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ABSTRACT 

 

Spatial and Temporal Patterns of Eastern Oyster 

(Crassostrea virginica) Populations and Their Relationships to  

Dermo (Perkinsus marinus) Infection and Freshwater Inflows 

in West Matagorda Bay, Texas. 

(December 2008) 

Jan Cheryl Culbertson, B.A., University of Delaware; 

M.S., University of Georgia 

Chair of Advisory Committee: Dr. Frances Gelwick 

 

The present study explored the spatial and temporal demographic trends in oyster 

population dynamics and their relationships to freshwater inflows and the pathogen 

Dermo (Perkinsus marinus) on three reefs (Shell, Mad Island, and Sammy’s) in West 

Matagorda Bay, Texas.  The objectives were to design and link three population models 

that simulate oyster population dynamics and integrate the environmental factors that 

influence growth, reproduction and settlement of larvae among these three reefs. The 

following variables were evaluated: relative abundance of oyster spat, submarket- and 

market-size oysters, average weighted incidence of Dermo and percent Dermo infection 

(prevalence) in submarket- and market-size oysters and their relationships to 

environmental variables of salinity, temperature, flow and distance from freshwater 

sources. Using a 30-month continuous dataset, environmental variables accounted for 
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36% of the variation in Dermo-related variables among the three reefs, and were also 

positively correlated with distance from freshwater sources. The relative abundance of 

spat and dead oysters was related to peaks in freshwater inflows occurring 30 days prior 

to larval settlement. 

Using these spatial and temporal relationships among biological and 

environmental variables, and data from five years of monitoring three reefs in Matagorda 

Bay, an integrated Stella model was developed that simulated oyster population 

responses to stochastic environmental changes over a 50-year period. Although the 

geological and structural complexity of each reef appeared to be similar, the model 

showed the relationship of growth, spawning and spat set were related to hydrologic 

variation between different reefs and time periods. The model revealed that up-estuary 

reefs relied on the distribution of larvae from down-estuary reefs following mortality 

related to freshwater inflow. The model also indicated that loss of freshwater inflows to 

down-estuary reefs resulted in higher sustained Dermo infections, thus loss of spawning 

potential and subsequent distribution of larvae to up-estuary reefs. The three oyster 

populations in West Matagorda Bay provide spawning connectivity and function as an 

integrated resource for sustaining all oyster reef populations in this bay system. 

The model presented in this research provides a basis for understanding the 

population dynamics of WMB as well as a better understanding of the interaction among 

the reefs that sustain these populations. The model developed in this investigation 

provides a basis for developing oyster population models for other bay systems and for 

future research regarding hydrologic influences on oyster population dynamics. 
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CHAPTER I 

INTRODUCTION: LITERATURE REVIEW OF SPATIAL AND TEMPORAL 

PATTERNS OF TEXAS OYSTER POPULATIONS 

 

Introduction 

The Eastern oyster, Crassostrea virginica (Gmelin) is the dominant species on 

Texas oyster reef habitats (Hedgpeth 1953). Oysters are dynamic engineers that secrete 

calcareous shells, and in so doing, create three dimensional structural habitats with 

interstitial heterogeneity appropriate for the population and a diverse community of 

commensal, predatory and parasitic organisms that live, feed, or seek refuge on these 

reefs (Dame 1979; 1996; Bartol et al. 1999; Minello 1999). 

Oysters are considered to be the best indicators of changes in estuaries because 

reefs form where conditions are optimum for oyster population’s survival and 

reproduction (Chatry et al. 1983; Gutierrez et al. 2003; Dame 1996; Bergquist et al. 

2006). Chatry et al. (1983) found an inverse relationship between spat set and oyster 

production in Louisiana bays. Their study showed that years with heavy spat set were 

followed by years of poor oyster production, whereas lighter sets often resulted in better 

oyster production. Galveston Bay oyster populations have demonstrated a similar 

relationship with higher spat sets in years with higher freshwater inflows, initially 

followed one year later with lower abundances of market size oysters (≥76 mm), then 

followed two years later with higher abundances of market oysters (Buzan et al. 2008). 

____________ 
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One study of oyster populations along a salinity gradient in a Florida estuary 

(Bergquist et al. 2006) found that the percent cover of living oysters and densities of 

various oyster size classes were inversely correlated with salinity measured 12 months 

and 24 months earlier. The abundance, mortality, and production of those oysters varied 

substantially with salinity and river flow conditions in Florida’s Suwannee River estuary 

(Bergquist et al. 2006). In comparison, oysters located in Florida’s Apalachicola Bay 

estuary, further from freshwater sources with highly variable salinity regimes, had higher 

mortalities than those closer to freshwater sources (Livingston et al. 2000). Although C. 

virginica has a wide range of physiological tolerance to salinity compared to other oyster 

species (Butler 1949, 1954), higher salinity indirectly results in higher mortality rates 

due to increased pressure from marine predators and parasites (Shumway 1996). 

Oyster reefs are considered in this review as composed of live oysters and dead 

shells in consolidated formations or as clusters of live oysters on firm bottoms that 

provide direct and indirect ecosystem services for estuaries. These ecosystem services 

include water filtration, transfer of biomass production between bottom sediments and 

the water column through benthic-pelagic coupling, nutrient dynamics, sediment 

stabilization, creation of refugia for mobile and sessile organisms, and feeding habitat 

for resident and transient fish and invertebrates (Cake 1983; Stanley and Sellers 1986; 

Coen et al. 1999; Minello 1999; Plunket 2003; Street et al. 2005). Until recently, these 

valuable ecosystem services have been underestimated as essential fish habitat (Coen et 

al. 1999; Shervette and Gelwick 2008). 

Oysters play a significant role as filter feeders that improve water quality in 

coastal ecosystems (Langdon and Newell 1996). The volume of water a single oyster can 
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filter per hour at 25º C (77º F) is approximately 8 l/hr (2.1 gal/hr) or about 1500 times 

the volume of the oyster’s body size (Loosanoff and Nomejko 1946). Higgins (1980) 

showed that oyster filtration rate was independent of available food supply, tidal stage, 

and time of day. Oyster valves were observed to be generally closed when food was 

absent (Higgins 1980). Before the end of the 19th century, Chesapeake Bay oyster 

populations were reported to filter the entire volume of the bay in a little more than three 

days, but under conditions of severely reduced Chesapeake Bay oyster populations in 

1988, the estimated time increased to 325 days (Newell 1988). Twenty years later, after 

near total loss of this valuable habitat, the estimated filtering time would be far greater 

than Newell’s 1988 estimates. Other researchers concurred that the loss of oyster 

populations from estuaries removes an important water quality function for potential 

control of phytoplankton blooms, nutrient enrichment and overall coastal eutrophication 

(Officer et al. 1982; Dame et al. 1984; Lenihan and Peterson 1998; Coen et al. 1999; 

Jackson et al. 2001). 

Oyster shells provide a valuable function of carbon storage in the form of 

calcium carbonate (Hargis and Haven 1999; Powell and Klinck 2007). The sequestered 

carbon in these shells is taken out of atmospheric circulation, and provides a valuable 

ecosystem service by partially offsetting the observed trend of increasing concentrations 

in the atmosphere of CO2

Between 1904 and 1985, oyster surveys along the Texas coast were done by 

traditional methods such as poling, dredging, or coring (Moore 1907; Moore and 

, an important greenhouse gas associated with global warming 

(Street et al. 2005). 

Historical and current conditions among Texas reefs 
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Danglade 1915; Galtsoff 1931; Price and Gunter 1942; Collier and Hedgpeth 1950; Ladd 

1951; Norris 1953; Scott 1968; Byrne 1975; Benefield and Hofstetter 1976; King 1989). 

Oyster surveys of Matagorda Bay (Moore 1907) and of Lavaca Bay (Moore and 

Danglade 1915) were performed to determine oyster population sizes and densities, and 

to map the spatial patterns and extent of reef area within these estuaries. With similar 

objectives, Galtsoff (1931) surveyed oyster reefs from Galveston Bay to Corpus Christi 

Bay, as well as portions of the intercoastal waterway and the Laguna Madre. His surveys 

included salinity and temperature measurements. He summarized his findings with a 

map of each bay system that showed the location each reef and its spatial distribution 

relative to freshwater and tidal influences, including projected isohaline lines between 

reef sampling stations. Butler (1954) later classified Texas oyster reefs according to their 

spatial and temporal relationships to freshwater sources within these estuaries. Hedgpeth 

(1953; 1954) also provided an historical overview of oyster reefs and their associated 

bottom communities among the seven major coastal bay systems of Texas. 

In 1940, Ladd (1951) investigated “oyster-reef facies” in Texas, which he 

associated with distinct molluscan faunal assemblages found in Corpus Christi and 

Aransas Bays. Oyster reef formation in Texas estuaries was associated with the 

Pleistocene Ingleside Barrier Complex (Leblanc and Hodgson 1959; Bernard and 

Leblanc 1965). These studies categorized oyster reefs into two specific depositional 

environments: lagoons formed behind barrier islands, and bays associated with drowned 

river basins. Scott (1968) later described four distinct Texas reef formations that he 

associated with these two geological depositional systems while surveying both buried 

and live reefs in Copano and San Antonio Bays. Surveys of buried and live reefs in other 
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Texas bays revealed similar associations with these types of depositional systems: 

Lavaca Bay (Byrne 1975), Aransas Bay (Norris 1953), San Antonio Bay (Hayes and 

Scott 1964; Scott 1968; Benefield and Hofstetter 1976), and Galveston Bay (Benefield 

and Hofstetter 1976). 

Although dredging for dead oyster shells for roads and fill material, referred to as 

“mudshell dredging,” was informally conducted in Texas bay systems prior to 1907 

(Moore 1907; Galtsoff 1931), the Texas Parks and Wildlife Commission (TPWC) 

formally authorized mudshell dredging within 91 meters of natural oyster reefs in 1963, 

provided that resuspension of sediments did not damage live reefs. However, after 

several mudshell dredging violations occurred in 1963, Galveston and San Antonio Bay 

reefs were surveyed for post-sedimentation effects by Benefield (1976). He reported that 

reefs with low vertical relief suffered greater mortalities from sedimentation than ridge 

types of reefs that had greater vertical relief and higher flows along their periphery. He 

concluded that the distance between live reefs and dredging operations was not as 

critical to oyster survival as reef configuration and current flow when excessive 

sedimentation occurred. 

Galveston and Lavaca Bays have been recently surveyed using either side scan or 

chirp sonar with sub-bottom profiling between 1990 and 2003 (Smyth and Anderson 

1988; Powell et al. 1995; Bronikowski 2004; Sager et al. 2004; Patch 2005). Galveston 

Bay surveys (Powell et al. 1995) compared the extent of spatial changes among oyster 

reefs, previously surveyed by Benefield and Hofstetter (1976); and also documented the 

location of both consolidated live oyster reefs as well as clusters of live and dead shell 

on firm mud bottom habitats. Lavaca Bay surveys (Bronikowski 2004; Sager et al. 2004; 
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Patch 2005) also determined the extent of spatial changes among oyster reefs, previously 

surveyed by Moore and Danglade (1915) and Byrne (1975). At present, the Lavaca Ship 

Channel is being considered for widening and deepening in the next few years; and these 

surveys were used to assess the potential environmental impacts to existing oyster 

habitats in this bay system. 

Currently oyster reefs in every Texas bay system are surveyed by oil and gas 

development companies by even more sophisticated and modern technologies as part of 

the “avoidance-minimization-compensation” procedures required prior to obtaining a 

404 United States Army Corps of Engineers (USACE) permit for dredging, and 

installing pipelines or drilling platforms in Texas bay systems. TPWD and TAMUG are 

using similar technologies to map oyster reef habitats in Copano Bay, Sabine Lake and 

Galveston Bay estuaries (TPWD unpublished data). 

Structural differences among reefs 

Oyster reef communities provide unique three-dimensional hard bottom substrate 

in various geometric configurations that are situated relative to the sediment stability and 

currents in that area. Five reef configurations were historically identified for Texas bays. 

Three of these principal reef formations were first reported in two surveys of oyster reefs 

on the north central Texas Coast in Matagorda and Lavaca Bays (Moore 1907; Moore 

and Danglade 1915). 

The first reef formation Moore (1907) described as “transverse ridge reefs” that 

formed perpendicular to the land and prevailing currents. This formation also grew 

vertically upwards into three dimensional ridge crests where the current was deflected 

(Moore 1907). Transverse ridge reefs were also observed to grow most rapidly towards 
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the strongest currents and less rapidly along the sides where the currents were slack 

(Moore 1907). Transverse ridge reefs were noted to be the main type of reef formed 

along the north shore of Matagorda Bay where the Colorado River currents flowed from 

east to west towards Pass Cavillo and the Gulf of Mexico (Moore 1907). Transverse 

ridge reefs were also reported to be the dominant reef type forming across Galveston, 

Trinity, East and West Bays on the upper Texas Coast; and across Aransas, San Antonio, 

Lavaca and Matagorda Bays on the middle coast (Moore 1907; Moore and Danglade 

1915; Galtsoff 1931; Price 1954).  

The second type of reef Moore (1907) described as clusters of shells formed in 

short rounded mounds or lumps in deeper waters away from shore, with even 

distribution of currents flowing around and over the formation. These types of reefs were 

later described as “tow-heads” by Price (1954) or as “patch reefs” by Hofstetter (1977).  

These types of reefs are typically found in the slower moving currents of East Matagorda 

Bay (Moore 1907) and in East Bay adjacent to Galveston Bay (Hofstetter 1977). 

The third type of reef found in Lavaca Bay by Moore and Danglade (1915) and 

later by Galtsoff (1931) was described as a thin layer of scattered live shell in flat beds 

and patches that were deposited over firm sediments, at nearly the same elevation as the 

surrounding bottom. These types of reefs were also observed in San Antonio Bay and 

were classified as “pancake” reefs by Scott (1968). This same type of reef formation was 

similar to the “salt and pepper flats” of scattered live oysters lying on a stiff mud or clay 

bottom as described for South Redfish Reef by Hofstetter (1977). He reported that these 

reefs seldom exceeded one meter in thickness, had little vertical relief, and were the 

most vulnerable to sedimentation from mud-dredging operations. 
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Price (1954) described a fourth type of “longitudinal reef” which commonly 

formed in pairs along tidal channels, and elongated parallel to the dominant currents of 

the channel. He indicated these reefs were primarily associated with slightly elevated 

natural levees along rivers, which flooded during the last Pleistocene’s low sea level 

stage. Winslow (1889) first observed this type of oyster reef formation where denser 

numbers of oysters formed along tidal channels. Stenzel (1971) later defined these dense 

formations along channels as “fringing reefs”. Galtsoff (1931) also described similar 

“parallel linear reefs” in pairs along the many inner water bodies of central San Antonio 

Bay, and also along the initial Houston Ship Channel cut through North Redfish Reef in 

Galveston Bay. Hofstetter (1977) also documented that this fringing, longitudinal type 

reef became the most common reef formation after the Houston Ship Channel was 

dredged, due to the greater transfer of currents and tidal waters between the former 

transverse ridge formations of North Redfish Reef. 

A fifth type of reef was described by Hofstetter (1977) as “concave shaped” 

where the central portion of the reef is several centimeters lower than the surrounding 

mud bottom. He found this type of reef during surveys of Galveston and San Antonio 

Bays (Benefield and Hofstetter 1976). The oysters on this type of reef are partially 

buried with only the upper margins of their bills exposed, which results in growth of 

long narrow shells. Galtsoff (1931) referred to these as “coon oysters” or “snapper 

oysters” when he found them in Aransas and Copano Bays. 

Distance from freshwater sources 

Structural formations of oyster populations have been noted in several studies as 

being related to several spatial and temporal features: distance from freshwater sources, 
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current velocities, duration of flows, and the timing of inflows relevant to their life cycle 

(Winslow 1889; Grave 1901; Galtsoff 1931; 1964; Hedgpeth 1954; Butler 1954; Price 

1954; Hofstetter 1977; Ray 1987; McCormick-Ray 1998; Powell et al. 2003; Bergquist 

et al. 2006). These features have been referred to as “seascape” patterns in subtidal areas 

of bays, and “landscape” patterns in intertidal areas along shorelines and channels 

(Winslow 1882; McCormick-Ray 1998). Hofstetter (1977) recognized that low salinity 

following high-inflow events often corresponded to enhanced survival of oyster 

populations in central Galveston Bay depending on the spatial orientation of reefs. 

Historically, North and South Redfish Reefs in central Galveston Bay have produced the 

greatest amount of oyster biomass and maintained consistently stable oyster populations 

despite floods or droughts (Hofstetter 1977). Powell et al. (2003) also described how 

distance from freshwater sources, volume of freshwater inflow, size of navigation 

channels, and the ability of oysters to modify their habitat, could potentially determine 

future abundances of oysters in Galveston Bay. 

Butler (1954) provided a description of four categories of oyster populations that 

form reefs dependent on their distance from freshwater sources and their salinity 

regimes. His first type was located near the head of the estuary with salinity regimes of 0 

to 15 ppt, with average annual means of 10 ppt, with sparse populations, living in 

marginal environments. These populations will be referred to as “up-estuary” 

populations in this discussion. Butler (1954) described these populations as being 

composed of mostly small, rounded oysters with smooth, white shells due the absence of 

fouling organisms. He indicated that these populations typically received low rates of 

spat setting on the reef. He indicated there would be relatively good growth of younger 
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or submarket-size oysters during their first season, but slower growth of older market-

size oysters. He characterized these oyster populations as having a higher-than-average 

annual mortality, and periodically decimated in flood years by excessive fresh water. 

However, periodic flooding reduced predators and parasites, thus increasing chances for 

survivors after flooding occurred. He also commented that these subtidal up-estuary 

populations had many characteristics in common with intertidal populations, which grow 

at or above mean low water regardless of salinity level. Typical transverse ridge reefs 

such as Fishers Reef in Galveston Bay and Shell Island Reef in West Matagorda Bay 

(WMB) are examples of Butler’s up-estuary populations, which are located only a few 

kilometers from freshwater sources. 

Butler (1954) described a second oyster population type located further “down-

estuary,” where salinity levels fluctuate between 10 and 20 ppt, and annual mean salinity 

is near 15 ppt. He indicated that population density or numbers of oysters on the down-

estuary reefs often reached a maximum carrying capacity for spat set due to the 

population’s collective spawning potential, increased availability of shell substrate, and 

relatively low density of predators within these salinity ranges. However, such high 

oyster population densities often lead to intense competition for food, and contribute to 

reduced growth and survival of newly settled spat (Zajac et al. 1989). Butler stated the 

individual oysters in these populations exhibit moderately well to uniform shell growth, 

and form definite year classes. He described a typical oyster in this type of population as 

having relatively smooth and dense or thick shell valves, with evidence of moderate 

fouling organisms and infections from boring sponge and clam. He indicated these types 

of populations often form interlocking clusters of long narrow shaped shells, depending 
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on the stability of the bottom sediment type. He also reported that although the meat of 

these populations might have high nutritional value based on its quality and size, these 

oysters would taste less salty and therefore be less appetizing to eat. Whereas this type of 

oyster population may be productive in most years, Butler indicated that during drought 

years, these populations were more likely to experience increased mortality from 

predation by the oyster drill Stramonita haemastoma. Butler also pointed out that in 

flood years individual growth of oysters in these populations could be delayed for 

several months, and their shells may show signs that indicate negative (or loss of 

previous year’s) growth, hence the term “retrogressed shells” (Ray 1987). Typical 

“down-estuary” oyster populations are located several kilometers from the Trinity and 

San Jacinto Rivers in Galveston Bay. These down-estuary populations include the 

pancake reef formations on South Redfish Reef and the bisected transverse-ridge 

formations remaining on North Redfish Reef since construction of the Houston ship 

channel. Typical down-estuary oyster populations in Matagorda Bay are best 

exemplified by the transverse-ridge formation of Mad Island Reef. This reef receives 

intermittent overland flow especially following locally intense precipitation events in 

addition to direct inflows from the Colorado River. Typical down-estuary oyster 

populations are also found on the transverse reef formation known as Gallinipper Reef in 

Lavaca Bay. 

Lavaca Bay oyster populations also tend to form longitudinal parallel reefs from 

up-estuary to down-estuary positions along the Lavaca Ship Channel, which are similar 

in form to Galveston Bay’s longitudinal reefs along the Houston Ship Channel. These 

transitional types of reef populations benefit from both strong tidal currents and 
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freshwater inflows due to their proximity to deepwater channels in shallow bay systems 

(Galtsoff 1931; Scott 1968). 

A third category of oyster populations described by Butler (1954), which will be 

referred to in this study as “gateway” populations, are found closer to the mouth of 

estuaries and passes to the Gulf of Mexico. Butler characterized this type of oyster 

population as having a mean annual salinity level of 25 ppt with seasonal fluctuations 

ranging from 10 to 12 ppt during the wet season, to 30 ppt during the dry season. This 

type of oyster population is characterized by unusually high individual growth rates, 

although actual growth patterns may be difficult to discern due to the amount of shell 

erosion and damage from predators associated with this salinity regime. Butler (1954) 

indicated that these gateway oyster populations are located in higher salinity regimes and 

their reefs have the greatest diversity of both marine and estuarine organisms. He also 

indicated that the reduced density of individuals in gateway populations living in higher 

mean salinity regimes have a much lower spawning potential and growth rates than are 

generally found in the down-estuary populations, which thrive in lower mean salinity 

regimes. He emphasized that the numerous parasites and predators residing under these 

conditions of higher salinity prevalent in gateway populations provide a counter-balance 

between other limiting factors influencing population density of oysters and spat 

survival. He pointed out that young oysters and spat of gateway populations have 

initially-higher mortality rates, which prevents oyster clusters from becoming too 

densely set, or “wrapped up in spat”. Thus less dense sets provide new individuals an 

opportunity to rapidly accumulate shell growth and increase tissue weight; and to 

achieve higher survival rates after their first growing season. Butler described the shells 
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of gateway oyster populations as being thick and well rounded, with ample substrate for 

burrowing activities of predators and commensals. He noted that these population’s 

shells would also show heavy concentric ridges, indicating periods of fast growth. Butler 

also reported the meat from these oysters had excellent texture and taste. Butler 

concluded that these populations were more likely to benefit from being scraped or 

worked by dredges during the harvest season, which removes accumulations of 

“undesirable predators and commensals.” Typical gateway populations are best 

exemplified by Hanna’s Reef in East Bay, Dollar Reef in Lower Galveston Bay, 

Sammy’s Reef in WMB, Indian Point Reef in Lavaca Bay, and First Chain Island Reef 

in San Antonio Bay. 

Butler (1954) described a fourth type of oyster population that is located at the 

junction of the estuary near passes to the Gulf of Mexico, where salinity levels are 

consistently high and where there is little or no influence from freshwater sources. He 

referred to these as “pass” oyster populations. Although these types of populations form 

reefs in these higher salinity locations, the environmental conditions are marginal for 

their survival compared to down-estuary or gateway oyster populations. Butler 

characterized pass oyster populations as having low population density, slow growth 

rates, and high mortality rates. Butler observed that the scarcity of suitable substrate or 

“cultch” in addition to higher concentrations of predators were most likely to be the 

“driving factors” for lower spat survival rates in these populations. He indicated that 

these populations were of negligible commercial importance and had very low 

reproductive capacity. However, Butler speculated that pass oyster populations could 

provide supplemental distribution of larvae to up-estuary oyster populations following 
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disastrous floods; and potentially could repopulate flooded areas where recently dead 

oyster shells provided optimum setting substrates. According to historical records, Half 

Moon Reef at the junction of WMB and the main portion of Matagorda Bay displayed 

characteristics of Butler’s pass oyster populations where population numbers on Half 

Moon Reef increased substantially following flood years, and declined following 

drought years (Moore 1907; Galtsoff 1931). This pass type of reef has been documented 

to be close enough to the Gulf of Mexico to be primarily influenced by marine predators 

and commensals, with higher mortality rates than other reefs in WMB (Butler 1954; 

King 1989). The oyster population on Half Moon Reef has been substantially reduced 

over the last century, and additional forces from hurricanes have continued to reduce its 

vertical relief to that of surrounding bottom elevations. 

Pass reef oyster populations are also found near Blue Buck Point Reef at the 

junction of Sabine Pass with the Gulf of Mexico along the Texas and Louisiana border 

(Hedgepeth 1953). These oyster populations endure strong freshwater inflows from the 

Neches River and strong tidal influences from the Gulf of Mexico (Diener 1975). These 

populations have high reproductive and growth success in years following floods or 

lowered abundance of market oysters and poor growth following drought years. These 

pass oyster populations do not have the potential larval sources from up-estuary 

populations to replenish their depleted populations following drought years. Sabine Lake 

contains primarily soft substrates overlying clay bottoms, and there are no oyster reef 

formations in up-estuary areas where larvae spawned from the Blue Buck Point Reef 

would be able to survive if they set on these sediments. 
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Another type of oyster population forming marginal reefs in South Bay, in the 

southern part of the Laguna Madre, near the Texas-Mexico border was reported to 

survive 35-60 ppt salinity regimes (Hedgepeth 1953; Diener 1975). These oyster 

populations initially appeared to be adapted to nearly oceanic salinity regimes where 

they have no direct source of freshwater inflow from rivers or bayous (Hedgpeth 1953). 

However, King et al. (1994) found that these oysters were genetically distinct 

populations that differed from oyster populations in other bays along the Texas Coast. 

They attributed these genetic variations to adaptations to physiologically different 

ecotypes. They based their conclusions on a study by Stauber (1950), which provided 

evidence that differential spawning behaviors in response to thermal stimuli created 

opportunities for genetic variations. They also referenced Breuer’s study (1962) which 

claimed that variation in growth rates is due to adaptation to hypersaline conditions. 

These populations are not typical of “pass communities” because they are adapted to 

hypersaline conditions. 

Distances among reefs 

The locations of oyster communities in a bay system are not random. They 

develop across estuaries from organized density patterns that correlate to sediment 

stability, tides, distances from sources of freshwater inflow (previously discussed), 

current velocities and durations, and other hydrological features of bay systems 

(Winslow 1882; Grave 1901; Galtsoff 1931; 1964; Hedgpeth 1954; Butler 1954; Price 

1954; Hofstetter 1977; Ray 1987; McCormick-Ray 1998; Powell et al. 2003; Bergquist 

et al. 2006). These studies show that oyster populations form reefs in response to their 

surrounding environment. Oysters can grow as single individuals or as clusters of 
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multiple individuals across mud and sand, or in dense beds of their own accumulated 

shells (Winslow 1882; Galtsoff 1964; Baher and Lanier 1981; Dame 1996). The location 

of oyster populations in estuaries is related to current speed and bottom roughness 

(Wildish and Kristmanson 1979), and to hydrology (Hedgpeth 1953; Powell et al. 2003). 

Greatest abundances of oysters were reported for tidal streams where current velocities 

diverge from the main flow (Keck et al. 1971) or in estuaries where reefs intersect the 

flow of major currents (Hedgpeth 1953; Scott 1968). Reefs have the potential to divide 

bays and change circulation patterns (Diener 1975), thus altering local environments and 

associated flora and fauna (Britton and Morton 1989). 

In describing the development of transverse reefs across bays, Scott (1968) 

provided a rational explanation as to why oyster communities accrete vertically more 

than horizontally, to the point at which the reef crest is within a few centimeters of the 

mean level for high tide. These vertical ridge reefs having intertidal crests can act as 

barriers or strongly affect circulation patterns in Texas bay systems. Where currents flow 

over and through the interstitial spaces of the accreting reef, velocities become greater 

along segments with smaller diameters. Currents within a bay system will generally be 

stronger where the water crosses a shoal or reef crest than over bottom areas with lower 

relief. These currents over reef crests also provide more favorable conditions for vertical 

oyster reef development and growth of larger populations. However, transverse-ridged 

oyster reefs have a biological problem of “self-siltation” that limits formation of adjacent 

reefs (Scott 1968). As the flow passes over the reef’s crest, oysters repeatedly shut their 

valves to eject pseudofeces, which are composed of particles rejected by their filtering 

system bound in mucous strings. These ejected “sticky” pseudofeces collect on adjacent 
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bottom sediments and prevent any larvae from setting in these areas that might otherwise 

accrete along the periphery of the reef. Scott (1968) indicates that the spacing between 

transverse reefs depends on several variables including current velocity, population 

densities on the reef producing pseudofeces, the amount of suspended sediments in the 

water column, and water depth of inter-reef areas. 

Biotic interactions among reefs and environmental variables 

Lengthy periods of drought and/or low freshwater inflow allow salinities to rise 

and oyster mortality from predation and parasitism to increase (Ray 1987). Alternatively, 

floods can suppress salinities long enough to cause massive oyster deaths (Hofstetter 

1977; Wilber 1992). However, abundant spat set in Galveston Bay was synchronous 

with above-average freshwater inflows (Hofstetter 1977). In such years, oyster mortality 

from flooding was more than compensated by increased spat set on dead shells. Recent 

analysis of unbiased fisheries-independent data for Galveston Bay shows that oyster 

population abundance increases one- to two-years after increased freshwater inflows and 

associated decreases in salinity (Buzan et al. 2008). 

Oyster commercial landing records for Matagorda Bay were reported to be 

correlated with salinity regimes, before and after freshwater inflows from the Colorado 

River were diverted to the Gulf of Mexico (Wilber and Bass 1998). Oyster landings from 

reefs nearer to freshwater sources were negatively associated with the duration of low 

flows that had occurred two years earlier, as well as with the maximum annual river 

flows in the current year. Therefore, expected benefits to the oyster harvest from 

increases in freshwater inflows during low flow periods would be realized two years 

later. 
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Along the eastern United States coast, tidal height has been demonstrated to be 

an important variable in the responses of both intertidal and subtidal oysters to salinity 

changes (Street et al. 2005). Along the Gulf of Mexico, average daily change in tidal 

height rarely exceeds 0.5 m, whereas wind forces, along with flood water height and 

duration, have a much greater influence on immersion-emersion regimes for intertidal 

reef communities (Hedgpeth 1954). However there are semi-annual tides that lead to 

extreme high tides in the spring and fall and extreme low tides in the summer and winter 

(Smith 1978) that may have important influences on all Texas oyster populations. 

Oysters living in intertidal zones grow slower and support less-diverse communities of 

associated species, as compared to oysters in subtidal zones, where greater mortality is 

related to increased exposure to predators and parasites (Roegner and Mann 1995; Bartol 

et al. 1999; O’Beirn et al. 2000). 

Interactions among oyster populations and Dermo 

The first major oyster pathogen in Texas is the protozoan Perkinsus marinus 

(Levine 1978), synonymous with Dermocystidium marinum (Mackin et al. 1950), and 

later as Labyrinthomyxa marina (Quick and Mackin 1971). Mackin used histological 

methods to describe features of this parasite, which is commonly referred to as Dermo 

disease. Histological sections of this parasite in oyster tissues showed a direct 

relationship of pathogen intensity to oyster deaths (Mackin 1951). Dermo is a major 

cause of oyster mortality and strongly influences oyster population dynamics (Ray 1954; 

Quick and Mackin 1971). Ray (1966) developed a partial culture technique for Dermo 

that facilitates early disease diagnosis and provides an opportunity to understand its 

interactions with its host. Dermo has a direct life cycle where waterborne infective 
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stages pass from oyster to oyster (Craig et al. 1989). The division rate of Dermo cells 

within oysters has been related to both temperature and salinity of the surrounding water 

(Hofmann et al. 1995). When salinities are greater than 10 ppt, Dermo cell division is 

primarily affected by and increases in temperature; however when salinities are less than 

10 ppt, Dermo cell growth decreases sharply with salinity and is also affected by 

temperature (Hofmann et al. 1995). Although these terms for cell division rate are 

generally applicable to most oyster populations, there are other complex interactions 

within populations and surrounding populations that suppress or enhance cell division 

rate (i.e. density of oyster populations, recent spawning and depletion of tissue weight, 

etc.). 

The focus of previous efforts to control Dermo infection have primarily been 

through management of the oyster harvest (Hofstetter 1977), rather than managing the 

oyster’s response to infection (Soniat et al. 1998). Soniat (1996) provided a review of the 

chronology of selected epizootiological and related studies on Dermo from the Gulf of 

Mexico. Dermo suppresses the oyster’s immune response by reducing the effectiveness 

of oyster phagocytes, which makes the oyster more susceptible to many other 

opportunistic organisms. The Eastern Oyster Biological Review Team (2007) reported 

that Dermo typically infects oysters in their first year of life, proliferates, causes up to 

50% mortality of infected oysters in their second summer season, and results in 80-90% 

mortality by their third year of life. They concluded that oysters infected with Dermo 

rarely survived past their fourth season of life. 

The chronic nature of Dermo disease allows infected oysters to spawn during the 

first summer, and some even spawn a second or third time before succumbing to the 
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infection. Although Quick and Mackin (1971) did not identify the specific relationship 

between levels of infection in pre- and post-spawning oysters, they noted degeneration 

of oyster gonads if Dermo was present during the early stages of gonadal development. 

Wilson et al. (1988) and Choi et al. (1989) found that spawning success selectively 

reduced oyster biomass more than Dermo biomass, thus raising the relative density of 

Dermo cells per gram of oyster tissue weight to lethal levels as the spawning oyster 

depleted the energy reserves that it would otherwise have to fight the infection. 

Therefore, they concluded that successful spawning significantly increased Dermo 

infection levels and disease progression in oyster populations, resulting in additional 

Dermo-related mortality and is likely to have an indirect influence on subsequent oyster 

fecundity. 

Powell et al. (1992) suggested that recruitment failure could be a principal 

mechanism for increasing infection levels in oyster populations and initiating an 

epizootic event. A contrasting scenario is that an epizootic event in an oyster population 

could be terminated by a massive spawning event wherein new and uninfected biomass 

replaces old infected oysters that die from the disease (Powell et al. 1996; Soniat et al. 

1998). In the latter scenario, Dermo infection in immature submarket (< 76 mm shell 

length) oysters is reduced and, given enough food sources, these oysters could grow fast 

enough to dilute the P. marinus density in the population and recoup the fecundity of an 

uninfected oyster population (Powell et al. 1996; Soniat et al. 1998). 

Several studies have shown that the size class of the oyster also should be 

considered in understanding Dermo infections (Ray 1996; Kennedy et al. 1996). Ray 

(1996) showed that submarket sized oysters generally have lower percent infections or 
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weighted incidence (WI) until they reach market size (≥ 76 mm shell length). He also 

showed that Dermo-related mortalities (10-50 %) occurred primarily in mature oysters, 

whether they were market-size or submarket-size, rather than in submarket oysters that 

had not spawned during their first season of life (Ray, 1996). Dermo levels in spat (< 26 

mm shell length) have only recently been investigated for West Bay and indicate that 

spat on intertidal reefs are less infected than those on subtidal reefs. This may be related 

to different submersion and exposure cycles and the proximity of infected market or 

submarket individuals (Ray 2008). Because higher Dermo levels occur primarily in 

mature oysters, the potential for Dermo-related mortality is higher for market-size 

oysters, and could negatively affect production of harvestable oysters. 

Biotic and abiotic interactions in oyster models 

Environmental variables that influence oyster population dynamics in complex 

spatial (geographical and structural) and temporal (seasonal) patterns have been studied 

by several researchers (Song 1993; Wilbur and Bass 1998; Powell et al. 1998; Powell et 

al., 2003; Turner 2006, Buzan et al. 2008). These studies established that fluctuating 

salinity regimes provide the optimum conditions for growth, reproduction, control of 

predators, and distribution of larvae. Several of these studies have defined specific time 

lags of 18 to 24 months for oyster populations to respond to high or low inflow events 

that occurred earlier in time (Wilber and Bass 1998; Buzan et al. 2008). These time lags 

can be directly correlated with the amount of time it takes spat to grow to market size 

(Hofstetter 1977; Kraueter et al. 2007; Buzan et al.2008). However, the complex 

interactions of salinity with other abiotic factors such as temperature and biotic factors 

such as nutrients (phytoplankton populations) may not be as easily correlated with 18 to 
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24 month time lags for reefs that are spatially separated or structurally different in 

population size and density. 

The majority of oyster models that have been developed to date have attempted 

to incorporate complex ecological and spatial relationships for salinity and temperature 

to entire bay systems with the assumption that oyster populations are nearly 

homogeneous, density independent, and that their reefs are all flat “pancake-like” 

structures such as South Redfish Reef (Hofmann et al. 1992; Powell et al. 1994; 

Hofmann et al. 1995; Powell et al. 1996; Dekshenieks et al. 2000; Powell et al. 2003). 

These models consider individual oyster responses to environmental variables in terms 

of food assimilation and respiration, under the assumption that their valves were 

constantly open and that their responses were instantaneous or dependent on average 

temperature or salinity conditions over monthly or seasonal periods of time. Oyster 

populations as previously discussed in this study form at specific distances from other 

reefs and freshwater sources; and also have distinct salinity and temperature regimes that 

are characteristic of that specific type of reef formation. Oyster population dynamics of 

these individual reefs may depend on their interaction with other species within their 

own community, on the relative proportion of different size classes in each population, 

or on how each reef population interacts with other reef populations. Comparisons of 

oyster densities at pancake reef formations with those of transverse or longitudinal ridge 

type reefs have shown that large expanses of oysters without extensive vertical reef relief 

react differently to sediment deposits due to the available space between oysters and the 

current speed over the reef. Whereas the former structure has advantages for growth and 



 23 

reproduction under normal flow conditions, the later has advantages that enable it to 

survive during extreme current speeds and sedimentation conditions. 

Oyster population response times to lower salinities following flood conditions 

are primarily dependent on water temperatures. However, oysters may close their valves 

for almost 30 days when temperatures are less than 20 °C, whereas their valves may not 

remain closed for longer than 10 days when temperatures are greater than 25 °C 

(Higgins 1980). Overlooking simple timing factors such as how long an individual 

oyster may keep its valves closed during extreme freshwater inflow events may not 

initially appear important to understanding the complexity of the collective oyster 

population’s response. However the abiotic factor of warmer temperatures in 

combination with the biotic factor of time that an oyster’s valves are closed becomes 

synergistic or elicits a response threshold not generated by one factor alone. Complex 

population responses to harsh environmental conditions may occur over discrete time 

periods. The timing or duration of a flood or a drought may also result in long term 

responses of increased mortality; increased spat settlement; shorter or longer growth 

rates; delayed or increased reproduction; or spat recruitment to another up-estuary reef. 

Averaging monthly or yearly environmental variables often diminishes the response 

pattern being investigated. 

Dissertation objectives 

Previous oyster population dynamic models have attempted to tie in all of the 

biotic and abiotic factors that influence oyster physiology, respiration, assimilation of 

nutrients, growth, and mortality from harvest as well as disease interactions. However, 

these models have been applied to one bay system, and were not focused on one regional 
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area or one reef in determining the spatial and temporal patterns that have formed that 

reef into either a longitudinal, transverse, pancake or tow-head reef configuration. These 

“individual-based” oyster models have accounted for interaction of the environmental 

and biotic factors without attempting to distinguish conditions for up-estuary or down-

estuary reefs that are spatially separate although they may have similar rationales for 

their formation.  

In this study, the historical and current spatial and temporal trends in oyster 

population dynamics and the interaction of Dermo infection and freshwater inflows on 

three reefs along a salinity gradient in WMB were examined. Chapter I reviews the 

historic and current spatial and temporal trends of oyster reefs and their potential 

interactions with regard to temperature, salinity, flow and distance from freshwater 

inflows. Chapter II examines spatial and temporal patterns in demographics of three 

oyster reef populations along a salinity gradient in WMB. Population variance of these 

three communities appears to be influenced by distance and flow from freshwater 

sources; and spat set is observed to be influenced by the duration and volume of flow at 

least one month prior to major spawning events (Ray 2003-2007 unpublished data). 

Although these three reef populations are spatially disconnected, they are temporally 

connected through environmental factors influencing their reproductive strategies for 

survival. Chapter III emphasizes the importance of spatial and temporal patterns of 

Dermo infection in oysters on these three oyster reef types along a salinity gradient in 

WMB. Variation in levels of Dermo infection (prevalence) and number of hypnospores 

of Dermo per gram of wet tissue weight derived from weighted incidence (WI) are 

shown to be influenced by distance from freshwater sources. An evaluation of distance 
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shows both spatial and temporal influences on environmental factors such as temperature 

and salinity, and thus distance indirectly affects spawning interactions of these three 

populations and their response to Dermo. Those populations that have recently spawned 

appear to have higher levels of Dermo infection and thus greater mortalities than those 

preparing to spawn or not in reproductive modes. Chapter IV discusses the development 

of an interactive Stella oyster community based model to quantify and integrate the 

spatial and temporal patterns influencing reproduction, larval distribution, larval 

settlement, individual growth of each size class (larvae, spat, submarket, market, market 

that are older than two years of age) and population growth on these three oyster reefs. 

The three reef population submodels in Chapter IV incorporate spatial and temporal 

trends revealed in Chapters II and III. Simulations over a 50-yr period using historical 

five-year environmental records show that reef populations located farthest from 

Colorado River will decrease in abundance with loss of freshwater over time. 

Simulations also show that reef populations located closest to Colorado River will be 

impacted by lower larval recruitment following declining spawning potentials from 

increased salinity and increased disease levels at reefs located further from the Colorado 

River. The three reef population submodels also include a proportion of larvae recruited 

from the Colorado Delta based on recently mapped areas by the Lower Colorado River 

Authority (LCRA) and average densities of intertidal oyster populations along the Texas 

Coast. 
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CHAPTER II 

SPATIAL AND TEMPORAL PATTERNS OF OYSTER POPULATION 

DEMOGRAPHICS IN WEST MATAGORDA BAY 

 

Introduction 

The West Matagorda Bay Ecosystem Complex is the second largest estuarine 

system in Texas with a surface area of approximately 1070 km2 (Fig. 1) (Ward et al. 

1980). The discharge of the Colorado River, with mean annual flows of approximately 

76.5 m3/s, is relatively small compared to the size of Matagorda Bay (Ward et al. 1980). 

Mean annual low flows were estimated to be 14 m3

The WMB watershed comprises two major river basins and a number of smaller 

tributaries (Fig. 2). The Colorado River Basin drains approximately 101,171.41 km

/s (500 cfs), which result in no net 

movement (over tidal influences) of freshwater from the Colorado River into the eastern 

arm of West Matagorda Bay (WMB) during low-flow conditions (Ward et al. 1980). 

2 (25 

million acres) and stretches from New Mexico across Texas to WMB. Lavaca Bay, a 

secondary bay of WMB, receives its freshwater input from the Lavaca-Navidad River 

Basin. The Lavaca-Navidad River Basin drains approximately 5,665.6 km2 (1.4 million 

acres) of south central Texas. About another 6,070.28 km2 (1.5 million acres) are drained 

by smaller tributaries such as the Tres Palacios River, Turtle Creek, Carancahua Creek, 

and Keller Creek. Altogether, WMB receives water from over 25% of Texas counties. 
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Figure 1. Matagorda Bay ecosystem and Colorado and Lavaca River watersheds. 
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Figure 2. Matagorda and Lavaca Bays, minor bays and tributaries. 

 

Historically Matagorda Bay was a single bay, which became two bays by the 

Colorado River Delta formation between 1929 and 1941, which resulted from removal 

of a log jam from the Colorado River, and released sediments across Matagorda Bay 

(Ward and Armstrong 1980). In 1934, a dredging operation cut through Matagorda 

Peninsula, allowing the Colorado River to flow directly into the Gulf of Mexico, 

expediting the delta formation that separated East and West Matagorda Bays. In 1991, 

the USACE completed the Matagorda Diversion Channel to increase freshwater inflows 

into the eastern arm of WMB and to restore estuarine salinity regimes to those present 
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before the 1934 Colorado River diversion project. Currently the Colorado River flows 

primarily into WMB, and small portions escape to EMB and the Gulf of Mexico. 

Currently, three major oyster reefs lie between the Colorado River Delta and the 

land cut for the Gulf Intercoastal Waterway (GIWW) at the edge of the eastern arm of 

WMB. Two are historic reefs known as Shell Island and Mad Island, which are included 

in this study. Texas Parks and Wildlife Department (TPWD) monitored these reefs for 

oyster population growth, mortality rates, reproduction, and disease rates from 1959 to 

1977 (Hofstetter and Heffernan 1959; Moffett and Murray 1963; Heffernan 1963; King 

1964; Hofstetter et al. 1965; Hofstetter 1965; Hofstetter 1966; Hofstetter 1967). 

Additional population and disease studies on these reefs were conducted by U.S. Fish 

and Wildlife Service (USFWS) prior to the 1991 Colorado River Diversion Project re-

establishing the flow back into the eastern arm of WMB (King 1989). Thereafter, the 

USACE monitored these reefs (Wilber and Bass 1998) as part of their post-diversion 

efforts. The USACE also restored portions of Shell Island and Mad Island Reefs, and 

constructed a third reef, known as Sammy’s Reef in 1995. Although multiple patch types 

of reefs in East Matagorda Bay (EMB) were similarly impacted by loss of freshwater 

inflows prior to 1991, they were not included in the USACE restoration plan.  TPWD 

has conducted routine resource monitoring of the three WMB reefs since the coastal 

resource monitoring program began in 1986 (Martinez-Andrade et al. 2003). 

The objectives of this study were to determine the spatial and temporal patterns 

in demographics of these three oyster reef populations along a salinity gradient in WMB. 

Although these three reef populations are spatially separated by distance from each other 

and freshwater sources, they appear to be spatially and temporally connected through 
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environmental factors that influence oyster population reproduction and survival 

strategies in WMB. 

Historical and current oyster population distributions 

Prior to the Colorado Delta formation, Moore (1907) reported 12.57 km2 (3,108 

acres) of viable subtidal oyster reef habitat in WMB (Fig. 3). Although he was unable to 

survey two tidally connected embayments north of Mad Island Reef (Oyster and Mad 

Lakes), he noted they contained densely populated intertidal oyster reefs. Extensive 

intertidal oyster reefs were associated with the crests of Dog Island Reef (3.8 km3 or 932 

acres (Fig. 4), one of the most productive reefs in Matagorda Bay according to Moore 

(1907) and Galtsoff (1931). 

After the log jam was removed from the Colorado River in 1929, the 

once-confined sediments that had been stored over many years were suddenly released 

and completely buried Dog Island Reef.  The sediments from the Colorado River Delta 

are currently forming intertidal reef populations along this new waterway, which are 

located within and close to the footprint of the former Dog Island Reef (MBHE 2006).  
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Figure 4. Mad Island, Shell Island and Dog Island Reefs, and Tiger Island Channel in 
Matagorda Bay in 1904-1905 from Moore (1907), reprinted with permission from 
Figure 4-8 page 91 in Ward et al. 1980. 
 
 

After the Colorado River Diversion Channel to the Gulf of Mexico was 

completed in 1934, salinity gradually increased in WMB; and resulted in reduced 

fluctuations of freshwater inflows at gateway types of reefs like Half Moon Reef, 

furthest from the entrance to the Colorado River. Species diversity on this and other 

down-estuary reefs changed from Crassostrea virginica dominance to more 

marine-oriented species dominated by Ostrea equistris, Busycon spiratum, Mercenaria 

mercenaria, and Astrangia astreiformis according to King (1989). He linked the loss of 

freshwater inflows into WMB to increased predation by gastropods such as Stramonita 
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haemastoma as well as competition from other marine invertebrates on Half Moon Reef 

(1.99 km3or 494 acres), at the junction of eastern arm of WMB. 

In contrast, Shell Island Reef and Mad Island Reef had somewhat marginal 

estuarine conditions due to their proximity (within 1.6 km) to intermittent flows from the 

Colorado River through the GIWW and from coastal prairie run-off through Culver’s 

Cut and Mad Island Slough (Fig. 5). These reefs continued to grow and reproduce on the 

up-estuary sides of their transverse ridge-type formation, but subsided on their down-

estuary sides (King 1989). 

Since the Matagorda Diversion Channel was opened in 1991, Shell Island and 

Mad Island Reefs have benefitted from their close proximity (6 to 9 km) to freshwater 

inflows from the Colorado River. These reefs also receive precipitation and run-off from 

coastal prairies along the north shore of WMB. 

Although Mad Island and Shell Island Reefs are historically significant, they, 

along with Sammy’s Reef, are currently being evaluated by multiple resource agencies 

(MBHE 2007) in regard to their potential to function as indicators of the environmental 

health of the eastern arm of WMB. The Lower Colorado River Authority (LCRA) is in 

the process of developing suitable criteria for freshwater inflows to ensure that any 

future freshwater diversions will continue to provide inflows adequate to maintain the 

ecological health and productivity of the Matagorda Bay ecosystem. 
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Figure 5. Matagorda and Lavaca Bay oyster reef sites sampled by TPWD; Shell Island 
(0.59 km3 or 145 acres), Mad Island (0.38 km3 or 93 acres), and Sammy’s Reef (0.038 
km2

There is a wealth of information on eggs, larvae, spat, growth phases, fecundity, 

spawning potential, and natural mortality rates related to spawning stress for C. virginica 

(Hopkins 1954; Davis and Chanley 1955; Galtsoff 1964; Hofstetter 1977; Quast et al. 

1988; and Kennedy et al. 1996). In Texas, spawning occurs primarily from April through 

November (Hofstetter 1977) although it also has been recorded in every month of the 

year in shallow-water bay systems where water temperatures remain optimum for 

spawning, as observed for Matagorda Bay (Hofstetter and Heffernan 1959; Hofstetter et 

al. 1965). Spawning by individual oysters can be induced by water temperatures that are 

consistently above 20º C, and temperatures above 25º C induce mass spawning (Hopkins 

1931), but when water temperatures exceed 35º C, spawning is limited (Stanley and 

Sellers 1986). Under favorable conditions of temperature and food supply, oysters may 

 or 9.6 acres). 
 

Spawning interactions 
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produce gonadal tissue and be ready to spawn within 10 days of receiving appropriate 

temperature stimulus (Loosanoff and Davis 1953). On Texas reefs, oysters may spawn 

several times a year (Hofmann 1992). 

Spawning in oysters has been linked to ectocrines secreted from phytoplankton 

species (Gosling, 2002). Synchronicity and intensity of spawning is initiated by the 

males that release sperm accompanied by a pheromone into the water column (Andrews 

1979). The females spawn either when sperm enter their water transport systems, or 

when the pheromone stimulates release of eggs in a mass spawning event (Bahr and 

Lanier 1981). Each female oyster produces from 23 to 86 million eggs per spawning 

event, in proportion to the size of the individual, and may spawn several times per 

season (Davis and Chanley 1955). Sexual maturity may be reached as early as six weeks 

post-settlement. Oysters are protandrous hermaphrodites, maturing initially as males and 

changing to females about one year later or whenever conditions are right for spawning. 

The sex ratio (number of females to males) of a population can be influenced by food 

limitations, shell damage, or sex of adjacent oysters (Kennedy et al. 1996). 

Larvae and spat settlement interactions 

Spat set (also referred to as spat fall) is reported to occur from 14 to 20 days 

post-spawning as larvae settle and undergo transformation (Stanley and Sellers 1986; 

Dekshenieks et al. 1993). The tissues of recently-dead, decomposing oysters release a 

pheromone that attracts larval oysters and increases spat set on the inside of these shells, 

which increases spat survival (Keck et al. 1971).  In the laboratory Haskin (1964) 

showed that larvae increased their swimming activity in response to increasing salinities 

from 7 to 14 ppt, but swimming behavior was inhibited by declining salinities.  Larvae 
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also responded to dim yellow-green light (575 nm) indicating phototaxis response (Hidu 

and Haskins 1978). Upward swimming rate under normal salinity and temperature 

conditions can be nearly 1 cm/s (Andrews 1979). Although oyster larvae are considered 

to be weak swimmers (1.0 mm/s) in the horizontal plane, they can become rapid 

swimmers (3.13 mm/s) when moving downward or responding to chemical cues on the 

bottom (Turner et al.1994; Kennedy et al. 1996; Newell et al.2005;). Swimming 

velocities of larvae increased threefold (to 3 cm/min) in either an upward or downward 

direction when salinity was increased by 0.5 ppt/hr (Hidu and Haskin 1971). This 

combination of behavioral traits appears to result in selective tidal transport towards the 

head of the estuary, even against a net downstream flow (Seliger et al. 1982). 

Tidal currents can carry larvae considerable distances; for example, oyster larvae 

have been found to travel 10 km up-estuary in Louisiana (Gunter 1951). This directional 

transport increases their access to available estuarine substrate for settlement and 

prevents them from being flushed downstream towards the less favorable marine 

environment of the Gulf of Mexico. Estuaries subjected to strong tidal exchanges tend to 

have low, but consistent, pulses of larval oyster recruitment, whereas those with weak 

freshwater inflows and sluggish circulation cause larvae to undergo extended residence 

time and higher, albeit less regular, recruitment (Kennedy et al. 1996). Larval retention 

is generally explained by either “passive” transport induced by physical factors, or 

“active” transport in which larvae swim up-estuary, or a combination of both as 

observed in Galveston Bay (Dekshenieks et al. 1996). 

Distribution of oyster larvae in Matagorda Bay had not been determined during 

previous studies conducted by TPWD. However, one could expect that the burial or 
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disruption of Dog Island Reef, formerly the largest transverse reef in WMB, would have 

adversely affected larval recruitment for WMB. Higher salinities recorded by TPWD 

between 1959 and 1990 resulted in poor recruitment of spat and low population 

estimates (King 1989; Wilber and Bass 1998). Previous studies have indicated that 

oyster larval distribution is correlated with an up-estuary transport pattern, and larvae 

have been shown to swim towards lower salinities and are less inclined to increase 

swimming speed against currents when salinities are greater than 20 ppt in a flood tide 

(Hidu and Haskins 1971; Kennedy et al. 1996).  

Salinity regimes have changed in WMB since the Colorado River Diversion was 

opened in 1991. Oysters populations have accreted along the Colorado Delta (MBHE 

2006) and were recently estimated to have increased in aerial extent by 0.591 km2 (146 

acres). Shell Island and Mad Island Reefs have accreted along their leading edges as 

shown by recent side scan surveys conducted by oil and gas developers in WMB 

(TPWD unpublished records for Palace Exploration). Although larval transport models 

are not currently available for this bay system, the present study will explore the 

potential interaction among reefs to determine the probability of larvae moving from 

down-estuary reefs to accreted oyster shell substrate in up-estuary reefs. 
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Individual growth and trophic interactions 

Oysters have characteristically discrete growth patterns—larvae, spat, and 

submarket oysters grow relatively fast, then enter a no-growth period when energy is 

diverted to gonadal tissue production and spawning, after which growth resumes until 

oysters reach market size or greater (Kraueter et al. 2007). After oysters reach maturity, 

whether at market or submarket size, growth proceeds more slowly. These discrete 

patterns in growth can lead to oscillations or “limit cycles” in oyster populations 

(Kraueter et al. 2007). Environmental stresses (temperature, salinity, and disease) can 

also cause diversion of energy that would otherwise support growth or spawning. In 

cases of extended environmental stress when an oyster becomes too weak to filter 

enough food to sustain itself, retrogression in growth of shell and somatic tissues occurs 

in order to maintain basic metabolism for survival. Evidence of these patterns is most 

easily observed in the shell (Kraueter et al. 2007). Kraueter et al. (2007) reviewed 

previous studies on oyster growth rates over the past 75 years. These authors found a 

difference between growth patterns that result from studies using trays suspended above 

the bottom compared to studies of oysters placed on the bottom with or without the use 

of trays. They found that higher growth rates were reported for tray off the bottom where 

currents provide more food, and where filtration for food and respiration was 

maximized. They also found that bottom placement provided growth rates more typical 

of those found on the reefs where density of oysters played a major role in influencing 

filtration rates, and thus nutrition and respiration. 

Oysters have been reported to grow optimally in salinities of 10 to 25 ppt (Cake 

1983). Those exposed to fluctuating salinities within normal ranges grew faster than 
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those than those held at a relatively constant salinity (Pierce and Conover 1954). Oysters 

grow optimally at water temperature of approximately 25°C, whereas temperatures over 

30°C can cause filter feeding to stop (Kennedy et al. 1996). When winter water 

temperatures ranged from 10 to 15°C, oysters ceased to grow somatic tissue mass. 

Oysters grow faster where phytoplankton densities are high (Manzi et al. 1977), 

or when specific, nutrient-rich phytoplankton are available (Örnólfsdóttir 2002; Paerl et 

al. 2003). As suspension feeders, oysters filter water in the 3-4 µm particle-size range of 

phytoplankton as their primary food (Stanley and Sellers 1986). However, oysters are 

selective grazers and are able to ingest large volumes of seston in excess of that which 

they need for nutrients (Kiorboe and Mohlenberg 1981; Newell and Jordan 1983; 

Shumway et al 1985; Pastoureaud et al. 1995; Cognie et al. 2001). Seston with high 

detrital carbon content is a poor food source for oysters (Crosby et al. 1989). Food 

quality of the phytoplankton body composition (lipid and carbohydrate and protein 

amounts) in one study was found to be significantly correlated with the ratio of the 

oyster gonad thickness to adductor muscle diameter, also called the gonadal index 

(Soniat and Ray 1985). They concluded that food quality and quantity in the form of 

specific phytoplankton species in the spring and summer was most important for 

gametogenesis and spawning in Galveston Bay. 

Recent surveys of phytoplankton functional groups (PFG) in Galveston Bay have 

identified the preferred phytoplankton groups for oyster nutrition as: diatoms, 

cyanobacteria, chrysophytes, and cryptophytes (Sheridan et al. 1995; Örnólfsdóttir 

2002). Historical studies in Matagorda Bay also show that similar PFGs were dominant 

in this bay system in 1904 (Moore 1907). 
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Although dinoflagellates (some species cause red and brown tides), chlorophytes 

(green algae) and euglenoids only bloom periodically in Galveston Bay, these PFGs may 

only represent a small proportion of the total phytoplankton community (Örnólfsdóttir 

2002). However, the nutritional value of phytoplankton varies among both major 

taxonomic groups and among individual species (Brown et al. 1997). Diatoms, 

prymnesiophytes and cryptophytes are rich in polyunsaturated fatty acids (5-35%), 

prasinophytes have low to moderate levels (4-10%), and chlorophytes are deficient (0-

3%) (Brown et al. 1997; Paerl et al. 2003). Phytoplankton derived fatty acids, 

polyunsaturated fatty acids and amino acids beneficially affect the egg production and 

hatching success of most zooplankton and are directly linked to oyster nutrition (Kleppel 

and Burkart 1995). 

Although oysters ingest entire cells of phytoplankton, it appears that the species 

(not its chemical composition, size or shape) is an important feature used in sorting 

particles for ingestion (Shumway 1996; Brown et al. 1997). However grazing by oysters 

can affect the structure and diversity of the phytoplankton community dynamics 

(Örnólfsdóttir 2002; Paerl et al. 2003). Nanoflagellates (cryptophytes) were abundant in 

Galveston Bay during the winter of 2000 following specific seasonal salinity and 

temperature conditions of a dry summer followed by fall flooding (Örnólfsdóttir 2002; 

Paerl et al. 2003). This group of phytoplankton was also found in gut contents of oysters 

and appears to be the responsible agent for causing red coloration to the meat tissue 

within a few hours to days post-harvest, making them unmarketable despite the absence 

of any toxins related to this microalga (Paerl et al. 2003). The pink coloration in oysters 

has been attributed to the cryptophyte’s red accessory pigments (water-soluble 
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phycoerythrins), which were present in high abundance in the water of Galveston Bay 

during December 2000, and to small amounts of alloxanthin (the indicator carotenoid 

pigment for cryptophytes) that were detected by HPLC methods in oyster guts (Paerl et 

al. 2003). Galtsoff (1931) previously reported nearly blood red oysters from Galveston 

Bay in 1926 but was unable to correlate it with this alga. Paerl et al. (2003) showed that 

understanding community-level food value of phytoplankton is a critical component 

controlling somatic and gonadal growth mechanisms in oysters, and that evaluating 

chlorophyll a levels only would not provide an understanding of these biotic 

mechanisms. 

Previous studies have reported that larval oysters prefer small, naked flagellates 

of the Phylum Chrysophyta, such as Isochrysis albana and Monochrysis lutheri, 

(Guillard 1957). Oyster larvae avoid or selectively remove specific chrysophytes like 

Prymnesium parvum, which produce toxins (Guillard 1957). However, when preferred 

foods (chrysophytes) become less available at temperatures exceeding 27ºC, or when 

other naked algae are scarce, the abundance of Chlorophyta can increase both in the 

environment and in the diet of larval oysters (Davis and Calabrese 1964). Juvenile 

oysters (size range 25-50 mm) begin to include diatoms like Skeletonema and 

cryptomonads in their diet as they grow towards mature market size oysters (Guillard 

1957). However, when primary food sources are unavailable and temperatures are high, 

oysters may consume any species of diatoms and dinoflagellates in Texas estuaries 

(David and Calabrese 1964). 

Oysters’ retention efficiency and selective absorption of food particles may also 

depend on particle shape, mobility, density, and on chemical cues such as ectocrines 
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secreted by the plankton (Shumway 1985; Hawkins and Bayne, 1992; Gosling, 2002). 

Water flow regimes, including current speed and direction across the reef have also been 

shown to facilitate as well as inhibit capture of food particles by oysters (Newell and 

Langdon 1996). They found that excessive water flow causes food particles to move 

through the area before oysters can extract them. 

An oyster population model of Galveston Bay simulated various amounts of 

chlorophyll a as an indicator of available nutrients to oyster populations (Dekshenieks et 

al. 2000).  The conclusions of this study suggested that 14% reduction in phytoplankton 

biomass would cause a 43% decrease in the number of oysters and a 40% reduction in 

the number of recruits. These results do not take into account changes in phytoplankton 

species composition or selective grazing pressure by oysters. Powell et al. (1996) 

showed that slight reduction in food supply (<15%) may restrict oyster population 

growth in Galveston Bay as a whole, and increase the likelihood of epizootics and 

subsequent mass mortalities from Dermo disease. Although Matagorda Bay has been 

recently studied to quantify chlorophyll a, species composition has not been attempted 

(MBHE 2006). 

Harvest patterns and DSHS closures 

Commercial oyster landings recorded by TPWD for West Matagorda Bay, 

(excluding Lavaca Bay landings) reached its lowest levels in May 1991 immediately 

following the re-diversion of the Colorado River into WMB, with only 5,479 lbs of meat 

weight and ex-vessel value of $12,903 reported by seafood dealers (Culbertson et al. 

2004). Oyster landings were consistently low for West Matagorda Bay reefs during the 

following four years, which was partially attributed to sedimentation and burial of 
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portions of Shell Island Reef, which is closest to the redirected Colorado River mouth 

(Wilbur and Bass 1998). WMB is currently located in a “conditionally approved area” 

for harvesting shellfish. This refers to whether or not an area is closed to oyster 

harvesting due to high bacteria levels following heavy rainfall or during harmful algal 

blooms (e.g., red tide caused by Karenia brevis (Gymnodinium breve). A map of 

“conditionally closed areas” regulated by Texas Department of State Health Services 

(TDSHS) for Matagorda Bay is available at: 

http://www.dshs.state.tx.us/seafood/classification.shtm#maps. 

High inflows from the Colorado River since the 1991 diversion project was 

completed have affected harvesting primarily on Shell Island Reef. Shellfish markers 

placed by TDSHS on the edge of this reef delimit a restricted area west of Shell Island 

Reef, where no harvest is allowed at any time regardless of bacterial counts. Harvest of 

market sized oysters is only allowed from the conditionally approved area to the west of 

these shellfish markers in WMB during the public season; and only when bacteria counts 

are not exceeded by TDSHS standards. According to TDSHS harvest closure records all 

conditional areas of WMB were closed under Shellfish Marine Restriction order (MR-

794) on November 2000 until December 2000 due to potential red tide conditions for all 

of Matagorda Bay. TDSHS records indicate that “conditionally approved” areas of Shell 

Island Reef have been closed during the majority of public harvest seasons between 

1992 and 2007 due to high bacteria levels following heavy rainfall (TDSHS closure 

records; Kirk Wiles, personal communication). With Shell Island Reef closed to harvest, 

the majority of the Matagorda Bay (not including Lavaca Bay) landings reported by 

seafood dealers to TPWD are from Mad Island Reef, Sammy’s Reef, and also from Tres 
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Palacios Reef whenever bacterial counts are within normal limits in these conditionally 

approved areas.  Intertidal reefs located in enclosed embayments are restricted from 

harvesting. There are three tow-head reefs on the south side of WMB near the 

Matagorda Peninsula near Forked Bayou that also lie within restricted areas for 

harvesting. 

Independent harvest records collected by TPWD show that landings have greatly 

increased on Mad Island Reef and Sammy’s Reef in post-restoration and construction 

years when 293,516 lbs of meat weight valued at $651,811 were reported in 1997, and 

259,968 lbs of meat weight valued at $692,443 were reported in 2006 (Fig. 6). Floods 

and excessive rainfall from Hurricane Claudette (July 2003) reduced the populations of 

market-size and submarket-size oyster on these reefs between the 2003 and 2004 harvest 

seasons. However, TPWD’s unpublished commercial landings (TPWD 2007a 

unpublished data) show that populations on these reefs rebounded in subsequent years 

(Fig. 6). 
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Figure 6. Commercial Landings reported to TPWD for Matagorda Bay (not including 
Lavaca Bay). 
 
 

Methods 

Study area 

The study area is in WMB on three transverse-ridge reefs. Two were described 

by Moore (1907) as Shell Island and Mad Island Reefs, which were restored in 1995; 

and the third, Sammy’s Reef, was created by the United States Army Corps of Engineers 

(USACE) (Fig. 7). 

Data source: LCRA environmental data 

Lower Colorado River Authority provided daily temperature and salinity data 

collected at three continuous-record datasonde stations (Fig. 7): Shell Island Reef, West 

Matagorda Bay Tripod, and West Bay Channel Marker #4. These data were collected 

from January 1, 2001 through December 31, 2005. 
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Figure 7. TPWD Sample grids on Matagorda Reefs (red circles): Shell Island, Mad 
Island and Sammy’s Reef. Three green circles designate the LCRA datasonde water 
quality monitoring. 
 

Environmental factors: daily and monthly differences 

Distinct environmental patterns that influence oyster population dynamics may 

be observed when comparing monthly and daily temperature and salinity measurements 

over a five year period of record for one LCRA datasonde sampling location (Shell 

Island) in WMB. Average monthly salinities were less than 5 ppt in March 2005, July 

2002, July 2004, and November 2002 (Fig. 8). These average monthly measurements 

strongly contrast with average daily salinity measurements at the same station (Fig. 9), 

and show that salinity was less than 5 ppt during a 5-day period in September 2001, 20 

days in July 2002, 10 days in November 2002, 5- and 20-day periods in March 2003, 

more than 30 days in July 2004, and 25 days in December 2004.  
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Figure 8. Average monthly salinity at Shell Island LCRA water quality station for 2001-
2005. 
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Figure 9. Average daily salinity at LCRA Shell Island water quality station for 2001-
2005. 
 

Although there were several periods of one or two days in various months that 

salinities were less than 5 ppt, the difference between average monthly and average daily 
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salinity illustrates that oysters can survive one to ten days without feeding, with their 

valves closed in order to survive a sudden freshwater inflow event. However, when the 

water temperatures are higher in summer, or when freshwater influxes are of longer 

durations, which sometimes causes low salinity conditions that last for 20-30 

consecutive days—then most oysters will use up all energy reserves, expire, and their 

tissues will decompose in the closed valves. These dead, closed shells are referred to as 

“boxes” because the dead organism has left an intact hinged valve on the reef or buried 

in the mud. Alternatively, the valves will open and the decomposing meat will protrude, 

and these are referred to as “gapers”. 

TPWD salinity records from Shell Island, Mad Island and Sammy’s Reefs 

plotted for the same date and the same time of day as salinity recorded by the LCRA 

datasonde are shown in Fig. 10. Although the general trends are similar for highs and 

lows, there appears to be a time lag between reefs, possibly related to distance and flow. 
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Figure 10. Average daily salinity measured at LCRA Shell Island datasonde water 
quality station measurements (dotted line) compared with TPWD average monthly 
salinity measurements at Shell Island Reef (Shell Saln), Mad Island Reef (Mad Saln), 
and Sammy’s Reef (Sam Saln) from January 2003 through September 2005. 
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Linear regression was applied to estimate daily average salinity for Mad Island 

and Sammy’s Reef using continuous daily records from the up-estuary Shell Island 

LCRA datasonde and the 30 month continuous record from TPWD’s resource 

monitoring data. This information was used to generate daily spatial and temporal 

patterns for each of the three reefs. The LCRA average daily salinity estimated the 

TPWD salinity data (taken one day each month) for Shell Island Reef (R2 =0.88; Fig. 

11), Mad Island Reef (R2 =0.85; Fig. 12) and Sammy’s Reef (R2 

y = 0.9275x + 0.5972
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=0.77; Fig. 13) in a 

down-estuary pattern of declining goodness of fit. Compared to Shell Island, the 

intercept for each reef increased 1 to 2 ppt down-estuary at each reef, but the slope 

increased by only 0.012 or less. 

 

Figure 11. TPWD Shell Island Reef salinity values as a function of LCRA average daily 
datasonde salinity data for 2001-2005. 
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Figure 12. TPWD Mad Island Reef salinity values as a function of LCRA average daily 
datasonde salinity data for 2001-2005. 
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Figure 13. TPWD Sammy’s Reef salinity values as a function of LCRA average daily 
datasonde salinity data for 2001-2005. 
 

The same temporal patterns observed for monthly and daily salinity records 

emerged for average monthly temperatures (Fig. 14) and average daily temperature (Fig. 
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15) for the LCRA datasonde sampling location (Shell Island) in WMB between 2001 

and 2005. There appeared to be uniform patterns for average monthly temperatures, but 

the actual duration of average daily temperatures reveals that longer durations of higher 

or lower extremes in daily temperatures during some months of each year were not 

observed in the monthly data for that specific year. The extremes in average daily 

temperatures are of shorter duration than the extremes for average daily salinity 

measurements. However, the continuous record of both variables simultaneously 

provides a better understanding of what environmental conditions submerged oysters 

were forced to tolerate or not survive between 2001 and 2005. 
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Figure 14. Average monthly temperature at LCRA Shell Island water quality station for 
2001-2005. 
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Figure 15. Average daily temperature at LCRA Shell Island water quality station for 
2001-2005. 
 

Linear regression was used to estimate daily average temperatures for Mad Island 

and Sammy’s Reef using data from the up-estuary Shell Island LCRA datasonde, and to 

generate daily spatial and temporal patterns for each of the three reefs. The LCRA 

average daily temperature estimated the TPWD salinity data (taken one day each month) 

for Shell Island Reef (R2 =0.94; Fig. 16), Mad Island Reef (R2 =0.94; Fig. 17), and 

Sammy’s Reef (R2 =0.83; Fig. 18), and (as for salinity) showed the pattern of 

down-estuary declining goodness of fit, albeit a better fit than for salinity.  Compared to 

Shell Island, the intercept for temperature at the other two reefs increased 0.8 and 1.7oC 

in the down-estuary direction, but the spatial pattern for slope of temperature appeared to 

be stronger than the pattern for salinity, increasing by 0.017 and 0.8 oC at each 

down-estuary reef. 
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Figure 16. TPWD Shell Island Reef monthly temperature as a function of LCRA average 
daily temperature data for 2001-2005. 
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Figure 17. TPWD Mad Island Reef monthly temperature as a function of LCRA Shell 
Island Reef average daily temperature data for 2001-2005. 
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Figure 18. TPWD Sammy’s Reef monthly temperature as a function of LCRA Shell 
Island Reef average daily temperature data for 2001-2005. 
 

The temporal patterns observed for average monthly and daily salinity and 

temperature, demonstrate not only the differences in variation, but also the differences in 

duration of average daily conditions. Longer durations of higher and lower extreme 

conditions during some months were revealed for some years, that were not reflected in 

monthly averages for those specific years. Although extremes in average daily 

temperatures were of shorter duration than extremes for average daily salinity, one can 

see the importance of having a continuous record of both variables between 2001 and 

2005, which provides a much better understanding of environmental conditions at 

biologically meaningful (daily) time steps related to whether submerged oysters would 

be expected to either thrive, only tolerate, or die. 
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Data sources for daily discharge, tide and precipitation 

Average daily discharge in cfs recorded from 2001 through 2005 was 

downloaded for USGS 08162500 Colorado River near Bay City, TX from website: 

http://waterdata.usgs.gov/nwis/?automated_retrieval_info. 

Average hourly tide data in feet for 2001-2005 were downloaded for NOAA: 

Station ID: 8773701 at Port O’Connor, TX from the following website; and then the 24 

hour record was averaged to calculate the daily tidal amplitude: 

http://tidesandcurrents.noaa.gov/data_menu.shtml?bdate=20010101&edate=20051231&

unit=1&shift=g&mins=60&datum=6&stn=8773701+Port+Oconnor%2C+TX&type=Tid

e+Predictions&format=View+Data. 

Daily historical precipitation data for 2001 through 2005 were requested from 

National Weather Service Center web site for archived data for Matagorda, TX at: 

http://www7.ncdc.noaa.gov/IPS/CDPubs and the files were downloaded from: 

http://www1.ncdc.noaa.gov/pub/orders/659461480522dat.txt. 

Direction of flow and tidal amplitude 
 

Average daily discharge over the period of record 2000-2007 is shown in Fig. 19. 

The average daily tidal amplitude with average daily discharge for period of record 

2001-2005 is shown in Fig. 20. Extreme precipitation events recorded by the National 

Weather Service for Matagorda Bay, TX were included in Fig. 20 to illustrate when 

rainfall events may not have been captured in records for gauging stations upstream of 

the study area. Tides occurred twice a day on normal cycles. However, daily tidal 

amplitudes provided an indication of directional changes in those tides. Daily tidal 

amplitude in Fig. 20 shows a predominantly seasonal bimodal trend that is consistently 



 56 

observed across all five years of data. Bimodal tidal amplitudes begin rising between 

January and May (days 0 to 150) then decrease around July (days 210 to 230), then 

begin rising again between August and October (days 240 to 300) and then decline in 

strength towards December. Tidal amplitudes appear to be greater in the second half of 

the year. These bimodal patterns are consistent with meteorologically wind driven forces 

described for Gulf of Mexico estuaries (Solis 1999). 
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Figure 19. Average daily discharge from USGS 08162500 Colorado River at Bay City, 
TX for 2000-2007. 
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Figure 20. Average daily discharge from USGS 08162500 Colorado River at Bay City, 
TX, average daily tidal amplitude from NOAA: Station 8773701 at Port O’Connor, and 
extreme precipitation events recorded by National Weather Service from 2001-2005. 
 

Distance from discharge to LCRA datasonde 

The Colorado River discharge from Bay City, TX travels over 10 miles before 

reaching Matagorda Bay through the Colorado River Diversion cut created by the 

USACE in 1991. In addition to potentially long time lags during low flow conditions, 

precipitation over the regional area of the bay has an ungauged influence on salinity 

readings measured at the LCRA Shell Island datasonde station. However, high inflow 

events appear to be responsive to cumulative effects of both coastal prairie run-offs from 

the local water shed and the daily discharge measured at the Bay City gauge. Salinity 

and temperature data used in this analysis are actual continuous monitoring records 

measured by a datasonde at LCRA Shell Island Reef for 2001-2005 (Fig. 21).  
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Figure 21. Average daily discharge from USGS 08162500 Colorado River at Bay City, 
TX, and average daily salinity data at LCRA’s Shell Island datasonde from 2001-2005. 
 

Data source: TPWD Resource Monitoring Program data 

Texas Parks and Wildlife Department uses established protocols for monitoring 

Texas oyster reefs (TPWD 2002). In each major oyster producing bay (Galveston Bay, 

Matagorda Bay, San Antonio Bay and Aransas Bay) oyster reef areas were mapped as 

“defined reefs” (Matlock and Osburn 1982). TPWD’s criteria for “defined reefs” were 

“Eastern oyster reefs that were > 0.2-m higher than adjacent bottom for a continuous 

distance of > 91.4 m long and 0.4 m wide”. Oyster dredge sampling sites were randomly 

selected from among bay grids containing defined reefs. Each grid was divided into 144 

5-second “gridlets”. Each gridlet that contained defined oyster reefs were potential 

available sample sites to be randomly chosen each month. One half of the oyster samples 

were collected during each of two halves of the month (days 1-15 and 16-31). Dredges 

(Louisiana style 9-tooth, 46 cm wide and 25 cm tall with a 36 cm deep bag) were pulled 
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linearly for 30 seconds at a speed of 3 knots. The distance these dredges were pulled was 

not measured. The same sample sites were not duplicated within a month. 

Salinity was measured with a refractometer or digital conductivity/salinity meter 

0.3 m above the bottom substrate at the dredge starting point. Temperature was 

measured with a digital temperature meter 0.3 m above the bottom substrate at the 

dredge starting point. All live Eastern oysters in each dredge sample were counted, and 

19 live individuals were chosen at random and measured for total length. Eastern oysters 

were categorized by size as spat (5-25 mm), small oysters (26-75 mm) referred to as sub-

market oysters in this study, and market oysters (> 76 mm). Total length (TL) of oysters 

in each dredge pull were processed as follows: 19 individuals randomly selected from 

among all oysters measured and all others in the sample were recorded as dead or alive; 

five live oysters and five dead oysters were randomly selected and total spat set on these 

shells was counted and recorded. 

Methods for calculating catch per unit of effort used by TPWD were not used as 

the measure of relative abundance for this study. Instead, relative abundances of 

submarket and market oysters were calculated by multiplying the proportion of live 

oysters that were < 76 mm (submarket) and ≥ 76 mm TL (market) in a 30-s drag sample, 

by the total number of live oysters in that sample to convert dredge results to relative 

numbers of oysters in each size class. A monthly value for relative number in each size 

class (market, submarket and spat) in a 30-s dredge sample was recorded as a measure of 

relative abundance. This value was calculated as an average for a reef if more than one 

grid on that reef happened to be sampled twice in a month. 
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The population data generated and analyzed in this study were from sample 

collections taken through the TPWD Coastal Fisheries Resource Monitoring Program 

(TPWD 2007b unpublished data). These data included only grids for Shell Island Reef 

(grid 205), Mad Island Reef (grids 203, 243) and Sammy’s Reef (grids 240, 280) 

sampled between 1998 and 2007 (Fig. 7). 

Length frequency distributions 

Three size classes of oysters collected by TPWD were evaluated as described 

above. Box plots of each reef and all reefs combined were constructed to evaluate spatial 

and temporal length frequency patterns. 

Oyster weights and density estimates 

Density estimates for only Mad Island Reef were made by analyzing data from a 

shell weight relationship for commercially harvested oysters. During this study, harmful 

algal blooms from Dinophysis occurred on the lower Texas Coast, which prevented 

commercial fishermen from harvesting oysters from San Antonio and Aransas Bay. 

Consequently, nearby commercial oyster-shucking houses were unable to spare (for use 

in this study) any sacks of oysters harvested from WMB that had already been 

designated for sale. However, one shucking house did allow use of their product before 

shucking each oyster of its meat for market sale. Each whole oyster was labeled, total 

shell and meat were weighed (0.1 g), and shell length and width measured (mm) using 

calipers. Each oyster was shucked of their meat by the facility’s staff, and the meat was 

weighed (g) before returning the two valves (labeled) for re-weighing without meat. 

Each pair of valves without meat was subtracted from each oyster’s total weight to 

estimate meat and fluid weight removed. Actual meat weights were compared to 
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calculated meat weights and were found to have less than a one percent measurement 

error (probably from fluid lost during shucking). Two of the shells measured consisted 

of four submarket oysters that had grown together in pairs and likely had been mistaken 

by the harvesters for two market sized oysters. These four shells were included in the 

shell weight length-frequency analysis. 

The oyster sack used in the shell weight analysis contained 160 oysters that had 

been collected the previous day on March 12, 2008 by commercial dredges on Mad 

Island Reef. The shells were large, and generally free of any additional benthic 

materials. Prior to weighing and measuring each oyster, these shells were placed in a 

0.33 m x 0.33 m (one square foot) box to simulate the positions of these oysters that 

would probably have grown up on the reef within a similar size patch, which is slightly 

higher than TPWD’s standard of 0.2 m vertical relief used to designate reef habitat. 

Between 40 and 42 oysters were placed in each of four boxes from one commercial 

oyster sack. (one sack of oysters equals one-third of a barrel, the standard weight of live 

oysters with shell and meat weight). Thus, four of these boxes placed on the seafloor 

would represent the number (and weight) of oysters in a square area measuring 0.66 m 

on each side, which would be 0.43 m2 total area. Density was estimated to be 372 market 

sized oysters per m2 for Mad Island Reef. Although this estimate is only based on one 

commercial oyster sack without reference to geographic location on the reef, it correlates 

well with Moore’s estimate of 378 market oysters per m2 (42 per yd2

Descriptive statistics for total shell length, shell width, total meat weight, meat 

weight alone and shell weight alone were evaluated for the 160 oysters from the one 

) on Mad Island 

Reef (Moore 1907). 
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commercial oyster sack harvested from Mad Island Reef. These oysters were grouped 

into size classes previously used for Galveston Bay oysters (Powell et al. 1994) and the 

total shell length-frequency analysis was evaluated. 

Linear stepwise multiple regression using software SPSS 12.01 (SPSS 2003) was 

used to estimate total shell length by evaluating all other variables (total weight, total 

width, meat weight, and shell weight alone) and diagnostic tools for partial plots were 

used to determine the best predictor of total shell length in this study. 

Linear step wise multiple regression using software SPSS 12.01 (SPSS 2003) 

was used to estimate meat weight by evaluating all other variables (total length, total 

width, total shell weight, and shell weight alone) and diagnostic tools for partial plots 

were used to determine the best predictors of meat weight, which was used in this study 

as a proxy for a health condition index. Curve estimation procedures in SPSS 12.0 were 

also applied as an alternative method to find the best predictor for meat weight from all 

other variables (total length, total width, total shell weight, shell weight alone). 

Growth estimates 

Growth was estimated using two methods. The first method used Hofstetter’s 

1977 monthly estimates for growth of larvae to spat, spat to submarket, and submarket to 

market sized oysters in Galveston and Matagorda Bays. His estimates were based on 20 

years of tray studies in Galveston and for a shorter period of time in Matagorda Bay 

(Table 1). Kraueter et al. (2007) reviewed previous growth studies in every United States 

bay system in order to compare results and also to derive an equation for incremental 

growth that might apply to Gulf of Mexico oyster populations. The present study used 

both methods and applied them to an average oyster population on each of the three reefs 
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using TPWD length data (1998-2006), and the shell-length data from the analysis of 

commercial oysters harvested from Mad Island Reef (March 12, 2008). Using 

Hofstetter’s monthly rates for growth once spat were set, and applying that rate to a daily 

increment of growth for oysters in Matagorda Bay (Table 1), each oyster in these 

populations required 4.6-yrs to grow from a newly settled spat to a market size oyster. 

 

Table 1. Historical and current growth rates applied to Matagorda Bay oysters. 
Hofstetter (1977) method Kraueter et al. (2007) method 

Monthly converted to daily growth rate Growth Rate = Growth(K)*10(-0.0079*Length) 

Total 
Days Size Class 

Monthly 
growth rate 

mm/m 

Total 
Days Size Class 

Daily 
growth rate 

mm/d 

30 Larvae to Spat 3.0 20 Larvae to Spat 0.015 

270 Spat to Submarket 2.68 37 Spat to Submarket 0.9 

600 Submarket to Market 2.58 146 Submarket to Market 0.9 

750 Market to Market 
Plus* 2.18 527 Market to Market 

Plus* 0.9 

1620 Total Time = 4.6 yrs  730 Total Time = 2 yrs  
*Note: Market Plus Oysters are Market Oysters ( ≥ 76 mm) that are greater than 2-yrs old 
 

Applying the method from Kraueter et al. (2007), each oyster in this population 

required 2-yrs to grow from newly settled spat to market size oyster, which is 

comparable to growth estimates by White et al. (1988) for Galveston Bay. Growth 

relationships following Hofstetter (1977) are shown in Fig. 22; and growth relationships 

following Kraueter et al. (2007) are shown in Fig. 23. 
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Figure 22. Monthly growth rate applied for Matagorda Bay oysters following methods 
by Hofstetter (1977). 
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Figure 23. Incremental daily growth rates applied for Matagorda Bay following methods 
by Kraueter et al. (2007) where Incremental growth rate = Growth(K)*10(-0.0079*Length). 
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Temporal trends of relative abundance in each size class 

A LOESS smoothing curve was applied to the relative abundance data for 

Matagorda Bay oysters using the software Brodgar version 2.6.0, 2005 (Zuur et al. 

2007). The data set used in this analysis consisted of a continuous monthly record (30 

months from March 2003 to August 2005) of environmental and biological variables for 

each of the three reefs. A span of 0.4, representing 40 percent of the dataset (values 

spanning six months on either side of each data point) produced trends for oyster 

populations for each reef. In addition, temperature, salinity and relative abundances of 

spat, submarket and market size oysters were compared across a longer dataset between 

1998 and 2006 using time series plots. These curves were examined to determine 

residual temporal and spatial trends among reefs and oyster size classes after removing 

the seasonal component from the data. 

Gradient analyses 

Exploratory indirect gradient analyses—Principal Components Analysis (PCA) 

and Detrended Correspondence Analysis (DCA) were run using the software CANOCO 

version 4.5 (ter Braak and Smilauer 2002) to evaluate the length of the ecological 

gradient as measured in standard deviations (SD) in the dataset (Jongman et al. 1995) for 

the three biological variables (market, submarket and spat size classes) and 

environmental variables (salinity, temperature, distance and flow, and Julian date) from 

the dataset for 1998 to 2006. 

Variables were transformed as needed (distance was log transformed) to linearize 

and normalize their distributions. This is an indirect gradient analysis (Jongman et al. 

1995) because it does not include explanatory variables. Rather, explanations for the 
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gradients are inferred from ecological relationships revealed by their order. The 

biological dataset contained a short (< 2.4 Standard Deviations; SD) ecological gradient 

(a change of four SD indicates a complete change in the composition of response 

variables ordered across all samples). Long gradients and those with many zeroes, are 

more suited to analysis using non-linear relationships (such as weighted averaging and 

correspondence analysis) among variables (Jongman et al. 1995). Because the dataset 

included many zeros, the non-linear direct gradient method of Canonical 

Correspondence Analysis (CCA) was used to build a multivariate model to test the 

relationships between the biological responses and potential explanatory environmental 

variables. The CCA produces new canonical variables (axes) that are linear 

combinations of the explanatory variables that constrain the relationships among the 

biological (dependent) variables to also be a function (multivariate regression) of the 

canonical axes. Starting with the full model (all explanatory variables included), 

sequentially variables were eliminated if the variance inflation factor (VIF) was greater 

than 5, in order to minimize redundancy (colinearity among explanatory variables) that 

could inflate significance tests of the multivariate relationships among response 

variables and the canonical axes. 

A CCA was used to identify the gradients that were combinations of 

environmental variables (salinity, temperature, distance and flow, and Julian date) 

correlated with relative abundances of the three size classes for live oysters (spat, 

submarket, and market) and two size classes for dead oysters (submarket and market) in 

each reef population using the software CANOCO (ter Braak and Smilauer 2002) for the 

March 2003 - December 2007 continuous data sets. Forward selection and Monte Carlo 
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permutations to test the significance (p < 0.05) of each selected variable were used to 

determine in the final CCA model. In addition to the values for data with zero-lag in 

time (i.e., dependent and independent variables measured on the same day, month and 

year), explanatory variables measured at one month before those for response variables 

(i.e., a time lag of -1), were also included. These were included based on significance 

tests for maximum cross-correlations among response and explanatory variables for a 

range of time lags (from 0 to -3 months), which were screened using the software 

Brodgar version 2.6.0, 2005 (Zuur et al. 2007). These procedures allowed tests of the 

importance of lagged responses among oyster size classes to environmental conditions 

that had occurred one to three months earlier. To visualize and interpret the results of 

CCA with and without the time lags, both results are each plotted in a bi-plot (both 

biological and explanatory variables plotted on the same ordination axes). 

 

Results 

Trends of shell length-weight distributions for Mad Island Reef 

Average total shell length was 106 mm (ranged 70 to 135 mm) among the 160 

oysters in a commercially harvested sack (117 lbs, 53 kg) from Mad Island Reef on 

March 12, 2008. Average meat weight in this analysis was 38 g (range 13 to 64 g). The 

smaller meat weights were those recorded for the submarket oysters that were included 

in this sample. Descriptive statistics for the oysters used in this analysis are summarized 

in Table 2. 
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Table 2. Descriptive statistics for Mad Island Reef shell length weight analysis for 
oysters collected on March 12, 2008. 
  Mean Std. Deviation N 
Total Length (mm) 105.6 13.8 160 
Total Width (mm) 78.2 9.9 160 
Total Wt (g) 306.8 98.3 160 
Shell Wt (g) 268.4 88.7 160 
Meat Wt (g) 38.4 10.2 160 

 

The total shell length-frequency analysis by size classes resulted in a unimodal 

curve where y = -3.7381x2 + 31.048x - 26.571 (Fig. 24, R2

y = -3.7381x2 + 31.048x - 26.571
R2 = 0.8506
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 = 0.8506). Greatest frequency 

occurred in the 100 to 109 mm size class, which is one length size class larger than 

reported for Galveston Bay oysters (Powell et al. 1994). 

 

 
Figure 24. Mad Island Reef length-frequency by size class of 160 oysters in a 
commercially harvested sack sampled on March 12, 2008. 
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The results of the stepwise multiple regression analysis for predicting total shell 

length across all other variables (total width, total weight, meat weight alone, and shell 

weight alone) indicated total weight was the most important predictor for total shell 

length (Table 3). Other variables tested were excluded when only one model was found 

to be significant (ANOVA, F = 376.116, P< 0.000). This model produced a linear 

relationship where total shell length (y) was predicted as a function of total weight (x) by 

the following equation: y = 5.9652x - 323.06 (Fig. 25, R2

Model 

 = 0.7042). Shell width, meat 

weight alone, or shell weight alone were not strongly related to total shell length, most 

likely due to the very large, round, thick shells of the oysters in the Mad Island Reef 

harvest sample. 

 

Table 3. Model summary for stepwise multiple regression of Mad Island Reef oyster 
weight. 

R R Adj. R 2 Std. Error  2 Durbin-Watson 

1 0.8392 0.7042 0.7023 7.5421 1.8862 
a Predictors: (Constant), Total Wt   
b Dependent Variable: Total Length   

 

The results of the stepwise multiple regression analysis for meat weight across all 

other variables (total length, total width, shell weight, and shell weight alone) indicated 

that total weight was the best predictor for meat weight using equation y = 0.0979x + 

8.3916 (R2 = 0.8893). Although the results of this analysis indicated meat weight has a 

linear relationship with total weight (ANOVA, F = 1269.47, P < 0.000).), a stronger 

relationship for these two variables was found using curve estimation procedures 

(ANOVA, F = 1899.68, P < 0.000). This analysis produced a power function 

relationship where meat weight (y) was predicted as a function of total weight (x) by the 
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following equation: y = 0.4087x0.7945 (Fig. 26, R2

y = 5.9652x - 323.06
R2 = 0.7042
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 = 0.9239). This power function 

relationship is similar to the oyster meat weight relationship found by White et al. (1988) 

that was also used by Powell et al. (1994) to model oyster populations of Galveston Bay. 

Shell weight alone was not strongly related to meat weight, possibly because the oysters 

from Mad Island Reef had large thick shells; and much of their tissue mass consisted of 

gonadal tissue weight and not somatic tissue weight in March, prior to spawning. 

However, regardless of differences in shell thickness and weight, Matagorda Bay 

oyster’s average size meat weights were comparable to average size meat weights from 

Galveston Bay oysters (White et al. 1988). 

 

 
Figure 25. Relationship of Mad Island Reef total shell length to total weight for 160 
oysters in a commercially harvested sack sampled on March 12, 2008. 
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Figure 26. Relationship of Mad Island Reef total meat weight to total weight for 160 
oysters in a commercially harvested sack sampled on March 12, 2008. 
 

Although the previous results for predicting total shell length indicated a linear 

relationship with total weight (Fig. 25), curve estimation procedures were used to 

examine the potential non-linear relationship between total shell length and meat weight. 

This analysis produced a power function relationship where meat weight (y) was 

predicted as a function of total length (x) by the following equation: y = 0.0144x1.6885 

(Fig. 27, R2 = 0.6301). These results did not indicate a strong relationship as shown for 

meat weight and total weight for one commercial sack of oysters sampled in this bay 

system. 
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Figure 27. Relationship of Mad Island Reef total meat weight to total length for 160 
oysters in a commercially harvested sack sampled on March 12, 2008. 
 

Temporal trends in relative abundance of each size class among reefs 

Box plots of annual relative abundances of each size class (Figs. 28, 29, 30) from 

TPWD data 1998-2007 indicate different relative abundances of each size class on the 

three reefs across years. For example high relative abundances of market size oysters 

such as 2006 were observed for all reefs, but these did not result in similarly high 

relative abundances of spat or submarket oysters in the following year 2007 across all 

reefs. Also, Mad Island and Sammy’s Reefs exhibit greater annual variations in relative 

abundances of spat whereas Shell Island Reef exhibits greater annual variations in 

relative abundance of submarket oysters. 

Review of monthly relative abundances of each size class using TPWD data 

1998-2007 for these three reefs indicates there are similar temporal patterns for Mad 

Island and Sammy’s Reefs that are not found at Shell Island Reef (Figs. 31, 32, 33). 

Shell Island Reef is characterized by higher numbers of submarket oysters in monthly 
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samples whereas Mad Island and Sammy’s Reef are characterized by higher numbers of 

spat and moderate numbers of market size oysters. 

 

Figure 28. Annual relative abundance of market oysters for three Matagorda Bay Reefs, 
Shell Island (Shell), Mad Island (Mad) and Sammy’s Reef (Sam) 1998-2007. Note 
outliers are designated by the symbol *. 
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Figure 29. Annual relative abundance of submarket oysters for three Matagorda Bay 
Reefs, Shell Island (Shell), Mad Island (Mad) and Sammy’s Reef (Sam) 1998-2007. 
Note outliers are designated by the symbol *. 
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Figure 30. Annual relative abundance trends of spat for three Matagorda Bay Reefs, 
Shell Island (Shell), Mad Island (Mad) and Sammy’s (Sam) Reefs 1998-2007. Note 
outliers are designated by the symbol *. 
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Figure 31. Temporal trends of oysters for Shell Island Reef by size classes 1998-2007. 
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Figure 32. Temporal trends of oysters for Mad Island Reef by size classes 1998-2007. 
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Figure 33. Temporal trends of oysters for Sammy’s Reef by size classes 1998-2007. 
 

A comparison of monthly relative abundance of submarket and market size 

classes for the three reefs between 1998 and 2007 is shown in Figs. 34, 35, 36. As 

previously observed, Shell Island Reef was dominated by submarket class oysters in 

every month that samples were collected with the exception of winter months during 

2000 and 2001, in addition to the summer - fall months of 2006 (Fig. 34). Mad Island 

Reef had moderate relative abundances of market and submarket oysters, with a two 

year lag between higher relative abundance of submarket size classes, as observed in 

2001 followed by 2003 monthly samples (Fig. 35). Sammy’s Reef had higher relative 

abundances of market sized oysters in every month, with the exception of samples 

collected in 2005 (Fig. 36), which were not observed in Mad Island Reef market sized 

populations. 
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Figure 34. Relative abundance of submarket and market size classes of oysters at Shell 
Island Reef 1998-2007. 
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Figure 35. Relative abundance of submarket and market oysters at Mad Island Reef 
1998-2007. 
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Figure 36. Relative abundance of submarket and market oysters at Sammy’s Reef 1998-
2007. 
 

Historical information collected by Moore (1907) distinguished different 

densities of oysters in both market and submarket oysters dependent on whether the 

sample was located on the up-estuary or down-estuary slopes of Shell Island and Mad 

Island Reefs. He observed that the water flow and the structure of these reefs were 

important in determining how many oysters could feed in the current or the potential for 

spat settlement on the up-estuary sides of these two transverse ridged reefs. Using 

Moore’s estimates of density and known spatial coverage of these reefs in 2008, the 

present study predicted the potential density and population size for each of these two 

reefs (Table 4). Although Sammy’s Reef was created in 1995 by the USACE, its spatial 

orientation and restoration design imitate that of Shell Island and Mad Island Reefs, so 

similar estimates were made for this third reef. 



 80 



 81 

The total number of submarket and market sized oysters for Shell and Mad Island Reefs 

in 2008 was nearly the same or slightly greater for these reefs in 1904. The creation of 

Sammy’s Reef provided an additional down-estuary population of oysters that survived 

floods and had the potential to supplement larval distribution up-estuary to both Mad 

Island and Shell Island Reefs, whenever populations of market size oysters were 

periodically decimated by floods. 

Exploratory analyses of temporal variation in each size class among reefs 

LOESS curves spanning from 0.1 to 0.9 (10 to 90%) of the continuous 30-month 

dataset for each of the three oyster size classes indicated that a 12-month span (span 

distance 0.4) best represented their relationships on each of the three reefs (Shell Island 

Reef Fig. 37, Mad Island Reef Fig 38, and Sammy’s Reef Fig. 39). Span distance 0.4 

(left box in center row of each figure) represents points smoothed across a 6-month span 

on either side of each point. Temporal patterns were strongest for Mad Island Reef, and 

primarily showed increased abundances of submarket and market oysters in the 12th 

month following increased spat abundances (Fig. 38). Shell Island Reef data contained 

lesser numbers of live oysters in all size classes resulting in discontinuous curves (Fig 

37). 
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 A. Spat 
 
 
 
 
 
 
 
 
 
 
 
 
 B. Submarket 
 
 
 
 
 
 
 
 
 
 
 
 
 C. Market 
 
 
 
 
 
 
 
 
 
 
 
Figure 37. LOESS Curves for Shell Island Reef populations of a continuous 30-month 
dataset (March 2003 to August 2005) for (A) spat, (B) submarket, and (C) market 
oysters. Span distance 0.4 (left box in center row of each figure) represents points 
smoothed across 6-month span either side of each point. 
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 A. Spat 
 
 
 
 
 
 
 
 
 
 
 
 
 B. Submarket 
 
 
 
 
 
 
 
 
 
 
 
 
 C. Market 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. LOESS Curves for Mad Island Reef populations of a continuous 30-month 
dataset (March 2003 to August 2005) for (A) spat, (B) submarket, and (C) market size 
classes. Span distance 0.4 (left box in center row of each figure) represents points 
smoothed across 6-month span either side of each point. 
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 A. Spat 
 
 
 
 
 
 
 
 
 
 
 
 
 B. Submarket 
 
 
 
 
 
 
 
 
 
 
 
 
 C. Market 
 
 
 
 
 
 
 
 
 
 
 
Figure 39. LOESS Curves for Sammy’s Reef populations of a continuous 30-month 
dataset (March 2003 to August 2005) for (A) spat, (B) submarket, and (C) market size 
classes. Span distance 0.4 (left box in center row of each figure) represents points 
smoothed across 6-month span either side of each point. 
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Spatial differences in temporal trends of relative abundance of each size class among 

reefs 

 
Seasonal and longer-term patterns were characteristically different among the 

three reefs and among oyster size classes (market Fig. 40, submarket Fig. 41, and spat 

Fig. 42). In general, seasonal trends were more variable for Shell Island Reef than for 

Mad Island and Sammy’s Reefs. The Colorado River’s irregular flow patterns (Fig. 20) 

appear to have greater affect on seasonal trends for the oyster population at Shell Island 

Reef compared to the other two reef populations. After removing seasonal trends for 

market (Fig. 40) and submarket (Fig. 41) oysters, the longer-term trends showed similar 

patterns (four peaks) for Shell (A) and Mad Island Reef (B) data, but showed a 

somewhat later occurrence of this same pattern at Sammy’s Reef (C) data. However the 

longer term trend for spat at Shell Island Reef (Fig. 42A) showed a strong additional 

peak in the earlier months of the data set, which contrasts with the trend for Sammy’s 

Reef (Fig. 42C), which showed a declining trend in the earlier months for spat. 

Direct gradient analyses 

The CCA for three size classes of live oysters (spat, submarket and market) and 

two size classes of dead oyster (submarket and market) resulted in total model inertia 

(total variance) of 1.27. Eigenvalues for the first four multivariate axes are summarized 

in Table 5. Cumulative percent variance of species-environmental relationship for all 

four CCA axes was 100%. The results of the CCA showed the combination of all nine 

explanatory variables accounted for a significant (F = 2.932, P = 0.002) 24% of the total 

variation among abundances of spat and oyster size classes. 
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Figure 40. Spatial and temporal patterns of market oysters on Matagorda Bay Reefs, 
1998-2006. (A) Shell Island Reef (Shl_Nmark), (B) Mad Island Reef (Mad_Nmark),  
(C) Sammy’s Reef (Sam_Nmark). 

A. Shell Island Reef 

B. Mad Island Reef 

C. Sammy’s Reef 
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Figure 41. Spatial and temporal patterns of submarket oysters on Matagorda Bay Reefs, 
1998-2006. (A) Shell Island Reef (Shl_Nsub), (B) Mad Island Reef (Mad_Nsub), (C) 
Sammy’s Reef (Sam_Nsub). 

A. Shell Island Reef 

B. Mad Island Reef 

C. Sammy’s Reef 
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Figure 42. Spatial and temporal patterns of spat on Matagorda Bay Reefs, 1998-2006. 
(A) Shell Island Reef (Shl_Nspat), (B) Mad Island Reef (Mad_Nspat), (C) Sammy’s 
Reef (Sam_Nspat). 

A. Shell Island Reef 

B. Mad Island Reef 

C. Sammy’s Reef 
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Table 5. Eigenvalues for four axes and total variance for three reefs in Matagorda Bay. 
 

Axis 1 2 3 4 Total inertia 

 Eigenvalues 0.169 0.078 0.06 0.001 1.277 
 Species-environment correlations 0.647 0.429 0.412 0.106  
 Cumulative percentage variance      
  species data 13.2 19.3 24 24.1  
  species-environment relationship 54.9 80.1 99.7 100  
 Sum of all eigenvalues                            1.277 
 Sum of all canonical eigenvalues                            0.308 

 

The first canonical axis accounted for a significant (F = 12.661, P = 0.004) 13% 

of the variation (Fig. 43). The first axis contrasts primarily differences along a gradient 

among samples that had more spat in early months of the year, moderate temperatures, 

especially one month before the sample date (right side in Fig. 43) versus samples with 

lower to moderate salinity on the sample date and higher densities of live oysters (left 

side in Fig. 43). The second canonical axis contrasts reef population samples closer to 

the Colorado River, that had dead oysters and higher flow rates in the month before the 

sample date (top in Fig. 43) versus samples down-estuary that had more live oysters and 

higher salinity in the month before the sample date (Sammy’s Reef; bottom in Fig. 43). 

Dead oysters in both submarket and market size classes are important substrates for spat 

settlement and their location on the right side of the axis one in the plot indicated they 

are also positively correlated to spat abundance. 
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Figure 43. Bi-plot of CCA showing relationships among centroids (centers of 
distribution as open triangles) for live and dead oysters in market (NMrk, MrkDd) and 
submarket (Nsub, SubDd) size classes, and for spat (Nspat) in samples on three 
Matagorda Bay Reefs (Shell, Mad, and Sam are centroids for supplemental variables as 
indicated by closed triangles). Explanatory variables are shown as vectors for continuous 
variables indicating their direction and range of variation (length) correlated with each of 
the first two major canonical axes; Julian date, number for month, and distance (Jdate, 
Month, Dist), and both zero-lag and one-month lag for flow, temperature and salinity 
(Flow, Temp, Sal). Smaller angles between axes and vectors indicate stronger 
contributions of the variable to the canonical axis. Percentage of the variance among 
response variables that is explained by the combinations of variables on each axis is 
noted in parentheses. 
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Discussion 

Spatial and temporal oyster reef population dynamics 

Although the three reef populations in WMB are differently distanced (1-5 km) 

from each other and from their main source of freshwater-Colorado River, they appear to 

be spatially and temporally connected through environmental factors that influence 

oyster reproduction and survival strategies for populations in WMB. The classic 

transverse ridge reef type of formation provided them similar benefits, such as increased 

water circulation and currents from freshwater and tidal influences. The timing and 

duration of both freshwater flows and meteorological (wind driven) tidal forces 

influence oyster population dynamics of these three reefs. The gradient analysis of the 

biological and environmental variables indicated that the higher abundance of dead 

oysters at Shell Island Reef following high freshwater inflow events, during the month 

prior to samples being taken, provided this oyster reef population valuable substrate for 

larvae (spawned from down-estuary populations like Mad Island or Sammy’s Reef) to 

set. Larvae also appeared to be distributed up-estuary from Sammy’s Reef to Shell 

Island and Mad Island Reefs through tidal amplitude and meteorological forced winds 

between May and June and again in September through October of each year. Larvae 

also appeared to be distributed down-estuary to Sammy’s Reef, from oysters that 

spawned either in the Colorado Delta’s intertidal populations or Shell and Mad Island 

Reefs when spawning occurred up-estuary prior to high inflow events and during 

minima tidal cycles. 

The gradient analysis of biological and environmental variables revealed that 

oyster populations at Shell Island Reef, located closer to the Colorado River, had higher 
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relative abundance of dead oysters and experienced higher flow rates in the month 

before the samples were taken in contrast to down-estuary reef populations, such as 

Sammy’s Reef, that had higher relative abundance of live oysters in all size classes, and 

experienced higher salinity in the month before the sample date. Relative population 

abundance data shows that Mad Island and Sammy’s Reef have higher numbers of live 

oysters than Shell Island Reef, which corresponded with distance from the Colorado 

River.  However, these three reefs appeared to have spatial and temporal differences that 

provided opportunities to replenish up-estuary or down-estuary oyster populations that 

had been depleted by floods or droughts. The timing of these hydrodynamic forces 

appeared to be an important factor to the population dynamics of each reef and their 

connectivity with each other. The time required for larvae to travel up-estuary or down-

estuary for successful spat settlement (20-30 days) also appeared to be an important 

factor in determining recruitment success for these three oyster populations. Although 

each reef population was identified to have similar seasonal patterns for spawning and 

growth, the data indicated the relative abundances of spat, submarket, and market 

populations were dependent on a 12 – 24 month lag time. Growth and reproduction in 

each oyster population appeared to interact with the environmental variables (salinity, 

temperature, flow and tide) at least one month prior to the sample date. Spawning 

success (using spat settlement as an indicator of recent spawning effort) in each 

population also appeared to depend on the relative abundance of submarket and market 

oysters in the resident population. Spatial limitations for available nutrients resulted in 

poor reproductive success when high densities of submarket and market oysters occurred 

on these reefs, in contrast to when less-dense populations occurred on these reefs. 
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Conclusions 

The three oyster population in this study appeared to be connected with one 

another through distribution of their larvae and their relative abundance of dead shells 

for spat settlement. These two biological variables interacted with the environmental 

variables of salinity and temperature to determine survival and mortality of oyster 

populations in WMB. The timing and duration of freshwater and tidal influences 

appeared to be critical factors for reproductive success and growth of these three 

populations. Analysis results for Shell Island and Mad Island Reef populations were 

consistent with survival of up-estuary populations, which depend on the number of days 

they are required to endure lowered salinity conditions during warmer temperature 

months. Analysis results for Sammy’s Reef population were comparable with down-

estuary populations, which benefit from longer distance away from freshwater sources, 

and the length of time they are required to endure lowered salinity conditions. Daily 

temperature and salinity records of subtidal oyster populations were identified in this 

study as being important information in assessing the health of these oyster populations. 



 94 

CHAPTER III 

SPATIAL AND TEMPORAL PATTERNS OF DERMO INFECTION IN OYSTERS 

 ON MATAGORDA BAY REEFS 

 

Introduction 

Relatively few studies of the effects of Perkinsus marinum on oyster production 

were conducted in WMB from 1959, when this parasite was first discovered in this bay 

system, until 1996 (Hofstetter and Heffernan 1959; Heffernan 1963; Hofstetter 1965; 

1966; King 1964; 1989; King et al. 1994; Craig et al. 1989; Ray 1966; 1987; Ray 1996;). 

Since then, Dermo infection has been monitored on the three populations of Shell Island, 

Mad Island and Sammy’s Reef after the Colorado River connection to WMB was re-

established through a cooperative effort by TPWD and TAMUG from 2003 and 

continues until the present study. Results are available to the public on the 

www.oystersentinel.org web site. 

Although the three oyster reef populations in WMB are spatially separated along 

a salinity gradient from the Colorado River to Matagorda Bay, they are linked through 

environmental factors that influence up-estuary larvae distribution (see Chapter II). 

These larvae provide an additional biological factor for increasing transmission of 

Dermo disease to oyster populations on Shell Island Reef, which may otherwise only 

contain residual levels of Dermo infection due to the predominance of lower salinity 

conditions (Craig et al 1989; Powell et al. 1996; Soniat et al. 1998). 
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Environmental interactions with Dermo infection 

Dermo disease can withstand a wide range of temperatures and salinities. Under 

lower salinity conditions (< 15 ppt), increased Dermo disease can reduce oyster 

populations, and at higher salinity (>15 ppt) and temperature (> 25 °C) combinations, 

Dermo infection appears to increase and spread within an oyster population (Ray 1987, 

Song 1993, Soniat 1996; Kennedy et al. 1996).  Therefore, Dermo-related mortality 

generally peaks during the summer, when conditions are optimal for parasite growth. 

Elevated infection levels are associated with higher salinities and higher temperatures 

related to drought, independent of seasonal conditions (Burreson and Andrews 1988). 

Colder temperatures generally reduce the effect of Dermo infections. However, large-

scale climatic conditions, such as those associated with El Niño southern oscillation 

(ENSO) cycles, may facilitate the initiation and progression of Dermo disease along the 

coast of the Gulf of Mexico (Powell et al. 1992; 1996; Kim and Powell 1998; Soniat et 

al. 2005). 

ENSO cycles result from disruption of the oceanic atmospheric system in the 

tropical Pacific, which relaxes the trade winds and allows warm water to accumulate 

along the equator which in turn, reduces upwelling of cold water in the eastern Pacific 

Ocean (Ropelewski and Halpert 1986, Philander 1989). El Niño periods are marked by 

changes in the amount and pattern of rainfall across the Gulf of Mexico coastline 

causing the cooler and wetter conditions that tend to lower Dermo infection levels 

(Soniat et al. 2005). These conditions alternate with La Niña periods that occur when 

stronger trade winds and increased upwelling in the eastern tropical Pacific bring 
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warmer and drier conditions to the Gulf of Mexico coast (Ropelewski and Halpert 1986, 

Philander 1989, Soniat et al. 2005). 

Epizootic Dermo infections are correlated with reduced food supply and lower 

recruitment (to harvestable-size oysters), which generally occur prior to, or coincidental 

with, salinity and temperature conditions that increase biological stress on oysters 

(Soniat and Ray 1985; Powell et al. 1996; Dittman et al. 2001).  Ray (1987) showed that 

increased growth rates, and therefore increased recruitment of oysters, could effectively 

“dilute” the infection enough to terminate an epizootic event. These relationships 

suggested that disease management strategies should include harvesting infected market-

sized oysters in order to reduce the number of diseased oysters and reduce the percent 

infection of Dermo in host populations (Powell et al. 1996). 

Spatial interactions with Dermo infection 

The most likely method of long-distance transfer of Dermo infection among 

reefs, within and between bay systems, may be linked through transplantation of 

previously infected oysters (Powell et al. 1997). Once introduced, Dermo rapidly spreads 

through oyster populations (Ray 1954, Ray 1966, Craig et al. 1989; Powell et al. 1997; 

Soniat et al. 1998). Private oyster leases are currently available only in Galveston Bay. 

However, in the early 1950’s after this pathogen and its effect on oyster populations was 

first discovered (Mackin et al 1951), there were private leases for transplanting oysters 

were available in every Texas coastal bay. Although oysters were sampled and evaluated 

for Dermo along the Texas Coast between 1954 and 1960, Dermo was not considered to 

be widespread in Galveston, Matagorda, and Aransas Bays until 1959 (Hofstetter and 

Heffernan 1959). In 1962 mortality studies among tray-held oysters were conducted to 
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determine the influence of Dermo in Galveston, Matagorda and Aransas Bay systems 

(Hofstetter et al. 1965). The results of those and subsequent studies found that every 

Texas bay system (salinity ranged from 6 to 36 ppt) was infected with Dermo (Hofstetter 

et al. 1965; Quick and Mackin 1971; Hofstetter 1977). 

The present study describes the spatial and temporal patterns of Dermo disease 

on three oyster reef populations (Shell Island, Mad Island and Sammy’s Reefs) in WMB 

along a salinity gradient between the Colorado River Delta and the land cut through the 

Gulf Intercoastal Waterway (GIWW) into Matagorda Bay. 

 

Methods 

Oyster collection methods for Dermo samples 

Oysters were monitored between 1986 and 2007 by the TPWD Coastal Fisheries 

Resource Monitoring Program, which followed specific protocols (TPWD 2002) that 

were discussed in Chapter II. However, TPWD used a modified procedure for collecting 

oysters for Dermo disease evaluation in this study. Routine monitoring samples are 

generally collected monthly in the same calendar year from two potential sampling grids 

on the three oyster reefs within WMB. Because sampling sites are randomly chosen 

from among gridded sections on a map, more than one grid per reef is sometimes 

sampled each month, or sometimes no grids are selected for sampling within those reefs 

each month. In such cases when more than one sample was collected on a reef, the 

oysters were saved and pooled from each 30-s dredge sample; and oysters were 

randomly chosen for Dermo disease evaluation. In cases when no grids were selected on 

a reef, samples were collected by conducting a standard 30-s dredge on the reef in 
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known grids that are routinely sampled by TPWD. Market-size (≥ 76 mm) and 

submarket-size (< 76 mm) oysters were randomly chosen and removed from these 

dredge samples; and placed in plastic coolers with frozen bottles of water to prevent 

freshwater contamination of these samples. These samples containing at least 15 oysters 

of each size class from each reef were transported within 48-hrs to TAMUG laboratory 

for Dermo disease evaluation. 

Dermo infection evaluation methods 

Dermo infection was assessed using several parameters in this study. The amount 

of Dermo infection present in the sample from each reef will be referred to as percent 

infection or “prevalence”, which is the percentage of oysters in each size class evaluated 

that have Dermo present in their mantle tissue. Percent infection values range from 0 (no 

infection detected) to 100 percent (all oysters infected). To detect the presence of Dermo 

infection in an oyster, a tissue sample from the mantle of each oyster was processed and 

cultured using procedures originally developed and modified by Ray (1952; 1966). 

Slides of these cultured tissues were stained, viewed through a microscope (10X 

magnification), and then were interpreted by Dr. Ray. (Note: Because one person used 

the same procedures and interpretation method, consistently comparable results over 

time were available for this study.) The slide from each oyster was assigned a “disease 

code” by counting the relative number of parasites (hypnospores) per tissue sample, also 

referred to as Dermo intensity for an individual oyster, as described by Ray (1966) and 

modified by Craig (1989). 

The average of these disease codes (across all oysters in the sample) was 

calculated to quantify the weighted incidence (WI) of Dermo disease in each sample of 
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10-15 oysters, which conveys information about the disease status among individual 

oysters in the population. Ray interpreted 16 potential levels of infection which were 

assigned a disease code value (Craig et al. 1989) between 0 and 5 (Table 6). The lowest 

level of Dermo incidence is scored as 0, indicating a healthy oyster (Fig. 44). Although 

the highest level of Dermo incidence is scored as 5, the next highest level of Dermo 

incidence, 4.33 (Fig. 45) indicates a heavily infected oyster. 

 

Table 6. Descriptions of Dermo incidence levels in oyster tissue (Craig et al. 1989). 
 

Description Incidence Perkinsus marinus cell density 

Negative 0.00 no cells present 
Very Light - 0.33 1-10 
Very Light 0.67 11-74 
Light - 1.00 75-125 
Light 1.33 > 125 cells but < 25% of tissues is cells 
Light + 1.67 < 25% of tissues 
Light/moderate - 2.00 25% of tissues 
Light/moderate 2.33 > 25% but much < 50% of tissues 
Light/moderate + 2.67 > 25% but < 50% of tissues 
Moderate - 3.00 50% of tissue 
Moderate 3.33 >50% but much < 75% of tissues 
Moderate + 3.67 >50% but < 75% of tissues 
Moderately Heavy - 4.00 75% of tissues 
Moderately Heavy 4.33 > 75% but < 100% of tissues 
Moderately Heavy + 4.67 >75% but some oyster tissue visible 
Heavy 5.00 ~100% with no oyster tissue visible 
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Figure 44. Market oyster mantle tissue, 10X magnification, Disease code = 0.00; 
No infection or Dermo cells detected. Photograph by J. Culbertson. 
 
 

 
Figure 45. Market oyster mantle tissue, 10X magnification, Disease code = 4.33 
Moderately heavy + infection, mostly well enlarged and thin walled cells. 
Photograph by J. Culbertson. 
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Exploratory analysis of Dermo in submarket and market size classes and 
 
environmental factors among reefs  
 

Monthly WI data for submarket and market size oysters were evaluated from 

2003 through 2007 in the present study, with the exception of six months during the later 

part of 2005 when Dermo samples were not collected. Temperature and salinity 

measurements were collected by TPWD regardless of whether live oysters were or were 

not collected in their routine monitoring dredge samples. Zero values in this study did 

not indicate live oysters were not present on the reef, only that live oysters were not 

collected in the sample on the reef at that specific location, according to TPWD’s 

protocols (TPWD 2002). 

Analytical methods 

Indirect gradient analyses—Principal Components Analysis (PCA) and 

Detrended Correspondence Analysis (DCA) were run using the software CANOCO (ter 

Braak and Smilauer 2002) to evaluate the length of the ecological gradient (Jongman et 

al 1995) contained in the datasets for the six biological variables (number of spat, market 

and submarket oysters, hypnospore densities and percent Dermo infection in market and 

submarket oysters, and a categorical variable indicating when only dead oysters were 

collected in a size class for a sample) and Julian date, month, distance from the Colorado 

River, and values for zero lag and one month lag of environmental variables (salinity, 

temperature, and flow) from the 1998-2006 data sets. 

           Before analysis, variables were transformed to linearize and normalize the 

            distribution of some variables; percentages of Dermo infection were converted to 

             proportions and arcsine square-root transformed; density of hypnospores (in market and 

            submarket oysters) and distance were log transformed. A preliminary analysis showed 
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that the biological dataset contained short ecological gradients (a change of less than 

three standard deviations in the response variables across all samples) and therefore was 

suitable for analysis of linear relationships among variables (Jongman et al. 1997). 

Direct gradient analysis of environmental variables and index values among reefs 

using RDA 

 
A linear direct gradient analysis, Redundancy Analysis (RDA), was used to build 

a multivariate linear model to test the relationships between biological and explanatory 

environmental variables. This analysis produces new canonical variables (axes) that are 

linear combinations of the explanatory variables. These canonical axes are then used in a 

constrained ordination in which the relationships among the biological (dependent) 

variables are modeled as a function (multivariate regression) of the canonical axes. 

Starting with the full model (all explanatory variables included), sequentially variables 

were eliminated if the variance inflation factor (VIF) was greater than 5, in order to 

minimize redundancy (colinearity among explanatory variables) that could inflate 

significance tests of the multivariate relationships for the canonical axes. To interpret 

and visualize the results, they were plotted in a bi-plot (singular plot of both biological 

and explanatory variables). RDA was also used to test the relationships between 30-day 

lagged responses of the biological variables to the explanatory environmental variables. 
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Results 

 
Relationships of Dermo in submarket and market size classes and environmental 

factors among reefs 

 
Weighted incidence (WI) for each oyster size class (submarket and market) was 

evaluated for relationships to temperature and salinity recorded on the day oyster 

samples were collected for Dermo evaluation (Figs. 46, 47, 48). Shell Island Reef 

populations of oysters typically have very low levels (WI < 1.0) of Dermo infection (Fig. 

46) and lower salinity levels than Mad Island or Sammy’s Reefs. In July 2006, there 

were slightly higher infection levels (WI = 1.5) associated with relatively higher 

abundances of both submarket and market sized oysters (previously shown in Fig. 34), 

and also higher salinity and temperature conditions at Shell Island Reef (Fig. 44). Lower 

levels of WI were also observed during several consecutive months in 2007. Low 

salinity levels at Shell Island Reef that were continuously recorded for several months 

after a June 2007 flood, resulted in dredge samples that were devoid of live submarket or 

market oysters, which precluded evaluation of these samples for Dermo infection. 

Mad Island Reef oyster populations typically have moderate to low levels of 

Dermo infection between 0.33 and 1.5 (Fig. 47). WI was recorded as higher than normal 

on the same date in July 2006 as previously observed in Shell Island Reef oyster 

populations (Fig. 46). Both salinity and temperature were higher than previous months 

and relative abundance of submarket and market oysters at Mad Island Reef were also 

recorded as having moderately high relative abundance (Fig 35) during this period. 
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Figure 46. Shell Island Reef submarket and market WI levels with temperature and 
salinity measurements on sample collection date. Dermo samples were not collected 
from September 2005 through February 2006. 
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Figure 47. Mad Island Reef submarket and market WI levels with temperature and 
salinity measurements on sample collection date. Dermo samples were not collected 
from September 2005 through February 2006. 
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Figure 48. Sammy’s Reef submarket and market WI levels with temperature and salinity 
measurements on monthly sample collection date. Dermo samples were not collected 
from September 2005 through February 2006. Zero WI between February 2003 and 
March 2003 are actual samples evaluated with zero Dermo infection. 
 

Sammy’s Reef oyster populations typically have moderate to high levels of 

Dermo infection between 0.5 and 2.8 (Fig. 48). WI was recorded as higher than normal 

at Sammy’s Reef in July as well as August 2006, on the same date as recorded for both 

Shell Island (Fig. 46) and Mad Island (Fig. 47) Reefs’ oyster populations. Both salinity 

and temperature exhibited seasonal trends that were previously described as 

meteorological forcing by winds and not astronomical tidally influenced (Solis 1999) 

and were discernible in this evaluation of WI and environmental conditions at Sammy’s 

Reef. Salinity and temperature extremes that were shown in Figs. 46 and 47 for Shell 

Island and Mad Island Reefs were not unusual for Sammy’s Reef (Fig. 48). However, 

WI remained at higher levels at Sammy’s Reef for additional months after both Shell 

and Mad Island Reefs’ WI levels decreased. Although relative abundance of submarket 
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and market oyster populations at Sammy’s Reef are typically higher than Mad or Shell 

Island Reefs, these size classes at Sammy’s Reef were higher than previous months on 

July 2006 (Fig 36). Although higher salinity and temperature conditions promote the 

growth of hypnospores, higher densities of these three reef populations could also 

promote the transmission of the disease to more individuals in each population as well as 

transmission of the hypnospores through larval distribution to other reefs. 

Direct gradient analysis 

The results of the RDA showed the combination of explanatory variables 

accounted for a significant (F = 5.584, P = 0.002) 36% of the total variation among 

Dermo-related variables.  The first canonical axis accounted for a significant (F = 34.25, 

P = 0.002) 32% of the variation (Fig. 49).  It contrasts primarily differences between 

samples farther from the Colorado River, that had higher salinity on both the sample date 

and one month before the sample date and higher infection rates and densities of 

hypnospores (Sammy’s Reef; upper left in Fig. 49) versus samples up-estuary that had 

more dead oysters and higher inflows one month before the sample date (Shell and Mad; 

lower right in Fig. 49).  The second canonical axis was primarily related to the temporal 

gradient in lower abundances of live oysters in both size classes, higher infection rates in 

populations, and more dead oysters, in later years and months (top of Fig. 49) versus 

earlier years and months (bottom of Fig. 49). 
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Figure 49. Bi-plot of RDA showing relationships among response variables and 
explanatory variables. Response variables are shown as blue vectors for live spat 
(NSpat), live and dead market and submarket oysters (NMrk, NSub), Dermo hypnospore 
densities per individual and population infection rates for each size class (MktHy, 
SubHy, MktInf, SubInf), in samples on three Matagorda Bay Reefs (Shell, Mad, and 
Sam). Three reefs are shown as centroids for supplemental variables, as indicated by 
filled, down turned triangles). Explanatory variables are shown as vectors (red lines) for 
continuous variables indicating their direction, range of variation (length), and 
correlation with each of the first two canonical axes for Julian date, month, and distance 
from the Colorado River (Jdate, Month, Dist), and both zero lag and -1 month lag for 
flow, temperature and salinity (Flow, Temp, Sal). Note: vectors also extend in the 
opposite direction (indicating negative correlations), but for simplicity are not shown. 
Smaller angles between axes and vectors indicate stronger contributions (correlations) of 
the explanatory variable to the canonical axis. Percentage of the explained variance for 
response variables is noted in parentheses on each axis. 
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Discussion 

Spatial and temporal Dermo dynamics 

The results of this study revealed a complex spatial and temporal relationship 

among the biological variables of Dermo infection in each size class, and the 

environmental variables of temperature, salinity, timing and duration (residence time) of 

floods, and distance from the Colorado River’s freshwater sources.  Oyster populations 

at Sammy’s Reef showed typical down-estuary spatial patterns, due to its distance 

farther from the Colorado River, with typically higher salinity conditions regulated more 

by wind driven tidal factors rather than by freshwater inflows regardless of lag times or 

duration of flows. Thus, consistently higher salinity levels resulted in higher Dermo 

infection rates and densities of hypnospores. This study also showed that Dermo 

infection dynamics at Sammy’s Reef were different from those at Shell Island and Mad 

Island Reefs; and Dermo infection levels were not completely reduced by lower salinity 

conditions and may act as a “reservoir” for Dermo infection in oyster populations in 

WMB, when Dermo levels are no longer detected on up-estuary reefs after major floods 

or harvest mortality removes infected individuals. 

However, Shell Island and Mad Island Reefs were shown to have similar spatial 

and temporal patterns, characteristic of up-estuary oyster populations located closer to 

freshwater sources, and with less Dermo infection levels that were related to higher 

freshwater inflows that occurred during and one month before the sample date. Shell 

Island Reef oyster populations were also shown to have higher numbers of dead oysters 

related to freshwater inflows, while Mad Island Reef oyster populations had moderate 

numbers of dead oysters related to freshwater inflows. These two oyster populations 



 109 

showed similar temporal trends with lower abundances of live oysters in each size class, 

higher Dermo infection rates during higher temperature and salinity conditions, and 

more dead oysters, in later years and months versus earlier years and months. These 

temporal patterns may also be related to increased Dermo infection and mortalities 

following spawning activities that occurred in earlier months.  Ray recorded gonadal 

development in these three oyster populations (Ray unpublished data) that indicate 

Dermo infection levels increase one month following release of gonadal material.  This 

lag time in Dermo related mortality and the subsequent shell substrate provided by dead 

oysters also contribute to the temporal patterns interacting within each reef population as 

well as among adjacent reef populations as discussed in Dittman et al. (2001). 

 

Conclusions 

WMB oyster populations have spatial and temporal patterns that are linked to 

Dermo infection and larvae distribution and spawning dynamics. These three oyster 

populations in this study were shown to not be separate reef systems; and up-estuary 

oyster populations that were devoid of Dermo infection became infected when 

environmental conditions changed and promoted the growth and transmission of Dermo 

disease from adjacent or down-estuary oyster populations.  Although distance and timing 

of freshwater inflows were shown to influence Dermo infection dynamics on each reef, 

higher Dermo infection levels on down-estuary reefs (Mad and Sammy’s Reef) appeared 

to have greater influence on mortality rates following spawning cycles for these reefs. 

Thus, the integrated response of these three populations appeared to be linked to the 

timing of spawning and larval distributions within and among populations in WMB. 



 110 

CHAPTER IV 

INTEGRATIVE MODEL FOR OYSTER POPULATION DYNAMICS 

AMONG MATAGORDA BAY REEFS 

 

Introduction 

The majority of oyster population models that have been developed to date 

(Hofmann et al. 1992; Hofmann et al. 1995; Powell et al. 1998, Dekshenieks et al. 2000; 

Powell et al. 2003) have attempted to incorporate the complex ecological and spatial 

relationships that exist in bay systems by including freshwater inflow information 

available from separate studies of food availability, spawning and growth estimates, 

natural and fishing mortality, and temperature and salinity tolerances of the organism as 

an individual unit. These models were unable to incorporate all of this data into the 

model and still be able to define a specific reef or a specific geographic region in order 

to determine responses to spatial and temporal features of each oyster population or their 

collective responses for each bay system. 

Previous oyster models have simulated environmental conditions, food 

availability, predators, growth, reproduction, and energy requirements for individual 

oysters for Galveston Bay Reefs (Hofmann et al. 1992; Hofmann et al. 1995; Powell et 

al. 1994, Dekshenieks et al. 2000; Powell et al. 2003). However, there are physical 

characteristic of Galveston Bay that are not found in other Texas bay systems, including 

Matagorda Bay. Galveston Bay has a long hydraulic residence time of inflows into the 

estuary (40 to 88 days) (Santschi 1995) from Trinity and San Jacinto Rivers. The 

Houston Ship Channel also bisects the main land constrictions between Eagle Point and 
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Smith Point where major reefs (North and South Redfish Reefs, Todd’s Dump) are 

formed between these two land masses. The complex factors, which influenced the 

formation of these reefs, need to be considered when developing models that simulate 

oyster population dynamics for Galveston Bay. These models must also consider the 

structural diversity of reef types (longitudinal and transverse ridge, pancake, tow-head, 

and inverted) present along a salinity gradient. Considering these complex interactions, 

Galveston Bay’s oyster reefs should be viewed differently from those of Matagorda 

Bay’s oyster reefs; and therefore separate oyster population models of each bay system 

should be developed to incorporate these differences. 

Surprisingly, to date, oyster population models have not been developed for 

Matagorda Bay, specifically targeting WMB’s reefs. When compared to Galveston Bay, 

WMB has a much shorter hydraulic residence time (20-21 days), and only one main 

freshwater source, which is from the Colorado River, in addition to ungauged flows from 

undeveloped coastal prairie along Mad Island Marsh and the tidal lakes (including 

Oyster Lake) on the north side of the GIWW (Ward 1980). The oyster populations in 

Galveston Bay are separated by longer distances, along environmental gradients from 

shallow to deeper water, and a temporally longer salinity gradient. WMB reefs have 

similar structural complexity despite being either naturally formed over centuries or 

recently constructed. They are all transverse ridge type reefs with similar current flow 

characteristics, in contrast to the wide diversity of reef structures and current flow 

patterns for Galveston Bay. 

The three WMB reefs are relatively small compared to the reefs in Galveston 

Bay. The WMB Reefs are perpendicular to the current and land mass, and are not 
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located between land masses or deep water ship channels where currents and flow 

produce additional complexity for simulation models. However WMB’s three oyster 

population reefs provide a valuable comparison of the response of nearly identical 

transverse reefs to environmental and biotic factors along a constrained salinity gradient. 

The objective of this study was to develop of an interactive population based 

model for WMB. It uses Stella software (Stella 9.02. 2007) to quantify and integrate 

among the three reefs, the spatial and temporal patterns influencing reproduction, larval 

distribution, spat settlement, individual growth rates for each size class (larvae, spat, 

submarket, market, market plus - older than two years old) and oyster population 

growth. The three reef oyster population submodels developed in this study, 

incorporated spatial and temporal trends revealed in Chapters II and III. The three oyster 

population submodels were integrated to distribute larvae among reefs and also included 

a portion of larvae recruited from the Colorado Delta based on areas recently mapped by 

the LCRA, and average densities of intertidal populations along the Texas Coast. Model 

simulations were run for a 50 year period based on five years of actual continuously 

recorded environmental data collected by LCRA in order to determine the response of 

oyster subpopulations on each reef to changes in salinity and temperature over time. 

 

Methods 

Environmental submodels 

Five years of environmental data, that were continuously recorded on a daily 

basis for 2001 through 2005 by multiple agencies (previously discussed in Chapter II), 

were used to generate data in four environmental submodels (salinity, temperature, 
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Colorado River flow, and Matagorda Bay tide). These environmental submodels were 

used to simulate environmental conditions that were comparable with the actual 

historical record for each oyster population submodel (Shell Island, Mad Island and 

Sammy’s Reefs). Representation of these four environmental submodels is shown in Fig. 

50. The original five years of environmental data were loaded into separate “converters” 

(denoted by circles) that associated these values with a discrete time step of one day. The 

“run specification” for this model was in daily increments of time. The equations used to 

simulate data by the environmental submodels using normal deviation of actual data 

(salinity, temperature, flow, and tide) are included in Appendix A. 

Each environmental submodel calculated new data within one standard deviation 

(1.0 SD) around each original data point during a 50 year (18250 days) simulation “run-

time”. Each environmental submodel was set up to use the original five years of 

environmental data for each specific oyster population submodel during the first 1825 

days; and then the environmental submodels generated 1.0 SD around this data for the 

remaining run-time (16425 days). These submodels were run multiple times in this 

manner to determine the response within and among oyster populations in WMB to 

environmental changes that could potentially occur over the next 50 years. A sensitivity 

analysis of this model was also run using half the variation (0.5 SD) of the original 

salinity and temperature data sets; and also running it using twice the variation (2.0 SD) 

of the original salinity and temperature data. 
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Figure 50. Environmental submodels to simulate 50 years of data for three runs 
corresponding to each of 0.5, 1.0, and 2.0 SD based on five years of 2001-2005 of 
historical data for temperature, salinity, flow, and tide. 
 

Salinity submodels 

The salinity submodels (Fig. 51) are represented by an inflow arrow pointed into 

a reservoir (open rectangle) of data, generated within the reservoir until specific 

conditions trigger its release through an outflow arrow. The salinity submodel for the 

Shell Island Reef population submodel used the continuous daily salinity data from the 

five year (2001-2005) historical monitoring records, which were collected by LCRA at 

Shell Island datasonde station. This data was used to calculate daily salinity (see Chapter 

II) for the salinity submodels used for Mad Island and Sammy’s Reefs’ population 

submodels. These three salinity submodels were used in the 50 year simulation runs for 

generating continuous daily records within one standard deviation of the actual data 

values for each population submodel (Shell Island, Mad Island and Sammy’s Reef). 
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NormDeviateSalinity 3
SalIN 3 SalOut 3

 

Figure 51. Salinity submodel to simulate 50 years of data for three runs corresponding to 
each of 0.5, 1.0, and 2.0 SD based on five years of 2001-2005 of historical data from 
Shell Island station. 
 

Temperature submodels 
 

The temperature submodels (Fig. 52) are represented by an inflow arrow pointed 

into a reservoir (open rectangle) of data, generated in the reservoir until specific 

conditions trigger the release of data through an outflow arrow. The temperature 

submodel for Shell Island Reef population submodel used continuous daily temperature 

data from the five year (2001-2005) historical monitoring records, which were collected 

by LCRA at Shell Island datasonde station. This data was used to calculate daily 

temperature (see Chapter II) for the temperature submodels used for Mad Island and 

Sammy’s Reefs’ population submodels. These three temperature submodels were used in 

the 50 year simulation runs for generating continuous daily records within one standard 

deviation of the actual data values for each population submodel (Shell Island, Mad 

Island and Sammy’s Reef). 

 

NormDeviateTemp 3

TempIN 3 TempOut 3

 
 
Figure 52. Temperature submodel to simulate 50 years of data for three runs 
corresponding to each of 0.5, 1.0, and 2.0 SD based on five years of 2001-2005 of 
historical data from Shell Island station. 
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Colorado River inflow submodel 
 

The Colorado River inflow submodel (Fig. 53) is represented by an arrow 

pointed into a reservoir of data that accumulates, until specific conditions trigger release 

of data through an outflow arrow. This flow submodel used continuous daily flow data 

from the historical five year (2001-2005) monitoring records collected by USGS station 

at Bay City, Texas, (see Chapter II). This submodel generated continuous daily records, 

within one standard deviation of the actual data values in the five year historical record, 

for the 50 year simulation runs. The data simulated by this Colorado River inflow 

submodel were used for all three population submodels (Shell Island, Mad Island and 

Sammy’s Reefs). 

 

~

Av gDaily FlowData
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Figure 53. Colorado River flow submodel to simulate 50 years of data for three runs 
corresponding to each of 0.5, 1.0, and 2.0 SD based on five years of 2001-2005 
historical data from Bay City, TX. 
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Matagorda Bay tide submodel 
 

The Matagorda Bay tide submodel (Fig. 54) is represented by an arrow pointed 

into a reservoir of data that accumulates, until specific conditions trigger release of data 

through an outflow arrow. This submodel used continuous daily flow data from the five 

year (2001-2005) historical monitoring records collected at NOAA’s Port O’Connor tide 

station, (see Chapter II). This tide submodel generated continuous daily records, within 

one standard deviation of the actual data values in the five year historical record, for the 

50 year simulation runs. This data generated by this tidal submodel was used for all three 

population submodels: Shell Island, Mad Island and Sammy’s Reefs. 

~
Av gDaily TideDataMatagorda

NormDev iateTideFor Matagorda

TideInMatagorda TideOutMatagorda
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Figure 54. Tidal amplitude submodel to simulate 50 years of data 
for three runs corresponding to each of 0.5, 1.0, and 2.0 SD based on five  
years of 2001-2005 historical data recorded at Port O’Connor, TX. 
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Oyster population submodels 
 

Three oyster population submodels were developed for each reef in WMB (Shell 

Island, Mad Island, and Sammy’s Reef) based on the population density estimates for 

each size class and reef size in Table 4 (see Chapter II). These population submodels 

incorporated patterns for fast growth (Kraueter et al. 2007) and slow growth (Hofstetter 

1977) in each size class (spat, submarket, market and plus market) of these oyster 

populations (see Table 1, in Chapter II). The criteria for growth in each size class was 

based on whether these populations were exposed to optimum water temperature ranges 

(> 10 ºC and < 30 ºC) combined with optimum salinity ranges (>10 ppt and < 26 ppt), 

which resulted in fast growth; in contrast to populations exposed to temperature and 

salinity ranges outside of optimum environmental conditions, which resulted in slow 

growth of individuals in each size class. These temperature and salinity restrictions on 

growth were based on previous estimates for Texas oysters (Loosanoff and Davis 1953; 

Cake 1983; Hofmann et al. 1992). 

Spawning submodels were developed for oysters that reached maturity in each 

size class (submarket, market and market-plus), so they could spawn several times each 

year as environmental conditions allowed, and were not limited to one or more spawning 

cycles, or specific time periods. Spawning criteria for each size class were determined in 

these submodels by limiting the release of larvae to optimum environmental conditions, 

according to temporal patterns previously identified (Chapter II). These submodels also 

constrained spawning to not occur at least 60 days following a spawning event in order 

to allow the spawning population time to regenerate gonadal tissues. This 60 day time 

delay was based on the population submodel responding to optimum temperature 
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(>25 ºC and < 31 ºC) and salinity (> 16 ppt and < 26 ppt) ranges for gonadal tissue 

regeneration (Loosanoff and Davis 1953; Soniat and Ray 1985; Hofmann et al. 1992). 

Although food availability (phytoplankton) has an important role in gonadal tissue 

regeneration (Soniat and Ray 1985), that information was not available for inclusion in 

this submodel. 

Each size class containing potential spawners (submarket, market, and market-

plus) was monitored as to its relative abundance so that when high population densities 

(>3 million oysters) occurred on the reef, spawners were restricted from producing large 

numbers of larvae (2.6 million larvae per spawner); and when low population densities 

(<2.7 million oysters) occurred, spawners were able to produce large numbers of larvae 

(86 million larvae per spawner). The values for density dependence and numbers of 

larvae produced per spawner used in these submodels were based on previous fecundity 

studies of Texas oysters (Hopkins 1931; Davis and Chanley 1955). 

Low-salinity stress submodels were also developed using counters to monitor the 

number of days each oyster population tolerated low salinity levels (< 1 ppt) and high 

temperatures (>25 º C). These salinity stress submodels accumulated the number of days 

when low salinity and high temperature conditions occurred, until 10 consecutive days 

had passed, and provided feedback to each population submodel by increasing the 

natural mortality rate. These salinity stress submodels also accumulated days when low 

salinity levels (< 1 ppt) and low temperature conditions (< 26 º C) occurred, until 30 

consecutive days had passed, and provided feedback to each population submodel by 

increasing the natural mortality rate. These salinity stress counters were reset to zero if 

salinity levels increased before the limit of days had accumulated in the counter, thus 
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sparing the population from additional stress if the duration of low-salinity conditions 

was shorter time than needed (10 or 30 days according to high or low temperatures) to 

increase mortality rates. 

Dermo infection submodels were developed in this study for three size classes 

(submarket, market, and market plus) of each oyster population submodel in order to 

separate the mortality rates that differ for less mature versus mature oyster populations. 

Submarket oysters have previously been shown to have lower levels of Dermo infection 

than market or mature oysters (see Chapter III). The Dermo submodels functioned as 

counters of “infection-days”, which were accumulated based on salinity and temperature 

restrictions for proliferation of Dermo disease (Ray 1987; Hofmann et al. 1995). After 

this submodel accumulated 120 days of Dermo infection, mortality was increased in the 

size class of infected oysters in the population submodel. If environmental conditions 

improved and were no longer optimum for promoting growth of Dermo disease, then 

mortality was not increased during that time step. However, the numbers of “infection-

days” were retained in the counter until conditions for promoting growth of Dermo 

disease returned; at which time additional infection days were again accumulated by the 

submodel until 120 days were attained, resulting in increased mortality of that size class 

in the population submodel. Thus each size class of the population infected with Dermo 

retained their own separate infection levels for longer periods of time than 120 days, or 

until natural mortality from other variables occurred. Spawning conditions were also 

incorporated into the Dermo submodel, and used to increase mortality due to Dermo 

disease if the spawning population was infected. These temporal patterns of Dermo 

influence on increased population mortality according to their maturity level were 
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incorporated into each reef’s population submodel. The equations regulating these 

Dermo submodels are included in Appendix A. 

Shell Island Reef population submodel 

Shell Island Reef’s population submodel (Fig. 55) incorporated the spatial and 

temporal patterns of an up-estuary population, located within a shorter distance from the 

Colorado River and influenced by longer duration and volume of freshwater inflows. 

Shell Island Reef populations were provided a smaller allocation of larvae from their 

own spawning populations during low-flow conditions in the Colorado River based on 

the relatively low abundance of “live” market oysters and relatively moderate numbers 

of “live” submarket oysters on this reef compared to Matagorda and Sammy’s Reefs. 

Larvae were also distributed to the Shell Island Reef oyster population from the 

Colorado Delta’s intertidal oyster population following high-inflow events. Larvae were 

also transported in an up-estuary direction from the Mad Island and Sammy’s Reef 

population submodels, following the higher tidal amplitude patterns that occur during 

spring and fall seasons. Shell Island Reef’s oyster populations were documented (see 

Chapter III) as becoming infected by Dermo disease during sustained low inflows of 

freshwater; and also following (one month lag) larval production by down-estuary 

infected oyster populations. 
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Mad Island Reef population submodel 

 
Mad Island Reef’s oyster population submodel (Fig. 56) incorporated similar 

growth, spawning and slightly higher ambient salinity and temperature conditions found 

in up-estuary and down-estuary oyster populations, due to its location between Shell 

Island and Sammy’s Reef, a moderate distance from the Colorado River, (see Chapter 

II). Larvae in this submodel were contributed by the resident spawners in addition to 

receiving larvae from down-estuary reef populations such as Sammy’s Reef during 

higher tidal amplitudes that occurred in spring and fall. They also received larvae from 

up-estuary populations such as Shell Island Reef and the intertidal Colorado Delta 

during high flow conditions and during seasonal “wind driven” events. Higher levels of 

Dermo infection within the three size classes (submarket, market, and market-plus 

oysters) were incorporated in the Mad Island Reef population submodel during high 

salinity and temperature conditions (see Chapter III) compared to those found on the 

typical up-estuary populations as represented by the Shell Island population submodel. 
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Sammy’s Reef population submodel 

Sammy’s Reef’s oyster population submodel (Fig. 57) incorporated the spatial 

and temporal environmental patterns, which defined its formation the farthest distance 

from the Colorado River (see Chapter II). The larvae in this oyster population submodel 

were recruited primarily from resident spawners due to their relatively greater number of 

live oysters in all size classes, and their lesser number of larvae contributed from up-

estuary populations after high inflows or during down-estuary tidal conditions that 

prevail in summer and winter seasons. There were no down-estuary or gateway reef 

populations available to contribute larvae to Sammy’s Reef oyster population in this 

submodel. Spatial and temporal patterns for Dermo infection similar to those for down-

estuary oyster populations were incorporated in this submodel (see Chapter III). These 

patterns showed a greater potential for Dermo disease interactions within each of the 

three size classes (submarket, market, and market plus oysters) due to their relatively 

higher abundances of live oysters that can become infected with Dermo, in addition to 

higher salinity conditions that promote growth of Dermo disease at this reef, the farthest 

distance from the Colorado River outflow. 
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Larval distribution submodels 

 
Each oyster population submodel included inflows of larvae from submodels for 

their own resident population of potential spawners, as well as inflows from adjacent up-

estuary (Figs. 58, 59) and down-estuary (Fig. 60) potential spawners, and inflows from 

the Colorado Delta intertidal populations (Fig. 61). Environmental conditions were 

established in these submodels that regulated the number and direction of larvae 

transported in up-estuary and down-estuary directions, using environmental variables 

and patterns discussed in Chapter II for: salinity, temperature, duration and volume of 

freshwater inflows, tidal amplitude direction and height. These population submodels 

accounted for emigration of larvae from the reef by removing a proportion of the larvae 

spawned by the resident reef population (submarket, market and market-plus size 

classes), which were then distributed to other reefs. 

 

  
 
Figure 58. Shell Island Reef larvae population submodel. 
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Figure 59. Mad Island Reef larvae population submodel. 
 
 

 
 
Figure 60. Sammy’s Reef larvae population submodel. 
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Figure 61. Colorado Delta intertidal larvae population submodel. 

 
Size class submodels 

Each population submodel (Shell Island, Mad Island and Sammy’s Reefs) was 

constructed which incorporated four size classes of oysters (spat, submarket, market, and 

market-plus) using density and numbers established in Table 4 in Chapter II. The first 

three size classes (spat, submarket, and market oysters) were constructed as “conveyors” 

(represented by hatched boxes) of multiple groups of similar sized individuals that 

resulted from different spawning efforts within the same population or from different 

populations. These three size class conveyors accumulated numbers of individuals that 

were spawned at different time steps but have the same growth and mortality rates 

applied, under the same environmental conditions as the other individuals in that same 

size class before they are transferred to the next size class conveyor with its own growth 

and mortality rates. 

Each group of spat entering this size class conveyor continues to grow and does 

not interact with the other spat entering this conveyor at different time intervals unless it 

is through density-dependent growth limitations that result in additional mortality for 

spat when this size class becomes too densely populated. Each group of spat do not leave 
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this size class conveyor, moving from one compartment to the next until they have 

reached the maximum length for spat, when they are transferred to the submarket size 

class conveyor. These same maximum length restrictions apply to each group of oysters 

entering the submarket size class conveyor, moving from one conveyor compartment to 

the next until they are transferred to the market size class conveyor. 

When each group of oysters that enters the market size class conveyor reaches a 

maximum length (140 mm) by the end of their second year (730 days), they are 

transferred to a final “reservoir” open type of container for market-plus oysters. These 

oysters continue to grow and reproduce at the same rate as the oysters in the market size 

class conveyor, but they are not constrained by the time factors used for separating 

groups of oysters entering (by birth date) or leaving a “conveyor” compartment until 

they reach a maximum length. These market-plus oysters accumulate in this container 

until they are removed by harvest, Dermo, or natural mortality. 

 

Results 

Comparison of environmental variables among reefs for 2001-2005 

The results of the environmental submodels for the five years (2001-2005) of 

actual monitoring data are graphically depicted using Stella software: salinity (Fig. 62), 

temperature (Fig 63), Colorado River flow and Matagorda Bay tide (Fig. 64). Average 

temperature data were similar for all three reefs; and Fig. 60 shows only the third line 

(green line representing Sammy’s Reef) which covers the other two lines. Several high 

freshwater inflow events (> 10,000 cfs) were recorded from the Colorado River (Fig. 64) 

during the five year (1825 days) period on specific days (70, 244, 322, 557, 674, 780, 
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1276, and 1418). These specific inflow events continued for several days to months, 

where in some cases, tropical storms or hurricanes created major flooding events that 

had long term effects on the reefs in WMB (see Chapter II). 

 

 
Figure 62. Comparison of average daily salinity among reefs for 2001-2005. 
 

 

 
 
Figure 63. Comparison of average daily temperature among reefs for 2001-2005 
were similar; shown are data for Sammy’s Reef. 
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Figure 64. Comparison of Colorado River flow and Matagorda Bay tides among reefs 
for 2001-2005. Arrows indicate days when freshwater inflows were greater than 10,000 
cfs. 
 

Comparison of oyster reef populations among reefs for 2001-2005 

Oyster larvae produced by the three oyster reef populations (Fig. 65) and spat set 

among reefs (Fig. 66) for 2001-2005, were simulated using Stella software (Stella 2007). 

There are no available data for larvae distributions at the three oyster reef populations 

during this same time period to compare with the model’s simulation output.  However, 

simulated spat numbers, resulting from simulated larvae that set on these reefs (one 

month prior to their detection in dredge samples) appeared to correspond well with 

relative abundance of spat described in Chapter II. 
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Figure 65. Comparison of larvae among reefs for 2001-2005. 
 
 
 

 
Figure 66. Comparison of spat set among reefs for 2001-2005. 
 
 

Simulated oyster population numbers in the three size classes (submarket Fig. 67, 

market Fig. 68, and market-plus Fig. 69) corresponded well with relative abundance of 

oysters in these size classes in 2001-2005 data (see Chapter II). Market and market-plus 
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numbers were considered together as comparable to market size class oysters during this 

time period (see Chapter II); and are only separated here to indicate when market oysters 

survived longer than two years and continued to provide functional value to the 

population. Smaller numbers of market oysters were simulated for Shell Island Reef 

populations, which were typically observed in Chapter II. However, larger numbers of 

submarket oysters were simulated approximately 280 to 380 days following high inflows 

events for Shell Island Reef (on days 780 and 1418), and for Mad Island and Sammy’s 

Reef (on days 1276 and 1418), which are indicated by arrows on Fig. 67. Larger 

numbers of market oysters were also simulated 365 to 730 days after high inflow events 

for Shell Island Reef (on days 306 and 1800), for Mad Island (on days 1105, 1210, and 

1500), and for Sammy’s Reef (on days 1105, 1210, 1550, and 1800 ) which are indicated 

by arrows on Fig 68. 

 
 
Figure 67. Comparison of submarket oysters among reefs for 2001-2005. Arrows 
indicate day relative abundance increased 365-730 days following a flood event.  
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Figure 68. Comparison of market oysters among reefs for 2001-2005. Arrows indicate 
day relative abundance increased 365-730 days following a flood event. 
 
 
 

 
 
Figure 69. Comparison of market-plus oysters among reefs for 2001-2005. 



 136 

Comparison of environmental variables among reefs for 50 years (1.0 SD) 

The results of the environmental submodels were compared among reefs over the 

50 year simulation run, based on 1.0 SD of the actual five year data from 2001-2005 (see 

Chapter II), and are graphically depicted using Stella software: salinity (Fig. 70), 

temperature (Fig 71), Colorado River flow and Matagorda Bay tide (Fig. 72). Salinity 

values at all three reefs appear to follow the same trends and values previously observed 

in the five year data set. Sammy’s Reef had the highest average daily salinity over the 50 

year simulation period, with some higher values observed at Mad and Shell Island 

during higher tidal periods especially in spring and fall. Higher average daily 

temperatures were observed over several years at Mad Island Reef in the 50 year 

simulation run compared to trends and values previously observed in the five year data. 

Colorado River flow and Matagorda Bay tides in the 50 year simulation run were 

comparable to trends and values previously observed in the five year data. 

 

 
Figure 70. Comparison of average daily salinity among reefs for 50 years (1.0 SD). 
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Figure 71. Comparison of average daily temperature among reefs for 50 years (1.0 SD). 
 
 
 

 
 
Figure 72. Comparison of Colorado River flow and Matagorda Bay tide among reefs 
for 50 years (1.0). Arrow indicates a high inflow event lasting longer than 60 days. 
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Comparison of oyster reef populations among reefs for 50 years (1.0 SD) 

Oyster larvae produced by the three oyster reef populations (Fig. 73) and spat set 

among reefs (Fig. 74), using 50 year simulations that were based on 1.0 SD of the 

historical data, (see Chapter II), were graphically depicted using Stella software (Stella 

2007). There are no available data for larvae distributions of these three oyster reef 

populations to compare with the model’s 50 year simulation output.  However, spat 

numbers, resulting from larvae that set on these reefs (one month prior to their detection 

in dredge samples) that were simulated for 50 years, appeared to correspond well with 

relative abundance of spat described in Chapter II. During this 50 year simulation run, 

high numbers of Colorado Delta larvae (Fig. 73) were produced during a high flow 

(>10,000) and long duration event (> 10 days) that resulted in higher numbers of spat 

(Fig. 74) for Sammy’s Reef compared to other up-estuary reefs (arrows point to event 

day). These spat set from Sammy’s Reef resulted in higher numbers of submarket 

oysters (Fig. 75) in the following year and higher numbers of market oysters (Fig 76) 

two years later (arrows point to event day). 

Oyster population numbers in the three size classes (submarket Fig. 75, market 

Fig. 76, and market-plus Fig. 77), simulated for 50 years using Stella software (Stella 

2007), corresponded well with 2001-2005 relative abundance of oysters in these size 

classes (see Chapter II). Lower numbers of market oysters were simulated for Shell 

Island Reef, which are typical of Shell Island Reef populations. However, higher 

numbers of submarket (Fig. 75) and market oysters (Fig. 76) were simulated for 50 years 

at all three reef populations one to two years (365-730 days) following high inflow years 

as depicted by arrows. 



 139 

 
 
Figure 73. Comparison of larvae among reefs for 50 years (1.0 SD). Arrow indicates 
larvae spawned by Sammy’s Reef populations following a high inflow event lasting 
longer than 30 days. 
 
 
 

 
 
Figure 74. Comparison of spat among reefs for 50 years (1.0 SD). Arrow indicates spat 
set at Sammy’s Reef and Mad Island contributed by larvae that were spawned after a 
high inflow event lasting longer than 30 days. 
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Figure 75. Comparison of submarket oysters among reefs for 50 years (1.0 SD). 
Submarket oysters associated with high inflow events that occurred 200-380 days 
earlier. 
 
 
 

 
 
Figure 76. Comparison of market oysters among reefs for 50 years (1.0 SD). Arrows 
indicates market oysters associated with high inflow events that occurred 365 days 
earlier. 
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Figure 77. Comparison of market-plus oysters among reefs for 50 years (1.0 SD). 
Arrows indicate market-plus oysters associated with high inflow events that occurred 
365 days earlier. 
 

Comparison of environmental variables among reefs for 50 years (0.5 SD) 

Environmental submodel results were compared among reefs using 50 year 

simulations that were based on 0.5 SD of the actual five year (2001-2005) historical data 

(see Chapter II), and were graphically depicted using Stella software: salinity (Fig. 78), 

temperature (Fig 79), Colorado River flow and Matagorda Bay tide (Fig. 80). These 

results appeared to be similar to those simulated by the 1.0 SD of the historical data with 

the exception of long duration of higher than normal salinity values occurring at Mad 

Island Reef from day 5000 until day 6000, while Sammy’s Reef had lower salinity 

values, represented by arrows in Fig 78. Colorado River flow and Matagorda Bay tides 

in the 50 year simulation run for 0.5 SD (Fig. 80) were comparable to trends and values 

previously observed in the five year data and 1.0 SD simulation run. 
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Figure 78. Comparison of average daily salinity among reefs for 50 years (0.5 SD). 
Arrows indicate when higher than normal salinity was simulated for Mad Island Reef. 
 
 
 

 
 
 
Figure 79. Comparison of average daily temperature among reefs for 50 years (0.5 SD). 
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Figure 80. Comparison of Colorado River flow and Matagorda Bay tide among reefs 
for 50 years (0.5 SD). Arrows indicate high inflow events. 
 

Comparison of oyster reef populations among reefs for 50 years (0.5 SD) 

Oyster larvae produced by the three oyster reef populations (Fig. 81) and spat set 

(Fig. 82) were compared among reefs, using 50 year simulations that were based on 0.5 

SD of the historical data, (see Chapter II), and graphically depicted using Stella software 

(Stella 2007). There were no available data for larvae distributions of these three oyster 

reef populations to compare with the model’s simulation output. Spat numbers, resulting 

from larvae that set on these reefs (one month prior to their detection in dredge samples) 

that were simulated for the 50 year simulation run, appeared to correspond well with 

relative abundance of spat for these three reefs described in Chapter II. High numbers of 

Sammy’s Reef larvae were produced immediately following several high flow and short 

duration events during this simulation run, which resulted in higher numbers of spat 

being simulated for Shell Island Reef (Fig 82), as indicated by arrows. 
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Figure 81. Comparison of larvae among reefs for 50 years (0.5 SD). Arrows indicate 
larvae spawned by Mad Island and Sammy’s Reef populations following high inflow 
events. 
 
 

 
 
Figure 82. Comparison of spat among reefs for 50 years (0.5 SD). Arrows indicate high 
abundance of spat at Shell Island Reef contributed by larvae from Mad Island and 
Sammy’s Reef population. 
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Oyster population numbers in the three size classes (submarket Fig 83, market 

Fig. 84, and market-plus Fig. 85) simulated for the 50 years using 0.5 SD of the 

historical data correspond well with 2001-2005 relative abundance of oysters in these 

size classes (see Chapter II). Although lower numbers of market oysters were generated 

at Shell Island Reef for the majority of the 50 year simulation run, which are typical of 

this reef’s population trends, there were several days of high spat sets (Fig. 82) that 

resulted in higher than normal trends for market oyster abundance on Shell Island Reef 

(Fig. 84) as indicated by arrows. Higher numbers of submarket (Fig. 83) and market 

(Fig. 84) oysters were also simulated 365 to 730 days following high inflow events at 

Mad and Sammy’s Reef that were comparable to previous trends during 2001-2005 for 

these two oyster populations (days are indicated by arrows).  

 
 

 
 
Figure 83. Comparison of submarket oysters among reefs for 50 years (0.5 SD). Arrows 
indicate submarket oysters that resulted from high inflow event 365-730 days earlier. 
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Figure 84. Comparison of market oysters among reefs for 50 years (0.5 SD). Arrows 
indicate market oysters that resulted from high inflow event 365-730 days earlier. 
 
 
 

 
 
Figure 85. Comparison of market-plus oysters among reefs for 50 years (0.5 SD). 
Arrows indicate market-plus oysters that resulted from high inflow event 365-730 days 
earlier.
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Comparison of environmental variables among reefs for 50 years (2.0 SD) 
 

Environmental variables were compared among reefs over 50 year simulations 

that were based on 2.0 SD of the five year 2001-2005 actual continuous monitoring 

record, (see Chapter II), and graphically depicted using Stella software: salinity (Fig. 

86), temperature (Fig 87), Colorado River flow and Matagorda Bay tide (Fig. 88). The 

salinity submodel, using twice the variation of the five year continuous monitoring 

record, simulated higher and lower salinities than normal for all three reefs in WMB 

over the 50 year simulation period (Fig. 86). There were two periods of time extending 

in this simulation run where the salinity submodel generated high salinity conditions for 

Mad Island Reef, in contrast to very low to nearly zero salinity conditions at Shell Island 

or Sammy’s Reef during this same time period (arrows indicate these time periods). As 

the salinity data was generated from the actual five year (2001-2005) continuous 

monitoring data, this salinity trend had previously occurred in the historical record at 

these reefs.  The temperature submodel also simulated higher and lower temperatures 

than normal seasonal trends at all three reefs during this 50 year simulation run (Fig 87). 

Similar high temperature periods occurred twice at Mad Island Reef that corresponds to 

the higher salinity conditions previously described for this simulation run. The Colorado 

River flow submodel generated four major floods with one flood extending over several 

seasons (see arrows on Fig 88). This submodel also generated four major droughts 

following floods (see arrows on Fig 88). The Matagorda Bay tide model did not simulate 

extreme tidal amplitudes using twice the variation of the five year continuous monitoring 

records. 
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Figure 86. Comparison of average daily salinity among reefs for 50 years (2.0 SD). 
Simulation run using 2.0 SD begins at 1825 days, as indicated by lower arrow. Arrows at 
top indicate high salinity data generated for Mad Island Reef submodel. 
 
 
 

 
 
Figure 87. Comparison of average daily temperature among reefs for 50 years (2.0 SD). 
Simulation run using 2.0 SD begins at 1825 days, as indicated by lower arrow. Arrows at 
top indicate high temperature data generated for Mad Island Reef submodel. 
 

1825 days 

1825 days 
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Figure 88. Comparison of Colorado River flow and Matagorda Bay tide among reefs for 
50 years (2.0). Simulation run using 2.0 SD begins at 1825 days, as indicated by lower 
arrows. Four flood days followed by four drought days are referenced by upper arrows. 
The duration of flood and drought days varied from 10 to > 30 days. 
 

Comparison of oyster reef populations among reefs for 50 years (2.0 SD) 

Oyster larvae produced by the three oyster reef populations (Fig. 89) and spat set 

(Fig. 90) were compared among reefs, for the 50 year simulation run that was based on 

2.0 SD of the actual 2001-2005 historical data, (see Chapter II), and graphically depicted 

using Stella software (Stella 2007). Larvae produced during the first 1825 days followed 

previous trends that were simulated during the five year simulation run, as well as the 50 

year trends for simulation runs using 0.5 and 1.0 SD. Although the Mad Island 

population submodel continued to simulate larvae for the first 4500 days, only the 

Colorado Delta submodel simulated larvae from their intertidal reef populations 

following extended high inflow events (indicated by arrows in Fig. 89) during the 

remaining 13750 days, when low salinity conditions continued past 60 days for all reefs. 

1825 days 
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Figure 89. Comparison of larvae among reefs for 50 year simulation (2.0 SD). 
Simulation run using 2.0 SD begins at 1825 days, as indicated by lower arrow. 
 
 
 

 
 
Figure 90. Comparison of spat among reefs for 50 year simulation (2.0 SD). Simulation 
run begins at 1825 days using 2.0 SD, as indicated by lower arrow. Arrows for moderate 
spat set related to high inflow events and following extended droughts. 
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The 50 year simulation run (2.0 SD) using the original five years (2001-2005) of 

continuous monitoring record resulted in declining numbers of submarket (Fig. 91), 

market (Fig. 92), and (Fig. 93) market-plus oysters at Shell Island Reef after 1825 days. 

These trends were somewhat modified for the population submodel at Mad Island Reef, 

where the 50 year simulation run using 2.0 SD resulted in a period of high abundance of 

submarket (Fig. 91), market (Fig. 92) and market-plus (Fig. 93) oysters for 4500 days 

followed by a total loss of these size classes for the remaining simulation run time. 

However, this same 50 year simulation run resulted in a total loss of submarket (Fig. 91), 

market (Fig. 92), and market-plus (Fig. 93) oysters from Sammy’s Reef after 1825 days. 

Higher salinity and temperature conditions over a longer time span resulted in declining 

trends of up-estuary and down-estuary reef populations, which correspond to previous 

historical records of declining population trends in WMB described by King (1989) after 

the Colorado River was diverted into the Gulf of Mexico. 

 

 
 
Figure 91. Comparison of submarket oysters among reefs for 50 year simulation (2.0 
SD). Simulation run begins at 1825 days using 2.0 SD, as indicated by lower arrow. 

1825 days 
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Figure 92. Comparison of market oysters among reefs for 50 year simulation (2.0 SD). 
Simulation run begins at 1825 days using 2.0 SD, as indicated by lower arrow. 
 
 
 

 
 
Figure 93. Comparison of market-plus oysters among reefs for 50 year simulation (2.0 
SD). Simulation run begins at 1825 days using 2.0 SD, as indicated by lower arrow. 

1825 days 

1825 days 
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Spatial and temporal trends of Dermo infection among three reef populations 

Dermo infection submodels developed in this study for three size classes 

(submarket, market, and market plus) of each oyster population submodel provided 

insight into the potential increased mortality that results from the number of days each 

population tolerates the disease before it effects reproductive success and survival of the 

population. 

The Dermo infection submodel simulated data for 50 years at normal variation 

(1.0 SD) of the five year monitoring record for each size class (submarket, market, 

market-plus) were compared among reefs and graphically depicted using Stella software 

(Stella 2007). The results of this 50 year simulation run for Shell Island Reef oyster 

populations (Fig. 94) show that Dermo stress (accumulated number of infection-days) 

can be tolerated for long periods of time by all size classes (> 4000 days for submarket, 

>2000 days for market and market-plus oysters) under the environmental conditions 

used for average daily salinity and temperature continuous monitoring data. The results 

of this same 50 year simulation run for Mad Island Reef oyster populations (Fig. 95) 

show that Dermo stress can be tolerated for moderate amounts of time (> 200 days for 

each size class with less days tolerated during high salinity conditions during seasonally 

high temperature periods.  However, Dermo stress is only tolerated for short periods of 

time resulting in increased mortality of all size classes at Sammy’s Reef (Fig. 96) for the 

same 50 year simulation data (1.0 SD) based on the five year (2001-2005) average daily 

salinity and temperature continuous monitoring data (see Chapter II). 

However, when the Dermo infection submodels were run using simulation data 

at 2.0 SD of the original five year continuous record, the results for Shell Island Reef’s 
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population (Fig. 94) showed that submarket oysters continued to tolerate Dermo 

infection for longer periods of time (> 1000 days) unless there were drought-like 

conditions, and market and market-plus oysters tolerated Dermo infection less than 120 

days, which resulted in increased Dermo related mortality for these size classes. 

Dermo stress was only tolerated for short periods of time (< 120 days) resulting 

in increased mortality in all size classes at Mad Island (Fig. 95) for the same 50 year 

simulation data based on 2.0 SD of the average daily salinity and temperature continuous 

monitoring data. 

The Dermo infection submodels for this same simulation run using 2.0 SD of the 

average daily salinity and temperature continuous monitoring data at Sammy’s Reef 

(Fig. 96) provided interesting results. Although all size classes only tolerated Dermo 

infection-days for short periods of time (< 120 days) during higher salinity and 

temperature conditions that coincided with lower flows from the Colorado River, there 

were also long periods of time when these same size classes of the population tolerated 

Dermo infection (> 1000 days) during higher flows. Although twice the variation of 

normal environmental conditions along with flows was a driving factor for shorter 

Dermo tolerance time for Mad Island Reef’s population, these same conditions appeared 

to have less effect on Sammy’s Reef oyster populations. The accumulation of Dermo 

“infection days” at Sammy’s Reef in this model should be considered in conjunction 

with declining numbers in all size classes, which indicates increased mortality from 

factors other than Dermo related mortality, which may in fact be the result of reduced 

Dermo infection when there are no live oysters to become infected. Dermo “infection-

days” continued to remain short for Mad Island Reef populations in this high variance 
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simulation run; and there were no long periods of tolerance between epizootic events, 

which may indicate residual levels of Dermo remain in this population for the 50 year 

simulation run time because there are live oysters remaining in the Mad Island Reef 

population. 

 

 
 
Figure 94. Comparison of Dermo infection in submarket, market, and market-plus 
classes of Shell Island Reef oyster populations for 50 year simulation (1.0 SD). 
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Figure 95. Comparison of Dermo infection in submarket, market, and market-plus size 
classes of Mad Island Reef oyster populations for 50 year simulation (1.0 SD). 
 
 
 

 
 
Figure 96. Comparison of Dermo infection in submarket, market, and market-plus size 
classes of Sammy’s Reef oyster populations for 50 year simulation (1.0 SD). 
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Figure 97. Comparison of Dermo infection in submarket, market, and market-plus 
classes of Shell Island Reef oyster populations for 50 year simulation (2.0 SD). 
 

 

 
 
Figure 98. Comparison of Dermo infection in submarket, market, and market-plus size 
classes of Mad Island Reef oyster populations for 50 year simulation (2.0 SD). 
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Figure 99. Comparison of Dermo infection in submarket, market, and market-plus size 
classes of Sammy’s Reef oyster populations for 50 year simulation (2.0 SD). 

 

Discussion 

The model results showed that WMB oyster populations spawned several times 

each year according to when optimum environmental conditions occurred during the five 

year, and 50 year simulation runs using 0.5 and 1.0 SD of the historic data. Spawning 

declined for all oyster populations when environmental conditions deteriorated during 

the 50 year simulation run using 2.0 SD resulting in decreased oyster abundance of all 

size classes. 

Model simulation results showed that environmental conditions in WMB 

promoted high incremental growth rates and were best described by Krauether et al.’s 

(2007) equations during the five year and 50 year simulation runs using 0.5 and 1.0 SD. 

However, when environmental conditions declined, slower growth rates previously 

described by Hofstetter (1977) were observed during the 50 year simulation runs using 
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2.0 SD. Similar slow growth rates were also observed by King (1964) in Matagorda Bay 

after nearly 30 years of the Colorado River being diverted to the Gulf of Mexico. 

Simulations using higher variation (1.0 SD versus 2.0 SD) of the actual five year 

salinity continuous monitoring data gradually increased salinity values at all reefs over 

time (50 years). These simulations also revealed that oyster populations located farthest 

from the Colorado River (Sammy’s Reef) decreased in abundance with increasing 

salinities (loss of freshwater) over time. These simulations also demonstrated that oyster 

populations located closest to the Colorado River (Shell Island Reef) survived low flow 

conditions and droughts for short periods of time, but appeared to be affected by lower 

larval recruitment following long term declining population abundance at down-estuary 

reefs (Sammy’s Reef). 

Oyster populations in these submodels responded to the synergistic affects of 

changes in salinity, temperature, duration and timing of flows and direction and tidal 

amplitude over different periods of time (measured in days not months). Low salinity 

stress related mortality increased for all populations when low salinity and high 

temperatures prevailed for more than 10 days. Dermo mortality increased for all 

populations when high salinity and high temperatures prevailed for more than 120 days. 

Dermo infection levels increased at all reefs in all size classes with increasing salinity 

variation (1.0 to 2.0 SD) on the 50 year simulation runs. 

The sensitivity tests of this model indicate that subtle spatial and temporal trends 

for these three populations that are based on the historical record can be magnified into 

long term changes for all reefs within the WMB system. Short term droughts become 

long term droughts that increased mortality for down-estuary populations, which 



 160 

ultimately resulted in increased mortality for up-estuary populations. Freshwater inflow 

conditions that reduce salinity for short periods of time, allow survival of down-estuary 

populations that provide opportunities to restore up-estuary populations. However, long 

term low salinity conditions also revealed that Colorado Delta populations have the 

potential to survive these salinity stress conditions and provide potential larvae 

recruitment to up-estuary populations. 

 

Conclusions 

The interactive Stella oyster community based model quantified and integrated 

the spatial and temporal patterns influencing reproduction, larval distribution, larval 

settlement, individual growth of each size class (larvae, spat, submarket, market, market 

that are older than two years of age) and population growth on these three oyster reefs in 

WMB. The three population submodels incorporated spatial and temporal trends that 

were consistent with trends in Chapter II and III. Simulations over a 50 year period using 

actual five year environmental records showed that reef populations located farthest 

from Colorado River decreased in abundance as salinity increased with loss of 

freshwater inflows over time. Simulations also show that reef populations spatially 

located closest to Colorado River Delta would be impacted by lower larval recruitment 

following declining numbers in spawning populations due to increased salinity and 

increased disease levels at reefs located further from the Colorado River.  

The three reef population submodels also included a proportion of larvae 

recruited from the Colorado Delta based on recently mapped areas by the LCRA and 

average densities of intertidal oyster populations along the Texas Coast. These intertidal 
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populations formed over buried shell from the former Dog Island Reef, appear to survive 

flood and drought conditions in the simulation runs. Their ability to adapt to immersion-

submersion conditions provide a survival “parachute” by contributing larvae to up-

estuary populations during low flow conditions and to down-estuary populations 

following long term flooding conditions. The down-estuary populations at Sammy’s 

Reef, which are located furthest from the Colorado River, also appear to survive low 

salinity conditions following floods and provide a similar survival parachute for 

contributing larvae to up-estuary populations. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

Summary 

The proceeding chapters explored the spatial and temporal demographic trends in 

oyster population dynamics and their relationships to freshwater inflows and the 

pathogen Dermo (Perkinsus marinus) on three reefs (Shell, Mad Island, and Sammy’s) 

in West Matagorda Bay, Texas. The objectives were to design and link three population 

models that simulate oyster population dynamics and integrate the environmental factors 

that influence growth, reproduction, settlement of larvae and Dermo disease interactions 

among these three reefs. 

The results presented in this research suggest that conceptual “population based” 

models describing oyster population dynamics for multiple reefs requires the input of 

daily environmental conditions in order to provide accurate predictions for growth, 

reproduction, larval recruitment, Dermo disease within and among reefs. Averaging 

monthly or yearly environmental variables often diminishes the response pattern being 

investigated and were not used in this model. 

The following variables were evaluated for trends to be incorporated in this 

model: relative abundance of oyster spat, submarket- and market-size oysters, average 

weighted incidence of Dermo and percent Dermo infection (prevalence) in submarket- 

and market-size oysters and their relationships to environmental variables of salinity, 

temperature, flow and distance from freshwater sources. The results of this trend 

analysis revealed that environmental variables accounted for 36% of the variation in 
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Dermo-related variables among the three reefs, and were also positively correlated with 

distance from freshwater sources. The relative abundance of spat and dead oysters was 

related to peaks in freshwater inflows occurring 30 days prior to larval settlement. 

These spatial and temporal relationships among biological and environmental 

variables and the data from five years of continuous monitoring records for three reefs in 

WMB were incorporated in an integrated Stella model. This population based model 

simulated oyster population responses to stochastic environmental changes over a 50 

year period using 0.5, 1.0 and 2.0 SD of the historic data. 

The model results showed that WMB oyster populations spawned several times 

each year according to when optimum environmental conditions occurred during the five 

year, and 50 year simulation runs using 0.5 and 1.0 SD of the historic data. Spawning 

declined for all oyster populations when environmental conditions deteriorated during 

the 50 year simulation run using 2.0 SD resulting in decreased oyster abundance of all 

size classes. 

Model simulation results showed that environmental conditions in WMB 

promoted high incremental growth rates and were best described by Krauether et al.’s 

(2007) equations during the five year and 50 year simulation runs using 0.5 and 1.0 SD. 

However, when environmental conditions declined, slower growth rates previously 

described by Hofstetter (1977) were observed during the 50 year simulation runs using 

2.0 SD. Similar slow growth rates were also observed by King (1964) in Matagorda Bay 

after nearly 30 years of the Colorado River being diverted to the Gulf of Mexico. 

Analysis of population trends for WMB revealed that higher distribution of dead 

oysters at Shell Island Reef following high FWI events the month prior to samples taken 
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provided valuable substrate for larvae (down-estuary spawned) to set. These trends were 

incorporated into the model, which resulted in larvae distributed up-estuary to Mad 

Island and Shell Island Reefs through tidal amplitude and meteorological forced winds 

between May and June and again in September through October of each year in the in 

simulation runs. Larvae were distributed down-estuary that spawned from the Colorado 

Delta’s intertidal populations as well as Shell and Mad Island Reefs to Sammy’s Reef 

when spawning occurred up-estuary prior to high inflow events and during minima tidal 

cycles in simulation runs. 

The model simulation results provided evidence that higher Dermo infection 

levels on down-estuary reefs (Mad and Sammy’s Reef have influence on greater 

mortality rates following spawning cycles for these reefs. The model simulation results 

also showed that up-estuary populations may contain residual levels of Dermo disease 

despite long term low salinity conditions, or may become infected by larvae contributed 

from down-estuary populations infected with Dermo disease. 

Although the geological and structural complexity of each reef appeared to be 

similar, the model showed the relationship of growth, spawning, spat set and Dermo 

infection were related to distance from freshwater sources and also meteorological wind 

driven tidal forcing. The model revealed that up-estuary reefs relied on the distribution 

of larvae from down-estuary reefs following mortality related to freshwater inflow. 

The model provided an indication of the spawning connectivity and functional 

value of oyster populations in West Matagorda Bay as an integrated resource for 

sustaining all oyster reef populations in this bay system. The model revealed that 
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Matagorda Bay oyster populations are integral members of a dynamic bay ecosystem 

that function as an integrated unit and not separate reef populations. 

Conclusions 

The conceptual “population based” model developed for WMB showed that 

timing or duration of a flood or a drought resulted in long term population level 

responses of increased mortality, increased spat settlement, shorter or longer growth 

rates, delayed or increased reproduction, changes in larval recruitment to other reefs, and 

increased or decreased mortality from Dermo. Seasonal patterns in tidal amplitude and 

direction through “meteorological” wind driven forces also had profound influence on 

oyster population dynamics of these three reefs. These types of “population responses” 

cannot be determined by “individual oyster” based models as previously developed for 

Galveston Bay by Hofmann et al. 1992; Powell et al. 1994; Powell et al. 2003). 

Oyster population dynamic models previously developed for Galveston Bay have 

used annual and monthly data to make broad generalizations about the response of all 

populations within that bay system to changes in hydrodynamics of freshwater inflows 

and tidal conditions after widening the Houston Ship Channel (Hofmann et al. 1992; 

Hofmann et al. 1995; Powell et al. 1996; Dekshenieks et al. 2000; Powell et al. 2003). 

These models attempted to tie in all of the biotic and abiotic factors that influence 

individual oyster’s growth, respiration, assimilation of nutrients, disease interactions, 

and mortality in contrast to examining specific reef populations and their interactions 

with other reef populations in Galveston Bay. These “individual oyster” based models 

include reefs that differ in their structural formation (flat pancake shaped to ridge 

shaped); their size or footprint on the bottom, their population densities (scattered or 
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clustered), their flow patterns (along shores or across land masses), their distances from 

freshwater sources (closest to farthest), and distances from each other (close enough for 

larvae recruitment or not). These individual based models are often assumed to apply to 

all Texas bays with different hydrologic regimes despite a lack of empirical evaluation 

of these models. The predictions for oyster responses in these individual based models 

may correspond to responses of specific populations within Galveston Bay. However, 

these responses may not apply to all oyster populations in this bay system or in other bay 

systems like Matagorda Bay with one main freshwater source. 

Hydrologic variation between different reefs and time periods was a consistent 

factor influencing population dynamics in conceptual population based model of WMB. 

The model presented in this research provides a basis for understanding the population 

dynamics of WMB as well as a better understanding of the interaction among the reefs 

that sustain these populations. The model developed in this investigation provides a basis 

for developing oyster population models for other bay systems and for future research 

regarding hydrologic influences on oyster population dynamics and Dermo disease 

interactions within and among reefs. 
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APPENDIX A 

Environmental Submodels 

Salinity Submodel Equations: 
 
NormDeviateSalinity(t) = NormDeviateSalinity(t - dt) + (SalIN - SalOut) * dtINIT 
NormDeviateSalinity = 1 
INFLOWS: 
SalIN = IF Dayof5Yrs = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
SalOut = IF Dayof5Yrs = 1 THEN NormDeviateSalinity ELSE 0 
NormDeviateSalinity_2(t) = NormDeviateSalinity_2(t - dt) + (SalIN_2 - SalOut_2) * 
dtINIT NormDeviateSalinity_2 = 1 
INFLOWS: 
SalIN_2 = IF Dayof5Yrs_2 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
SalOut_2 = IF Dayof5Yrs_2 = 1 THEN NormDeviateSalinity_2 ELSE 0 
NormDeviateSalinity_3(t) = NormDeviateSalinity_3(t - dt) + (SalIN_3 - SalOut_3) * 
dtINIT NormDeviateSalinity_3 = 1 
INFLOWS: 
SalIN_3 = IF Dayof5Yrs_3 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
SalOut_3 = IF Dayof5Yrs_3 = 1 THEN NormDeviateSalinity_3 ELSE 0 
 
Temperature Submodel Equations: 
 
NormDeviateTemp(t) = NormDeviateTemp(t - dt) + (TempIN - TempOut) * dtINIT 
NormDeviateTemp = 1 
INFLOWS: 
TempIN = IF Dayof5Yrs = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TempOut = IF Dayof5Yrs = 1 THEN NormDeviateTemp ELSE 0 
NormDeviateTemp_2(t) = NormDeviateTemp_2(t - dt) + (TempIN_2 - TempOut_2) * 
dtINIT NormDeviateTemp_2 = 1 
INFLOWS: 
TempIN_2 = IF Dayof5Yrs_2 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TempOut_2 = IF Dayof5Yrs_2 = 1 THEN NormDeviateTemp_2 ELSE 0 
NormDeviateTemp_3(t) = NormDeviateTemp_3(t - dt) + (TempIN_3 - TempOut_3) * 
dtINIT NormDeviateTemp_3 = 1 
INFLOWS: 
TempIN_3 = IF Dayof5Yrs_3 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TempOut_3 = IF Dayof5Yrs_3 = 1 THEN NormDeviateTemp_3 ELSE 0 
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Flow Submodel Equations: 
 
NormDeviateFlow(t) = NormDeviateFlow(t - dt) + (FlowIn - FlowOut) * dtINIT 
NormDeviateFlow = 1 
INFLOWS: 
FlowIn = IF Dayof5Yrs = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
FlowOut = IF Dayof5Yrs = 1 THEN NormDeviateFlow ELSE 0 
NormDeviateFlow_2(t) = NormDeviateFlow_2(t - dt) + (FlowIn_2 - FlowOut_2) * 
dtINIT NormDeviateFlow_2 = 1 
INFLOWS: 
FlowIn_2 = IF Dayof5Yrs_2 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
FlowOut_2 = IF Dayof5Yrs_2 = 1 THEN NormDeviateFlow_2 ELSE 0 
NormDeviateFlow_3(t) = NormDeviateFlow_3(t - dt) + (FlowIn_3 - FlowOut_3) * 
dtINIT NormDeviateFlow_3 = 1 
INFLOWS: 
FlowIn_3 = IF Dayof5Yrs_3 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
FlowOut_3 = IF Dayof5Yrs_3 = 1 THEN NormDeviateFlow_3 ELSE 0 
 
Tidal Submodel Equations: 

NormDeviateTide_2(t) = NormDeviateTide_2(t - dt) + (TideIn_2 - TideOut_2) * dtINIT 
NormDeviateTide_2 = 1 
INFLOWS: 
TideIn_2 = IF Dayof5Yrs_2 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TideOut_2 = IF Dayof5Yrs_2 = 1 THEN NormDeviateTide_2 ELSE 0 
NormDeviateTide_3(t) = NormDeviateTide_3(t - dt) + (TideIn_3 - TideOut_3) * dtINIT 
NormDeviateTide_3 = 1 
INFLOWS: 
TideIn_3 = IF Dayof5Yrs_3 = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TideOut_3 = IF Dayof5Yrs_3 = 1 THEN NormDeviateTide_3 ELSE 0 
NormDeviateTide_4(t) = NormDeviateTide_4(t - dt) + (TideIn - TideOut_4) * dtINIT 
NormDeviateTide_4 = 1 
INFLOWS: 
TideIn = IF Dayof5Yrs = 1 THEN NORMAL(1,0.1) ELSE 0 
OUTFLOWS: 
TideOut_4 = IF Dayof5Yrs = 1 THEN NormDeviateTide_4 ELSE 0 
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Dermo Submodels 

Dermo Submodel Equations: 

DermoStressMrkMad(t) = DermoStressMrkMad(t - dt) + (DermoIn_7 - DermoOut_7) * 
dtINIT DermoStressMrkMad = 0 
INFLOWS: 
DermoIn_7 = If DermoEnvirStressMad=1 AND AvgDayFlowColRiver<10000 THEN 1 
ELSE (IF DermoEnvirStressMad=1 AND AvgDayFlowColRiver>10000 THEN 0 ELSE 
0) 
OUTFLOWS: 
DermoOut_7 = If DermoStressMrkMad/SubMrkTransDaysMad<.82 THEN 0 ELSE 
DermoStressMrkMad 
DermoStressMrkSam(t) = DermoStressMrkSam(t - dt) + (DermoInMrkSam - 
DermoOutMrkSam) * dtINIT DermoStressMrkSam = 0 
INFLOWS: 
DermoInMrkSam = If DermoEnvStressSam=1 AND AvgDayFlowColRiver<10000 
THEN 1 ELSE (IF DermoEnvStressSam=1 AND AvgDayFlowColRiver>10000 THEN 
0 ELSE 0) 
OUTFLOWS: 
DermoOutMrkSam = If DermoStressMrkSam/SubMrktTransDaysSam<.82 THEN 0 
ELSE DermoStressMrkSam 
DermoStressMrkShell(t) = DermoStressMrkShell(t - dt) + (DermoIn_10 - 
DermoOut_10) * dtINIT DermoStressMrkShell = 0 
INFLOWS: 
DermoIn_10 = If DermoEnvirStressShell=1 AND AvgDayFlowColRiver<10000 THEN 
1 ELSE (IF DermoEnvirStressShell=1 AND AvgDayFlowColRiver>10000 THEN 0 
ELSE 0) 
OUTFLOWS: 
DermoOut_10 = If DermoStressMrkShell/SubMrkTransDaysShell<.82 THEN 0 ELSE 
DermoStressMrkShell 
DermoStressNMrkPlusMad(t) = DermoStressNMrkPlusMad(t - dt) + (DermoIn_6 - 
DermoOut_6) * dtINIT DermoStressNMrkPlusMad = 0 
INFLOWS: 
DermoIn_6 = If DermoEnvirStressMad=1 AND AvgDayFlowColRiver<10000 THEN 1 
ELSE (IF DermoEnvirStressMad=1 AND AvgDayFlowColRiver>10000 THEN 0 ELSE 
0) 
OUTFLOWS: 
DermoOut_6 = If DermoStressNMrkPlusMad/MrkTransDaysMad< 0.22 THEN 0 ELSE 
DermoStressNMrkPlusMad 
DermoStressNMrkPlusSam(t) = DermoStressNMrkPlusSam(t - dt) + 
(DermoInMrkPlusSam - DermoOutMrkPlusSam) * dtINIT DermoStressNMrkPlusSam 
= 0 
INFLOWS: 
DermoInMrkPlusSam = If DermoEnvStressSam=1 AND AvgDayFlowColRiver<10000 
THEN 1 ELSE (IF DermoEnvStressSam=1 AND AvgDayFlowColRiver>10000 THEN 
0 ELSE 0) 
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OUTFLOWS: 
DermoOutMrkPlusSam = If DermoStressNMrkPlusSam/MrkTransDaysSam< 0.22 
THEN 0 ELSE DermoStressNMrkPlusSam 
DermoStressNMrkPlusShell(t) = DermoStressNMrkPlusShell(t - dt) + (DermoIn_9 - 
DermoOut_9) * dtINIT DermoStressNMrkPlusShell = 0 
INFLOWS: 
DermoIn_9 = If DermoEnvirStressShell=1 AND AvgDayFlowColRiver<10000 THEN 1 
ELSE (IF DermoEnvirStressShell=1 AND AvgDayFlowColRiver>10000 THEN 0 
ELSE 0) 
OUTFLOWS: 
DermoOut_9 = If DermoStressNMrkPlusShell/MrkTransDaysShell< 0.22 THEN 0 
ELSE DermoStressNMrkPlusShell 
DermoStressSubMrkMad(t) = DermoStressSubMrkMad(t - dt) + (DermoIn_8 - 
DermoOut_8) * dtINIT DermoStressSubMrkMad = 0 
INFLOWS: 
DermoIn_8 = If DermoEnvirStressMad=1 AND AvgDayFlowColRiver<10000 THEN 1 
ELSE (IF DermoEnvirStressMad=1 AND AvgDayFlowColRiver>10000 THEN 0 ELSE 
0) 
OUTFLOWS: 
DermoOut_8 = If DermoStressSubMrkMad/SpatTransDaysMad< 6.48 THEN 0 ELSE 
DermoStressSubMrkMad 
DermoStressSubMrkSam(t) = DermoStressSubMrkSam(t - dt) + (DermoInSubMrkSam - 
DermoOutSubMrkSam) * dtINIT DermoStressSubMrkSam = 0 
INFLOWS: 
DermoInSubMrkSam = If DermoEnvStressSam=1 AND AvgDayFlowColRiver<10000 
THEN 1 ELSE (IF DermoEnvStressSam=1 AND AvgDayFlowColRiver>10000 THEN 
0 ELSE 0) 
OUTFLOWS: 
DermoOutSubMrkSam = If DermoStressSubMrkSam/SpatTransDaysSam< 6.48 THEN 
0 ELSE DermoStressSubMrkSam 
DermoStressSubMrkShell(t) = DermoStressSubMrkShell(t - dt) + (DermoIn_11 - 
DermoOut_11) * dtINIT DermoStressSubMrkShell = 0 
INFLOWS: 
DermoIn_11 = If DermoEnvirStressShell=1 AND AvgDayFlowColRiver<10000 THEN 
1 ELSE (IF DermoEnvirStressShell=1 AND AvgDayFlowColRiver>10000 THEN 0 
ELSE 0) 
OUTFLOWS: 
DermoOut_11 = If DermoStressSubMrkShell/SpatTransDaysShell< 6.48 THEN 0 ELSE 
DermoStressSubMrkShell 
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Larvae submodel equations: 
 
NLarvaeMad(t) = NLarvaeMad(t - dt) + (SpawningMad - to_SpatMad - LarvalLossMad) 
* dtINIT NLarvaeMad = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
SpawningMad = IF SpawnWatingTMad=1 THEN 
MAX(DensityDependMad*(NMrkPlusSpawnersMad+NMrkSpawnersMad+NSubMarke
tSpawnersMad) +SamLarvaetoMad+ShellLarvaetoMad+ColoradoDeltaLarvae, 86e+6)  
ELSE 0 
OUTFLOWS: 
to_SpatMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = LarvaeTransDaysMad 
LarvalLossMad = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = LarvalMMad+MadEmigrationLoss 
 NO-LEAK ZONE = 0% 
NlarvaeSam(t) = NlarvaeSam(t - dt) + (SpawningSam - to_SpatSam - LarvalMortSam) * 
dtINIT NlarvaeSam = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
SpawningSam = IF SpawnWatingTSam=1 THEN 
MAX(DensityDependSam*(NMrkPlusSpawnersSam+NMrkSpawnersSam+NSubMrkSp
awnersSam)+MadLarvaetoSam+ShellLarvaetoSam+ColoradoDeltaLarvae, 86e+6)  
ELSE 0 
OUTFLOWS: 
to_SpatSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = LarvaeTransDaysSam 
LarvalMortSam = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = LarvalMSam+SamEmigrationLoss 
 NO-LEAK ZONE = 0% 
NLarvaeShell(t) = NLarvaeShell(t - dt) + (SpawningShell - to_SpatShell - 
LarvaeLossShell) * dtINIT NLarvaeShell = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
SpawningShell = IF SpawnWatingTShell=1 THEN 
MAX(DensityDependShell*(NMrkPlusSpawnersShell+NMrkSpawnersShell+NSubMrk
SpawnersShell) +SamLarvaetoShell+MadLarvaetoShell+ColoradoDeltaLarvae, 86e+6)  
ELSE 0 
OUTFLOWS: 
to_SpatShell = CONVEYOR OUTFLOW 
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 TRANSIT TIME = LarvaeTransDaysShell 
LarvaeLossShell = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = LarvalMShell+Shell_EmigrationLoss 
 NO-LEAK ZONE = 0% 
 
Spat, submarket, market, and market-plus submodel equations: 
 
NSpatMad(t) = NSpatMad(t - dt) + (to_SpatMad - to_SubMrkMad - SpatMortMad) * 
dtINIT NSpatMad = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SpatMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = LarvaeTransDaysMad 
OUTFLOWS: 
to_SubMrkMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysMad 
SpatMortMad = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = SpatMMad+SalinityMMad 
 NO-LEAK ZONE = 0% 
NSpatSam(t) = NSpatSam(t - dt) + (to_SpatSam - to_SubMrkSam - SpatMortSam) * 
dtINIT NSpatSam = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SpatSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = LarvaeTransDaysSam 
OUTFLOWS: 
to_SubMrkSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysSam 
SpatMortSam = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = SpatMSam+SalinityMortSam 
 NO-LEAK ZONE = 0% 
NSpatShell(t) = NSpatShell(t - dt) + (to_SpatShell - to_SubMrkShell - SpatMortShell) * 
dtINIT NSpatShell = 0 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SpatShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = LarvaeTransDaysShell 
OUTFLOWS: 
to_SubMrkShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysShell 
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SpatMortShell = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = SpatMShell+SalinityMShell 
 NO-LEAK ZONE = 0% 
NSubMrkMad(t) = NSubMrkMad(t - dt) + (to_SubMrkMad - to_MrkMad - 
SuMrkMortMad) * dtINIT NSubMrkMad = 11800000 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SubMrkMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysMad 
OUTFLOWS: 
to_MrkMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrkTransDaysMad 
SuMrkMortMad = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = 
SubMrkMMad+SalinityMMad+DermoMortNSubMrkMad 
 NO-LEAK ZONE = 0% 
NSubMrkSam(t) = NSubMrkSam(t - dt) + (to_SubMrkSam - to_MrkSam - 
SubMrkMortSam) * dtINIT NSubMrkSam = 1260400 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SubMrkSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysSam 
OUTFLOWS: 
to_MrkSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrktTransDaysSam 
SubMrkMortSam = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = 
SubMrkMSam+SalinityMortSam+DermoMortNSubMrkSam 
 NO-LEAK ZONE = 0% 
NSubMrkShell(t) = NSubMrkShell(t - dt) + (to_SubMrkShell - to_MrkShell - 
SubMrkMortShell) * dtINIT NSubMrkShell = 29200000 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_SubMrkShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = SpatTransDaysShell 
OUTFLOWS: 
to_MrkShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrkTransDaysShell 
SubMrkMortShell = LEAKAGE OUTFLOW 
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 LEAKAGE FRACTION = 
SubMrkMShell+SalinityMShell+DermoMortNSubMrkShell 
 NO-LEAK ZONE = 0% 
NMrkMad(t) = NMrkMad(t - dt) + (to_MrkMad - to_MrkPlusMad - MrkMortMad) * 
dtINIT NMrkMad = 11200000 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_MrkMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrkTransDaysMad 
OUTFLOWS: 
to_MrkPlusMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysMad 
MrkMortMad = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = MrkMMad + 
MrkFishingMad+DermoMortNMrkMad+SalinityMMad 
 NO-LEAK ZONE = 0% 
NMrkPlusMad(t) = NMrkPlusMad(t - dt) + (to_MrkPlusMad - MrkPlusMortMad) * 
dtINIT NMrkPlusMad = 0 
INFLOWS: 
to_MrkPlusMad = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysMad 
OUTFLOWS: 
MrkPlusMortMad = 
NMrkPlusMad*(MrkPlusMMad+MrkFishingMad+DermoMortNMrkPlusMad+Salinity
MMad) 
NMrkPlusSam(t) = NMrkPlusSam(t - dt) + (to_MrkPlusSam - MrkPlusMortSam) * 
dtINIT NMrkPlusSam = 0 
INFLOWS: 
to_MrkPlusSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysSam 
OUTFLOWS: 
MrkPlusMortSam = 
NMrkPlusSam*(MrkPlusMSam+MarkFishingMSam+DermoMortNMrkPlusSam+Salini
tyMortSam) 
NMrkPlusShell(t) = NMrkPlusShell(t - dt) + (to_MrkPlusShell - MrkPlusMortShell) * 
dtINIT NMrkPlusShell = 0 
INFLOWS: 
to_MrkPlusShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysShell 
OUTFLOWS: 
MrkPlusMortShell = 
NMrkPlusShell*(MrkPlusMShell+MarkFishingMShell+DermoMortNMrkPlusShell+Sal
inityMShell) 
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NMrkSam(t) = NMrkSam(t - dt) + (to_MrkSam - to_MrkPlusSam - MrkMortSam) * 
dtINIT NMrkSam = 1890500 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_MrkSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrktTransDaysSam 
OUTFLOWS: 
to_MrkPlusSam = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysSam 
MrkMortSam = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = MrkMSam + 
MarkFishingMSam+DermoMortNMrkSam+SalinityMortSam 
 NO-LEAK ZONE = 0% 
NMrkShell(t) = NMrkShell(t - dt) + (to_MrkShell - to_MrkPlusShell - MrkMortShell) * 
dtINIT NMrkShell = 19580000 
 TRANSIT TIME = varies 
 INFLOW LIMIT = INF 
 CAPACITY = INF 
INFLOWS: 
to_MrkShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = SubMrkTransDaysShell 
OUTFLOWS: 
to_MrkPlusShell = CONVEYOR OUTFLOW 
 TRANSIT TIME = MrkTransDaysShell 
MrkMortShell = LEAKAGE OUTFLOW 
 LEAKAGE FRACTION = MrkMShell + 
MarkFishingMShell+DermoMortNMrkShell+SalinityMShell 
 NO-LEAK ZONE = 0% 
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