of Progress 

Factor ir  is equal to 1 for a unit quantity of resource for all the tasks at any point of time. 

Hence the resource allocation schedule for the baseline project plan will be as shown in 

Figure 6 with a uniform value of 1 for the corresponding resource during the 

corresponding periods along the course of the project. The planned start and finish times 

for the sub-task based the planned schedule are as mentioned in Table 5. 

 

Table 5    The planned start and finish times for the sub-task of test project. 

 Task 1 Task 2 Task 3 

Start : 0 100 350 

Finish : 110 390 480 

 



27 

 

 

According to this schedule - calculated at discrete times with a time period of 10 units - 

the Duration at Completion (DAC) is 480.  Using the project cost equations (3.9) and 

(3.10) along with the unit costs in Table 3 and Table 4 the planned project cost is 

calculated along the course of the project. This overall planned project cost represents 

the Budgeted Cost of Work Scheduled (BCWS). The BCWS trajectory for this test 

project is a shown in Figure 7. The overall project cost at the end of the project - the 

Budget at Completion (BAC) – based on this schedule is 1691 cost units.  The Other 

Cost ( )OC T  can be used to represent the cumulative overall progress of the project. The 

planned trajectory of ( )OC T  for the test project is as shown in Figure 8. The BAC in 

this case is 1201. The process is complete when BCWS reaches BAC. 

 

Figure 6    The planned resource allocation schedule for the test project. 

0 100 200 300 400 500
0

1

2

Time (k)

Re
so

ur
ce

 1
 (

u 11
)

0 100 200 300 400 500
0

1

2

Time (k)

Re
so

ur
ce

 2
 (

u 22
)

0 100 200 300 400 500
0

1

2

Time (k)

Re
so

ur
ce

 3
 (

u 33
)



28 

 

 

  

Figure 7    The trajectory of the overall planned project cost - BCWS - for the test 
project. 

  

Figure 8    The trajectory of the indirect project cost representing the cumulative overall 
progress of the project. 
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4. TRACKING AND FORECASTING PROJECT PERFORMANCE 

 

Every project model (4.1) in itself is an approximation, some more accurate than others. 

Further the parameters within the model might not be deterministic. To account for the 

stochastic nature of the project while using simplified models the following assumptions 

are made. 

• The model states ( )x k at any instant of time are Gaussian. 

• The model contains some process noise ( )v k  - usually zero mean Gaussian 

noise (Zarchan and Musoff 2005) attributed to simplification of the project 

dynamics model and model parameters (Goodwin and Sin 1984).  

• The model contains some measurement noise ( )w k  - zero mean Gaussian 

noise, attributed to either the actual error in measuring the outputs or the 

inherent stochastic nature of the outputs of the project. 

 ( 1) [ ( ), ( ), ( ), ]x k f x k u k v k k+ =  (4.1) 

 ( ) [ ( ), ( ), ] ( )z k h x k u k k w k= +  (4.2) 

The reasons for choosing a Gaussian distribution for all the states, disturbances 

and noises are twofold (Julier et al. 2000). Firstly, the mean and covariance are the 

distribution parameters of interest. Secondly, given the mean and covariance, a Gaussian 

distribution is the least informative and can represent the maximum possible amount of 

randomness. To find the actual response of the system the process and measurement 

noise needs to be filtered. Filtering is the process of extracting the actual system 
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parameter estimates by removing the disturbances taking into account the inherent 

system and measurement noise (Goodwin and Sin 1984). The present study uses the 

optimal filtering technique known as Kalman Filtering (Zarchan and Musoff 2005) to 

estimate the system parameters. A Kalman filter is a recursive optimal estimation 

algorithm. This filtering technique is optimal in the sense that it minimizes the variance 

of error in estimates of the system parameters (Zarchan and Musoff 2005).  

 

4.1 Tracking, Filtering and Estimation Using Kalman Filter 

A typical Kalman Filter is based on a predictor-corrector structure (Julier et al. 2000). 

The first step involves the propagation of the mean ( )x k and error covariance ( )xxP k of 

the present state of the project through the project model (3.2) to predict the distribution 

parameters –  estimate of mean state ˆ( 1| )x k k+ , estimate of covariance of error in state 

ˆ ( 1| )xxP k k+ , estimate of mean measurement ˆ( 1| )z k k+ , estimate of covariance of the 

error in measurement ˆ ( 1| )zzP k k+ and estimate of cross-covariance of the error in state 

and measurement ˆ ( 1| )xzP k k+  – at the future time 1k + . These predicted estimates at 

time 1k + are then corrected or updated using the data – usually the measurement 

( 1)z k + – from the actual progress of the project. The updating is based on the linear 

update rule (4.3). 

 
ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1)

ˆ( 1| 1) ( 1| ) ( 1) ( 1| ) ( 1)T
xx xx vv

x k k x k k K k v k

P k k P k k K k P k k K k

+ + = + + + +

+ + = + − + + +
 (4.3) 
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where ( 1)v k +  is the residual or error in output estimation, ( 1| )vvP k k+ is the covariance 

of the output estimation error given the covariance of the measurement error ( 1)R k + , 

and ( 1)K k + the Kalman Gain, all calculated using (4.4).  

 
1

ˆ( 1) ( 1) ( 1| )
ˆ( 1| ) ( 1| ) ( 1)

ˆ( 1) ( 1| ) ( 1| )
vv zz

xz vv

v k z k z k k

P k k P k k R k

K k P k k P k k−

+ = + − +

+ = + + +

+ = + +

 (4.4) 

Though the actual Kalman Filter was designed for linear dynamic systems, other 

extensions of the Kalman Filter like the Extended Kalman Filter (Zarchan and Musoff 

2005) (Goodwin and Sin 1984) and Unscented Kalman Filter (Julier et al. 1995) have 

been developed to deal with nonlinear continuous differentiable and nonlinear 

discontinuous non-differentiable dynamic systems respectively. The main difference in 

these two variants of Kalman Filter is the method of prediction of the distribution 

parameters – ˆ( 1| )x k k+ , ˆ ( 1| )xxP k k+ , ˆ( 1| )z k k+ , ˆ ( 1| )zzP k k+ and ˆ ( 1| )xzP k k+  – of the 

future states and outputs of the project.  

This process of parameter estimation by using Kalman Filters is repeated 

whenever there is an update in the actual progress of the system. By recursively using 

the filtering technique the assumed model can be refined by updating the model 

parameters so that the outputs of the assumed model can be made to track the outputs of 

the actual project. The tracking ability of the project model can be used as a main 

criterion for deciding its usability. The following sections describe in detail the 

implementations of the Extend and Unscented Kalman Filters along with their 

performance, limitations and implications when used with the different project models 
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for tracking and forecasting the progress of the above mentioned project. For testing the 

performance of the first two models for tracking and forecasting it is assumed that the 

control vectors are redundant and have no effect on the dynamics of the system. The 

tasks progress at their nominal rates of progress. 

 

4.1.1 The Extended Kalman Filter 

The Extended Kalman Filter (EKF) uses the fact that the error in prediction of states and 

outputs of the project can be approximated by using a Taylor Series expansion (Zarchan 

and Musoff 2005) (Goodwin and Sin 1984) of the project model (4.1) and (4.2). The 

truncation of this expansion to the first order then yields a linear approximation for 

propagation of the project states. The linear approximation to the error in prediction of 

future state - ( 1| )x k k+ - obtained by expanding (4.1) about the present error ( | )x k k and 

truncating it to the first term is (4.5)  

 ( 1| ) ( | ) ( )x vx k k f x k k f v k+ ∇ +∇ 
  (4.5) 

where xf∇  is the Jacobian of (4.1) with respect to ( )x k , and vf∇  is the Jacobian of (4.1) 

with respect to ( )v k . The predicted mean and error-covariance of the future project states 

are then calculated using (4.6) and (4.7) respectively (Julier et al. 2000). 

 ˆ ˆ( 1| ) [ ( ), ( )] ( 1| )x k k f x k u k x k k+ = + +  (4.6) 

 ˆ ( 1| ) ( ) ( 1)T T
xx x xx x v vP k k f P k f f Q k f+ = ∇ ∇ +∇ + ∇  (4.7) 

Here Q  represents the covariance matrix of the process noise representing the model 

specification error form unaccounted factors. The mean and error-covariance of the 
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future project outputs, and the cross covariance between the project states and outputs 

are calculated using a similar linear approximation (4.8). 

 

ˆˆ( 1| ) [ ( 1| ), ( 1)]
ˆ ˆ( 1| ) ( 1| )
ˆ ˆ( 1| ) ( 1| )

T
zz x xx x

T
xz xx x

z k k h x k k u k

P k k h P k k h

P k k P k k h

+ = + +

+ = ∇ + ∇

+ = + ∇

 (4.8) 

Now that the distribution parameters – ˆ( 1| )x k k+ , ˆ ( 1| )xxP k k+ , ˆ( 1| )z k k+ ,

ˆ ( 1| )zzP k k+ and ˆ ( 1| )xzP k k+  – of the future states and outputs of the project at time 1k +

are predicted, the linear update equations (4.4) and (4.3) can be used to correct the 

estimates ˆ( 1| 1)x k k+ + and ˆ ( 1| 1)xxP k k+ + using the actual system output ( 1)z k + . 

The Extended Kalman Filter can be used with any linear or nonlinear project 

model provided it is continuous and differentiable. In this study the EKF is used for 

recursive tracking and forecasting of the project states using two different families of 

general project models (a) a model with no information about the nature of the project; 

based on a second order polynomial rate equation, and (b) a model with the basic 

information about the dynamics of the project; based on a sigmoid rate equation. 

 

4.1.2 The Unscented Kalman Filter 

The first step of a Kalman Filter involves the propagation of the mean ( )x k and 

covariance ( )xxP k of the present state of the project through the project model to predict 

the distribution parameters – ˆ( 1| )x k k+ , ˆ ( 1| )xxP k k+ , ˆ( 1| )z k k+ , ˆ ( 1| )zzP k k+ and

ˆ ( 1| )xzP k k+  – of the future states and outputs of the project. These predicted estimates at 
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time 1k + are then corrected or updated using the data – usually the measurement 

( 1)z k + – from the actual progress of the project.  

The Extended Kalman Filter (EKF) uses the fact that the error in prediction of 

states and outputs of the project can be approximated by using a Taylor Series expansion 

of the project model. The truncation of this expansion to the first order then yields a 

linear approximation for propagation of the distribution parameters of the project states 

using the Jacobian of the project model equations. But this approximation is valid only 

for differentiable functions. Further, the truncation of higher order terms in the 

expansion may not always be appropriate and can introduce significant errors.  

As discussed in the previous section, a more complete and reliable model for the 

project usually involves the use of non-differentiable functions. And sometimes the 

model might be a black-box model with no information about the structure of the 

progress dynamics function. In such cases the EKF approach cannot be used for 

predicting the distribution parameters – ˆ( 1| )x k k+ , ˆ ( 1| )xxP k k+ , ˆ( 1| )z k k+ , ˆ ( 1| )zzP k k+  

and ˆ ( 1| )xzP k k+  – of the future states and outputs of the project. To overcome this 

problem a new approach for propagation of the means and covariances  has been 

proposed by  Julier and Uhlmann (1996). This approach  - known as the Unscented 

Transformation (discussed in Section 4.1.3) – has been shown to work successfully for 

any kind of nonlinear transformation of Gaussian random numbers (Julier et al. 2000) 

(Lefebvre et al. 2002).  
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4.1.3 Unscented Transformations of Means and Covariances 

In this method the approximations of Gaussian probability distributions are transformed 

using the process and measurement equations of the project model. These transformed 

approximations are then used to calculate the moments of the transformed variables. 

This method is based on statistical linear regression of probability distributions 

(Lefebvre et al. 2002). If n is the length of the state vector 2n+1 regression points iX  are 

chosen for approximating the distribution with weights iW   
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X x n k P W n k
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= − + = +

 (4.9) 

where ( )( ) xx i
n k P+  is the ith column of ( ) xxn k P+ , and k is the degree of freedom in 

the choice of the regression points and is taken as 3 in the present study. These 

regression points are then transformed using the process equation of the model to later 

calculate the moments of the transformed distribution. 
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 (4.10) 

The same regression points are passed through the measurement equation to find the 

moments of the outputs and the cross covariance between the states and outputs. 
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 (4.11) 

Once these distribution parameters have been estimated using the model equation 

for predicting the future states and outputs, the original Kalman corrector equations (4.3) 

can be used to update the estimates. The Kalman Filter using this Unscented 

Transformation approach is known as the Unscented Kalman Filter (UKF) (Julier and 

Uhlmann 1997). 

 

4.2 Forecasting Future Project Performance 

Forecasting is the process of extrapolation of the present performance of the project or 

system into the future (Goodwin and Sin 1984). The reliability of the forecasts is 

dependent on the accuracy to which the project model is able to represent the actual 

project dynamics. Depending on the nature of the project model either of the above 

mentioned filtering methods can be used to revise the assumed model by tracking the 

actual progress of the project. The revised model can then used to calculate the estimates 

of interest at a specified future date. In the present study where the objective is to 

develop an optimal project controller, the main estimates of interest are the expected 

value of Cost Estimate at Completion (EAC) and Estimated Duration at Completion 

(EDAC) along with the Variances of their estimation errors. 
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For differentiable functions these means and variances at a future time can be 

estimated by using the linear approximation approach used for the Extended Kalman 

Filter as shown in section 4.1.1. For non-differentiable and other black box functions this 

can be achieved by using the unscented approach discussed in section 4.1.3. 

 

4.3 Application and Discussions 

In this study first the EKF is used for recursively tracking and forecasting of the project 

states using two different families of general project models: a) a model with no 

information about the nature of the project; based on a second order polynomial rate 

equation, and b) a model with the basic information about the dynamics of the project; 

based on a sigmoid rate equation. Next the UKF is used with a more comprehensive 

model with basic information about the dynamics of each subtask along with the spatial 

interdependencies between the various tasks of the project. Each of the models is used 

with the appropriate tracking and filtering method to revise the model parameters. After 

tracking the available project progress data, the updated model is used to extrapolate the 

future behavior or trajectory of the project which is then compared with the actual 

project progress data. 

 

4.3.1 Using the Polynomial Project Progress Model 

When there is no information about the general dynamics of the system it can be 

assumed that a general polynomial model can be used to represent the rate of progress of 
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the project in terms of its BCWP. The rate of change of BCWP is represented by a 

second order polynomial (4.12) with three model parameters ,  a b and c .  

 2( ) [ ( )] [ ( )]d BCWP t a b BCWP t c BCWP t
dt

= + +  (4.12) 

To account for any uncertainty in this project dynamics model it is assumed that these 

model parameters themselves are variable states of the project model and need to be 

updated to reflect the behavior of the actual project by tracking the actual BCWP 

trajectory. The project states and outputs for this system at any discrete time k  are 

 

( )
( )

( )               ( ) ( )
( )
( )

BCWP k
a k

x k z k BCWP k
b k
c k

 
 
 = =
 
 
 

 (4.13) 

The initial values of the state vectors were all set to 0 assuming there is no 

information about the initial conditions. The initial variance of BCWP was set to 0. It 

was assumed that the output measurement has a variance of 2. With this project 

dynamics model the BCWP of the test project was tracked over the whole duration of the 

project using the Extended Kalman Filtering algorithm equations (4.5) - (4.8) with a 

sampling time of 5. The project is deemed complete when the BCWP is equal to the 

BAC derived from the project plan. The point in time where the BCWP reaches BAC is 

the Estimated Duration at Completion (EDAC) of the project. To observe the influence 

of the process noise five different trials were conducted using different values for the 

process noise, starting with a value of 0. The tracking performance of this model for five 

different values of process noise are as shown in Figure 9 to Figure 13. It was observed 
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that the tracking performance is best when the process noise is at least 710− . The 

tracking error and its theoretical 95% (~ 2 )σ  estimation bounds for a process noise 

value of 710− are as shown in Figure 14.  

 

Figure 9    Tracking performance of the Polynomial Rate Model with 
process noise of 0.  
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Figure 10    Tracking performance of the Polynomial Rate Model with 
process noise of 1210 .−  

 
Figure 11    Tracking performance of the Polynomial Rate Model with 

process noise of 1110 .−  
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Figure 12    Tracking performance of the Polynomial Rate Model with 
process noise of 910 .−   

 

Figure 13    Tracking performance of the Polynomial Rate Model with 
process noise of 710 .−  
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Figure 14    Tracking error and its theoretical bounds for the Polynomial Rate Model. 

It can be observed that by increasing the variance of the process noise - Q
 
- the 

polynomial model could be made to track the BCWP more closely, but at the expense of 

the involvement of the process noise term whose value is ad-hoc and not completely 

accounted for.  Observing the tracking error in Figure 14 it can be hypothesized that the 
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period of time. Using the same model with EKF the estimates at completion are forecast 

first by tracking the actual project till time 250 and next by tracking it till time 350.  

The forecast along with its 95% prediction bounds and the prediction error for 

the first case – tracking till time 250 – are as shown in Figure 15 and Figure 16 
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95% forecast bounds and the forecast error are obtained for the second case – tracking 

till time 350 – are as shown in Figure 17 and Figure 18 respectively along with the actual 

trajectory. Again it can be seen that even at time 350 the forecast provided by the model 

is not very accurate with impractically huge forecast errors. 

 

Figure 15    Forecast at time 250 and its prediction bounds – using Polynomial Rate 
Model. 
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Figure 16    Forecast error and its prediction bounds for forecast at time 250 – using 
Polynomial Rate Model.  

  

Figure 17    Forecast at time 350 and its prediction bounds – using Polynomial Rate 
Model.  
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Figure 18    Forecast error and its prediction bounds for forecast at time 350 – using 
Polynomial Rate Model.  

 

4.3.2 Using the Sigmoid Project Progress Model 

When there is some information about the general dynamics of the system either from 

the plan of the project or from any other intuition, it can be used to our advantage in 

representing the rate of progress of the project in terms of its BCWP. For example, most 

of the projects seem to have a definite sigmoid rate progress rate where the rate increases 

till a particular period and decreases after that (Reinschmidt 2007).  The rate of change 

of BCWP is represented by such a sigmoid rate model of the form (4.14) with two model 

parameters a and b .  

 ( ) [ ( ) ( )] [ ( )][ ( ) ( )]f f
d BCWP t a OC T BCWP t b BCWP t OC T BCWP t
dt

= − + −  (4.14) 
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In (4.14) ( )fOC T  is the cumulative indirect cost at the end of the project and is equal to 

1201 for the test project. Again to account for any uncertainty in this project dynamics 

model it is assumed that these model parameters themselves are variable states of the 

project model and need to be updated to reflect the behavior of the actual project by 

tracking the BCWP trajectory. The project states and outputs for this system at any 

discrete time k  are 

 
( )

( ) ( )           ( ) ( )
( )

BCWP k
x k a k z k BCWP k

b k

 
 = = 
  

 (4.15) 

The initial values of the state vectors were all set to 0 assuming there is no 

information about the project dynamics. The initial variance of BCWP was set to 0. It 

was assumed that the output measurement has a variance of 2. With this project 

dynamics model the BCWP of the test project was tracked over the whole duration of the 

project using the Extended Kalman Filtering algorithm equations (4.5) - (4.8) with a 

sampling time of 5. Again, as before the project is deemed complete when the BCWP is 

equal to the BAC derived from the project plan. The point in time where the BCWP 

reaches BAC is the Estimated Duration at Completion (EDAC) of the project. To 

observe the influence of the process noise five different trials were conducted using 

different values for the process noise, starting with a value of 0. The tracking 

performance of this model for five different values of process noise are as shown in 

Figures 19 to 23. It was observed that the tracking performance is best when the process 
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noise is at least 1210− . The tracking error and its theoretical 95% (~ 2 )σ  estimation 

bounds for a process noise value of 1210− are as shown in Figure 24.  

 

Figure 19    Tracking performance of the Sigmoid Rate Model with process noise of 0.  
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Figure 20    Tracking performance of the Sigmoid Rate Model with 
process noise of 2010 .−  

 

Figure 21    Tracking performance of the Sigmoid Rate Model with 
process noise of 1810 .−  
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Figure 22    Tracking performance of the Sigmoid Rate Model with 
process noise of 1510 .−  

 

Figure 23    Tracking performance of the Sigmoid Rate Model with 
process noise of 1210 .−  
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Figure 24    Tracking error and its theoretical bounds for the Sigmoid Rate Model. 
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It can be seen that even at time 250 the forecast provided by the model is not very 

accurate with impractically huge forecast errors. Next, forecast along with its 95% 

prediction bounds and the forecast error are obtained for the second case – tracking till 

time 350 – are as shown in Figure 27 and Figure 28 respectively along with the actual 

trajectory. Again it can be seen that even at time 350 the forecast provided by the model 

is not very accurate with impractically huge forecast errors.  

  

Figure 25    Forecast at time 250 and its prediction bounds – using Sigmoid Rate Model.  
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Figure 26    Forecast error and its prediction bounds for forecast at time 250 – using 
Sigmoid Rate Model.  

  

Figure 27    Forecast at time 350 and its prediction bounds – using Sigmoid Rate Model.  
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Figure 28    Forecast error and its prediction bounds for forecast at time 350 – using 
Sigmoid Rate Model.  
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the process or system and it needs to be obtained by other means, either subjective or by 

analysis of past data. 

To deal with this problem in the test project we need to use a model that has at 

least some information about the actual dynamics of the projects, especially the 

information about the discontinuities in the rate of progress due to the involvement of 

multiple activities with spatial interdependencies. This information is most often readily 

available from the plan of the project and can be used to make a more accurate project 

model. The project plan reflected by the Gantt charts provides the information about the 

activity interdependencies but lacks the knowledge about the progress rate of each 

individual task. This problem can be overcome by assuming that each sub-task follows a 

sigmoid or triangular progress rate. Thus it is possible to make a project model that 

completely incorporates both the spatial and dynamic behavior of the project. But such 

models are usually discontinuous and non-differentiable and cannot be used with the 

Extended Kalman Filter. To overcome this problem the Unscented Kalman Filter (Julier 

and Uhlmann 1997) is used. 

 

4.3.3 Using the Comprehensive Project Progress Model 

Now that it is possible to use discontinuous and non-differentiable models in Kalman 

Filters the plan of the project itself is assumed to the project model.  The project plan for 

the test project is based on the triangular progress rate equation (4.16) for each of the 

sub-task ix .  
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Again to account for any uncertainty in this project dynamics model it is assumed that 

the model parameters ia  and  ib themselves are unrealized states of the project model 

and need to be updated to reflect the behavior of the actual project by tracking the actual 

project trajectory.  In this case the measurement of the system is the state vector itself 

indicating the progress of the sub-tasks. The project states and outputs at any discrete 

time k  are 
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 (4.17) 

For testing the tracking performance of the model the initial values of the state 

vector ( )x k  were all set to 0 assuming there is no information about the system 

parameters. The initial variance of the individual tasks was set to 1.0. Further it was 

assumed that the process noise has a variance of 0 while the output measurement has a 

variance of 2. With this project dynamics model the actual states of the test project 

described earlier were first tracked over the whole duration of the project using the 

Unscented Kalman Filtering algorithm equations with a sampling interval of 5. The 

absolute tracking performance of this model is shown in Figure 29, Figure 30 and Figure 
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31, while the tracking error and its theoretical 95% (~ 2 )σ  tracking bounds are shown in 

Figure 32, Figure 33 and Figure 34.  

  

Figure 29    Tracking performance for Task 1 – using the project plan. 
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Figure 30    Tracking performance for Task 2 – using the project plan. 

  

Figure 31    Tracking performance for Task 3 – using the project plan. 
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Figure 32    Tracking error for Task 1 – using the project plan. 

  

Figure 33    Tracking error for Task 2 – using the project plan. 
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Figure 34    Tracking error for Task 3 – using the project plan. 
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Using the same model with UKF the state and earned value estimates at 

completion are forecast first by tracking the actual project states till time 200 and then 

extrapolating till the end. The forecast and its 2σ  forecast bounds for the progress of 

Task 2 and Task 3 are shown in Figure 35 and Figure 36 respectively along with the 

actual trajectory. The forecast and its 2σ  forecast bounds for the project cost are shown 

in Figure 37. The actual task and project trajectories are well within the 2σ  forecast 

bounds of the forecast. Further discussion of the performance and verification of the 

Kalman-Filter estimation algorithm is discussed in the Sections 4.3.4 and 4.3.5. 

  

Figure 35    Forecast for Task 2 at time 200 along with forecast bounds – using the 
project plan. 
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Figure 36    Forecast for Task 3 at time 200 along with forecast bounds – using the 
project plan. 

  

Figure 37    Forecast for BCWP at time 200 along with forecast bounds – using the 
project plan. 
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4.3.4 Performance of the Estimation Algorithm for Deterministic Project 

The performance of the estimation algorithm – the Kalama-Filtering algorithm in this 

case – can be verified and qualified using various criteria. For example, if the chosen 

model has the exact structure of the true system, then the algorithm can be verified by 

the convergence of the estimated model parameters to their true values. Further the 

performance of the algorithm can be qualified by the rate of this convergence and the 

robustness of the convergence to various errors, noise and initial assumptions. In the 

present research, since the actual system – the test project – was simulated using the 

equation (3.8), the project model using the same equation can be used verify the 

performance of the estimation algorithm.  

Initially it is assumed that the actual project has deterministic values for the 

parameters ia  and ib  , and are same as those used for the original project plan as shown 

in Table 1. For the project model these initial values of these parameters are all set to 0 

and the initial values of the variance of error of estimation are all set to 0.1. The initial 

values of the variance of error of estimation of the state of the sub-tasks are set to 1. For 

the process of verification the project model was made to track the actual project till the 

end of the project using the Kalman-Filter for estimation of the model parameters ia  and

ib . The observed convergences of the estimated value of the parameters for the three 

sub-tasks are as shown in Figure 38, Figure 39 and Figure 40.  
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Figure 38     Convergence of the estimates for Task 1 in a deterministic system – initial 
value of parameters and variance error of estimation set to (0.0, 0.0) and (0.1, 0.1). 

  

  

Figure 39    Convergence of the estimates for Task 2 in a deterministic system – initial 
value of parameters and variance error of estimation set to (0.0, 0.0) and (0.1, 0.1). 
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Figure 40    Convergence of the estimates for Task 3 in a deterministic system – initial 
value of parameters and variance error of estimation set to (0.0, 0.0) and (0.1, 0.1). 
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To check the robustness of the algorithm to the variation in the initial 
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Figure 41    Convergence of the estimates for Task 1 in a deterministic system – initial 
value of parameters and variance error of estimation set to (0.0, 0.0) and (1.0, 1.0). 

 

Figure 42    Convergence of the estimates for Task 2 in a deterministic system – initial 
value of parameters and variance error of estimation set to (0.0, 0.0) and (1.0, 1.0). 
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Figure 43    Convergence of the estimates for Task 3 in a deterministic system – initial 

value of parameters and variance error of estimation set to (0.0, 0.0) and (1.0, 1.0). 

Again it can be observed that except for 3b , the estimated values of the model 

parameters for each task that converge to values close to the true values. Parameter 3b

started to converge, but the rate of convergence was slow. 

 

4.3.5 Performance of the Estimation Algorithm for Stochastic Project 

Actual construction activities are usually stochastic in nature. Many external 

disturbances and noise influence the rates of progress of the subtasks. To investigate the 

performance of the implemented estimated algorithms with such stochastic projects, the 

actual system – the test project – was simulated with the parameters ia  and ib  taking on 

random values from a Gaussian distribution with mean or true values as shown in Table 

1. To prevent the occurrence of negative values for the parameters – negative values 

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'a

' f
or

 T
as

k 
3

 

 

Actual Estimated

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'b

' f
or

 T
as

k 
3

 

 

Actual Estimated



67 

 

 

indicate negative rate of progress, which is not possible - the distribution is truncated at 

0 to the left resulting in a truncated normal distribution that has a positive probability of 

having a value of 0. Figure 44 shows such a distribution for the rate of progress 

parameters of Task 1 with a Coefficient of Variation (COV) of 0.1. For the project 

model these initial values of these parameters are all set to 0 and the initial values of the 

variance of error of estimation are all set to 0.1. The initial values of the variance of error 

of estimation of the state of the sub-tasks are set to 1.  

For the process of verification the project model is made to track the actual 

project till the end of the project using the Kalman-Filter for estimation of the model 

parameters ia  and ib , checking for the convergence of the estimates of the parameters to 

their true values. The observed convergences of the estimated value of the parameters 

for the three sub-tasks for a test project with COV of 0.2 are as shown in Figure 45, 

Figure 46 and Figure 47.  

 

Figure 44    Distribution of the rate of progress parameters for Task 1 with COV 0.1. 
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Figure 45    Convergence of the estimates for Task 1 in a stochastic system 
with COV 0.2. 

  

Figure 46    Convergence of the estimates for Task 2 in a stochastic system 
with COV 0.2. 

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'a

' f
or

 T
as

k 
1

 

 

Actual Estimated True Mean

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'b

' f
or

 T
as

k 
1

 

 

Actual Estimated True Mean

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'a

' f
or

 T
as

k 
2

 

 

Actual Estimated True Mean

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'b

' f
or

 T
as

k 
2

 

 

Actual Estimated True Mean



69 

 

 

 

Figure 47    Convergence of the estimates for Task 3 in a stochastic system 
with COV 0.2. 

The observed convergences of the estimated value of the parameters for the three 

sub-tasks for a test project with COV of 0.5 are as shown in Figure 48, Figure 49 and 

Figure 50.  
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Figure 48    Convergence of the estimates for Task 1 in a stochastic system 
with COV 0.5. 

  

Figure 49    Convergence of the estimates for Task 2 in a stochastic system 
with COV 0.5. 
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Figure 50    Convergence of the estimates for Task 3 in a stochastic system 
with COV 0.5. 

The observed convergences of the estimated value of the parameters for the three 

sub-tasks for a test project with COV of 1.0 are as shown in Figure 51, Figure 52 and 

Figure 53.  

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'a

' f
or

 T
as

k 
3

 

 

Actual Estimated True Mean

0 100 200 300 400 500
0

0.5

TimePa
ra

m
et

er
 'b

' f
or

 T
as

k 
3

 

 

Actual Estimated True Mean



72 

 

 

  

Figure 51    Convergence of the estimates for Task 1 in a stochastic system 
with COV 1.0. 

  

Figure 52    Convergence of the estimates for Task 2 in a stochastic system 
with COV 1.0. 
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Figure 53    Convergence of the estimates for Task 3 in a stochastic system 
with COV 1.0. 

It can be observed that in most of the cases the estimated values of the model 

parameters for each task converge to values close to the true values. Some estimation 

bias remains in some cases. Such a bias can be as observed in the estimates of 

parameters for Task 1 and Task 3 for a process with COV 1.0. This estimation bias could 

be due to the inclusion of measurement noise. 

From all the above observations it can be inferred that the implemented Kalman 

Filter algorithm is capable of estimating the true values of the model parameters for both 

the deterministic and stochastic construction processes provided the process is within 

certain some process limits. 
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5. OPTIMAL CONTROL OF PROJECTS 

 

The purpose of a project controller is to determine the resource inputs for the project that 

produce the desired progress performance over the remaining duration of the project. For 

construction projects the progress performance measures are the EAC and the EDAC. 

The desired project performance is: a) conformance to the project schedule 

requirements, i.e. the EDAC should be the same or – or at least close to – the planned 

duration or deadline, and b) minimum possible cost at completion (EAC). The 

implementation of the main component of a stochastic optimal controller - the objective 

based forecasting algorithm that can forecast or predict the above mentioned estimates-

at-completion of the project given a proposed resource allocation schedule – has been 

discussed in the previous section. This section discusses the methodology for optimizing 

these estimates at completion. 

It is not uncommon for construction projects to deviate from the planned or 

desired performance. The common cause of these deviations are: a.) the presence of 

errors in the original project plan or schedule due to uncertainties and errors in the 

assumed project models , and b.) unforeseen delays during the implementation phase. It 

can be assumed that the model uncertainty is limited to the corresponding model 

parameters – the progress model parameters ia  and ib  in (3.8), the control model 

parameter ic  in (3.7), and the cost model parameters  and i irc oc  in (3.9) & (3.10).  
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Usually these deviations and hence the model uncertainties or errors are apparent 

only after some part of the project has been completed. Because of this assumption that 

the model error is limited to the model parameters it is possible that there exists a 

correlation between these deviations and errors in the model parameters. Hence by 

recursively using an appropriate filtering technique the assumed models can be refined 

by updating the corresponding model parameters so that they reflect the behavior of the 

actual project progress. Presently in this research it is assumed that the uncertainty is 

limited to the project progress model alone i.e. the progress model parameters ia  and ib  

are assumed to be uncertain or unknown. These parameters ia  and ib  are considered to 

be the variable states of the project model and need to be estimated or updated to reflect 

the behavior of the actual project by tracking the actual progress trajectories of the sub-

tasks using the Unscented Kalman Filter approach. Hence the project state ( )X k  and 

measurable output ( )Z k  at any discrete time k  are as shown in (5.1). 

 

1 1

2 2

3 3

1

1

( ) ( )
( ) ( )           ( ) ( )  

( ) ( )
,                                                                                                                   

(
( )

X k x k
X k X k Z k x k

X k x k
where

x
X k

   
   = =   
      

=
2 3

1 2 2 3 3

1 2 4

) ( ) ( )
( )            ( ) ( )            ( ) ( )
( ) ( ) ( )

k x k x k
a k X k a k X k a k
b k b k b k

     
     = =     
          

 (5.1) 

  As discussed in the previous sections the Kalman Filter forecasting method can 

be used to update the assumed progress model and forecast the EAC and EDAC at any 

point of time along the course of the project given a proposed resource allocation 
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schedule for the remaining duration of the project. The objective of the optimal project 

controller is to find the resource allocation schedule that leads to the optimal values of 

EAC and EDAC as predicted by the Kalman Filter forecasting method. The optimal 

value of EAC is the minimum possible value. And the optimal value of EDAC is the 

closest value to DAC. Hence the general objective will be to minimize the EAC as well 

as the deviation of EDAC from DAC subject to any resource constraints. Using a penalty 

for the deviation of EDAC the formulation this optimization problem is (5.2).  

 

( )

{ }

2

( )
                                  

                        .                       0 ( ) ( )
,

       ( ) ( ), ( 1),...                (the future resouce alloc

U tp
Minimize EAC M EDAC DAC

s t U tp UU tp
where

U tp u tp u tp

+ −

≤ ≤

+

{ }
ation)

       ( ) ( ), ( 1),...         (the resouce constraints)
       100( )   EDAC DAC  (the penalty)
           0                 EDAC DAC

UU tp uu tp uu tp
M BAC for

for

+

= >
= ≤



 (5.2) 

By iteratively varying the resource allocation plan for the remaining duration of 

the project it is quite possible to obtain a resource plan or schedule which leads to a 

forecast of minimum EAC, and EDAC close to DAC. Any of the evolutionary 

optimization algorithms would be an ideal and obvious choice for this purpose due their 

efficiency in dealing with large and complex nonlinear objective functions with multiple 

local optima. The following sections describe and demonstrate the use of such an 

optimal project controller for iteratively calculating the optimal resource allocation 

schedule using the evolutionary optimization algorithm known as Covariance Matrix 

Adaption Evolution Strategy (CMA-ES). 
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5.1 Covariance Matrix Adaption Evolution Strategy (CMA-ES) 

CMA-ES is meant for iteratively and adaptively searching the solution space. The search 

step-size along each dimension is also evolved iteratively governed by a self-adaption 

technique (Hansen et al. 1995). Further, the correlations between the step-sizes along the 

various search dimensions are also evolved using a Covariance Matrix Adaption 

(Hansen and Ostermeier 1996). As such there is no particular reason for preferring 

CMA-ES over other evolutionary optimization algorithms. But, in this study it was 

observed that CMA-ES consistently outperforms Genetic Algorithm (GA) – the other 

commonly used evolutionary optimization algorithm – in terms of the rate of 

convergence to the solution as well as the efficiency in working with larger resource 

allocation schedules. Further, unlike GA, the particular CMA-ES used in this research is 

perfectly capable of choosing the best internal search strategy parameters with the 

exception of the population size. 

To use the CMA-ES (or any other evolutionary algorithm) the first step is to 

define the structure of the population to be evolved. The Kalman Filter forecasting 

method has the resource allocation schedule as its input. Hence a population individual 

structure reflecting the time variation of the resources for each of the sub-task is the ideal 

and obvious choice. Further, for the working of the CMA-ES algorithm with various 

scenarios, the length of the string structure should be large enough to accommodate 

solutions – resource allocation schedules - which have EDAC much beyond the 

scheduled project duration or deadline. Hence the length – representing the time 
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dimension – of the population structure is allowed to be 50% larger than the length 

required for the expected value of forecasted EDAC. Considering all these aspects, the 

structure of the individual solution used in the implementation is as shown in Figure 54. 

 

Figure 54    The structure of the solution individual for the CMA-ES. 

 

5.2 Application and Discussions 

The main tracking, filtering and forecasting system based on Kalman Filter approach has 

been programmed in MATLAB. The project progress model (3.8) along with the project 

control model (3.6)&(3.7) has been programmed in FORTRAN and compiled as 

separate executables that can be called from the tracking and forecasting system in 

MATLAB. For the optimization method, an already available CMA-ES algorithm 

programmed in MATLAB (Hansen 2008) has been used as it is. 

For first testing and then implementing the proposed optimal control method two 

different scenarios are considered for the actual progress of the project:  

a) 200 time units have passed since the start of the test project, with the data 

about the actual project progress available with a sampling period of 10 time 

11( )u tp  11( 1)u tp +   11( )u tp k+   

22 ( )u tp  22 ( 1)u tp +  …………… 22 ( )u tp k+  ……...………………. 

33( )u tp  33 ( 1)u tp +   33 ( )u tp k+   

 

time 

resources  
at each 

time 

Length ~ 1.5 times the remaining duration to the expected value of forecasted EDAC) 

Where, ’tp’ is the present time – the end of model revision and time of forecast 
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units; the assumed future resource allocation schedule is not optimal with 

resources allotted to the tasks even after their finish times, as shown in Figure 

55, and  

b) 200 time units have passed since the start of the test project, with the data 

about the actual project progress available with a sampling period of 10 time 

units; the Task 1 has been delayed beyond the planned schedule, assuming 

the actual values for both the parameters 1a  and 1b  as 0.20. 

 

 

Figure 55    The future non-optimal resource allocation schedule for the test project. 
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schedule. The second sub-section discusses the implementation of the optimal controller 

for progress scenario ‘b’ and the results obtained. The final sub-section discusses the 

generation of the Pareto Optimal Solution for the trade-off between EDAC and EAC. In 

all the tests and demonstrations the number of generations or iterations used in CMA-ES 

is 2000. 

 

5.2.1 Testing the Optimization Method 

After the initial tracking and revision period of 200 time units, the revised project 

progress model is used for forecasting the EAC and EDAC.  The first scenario ‘a’ is 

chosen to test the proposed optimization method for the rate of convergence and 

effectiveness in optimizing the resource allocation schedule, before using it for optimal 

control. In this scenario both the original planned EAC and the expected value of the 

forecasted EAC were found to be 1691 cost units – as expected, higher than the optimal 

value of 1523. The theoretical optimal resource schedule and cost trajectory for the 

remaining duration is depicted in Figure 56 and Figure 57. The forecasted EDAC is 480. 

The planned, actual and forecasted project-cost trajectories for this scenario are shown in 

Figure 58. 
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Figure 56    The theoretical optimal resource allocation schedule for rest of the project. 

 

Figure 57    The theoretical optimal project-cost trajectory for the test project with 
scenario ‘a’ for actual progress where the future resource allocation is non-optimal. 
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The optimization algorithm is setup to minimize the expected value of the 

forecasted EAC with the constraint that the EDAC is closest to the originally planned 

duration of 480 time units while the resources have an upper constraint of 2. The non-

optimal resource allocation schedule shown in Figure 55 is used as the initial solution for 

the CMA-ES optimization algorithm. The resultant optimal resource allocation schedule 

for the rest of the duration of the project is as shown in Figure 59. The planned, actual 

and optimized project-cost trajectories are shown in Figure 60. 

 

Figure 58    The planned, actual and forecasted project-cost trajectories for the test 
project with scenario ‘a’ for actual progress where the planned resource allocation is 

non-optimal. 
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Figure 59    Optimal resource allocation schedule without leveling. 

 

 

Figure 60    Planned, actual and optimized project-cost trajectories for optimal resource 
allocation without leveling – optimized expected EAC of 1531 against planned EAC of 

1691 and theoretical optimal EAC of 1523. 
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The optimized cost of 1531 is much lower than the original planned cost of 1691 

and closer to the theoretical optimal value of 1523 implying that the optimization 

algorithm is able to derive an optimal solution. It can be noted from Figure 59 that the 

resource allocation schedule for Task 1 has a 0 level throughout, which is expected.  

The start and finish times for planned task progress and resources match for Task 

3. But the resources for Task 2 as seen in Figure 59 seem to be much beyond the planned 

progress. The progress of Task 2 beyond the planned duration can be seen Figure 61. 

The reason for this behavior seems to be the dependency between Task 2 and Task 3. 

Since Task 3 can start after 90% of Task 2 has been complete, the optimization 

algorithm seems to have allotted a resource schedule that forces a high rate of progress 

of for Task 2 till 90% of it is complete and a very low rate after that till the end. Further, 

the finish time of Task 2 and Task 3 are the same as that of the EDAC. 

 

Figure 61    Optimized progress trajectories for Task 2 and Task 3. 
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In this first optimization setup, it can be noticed from Figure 59 that the resource 

allocation schedule is not a smooth graph. In reality it will be impractical to implement 

such a schedule since there is allocation and de-allocation of resources in every time 

period. Usually a smooth graph is desired with monotonously increasing or decreasing 

resource schedule. For implementing this aspect, a penalty was setup in the objective 

function that increases with the square of deviation between the allocated schedule and a 

smoothened - a moving average of the allocated schedule - form of the same. The 

resultant resource schedules and cost trajectories for a smoothing period of 5 time 

periods and 10 time periods are depicted in Figure 62 & Figure 63, and Figure 64 & 

Figure 65 respectively. It can be seen from these graphs that using a larger smoothing 

window size does give a smoother resource schedule but at a slightly higher estimated 

cost at completion. 

Now that the results obtained are close and according to the theoretical results 

and explanations, it has been concluded that the optimization algorithm used is working 

as expected and can effectively be used for minimizing the cost to completion. Further 

other necessary aspects like the implementation of resource leveling and project 

schedule constraints have also been implemented and verified. 
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Figure 62    Optimal resource allocation schedule with leveling (smoothing over 5 
periods). 

 

Figure 63    Planned, actual and optimized project-cost trajectory - optimal resource 
allocation schedule with leveling (smoothing over 5 periods). 
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Figure 64    Optimal resource allocation schedule with leveling (smoothing over 10 

periods). 

 

Figure 65    Planned, actual and optimized project-cost trajectory - optimal resource 
allocation schedule with leveling (smoothing over 10 periods). 
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5.2.2 Optimal Project Control – Minimum Cost Control 

The second scenario ‘b’ is chosen for testing the ability of the controller to yield an 

optimal control policy in the form of an optimal resource allocation schedule that 

minimizes the overall project cost while ensuring conformance to the originally 

scheduled project duration. Due to delay in the Task 1 the resource allocation schedule 

shown in Figure 6 is not applicable and hence the schedule in scenario ‘a’ (Figure 55) is 

assumed as the revised future resource schedule. In this case the expected value of the 

forecasted EDAC is 570 and the expected value of the forecasted EAC is 1771. The 

planned, actual and forecasted BCWP trajectories for this scenario are shown in Figure 

66. The use of the optimization algorithm for both scenarios is discussed in the 

subsequent section. 

 

Figure 66    The planned, actual and forecasted project-cost trajectories for the test 
project with scenario ‘b’ for actual progress where the Task 1 had been delayed. 
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The optimization algorithm is setup to minimize the expected value of the 

forecasted estimated cost to completion with the constraint that the EDAC is closest to 

the originally planned duration of 480 time units while the resources have an upper 

contain of 2 units. The non-optimal resource allocation schedule shown in Figure 55 is 

used as the initial solution for the CMA-ES optimization algorithm. The resultant 

optimal resource allocation schedule for the rest of the duration of the project with a 

smoothing of 5 time periods is as shown in Figure 67. The planned, actual and controlled 

project-cost trajectories are shown in Figure 68.  

 

Figure 67    Optimal resource allocation schedule for optimal project control of test 
project. 
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Figure 68    Planned, actual and controlled project-cost trajectories for optimal resource 

allocation for optimal project control of test project. 

From these figures it can be noted that the optimal project control was able to 

allocate an optimal resource allocation schedule that controlled the project in such a way 

that the expected EDAC is the same as the planned value of 480. 

 

5.2.3 Optimal Project Control – Time and Cost Trade-off Control 

The Pareto Optimal Set representing the least feasible cost for a given project duration 

depicts the Time-Cost trade off for the project control. This is obtained by using a multi-

objective CMA-ES to minimize the expected EAC and EDAC together. The time-cost 

trade-off for the test project as the Pareto Front between expected EAC and EDAC for 

actual project progress scenario ‘b’ is Figure 69.  
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Figure 69    The Time-Cost trade-off for optimal control of the test project. 

This time-cost trade-off curve can be useful for managers in making control 

decisions. The negative value of the slope tangent of the Pareto Front at any point 

represents the stability of that optimal control solution. A point with steeper slope (point 

A) for tangent implies a more unstable or risky solution in terms of the project cost since 

any deviation in the solution at this point might lead to a high variation in the project 

cost. A point with small slope (point B) for tangent implies a more stable solution in 

terms of the project cost since any deviation in the solution at this point might lead to a 

comparatively smaller variation in the project cost. 
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6. SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary of the Research 

1) The research has formulated and demonstrated a methodology for use of 

Kalman Filter for updating the project progress models. Three different types 

of project progress model have been tested for their tracking performance as 

well as suitability for forecasting. The implementation of the Kalman Filter 

was verified for both deterministic and stochastic project. 

2) A general framework for optimal control of projects has been devised using 

an evolutionary optimization method – the CMA-ES – in conjunction with 

the Kalman Filter forecasting method. An implementation of the framework 

was demonstrated and tested using a hypothetical project as a numerical 

example. 

 

6.2 Conclusions 

1) The research has shown that any approximate project progress model can be 

updated by using the Kalman Filter for tracking and filtering the actual 

progress of the project. The tracking performance of the model depends on its 

ability to represent the dynamics of the project. A Sigmoid curve was 

observed to perform better than a polynomial model.  But a model using the 

project Gantt chart as the basis has a much better tracking and forecasting 
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performance. Further it was shown that the process noise can be used as a 

fudging factor accounting for model specification error. 

2) The general framework developed for optimal control of projects has shown 

to be very effective and useful as tool for devising and evaluating project 

control decisions. The use of evolutionary algorithm in conjunction Kalman 

Filter forecasting approach provides a robust framework that can be 

implemented for any kind of complex project model for yielding the optimal 

control policies. 

 

6.3 Future Work 

1) In the present research the proposed optimal control framework has be 

formulated for any kind of project with multiple spatially interdependent sub-

tasks and the implementation has been verified to work with deterministic 

and stochastic systems. But the framework has only been demonstrated on a 

simple hypothetical project. Before formulating and implementing it for 

actual projects further verification is need using the data from any actual 

construction project.  

2) The research only covered the formulation and implementation of optimal 

control in which only the project progress model is updated or revised using 

the observable data from the actual process. It was assumed that there is no 

error in the specification of the project control and project cost models. But to 
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make the framework more effective and extensive, it should be extended to 

include the revision of the project control and project cost models.  

3) The optimal controller has been implemented to yield the minimum-cost as 

well as the cost-duration trade-off control. Since the optimization method is 

based on evolutionary techniques, it would be feasible to implement the 

minimum variance control by including the project control and project cost 

models into the Kalman Filter forecasting method. The minimum variance 

control can be devised to yield the trade-off relation between the cost, 

duration, cost-variance and the duration-variance. 

4) In the present research it was demonstrated that using an appropriate value of 

process noise simpler polynomial and sigmoid models can be used to 

represent the progress of the construction process. The process noise and 

measurement noise used in the Kalman Filter were assumed to be known. 

Further, in the case of a stochastic process it is not possible to estimate the 

error in estimation along with the estimates of the values of the parameters. 

An appropriate future work would be to address the problem of estimating 

the process and measurement noise either form subjective estimates of the 

process or from the actual data available during the progress of the project. 
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