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ABSTRACT 

 

Essays on Monetary Policy and Asset Prices. (December 2008) 

Jong Chil Son, B.A., Yonsei University, Korea 

Chair of Advisory Committee: Dr. Dennis W. Jansen 

 

The recent financial and economic turmoil driven by the housing market has led 

economists to refocus on monetary policy and asset price, including housing prices. The 

various relationships between monetary policy and asset prices in the U.S. economy are 

investigated through steady state Bayesian VAR (SS BVAR) and revised Taylor-rule 

(Forward-looking rule) based on the Generalized Method of Moments (GMM). 

The multi-step ahead forecasts using steady state Bayesian VAR (SS BVAR), 

standard BVAR, and conventional VAR are executed. Equal predictive ability tests 

following Giacomini and White (2006) verify that the SS BVAR is superior in 

forecasting performance especially in the long-horizons when compared to the cases of 

standard BVAR and conventional VAR. 

Alternative identifications involving the housing sector are explored in two 

different ways: an economic theory-based approach and algorithms of inductive 

causations. The impulse response of housing price and investment to Federal Funds 

Rates (FFRs) in all alternative identifications illustrate that the magnitudes are relatively 

smaller, less significant, and shorter when compared to the Choleski case. Also, this 

finding can be fortified by historical decomposition and conditional forecast analyses 
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which confirm that the recent high peak in housing prices cannot be well accounted for 

except by the housing price shock itself. With all these estimation results, it is hard to 

agree with the argument that the considerable responsibility of the current housing boom 

and fallout is due to monetary policy shocks. Rather, it can be said that there is still 

enormous uncertainty between monetary policy and housing prices. Institutional shocks 

such as fundamental change of mortgage markets including the mobilizing the mortgage 

debts could probably compose the “uncertainty”.   

How does the Fed respond to stock price and inflation movements differently 

across high and low inflation sub-periods? The replicated linear estimation results of 

Dupor and Conley (2004)’s indicate that the Fed raises its target interest rate responding 

to stock price gap with statistical significance. The linear estimation results, however, 

are not statistically robust to small changes in the breakpoint especially in the inflation 

coefficient. Thus, a nonlinear model is constructed as an alternative way to relax this 

problem. Upon the nonlinear framework, the identification of the dominant cause of 

apparent change in the Fed behavior, between structural change and nonlinearity, is 

explored. Consequently, both nonlinearity and structural changes matter in an 

explanation of the Fed’s behavior. Given a structural change, the inflation coefficients’ 

movements show that the Fed has responded nonlinearly to the expected inflation 

pressure across the high and low inflation sub-periods, while the stock price gap 

coefficients’ show an explicit break around the early 1990s in line with Dupor and 

Conley (2004)’s finding. 



 v

DEDICATION 

 

  This dissertation is gratefully dedicated to: 

 

my wife, Seung Hee; 

and my parents, Jung Mok Son and Soon Ja Woo. 

 

 

I could not have completed my study without their love, encouragement, and 

support. 



 vi

ACKNOWLEDGEMENTS 

 

I would like to acknowledge all those who have helped me in my dissertation. 

Especially I would like to thank Dr. Dennis W. Jansen, my advisor, and Dr. David A. 

Bessler, Dr. Hae-Shin Hwang, Dr. Hagen Kim, and Dr. Qi Li for their precious guidance 

and encouragement. I also wish to thank my friends and colleagues, Kyoung Soo Han, 

Raul Ibarra, Stefan Jacewits, Erasmus Kersting, Joseph Kim, Hyoung Il Lee, and Danillo 

Trupkin for their helpful discussions throughout various presentations and seminars.  

 



 vii

TABLE OF CONTENTS 

 

              Page 

ABSTRACT ..............................................................................................................  iii 

DEDICATION ..........................................................................................................  v 

ACKNOWLEDGEMENTS ......................................................................................  vi 

TABLE OF CONTENTS ..........................................................................................  vii 

LIST OF FIGURES ...................................................................................................  ix 

LIST OF TABLES ....................................................................................................  xi 

CHAPTER 

 I INTRODUCTION ................................................................................  1 

 II BAYESIAN VAR AND FORECASTING PERFORMANCES .........  5 
       
                         2.1.     Basic Idea and Minnesota Prior ............................................  5 
      2.2.     Steady State Bayesian VAR ..................................................  7 
      2.3.     Gibbs Sampling .....................................................................  10 
      2.4.     Data, Priors and Posteriors ....................................................  11 
                         2.5.     Out-of-Sample Predictive Ability Tests ................................  14 
 
 III MONETARY POLICY AND HOUSING PRICE ...............................  22 
      
                         3.1.     Introduction ...........................................................................  22 
      3.2.     Identification Design Involving Housing Sector ...................  25 
                                          3.2.1.     Economic Theory Based Approach ...................  26 
                  3.2.2.     Algorithms of Inductive Causations: DAGs .....  33 
                                          3.2.3.     Estimation of Contemporaneous Matrix ...........  39 
      3.3.     Impulse Response Analysis ...................................................  41     
      3.4.     Historical Decomposition ......................................................  44 
      3.5.     Conditional Forecast .............................................................  48 
                         3.6.     Concluding Remarks .............................................................  56 
 
 
 



 viii

CHAPTER                                                                                                                    Page 

  
        IV NONLINEARITY AND STRUCTURAL BREAK IN FORWARD- 
                     LOOKING INTEREST RATE RULE .................................................  59 
     
     4.1.     Introduction ............................................................................  59 
     4.2.     Fed’s Policy Reaction Function: A Forward-looking Rule ....  62 
     4.3.     Linear Model and Break-point Issue ......................................  64
     4.4.     Nonlinear Model ....................................................................  70 
     4.5.     Test of Structural Change .......................................................  76 
     4.6.     Concluding Remarks ..............................................................  82 
 
 V CONCLUSIONS ..................................................................................  83 
 
REFERENCES ..........................................................................................................  85 

APPENDIX A ...........................................................................................................  90 

APPENDIX B ...........................................................................................................  97 

APPENDIX C ...........................................................................................................  101 

APPENDIX D ...........................................................................................................  103 

APPENDIX E ............................................................................................................  107 

APPENDIX F ............................................................................................................  112 

APPENDIX G ...........................................................................................................  113 

APPENDIX H ...........................................................................................................  115 

VITA .........................................................................................................................  128 



 ix

LIST OF FIGURES 

 

FIGURE                                                                                                                        Page 

      2.1.     Overall scheme of Bayesian VAR............................................................  5 
 
 2.2.     Data plots and their posterior means and standard deviations .................  13 
  
 2.3.    Out-of-sample evaluation of point forecasts (predictive mean) ...............  16 
 
 3.1.     DAGs from PC algorithm ........................................................................  37 
 
      3.2.     DAGs from GES algorithm ......................................................................  38 
 
 3.3.     Housing sector response to positive monetary policy shock ....................  42 
  
 3.4.    Other variables’ response to positive monetary policy shock ..................  43 
 
 3.5.     Counterfactual when shutting down housing price shock ........................  45 
 
      3.6.     Counterfactual when shutting down each other shock .............................  46 
 
 3.7.     Counterfactual when shutting down housing investment shock ..............  47 
  
 3.8.    Counterfactual when shutting down each other shock .............................  48 
 
 3.9.     Actual and simulated FFRs ......................................................................  52 
 
      3.10.   Conditional forecast of housing price ......................................................  53 
 
 3.11.   Conditional forecast of housing investment .............................................  54 
  
 3.12.   Conditional forecast of commodity price .................................................  55 
 
 4.1.     Inflation movements .................................................................................  66 
 
      4.2.    Time-varying inflation coefficient movement .........................................  74 
 
 4.3.     Time-varying stock price gap coefficient movement ...............................  74 
 
      4.4.     Inflation coefficient movement: General model ......................................  79 
 



 x

  
FIGURE                                                                                                                        Page 

      4.5.     Stock variable coefficient movement: General model .............................  80 
  
 4.6.     Inflation coefficient movement: Linear restriction on stock variable. .....  81 
 
 
 

  
 
 
  



 xi

LIST OF TABLES  

 

TABLE                                                                                                                          Page 
 
      2.1.     Data description: Endogenous variable ....................................................  12 
 
 2.2.     Prior and posterior means and standard deviations of steady states.........  12 
    
 2.3.     Estimation windows, forecasting horizons, and step-ahead forecasts .....  15 
 
      2.4.     Ratio of relative squared error losses in each step-ahead forecast ...........  18 
 
      2.5.     Equal predictive ability tests (p-values) ...................................................  20 
 
      3.1   LR test for over-identification ..................................................................  40
  
 3.2.     Peak response of housing sector to monetary policy shock .....................  43 
 
      4.1.     Data description ........................................................................................  65 
 
      4.2.     Interest rate rules in high and low inflation sub-periods ..........................  67 
 
      4.3.     Interest rate rules with stock variable .......................................................  69 
 
      4.4.     Robustness test of the estimation without stock variable .........................  69 
 
      4.5.     Robustness test of the estimation with stock variable ..............................  70 
 
      4.6.     Selection of series term K .........................................................................  72 
 
      4.7.     Nonlinear model estimation result: Full sample period ...........................  73 
 
      4.8.     Nonlinear model estimation result: High inflation sub-period .................  75 
 
      4.9.     Nonlinear model estimation result: Low inflation sub-period .................  75 
 
      4.10.   Test of structural change: General model.................................................  78 
 
      4.11.     Test of structural change: Linear restriction on stock variable ..............  81 
 



 1

CHAPTER I 

INTRODUCTION 

 

The on-going economic downturn followed by the financial turmoil triggered by 

the fallout in the mortgage market has let economists keep their eyes on issues about the 

relationship between monetary policy and asset prices. “How much the monetary policy 

shocks have an effect on housing price since 2000” has been a controversial issue among 

monetary economists. Based on identified BVAR, various techniques such as impulse 

response, historical decomposition, and conditional forecasting are involved in exploring 

the relationship between monetary policies and housing prices. In addition, the 

relationship between monetary policy and stock prices is explored as an extension of 

Dupor and Conley (2004). They argue that Fed might respond more swiftly and boldly to 

non-fundamental stock price movements given its’ first concern, i.e. low and stable 

inflation, is achieved. Their argument is reevaluated in a newly built-in non-linear setup. 

Finally, the identification of the dominant cause of apparent change in the Fed behavior, 

between structural change and nonlinearity, is explored. 

In chapter II, multi-step ahead forecast performances among SS BAVR, standard 

BVAR and ML VAR (estimated by maximum likelihood) are compared based on rolling 

window scheme.  

 

_______________________ 
This dissertation follows the style of Journal of Monetary Economics. 
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Specifically upon the usual squared error loss methodology, the forecasting 

performances in comparison with the benchmark, ML VAR are evaluated in each step-

ahead. In addition, equal predictive ability tests following Giacomini and White (2006) 

verify that the SS BVAR is superior in forecasting performance especially in the long-

horizons. This is consistent with the intuition that SS BVAR indicates as Villani (2008) 

points out the advantage of SS BVAR exploiting prior information of steady state 

components in the long-horizon forecasting stages. 

In chapter III, alternative identification schemes involving the housing sector are 

explored through two different approaches, as well as Wold causal ordering (Choleski 

decomposition). Not only economic theory-based approach which includes extensions of 

Gordon and Leeper (1994) and Sims and Zha (2006) but also algorithms of inductive 

causations using the directed acyclic graphs (DAGs) are used in specification of the 

housing sector. The impulse responses of the housing price and investment to the 

monetary policy shock illustrate that the response of the housing sector is smaller in 

magnitude, less significant, and relatively shorter in all four alternative specifications 

when compared to the Choleski case. Also historical decomposition and conditional 

forecasting analysis are involved to revisit the relationship between monetary policy and 

housing price. In those counterfactual simulations, the housing price cannot be well 

explained without feeding housing price’s own shocks. Also generated forecasts of 

housing price since 2000 conditional on actual paths of real GDP (y), inflation (p), 

money demand (m), 30-yr. mortgage rate (mor30) and FFRs (i) do not generate the sharp 

increase and sudden drop of housing price since 2003. Feeding simulated FFRs based on 
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Taylor rule instead of actual FFRs change little the conditional forecasting results. Based 

on the findings across more generalized identifications, it is conjectured that there has 

been more uncertainty than we may know about the relationship between monetary 

policy and housing market as Mishkin (2007) and Kohn (2007) point out. Thus, the 

views that the housing price boom and fallout has been driven or fortified by the 

monetary policy shocks since 2000 are called in to question. Rather, institutional factors 

such as the securitization of mortgage market or lax loan standard creating easy access to 

risky credit are presumably deeply related with the housing price episode since 2000 as 

DiMartino and Duca (2007) and Fisher (2008) point out.  

In chapter IV, Dupor and Conley (2004)’s argument that the Fed might be more 

successful in raising (or lowering) the interest rate responding to non-fundamental stock 

price movements in low inflation era is reexamined based on a newly built nonlinear set-

up. Specifically, since early 1990s, the so-called low inflation era, the Fed has more 

easily or boldly responded to non-fundamental stock price movements given its first 

concern, i.e., low and stable inflation is achieved. After replicating Dupor and Conley 

(2004)’s estimation results using same methodology such as forward-looking interest 

rate rule estimated by GMM, it is found that their linear estimation results are not robust 

to different breakpoints. An alternative way of relaxing this problem is introducing 

nonlinear forward-looking interest rate rule introducing “series method” which allows 

carrying over the original GMM specification. After establishing the nonlinear model, 

we revisit Dupor and Conley (2004)’s argument with the interesting hypothesis that 

between nonlinearity and structural change which is the dominant cause of the apparent 
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changes in Fed behavior. Test results under extended instrumental variables (IVs) 

following Andrews (1999) indicate that both nonlinearity and structural change matter in 

explaining the Fed’s behavior in response to inflation and stock variable movements. 

Given the existence of a structural change, the inflation coefficient’s movements show 

that the Fed has responded to expected inflation pressure nonlinearly across sub-periods, 

while the stock price gap coefficient’s show an explicit break around the early 1990s, 

confirming Dupor and Conley (2004)’s finding. 
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CHAPTER II 

BAYESIAN VAR AND FORECASTING PERFORMANCES 

 

2.1. Basic Idea and Minnesota Prior 

The overall scheme using Bayesian VAR can be summarized in Figure 2.1. 

Using prior, i.e. useful, information and likelihood functions which come from 

restriction on the error term, we can derive full conditional posterior density through the 

application of Bayes’ theorem. The driven full conditional posterior density, however, is 

not usually solved analytically. Thus, a numerical method called ‘Gibbs sampling’ is 

involved.   

                              

Fig. 2.1. Overall scheme of Bayesian VAR  

 

The essential element in the Bayesian approach is Bayes’ theorem which can be 

illustrated by Zellner (1971): 

)()|()()|(),( ypyppypyp θθθθ ==  

And thus, 

Priors and Likelihood function

Conditional Posterior Density

Estimation of Posterior Density

Predictive PDF: Forecast

By Bayes’ theorem and matrix algebra 

By Gibbs Sampling 

By Gibbs Sampling 
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)(
)|()()|(

yp
yppyp θθθ =  

where ),( θyp  is joint probability density function (pdf) for a random observation vector 

y and a parameter vector θ. With 0)( ≠yp  we can write this last expression as follows: 

functionlikelihoodpdfprior
yppyp

×∝
∝ )|()()|( θθθ

 

where ∝ denotes proportionality, and p(θ|y) is the posterior pdf for the parameter vector 

θ given sample information y. 

The Minnesota (or Litterman) prior has been the most popular and powerful prior 

used in Bayesian VAR framework. In brief, this prior is informative on all the dynamic 

coefficients while deterministic components are non-informative. It can be explained 

following Litterman (1986) and Bauwens et. al. (1999). We can write the VAR system 

as follows: 

                                           ttxL ε+Φ=Π )(  

                                           k
kp LLLIL Π−−Π−Π−=Π L2

21)(  

where tt andx ε,,Φ  are p×1 matrices where p is number of endogenous variables. The 

Minnesota prior expectation says that the VAR system consists of p random walks. That 

is, the prior mean 1Π  is Ip (identity matrix with p dimension) and prior means of iΠ (i ≥ 

2) are all zero matrices with p dimension. The prior covariance matrix of all the 

parameters in the iΠ (i ≥ 1) matrices are diagonal and some decreasing patterns are seen 

as follows: The standard deviation of diagonal element of 1Π is the fixed value of λ, the 

standard deviation of dynamic coefficient of own variable’s lag i is λ/i, the standard 
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deviation of dynamic coefficients of the lags of every other variable is jk iσλθσ / , i.e. 

the standard deviation of lag i of the variable jx in equation k. The parameter θ (0 ≤ θ ≤ 

1) makes the standard deviation ( i/λθ ) to be tighter around zero when compared to 

own variable’s (λ/i). This incorporates the idea that the lags of jx (the other variable) are 

more likely to have zero coefficients than the lags of kx (same variable). The ratio 

jk σσ /  of the standard deviations of the error terms is a way to account for the 

difference in the variability of the different variables. So following the example equation 

illustrates the above discussions about the prior means and standard deviations which are 

given in parentheses. 

                       tttttt xxxxx ,12,2121,2112,1121,111,1 εββαα ++++= −−−−  

                               ),1( λ      )2/,0( λ   )/,0( 21 σθλσ )2/,0( 21 σθλσ  

 

2.2 Steady State Bayesian VAR 

Like the Minnesota prior, most available priors of VARs focus solely on the 

dynamic coefficients but are largely non-informative on the deterministic component of 

the model.1 A non-informative prior on the deterministic part of the process might have 

an undesirable consequence when we conduct the forecast on the grounds that the long 

run forecasts from stationary VARs converge to an unconditional mean or steady state of 

the process as pointed out by Villani (2008). 

                                                 
1 For the detailed discussions about standard Bayesian VAR, see Ciccarelli and Rubucci (2003) and, for 
the discussions about various priors, see Rao and Karlsson (1997). 
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In reality, it is feasible to obtain prior information about the steady state usually 

from the long period of sample mean and standard deviation. For example, we already 

know that the steady state or very long-term mean of US real output is around 3%. Also, 

forecast of inflation under an explicit inflation target undertaken by central banks can be 

a good example associated with the priors about the deterministic component in the 

process. So, using the steady state form of the Bayesian VAR (SS BVAR) equipped with 

informative prior on the deterministic component can alleviate the forecasting difficulty 

in the Bayesian VAR setup. 

Now, the basic model of SS BVAR will be illustrated following the notation and 

illustration of Villani (2008). The advantage of using the steady state (or mean-adjusted) 

form of VAR is that the unconditional mean of the process is directly specified by Ψ  as 

tt dxE Ψ=)(0  while it is nonlinear function of parameter )(LΠ  and Φ in the standard 

VAR form. The basic system can be written as follow: 

                               ttt dxL ε+Φ=Π )(    ==>  ttt dxL ε=Ψ−Π ))((                                

where tx  is p-dimensional vector of time series at time t, td is q-dimensional vector of 

deterministic trends or other exogenous variables (in this dissertation, I keep 1=td ), 

k
kp LLLIL Π−−Π−Π−=Π L2

21)(  , '
1 ),...,( kΠΠ=Π , and ),0(~ Σpt Nε which is 

assumed to be independence between time periods. Bayesian inference requires a prior 

distribution on ,,ΠΣ andΨ , i.e. all parameter vectors. The standard prior information on 

Σ  and Π is used. For steady state prior, the available steady state information largely 

depending on both the basic macro-economic theories and sample information is 
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involved. Further assumptions about the prior independence between Π  and Ψ  are 

made following Villani (2008). Those priors can be summarized as follows: 

 

      2/)1()( +−Σ∝Σ pp : Jeffrey’s prior 

      ),(~ 2 ΠΠ ΩΠ θ
kp

Nvec  : Multivariate normal distribution which is Minnesota Prior. 

      ),(~ ΨΨ ΩΨ θpqNvec  : Multivariate normal distribution which is available from  

                                steady state (or sample data) information. 

 

The joint posterior distribution of SS BVAR is intractable. Instead, each full 

conditional posterior distribution is feasible. Once we obtain the full conditional 

posterior distributions, we can construct joint posterior density using a numerical method 

called Gibbs sampling. The specific steps of derivation of each conditional posterior 

based on Villani (2008) are attached in Appendix A. In addition, in Appendix B contains 

simplified generated-data illustration to show that even with mild informative priors on 

steady state, the accuracy of estimation results are considerably enhanced.  The summary 

of main results of posteriors follows:  

 

Full conditional posterior of Σ : ),'(~),,|( TEEIWIp tΨΠΣ  

where IW denotes “inverted Wishart” form and ⎣ ⎦))(( tt dxLE Ψ−Π=  (T×p), ⎣ ⎦  

denotes the usual rearrangement of data vectors into a matrix for the whole sample and

tI  denotes available data at time t. 
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Full conditional posterior of Π : ),(~),,|(
__

2 ΠΠ ΩΨΣΠ θkpt NIvecp  

where 1'1
_

1 −
ΠΨΨ

−−
Π Ω+⊗Σ=Ω XX  , ])([ 11'

__

Π
−
Π

−
ΨΨΠΠ Ω+ΣΩ= θθ YXvec , ⎣ ⎦tt dxY Ψ−=Ψ  

(T×p), and ⎣ ⎦ktkttt dxdxX −−−−Ψ Ψ−Ψ−= ,...,11  (T×p*k) matrices respectively. 

Full conditional posterior of 
_
Ψ : ),(~),,|(

__

ΨΨ ΩΠΣΨ θpqt NIvecp  

where 11
_

1 )'(' −
Ψ

−−
Ψ Ω+Σ⊗=Ω UDDU , ])'('[ 11

__

Ψ
−
Ψ

−
ΨΨ Ω+ΣΩ= θθ DYvecU , ⎣ ⎦txLY )(Π=

(T×p),  ),...,,(' ''
1 kqqpq IIIU Π⊗Π⊗=  )( 22 kpkp × , and ⎣ ⎦kttt dddD −− −−= ...,,, 1  

))1(( qkT +×  matrices respectively. 

 

2.3. Gibbs Sampling 

As previously discussed, the joint distribution of the parameters cannot be solved 

analytically, i.e. it is only possible to handle conditional joint distribution. The technique 

used to derive from this conditional distribution to joint distribution is Gibbs sampling. 

The key feature of this algorithm is that samples are only drawn from the full conditional 

distributions )|( ii xx −π . The realizations of the draw finally converge to the joint 

distribution2. The Gibbs sampling algorithm is one of Markov Chain Monte Carlo’s 

(MCMC) simulation methods. Its algorithm can be summarized as follows: 

(Step1) Pick arbitrary starting values ),,( 000 ΨΠΣ  

(Step2) Successively make random drawings from the full conditional 

distributions as follows: 
                                                 
2 For further discussion, see Smith and Roberts (1993). 
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);,,|( 001
TIpfrom ΨΠΣΣ  

);,,|( 011
TIpfrom ΨΣΠΠ  

);,,|( 111
TIpfrom ΠΣΨΨ  

);,,|( 112
TIpfrom ΨΠΣΣ  

);,,|( 122
TIpfrom ΨΣΠΠ  

);,,|( 222
TIpfrom ΠΣΨΨ  

(Step3) Iterate this scan to produce a sequence 0),,( ΨΠΣ , 1),,( ΨΠΣ , 2),,( ΨΠΣ

,…, k),,( ΨΠΣ where k can be 1,000 or 5,000 or 10,000 etc.  

 

2.4 Data, Priors and Posteriors 

The eight endogenous variable system of Jarocinski and Smets (2008) are used, 

with one exception of the 30-yr. mortgage rate while they use the spread between 10-yr 

government bond rate and FFR. The reasons for using mortgage rate are straightforward. 

First, the mortgage rate is presumably more closely and directly related with the housing 

market. Second, the spread could be redundant in the alternative identification designs 

when using FFR as short-term interest rate in spread calculation. Also, a more extended 

dataset of OFHEO’s (Office of Federal Housing Enterprise Oversight) housing price 

index 3 , which starts from 1975Q1, is used. Another popular home price index is 

‘S&P/Case-Shiller’ which is available since 1987Q1 and used by Jarocinski and Smets 

                                                 
3 The OFHEO index is based on a repeated-sales method which measures average price changes in repeat 
sales on the same properties. This information is obtained by reviewing mortgage loans which have been 
purchased by Fannie Mae and Freddie Mac. 
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(2008). Table 2.1 displays the endogenous variables, their compiling, and their 

abbreviated expressions which will be used hereafter. 

 

Table 2.1 
Data description: Endogenous variable 

Abbreviation Description Compiling 
yt Log difference of real GDP  Δlog(GDPt) 
pt Log difference of real GDP deflator Δlog(deflatort) 
hit Log ratio of residential investment over GDP log(hit/GDPt) 

hpt 
Difference between log difference of OFHEO Index and pt      
  (The ‘real (or relative) housing price’)  

Δlog(OFHEOt)  – 
 Δlog(deflatort) 

cpt 
Log difference of Dow-Jones Spot Average of commodity 
price 

Δlog(commodity 
pricet) 

it Federal Funds rate - 
mor30t 30-yr Mortgage Rate - 

mt Log difference of M2 money stock Δlog(M2t) 
Note: 1) Monthly data are converted into quarterly average basis. 2) All growth rates are on an annual 
basis, i.e. four-quarter growth rate. 3) Data source is St. Louis Fed except housing price (OFHEO) and 
commodity price (Global Financial Data, acronym: _DJSD). 
 
 
 

The Minnesota priors on first own lag variables are all set at zero except three 

level variables, i.e. hi, i, and mor30, to which 0.9 are assigned.  Note that the original 

Minnesota prior for the means of first own lag variable is one due to the assumption that 

the processes are random walk. However, this random walk prior is inconsistent with the 

mean-adjusted set-up where the stationarity of the processes is assumed.  

 
Table 2.2 
Prior and posterior means and standard deviations of the steady states 

 yt pt hit hpt cpt it mor30t mt 
Prior Mean 3.00 3.00 -3.00 0.00 3.00 6.00 8.00 6.00 
         Std. 1.00 1.00 1.00 2.00 2.50 2.00 2.50 1.50 

Posterior Mean 2.96 3.12 -3.07 2.25 3.03 5.52 8.34 5.55 

            Std. 0.27 0.48 0.03 0.61 1.70 0.86 0.88 0.79 
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Fig. 2.2. Data plots and their posterior means and standard deviations 
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Table 2.2 illustrates the priors and posteriors of means and standard deviations of 

the steady state. The priors are formed based on common knowledge about the U.S. 

economy. First, we believe that the steady state real GDP growth rate is around 3% and  

steady state inflation is 2.5~3.5%, from which we pick 3.5% since the dataset includes 

the high inflation era of the 1970s. Using the Fisher equation and quantity equation of 

money, we set the priors for nominal interest rate (i) and money growth rate (m). The 

prior for mor30 is set by the sum of short-term interest rate (i) plus some premiums 

reflecting time preference and credit risk. For hi, hp, and cp we use realized information 

from the quite long-term dataset. Overall, the mean of posteriors are located around 

priors and the standard deviations show relatively tighter range than the priors. Figure 

2.2 displays the plots of the endogenous variables and their posterior (estimated) means 

and standard deviations. 

 

2.5 Out-of-Sample Predictive Ability Tests 

The forecasting performance comparisons among three VARs - ML VAR, which 

is the benchmark, the standard BVAR, and SS BVAR - are conducted. Multi step-ahead 

out-of-sample forecasts based on rolling window estimation scheme are produced. The 

estimation windows, forecasting horizons, and h step-ahead forecasts are illustrated in 

Table 2.3. The first estimation window is from 1976Q1 to 1995Q4, and the 

corresponding forecasting horizon is from 1996Q1 to 2000Q4 which produces 1~20 

step-ahead forecasts. The next estimation window is from 1976Q2 to 1996Q1, and the 

corresponding one is 1996Q2 to 2001Q1 which also produces 1~20 step-ahead forecasts. 
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Subsequently, this type of rolling window forecast is iterated until the estimation 

window can be from 1987Q4 to 2007Q3 and the corresponding forecasting horizon is 

2007Q4 which produces one step-ahead forecast.  

Table 2.3 
Estimation windows, forecasting horizons, and step-ahead forecasts 

 Estimation Windows Forecasting Horizons h-step ahead 
1 76Q1 ~ 95Q4 96Q1 ~ 2000Q4 1~20 
2 76Q2 ~ 96Q1 96Q2 ~ 2001Q1 1~20 
3 76Q3 ~ 96Q2 96Q3 ~ 2001Q2 1~20 
M  M  M  M  

28 82Q4 ~ 2002Q3 2002Q4 ~ 2007Q3 1~20 
29 83Q1 ~ 2002Q4 2003Q1 ~ 2007Q4 1~20 
30 83Q2 ~ 2003Q1 2003Q2 ~ 2007Q4 1~19 
31 83Q3 ~ 2003Q2 2003Q3 ~ 2007Q4 1~18 
M  M  M  M  

47 87Q3 ~ 2007Q2 2007Q3 ~ 2007Q4 1~2 
48 87Q4 ~ 2007Q3 2007Q4 1 

 

So, for one step-ahead forecast, 48 observations are obtained; for two step-ahead, 

47; for three step-ahead, 46; and for twenty step-ahead forecast, 29 observations are 

obtained. For the two BVARs, the forecasts are predictive means among 1000 

realizations. The sequence of out-of-sample forecasts is evaluated by mean squared error 

loss using the following equation:  

n

errorforecast
losserrorsquaredmean

n

i
i∑

== 1

2

 

where forecast error = actual realization – forecast and n is the observations of the 
forecasts in each step ahead.  
 

Plots of mean squared error loss are displayed in Figure 2.3. Overall, the mean 

squared losses of SS BVAR are much less than those of benchmark ML VAR. When 

compared to the standard BVAR, the performance of SS BVAR is clearly better in p, hi, 
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i and m while in the case of mor30 and hp the performance of the standard BVAR is 

better. For the y and cp, it is unclear from the plots.   

                                      (y)                                                                                                       (p) 

 
                                                        (hi)                                                                                                   (hp) 

 
                                                          (cp)                                                                                                  (i) 

 
                                                      (mor30)                                                                                             (m) 

 
Fig. 2.3. Out-of-sample evaluation of point forecasts (predictive mean). Each sub-graph displays the 
average squared errors loss for each step-ahead forecast. 
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The relative ratios of squared error losses when compared to the benchmark ML 

VAR are shown in Table 2.4. Therefore, the less the ratio, the better the forecasting 

performance. For all variables except hp and mor30, the ratios of SS BVAR are less than 

those of the standard BVAR.  

Following Giacomini and White (2006), predictive ability tests were conducted. 

Their method is applicable to the multi step-ahead forecast, unlike Clark and 

McCraken’s (2001) which focuses solely on one step-ahead case. Giacomini and White 

(2006) exploit the fact that difference series between the losses in each one step-ahead 

forecast is a martingale difference sequence (MDS) for a given σ-field Ft. To put it more 

specifically, for a given loss function and σ-field Ft, null hypothesis of equal predictive 

ability of forecast f and g for the target date τ conditional on σ-field Ft  can be written as 

equation (1).  

         0][])ˆ()ˆ[(: ,
2

,
2

,0 =Δ=−−− +++ ttmtmttmtt FLEFgYfYEH τττ                    (1) 

where τ+tY is actual realization, 2
, )ˆ( mtt fY −+τ and 2

, )ˆ( mtt gY −+τ  are model specific losses, 

and m is the index of estimation window. When τ =1, the null hypothesis (1) claims that 

},{ , ttm FLΔ is a MDS. Then the conditional moment restriction, 0][ 1, =Δ + ttm FLE is 

“equivalent to stating that 0][ 1, =Δ +tmt LhE for all Ft-measurable function ht” as 

Giacomini and White (2006) point out. Hereafter, the 12× Ft-measurable function 

),1( ′Δ= tt Lh is used following their practical application. Using the MDS property
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0][ 1 =Δ +tt LhE , a Wald-type test statistic based on standard asymptotic normality 

argumentation can be constructed, which is displayed in equation (2). 

 
Table 2.4 
Ratio of relative squared error losses in each step-ahead forecast 

  Forecast Horizon: Quarters Ahead 
 1(48) 2(47) 3(46) 4(45) 5(44) 6(43) 7(42) 8(41) 9(40) 10(39) 

y SS BVAR 0.166 0.203 0.182 0.166 0.171 0.186 0.217 0.262 0.255 0.237 
S BVAR 0.146 0.203 0.187 0.165 0.162 0.171 0.203 0.255 0.256 0.250 

p SS BVAR 0.119 0.173 0.180 0.201 0.241 0.287 0.318 0.334 0.339 0.335 
S BVAR 0.137 0.201 0.212 0.237 0.279 0.328 0.362 0.385 0.399 0.413 

hi SS BVAR 0.185 0.117 0.182 0.252 0.362 0.464 0.528 0.460 0.373 0.323 
S BVAR 0.166 0.117 0.198 0.283 0.422 0.560 0.674 0.628 0.545 0.508 

hp SS BVAR 0.117 0.347 0.443 0.516 0.608 0.691 0.605 0.553 0.561 0.534 
S BVAR 0.068 0.298 0.381 0.446 0.537 0.618 0.552 0.508 0.525 0.511 

cp SS BVAR 0.150 0.326 0.436 0.530 0.690 0.960 0.860 0.607 0.471 0.447 
S BVAR 0.130 0.317 0.433 0.527 0.680 0.922 0.853 0.616 0.490 0.464 

i SS BVAR 0.191 0.243 0.357 0.357 0.348 0.346 0.320 0.316 0.334 0.359 
S BVAR 0.104 0.176 0.301 0.331 0.340 0.352 0.336 0.337 0.359 0.387 

mor30 SS BVAR 0.105 0.295 0.439 0.477 0.488 0.500 0.486 0.508 0.536 0.621 
S BVAR 0.094 0.275 0.383 0.395 0.385 0.372 0.351 0.359 0.374 0.429 

m SS BVAR 0.202 0.328 0.349 0.357 0.433 0.471 0.401 0.312 0.259 0.239 
S BVAR 0.264 0.396 0.411 0.421 0.512 0.543 0.462 0.352 0.280 0.255 

  Forecast Horizon: Quarters Ahead 
  11(38) 12(37) 13(36) 14(35) 15(34) 16(33) 17(32) 18(31) 19(30) 20(29) 

y SS BVAR 0.200 0.191 0.194 0.202 0.262 0.260 0.264 0.242 0.231 0.199 
S BVAR 0.215 0.208 0.216 0.231 0.299 0.305 0.313 0.282 0.268 0.215 

p SS BVAR 0.322 0.304 0.290 0.248 0.249 0.242 0.308 0.361 0.584 0.522 
S BVAR 0.413 0.402 0.407 0.348 0.335 0.309 0.372 0.405 0.604 0.532 

hi SS BVAR 0.275 0.293 0.327 0.343 0.354 0.316 0.325 0.304 0.388 0.438 
S BVAR 0.481 0.565 0.714 0.842 0.936 0.861 0.908 0.842 1.087 1.278 

hp SS BVAR 0.506 0.497 0.461 0.406 0.389 0.351 0.454 0.470 0.607 0.661 
S BVAR 0.482 0.468 0.428 0.371 0.362 0.329 0.426 0.446 0.570 0.620 

cp SS BVAR 0.429 0.411 0.400 0.383 0.393 0.398 0.390 0.481 0.492 0.479 
S BVAR 0.438 0.414 0.409 0.393 0.409 0.420 0.430 0.560 0.592 0.583 

i SS BVAR 0.396 0.428 0.450 0.445 0.457 0.466 0.550 0.543 0.541 0.562 
S BVAR 0.427 0.462 0.485 0.483 0.502 0.512 0.605 0.592 0.578 0.592 

mor30 SS BVAR 0.664 0.650 0.589 0.498 0.409 0.412 0.569 0.587 0.630 0.689 
S BVAR 0.460 0.448 0.411 0.357 0.302 0.306 0.423 0.439 0.471 0.516 

m SS BVAR 0.231 0.241 0.239 0.220 0.215 0.186 0.201 0.186 0.226 0.228 
S BVAR 0.245 0.250 0.256 0.239 0.229 0.203 0.222 0.215 0.271 0.277 

Note: 1) Benchmark is maximum likelihood VAR forecast. That is, two BVARs’ squared error losses are 
divided by those of maximum likelihood VARs’ in each horizon. 2) S BVAR stands for standard Bayesian 
VAR. 3) The number of observations is given in parentheses. 
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consistently estimated covariance matrix, and T is the total sample size. We reject the 

null hypothesis of equal conditional predictive ability whenever 2
1,2, αχ −>h

nmT , where 

2
1,2 αχ −  is the (1 – α) quantiles of a 2χ distribution with two degree of freedom. For a 

forecast horizon τ > 1, the null hypothesis (equation (1)) implies that “for all Ft-

measurable function ht, the sequence }{ , τ+Δ tmt Lh  is finitely correlated, which implies that 

we only need to consider the correlations among the multi step-ahead forecasts, so that 

0),cov( , =ΔΔ −+−+ jtjttmt LhLh ττ  for all j ≥ τ” as Giacomini and White (2006) point out. 

Using this feature, we can construct the following multi step-ahead test statistic in 

equation (3): 
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jmt jtmtmjn ZZZZwn , where wn,j is a weight function such 

that wn,j → 1 as n → ∞ for each j = 1, …, τ – 1. Like one step-ahead case, we reject the 

null hypothesis of equal predictive ability whenever 2
1,2,, ατ χ −>h

nmT . The equal predictive 

ability tests with 95% significant level are displayed in Table 2.5.4 

 
                                                 
4 I use the code provided in the author’s webpage http://www.econ.ucla.edu/giacomin/. 
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Table 2.5 
Equal predictive ability tests (p-values) 
  Forecast Horizon: Quarters Ahead 
  1(47) 2(46) 3(45) 4(44) 5(43) 6(42) 7(41) 8(40) 9(39) 10(38) 

y 
SS vs. ML 0.069 0.524* 0.272* 0.147* 0.256* 0.293* 0.010 0.006 0.009 0.044 
S vs. ML 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.035 
SS vs. S (0.001) (0.000) 0.000 (0.000) (0.000) (0.000) (0.000) (0.000) 0.010 0.035 

p 
SS vs. ML 0.008 0.018 0.052 0.104* 0.142* 0.120* 0.027 0.002 0.001 0.001 
S vs. ML 0.001 0.003 0.005 0.001 0.010 0.017 0.019 0.011 0.000 0.003 
SS vs. S 0.001 0.002 0.002 0.000 0.006 0.015 0.019 0.017 0.003 0.024 

hi 
SS vs. ML 0.042 0.883* 0.027 0.005 0.000 0.000 0.012 0.070* 0.123* 0.072 
S vs. ML 0.000 0.004 0.013 0.056 0.042 0.164* 0.141* 0.099 0.072 0.047 
SS vs. S (0.000) (0.003) 0.004 0.029 0.054 0.197* 0.149* 0.084 0.045 0.007 

hp 
SS vs. ML 0.000 0.103 0.092 0.093 0.062 0.026 0.016 0.013 0.014 0.044 
S vs. ML 0.002 0.012 0.113* 0.148* 0.210* 0.220* 0.175* 0.075 0.046 0.034 
SS vs. S (0.003) (0.029) (0.151*) (0.110*) (0.146*) (0.209*) (0.213*) (0.100*) (0.075) (0.061) 

cp 
SS vs. ML 0.232* 0.115* 0.055* 0.041 0.027 0.152* 0.183* 0.007 0.305* 0.037 
S vs. ML 0.002 0.001 0.022 0.140* 0.045 0.008 0.020 0.091 0.105* 0.000 
SS vs. S (0.002) (0.002) (0.025) (0.153*) (0.059) (0.014) (0.007) 0.131* 0.064 0.000 

i 
SS vs. ML 0.001 0.030 0.032 0.007 0.005 0.000 0.000 0.005 0.016 0.024 
S vs. ML 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
SS vs. S (0.001) (0.000) (0.000) (0.000) (0.000) 0.000 0.000 0.000 0.000 0.000 

mor30 
SS vs. ML 0.000 0.031 0.012 0.010 0.009 0.005 0.002 0.002 0.007 0.041 
S vs. ML 0.001 0.009 0.038 0.009 0.004 0.001 0.000 0.000 0.001 0.002 
SS vs. S (0.001) (0.005) (0.021) (0.002) (0.004) (0.003) (0.000) (0.000) (0.000) (0.002) 

m 
SS vs. ML 0.003 0.001 0.002 0.003 0.001 0.006 0.095 0.241* 0.345* 0.011 
S vs. ML 0.009 0.027 0.003 0.002 0.000 0.109* 0.205* 0.098 0.024 0.001 
SS vs. S 0.004 0.013 0.004 0.003 0.000 0.098 0.146* 0.067 0.018 0.001 

  Forecast Horizon: Quarters Ahead 
  11(37) 12(36) 13(35) 14(34) 15(33) 16(32) 17(31) 18(30) 19(29) 20(28) 

y 
SS vs. ML 0.029 0.000 0.001 0.007 0.019 0.000 0.017 0.005 0.010 0.030 
S vs. ML 0.023 0.010 0.000 0.011 0.001 0.002 0.014 0.029 0.092* 0.072 
SS vs. S 0.023 0.009 0.000 0.008 0.000 0.001 0.007 0.019 0.080 0.082 

p 
SS vs. ML 0.000 0.000 0.000 0.001 0.017 0.013 0.001 0.000 0.036 0.149* 
S vs. ML 0.036 0.114* 0.138* 0.115* 0.131* 0.127* 0.027 0.011 0.166* 0.057 
SS vs. S 0.066 0.113* 0.144* 0.107* 0.130* 0.166* 0.052 0.007 0.128* 0.032 

hi 
SS vs. ML 0.044 0.065 0.018 0.002 0.000 0.000 0.000 0.000 0.000 0.000 
S vs. ML 0.028 0.010 0.295* 0.066 0.010 0.053 0.123* 0.003 (0.002) (0.000) 
SS vs. S 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 

hp 
SS vs. ML 0.083 0.098 0.120* 0.065 0.050 0.011 0.021 0.013 0.047 0.057 
S vs. ML 0.015 0.038 0.083 0.082 0.064 0.098 0.000 0.004 0.000 0.010 
SS vs. S (0.049) (0.026) (0.084) (0.087) (0.074) (0.110*) (0.000) (0.007) (0.000) (0.006) 

cp 
SS vs. ML 0.000 0.000 0.001 0.000 0.000 0.000 0.021 0.068 0.046 0.012 
S vs. ML 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.006 
SS vs. S 0.000 0.001 0.004 0.000 0.000 0.000 0.000 0.000 0.004 0.004 

i 
SS vs. ML 0.041 0.078 0.145* 0.154* 0.087 0.009 0.000 0.006 0.119* 0.010 
S vs. ML 0.006 0.019 0.018 0.014 0.025 0.035 0.048 0.000 0.000 0.000 
SS vs. S 0.005 0.009 0.008 0.023 0.034 0.020 0.014 0.000 0.000 0.000 

mor30 
SS vs. ML 0.084 0.123* 0.075 0.133* 0.147* 0.185* 0.266* 0.182* 0.113* 0.113* 
S vs. ML 0.027 0.093 0.076 0.080 0.114* 0.166* 0.042 0.166* 0.279* 0.334* 
SS vs. S (0.136*) (0.145*) (0.087) (0.050) (0.090) (0.066) (0.089) (0.048) (0.021) (0.002) 

m 
SS vs. ML 0.290* 0.193* 0.201* 0.100* 0.084 0.077 0.042 0.008 0.006 0.002 
S vs. ML 0.001 0.021 0.143* 0.228* 0.110* 0.000 0.000 0.000 0.000 0.000 
SS vs. S 0.001 0.030 0.152* 0.228* 0.114* 0.000 0.000 0.000 0.000 0.000 

Note: 1) SS stands for steady state Bayesian VAR, S stands for standard Bayesian VAR, ML stands for 
maximum likelihood VAR. 2) * implies that the null hypothesis of equal predictive ability is not rejected 
at 90% significant level. 3) The parentheses denote that the standard Bayesian VAR’s forecasts 
outperform to steady state Bayesian VAR in SS vs. S line, and for the case of S vs. ML in hi line, the 
maximum likelihood VAR’s forecasts outperform to standard Bayesian VAR. 
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One observation which must be used in constructing of ),1( ′Δ= tt Lh is lost in 

each step-ahead stage. Overall, in most horizons, the equal predictive ability between 

both Bayesian predictions and benchmark ML’s is rejected. Interestingly, the two 

Bayesian VAR’s performance is similar under ten step-ahead cases while for the beyond 

horizons the SS BVAR outperforms, which is consistent with the intuition that SS 

BVAR indicates. 
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CHAPTER III 

MONETARY POLICY AND HOUSING PRICE 

 

 3.1. Introduction 

The on-going economic downturn, followed by financial turmoil triggered by 

fallout in the sub-prime mortgage market, has allowed economists to keep their eyes on 

issues about how the Fed should respond to housing prices, as well as the huge impact of 

the housing sector on real economy as we have seen since 2005. Especially in regards to 

the relationship between housing price and monetary policy, there has not been much 

research, while there has comparatively been a considerable amount for the relationship 

between monetary policy and real GDP or sometimes stock prices. 

Taylor (2007) shows that the prolonged period of low interest rates has 

substantially contributed to the upward swing in housing price from 2003 through 2005 

using the counterfactual scenario of Federal Funds Rates (FFRs) based on the Taylor 

rule, with a comparison to the actual movements of FFRs. Also, Jarocinski and Smets 

(2008) show that the FFRs is the most important factor accounting for the development 

of housing prices of the period using Bayesian VAR. In contrast, Mishkin (2007) 

demonstrates that what we know about the relationship between housing price and 

monetary policy is limited due to uncertainty caused by an unclear house-related 

monetary transmission mechanism. More recently, Kohn (2007) says that as more 

thorough research is being completed, the causes of the swing in housing price seem to 

be less consequences of monetary policy. Rather, he says it is a result of “the emotions 
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of excessive optimism followed by fear experienced every so often in the marketplace 

through the ages…”. 

In this chapter, the role of monetary policy in the housing market in the U.S. 

from the mid-1970s to date is examined using the identified steady state Bayesian vector 

autoregressive (SS BVAR) model. The mid 1970s is the starting point of housing price 

data which constitutes the longest one for the U.S. Their eight endogenous variables 

system and similar BVAR methodology are borrowed, but more generalized 

identification designs concerning the relationship between monetary policy and housing 

price are investigated. The alternative identification schemes are explored mainly 

focusing on the specifications of the housing sector in addition to the Wold causal 

ordering (Choleski decomposition) which Jarocinski and Smets (2008) use. The more 

general identifications relaxed from Choleski one are composed of two different 

approaches: economic theory-based and inductive causation using the directed acyclic 

graphs (DAGs). The first approach is based on economic theory about the relationship 

between housing sector and other macroeconomic variables. I insert housing sector 

specifications following Kearl (1979) into previous macroeconomic setups of Gordon 

and Leeper (1994) and Sims and Zha (2006). The second is somewhat statistical method 

called “directed acyclic graphs” (DAGs) which was explored by Hoover (2005) and 

Bessler and Lee (2002). The impulse response of housing price and investment to the 

monetary policy shock illustrates that the response of the housing sector is smaller in 

magnitude, less significant, and relatively shorter in all four alternative specifications 

when compared to the Choleski case. Also, the issue is revisited through historical 
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decomposition which can clearly demonstrate how much each structural shock can 

contribute to the upward swing and sharp drop of housing prices since 2000. In this 

counterfactual simulation, the housing price cannot be well explained without feeding 

housing price’s own shock. The housing investment movements can be relatively well 

accounted for by housing price shock and other macro variables without feeding its own 

shock. Forecasts for housing price since 2000, conditional on the assumption that we 

know various macroeconomic variables such as the actual paths of real GDP (y), 

inflation (p), money demand (m), 30-yr. mortgage rate (mor30) and actual or simulated 

FFRs by Taylor rule since 2000, were generated. These experiments verify that the 

forecasted housing price developments cannot pick up the run-up around 2005 and also 

indicate similar movements across actual and simulated FFRs based on the Taylor rule.  

Based on the findings across more generalized identifications, it is conjectured 

that there has been more uncertainty than what we may know about the housing market 

as Mishkin (2007) and Kohn (2007) point out. Thus, the view that the housing price 

boom and fallout has been driven or fortified by monetary policy shocks since 2000 is 

called in to question. Rather, institutional factors such as securitization of the mortgage 

market or lax loan standards igniting easy access to risky credit5 are presumably deeply 

related with the housing price episode since 2000.  

In section 3.1, the alternative identification designs involving housing sectors are 

explored. In section 3.2, the impulse response analysis focusing on the monetary policy 

shock is conducted and the magnitudes and significance of housing sectors for all 

                                                 
5 For detailed developments of sub-prime mortgage crisis, see DiMartino and Duca (2007).  
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identifications are compared. In section 3.3, the historical decomposition analysis 

focusing on the housing market is investigated. In section 3.4, the conditional forecasts 

of housing price following Waggoner and Zha (1999) are experimented. Finally, 

concluding remarks are drawn in section 3.5.  

 

3.2 Identification Design Involving Housing Sector 
 

The Wold causal ordering of Jarocinski and Smets (2008) for the housing sector 

identification can be summarized as follows. The variables are separated into three 

blocks: real sector (y and p), housing sector (hi and hp), and financial sector (cp, i, 

spread and m). The spread between 10-yr. government bond rate and FFRs is used, and 

the ordering is from real sector to the financial sector, i.e. y → p → hi → hp → cp → i 

→ spread → m. This identification can be expressed by the contemporaneous matrix as 

in equation (4).  
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The recursive structure which represents single straight ordering might not be 

realistic since the economic structure is not always consistent with that causal stream. So 

alternatively, the identification issues are explored in two different ways. First, the non-

recursive structure based on economic theory, which has been explored since Bernanke 
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(1986) and Sims (1986) proposals, is explored. In this chapter, focus is kept on so-called 

“short-run restriction” on the contemporaneous matrix. The “long-run restriction” which 

usually exploits a characteristic of monetary neutrality in the long-run can also be an 

alternative identification6. Another is based on algorithms of inductive causations, which 

are called ‘directed acyclic graphs’ (DAGs). Hoover (2005) and Kim Leatham and 

Bessler (2007) illustrate and show how this method can be applied in the VAR setup. 

 

3.2.1 Economic Theory Based Approach 

First, the economic theory-based structure is discussed. Based on the research of 

Bernanke (1986) and Sims (1986), Sims (1992) tries to interpret and solve the so-called 

‘liquidity puzzle’ (m (money) ↑  i ↑) and ‘price puzzle’ (i ↑ (or m ↓)  p ↑). For the 

former, Sims (1992) conjectures that the monetary aggregate innovations reflect not only 

monetary policy shocks but also monetary demand shocks and suggest the system should 

involve the variable representing monetary policy shock such as FFRs and other 

variables representing monetary demand shock such as monetary aggregates. For the 

latter, Sims (1992) conjectures that some parts of innovations in interest rates are 

systematic responses to structural shocks generating inflationary pressure. Thus, after 

including some variables representing inflationary pressures such as commodity price 

index in the monetary reaction function, this problem can be resolved. This type of 

identification is also applied in the small open economy frame. Cushman and Zha (1997) 

                                                 
6 For further discussion, see Blanchard and Quah (1989). 
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and Kim (1999) try to identify the monetary policy shocks based on short-run restriction 

for various countries.  

Now, two identification designs are introduced based on the economic theory-

based approach. These two designs were actually adopted with the augmentation of 

housing sector specifications. The first, from Gordon and Leeper (1994), introduces 

simultaneous interaction of supply and demand in federal funds markets. The 

endogenous variables are separated into two sectors: the money market sector, and the 

financial and goods market sector. The money demand usually has zero restriction on the 

grounds that the money demanders can observe lots of information such as opportunity 

costs of money holding (i), price of goods (p) that they want to purchase and their wealth 

(y) when they make their demand decisions7 where i denotes short-term interest rate 

(FFR or 1 month TB rate), p Consumer Price Index, y Industrial Production, and i10 10-

yr. TB rate. For the money supply sector, the ‘timing issue’ is crucial, i.e. they postulate 

that the Fed can contemporaneously observe innovations of m, i10, and cp where m 

denotes money demand and cp commodity price index. Simultaneous equation system of 

the money market can be written as equation (5). The financial and goods market are 

determined recursively in the order of unemployment (u), output (y), the price level (p), 

long-term interest rate (i10) and commodity prices (cp). 

           (i) Money market 

                     Money demand: deyapaiam =+++ 321  

                                                 
7 Gordon and Leeper (1994) adopt the convention of eliminating long-term rates from the money demand 
specification. 
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            Money supply: secpaiamai =+++ 61054                                              (5) 

           (ii) Financial and goods markets: u, y, p, i10, and cp 

   
The whole discussion of Gordon and Leeper (1994)’s identification design can be 

expressed by the contemporaneous matrix in equation (6).  
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The second design is from Sims and Zha (2006) where they try to show that 

VAR-style identifying restrictions work well in identifying monetary policy shock using 

the DSGE model frame. Their identifying restrictions can be summarized as follows:  

  (i)   Monetary policy makes interest rate respond to m, cp, and Tbk (bankruptcy filing). 

  (ii)  Money demand behavior makes m respond to y, p, and i. 

  (iii) They limit contemporaneous impact of i (monetary policy) on the financial sector. 

  (iv) They place importance on cp: cp does immediately impact all variables except m. 

                         Also through cp, other variables can be contemporaneously related with  

                         i (monetary policy) indirectly. 

  (v) Good market: block upper triangular in the order of Tbk, y, W, p, and Pim where W  

                         denotes average hourly earning, y GNP, p GNP deflator, Pim Produces’s 

                         Price Index. 
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The whole discussion of Sims and Zha (2006)’s identification design can be 

expressed by contemporaneous matrix in equation (7). What is done for our 

identification is adapting the Gordon and Leeper (1994) and Sims and Zha (2006) in the 

eight-variable system with the housing sector identification based on associated 

economic theory. 
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The research about non-recursive structures has been heavily focused on the 

mutual relationship between output movements and monetary policy. The non-recursive 

identification of housing sector, however, has not been explored much by economists in 

the VAR setup. So, Kearl’s (1979) research is borrowed for this purpose. In his research 

Kearl (1979) derives housing price and housing investment as an implicit function of 

macro variables basically using ‘Stock and Flow’ model.8 He separates the housing 

market into two distinctive ones: market of housing services (Flow) and market of 

housing stock (Stock). Each market can be explained by supply and demand as follows:  

     (Market for Housing Services) 
 

          Supply:  HH s
s α=                                                                                       (8) 

                                                    

                                                 
8 Following Kearl (1979)’s framework McCarthy and Peach (2002) estimate housing price and investment 
equations in error-correction model. 
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          Demand: ),,,( hhpyRH d
s φ=                                                                  (9) 

 
The flow of services from the fixed housing stock is in-elastically supplied. 

(Equation (8)) Thus R (rent) is clearing housing services’ market in equation (9), where 

R denotes the price of the services (rent), y income, p the index of prices of other 

commodities and hh household characteristics. 

            (Market for Housing Stock) 

                     Supply: Fixed as H in the short period of time 

                     Demand: Flexible depending on the variables 

 
In equilibrium under the perfect market assumption, the R, marginal benefit of 

house-owner is equal to marginal cost of the asset (right-hand side of equation (10)) 

which comprises of δ (depreciation) plus r (real interest) minus εph&  (anticipated relative 

price change, i.e. capital gain) proportional to the housing price.  

                  )(* εδ phrhpR &−+=                                              (10) 

So, Housing price is determinant, i.e., )/( εδ phrRhp &−+=  given R is 

determined in the service market and εδ phr &−+  is exogenous under competitive 

conditions. Now, using equations (8) and (9), we can derive the relationship between 

housing price and housing stock: 

),,,(111 hhpyRHHH d
s

s
s φ

ααα
===  

   ),,),(*(1 hhpyphrhp εδφ
α

&−+=  

 
Therefore, ),,,,( hhpyphrHhp εδϕ &−+=  since εδ phr &−+  is given 

exogenously outside of the housing market. The relative housing price can be written as 
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equation (11). Over a long period of time, H  is not fixed so hp will be affected by 

construction activity (or housing investment). 

                     ),,,(/ hhyphrHphp εδψ &−+=                                         (11) 
 

When the equation (11) is adapted in my eight variables’ system, we can 

postulate that the relative housing price could react or depend on H (housing 

investment, hi), interest rate (i or mor30), income (y), and other unknown shocks (hh) 

such as households’ preferences, institutional changes, etc.  

Now, the effect of hp (housing price) on hi (housing investment) is examined. 

The hpd (housing price of demand side) can be assumed to be independent of 

construction activity (i.e. 
_

hphpd = ) because, over a short period of time, the housing 

stock is negligibly affected by changes in construction. In contrast, the hps (housing 

price of supply side) regulates the supply flow of housing capital as this is the price at 

which builders can sell new units. That is, ),( chihps η=  where hi is the housing 

investment flow and c is vector of costs. Finally in equilibrium, 
_

hphp s =  and thus it can 

be written as equation (12). 

                    ),(
_

1 chphi −=η                                                  (12) 

Based on the equation (12), we can postulate that hi could react or depend on hp 

(housing price). It is further postulated that y and p can constitute c (vector of costs) as 

instruments of overall economic state. In addition, following the intuition of Sims and 

Zha (2006), it is further postulated that the hp and hi would fully respond to the cp 
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whose market is open every day and circulates credible economic information. In the 

Gordon and Leeper (1994) application case this cp-related postulation is not carried over.    

   

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

30

)(
)(

0
0
0

0

00000
00000

000000
000

000
0000

000
0000

27

17

12

4

2625

2423

22

21201918

16151413

11109

8765

321

mor
p
y
hi
hp

MSi
MDm

cp

a

a
a

a

aa
aa

a
aaaa

aaaa
aaa

aaaa
aaa

                                       (13) 

                                                                                                           
                       (Simultaneous Equations System)                                              (14) 

                                    cp
ttttt morapayacpa ε=+++ 304321  

                                    m
ttttt payaiama ε=+++ 8765  

                                    i
ttttt moraiamacpa ε=+++ 301211109  

                                    hp
tttttt morayahiahpaia ε=++++ 301716151413   

                                    hi
ttttt payahiahpa ε=+++ 21201918  

                                    y
ttya ε=22  

                                    p
ttt paya ε=+ 2423  

                        30
272625 30 mor

tttt morapaya ε=++  

Now, applying the Gordon and Leeper (1994) combined by housing sector 

specification into eight variables’ system, equation (13) and (14) display the 

contemporaneous matrix and simultaneous equation system respectively. This is over-

identification system with 27 unknown parameters; given 36 unknown parameters are 

the case of just-identified. The housing sector follows based on Kearl (1979). Money 

demand and supply follow the intuitions of Gordon and Leeper (1994). Finally, the rest 

of the economy is recursively determined in the ordering of y, p, mor30, and cp.9 

                                                 
9 I keep the cp in first row of contemporaneous matrix for consistency with other identification schemes.  
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Equations (15) and (16) show the application results of Sims and Zha (2006) and 

housing sector specification. Actually, the money market and the housing sector are 

exactly the same as Gordon and Leeper (1994) except the role of the cp, where the cp 

can respond to all endogenous variables and the rest of the variables except m can react 

to the cp. This design is a just-identified case. 
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          (Simultaneous Equations System)                                                                    (16) 

            cp
ttttttttt morapayahiahpaiamacpa ε=+++++++ 3087654321  

            m
ttttt payaiama ε=+++ 1211109  

            i
ttttt moraiamacpa ε=+++ 3016151413  

            hp
ttttttt morayahiahpaiacpa ε=+++++ 30222120191817  

            hi
tttttt payahiahpacpa ε=++++ 2726252423  

            y
ttt yacpa ε=+ 2928  

            p
tttt payacpa ε=++ 323130  

            30
36353433 30 mor

ttttt morapayacpa ε=+++  
 
 

3.2.2 Algorithms of Inductive Causations: DAGs 

Using the directed acyclic graphs (DAGs), structural shock is identified 

according to Hoover (2005) and Kim, Leatham and Bessler (2007).10 The DAGs are 

pictures summarizing the causal flow among a set of innovations. The DAGs 

methodology derives the contemporaneous causal flow among data based on the 
                                                 
10 For the further discussion about DAGs, see Spirtes, Glymour, and Schienes (2000). 
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algorithms of inductive causation. There are edges (or arrows) which represent such 

flows. The graph X → Y (directed graph) denotes that variable X causes variable Y. A 

line between two variables, say X − Y (undirected graph) indicates that X and Y are 

related but we cannot tell if X causes Y or Y causes X. No edges between X and Y (X   

Y) indicates (conditional) independence between two variables. 

In the DAGs, there are three key conceptions. First is a “causal chain”. Suppose 

that A → B → C (i.e. A causes B causes C). Here, A and C would be dependent 

unconditionally; however, they would be independent conditional on B. In this case the 

B is said to “screen A from C”. Second is a “causal fork”. Suppose that A ← B → C. 

Then, similar logic can be applied, i.e. A and C would be dependent unconditionally; 

however, conditional on B, they would be independent. In this case, the B is said to be 

the “common cause of A and C”. Third is a “causal inverted fork” which is rather 

different from the previous two conceptions. Suppose that A → B ← C. Here we have B 

as a common effect of A and C. The A and C will have no association (zero correlation 

if constrained to linear relationship); however, conditional on B, the association between 

A and C is non-zero, i.e. dependent. In this case, the B is called “unshielded collider” on 

the path ABC. 

The causal search algorithms (TETRAD IV) have been developed and are 

publicly accessible on the web page (http://www.phil.cmu.edu/projects/tetrad/). Two 

algorithms used in my analysis are introduced, borrowing explanations and illustrations 

from Hoover (2005), Kim, Leatham and Bessler (2007) and built-in manuals of 

TETRAD IV program. The basic assumption for the continuous dataset is that the direct 
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causal influence of any variable on any other is linear and that the distribution of each 

variable is normal. The first is PC algorithm which is most commonly used in the DAGs 

analysis. The implementation step can be summarized as follows: 

 

              (Step 1) Initially construct complete undirected causal link. 

              (Step 2) Test for unconditional correlation of each pair of variables. Eliminate  

                           the link whenever the absence of correlation cannot be rejected. 

              (Step 3) Adjacency Phase: removing links 

                           Test for the correlation of each variable conditional on third or more  

                           variables. Remove the links (or edges) X − Y if some set S, such that X  

                           and Y is uncorrelated conditional on S, can be found. 

              (Step 4) Orientation Phase: adding orientations 

                          (i) We use separating set (sep-set) to find unshielded collider, i.e., when  

                               we remove the edge between A and B in the triple A – B – C, using  

                               conditional correlation, we can infer the collider A → B ← C,  

                               because B was not conditioned to remove the edge between A and  

                               C.  If B was the conditioning variable to remove the edge then we  

                               could have A → B → C or A ← B ← C or A ← B → C. 

                          (ii) If there is a link A → B − C, then orient the second link toward C,  

                                i.e. A → B → C: causal chain. 

                          (iii) If there is an undirected link A − B and directed path, starting at A  

                                 through one or more other variables to B, then orient the undirected  

                                 link as A → B.    

                                        

Another algorithm is GES (Greedy Equivalence Search) which is based on 

Bayesian scoring function. The GES algorithm searches over classes of equivalent 

DAGs called “pattern”. The pattern is an equivalence class of an acyclic graph, which 
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represents the set of edges that can be determined by the search, with as many of these 

edges oriented as possible using the available information. Kim, Leatham and Bessler 

(2007) illustrate the causal flows among macroeconomic variables including REITs 

return rate using this GES algorithm. The search is composed of two steps: 

 

        (Step 1) Forward Sweep 

                (i) Begin with independence graph. 

                (ii) Find edges if Bayesian posterior score (Bayesian Information Criteria:  

                      BIC) increases once added. 

                (iii) Orient edges using above PC orientation rules. 

 

        (Step 2) Backward Sweep 

               (i) Remove edges or reversing the orientation if such actions result in  

                    improvement in the Bayesian posterior score. 

               (ii) Once it gets to the point where there is no edge any more than once  

                     removed increases the score, the algorithm stops. 

 

 The reduced form residuals are used as input data. The DAGs from PC 

algorithm and from GES are shown in Figure 3.1 and Figure 3.2 respectively. Several 

interesting features come out when compared to the identifications of economic theory 

approaches. The most striking result is that the cp (commodity price) and m (money 

demand) are ranked as highest exogenous status unlike the cases of economic theoretic 

approaches.    
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Fig. 3.1. DAGs from PC Algorithm 
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                        (Simultaneous Equations System)                                                (18) 

                                 cp
ttcpa ε=1  

                                 m
ttma ε=2  

                                 i
ttt moraia ε=+ 3043  

                                 hp
ttttt morapahiahpa ε=+++ 308765  

                                 hi
tttttt payahiahpama ε=++++ 131211109  

                                 y
ttt yaia ε=+ 1514  

                                 p
ttpa ε=16  

                                 30
191817 30 mor

tttt morahpacpa ε=++  
 
 

Housing price and investments reaction functions, however, are somewhat 

similar to the cases of economic theory-based approaches. Also, i (FFR) causes y (output 

growth) and i (FFR) reacts to mor30 (30-yr. mortgage rates) in the DAGs from PC, 

while their relations are undirected in the DAGs from GES. There is double directed 

edge between hp (housing price) and hi (housing investment), which may appear due to 

cp

hi

p 

y

m

i

hp

mor30
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failure of assumptions (e.g. relationship is non-linear, the population graph is cyclic, etc.) 

or indicate existence of latent variable between two variables.  In the GES algorithm, 

three undirected edges are found as follows: mor30 - cp, mor30 - i, y - i. These 

undirected edges are consistent with eight possible directed causal relationships. Among 

them, cp → mor30, mor30 → i, and i → y were chosen following the PC algorithm’s 

result. 

 

 
Fig. 3.2. DAGs from GES Algorithm 
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                 (Simultaneous Equations System)                                                  (20) 

                               cp
ttcpa ε=1

 
                               m

ttma ε=2  
                               i

ttt moraia ε=+ 3043  
                               hp

tttt morahiahpa ε=++ 30765  
                               hi

tttt yahiama ε=++ 1098  
                               y

ttt yaia ε=+ 1211  
                               p

tttt payahiahpa ε=+++ 16151413  
                               30

17 30 mor
ttmora ε=  
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3.2.3 Estimation of Contemporaneous Matrix 
 

Identified contemporaneous matrices derived from both theory-based and 

statistical approaches are over-identified except in the Sims and Zha (2006) application. 

Those parameters of simultaneous equation system were estimated using the maximum 

likelihood method.11 Following Enders (2003) and Hamilton (1994), the estimation steps 

can be summarized as follows. The reduced and structural form of our VAR can be 

represented as equation (21) and (22) respectively.  

 

          Reduced Form 
      tktkttt yyyIy ε+Π+⋅⋅⋅+Π+Π= −−− 2211 , Σ=)var( tε                                (21) 

 
          Structural Form 

          tktkttt eyByByBBy ++⋅⋅⋅++= −−− 2211 , pt Ie =)var(  diagonal                 (22) 
 

 

The linkages between two forms are BBIBe tt ′Σ== ,ε  in residual relations. 

Basically, exploiting this relationship in the specific steps can be described as follows:  

 

   (Step 1) Estimate the reduced form VAR. 
            : The restrictions on B or var(et) do not affect the estimation of VAR coefficients.  
 
   (Step 2) Obtain the reduced form variance/covariance matrix Σ (= UΣ̂ Unrestricted). 
                 : The determinant of this matrix is an indicator of the overall fit of the model. 
 
   (Step 3) Restricting B will affect the estimate of Σ. Select the appropriate restrictions  
                                                 
11 I use and adapt public software code called “Christopher Sims’ Optimizer” (or ‘csminwell’ algorithm) 
which is based on the Broyden-Fletcher-Goldfarb-Shannon update of the Hessian matrix. In the earlier 
work of Blanchard and Watson (1986), they estimate it using instrumental variable method. 
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                and maximize the likelihood function with respect to the free parameters of B. 

                 - Log likelihood function of unrestricted form: ∑
=

−Σ′−Σ−
T

t
tt

T
1

1

2
1ln

2
εε  

                 - Fix the values of εt with OLS estimators ( tε̂ ). Now use the relation BBI ′Σ=  

                 - Log likelihood function can be written as: ∑
=

−− ′′−′−
T

t
tt BBBBT

1

11 ˆˆ
2
1)(ln

2
εε  

                 - Select the restrictions on B and maximize with respect to the remaining free  
                    parameters of B. 
 
   (Step 4) If the restriction is not binding, ΣU and ΣR (= 11 )ˆ(ˆ −− ′BB  Restricted) will be  
                equivalent. )(~)ln(ln*)( 2 RkTstatisticTest UR χΣ−Σ−= , where k is the  
                number of parameters estimated per equation and R is the number of over- 
                identifying restrictions. 
 
 

Estimation results of contemporaneous matrices in all identification schemes are 

displayed in Appendix C. The estimations for two DAGs are well done in view of over-

identification test results displayed in Table 3.1 while the case of Gordon and Leeper 

(1994) application has very low p-value. Probably, it could not be a fair comparison 

because two DAGs innovations from reduced form are used to construct the causal flow, 

which can lead to closer correlations between covariance matrices of structural and 

reduced forms. Note that Sims and Zha (2006) plus housing sector cases is just-

identified. Interestingly, most of the parameters from the DAGs are significant, while in 

the case of theory-based approaches, roughly half of the estimates are significant.  

 

Table 3.1 
LR Test for over-identification 

 Chi-square test statistic p-value 
Gordon and Leeper (1994) plus housing sector 26.927 (9) 0.001 
DAGs from PC algorithm 12.939 (17) 0.740 

DAGs from GES algorithm 26.334 (19) 0.121 

     Note: The number of over-identifying restrictions is in parentheses.   
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3.3 Impulse Response Analysis 

Once structural shocks are identified, one of the most popular analyses in VAR, 

i.e. the impulse response analysis, can be conducted. Using the relationship between 

reduced and structural form and moving average (MA) representation, we can write 

down each endogenous variable in the weighted average of each structural shock as 

follows: 

            ∑
∞

=
−Φ=

0i
itity ε , where pI=Φ0  and 1,,2,1

1

0

−=ΦΠ=Φ ∑
−

=
− ki

i

j
jjii L                    

                ∑
∞

=
−

−Φ=
0

1

i
iti eB , given pt Ie =)var(    

 
The impulse response in all five identifications such as Choleski, Gordon and 

Leeper plus housing sector (GL+, hereafter), Sims and Zha plus housing sector (SZ+, 

hereafter), DAGs from PC algorithm (PC, hereafter), and DAGs from GES algorithm 

(GES, hereafter) are examined. When focusing on the housing sector’s response to the 

monetary policy shock, consistent and interesting results can be seen. In all 

identifications derived from both theory-based and statistical-based approaches, the 

responses of hp and hi are relatively smaller in magnitude, less significant, and shorter in 

response period when compared to the Choleski case. These results are illustrated in 

Figure 3.3. Also, Table 3.2 displays the peak magnitudes in responses which illustrate 

that the magnitudes of hp and hi in alternative identifications are roughly half of the 

Choleski case. For the four alternative identifications, the 68% probability bands include 

zeros or upper bands close to zero, which implies a less significant response from the 

housing sector. These estimation results are consistent with the views of Mishkin (2007) 
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and Kohn (2007) who conjecture much uncertainty between housing sector and 

monetary policy. Figure 3.4 shows the impulse response of other variables except of the 

housing sector to monetary policy shock. The stylized facts are overall confirmed in all 

five identifications. That is, when i increases, y decreases, p decreases, hi and hp 

decrease, cp decreases and mor30 increases. However, the money demand response is 

puzzling, and the y and p’s responses are somewhat ambiguous in the PC and GES cases.  

 

                      (Choleski)                               (GL+)                                    (SZ+) 

 
                           (PC)                                    (GES) 

    
 
                     (Choleski)                                (GL+)                                    (SZ+) 

   
                          (PC)                                     (GES) 

    
Fig. 3.3. Housing sector response to positive monetary policy shock. The solid lines represent average 
values and dotted lines represent 68% probability bands from 1000 realizations. 
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Table 3.2  
Peak response of housing sector to monetary policy shock 
 

 Choleski GL+ SZ+ PC GES 

Housing Price (hp) -0.2802 -0.1312 -0.1393 -0.1756 -0.1029 

Housing Investment (hi) -0.0194 -0.0049 -0.0137 -0.0065 -0.0002 

 
 
 

        (Choleski)              (GL +)                  (SZ +)                   (PC)                   (GES)         

  

     

 

 
Fig. 3.4. Other variables’ response to positive monetary policy shock. The solid lines represent average 
values and dotted lines represent 68% probability bands from 1000 realizations. 
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Additionally, the monetary policy shock’s effect on other economic variables 

such as output and inflation are also smaller and less significant in all alternative 

identifications. Sims and Zha (2006) show that the monetary policy shock’s effect on the 

output and other economic variables is relatively smaller than previously believed when 

applying their identification design. Another interesting result is the response of 

commodity price (cp). In GL+ to GES, the most significant and strong responses to 

monetary policy shock come from cp’s compared to the case of Choleski. 

 

3.4 Historical Decomposition 

The substantial uncertainty between monetary policy and housing price is also 

viewed from a different angle called historical decomposition analysis. This is a 

counterfactual method to show how the development of housing price would change 

when each identified shock is shut down while feeding all other shocks. Using this 

technique, the relative contribution of each historical shock to the housing price can be 

assessed. The basic methodology is relatively simple. Using the relationship between 

reduced and structural form, we can rewrite equation (22) as follows: 

tktkttt eByBByBByBBy 11
22

1
11

1 −
−

−
−

−
−

− ++⋅⋅⋅++= , given pt Ie =)var( . 
 
Then, this equation can be decomposed into the base projection (forecast) given 

information at time t-1 ( ktktt yBByBByBB −
−

−
−

−
− +⋅⋅⋅++ 1

22
1

11
1 ) and sum of (weighted) 

contribution of the structural innovations to the actual data ( *1
teB− ).  

Here, the period of 2000 to date is examined, i.e. 2000 Q1 to 2007 Q4.  Figure 

3.5 and 3.6 display the historical decomposition of housing price. As can be easily 
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verified from the plots, all other variables’ structural shocks cannot account for a 

considerable portion of the development of housing price, especially the high peak 

around 2005.12 These results lead to the conjecture that housing price shocks such as 

institutional factors (regulation/deregulation), lax loan standards, preferences of 

consumers, etc., are essential in accounting for the development of housing price. 

Furthermore, it supports the view that the run-up of housing price since 2000 is “bubble” 

as Shiller (2005) and Case and Shiller (2003) argue, in the sense that the housing price 

developments cannot be well explained by economic fundamentals.13  

When shutting down the other shocks, the counterfactual movements of hp can 

follow the real data developments quite well in all identification designs as shown in 

Figure 3.6.    

 

                (Choleski)                                  (GL+)                                      (SZ+) 

  
                      (PC)                                     (GES) 

  
Fig. 3.5. Counterfactual when shutting down housing price shock. The solid lines represent actual data and 
the dotted lines represent the mean value of counterfactual from 1000 realizations when shutting down the 
structural shock of housing price. 

                                                 
12  The time series of structural shocks is included in Appendix E. 
13 In contrast, McCarthy and Peach (2004) illustrate that the housing price developments since 2000 can be 
well explained when using more economically refined housing price series. 
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        (Choleski)               (GL +)                 (SZ +)                   (PC)                    (GES)           

 

 

 

 

 

 

 
Fig. 3.6. Counterfactual when shutting down each other shock. The solid lines represent actual data and 
the dotted lines represent the mean value of counterfactual from 1000 realizations when shutting down the 
structural shock of each variable. 
 

The housing investment (hi) case is illustrated in Figure 3.7. For the development 

since 2000, overall movements are relatively well explained with other variables shocks 

without its own shocks in the four identifications such as Choleski, GL+, SZ+, and PC 

except GES. In the GES identification, 2005’s high housing investment peak is not 

explained well without hi structural innovations.  
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                (Choleski)                                 (GL+)                                    (SZ+) 

 
 

                     (PC)                                      (GES) 

 
Fig. 3.7. Counterfactual when shutting down housing investment shock. The solid lines represent actual 
data and the dotted lines represent the mean value of counterfactual from 1000 realizations when shutting 
down the structural shock of housing investment. 
 
 

Figure 3.8 displays the counterfactual of housing investment when subsequently 

shutting down each structural shock. Interestingly, the housing price shock plays a major 

role in the alternative identifications, except in the GES case where the housing 

investments shock itself accounts for considerable portion of its developments. One 

thing that is difficult to explain is the role of mortgage rate. In all identification cases, 

their roles are much more limited than expected in association with the housing sector.  
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        (Choleski)             (GL +)                  (SZ +)                   (PC)                   (GES) 

 

 

 

 

 

 

 
Fig. 3.8. Counterfactual when shutting down each other shock. The solid lines represent actual data and 
the dotted lines represent the mean value of counterfactual from 1000 realizations when shutting down the 
structural shock of each variable. 
 
 

3.5 Conditional Forecast 
 

Finally, conditional forecasts are executed following Wagonner and Zha (1999)’s 

Gibbs sampling technique which can compute posterior distributions of forecasts in 
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VARs conditional on paths (or scenarios) of endogenous variables. This simulation 

method can indicate whether the housing sector can be accounted for or forecasted well 

if we know the actual paths of macro variables such as real GDP (y), inflation (p), 30-yr. 

mortgage rate (mor30), money demand (m) and FFRs (i). Before executing the 

simulation, the methodology of conditional forecast is summarized. The key point is 

restricting the structural shocks conditional on the assumed paths such that the structural 

shocks are the exact difference between forecasts and assumed paths. The simplified 

bivariate VAR(1) illustration is attached in Appendix D. Following the notation of 

Jarocinski (2008)14, the standard VAR equation can be written as equation (23). 

tktkttt eByBByBByBBy 11
22

1
11

1 −
−

−
−

−
−

− ++⋅⋅⋅++= , ),(~ pt IoiidNe              (23) 
 
The equation (23) can be rewritten in simplified form as equation (24). 

tktkttt CeyAyAyAy ++⋅⋅⋅++= −−− 2211 , where 11 , −− == BCABB kk             (24) 
 
After applying standard companion form, i.e. VAR(1) form, we have equation (25).  
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Take hSy +

~  (h-ahead forecast), recursively substitute 1
~

−+hSy , …, 1
~

+Sy  using  equation (25). 

In this way we can obtain hSy +  expressed in terms of data up to S and subsequent errors. 

                                                 
14 Actually, he shows only the Choleski identification case, but here it is derived for the generalized 
identification schemes. 
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S
h

pShhShShS yFCeCeCey ~... ),...1(1111 ⋅+−−+++ ++++= ψψ                          (26) 
 
where jψ  is the upper left pp× block of jF (and Cjψ  is the matrix of orthogonalized 

impulse responses after j periods) and h
pF ),...1( ⋅  is the matrix composed of first p rows of 

hF . (This is standard and follows Hamilton (1994, pp 258-260)) The stacked vector of 

TS yy ,...,1+  can be written as follows: 
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or shortly as  
eRyHy S += ~                                                   (27) 

 
Note that SyH~ is unconditional forecasts from one to T step-ahead. The total 

length of y is )( STp −  of which q elements are assumed to be known (or given by 

scenario) and the remaining are unknown. The fact that q elements are known implies q 

restriction on e, that is, reR =~  with ),(
~

⋅= qRR , Sqq yHyr ~
),(),( ⋅⋅ −=  where we also use q 

as the number of rows of the known ones among y. Note that we keep set conditional 

structural shocks ( eR~ ) such that reR =~ where Sqq yHyr ~
),(),( ⋅⋅ −= , i.e. eR~  will be the 

exact difference between scenario (actual realization if the scenario is actual data) and 

unconditional forecasts. The joint distribution of e and eR~  is normal as shown in 

equation (28). 
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After applying theorem with respect to conditional normal distribution (Greene (2003), 

p871-872), we reach final conditional distribution of structural shock as shown in 

equation (29).  

( )RRRRIrRRRNe
reR

~)~~(~,)~~(~~ 11
~

−−
=

′′−′′                                    (29) 

 
The 32 step-ahead forecasts (i.e. forecasts of 2000 Q1 to 2007Q4) of hp, hi and 

cp conditional on actual realizations of y, p, m, mor30 and i for each identification 

scheme are generated and compared. For i, the simulated FFRs based on the Taylor rule 

are fed as well as actual i. Following Taylor (1993), the simulated FFRs by the Taylor 

Rule are calculated with equation (30). 3.0% is used as the equilibrium real GDP growth 

rate, i.e. %0.3=y . Equation (30) indicates that if both inflation and real GDP are at the 

target, then the federal funds rate would be 4%, which implies a 2% real “equilibrium” 

rate. Figure 3.9 shows the actual and simulated FFR developments. From 2000 to mid-

2001, simulated FFRs are lower than actual ones; since 2002, actual FFRs are lower 

most of time.   

)2(5.1)(5.042)2(5.0)(5.0 −+−+=+−+−+= tttttt pyypyypi                (30) 
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Fig. 3.9. Actual and simulated FFRs. The solid line is actual and dotted line is simulated FFRs respectively. 
 

Conditional forecasts of hp are displayed in Figure 3.10 for each identification 

scheme. The common and conspicuous feature is that given the assumption that we had 

known the actual paths of y, p, m, mor30, and i since 2000, the conditional forecast of 

housing price is much different from the actual realizations in all four alternative 

identifications. Even when we assume that Fed had followed the ideal path 

recommended by the Taylor rule, the conditional forecast results change little. For the 

Choleski case, the conditional forecasts’ differences between actual and simulated FFRs 

are relatively larger than in any alternative identifications’. Even in the Choleski case, 

however, the conditional forecasts of hp cannot emulate fully the sharp increase then 

sudden drop of housing prices since 2003. 
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 GL+ 

              (Conditional on y, p, mor30, m, and actual i)     (Conditional on y, p, mor30, m, and Taylor rule-i)    

           

           

           

           

           
Fig. 3.10. Conditional forecast of housing price. Bold solid lines represent actual data, light solid lines 
represent unconditional forecast, and dotted lines represent conditional forecast and 68% probability bands. 
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GL+ 

              (Conditional on y, p, mor30, m, and actual i)     (Conditional on y, p, mor30, m, and Taylor-rule i)    

           

           

           

          

         
Fig. 3.11. Conditional forecast of housing investment. Bold solid lines represent actual data, light solid 
lines represent unconditional forecast, and dotted lines represent conditional forecast and 68% probability 
bands. 
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GL+ 

              (Conditional on y, p, mor30, m, and actual i)     (Conditional on y, p, mor30, m, and Taylor-rule i)    

           

             

          

          

          
Fig. 3.12. Conditional forecast of commodity price. Bold solid lines represent actual data, light solid lines 
represent unconditional forecast, and dotted lines represent conditional forecast and 68% probability bands. 
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Figures 3.11 and 3.12 illustrate the cases of hi and cp respectively. For hi 

(housing investment), the conditional forecasts vary across the identifications. The 68% 

probability band can cover a considerable portion of actual realizations since 2000 in all 

identification schemes, while the forecasts have hardly caught any sudden drop since 

2006. Interestingly, the cp (commodity price, i.e. Dow-Jones spot average)’s conditional 

forecasts show a somewhat huge drop in all identification schemes except Choleski’s 

when feeding simulated path of FFRs which are higher overall than actual FFRs. This 

finding is consistent with the magnitude of impulse-response results which indicate that 

the cp drops relatively more for positive FFRs’ shocks in all alternative identifications. 

 

3.6 Concluding Remarks 

In this chapter, the superior performance of using steady state BVAR 

methodology in out-of-sample forecasts, especially for the long horizon, is 

demonstrated. This result is based on exploiting all information available through both 

dynamic and deterministic components, which leads to escaping the usual “curse of 

dimension problem” in VAR framework. Identification issues are explored through two 

different approaches. One approach is based on associated economic theory; the other is 

based on algorithms of inductive causation called “DAGs”. Both approaches, however, 

show somewhat similar specifications for the housing sector, while other economic 

variables’ exogenous status is quite different across the two approaches. 

The main question is how the monetary policy shock can affect the housing 

sector. The impulse response of housing price and investment to FFRs in all alternative 
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identifications illustrate that the magnitudes are relatively smaller, less significant, and 

shorter when compared to the Choleski case. Also, this finding can be confirmed by 

historical decomposition analysis which confirms that the recent high peak in housing 

price cannot be well accounted for except by the housing price shock itself. Finally, 

generated conditional forecasts of housing price also fail in replicating the run-up of 

housing price around 2005 given the assumption that we had known the actual paths of 

real GDP (y), inflation (p), money demand (m), 30-yr. mortgage rate (mor30) and actual 

or simulated FFRs based on the Taylor rule. Upon all these estimation results, it is hard 

to agree with the argument that the considerable responsibility of the current housing 

boom and fallout is due to monetary policy shocks, even though some portion can be 

attributed as such. Rather, it can be said that there is still enormous uncertainty and gap 

in knowledge regarding the relationship between the monetary policy and housing price. 

Institutional shocks such as fundamental change of mortgage markets including the 

mobilizing the mortgage debts could probably compose the “unknown uncertainty”.15  In 

addition, the recent boom of housing price seems to be a “bubble” in the sense that its 

movements around 2005 could not be well accounted for by economic fundamentals. It 

is worthwhile to mention that for inducing soft-landing of the housing price, solely 

depending on interest rate instrument does not seem to be an efficient measure as Fisher 

(2008) points out.16  

                                                 
15 For detailed and further explanation about institutional effect, see DiMartino and Duca (2007). 
16 Fisher (2007) writes “Even as I have been cutting the FFR…interest rates for private sector borrowers 
have not fallen correspondingly, and rates for some borrowes have increased….To address this problem, I 
have created some new facilities to bridge over the currently dysfunctional system…”. 
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Further research about the identification involving housing sectors, which could 

generate a huge effect on the entire real economy as we have seen, is needed. The 

relationship between the housing sector and macroeconomic variables, including 

monetary policy on the environments of considering the institutional factors, is still a 

looming question.  
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CHAPTER IV 

NONLINEARITY AND STRUCTURAL BREAK IN FORWARD-LOOKING 

INTEREST RATE RULE 

 

4.1. Introduction 

On September 18, 2007, the financial market was shocked by the Fed’s official 

announcement that it would cut Federal fund’s target rate by 0.50%p in response to the 

financial market turmoil triggered by the collapse of the sub-prime housing market. 

Unlike the expectations of the market, i.e. an at most 0.25%p cut, Bernanke, chairman of 

the Federal Reserve System, went for swift and bold response to the stock price down 

turn, reflecting growing fears of the financial market in light of his concern about 

inflation movements, Fed’s first concern. 

There are numerous papers that examine the relationships between asset prices 

and monetary policy. Most of them, however, usually confirm to two conventional ideas:  

(1) the Fed raises short-term real interest rates in response to inflation (2) meanwhile, the 

Fed does not change policy in response to stock price movements as Dupor and Conley 

(2004) point out. In this chapter, we restrict our interest to what the Fed has done in 

dealing with asset price movements rather than what the Fed should do about it. For the 

former question, basically Dupor and Conley’s (2004) argument is revisited based on a 

newly constructed nonlinear framework. The latter question can be rephrased to ask 

whether or not the Fed should have a preemptive response to asset price movements. 

Bernanke and Gertler (1999, 2001) support a quite cautious approach opposing 
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preemptive action, while Bordo and Jeanne (2002) assert that it is better-off to have a 

preemptive response.  

Dupor and Conley (2004) argue that Fed might be more successful in raising (or 

lowering) the interest rate in resposne to non-fundamental stock price movements during 

a low inflation era. That is, since the early 1990s, the so-called low inflation era, Fed has 

more easily or boldly responded to non-fundamental stock price movements given its 

first concern, i.e. low and stable inflation, is achieved. They show this using a forward-

looking interest rate rule based on GMM developed by Clarida, Gali, and Gertler (2000). 

After replicating their estimation results with extended data set, it is found that 

their linear estimation results are not robust to the chosen breakpoint. They say that the 

first quarter of 1991 is chosen because, since then, inflation has never grown at a rate 

greater than 4%. Even though they do not provide any econometric analysis to back up 

their choice, this breakpoint seems plausible. Along the low inflation period beginning in 

the early 1990s, the so-called ‘Great Moderation’ era comes and discussion of ‘New 

Economy’ follows. The experiments show how the estimation results change to small 

variations around breakpoints. The estimation consequences are unexpected and 

unacceptable, revealing huge deviations.  

How can this problem be fixed? This question is the starting motivation of this 

chapter. An alternative way of relaxing this problem is introducing a nonlinear model. A 

nonlinear model of forward-looking interest rate rule based on ‘series method’ is 

constructed, which allows us to carry over the original GMM presentation. After 

establishing nonlinear model, we revisit Dupor and Conley’s (2004) argument which 
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examines structural break in Fed’s behavior with the interesting hyppthesis that between 

nonlinearity and structural change which is the dominant cause of the apparent changes 

in Fed behavior. 

Upon extended instrumental variables (IVs) set-up based on Andrews (1999), 

estimated test results show that both nonlinearity and structural change matter in 

explaining the Fed’s behaviors responding to inflation and stock price gap movements. 

When looking at time-varying coefficients movements, somewhat different impressions 

come out across inflation and stock price gap coefficients. Given structural change, 

inflation coefficient’s movements indicate that Fed has responded to expected inflation 

pressure nonlinearly across sub-periods, while stock price gap coefficient’s show explicit 

break around the early 1990s, confirming Dupor and Conley’s finding. 

The remainder of this chapter is organized as follows. In section 4.2, the forward-

looking interest rate rule, including stock price gap variable, is derived and specified; 

this is the main theoretic background associated with this analysis. In section 4.3, data 

series are described and linear estimation results which are similar to those of Dupor and 

Conley (2004) are discussed. Then, with this linear model, the non-robustness around 

chosen breakpoint is dealt with. In section 4.4, the nonlinear model based on series 

method is constructed and its estimation results and time-varying coefficients 

movements discussed. In section 5, the test of structural change with the nonlinear 

framework is explored. Finally, the concluding remarks are drawn in section 4.5. 
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4.2. Fed’s Policy Reaction Function: A Forward-looking Rule 

 John Taylor examines Fed’s policy reaction function, i.e. interest rate policy, 

using contemporaneous or previous variables. He uses previous four-quarter inflation 

rate (Taylor 1993) or current inflation rate (Taylor 1998). Clarida, Gali, and Gertler 

(2000) newly build up the forward-looking policy rule and apply it to exploring post-war 

U.S. monetary policy reaction behavior. In this methodology, the GMM tool plays a 

central role in relaxing the endogenous problem which is in the conventional Taylor rule 

using OLS. In addition, their methodologies differ in two ways. Literally, it is forward-

looking, i.e. not using contemporaneous or previous variables. Also, it introduces the 

speed of adjustment (ρ) reflecting Fed’s realistic behavior of ‘fine tuning’. Dupor and 

Conley (2004) add stock price gap variable to the forward-looking policy rule and 

discuss their estimation results. Thus, the forward-looking interest rate rule is first 

derived following Clarida et al. (2000). Simple forward looking rule can be written as 

equation (31). 

ttkttktt syEERR γβππα +Ω+−Ω+= ++ )(])([ ***                       (31) 

where *
tR is target rate for nominal interest rate (e.g. Federal Funds Rate), *R  is desired 

nominal rate when both inflation and output are at their target levels, kt+π is k-quarter 

ahead growth rate of GDP deflator (annual rates), tΩ  is information set up to t when 

interest rate is set, *π  is target for inflation, and yt+k is k-quarter ahead percentage 

deviation of real GDP from its’ Hodrick-Prescott trend, which represents output gap 

beyond natural rate of growth. Finally, st is stock variable gap at time t. It should be 
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mentioned that the reason for using current stock variable gap, unlike in inflation and 

output gap, is based on Fed’s plausible behavior such that Fed is more likely to respond 

to stock price after watching current movement rather than based on expected stock price 

movements, as Dupor and Conley (2004) point out. 

Two identities represent short ( )(**
tkttt ERr Ω−≡ +π ) and long-run Fisher 

equation ( *** π−≡ Rr ) respectively associated with the relationship between real and 

nominal interest rates where r* is long-run equilibrium real rate, which is assumed 

constant and independent of monetary policy. After substituting the above two equations 

into (31), ex ante implied real rate rule can be written as equation (32). 

ttkttktt syEErr γβππα +Ω+−Ω−+= ++ )(])()[1( ***                    (32) 
 

The basic intuition that equation (32) indicates is simple and clear; that is, interest rate 

rules characterized by α > 1 imply active or aggressive responses to expected rising 

inflation, while those with α < 1 are likely to be accommodative of inflation shocks. A 

similar logic can be applied to output gap coefficient β and stock price gap γ, i.e., active 

or aggressive response to output gap if β > 0 and stock variable gap if γ > 0 while 

accommodative otherwise. Since the policy rule represented by equation (31) totally 

ignores Fed’s tendency to smooth changes in interest rates, we need to consider more 

realistic adjustment of interest rate to the target rate Rt
* as follows: 

*
1 )1( ttt RRR ρρ −+= −                                               (33) 
 

where Rt is “actual” interest rate (i.e., actual Federal Funds Rate). Equation (33) implies 

that, in each period, Fed adjusts her interest rate with a fraction (1 – ρ) of its’ current 
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target level. The gap between current interest rate and current target level can be 

represented by some linear combination between one-period previous realized actual 

interest rate and its current target level. Finally, after substituting equation (31) into (33) 

and using long-run Fisher equation ( *** π−≡ Rr ), we can obtain testable forward-

looking interest rate rule as follows:17 

ttktkttt esyRR ++++−+= ++− ])[1(1 γβαπθρρ                          (34) 

where θ = r* - (α -1)π* and et = )]()|()[1( kttktkttkt yEyE ++++ −Ω+−Ω− βππαρ ,  that is, et is 

linear combination of forecasting error and, thus, orthogonal to any variables in the 

information set Ωt. Let Zt denote a vector of instruments known when Rt is set (i.e., Zt ∈  

Ωt); then, we can have orthogonal condition to estimate parameters (ρ, θ, α, β, and γ) 

using GMM (Hansen, 1982) as equation (35). 

0})])(1({[)( 1 =+++−−−= ++− ttktkttttt ZsyRREZeE γβαπθρρ             (35) 
 
 

4.3 Linear Model and Break-point Issue 

All data employed in this analysis are on a quarterly average basis. From Table 

4.1, we can see specific descriptions for each series. Basically, every data set is the same 
                                                 
17 The concrete deriving steps can be described as follows. After substituting equation (31) into (33), we 
obtain below equation. ]|)|()[1( **

1 ttktttktttt syEERRR γβππαρρ +Ω+−Ω+−+= ++−  

Now substituting long-run Fisher equation *** π−≡Rr , and rearranging yields equation (37). 
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as those used in Dupor and Conley (2004). 21 IVs from lag variables are chosen. Slight 

difference come in the IVs associated with the stock price gap variable. One through five 

lags of IVs are used instead of one and five lags like Dupor and Conley (2004) use, since 

just choosing one and five lags is awkward when adopting the lags as IVs even though 

they justify it as the first lag representing short-run information and fifth lag long-run 

information of stock price gap movements. 

 

Table 4.1 
Data description 

variables Quarterly Average Basis1)

Rt Federal Funds rates 

πt Annualized growth rate of GDP deflator 

yt Percentage deviation of real GDP from its Hodrick-Prescott (HP) trend yt 

st Two year growth rate of the S&P 500 price earning ratio (PER) 

Instrumental 
Variables 

(21) 

Constant 
Three lags of πt and yt 
Three lags of quarterly growth rate in producer price index and M2 

Three lags of the yield spread between long- and short-term government bond2) 
Five lags of two year growth rate of the S&P 500 price earning ratio (PER)3) 

Notes: 1) All data except S&P 500 price earning ratio (PER) are obtained from Ib-based database (FRED) 
in Federal Reserve Bank of St. Louis. 2) I use yield spread between 10 year and 3 month U.S. Treasury 
bonds. 3) The data are obtained from Dr. Robert J. Shiller’s homepage. 
 

 
Especially for stock price gap variable, price-earning ratio is used. The earning 

part represents fundamental factors which eventually decide stock price trends. Thus, 

high price-earning ratio can be regarded as positive stock price gap. Using two years 

growth rate of stock price gap can be explained by economic intuition. Dupor and 

Conley (2004) point out, “We use a two-year price-earnings growth rate instead of short-

term one. It seems more plausible that the Federal Reserve would respond to lower-
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frequency changes in a stock price index or a price-earning ratio than to higher-

frequency changes.” 

In late 1979, Paul Volcker started his appointment as a Fed chairman. After 

experiencing huge turmoil and fallout of real economy affected by the high inflation, he 

sent a strong and explicit signal to the market that Fed would curb the inflation as a first 

priority. This fundamental shift in monetary policy leads us to adopt 1979 as a natural 

starting point of the analysis as Dupor and Conley (2004) do. Figure 4.1 displays 

inflation movements of U.S. and the data starting point as well as the chosen breakpoint. 

Dupor and Conley (2004) choose 1Q 1991 as a breakpoint because, since then, 

there has never been greater than 4% growth rate in inflation. Even though they do not 

provide any econometric analysis to back their choice, this chosen breakpoint looks 

plausible. Along the low inflation period beginning in the early 1990s, the so-called 

‘Great Moderation’ era comes and the discussion of ‘New Economy’ follows. However, 

non-robustness of estimation results of Dupor and Conley’s linear model around this 

breakpoint can be found. 

 
Fig. 4.1. Inflation movements. First line indicates data starting point and second line chosen break point by 
Dupor and Conley (2004). 
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Briefly describing the methodology associated with GMM, forward-looking 

horizon is one year, i.e., k=4 in quarterly data framework and time series-HAC 

estimation is conducted using identity weighting matrix. Also, Bartlett kernel with 

Newey-West’s fixed bandwidth selection and VAR1 pre-whitening is involved as an 

optional choice. So, basically, the magnitudes of coefficients are equivalent to those of 

2SLS but the standard errors are different.   

         tktkttt eyRR +++−+= ++− ])[1(1 βαπθρρ                         (36) 
 
Table 4.2 
Interest rate rules in high and low inflation sub-periods1) 

 
Period α Β ρ θ J-statistic2)

1979:4 – 2005:4 3.292 
(0.815) 

3.245 
(1.672) 

0.893 
(0.044) 

-3.783 
(2.825) 

9.818 
[0.911] 

1979:4 – 1991:1 1.386 
(0.248) 

-0.477 
(0.247) 

0.659 
(0.108) 

3.646 
(1.189) 

12.407 
[0.775] 

1991:2 – 2005:4 18.500 
(91.405) 

15.418 
(65.419) 

0.988 
(0.052) 

-40.064 
(215.5) 

9.370 
[0.927] 

Note: 1) Standard errors appear in parentheses. 2) P-values associated with a test of the model’s over-
identifying restrictions under the null that over-identifying restrictions are satisfied appear in brackets.  

 

The estimation equation and results of the linear model without stock price gap 

are shown in equation (36) and Table 4.2 respectively. Overall results are similar to 

those of Dupor and Conley (2004). Full sample and high inflation sub-period estimation 

results look fine. The speed of adjustment (1-ρ) is faster in the high inflation sub-period 

which is consistent with Fed’s historical behavior. One interesting point is an inflation 

coefficient greater than one and significant in both the full sample and high inflation 

sub-period. There is, however, a somewhat large deviation already in the estimation of 
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the inflation coefficient in the low inflation sub-period, and it is insignificant. In 

addition, other parameters are estimated imprecisely. As Dupor and Conley (2004) point 

out, the degree of variation matters. Compared to the high inflation sub-period, the 

variation of inflation movements in low inflation is too low to generate significant 

coefficients.   

When including the stock price gap variable, the estimation equation and results 

are displayed in equation (37) and Table 4.3 respectively. The overall precision of 

estimation results is improved and we can easily notice sharp change in stock price gap 

coefficients across sub-periods confirming Dupor and Conley’s argument. That is, the 

coefficient of stock price gap is positive and significant in the low inflation sub-period 

while it is statistically close to zero in other sub-periods.  

However, we still have insignificance of inflation coefficient in the low inflation 

sub-period. This is a very inconvenient result. Does it mean that Fed does not care about 

inflation since the start of the low inflation era? Put other way, can we directly state that 

Fed has done nothing associated with expected inflation pressure since the early 1990s? 

Not really. Faced with this type of identification problem, Dupor and Conley (2004) try 

to explain using the argument that, “If U.S. monetary policy aggressively combats 

inflation, and then price-setters would never choose time paths with period-on-period 

price increases. To do so would mean…putting them out of business. In equilibrium, one 

would never observe high inflation.” This argument could be the answer we seek. 

However, when facing huge deviations in estimation results in the linear model around 
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the breakpoint, other alternative approaches to relax this problem must be sought by 

constructing a nonlinear model. 

ttktkttt esyRR ++++−+= ++− ])[1(1 γβαπθρρ                         (37) 
 
Table 4.3 
Interest rate rules with stock variable1) 

 
Period α β ρ θ γ J-statistic2)

1979:4 – 2006:1 2.888 
(0.555) 

1.509 
(1.186) 

0.858 
(0.052) 

-3.123 
(1.968) 

0.055 
(0.025) 

8.474 
[0.933] 

1979:4 – 1991:1 1.355 
(0.320) 

-0.470 
(0.264) 

0.653 
(0.128) 

3.843 
(1.633) 

-0.004 
(0.020) 

12.428 
[0.714] 

1991:2 – 2005:4 2.273 
(2.582) 

-0.944 
(1.201) 

0.885 
(0.061) 

-2.518 
(6.253) 

0.129 
(0.057) 

7.073 
[0.972] 

Note: 1) Standard errors appear in parentheses. 2) P-values associated with a test of the model’s over-
identifying restrictions under the null that over-identifying restrictions are satisfied appear in brackets. 
 
 

To evaluate how robust the estimation results of the linear model to the chosen 

breakpoints are, some experiments are carried out demonstrating how much the 

estimation results can change when shifting the break point by adding or subtracting one 

quarter around the chosen breakpoint up to one year. As shown in Tables 4.4 and 4.5, 

small variations of breakpoints lead to huge deviations in estimation results, especially in 

inflation coefficients in the low inflation sub-period. For the coefficient of stock price 

gap, the significance varies a lot across the sub-period. These results are shocking 

because even shrinking just one quarter of the low inflation sub-period demonstrates the 

reversal of sign in the estimated inflation coefficient in the case without stock price gap. 

 

Table 4.4 
Robustness test of the estimation without stock variable 
 (Low) 1990.2~ 1990.3~ 1990.4~ 1991.1~ 1991.2~ 1991.3~ 1991.4~ 1992.1~ 1992.2~ 
Inflation 4.138 2.567 1.443 1.530 18.500 -24.805 -15.635 -9.503 -8.908 
  (6.059) (4.340) (3.724) (4.758) (91.405) (83.581) (28.909) (7.616) (6.650) 
Note: Standard errors appear in parentheses.  
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Table 4.5 
Robustness test of the estimation with stock variable 

(Low) 1990.2~ 1990.3~ 1990.4~ 1991.1~ 1991.2~ 1991.3~ 1991.4~ 1992.1~ 1992.2~ 
Inflation 1.122 0.965 0.842 0.792 2.273 4.092 7.228 21.908 22.134 

 (1.009) (1.131) (1.304) (1.510) (2.582) (4.815) (10.139) (68.029) (57.741) 
Stock 0.104 0.101 0.096 0.096 0.129 0.168 0.212 0.458 0.500 

 (0.018) (0.021) (0.026) (0.033) (0.057) (0.105) (0.198) (1.191) (1.124) 
Note: Standard errors appear in parentheses.  
 

 

Despite the plausible breakpoint based on economic episodes, why does this 

deviation occur? One way of accounting for this could be weakness of stationary 

assumption of interest rate. However, the stationary assumption of interest rate has been 

given from the Taylor’s analysis and this type of policy reaction function. As an 

alternative, the construction of a nonlinear model to relax this problem is explored. After 

constructing nonlinear model, Dupor and Conley (2004)’s argument will be revisited. 

  
4.4 Nonlinear Model 

 
When considering nonlinear model, there are several options. The STAR model 

of Terasvirta (1994) could be one of them. However, most of them are not consistent 

with the GMM representation which is core in the forward-looking policy rule. So we 

adopt the so-called ‘series method’ which can allow polynomial terms in inflation and 

stock price gap coefficients generating nonlinearity while it cannot harm the beauty of  

original GMM specification.  

In the series method, the inflation and stock variable coefficients can be 

approximated by a function of chosen explanatory variables. The potential candidates for 

them could be level value of inflation, inflation deviation from its target level, level 
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value of interest rate, and some possible combinations. However, they all fail to generate 

nonlinearity except volatility of FFRs (or deviations from its trend). Hereafter, it will be 

denoted by δt. Equation (38) illustrates nonlinear specification expressed by coefficient 

functions. 

 

      0})])()()(1({[)( 1 =+++−−−= ++− tttktktttttt ZsyRREZeE δγβπδαθρρ         (38)   

where δt = Rt - (HP Trend of Rt). Each coefficient function is approximated by 

polynomial terms and it can be represented as 1

1

2
21)( k

tkttot δαδαδααδα +⋅⋅⋅+++≈  and            

2

2

2
21)( k

tkttot δγδγδγγδγ +⋅⋅⋅+++≈ . If we express this specification in matrix form, we 

can have clear intuition that the linear model is just one specific case among a variety of 

possible nonlinear models. The linear model can be true only when the restriction of the 

power values of the polynomial terms are jointly zero, e.g., k1 = k2 = 0. Equation (39) 

illustrates nonlinear specification. 
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k1 = k2 = 0, then nonlinear model is reduced back to a linear model. The selection of 

nonlinear model is three-folds. First, check the significance of nonlinearity by 

conducting usual joint Wald test for polynomial coefficient terms. Secondly, watching p-

values of rejecting linearity in each model, select the series term K by two criteria which 

are usual in the series method (See Li and Racine (2007), p451-453): ‘Mallow’s CL’ and 
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‘generalized cross-validation’.  First the Mallow’s CL is to select K to minimize ]21[2

n
K

+
∧
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Second the generalized cross-validation is to select K to minimize 22 )1/(ˆ
n
K
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22 1σ and K = k1 + k2. Among the final two candidates passing the two steps, 

look at J-statistics to evaluate the degree of satisfaction in over-identifying restrictions. 

This selection process is displayed in Table 4.6. Eventually, k1 = k2 =2, i.e., quadratic 

function is selected on the grounds that it is much simpler without losing much in 

explanation power when compared to the k1 =4, k2 =2 case. 

 

Table 4.6 
Selection of series term K 

Series Term Mallow’s CL Generalized cross-
validation 

Joint Wald Test 
(Null: linearity) J-statistic p-value 

k1 =2, k2 =2* 0.7925 0.7961 0.0543 0.606 
k1 =2, k2 =3 0.8144 0.8202 0.0977 0.560 

k1 =2, k2 =4 0.8386 0.8472 0.1652 0.487 

k1 =3, k2 =2 0.8146 0.8204 0.0925 0.508 

k1 =3, k2 =3 0.8398 0.8484 0.1268 0.452 

k1 =3, k2 =4 0.7904 0.8015 0.0898 0.447 

k1 =4, k2 =2* 0.7499 0.7576 0.0445 0.343 

k1 =4, k2 =3 0.7847 0.7956 0.0639 0.279 

k1 =4, k2 =4 1.0068 1.0251 0.3868 0.163 
Note: * implies final candidates. And also note that the quadratic function of inflation coefficient in k1 =2,              
k2 =2 case is not much different from forth-power function in k1 =4, k2 =2 case in the quality              
sense, if not triple one.  
 

Finally, selected nonlinear specification is represented in equation (40). Full 

sample estimation results of the nonlinear model are shown in Table 4.7. Most of the 

coefficients are estimated precisely except output gap coefficient (β) and constant (θ). 
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For this nonlinear model, the nonlinearity test is conducted, and it is found that most 

nonlinearity power comes from inflation coefficients. Jointly with inflation coefficients, 

stock price gap coefficients can reject the linearity; meanwhile, they cannot generate 

nonlinearity on their own. 
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210
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Table 4.7 
Nonlinear model estimation result: Full sample period 
 α0 α1 α2 β ρ θ γ0 γ1 γ2 

J-
statistic 

1979:4 – 
2005:4 

2.486 
(0.464) 

0.438 
(0.159) 

-0.058 
(0.039) 

0.890 
(0.883) 

0.752 
(0.077) 

-0.627 
(1.339) 

0.022 
(0.041) 

-0.069 
(0.038) 

-0.026 
(0.027) 

10.110 
[0.606] 

 
 Note that the joint Wald coefficient tests are as follows: 

                                            Null: 02121 ==== γγαα    : p-value = 0.0543 
                                          Null: 021 ==αα                    : p-value = 0.0159 
                                          Null: 021 == γγ                      : p-value = 0.1508 
 

The beauty of the nonlinear model is that we can draw time-varying coefficient 

movements. It can be obtained from mapping values of estimated quadratic function 

corresponding to time-varying historical volatility of interest rate (δt). Figure 4.2 shows 

the time-varying movement of the inflation coefficient. This graph shows quite plausible 

illustration associated with Fed’s behavior responding to expected inflation pressure. 

That is, most of the magnitudes of coefficients fall in reasonable range from one to three, 

implying that there has been aggressive Fed response to expected inflation pressure 

across sub-periods.  This implication is somewhat different from that of the linear model 

in which we face difficulty in explaining Fed’s reaction to inflation pressure in the low 

inflation era. Subsequently, a few interesting questions are raised. Is there real structural 
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break? Or isn’t nonlinearity dominant over structural change? Which one is the better 

approach to explain changes in Fed’s behavior in this type of reaction analysis? 

For the stock price gap coefficient, a similar impression can be raised from the 

time-varying movements shown in Figure 4.3. It fluctuates around zero across sub-

periods, which leads one to think that Fed might be responding nonlinearly to non-

fundamental stock price movements, irrespective of structural change. Until thus far, all 

test results and coefficient movements indicated that the nonlinearity of the coefficients 

should be considered seriously.  

 
Fig. 4.2. Time-varying inflation coefficient movement. 
 

 
Fig. 4.3. Time-varying stock price gap coefficient movement. 
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The same experiment is conducted for each sub-period separately. The estimation 

results show consistency with those of the full sample period in terms of existence and 

source of nonlinearity. Superscript h implies the high inflation sub-period and estimation 

results are shown in Table 4.8, while l implies the low inflation sub-period and 

estimation results are shown in Table 4.9. Again, each sub-period test’s results 

recommend that the nonlinearity in the policy rule reaction function must be considered 

when executing the test of structural change across sub-periods. 

Sub-sample h : t ≤ t*, t*= 1991 q1 
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Table 4.8 
Nonlinear model estimation result: High inflation sub-period 

 α0 α1 α2 β Ρ θ γ0 γ1 γ2 J-statistic 
1979:4 

– 
1991:1 

2.244 
(0.853) 

0.297 
(0.107) 

-0.014 
(0.025) 

0.834 
(0.865) 

0.712 
(0.118) 

0.792 
(3.334) 

-0.057 
(0.043) 

-0.014 
(0.023) 

0.025 
(0.025) 

8.622 
[0.735] 

     
Note that the nonlinearity tests are as follows:  
 
                                    Null: 02121 ==== hhhh γγαα       : p-value= 0.0172  
                                  Null: 021 == hh αα                        : p-value= 0.0025  
                                  Null: 021 == hh γγ                         : p-value= 0.9006  

 
 Sub-sample l : t > t*, t*= 1991 q1 
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Table 4.9  
Nonlinear model estimation result: Low inflation sub-period 

 α0 α1 α2 β Ρ θ γ0 γ1 γ2 J-statistic 
1991:2 

– 
2005:4 

-0.904 
(0.554) 

0.389 
(0.129) 

0.107 
(0.211) 

-0.403 
(0.434) 

0.600 
(0.159) 

5.400 
(1.472) 

0.038 
(0.022) 

0.0002 
(0.021) 

0.012 
(0.016) 

5.570 
[0.936] 

  
Note that the nonlinearity tests are as follows: 
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                               Null: 02121 ==== llll γγαα            : p-value = 0.0000 
                             Null: 021 == ll αα                            : p-value = 0.0002 
                             Null: 021 == ll γγ                             : p-value = 0.6075 
 
 

4.5 Test of Structural Change 

Carrying out the test of structural change by usual Wald-type coefficient stability 

test using dummy variables, we face short supply of IVs. That is, initially only 21 IVs 

are involved while there are 18 parameters in the general model of executing a structural 

break test. Here, the general model implies no constancy restrictions on any coefficient 

across sub-periods in the structural break test. So 21 IVs given 18 parameters imply too 

small a number to generate appropriate estimations in coefficients in over-identifying 

framework.18 Extending IVs by adding more lag variables to existing IV set is essential. 

However, how many lag variables can be added? Upon Andrews (1999) methodology, 

broad recommendation about choosing number of IVs can be obtained. The main point 

of the methodology is exploiting trade-off relationships generated by J-statistic and 

number of over-identification. The basic trade-off relationships can be written as follows: 

 

               GMM-BIC(c) = npccJ n ln)()( −−    : analogue of the BIC 

                            where )(cJn = J-statistic and )( pc − = number of over-identification  
 
               GMM-HQIC(c) = )ln(ln)()( npcQcJ n −−    : analogue of the HQIC 

                            where )(cJn = J-statistic, )( pc − = number of over-identification, and  
                                        Q is some number > 2 

                                                 
18 In Clarida, Gali, and Gertler (2000), they use 20 IVs to estimate 5 coefficients and in Dupor and Conley 
(2004) they use 17 IVs to estimate 5 coefficients. So roughly they use 3~4 times more number of IVs than 
that of coefficients. 
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where (|c| - p)lnn  and Q(|c| - p)ln(lnn) are ‘bonus terms’ that “rewards selection vectors 

that utilize more moment conditions. This term is necessary to offset the increase in Jn(c) 

that typically occurs when moment conditions are added,” as Andrews (1999) points out. 

One thing to be mentioned here is that Andrews’s methodology is not used to pick up the 

exact number of IVs. Rather, it is applied to grasp broad intuition of how many IVs can 

be added. Since the extension of numbers in IVs is done by adding a set of lag variables 

(i.e., six variables) one by one, whenever one lag variable is extended six more IVs 

increase at the same time. 

For the general model, the above two criteria recommend roughly more than 

seven lags up to 14 lags IVs. Once over 14 lags IV, the criteria values show a sort of 

explosion. For the model with linear restriction on stock price gap coefficient, the 

criteria also recommend similar range. Considering both tests together, 12 lags IVs set 

case was picked as a representative, and the same structural break and nonlinearity tests 

were conducted for 10, 11, 13, and 14 lags cases. The three to five lags IV sets used in 

the previous section is definitely short for carrying out the test of structural change. The 

specific test results for choosing IVs are included in Appendix G. 

Table 4.10 shows test results of structural change for the general model, i.e. using 

dummy variables for all coefficients. In the 12 lags IV set, 73 IVs, which is about four 

times more than 18, the number of coefficients, are involved and so there are 55 over-

identifications. Test results illustrate two major findings. First, linearity of inflation and 

stock price gap coefficients are jointly rejected. In addition, most of nonlinearity power 

comes from inflation coefficients, which is consistent with the result in the analysis of 
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the nonlinear model without considering structural change. Secondly, the usual joint 

Wald tests for coefficients’ stability show that null hypotheses of ‘no structural change’ 

across sub-periods are rejected. That is, there can be a structural change with quite high 

probability given existence of nonlinearity in the coefficients. Tests of structural change 

were conducted for several coefficient sets such as set of all, set of inflation and stock 

price gap, and set of inflation and stock price gap coefficients respectively. For all cases, 

the null of no structural change is rejected. As mentioned, in choosing IVs, the same 

tests were conducted for 10, 11, 13, and 14 lags IVs cases, and similar and consistent 

results obtained in the12 lags IVs case with some variations. (See Appendix H)   
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Table 4.10 
Test of structural change: General model 
 α0 α1 α2 β ρ θ γ0 γ1 γ2 J-statistic 
1979:4 

– 
1991:1 

1.208 
(0.084) 

0.251 
(0.019) 

0.004 
(0.003) 

0.082 
(0.119) 

0.539 
(0.036) 

4.697 
(0.379) 

-0.019 
(0.007) 

0.003 
(0.005) 

0.002 
(0.002) 

26.847 
[0.9995] 1991:2 

– 
2005:4 

2.356 
(1.875) 

0.437 
(0.137) 

-0.441 
(0.240) 

-0.363 
(0.370) 

0.793 
(0.113) 

-0.830 
(4.290) 

0.068 
(0.040) 

0.029 
(0.028) 

0.025 
(0.018) 

 
Note that the nonlinearity tests are as follows: 
 
                          Null: 021212121 ======== llhhllhh γγγγαααα       : p-value = 0.0000 

                               Null: 02211 ==== lhlh αααα                                              : p-value = 0.0000 

                               Null: 02211 ==== lhlh γγγγ                                               : p-value = 0.4561 
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Wald tests for stability of coefficients are as follows: 

Null: lhlhlhlhlhlhlhlhlh
221100221100 ,,,,,,,, γγγγγγθθρρββαααααα =========  :p-value = 0.0000 

Null: lhlhlhlhlhlhlhlhlh θθρρββγγγγγγαααααα ≠≠≠====== ,,,,,,, 221100221100  :p-value = 0.0000 

Null: lhlhlhlhlhlh θθρρββαααααα ≠≠≠=== ,,,, 221100                   : p-value = 0.0168 

Null: lhlhlhlhlhlh θθρρββγγγγγγ ≠≠≠=== ,,,, 221100                 : p-value = 0.0002 

 
When drawing time-varying coefficients movements, there is somewhat different 

impression between inflation and stock price gap coefficients despite their common 

property containing statistical structural changes. When looking at Figure 4.4 for the 

inflation coefficient, nonlinearity appears to play quite an important role or dominance 

over structural break. That is, Fed seems to have responded to expected inflation 

pressure nonlinearly in a qualitative sense across sub-periods. The fact that most values 

of the inflation coefficient fall on greater than one indicates that across the sub-periods 

Fed’s response is aggressive and significant given quantitative differences in 

magnitudes, which generates statistical structural change. This explanation is also 

consistent with the finding that most of nonlinearity power comes from the inflation 

coefficients. 

 
  Fig. 4.4. Inflation coefficient movement: General model 
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  Meanwhile, structural break in stock price gap coefficient looks dominant just 

like the test results in both the quality and quantity sense as shown in Figure 4.5. In the 

high inflation sub-period, most values of the coefficient are small and negative closing to 

zero. However, in the low inflation sub-period, the values are much larger and positive. 

The movements confirm the Dupor and Conley’s (1994) argument in the nonlinear 

framework. 

 
Fig. 4.5. Stock variable coefficient movement: General model 

 
Since the stock price gap coefficient cannot generate nonlinearity by itself, tests 

of structural change were conducted with linear restriction on the stock variable 

coefficient. The test results, both of linearity and stability of coefficients, are similar to 

those of the general model. These results are displayed in Table 4.11. 
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Table 4.11 
Test of structural change: Linear restriction on stock variable 

 α0 α1 α2 β ρ θ γ0 J-statistic 

1979:4 – 
1991:1 

1.263 
(0.068) 

0.251 
(0.020) 

0.002 
(0.002) 

0.129 
(0.108) 

0.547 
(0.035) 

4.475 
(0.336) 

-0.017 
(0.005) 

28.55 
[0.9997] 1991:2 – 

2005:4 
1.442 

(0.879) 
0.471 

(0.079) 
-0.228 
(0.105) 

-0.359 
(0.260) 

0.740 
(0.066) 

0.949 
(1.786) 

0.065 
(0.012) 

     
 
Note that the nonlinearity tests are as follows. 
 

       Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα  : p-value = 0.0000 

       Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα     : p-value = 0.0000 

       Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα  : p-value = 0.0000 
 
 The Wald test for stability of coefficients are as follows. 
 
       Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα  :p-value = 0.0000 

       Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα : p-value = 0.0000 

       Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα : p-value = 0.0000 

       Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                   : p-value = 0.0000 

 

 
Fig. 4.6. Inflation coefficient movement: Linear restriction on stock variable. 
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Again, when looking at time-varying movements of inflation coefficient in 

Figure 4.6, the nonlinearity plays an important role in Fed’s response to the expected 

inflation pressure. A small difference from the previous graph of the general model is 

two times the deviations from aggressive response in the low inflation sub-periods of the 

early 1990s and early 2000s, which periods are 1991-1992 recession in the U.S. 

economy and fallout period after the collapse of the dotcom bubble respectively. 

 
4.6 Concluding Remarks 

 
There are many issues in looking at the Fed’s behaviors across the high and low 

inflation sub-periods. When the non-robustness of linear set-up around a breakpoint is 

verified, a nonlinear model is constructed as an alternative. Upon the nonlinear 

framework, identification of the dominant cause of apparent change in Fed behavior, 

between structural change and nonlinearity, is sought. The estimation results indicate 

that both nonlinearity and structural change matter in accounting for Fed’s behaviors. 

Through the coefficient movements, the weights of those two factors - 

nonlinearity and structural change - are somewhat different. For the inflation coefficient, 

Fed has responded to expected inflation pressure nonlinearly and aggressively for the 

entire sample period given statistical structural changes around the early 1990s. For the 

stock variable coefficient, Fed may change its position apparently, i.e. by more actively 

responding to non-fundamental stock price movements than before. This explanation is 

consistent with the test results indicating that most source of nonlinearity comes from 

inflation coefficients. 
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CHAPTER V 

CONCLUSIONS 

 

The superior performance of using the steady state BVAR (SS BVAR) in out-of-

sample forecasts, especially for the long horizons, is demonstrated. Based on SS BVAR, 

the identification issue is explored through two different approaches; an economic theory 

and algorithms of inductive causation method called “DAGs”. While the housing 

sector’s specification is somewhat similar across various identification designs, the other 

exogenous status of other variables are quite different.  

Once the system is identified, the main question is how the monetary policy 

shocks can affect the housing sector. Estimation results of impulse response of housing 

price and investment to FFRs in alternative identifications verify that the magnitudes are 

relatively smaller, less significant and shorter when compared to Choleski case. Also, 

this finding can be confirmed by historical decomposition and conditional forecast 

analyses. The recent high peak of housing prices cannot be well accounted for without 

feeding the housing prices’ own shocks in the historical decomposition. Also, generated 

conditional forecasts of housing prices fail in replicating the run-up of housing prices 

around 2005, given the assumption that we had known the actual paths of real GDP (y), 

inflation (p), money demand (m), 30-yr. mortgage rate (mor30) and actual or simulated 

FFRs. With all these estimation results, it is hard to agree with the argument that the 

considerable responsibility of the current housing boom and fallout is due to monetary 

policy shocks. Rather, this research indicates that there is still enormous uncertainty 
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between monetary policy and housing prices. The institutional shocks such as the 

fundamental change of mortgage markets including the securitizing mortgage debts 

could be one source of uncertainty.  

There are many issues to consider in looking at the Fed’s behaviors across the 

high and low inflation sub-periods. After relaxing the problem of non-robustness in the 

linear set-up around breakpoint with nonlinear model, the identification of the dominant 

cause of apparent change in the Fed behavior, between structural change and 

nonlinearity, is explored. The estimation results imply that considering both nonlinearity 

and structural change matter in accounting for the Fed’s behavior. For the inflation 

coefficient, the Fed has responded to expected inflation pressure nonlinearly and 

aggressively for the entire sample period given structural change around the early 1990s. 

For the stock price coefficient, the Fed changes its position more clearly, i.e., more 

actively responding to non-fundamental stock price movements than before. 

The dynamic relationship between monetary policy and asset prices needs further 

research when compared to relatively abundant research about the relationship between 

output or inflation and monetary policy. The relationship between the housing sector and 

macroeconomic variables including monetary policy is still a looming question.  
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APPENDIX A 

PROOF OF POSTERIOR DENSITY 

 

Full conditional posterior of Σ  
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This comes from usual standard Bayesian results. 
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Full conditional posterior of 
_
Ψ  
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2
1exp[ 1

∧∧∧∧
− Θ−Θ−Θ−Θ−Θ−Θ−Σ−= DDYDDYtr  

                          where YDDD ')'( 1−
∧

=Θ  

                     )}](')'()()'(({
2
1exp[ 1

∧∧∧∧
− Θ−ΘΘ−Θ+Θ−Θ−Σ−= DDDYDYtr  

                           since )''()'()(')'(
∧∧∧∧

Θ−Θ−Θ=Θ−Θ−Θ DDYDDYD  

                                                                        )')'(''()'( 1 YDDDDDYD −
∧

−Θ−Θ=   
                                                                         0=  

                     )}](')'({
2
1exp[ 1*

1

∧∧
− Θ−ΘΘ−ΘΣ−= DDtrS  
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                                              where )}()'({
2
1 1*

1

∧∧
− Θ−Θ−Σ−= DYDYtrS  

                     }]')''()'''{(
2
1exp[ 1*

1 DDtrS
∧

−
∧

Θ−ΘΣΘ−Θ−=  

                                         since tr(AB)=tr(BA), where 

)}](,')'(1
∧∧

− Θ−Θ=Θ−ΘΣ= BDDA  

                     }]')''())'''({(
2
1exp[ 1*

1 DDtrS
∧∧

− Θ−ΘΘ−ΘΣ−=  

                     }]')''{()}'''(({
2
1exp[ 1*

1 DDvecvecS
∧∧

− Θ−ΘΘ−ΘΣ−=  

                       since )()}'({)'( BvecAvecBAtr = where 

DDBA ')''(,)'(1
∧∧

− Θ−Θ=Θ−ΘΣ=  

                     )}]''('{)}'''({
2
1exp[ 1*

1

∧∧
− Θ−Θ⊗Θ−ΘΣ⊗−= vecIDDvecIS pp  

                                          since )()'()()()( AvecIBBvecAIABvec ⊗=⊗=  

                     )]''()')(()}'''({
2
1exp[ 1*

1

∧
−

∧

Θ−Θ⊗Σ⊗Θ−Θ−= vecIDDIvecS pp  

                                          since )''()'( BABA ⊗=⊗  

                     )]')('()''(
2
1exp[ 1*

1

∧
−

∧

Θ−ΨΣ⊗Θ−Ψ−= vecUvecDDvecUvecS  

                                          since BDACDCBAUvecvec ⊗=⊗⊗Ψ=Θ ))((,)'(  

                    )]')('}()''(')'{(
2
1exp[ 1*

1

∧
−

∧

Θ−ΨΣ⊗Θ−Ψ−= vecUvecDDvecUvecS  

                 

]')'()''()'()''(

')'(')'()'(')'{(
2
1exp[

11

11*
1

∧
−

∧
−

∧

∧
−−

ΘΣ⊗Θ+ΨΣ⊗Θ−

ΘΣ⊗Ψ−ΨΣ⊗Ψ−=

vecDDvecUvecDDvec

vecDDUvecUvecDDUvecS
      

            

}]')'()''(')'()'{(
2
1exp[ 1*

1

∧
−

∧

ΘΣ⊗Θ+Ψ−Ψ−ΨΨ−= vecDDvecvecBBvecAvecvecS  

                                                     where ')'(',)'(' 11
∧

−− ΘΣ⊗=Σ⊗= vecDDUBUDDUA  

               }]')'()'{(
2
1exp[ *

2
*
1 Ψ−Ψ−ΨΨ−+= vecBBvecAvecvecSS                   

                                                           where ')'()''( 1*
2

∧
−

∧

ΘΣ⊗Θ= vecDDvecS  

               )]'''(
2
1exp[ *

2
*
1 ψψψψ BBASS −−−+=  

                                                            where Ψ= vecψ  
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               )]()'(
2
1exp[ *

3
*
2

*
1

∧∧

−−−++= ψψψψ ASSS  

                     where BAAS 1*
3 ,' −

∧∧∧

== ψψψ  note that AABBA '''',
∧∧∧

=== ψψψ  

               )]()'(
2
1exp[ *

3
*
2

*
1

∧∧

−−−++= ψψψψ ASSS  

Thus 

)]()'(
2
1exp[),,|,( *

3
*
2

*
1

∧∧

−−−++∝ΨΠΣ ψψψψ ASSSDYp  

),,|,(),,(),|,,( ΨΠΣΠΣΨ=ΠΣΨ DYppDYp  by Bayes’ rule 
                            ),,|,()()()( ΨΠΣΠΣΨ= DYpppp  by independence 
                            ),,|,()( ΨΠΣΨ∝ DYpp  
                           

)]()'(
2
1exp[)()'(

2
1exp[ *

3
*
2

*
1

1
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Ψ
−
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                           )}]()'()()'{(
2
1exp[ 1*

3
*
2

*
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Ψ
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ΨΨΨ −Ψ+Ω−Ψ−+++= θθ ASSSS  

                               where  )()'()()'(
___

1
_

*
Ψ

∧

Ψ

∧

ΨΨ
−
ΨΨΨΨ −−+−Ω−= θψθψθθθθ AS  

                                and given )()'()()'(
___

1
_

Ψ

∧

ΨΨΨ
−
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                                              = )}()({)'(
__

1
_

Ψ
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ΨΨ
−
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                                     Thus 
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ΨΨ
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11 =−+Ω−Ω Ψ

∧

Ψ
−
ΨΨ

−
Ψ θψθθ AA  

                                                  
∧

Ψ
−
ΨΨ

−
Ψ +Ω=+Ω ψθθ AA 1

_
1 )(  

                                      Therefore )()( 111
_ ∧

Ψ
−
Ψ

−−
ΨΨ +Ω+Ω= ψθθ AA  

 

)}])(()'{(
2
1exp[),,,|(

_
1

_

Ψ
−
ΨΨ −Ψ+Ω−Ψ−∝ΠΣΨ θθ ADYp  



 96

                                      since given **
3

*
2

*
1 ,,,,,, ΨΠΣ SandSSSDandY are constant 

                            ))(,(~ 11
_

−−
ΨΨ +Ω AN pq θ  

                                        where UDDUA )'(' 1−Σ⊗=  

                                        and also )()( 111
_ ∧

Ψ
−
Ψ

−−
ΨΨ +Ω+Ω= ψθθ AA  

                                                             )()( 1111 BAAA −
Ψ

−
Ψ

−−
Ψ +Ω+Ω= θ  

                                                             )()( 111 BA +Ω+Ω= Ψ
−
Ψ

−−
Ψ θ    

                                                             )')'('()( 1111
∧

−
Ψ

−
Ψ

−−
Ψ ΘΣ⊗+Ω+Ω= vecDDUA θ  
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APPENDIX B 

GENERATED DATA ILLUSTRATION 

 
 

The model can be written as following equation (B.1). 

ttt dxL ε=Ψ−Π ))((                                              (B.1) 
 
where tx  is p-dimensional vector of time series at time t. td  is q-dimensional vector of 

deterministic trends or other exogenous variables, k
kp LLLIL Π−−Π−Π−=Π L2

21)( , 

'
1 ),...,( kΠΠ=Π , and tε  ~ ),0( ΣpN  and is independent between time periods. In this 

setup the unconditional mean of the process is directly specified by Ψ as tt dxE Ψ=)(0 . 

Now a bi-variate time series of length 100 is generated from the stationary mean-

adjusted VAR in (B.1) under following true values which constitute k = 1, dt = 1, 

)4,1(),(' 21 ==Ψ ψψ , )95.0,95.0(1 Diag=Π , and )1.0,1.0(Diag=Σ . The system is 

close (or near) unit-root process as expressed in equation (B.2) 

 

ttt

ttt

xx
xx

2122

1111

)4(*95.0)4(
)1(*95.0)1(

ε
ε
+−=−

+−=−

−

−                                          (B.2) 

 
I conduct three experiments of 2000 Gibbs sampling with a flat prior on 1Π , and 

diffuse prior (
2/)1( +−Σ p

) on Σ : (1) Flat (non-informative) prior on steady state )(Ψ , (2) 

Mildly informative prior on steady state )(Ψ , (3) Fully informative prior on steady state

)(Ψ . As well illustrated in following graphs, even mildly informative prior on steady 

state plays a big role in converging the true parameters.  
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(1) Flat prior on steady state )(Ψ : non-informative case 

      I cannot keep sampling until 2000: caused by drawing from non-stationary region. 

1Π  

 

 
1ψ  

 
2ψ  

0 50 100 150 200 250 300 350 400
-20

-15

-10

-5

0

5

10

0 50 100 150 200 250 300 350 400
-30

-20

-10

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 50 100 150 200 250 300 350 400
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

0 50 100 150 200 250 300 350 400
-3000

-2500

-2000

-1500

-1000

-500

0

500

1000

0 50 100 150 200 250 300 350 400
-100

-80

-60

-40

-20

0

20

40

60



 99

(2) Mildly informative prior on steady state )(Ψ : )25.1,5.2(~ 2
1 Nψ  

                                                                              )5.2,5(~ 2
2 Nψ  

                                                                               tindependenareand 21 ψψ  

1Π  
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(3) Fully informative prior on steady state )(Ψ : )1,1(~ 2
1 Nψ  

                                                                    )1,4(~ 2
2 Nψ  

                                                                    tindependenareand 21 ψψ  

1Π  
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APPENDIX C 

ESTIMATION RESULTS OF CONTEMPORANEOUS MATRICES 

 
 
 
(Gordon and Leeper (1994) + Housing Sector Specification) 

 cp m i hp hi y p mor30 

cp 0.327 
(0.020) 0 0 0 0 -0.210 

(0.171) 
-0.588 
(0.484) 

-0.987 
(0.268) 

MD 0 2.175 
(0.280) 

1.247 
(0.396) 0 0 -0.519 

(0.231) 
-0.804 
(0.479) 0 

MS -0.043 
(0.029) 

-1.116 
(0.504) 

1.738 
(0.305) 0 0 0 0 -1.214 

(0.314) 

hp 0 0 0.084 
(0.207) 

2.143 
(0.183) 

11.261 
(9.608) 

-0.585 
(0.200) 0 1.998 

(0.316) 

hi 0 0 0 -0.914 
(0.273) 

69.017 
(4.586) 

-0.807 
(0.175) 

-2.406 
(0.561) 0 

y 0 0 0 0 0 1.830 
(0.117) 0 0 

p 0 0 0 0 0 0.146 
(0.165) 

5.258 
(0.335) 0 

mor30 0 0 0 0 0 -0.455 
(0.167) 

-0.832 
(0.479) 

2.851 
(0.182) 

 Note: Standard errors are in parentheses.   
 
 
 
(Sims and Zha (2008) + Housing Sector Specification) 

 cp m i hp hi y p mor30 

cp 0.057 
(0.059) 

1.214 
(0.401) 

0.876 
(0.286) 

0.416 
(0.486) 

-46.344 
(11.141) 

-0.694 
(0.343) 

0.065 
(1.053) 

1.188 
(0.700) 

MD 0 2.124 
(0.333) 

-0.576 
(0.559) 0 0 0.468 

(0.315) 
-0.214 
(0.593) 0 

MS -0.038 
(0.042) 

0.653 
(0.479) 

2.012 
(0.190) 0 0 0 0 -1.937 

(0.447) 

hp 0.020 
(0.036) 0 -0.225 

(0.275) 
-1.808 
(0.272) 

-25.908 
(12.079) 

1.063 
(0.302) 0 -2.315 

(0.415) 

hi 0.043 
(0.044) 0 0 -1.629 

(0.248) 
51.560 

(10.703) 
-1.062 
(0.309) 

-3.122 
(0.702) 0 

y -0.228 
(0.083) 0 0 0 0 -0.972 

(0.664) 0 0 

p 0.004 
(0.061) 0 0 0 0 -0.204 

(0.479) 
5.154 

(0.492) 0 

mor30 -0.223 
(0.079) 0 0 0 0 0.885 

(0.423) 
0.543 

(1.089) 
2.100 

(0.605) 
 Note: Standard errors are in parentheses.   
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(PC Algorithm) 

 cp m i hp hi y p mor30 

cp 0.300 
(0.019) 0 0 0 0 0 0 0 

MD 0 2.359 
(0.153) 0 0 0 0 0 0 

MS 0 0 2.094 
(0.136) 0 0 0 0 -1.524 

(0.269) 

hp 0 0 0 2.406 
(0.187) 

-26.397 
(10.091) 0 2.638 

(0.529) 
1.202 

(0.499) 

hi 0 -0.623 
(0.215) 0 0.080 

(0.348) 
67.210 
(6.020) 

-0.850 
(0.175) 

-1.225 
(0.655) 0 

y 0 0 -0.855 
(0.177) 0 0 2.000 

(0.128) 0 0 

p 0 0 0 0 0 0 5.242 
(0.330) 0 

mor30 -0.124 
(0.028) 0 0 0.740 

(0.333) 0 0 0 3.464 
(0.265) 

 Note: Standard errors are in parentheses.   
 
 
 
(GES Algorithm) 

 cp m i hp hi y p mor30 

cp 0.300 
(0.019) 0 0 0 0 0 0 0 

MD 0 2.359 
(0.150) 0 0 0 0 0 0 

MS 0 0 2.094 
(0.132) 0 0 0 0 -1.475 

(0.263) 

hp 0 0 0 2.275 
(0.139) 

-16.276 
(5.407) 0 0 1.994 

(0.274) 

hi 0 -0.663 
(0.217) 0 0 66.128 

(4.189) 
-0.759 
(0.171) 0 0 

y 0 0 -0.815 
(0.173) 0 0 2.000 

(0.127) 0 0 

p 0 0 0 0.859 
(0.174) 

-25.043 
(6.046) 

0.406 
(0.178) 

6.009 
(0.381) 0 

mor30 0 0 0 0 0 0 0 2.742 
(0.175) 

Note: Standard errors are in parentheses.   
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  APPENDIX D 

BIVARIATE VAR(1) ILLUSTRATION FOR CONDITIONAL FORECAST 

 
We can compute the multi step-ahead forecasts of hp (housing price) conditional 

on actual i(FFRs)’s path by restricting sequence of structural shock of i. For simplicity I 

just focus on one step-ahead forecast case. The structural and reduced form bivariate 

VAR(1), i.e., with one lag, can be written as: 

 
ttt eyBBy += −11 ,   where  ),0(~ 2INet  

ttt eByBBy 1
11

1 −
−

− +=  
 
That is, 
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So equation (D.1) can be rewritten as follows. 
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Now one step-ahead (S+1) forecasts at time S can be produced using equation (D.2). 
 

1
1

22221121

1
11

2221

1211

1 /

0

+
−

−

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

S
hp

i

SS e
e

bbbb

b
hp
i

aa
aa

hp
i

                  (D.3) 

 
So the mean of unconditional forecasts can be written as follows. 
 

TS
uc

uc

hp
i

aa
aa

ph

i
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ 2221

1211

1
ˆ

ˆ
 



 104

where uc denotes “unconditional forecast”. Now impose following restriction on

)ˆ( 11111
uc

T
scenario
T

i
S iibe +++ −=  where the scenario could be “actual realization” or “simulated 

one” based on Taylor rule. 

 
Equation (D.3) can be rewritten as follows. 
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        (D.4) 

 
After rewriting equation by equation for system (D.4), we can decompose each equation 

into unconditional forecast (=base projection) and the shocks. 
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So the mean of conditional forecasts can be written as: 
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where c denotes “conditional forecast”.  For the two step-ahead conditional forecasts, 

these one step-ahead conditional forecasts are used to produce uc
Si 2
ˆ
+  and uc

Sph 2
ˆ

+  as follows.  
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So in the multi step-ahead forecasts the dynamic coefficients also matter as well as the 

shocks when accounting the differences of conditional realizations among each assumed 

path of endogenous variables.  

We can also obtain same results when approaching through conditional 

distribution. I keep using simplified version of bivariate VAR(1) with one step-ahead 

forecast case. Once deriving associated conditional distribution, we can verify that the 

mean of the structural shock i (restricted one) is reduced back to  )ˆ( 11111
uc

S
scenario
S

i
S iibe +++ −=  

which is used in equation (D.4). As shown in equation (D.3), one step-ahead (S+1) 

forecasts are as follows. 
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Above equation can be rewritten using condensed (or companion) form. 
 

1
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Now we pick i

Se 1+  such that 11
1~

++
− = SS reB  where uc

S
scenario
SS iir 111

ˆ
+++ −= . This is corresponding 

to the equation (10) in Waggoner and Zha (1999). 
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As discussed in Waggoner and Zha (1999), the joint distribution of i

Se 1+ and 1
1~

+
−

SeB  is 

multivariate normal. Hereafter matrix notation is used for the consistent notations with 
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previous literatures. That is, e indicates not only multivariate but also multi step-ahead 

forecasts while i
Se 1+  indicates single variable i and one step-ahead case. 

0~,0 1 == − eBEEe ,  

Ie =)var( , )~(~)~)(var(~)~var( 11111 ′=′= −−−−− BBBeBeB  
)~(})~({})~~)({()~,cov( 11111 ′=′′=′−−= −−−−− BBeeEeBEeBEeeEeBe  
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After applying theorem with respect to conditional normal distribution (Greene 

(2003, pp871-872)), I reach final conditional distribution as shown in equation (D.8). 

This is corresponding to the equation (12) in Waggoner and Zha (1999). 
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We can verify that the mean of shock i (restricted) is reduced back to equation (D.6) 

with variance zero while the shock hp (unrestricted) has usual form of structural shock 

which is mean zero and variance one. 
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(Covariance) 
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APPENDIX E 

ESTIMATED STRUCTURAL SHOCKS 

(Choleski) 
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(GL+) 
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(SZ+) 
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 (PC) 
(y)                                                                 (p) 
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(cp)                                                                 (i) 

 
 

(mor30)                                                            (m) 

 
  

-4

-3

-2

-1

0

1

2

3

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-3

-2

-1

0

1

2

3

4

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-4

-3

-2

-1

0

1

2

3

4

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-3

-2

-1

0

1

2

3

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-10
-8
-6
-4
-2
0
2
4
6
8

10

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-4
-3
-2
-1
0
1
2
3
4
5
6
7

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-3

-2

-1

0

1

2

3

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07

-3

-2

-1

0

1

2

3

4

77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07



 111

 (GES) 
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APPENDIX F 

PLOTS OF EACH VARIABLE IN CHAPTER IV 

 
 

 
                    (Federal Funds Rate)                 (Real GDP’s % Deviation from HP trend)                     

 
  (M2 Growth Rate)                                       (PPI Growth Rate)            

 
(Spread betIen Long and Short-term Bond)         (2-year Growth Rate of PER) 
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APPENDIX G 

TEST RESULTS OF CHOOSING IVS 

(General Model) 
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         where 
⎩
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⎩
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=
199111
199110
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199111

21 qtif
qtif

D
qtif
qtif

D  

 
     GMM-BIC Criteria 

 J-statistic # of over-id. ln(n), n=101 GMM-BIC 
3lags 0.10 3 4.62 -13.74 
4lags 0.31 8 4.62 -36.61 
5lags 1.85 13 4.62 -58.14 
6lags 3.28 19 4.62 -84.41 
7lags 5.59 25 4.62 -109.79 
8lags 11.76 31 4.62 -131.31 
9lags 14.15 37 4.62 -156.61 
10lags 22.11 43 4.62 -176.34 
11lags 25.37 49 4.62 -200.78 
12lags 26.85 55 4.62 -226.98 
13lags 37.39 61 4.62 -244.13 
14lags 36.12 67 4.62 -273.09 
15lags 155.40 73 4.62 -181.50 
16lags 3433.59 79 4.62 3068.99 

 
 
 GMM-HQIC Criteria (General Model) 

 J-statistic # of over-id. ln(ln(n)), 
n=101 (Q=2.01) (Q=3) (Q=4) (Q=5) 

3lags 0.10 3 0.30 -1.72 -2.61 -3.52 -4.43 
4lags 0.31 8 0.30 -4.55 -6.94 -9.36 -11.77 
5lags 1.85 13 0.30 -6.04 -9.92 -13.85 -17.78 
6lags 3.28 19 0.30 -8.25 -13.93 -19.67 -25.41 
7lags 5.59 25 0.30 -9.58 -17.06 -24.61 -32.16 
8lags 11.76 31 0.30 -7.06 -16.33 -25.69 -35.05 
9lags 14.15 37 0.30 -8.31 -19.37 -30.54 -41.72 
10lags 22.11 43 0.30 -3.99 -16.85 -29.83 -42.82 
11lags 25.37 49 0.30 -4.38 -19.02 -33.82 -48.62 
12lags 26.85 55 0.30 -6.54 -22.98 -39.59 -56.19 
13lags 37.39 61 0.30 0.37 -17.87 -36.29 -54.71 
14lags 36.12 67 0.30 -4.54 -24.57 -44.80 -65.04 
15lags 155.40 73 0.30 111.10 89.27 67.23 45.19 
16lags 3433.59 79 0.30 3385.64 3362.02 3338.17 3314.31 
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(Linear Restriction on Stock price gap coefficient) 
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               where 
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D
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    GMM-BIC Criteria 

 J-statistic # of over-id. ln(n), n=101 GMM-BIC 
3lags 0.92 7 4.62 -31.39 
4lags 2.53 12 4.62 -52.85 
5lags 5.31 17 4.62 -73.15 
6lags 6.28 23 4.62 -99.87 
7lags 8.65 29 4.62 -125.19 
8lags 13.07 35 4.62 -148.46 
9lags 16.22 41 4.62 -173.00 
10lags 23.10 47 4.62 -193.81 
11lags 26.04 53 4.62 -218.56 
12lags 28.55 59 4.62 -243.74 
13lags 37.13 65 4.62 -262.86 
14lags 56.38 71 4.62 -271.30 
15lags 87.68 77 4.62 -267.69 
16lags 1089.64 83 4.62 706.59 

 
 
GMM-HQIC Criteria 

 J-statistic # of over-id. ln(ln(n)), 
n=101 (Q=2.01) (Q=3) (Q=4) (Q=5) 

3lags 0.92 7 0.30 -3.33 -5.43 -7.54 -9.65 
4lags 2.53 12 0.30 -4.76 -8.34 -11.97 -15.59 
5lags 5.31 17 0.30 -5.01 -10.09 -15.23 -20.36 
6lags 6.28 23 0.30 -7.68 -14.56 -21.50 -28.45 
7lags 8.65 29 0.30 -8.95 -17.62 -26.38 -35.14 
8lags 13.07 35 0.30 -8.18 -18.64 -29.21 -39.78 
9lags 16.22 41 0.30 -8.67 -20.92 -33.30 -45.69 
10lags 23.10 47 0.30 -5.43 -19.48 -33.67 -47.86 
11lags 26.04 53 0.30 -6.13 -21.97 -37.98 -53.98 
12lags 28.55 59 0.30 -7.26 -24.90 -42.71 -60.53 
13lags 37.13 65 0.30 -2.33 -21.76 -41.39 -61.01 
14lags 56.38 71 0.30 13.28 -7.94 -29.38 -50.82 
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APPENDIX H 

TEST RESULTS OF STRUCTURAL CHANGE FOR 10, 11, 13, AND 14 LAGS IVS 

 
(Tests for Stability of Coefficients across Sub-periods: Case of 10 lags IV) 
 
(i) General Model: Dummy variables for all coefficients. Over-identification: 61 - 18 = 
43 
 

{
} {

0}])(

)()1()(

)()1({[)(

2
2

2102

2
2

21022121
2

210

11
2

2101111

=++++

+++−−−+++

++++−−−=

+

+−

++−

ttttkt

kttttttt

ktkttttttt

ZsDyD

DDDRDsD

yDDDDRDREZeE

δγδγγβ

πδαδααθρρδγδγγ

βπδαδααθρρ

                where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

    
 α0 α1 α2 β ρ θ γ0 γ1 γ2 J-statistic 
1979:4 

– 
1991:1 

1.079 
(0.152) 

0.218 
(0.028) 

-0.003 
(0.007) 

0.015 
(0.168) 

0.470 
(0.070) 

5.667 
(0.677) 

-0.032 
(0.019) 

0.004 
(0.009) 

-0.001 
(0.005) 

22.106 
[0.9966] 1991:2 

– 
2005:4 

4.668 
(6.895) 

0.423 
(0.356) 

-0.663 
(0.831) 

-0.154 
(0.906) 

0.833 
(0.179) 

-5.527 
(14.35) 

0.104 
(0.106) 

-0.004 
(0.046) 

-0.005 
(0.035) 

 
Nonlinearity Test 
 
Null: 021212121 ======== llhhllhh γγγγαααα                 : p-value = 0.0000 
Null: 02211 ==== lhlh αααα                                                  : p-value = 0.0000 
Null: 02211 ==== lhlh γγγγ                                                  : p-value = 0.9910 
 
 
Wald Test for Stability of Coefficients 
 
Null: lhlhlhlhlhlhlhlhlh

221100221100 ,,,,,,,, γγγγγγθθρρββαααααα ========= : p-value = 0.0000 

Null: lhlhlhlhlhlhlhlhlh θθρρββγγγγγγαααααα ≠≠≠====== ,,,,,,, 221100221100 : p-value = 0.0004 

Null: lhlhlhlhlhlh θθρρββαααααα ≠≠≠=== ,,,, 221100                : p-value = 0.7306 

Null: lhlhlhlhlhlh θθρρββγγγγγγ ≠≠≠=== ,,,, 221100              : p-value = 0.2362 
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Fig. H.1 Inflation coefficient movement: General model (10 lags IV) 

 
 

 
Fig. H.2 Stock variable coefficient movement: General model(10 lags IV) 
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(ii) Linear Restriction on Stock Variable Coefficient. Over-identification: 61-14 = 47 
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where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

 
 α0 α1 α2 β ρ θ γ0 J-statistic 

1979:4 – 
1991:1 

1.090 
(0.129) 

0.219 
(0.028) 

-0.003 
(0.004) 

0.035 
(0.147) 

0.479 
(0.067) 

5.630 
(0.566) 

-0.035 
(0.008) 23.1 

[0.9987] 1991:2 – 
2005:4 

4.198 
(4.930) 

0.436 
(0.290) 

-0.615 
(0.613) 

-0.169 
(0.727) 

0.818 
(0.154) 

-4.506 
(9.924) 

0.094 
(0.052) 

 
Nonlinearity Test 
Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα    : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα  : p-value = 0.2252 

 
Wald Test for Stability of Coefficients 
Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα : p-value = 0.0000 

Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα : p-value = 0.0000 

Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα : p-value = 0.1883 

Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                   : p-value = 0.0176 

 
Fig.H.3 Inflation coefficient movement: Linear restriction on stock variable coefficient (10 lags IV) 
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(Tests for Stability of Coefficients across Sub-periods: Case of 11 lags IV) 
 
 
(i) General Model: Dummy variables for all coefficients. Over-identification: 67 - 18 = 
49 
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                where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

 
    
 α0 α1 α2 β ρ θ γ0 γ1 γ2 J-statistic 
1979:4 

– 
1991:1 

1.203 
(0.142) 

0.243 
(0.027) 

-0.002 
(0.005) 

0.078 
(0.162) 

0.530 
(0.053) 

4.887 
(0.645) 

-0.023 
(0.011) 

0.002 
(0.005) 

0.0001 
(0.003) 

25.365 
[0.9979] 1991:2 

– 
2005:4 

5.427 
(6.206) 

0.453 
(0.294) 

-0.755 
(0.750) 

-0.674 
(0.769) 

0.852 
(0.141) 

-7.183 
(13.21) 

0.119 
(0.107) 

0.035 
(0.056) 

0.022 
(0.034) 

 
Nonlinearity Test 
 
Null: 021212121 ======== llhhllhh γγγγαααα               : p-value = 0.0000 
Null: 02211 ==== lhlh αααα                                                : p-value = 0.0000 
Null: 02211 ==== lhlh γγγγ                                                 : p-value = 0.9608 
 
 
Wald Test for Stability of Coefficients 
 
Null: lhlhlhlhlhlhlhlhlh

221100221100 ,,,,,,,, γγγγγγθθρρββαααααα ========= : p-value = 0.0000 

Null: lhlhlhlhlhlhlhlhlh θθρρββγγγγγγαααααα ≠≠≠====== ,,,,,,, 221100221100 : p-value = 0.0011 

Null: lhlhlhlhlhlh θθρρββαααααα ≠≠≠=== ,,,, 221100              : p-value = 0.5292 

Null: lhlhlhlhlhlh θθρρββγγγγγγ ≠≠≠=== ,,,, 221100            : p-value = 0.1655 
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Fig. H.4. Inflation coefficient movement: General model (11 lags IV) 

 
 

 
Fig. H.5. Stock variable coefficient movement: General model (11 lags IV) 
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(ii) Linear Restriction on Stock Variable Coefficient. Over-identification: 67-14 = 53 
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where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

 
 α0 α1 α2 β ρ θ γ0 J-statistic 

1979:4 – 
1991:1 

1.260 
(0.118) 

0.243 
(0.026) 

-0.003 
(0.003) 

0.114 
(0.137) 

0.539 
(0.052) 

4.658 
(0.577) 

-0.023 
(0.007) 26.040 

[0.9993] 1991:2 – 
2005:4 

3.454 
(2.394) 

0.489 
(0.157) 

-0.444 
(0.300) 

-0.525 
(0.448) 

0.800 
(0.096) 

-3.110 
(4.859) 

0.094 
(0.033) 

 
Nonlinearity Test 
Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα    : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα  : p-value = 0.0053 

 
Wald Test for Stability of Coefficients 
Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα : p-value = 0.0000 

Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα : p-value = 0.0000 

Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα : p-value = 0.0278 

Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                   : p-value = 0.0007 

 
Fig. H.6. Inflation coefficient movement: Linear restriction on stock variable coefficient (11 lags IV) 
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(Tests for Stability of Coefficients across Sub-periods: Case of 12 lags IV) 
 
  Linear Restriction on Stock Variable Coefficient 
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       where 
⎩
⎨
⎧

>
≤

=
⎩
⎨
⎧

>
≤

=
199111
199110

199120
199111

21 qtif
qtif

D
qtif
qtif

D  

 
 α0 α1 α2 β ρ θ γ0 J-statistic 

1979:4 – 
1991:1 

1.263 
(0.068) 

0.251 
(0.020) 

0.002 
(0.002) 

0.129 
(0.108) 

0.547 
(0.035) 

4.475 
(0.336) 

-0.017 
(0.005) 28.55 

[0.9997] 1991:2 – 
2005:4 

1.442 
(0.879) 

0.471 
(0.079) 

-0.228 
(0.105) 

-0.359 
(0.260) 

0.740 
(0.066) 

0.949 
(1.786) 

0.065 
(0.012) 

 
Nonlinearity Test 
Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα  : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα       : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα     : p-value = 0.0000 
 
Wald Test for Stability of Coefficients 
Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα  :p-value = 0.0000 

Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα   : p-value = 0.0000 

Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα    : p-value = 0.0000 

Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                           : p-value = 0.0000 

 
Fig. H.7. Inflation coefficient movement: Linear restriction on stock variable coefficient (12 lags IV) 
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(Tests for Stability of Coefficients across Sub-periods: Case of 13 lags IV) 
 
 
(i) General Model: Dummy variables for all coefficients. Over-identification: 73 - 18 = 
55 
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                where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

 
    
 α0 α1 α2 β ρ θ γ0 γ1 γ2 J-statistic 
1979:4 

– 
1991:1 

1.230 
(0.057) 

0.260 
(0.017) 

0.006 
(0.002) 

0.065 
(0.097) 

0.549 
(0.028) 

4.431 
(0.276) 

-0.010 
(0.005) 

0.004 
(0.003) 

0.001 
(0.002) 

37.395 
[0.9926] 1991:2 

– 
2005:4 

1.902 
(1.080) 

0.497 
(0.084) 

-0.392 
(0.193) 

-0.160 
(0.345) 

0.797 
(0.082) 

0.287 
(2.373) 

0.054 
(0.024) 

0.017 
(0.018) 

0.022 
(0.015) 

 
 
Nonlinearity Test 
 
Null: 021212121 ======== llhhllhh γγγγαααα                  : p-value = 0.0000 

Null: 02211 ==== lhlh αααα                                                         : p-value = 0.0000 

Null: 02211 ==== lhlh γγγγ                                                          : p-value = 0.5459 
 
 
Wald Test for Stability of Coefficients 
 
Null: lhlhlhlhlhlhlhlhlh

221100221100 ,,,,,,,, γγγγγγθθρρββαααααα ========= : p-value = 0.0000 

Null: lhlhlhlhlhlhlhlhlh θθρρββγγγγγγαααααα ≠≠≠====== ,,,,,,, 221100221100 : p-value = 0.0000 

Null: lhlhlhlhlhlh θθρρββαααααα ≠≠≠=== ,,,, 221100                  : p-value = 0.0007 

Null: lhlhlhlhlhlh θθρρββγγγγγγ ≠≠≠=== ,,,, 221100                : p-value = 0.0000 
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Fig. H.8. Inflation coefficient movement: General model (13 lags IV) 

 
 

 
Fig. H.9. Stock variable coefficient movement: General model (13 lags IV) 
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(ii) Linear Restriction on Stock Variable Coefficient. Over-identification: 73-14 = 59 
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where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

 
 α0 α1 α2 β ρ θ γ0 J-statistic 

1979:4 – 
1991:1 

1.249 
(0.053) 

0.260 
(0.016) 

0.005 
(0.002) 

0.092 
(0.087) 

0.552 
(0.026) 

4.366 
(0.268) 

-0.012 
(0.007) 37.126 

[0.9979] 1991:2 – 
2005:4 

1.584 
(0.662) 

0.524 
(0.055) 

-0.234 
(0.089) 

-0.294 
(0.266) 

0.769 
(0.056) 

0.693 
(1.400) 

0.065 
(0.011) 

 
Nonlinearity Test 
Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα    : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα  : p-value = 0.0000 

 
Wald Test for Stability of Coefficients 
Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα : p-value = 0.0000 

Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα : p-value = 0.0000 

Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα : p-value = 0.0000 

Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                   : p-value = 0.0000 
 

 
Fig. H.10. Inflation coefficient movement: Linear restriction on stock variable coefficient (13 lags IV) 
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(Tests for Stability of Coefficients across Sub-periods: Case of 14 lags IV) 
 
 
(i) General Model: Dummy variables for all coefficients. Over-identification: 79 - 18 = 
61 
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                where ][ ][ 111,000)(000,11)( '
2

'
1 LLLL == DD  

    
 α0 α1 α2 β ρ θ γ0 γ1 γ2 

J-
statistic 

1979:4 
– 

1991:1 

1.354 
(0.055) 

0.262 
(0.011) 

0.002 
(0.001) 

0.075 
(0.053) 

0.568 
(0.018) 

3.834 
(0.273) 

-0.005 
(0.004) 

0.0002 
(0.002) 

-0.0000 
(0.002) 

36.124 
[0.9993] 1991:2 

– 
2005:4 

0.696 
(0.351) 

0.519 
(0.034) 

-0.204 
(0.072) 

-0.314 
(0.157) 

0.732 
(0.042) 

2.657 
(0.803) 

0.047 
(0.012) 

0.012 
(0.007) 

0.015 
(0.006) 

 
Nonlinearity Test 
 
Null: 021212121 ======== llhhllhh γγγγαααα               : p-value = 0.0000 

Null: 02211 ==== lhlh αααα                                                      : p-value = 0.0000 

Null: 02211 ==== lhlh γγγγ                                                       : p-value = 0.0273 
 
 
Wald Test for Stability of Coefficients 
 
Null: lhlhlhlhlhlhlhlhlh

221100221100 ,,,,,,,, γγγγγγθθρρββαααααα ========= : p-value = 0.0000 

Null: lhlhlhlhlhlhlhlhlh θθρρββγγγγγγαααααα ≠≠≠====== ,,,,,,, 221100221100 : p-value = 0.0000 

Null: lhlhlhlhlhlh θθρρββαααααα ≠≠≠=== ,,,, 221100                  : p-value = 0.0000 

Null: lhlhlhlhlhlh θθρρββγγγγγγ ≠≠≠=== ,,,, 221100               : p-value = 0.0000 
 

  



 126

 

 
Fig.H.11. Inflation coefficient movement: General model (14 lags IV) 

 
 

 
Fig. H.12. Stock variable coefficient movement: General model(14 lags IV) 
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(ii) Linear Restriction on Stock Variable Coefficient. Over-identification: 79-14 = 65 
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Nonlinearity Test 
Null: 0,,,0 22112121 ====≠≠≠==== lhlhlhlhlhllhh γγγγθθρρββαααα  : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhhh γγγγθθρρββαα     : p-value = 0.0000 

Null: 0,,,0 221121 ====≠≠≠== lhlhlhlhlhll γγγγθθρρββαα   : p-value = 0.0000 

 
Wald Test for Stability of Coefficients 
Null: 0,,,,,, 212100221100 =========== llhhlhlhlhlhlhlhlh γγγγγγθθρρββαααααα   : p-value = 0.0000 

Null: 0,,,,,, 221100221100 ====≠≠≠==== lhlhlhlhlhlhlhlhlh γγγγθθρρββγγαααααα : p-value = 0.0000 

Null: 0,,,,, 2211221100 ====≠≠≠=== lhlhlhlhlhlhlhlh γγγγθθρρββαααααα : p-value = 0.0000 

Null: 0,,, 221100 ====≠≠≠= lhlhlhlhlhlh γγγγθθρρββγγ                     : p-value = 0.0000 
 

 
Fig. H.13. Inflation coefficient movement: Linear restriction on stock variable coefficient (14 lags IV) 
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 α0 α1 α2 β ρ θ γ0 J-statistic 
1979:4 – 
1991:1 

1.354 
(0.044) 

0.262 
(0.010) 

0.002 
(0.001) 

0.077 
(0.044) 

0.568 
(0.016) 

3.838 
(0.239) 

-0.006 
(0.002) 56.377 

[0.8973] 1991:2 – 
2005:4 

0.680 
(0.312) 

0.542 
(0.032) 

-0.126 
(0.035) 

-0.376 
(0.142) 

0.717 
(0.028) 

2.555 
(0.664) 

0.055 
(0.005) 
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