LOW DENSITY NUCLEAR MATTER IN HEAVY ION COLLISIONS

A Dissertation
by
LIJUN QIN

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2008

Major Subject: Physics



LOW DENSITY NUCLEAR MATTER IN HEAVY ION COLLISIONS

A Dissertation
by
LIJUN QIN

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Co-Chairs of Committee, Robert Tribble
Joseph Natowitz

Committee Members, John Hardy
Che-Ming Ko
Head of Department, Edward Fry

December 2008

Major Subject: Physics



il

ABSTRACT

Low Density Nuclear Matter in Heavy Ion Collisions. (December 2008)
Lijun Qin, B.S., Xi’An Jiaotong University, China;
M.S., Institute of Modern Physics, Chinese Academy of Sciences

Co—Chairs of Advisory Committee: Dr. Joseph Natowitz
Dr. Robert Tribble

The symmetry energy is the energy difference between symmetric nuclear mat-
ter and pure neutron matter at a given density. Around normal nuclear density, i.e.
p/po =1, and temperature, i.e. T = 0, the symmetry energy is approximately 23.5
MeV /nucleon for finite nuclear matter and 30 MeV /nucleon for infinite nuclear mat-
ter, but at other densities, the symmetry energies are very poorly understood. Since
the symmetry energy is very important in understanding many aspects of heavy ion
reactions, structure, and nuclear astrophysics, many different models have been devel-
oped and some predications of the density dependence of symmetry energy have been
made. Intermediate energy heavy ion collisions provide a unique tool to probe the
nuclear equation of state. The initial compression and the thermal shock in Fermi-
Energy heavy ion collisions lead naturally to the production of nucleonic matter at
varying temperatures and densities which are interesting in this context. Since the
light particle emission during this stage witnesses each stage of the reaction, it car-
ries essential information on the early dynamics and on the degree of equilibration at
each stage of the reaction. The kinematic features and yields of emitted light particles
and clusters in the invairant velocity frame have been exploited to probe the nature
of the intermediate system and information on the Equation Of State (EOS) with

emphasis on the properties of the low density participant matter produced in such



v

collisions. In order to pursue this effort and broaden the density range over which the
symmetry energies are experimentally determined we have now carried out a series
of experiments in which the reactions of '?Sn and '?*Sn with projectiles, ranging
from “He,'°B, 2°Ne, “°Ar to %Zn, all at the same energy per nucleon, 47 Mev/u, were
performed.

In this series of experiments different collision systems should lead to different
average densities. By careful comparisons of the yields, spectra and angular distri-
butions observed for particle emission from these different systems we attempted to
cleanly separate early emission resulting from nucleon-nucleon collisions from that
resulting from evaporation from the thermalized system and obtain a much cleaner
picture of the dynamic evolution of the hotter systems. The Albergo Model has
been used to calculate the density and temperature, symmetry free energies with the
isoscaling technique for systems with different N/Z ratios. Those are compared with
Roepke Model results. Also other models like VEOS, Lattimer, and Shen-Toki have
been added to calculate the alpha mass fraction in order to understand the properties

of low density matter further.
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CHAPTER I

INTRODUCTION

A. General Picture of Heavy Ion Collisons

Extensive studies have been conducted to investigate the dynamical and thermody-
namical evolution of the interaction region in near fermi energy heavy ion collisions
and to understand the extent to which equilibration of various degrees of freedom,
thermal, chemical, N/Z ratio, etc is realized. The importance of both nucleon-nucleon
collision and mean-field effects leads to a high complexity of the reaction process. A
widely accepted picture of the reaction process is that, at the early stage of the col-
lision, a compressional and thermal shock creates a hot composite nucleus that may
expand to low densities and form clusters. Such clusters might reflect both equi-
librium and non-equilibrium production mechanisms. Extensive experimental efforts
have been carried out and a number of theoretical models have been constructed to
address this issue [1, 2, 3,4, 5,6, 7,8, 9, 10, 11]. In recent years, investigations of the
dynamics in a large series of heavy ion reaction experiments indicate that much of the
early particle emission may be attributed to nucleon-nucleon collisions occurring dur-
ing the thermalization stage of the reaction [12, 13, 14, 15]. Figure 1 shows a cartoon
showing the reaction process. In nuclear collisions the nuclei are at normal nuclear
density before the interaction happens, the density may become higher in the early
stage of the interaction, and later on will decrease. At this lower density, clusteration
can occur and the fragments are formed. In general the heavier fragments still carry
excitation energy and undergo secondary decay. The lower density region can be

probed by observing the ejectiles and the heavier fragments which are formed. The

The journal model is Physical Review C.



high density region can be probed using early emission particles or gamma rays, neu-
tron and proton differential flow, or more complex observables such as pion emission

ratios and kaon emission ratios [16, 17].

ng&l}\jﬂ?észlrg'\?K FREEZEOUT SECONDARY
EMISSION

EXPANSION SEPARATION
PRE-EQUILIBRIUM EMISSION
EQUILIBRIUM EMISSION ?

Fig. 1. General picture of a heavy ion collison in the Fermi energy domain.

B. Transport Models to Simulate Heavy Ion Collisions

A heavy ion collision (HIC) may be a very complicated process, especially in the
Fermi Energy region because both mean-field and nucleon-nucleon collision effects
contribute. Many transport theories based on a molecular dynamics model have been
proposed to model these collisions. The most widely used are classical molecular dy-

namics (CMD), quantum molecular dynamics (QMD), and antisymmetrized molecu-



lar dynamics(AMD) approaches [14, 15]. CMD treats nucleons as point particles and
their movement is governed by a classical equation of motion in a given mean field.
The nucleon-nucleon interaction is like a classical hard sphere scattering. In QMD,
each single nucleon of the two colliding nuclei is described by a Gaussian in momentum
and coordinate space. At the beginning, the nuclei move along Coulomb trajectories.
Once the distance between the two nuclei is less than 2 fm, the nuclear interaction
occurs and the centroids of the Gaussians are propagated under the influence of the
mutual two-body or three-body interactions. Normally the interaction is chosen as
a local Skyrme-type interaction which is commonly used in time-dependent Hartree-
Fock (TDHF) calculations and has been proven to reproduce the static properties of
nuclei. Often, two parameterizations which are called "hard” and ”soft” are chosen to
yield different compressibilities of nuclear matter, supplemented by the Yukawa inter-
action and Coulomb interaction. To study the momentum dependence of the nuclear
interaction and make comparison of experimental observables with calculated results,
the momentum-dependent interaction is an option in the model calculation. During
the time evolution of the wave packets the Pauli principle is respected only by the
Liouville theorem of classical mechanics. In the model NN collisions are allowed and
the Pauli blocking is treated in an approximate manner. During the propagation of
the wave packets, however, the time evolution based on the classical equation of mo-
tion eventually leads the initial state into a Pauli forbidden zone and the occupation
number of nucleons in phase space often significantly exceeds 1/h? .

Currently many people use the antisymmetrized molecular dynamics (AMD)
model as the main theoretical model to guide in understanding the reaction process
[14, 15]. In AMD, the total wave function of the system is anti-symmetrized and
described by a Slater determinant of Gaussian wave packets. The time evolution of

the centroid of the wave packets is treated in a classical manner. So far, in AMD



(AMD-V) the Pauli blocking in stochastic NN collisions is treated in an unambiguous
manner and the probabilistic nature of the wave packet is considered as a diffusion
process during its propagation. For the AMD-V calculations, the effective interaction
and in-medium NN cross section are the two important ingredients. The Gogny
interaction has been used successfully in many analyses [14]. This interaction gives
a soft EOS with an incompressibility value K of 228 MeV for infinite nuclear matter
and has a momentum-dependent mean field.

Many papers employ the Li-Machleidt’s cross section formula 1.1 to model the

N-N cross section modification in medium [18, 19, 20].

1.0 4 0.0034E1-51 p2

1.0 + 21.55p13

1.0 4 0.1667E1-95 2
1.0 4 9.704p12

S {31.5 +0.002 x [202 — E0'53‘2'9]

(1.1)

0.5 4.0
Opn = {23.5 +0.00256 x [18.2 — E°?) }

The fragments generated in AMD-V are generally in an excited state at time
about 300fm/c. An unavailable amount of CPU time would be needed if the AMD
Model were followed with all fragments de-excited to their ground states. In fact most
calculations normally use a statistical decay code (GEMINI) to follow the cooling

process and generate the final results [14].

C. Nuclear Binding Energy

The binding energy equation is shown in equation 1.2, where BE is the binding energy
in MeV, Z is the number of protons, M,, is the mass of hydrogen atom, N is the neutron
number, M,, is the mass of the neutron and M, is the mass of the nuclide. The

factor 931.5 is a constant to convert mass to energy in MeV.

BE = 931.5(ZM, + NM, — M,,.0)) (1.2)



Figure 2 shows a plot of binding energy per nucleon as a function of mass number for
the most bound nuclide at each mass [21]. There is a peak in the binding energy per
nucleon around iron with 56Fe the most tightly bound nucleus. This peak divides the
nuclides into two groups, with those having lower masses able to provide energy from
fusion, and the higher masses able to provide energy from fission.

For nuclides in the ground state at normal nuclear density with given masses,
their binding energy can be calculated using Weizsackers phenomenological formula
developed in 1935 [22, 23]

(A—22)? Z(Z —-1)

— _ 2/3 _ _
BE(A,Z) = aA — asA Qg v a. E

+B (1.3)

The binding energy (BE) for a given nuclide (A, Z) is determined using five
terms, four of which depend on the mass (A) and/or charge (Z). The first term is
called the bulk term, and the asymmetry term is the third term. The other three
terms arise from the finite size of the nucleus. The second term, or surface term,
corrects for the nuclear surface. The fourth term is Coulomb term which adjusts
the repulsion of the protons. The last term is pairing term which corrects for the
neutron and proton pairing. A systematic study of nuclear masses shows that nuclei
are more stable when they have an even number of protons and/or neutrons. In fact,
the exact constants for each of the terms are determined by fitting experimental data
and depend on the mass range: a, = 15.67 MeV/c?, a, = 17.23 MeV/c?, a, = 0.714
MeV/c?, a, = 93.15 MeV/c?, and the pairing term, B, is 0 MeV /c? for odd-even or
even-odd nuclei, -11.2 MeV/c? for even-even nuclei and +11.2 MeV /c? for odd-odd

nuclei [24, 25, 26, 27, 28]. A classical result is shown in the Fig. 2.
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Fig. 2. Binding energy per nucleon with mass number [21].

D. Symmetry Energy and EOS

The symmetry energy is the energy difference between symmetric nuclear matter
and pure neutron matter at a given density. Around normal nuclear density, i.e.
p/po =1, and temperature, i.e. T = 0, the symmetry energy is approximately 23.5
MeV /nucleon for finite nuclear matter and 30 MeV /nucleon for infinite nuclear mat-
ter, but at other densities, the symmetry energies are very poorly understood. The
nuclear EOS shown in equation 1.4, relates the density (p), temperature (T), and
asymmetry (0) with the binding energy [29, 30]. The asymmetry is given by equation

1.5, where N is the neutron number and Z is the proton number. When 7 is equal



to 0 (for the case of pure neutron matter) § = 1, while if Z is equal to N (for the
case of symmetric nuclear matter) 6 = 0, and if N is equal to 0 (for the case of pure
proton matter) 6 = -1. The total binding energy is an inherent property of nuclei
and to first order there is a linear dependence with mass number. To compare the
binding energies of different nuclei, the binding energy is divided by the mass number
to get the binding energy per nucleon (MeV /nucleon). The dependence of latter on
the nuclear density is called the equation of state (EOS).

There are two parts to the nuclear EOS, the symmetric part and the asymmetric

part, which both depend on the density and temperature.

BEaym (0, T, 0) = BEyy(p, T) + Cyym(p, T)5> (1.4)

§=(N—2)/(N + 2) (1.5)

Since the symmetry energy is of importance in the understanding many aspects
of heavy ion reactions and the structure of radioactive nuclei as well as issues in
nuclear astrophysics such as the properties of neutron stars, many different models
have been developed and some predications of the density dependence of symmetry
energy have been made. Figure 3 shows the symmetry energy calculations reported
by B.A. Li et al. [31] in which different interaction potentials are used.

Recent studies of excited, i.e. low density and high temperature, nuclear matter
have shown a decrease in the symmetry energy with increasing excitation energy down
to approximately 15 MeV [30] .

Understanding the nuclear matter equation of state over a wide range of tem-
perature and density is important in both the nuclear and astrophysical context
(32, 33, 34, 35, 36]. In the latter, knowledge of specific heats and the density de-

pendence of the symmetry energy are crucial to understanding collapse of supernovae



60 T T ' T v T v T ' T 0>
| —— Skyrme-Hartree-Fock o )
with 21 parameter sets =g
504 = MDlinteraction with x= 0 Vs 7
] o MDlinteraction with x= -1 Py pu="

(p) (MeV)

1
0.00 0.05 0.10 0.15 0.20 0.25 0.30
-3
p (fm™)

Fig. 3. Density dependence of the symmetry energy predicated by various interactions.

and the properties of neutron stars resulting from supernova collapse [37, 38, 39, 40].

A great effort has been made to explore the symmetry energy in different ways
in many different works [41, 42, 43, 44, 45]. The strength of the density dependence
of the symmetry energy affects neutron star masses and radii. Neutron stars are very
dense forms of nuclear material and could contain exotic phases of matter such as
hyperons and the quark gluon plasma (QGP). A stiffer dependence of the symmetry
energy on the density allows for the creation of massive neutron stars with large radii
[46, 47].

To employ intermediate energy heavy ion collisions as a tool to probe the nu-

clear equation of state, a detailed understanding of the reaction dynamics in well



characterized collisions is essential. The initial compression and the thermal shock

in Fermi-Energy heavy ion collisions lead naturally to the production of nucleonic

matter at varying temperatures and densities which are interesting in this context.

To illustrate this, we present in Figure 4, results of Antisymmetrized Molecular Dy-

namics (AMD) model calculations [15] for the systems °B + '*'Sn and %1Zn + '?4Sn,

both at 47 MeV /u.
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Density profiles from Antisymmetrized Molecular Dynamics calculations for
collisions of 47A MeV B and %Zn with '2*Sn targets. Results are shown

for times ranging from initial collision to 300 fm/c and for impact parameters

ranging from 0.3 to 3.3 fm.

In an ideal situation this disassembly would be that of a thermally and chem-

ically equilibrated nucleus. In practice this ideal state may not be reached and the

final product distribution may include fragments and particles originating from non-

equilibrium processes and reflecting correlations already present in the separated pro-

jectile and target nuclei. Distinguishing between these different production mecha-

nisms of light particle and fragment production is difficult but essential to our under-
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standing of near-Fermi energy collisions.

Since the light particle emission, which occurs during the collisions, witnesses
each stage of the reaction, it carries essential information on the early dynamics and
on the degree of equilibration at each stage of the reaction. Recently our group
has emphasized investigations of nucleon and light cluster emission to obtain a more
detailed experimental picture of the pre-equilibrium, thermalization and disassembly
phases of such reactions [13, 14, 48, 49, 50]. The kinematic features and yields of
emitted light particles and clusters have been exploited to probe the nature of the
intermediate system and information on the EOS can be extracted. Much of our
previous work utilizes coalescence model based techniques to follow the time evolution
of the reaction [51, 52, 53, 54, 55] and references therein. As the nucleus expands and
the density decreases the possibility of clusters condensing from the nuclear liquid is
expected to increase. Already at relatively low energies there may be some evidence
of clusterization in low density nuclear matter. For example, Alexander and co-
workers have reported significant emission barrier lowerings for light particles emitted
from moderately excited nuclei [56, 57]. The observed barriers appear to decrease
with increasing excitation energy but attempts to introduce these lower barriers into
statistical model calculations lead to great overestimates of the particle emission rates.
The concept of a nuclear stratosphere, an extended low density region from which such
particles might arise, was suggested and supported by some theoretical calculations.
Experiments in which systems expected to have very different deformations produce
identical spectra, even though the emission times are expected to be fast relative to
the shape relaxation times, provide further support for this concept [58].

At low densities and high temperatures strong alpha clustering of nuclear matter
is predicted by many theoretical models [15, 39, 59, 60, 61, 62]. such clusterization

can be expected in low density nuclear matter, whether it be the low density surface
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of a neutron star, an expanded high temperature nucleus or a rarified region produced
in the early stages of a nuclear collision. A reliable understanding of the nuclear EOS
over a range of densities remains a very important requirement in nuclear astrophysics.
Several extensive calculations and existing tabulations, based on varying nucleon-

nucleon interactions, serve as standards for a wide variety of astrophysical simulations

59, 60].
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Fig. 5. Calculated mass fractions as a function of temperature and density in nuclear

matter with a proton fraction of 0.2. Normal density is ~ 10 grams/cm?.

Fig.5, from reference [60], presents calculated mass fractions for protons, neu-
trons, alpha particles and heavier nuclei predicted for nuclear matter at various tem-
peratures and densities. While this is a calculation for a proton fraction of 0.2, similar
results are observed for other proton fractions.

In a recent theoretical paper, Horowitz and Schwenk have reported the devel-
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opment of a Virial Equation of State (VEOS) for low density nuclear matter [39].

Y

This equation of state, derived from experimental observables should be "model-
independent, and therefore it sets a benchmark for all nuclear equations of state at
low densities.” Its importance in both nuclear physics and in the physics of the neutri-
nosphere in supernovae is emphasized in the VEOS paper [39]. An important feature

of the VEOS is the natural inclusion of clustering which leads to large symmetry ener-

gies at low baryon density. These results are compared to those of other calculations

in Figure 6.
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Fig. 6. Virial equation of state results ( solid lines) at T = 2, 4 and 8 MeV are compared
to those of two other theoretical models [39]. The present Virial model does
not include heavier nuclei and is not expected to be adequate above the point
where the Shen Calculation peaks [59].

We recently adapted our investigations of the nucleon and light cluster emission
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that occurs in near Fermi energy heavy ion collisions to probe the properties of the
low density participant matter produced in such collisions [43]. The reactions of 35
MeV /nucleon ®Zn projectiles with %2Mo and " Au target nuclei were studied. The
data provide experimental evidence for a large degree of alpha clustering resulting
from nucleon coalescence in this low density matter. For nuclear gases with average
proton fraction, Yp ~ 0.44, and densities at and below 0.05 times normal nuclear
density and varying temperatures, experimental symmetry energy coefficients have
been derived using the isoscaling method [41, 42]. In order to pursue this effort
and broaden the density range over which the symmetry energies are experimentally
determined we have now carried out a series of experiments in which the reactions
of 112Sn and '?*Sn with projectiles, ranging from *He to ®4Zn, all at the same energy

per nucleon, 47Mev/u. The systems chosen for this study were :

‘He 4112 Sn, ‘He +1%4 Sn,
Wp 12 g, lp 121g,
DNe +12 Gn, 2ONe +124 Gn,
OAr 4112 5n, ©Ar 4+ Sn

047Zn +12 Sn, 4 Zn 41 Sn. (1.6)

In this series of experiments different collision systems should lead to different
average densities [14]. By careful comparisons of the yields, spectra and angular
distributions observed for particle emission from these different systems we attempt
to cleanly separate early emission resulting from nucleon-nucleon collisions from that
resulting from evaporation from the thermalized system and obtain a much cleaner
picture of the dynamic evolution of the hotter systems. Information on the symmetry

potential included in the mean field can then be extracted using empirical techniques
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such as isoscaling for systems with different N/Z ratios or from comparison of the data
with results of the dynamic transport model calculations (and statistical afterburners)

[15]. In this dissertation we concentrate on the former.
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CHAPTER II

EXPERIMENTAL SETUP AND RAW SPECTRA
In this chapter, the details of the NIMROD detector and typical raw spectra are
introduced. The first section discusses the beams and targets. The NIMROD detector
system and detection modules are then described. This is followed by a presentation
of raw spectra generated by the fast and slow signals from Csl Detectors and two Si

detector combinations.

A. Targets and Beams

The experiments were conducted at the Cyclotron Institute of Texas A&M University.
A series of ion beams was delivered by the K500 Superconducting Cyclotron whose
layout is indicated in Fig.7.

Table I lists the projectile species, energies, charge states and neutron to proton
ratios, N/Z. Beam current intensities were in the range of 30 and 60 particle nanoam-
peres. To aid transmission to the target, a 0.25 millimeter thick aluminum foil which
stripped almost all electrons from the projectiles was placed in the beam near the
exit of the cyclotron. The two targets were '2Sn and '?*Sn. The thicknesses of the

2

targets 12Sn and '?Sn were 1.30 mg/cm? and 1.15 mg/cm? respectively. The run

number sequence is listed in Table II.
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Table I. List of beam species Z, N, N/Z, energies.

Beam Z N N/Z Energy (N—-2)/A
P 1 0 0 47 Mev/A -1
d 1 1 | A7 Mev/A 0
‘He 2 2 1 47 Mev/A 0
B 5 5 1 47 Mev/A 0
W Ne 10 10 1 47 Mev/A 0
0418 22 122 A7 Mev/A 0.010

64 7n 30 34 1.133 47 Mev/A 0.063
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Table II. List of reaction systems and run numbers in chronologic order.

Chronologic Sequence Number  Projectile Target Run Number
1 40 Ay B28ng  11,12,13,14,15
2 40 Ay 248ny,  16,17,18,19, 20
3 ‘He 13286 25,26, 27

1He 1248y 30,31

5 d $52Sngy 32,33, 34
6 d 124802y 35

7 p 13286y 36

8 P 1248nq, 37

9 B 13286, 40

10 B 1248ny, 41

11 DO Ne 13286 43,44, 45
12 WO Ne 12480y 46

13 A $52Sngy 48,49, 50, 51
14 61 7n 1248y 52

B. Neutron Ball

The experiments were performed with the 47 multi-detector systems NIMROD [63]
(Neutron Ion Multi-detector for Reaction Oriented Dynamics) which is composed of
a Neutron Ball (NBL) and Detection Arrays consisting of Si-Csl telescopes arranged
in 12 rings. The purpose of the NBL is to measure neutron multiplicity distribution
to provide a means to better understand excitation energy deposition for heavy ion
reaction systems [64]. It is specifically designed in a cylindrical shape (The designation

as a ball reflects an earlier geometry of the system.) filled with about 1700 liters of
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Gadolinium (Gd) doped (0.3% wt) pseudocumene liquid scintillator. The NBL has
a central cylindrical section and two hemispherical endcaps. Each hemisphere has
four photomultiplier tubes evenly distributed as shown in Fig. 8. The center ring

is segmented into four removable modules, each of which has three photomultiplier

tubes as shown in Fig. 9.

Fig. 8. End hemisphere of neutron ball.



Fig. 9. The center ring of neutron ball.
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When a nuclear reaction occurs inside the Neutron Ball, gamma rays are pro-
duced during the neutron and proton collisions and seen by the photomultiplier. This
generates a ”fast flash” signal which carries information about the total kinetic en-
ergy of all neutrons emitted and the energies of the gamma rays emitted from the
event. It is proportional primarily to the neutron kinetic energy loss. Following that,
the majority of the neutrons are thermalized, and captured by Gd nuclei, which hap-
pens over a period of about 100 microseconds. The excited Gd nucleus de-excites
with emission of an average of three gamma rays. This produces a series of delayed
signals representing the capture of individual neutrons. With correction for detec-
tion efficiency, those signals allow determination of the number of neutrons emitted
in the event. The range of thermalization times allows reaction rates of the order
of 500 events per second. Neutron detection time can be reduced from the scale of
microseconds to the scale of nanoseconds by triggering on the gamma fast flash en-
ergy. However determination of neutron multiplicity then requires knowledge of the

neutron kinetic energies and the contributions of gamma rays to the fast flash signal.

C. Charged Particle Detection Array

NIMROD is composed of a 166 segment charged-particle array surrounded by the
Neutron Ball. The charged-particle detection array is arranged in 12 concentric rings
around the beam axis. The configuration and geometrical dimensions of the forward
eight rings are similar to the multidetector system INDRA at GANIL but NIMROD
has less granularity. Figure 10 shows a typical ring including CsI detectors, Si detec-
tors, and ionization chambers(ICs).

In those rings, the individual segments are fronted by ionization chambers (ICs)

as Fig.11 filled with 30 Torr of CF4 gas. The front and back windows of the ICs
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are covered by 2.0 pm aluminized Mylar foil. In each of those eight rings, two of
the segments have two Si detectors (150 and 500 pm thick) between the IC and Csl
scintillation detectors which are called super telescopes in Fig.12, and four have only
one Si detector as Fig.13 (300 um thick). The CsI detectors shown in Fig.14 are made
of 10 ecm thick Tl-doped crystals glued to Hamamatsu photomultiplier tubes using
BC-610 epoxy. For those scintillation detectors, light charged particles are identified
using a pulse-shape discrimination method so that isotopes with Z=1 or 2 are clearly
separated. For the super telescopes as Fig.15, the 2 Si detectors in the modules allow
isotope identification capability for Z < 11. Using this 4r NIMROD detection system
[63], we can measure the yields, spectra and angular distributions of light charged
species which are emitted from these different systems over a range of angles between 3
and 170 degrees whose schematic map of angular coverage is shown in Fig.16. During
the experiments, depending on the reaction systems studied, two different trigger
modes are typically employed to take data. One is a minimum-bias trigger in which
at least one of the Csl detectors detects a particle. The other is a high-multiplicity
trigger requiring that three to five particles are detected in Csl detectors. A complete
list of nuclear electronic modules and CAMAC crates can be found in Elizabeth Bell’s

dissertation [65] which lists every single module’s specification and its source.



Fig. 10. A typical ring of NIMROD.
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Fig. 11. IC chamber of NIMROD
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Fig. 12. NIMROD dection module composed of one Csl detector and two Si detectors.
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Fig. 13. NIMROD detection module composed of one CsI detector and one Si detector.



Fig. 14. NIMROD detection module of CsI detector.
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Fig. 15. NIMROD dection module composed of Csl, two Si, and an IC.
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D. Some Typical Raw Spectra from the Detection Modules

For the light charged particles, isotopes with Z=1 or 2 can be clearly identified using a
pulse-shape discrimination method. Fig.17 shows the Particle Identification in which

different groups of lines correspond to different atomic numbers.
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Fig. 17. Two dimensional plot of fast vs slow components of charge integrated light
output from a CsI detector. Different lines correspond to different isotopes.
X-Coordinate is the fast component of energy loss in channel unit. Y-Coor-

dinate is the slow component of energy loss in channel units.

In this series of reaction systems, a variety of particle species are expected to be

emitted. In order to allow the high Z identification capability, the super telescopes
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are normally employed, as shown in Fig.12. Here a typical of spectrum shown in

Fig.18 shows the iostope identification for Z < 6.
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Fig. 18. Representative two dimensional plot of energy loss in Sil E1 vs energy loss
in Si2 E2. Different groups correspond to different elements. Within these

groups individual lines correspond to different isotopes.



32

CHAPTER III

DETECTOR CALIBRATION AND SPECTRUM NORMALIZATION
This chapter first discusses the calibration of the Si and Csl detectors. In the sec-
ond section the normalization of spectra from different detectors in the same ring is

discussed.

A. Si Detector Calibration

During data acquisition, the gains of the Silicon detectors were very stable. The
basic procedure to make the Si calibration employed isotope punch through points
in the Siliconl versus Silicon2 spectra from the super telescope in each ring. Using
the known thicknesses of the Si detectors, the punch-through energy in MeV for each
isotope was calculated using the SRIM range energy code to convert observed channels
to energies [66]. The thickness of Si detectors are 500um, 300um, and 150um. Table
IIT shows punch-through energies (in MeV) for different detected species.

A C++ fitting routine in the ROOT [67] software was used to obtain the best
three parameters describing the Silicon energy as a function of channel. The formula

employed was

AL+B : L>F
E,(L) = (3.1)
EL*+DL+C : L<F

with D =A—2EF and C = (A— D)F + B — EF?
At the first step, the Cut-off Channel number F was selected. Above that limit,
the relationship between channel number and Energy (MeV) is linear, otherwise it

is nonlinear. Here L is the particle’s energy loss in Si in channel units. E, is the



Table III. Particle punch-through energies in different Si detectors.

Si thickness in microns
particle || 500pm | 300um | 150um
D 8.08 6.01 4.02
d 10.83 8.02 5.29
t 12.76 9.41 6.14
3He 28.54 | 21.14 14.1
‘He 32.13 | 23.86 15.8
Li 60.71 | 44.93 | 29.69
Li 64.79 | 47.91 | 31.58
8Li 68.31 50.5 33.17
Be 89.88 | 66.64 | 44.06
‘Be 99.78 | 73.77 | 48.29
10Be 104.17 | 76.84 | 50.43
1B 134.38 | 99.45 | 65.23
1B 139.95 | 103.33 | 67.64
2 144.8 | 106.96 | 69.8

33
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particle’s energy deposited in Si in MeV units.

The ROOT solver functions automatically minimize the sums of the squares of
the differences between the SRIM punch-through energy values and values calculated
using the above equation. The minimization is achieved by varying an initial set of
calibration parameters, A, B and E. In the low energy region below the cut-off channel,
the nonlinear relation is meant to address a possible nonlinear response of the Silicon
detector. Normally the non-linearity present in the Si calibration is negligible as most
fits of the punch through energies versus the corresponding channels have small Chi
square values, which implies a high degree of linearity. Fig.19 shows a typical Si

calibration curve.
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Fig. 19. Si calibration using punch-through point energies. X axis is the channel num-

ber of light particles. Y axis is energy in MeV.
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B. Csl Detector Calibration

The relationship of CsI light output with a particle(Z,A) of energy E stopped inside

Csl detector is called Csl calibration.
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Fig. 20. Csl calibration using Csl verus Si spectrum. X axis is the channel number of

Si response. Y axis is the channel number of Csl response.
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with
as
T = )
1+ exp[—(E — az)/a4]
as
c - )
’ 1 + exp(az/a)
&1AZ2
M = - In|—————1. 3.3
apCa2a1 111 <a1AZ2 T &2> ( )
E
W = 1+ ———
! + alAZQ’
E + CLlAZQ
T = ——. 3.4
2 ag + (llAZ2 ( )

when T} > 0 and 75 > 0,

otherwise L = 0.

Here the a0, al, a2, a3 a4 are parameters to be searched. A is the particle mass
number, 7 is the particle atomic number. L is the lightout of Csl in channel units
and the E is the energy in MeV units. This formula includes a variety of nonlinear
response of Csl detectors [14, 34].

ROOT C++ Program [67] routines were used to pick off various channels from
isotope lines in raw spectra of the slow component CsI(Tl) versus Silicon signals.
The Silicon calibration parameters obtained in the first step were applied to convert
the Silicon channels into energy in MeV units. Then, the SRIM energy loss code
was used to match the energy loss in the Silicon detector with the energy dumped
in the CsI(T1) detector, which provided the set of channel and energy pairs for the
CsI(T1) as Fig.20 shows two-dimensional correlations of the channels in the Si and
Csl detectors in the super telescope modules and the blue points are those selected
to make the calibration ,and Fig.21 shows one of typical calibration curve.

The minimization technique in TMinits C++ with ROOT was used again to
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find the best parameters for the above equations which represent the light output

from a CsI(T1) detector as a function of the energy (E) of the particle. The CsI(T1)

energy spectra produced using those energy calibration procedures were checked with

the elastic scattering peaks observed in the p + ?*Sn, d + '**Sn, and *He + '24Sn

experiments as a verification of accuracy.
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of CsI light output.
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C. First Step Energy Spectrum Normalization

In the data analysis procedure, the raw spectra of light particles are generated in the
channel units. The gains and thresholds for all of the CsI Detectors in the same ring
are slightly different from each other, which makes the raw spectra look different.
Assuming cylindrical symmetry, the energy spectra for all of the Csl Detectors in
the same ring should be the same. In each ring, the Csl detector in the calibrated
super telescope is selected as the standard and reference Csl Detector and the raw
spectrum in each CsI Detector was normalized to the reference detector using the

following formula:
Chanyeyw = Py + Chan,,y X P, (3.5)

with Py is offset, and P; is gain.

As a typical result, the raw p, d, t, *He ,*He spectra of 12 CsI Detectors in Ring3
from reaction system 54Zn +1!2Sn are plotted in Fig.22-26

The energy spectra with number 2 in red color are reference spectra in reference
detectors in Ring3. It is very clear that the spectra look different from each other
because of different gain and offset of different Csl detectors. After first normalization
of raw spectra in channel units, the new proton spectra of these 12 Csl detectors are
shown in from figure 27. It is very clear that all of proton spectra look in the same
shape. The same proton normalization factors were then applied to other particles d,
t, 3He, and *He. It is shown that after the proton normalization factors were applied
to the other particles, the difference in the given particle spectra became much less ,

which are indicated in from figure 28 to 31.
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D. Second Step Energy Spectrum Normalization

After normalization, the energy spectra in MeV for p, d, ¢, *He, and *He were gener-
ated with the first step calibration parameters. The spectrum of the calibrated super
telescope in each ring was again chosen to be the standard reference detectors and

others were normalized with respect to them using the following formalism

Eiow = Eo+ Eraw X Py (3.6)

with Ejy is an offset, and P, is the gain.

The final energy spectra in MeV units show the typical results in Ring3 after the
second normalization in MeV units for the reaction system %4Zn +!'2Sn, which will
reduce the spectra difference caused by nonlinear responses. The Second normlization
table is listed in Table IV, in which po, p1 , do , dg , to , tg , ho , hg , ao , a4 are offsets
and gains of p, d, t, *He, and “He respectively. The Fig.32 shows the typical spectra
of p after the second normlization, all of which look very simlar. Spectra of d, t, 3He,
and “He after second normlization are attached in Appendix A.

Now each of the light particles in the Ring3 has same shape and we will average

all of those spectra to increase statistics to get final angular spectra in MeV.
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Table IV. Second normalization factors for Ring3 of reaction system %4Zn + '2Sn.

Csl || po D1 do dg to tg ho hyg ao g
2 00] 10|00 10 |00] 1.0 0.0 1.0 0.0 1.0
4 (100] 101{00]1.02] 00| 1.0 |-1.0 |08 ] 0.0 | 0.98
6 || 00| 10 |-50|104| 00| 1.0 |-12.0| 1.0 | -3.0 | 0.985
8 || 00| 1.0 |40 090 00 |097| 0.0 | 0.8 | -2.5 | 09
10 | 0.0 | 1.0 | 0.0 | 099 | 3.0 | 1.0 | 0.0 | 1.03|-10.0| 1.06
12 00| 10 | 00| 1.0 | 00| 1.0 | -1.0 {098 | 0.0 | 0.96
14 || 5.0 {094 ]-20/094|-3.0[094| -9.0 | 1.05| 0.0 | 0.95
16 || -1.0 | 1.04 | -5.0 | 1.05 | 0.0 | 1.0 | -10.0 | 0.98 | 0.0 | 0.99
18 | 0.0 | 1.0 |-20|1.05| 0.0 | 1.0 | 0.0 {098 | 0.0 | 1.05
20 || 00| 1.0 |-7.0|1.06]| 0.0 | 1.0 | 0.0 | 1.0 | -3.0 | 1.06
22 1 00|10 | 3010100 |105| -1.0 | 0.95|-11.0| 1.03
24 1 00| 1.0 | 0.0 {098]-1.0]0.99| 0.0 [0.90| 0.0 | 0.93
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“Zn +*?Sn Ring3 p Raw Spectra
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Fig. 22. X axis is energy in channel units. Y axis is the counts in log scale.
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“Zn +™2Sn Ring3 d Raw Spectra
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Fig. 23. X axis is energy in channel units. Y axis is the counts in log scale.
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“Zn +™2Sn Ring3 t Raw Spectra
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Fig. 24. X axis is energy in channel units. Y axis is the counts in log scale.



"Zn +%23n Ring3

0

b

Csl#2

2000 4000 6000 8000 10000 1200014000

10°k CS|#4

]1 2000 4000 6000 8000 1000012000 14000

Csl#10

0'F CSl # 12

o

Csl#18

2000 4000 6000 8000 10000 1200014000

3 Csl#20

=
s
T

10 2000 4000 6000 8000 1000012000 14000

44

3He Raw Spectra
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Fig. 25. X axis is energy in channel units. Y axis is the counts in log scale.
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“Zn +"2Sn Ring3 4He Raw Spectra
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“7n +2Sn Ring3 p First Normalization
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Fig. 27. X axis is energy in channel units. Y axis is the counts in log scale.
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“7n +12Sn Ring3 d First Normalization
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“7n +2Sn Ring3 t First Normalization
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“7n +2Sn Ring3 3He First Normalization
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“7n +2Sn Ring3 4He First Normalization
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%7n +1Sn Ring3--Second Normalization -p
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CHAPTER IV

EVENT SELECTION

A. Observables to Characterize the Collision Violence

In this dissertation project, the primary analysis efforts have been focused on the most
violent collisions which are generally associated with the lowest impact parameters.
In previous data analyses, a large number of authors have discussed the merits of
different observables to determine collision violence and several physical observables
which are sensitive to the collision violence have been proposed for various types of
reaction systems [14]. Some studies indicate that determination of violence with two
or more observables are more accurate than those relying on a single observable [14].
However, various factors, such as conservation laws of mass, charge and energy can
introduce autocorrelations which can distort a sample of events. Therefore special
consideration must be taken when choosing more than one observable in order to
avoid autocorrelations among those observables.

This chapter first introduces the critera used for event selection in this work.
Two dimensional plots of charged particle multiplicity versus neutron multiplicty are
generated and discussed. In the last section, a table of multiplicity ranges associated
with the collision violence is presented.

In the previous reports on heavy ion reaction systems studied with the NIMROD
Detector, two different approaches were chosen with different selection criteria for
collision violence. One employs light charged particle multiplicity and transverse
energy of light charged particles and the other one uses the multiplicities of light
charged particle and neutrons [13]. In the present data analysis, the combined charged

particle and neutron multiplicities are used. Extensive studies have indicated that
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these multiplicities are correlated to both collision violence and impact parameter.
In this work, the multiplicity of charged particles is the total number of detected and
identified charged particles per event. It includes both the light charged particles
with Z < 3 and the Intermediate Mass Fragments (IMF) with Z > 3. The per event
detected neutron multiplicity is that recorded by the neutron ball in NIMROD.

The two dimensional correlation of charged particle multiplicity vs neutron mul-
tiplicity are presented in contour plots of Fig.33 for each system studied. As the mass
of the projectile increases from 4 (bottom row of the figure) to 64 (top row of the
figure), the energy available in the center of mass and the possible excitation energy
deposition increase significantly. This is reflected in progressive increases in both the
neutron and charged particle multiplicities.

Typically, increasing charged-particle multiplicity is associated with increasing
neutron multiplicity. Although there are significant fluctuations, reflecting both the
competition between different decay modes and the neutron detection efficiencies,
this correlation provides a reasonable criterion to determine the violence of the col-
lisions. In the low multiplicity region which corresponds to low excitation energies
(and generally more peripheral collisions), the charged particle multiplicity changes
much more slowly than the neutron multiplicity, presumably because the Coulomb
barrier reduces the charged particle emission probabilities at low excitation energies.

While at higher excitations, the Coulomb barrier does not supress the charged
particle yields as much. Thus charged particle emission competes more effectively
with neutron emission.

The general pattern of neutron and charged particle multiplicities observed in
charged particle multiplicity versus neutron multiplicity plots is consistent with the

results of calculations using QMD and AMD transport codes[13].
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B. Two Dimensional Plots of Charged Particle Multiplicity versus Neutron Multi-

plicity

The detected particles include p , d ,t, *He, and *He and Intermediate Mass Fragments.
In our case, event selection will be based upon the sum of neutron and light charged
particle multiplicities. We select the most violent events by choosing the 30% of
the minimum bias events having the highest total detected ejectile multiplicity. In
Fig.34 we show the observed distributions of the total charged particle plus neutron

multiplicity distribution from each reaction system studied.

C. Observable Tables to Characterize the Collision Violence

This section list the multiplicity ranges which are actually choosen in our data anal-
ysis. The group of events in Bind are the most interesting to us on which our data

analysis are based . The detail range numbers are listed in Table V.
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Table V. Multiplicity ranges of the four bins of collision violence for each reaction

system.

Reaction System Bin4 Bin3 Bin2 Binl
‘He + ''2Sn M >6 4<M<6 2<M <4 0O<M<?2
‘He + 24Sn M>7 4<M<7 2<M <4 O<M<2
0B 4 H28p M>11 6<M<11 3<M<6 0<M<3
0B + 1248 M >12 6<M<12 2<M<6 0<M<2
20Ne + 128n M >15 8< M <15 3<M <38 0<M<3
20Ne + 124Sn M > 16 T<M<16 3<M <7 0<M<3
40Ar + M28p M > 23 19 < M < 23 14< M <19 O<M<14
OAr + 1248n M > 26 21 < M < 26 16<M<21 0<M<16
647Zn + 128n M > 26 17< M < 26 3<M <17 0<M<3

647n + 124Sn M > 24 10< M <24 3< M <10 O0<M<3
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Charge Particle and Neutron Multiplicty Correlection
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Collision Violence Determination by Charge Particle and Neutron Multiplicty
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Fig. 34. Sum of neutron and charged particle multiplicty distribution of each reac-
tion system. Bin4 corresponds to the most violent collision events, Bin3 cor-
responds to the semiviolent events, Bin2 corresponds to the semiperipheral

events, and Binl corresponds to the peripheral events.
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CHAPTER V

ENERGY SPECTRA AND THREE SOURCE FITTING

A. LCP Energy Spectra and Angular Distribution

In this dissertation project, the light charged particle (LCP) emission is the primary
probe to follow the dynamic and thermal evolution of the system [13, 14]. We first
present angular distributions of the observed particle energy spectra for the five sys-
tems studied. The angles and solid angles determined by the sizes and geometrical
arrangement of NIMROD'’s rings are presented in tables VI and VII.

The differential angular distributions of the particle multiplicity, dM?/dEdS), are
generated in order of decreasing collision violence, from the most violent (Bin4) to
the least violent (Binl).

The peaks in the Alpha particle spectra in Bin4 from the *He + !2*Sn as Fig.35 is
generated by the elastic scattering of alpha projectiles at forward angles. The bumps
in the Alpha partilce spectra in Bin4 from °B+4-'24Sn in Fig.36, and 2°Ne+'?*Sn in
Fig.37 reflect the alpha cluster structure of projectiles which were reported in many
papers. Fig.38 and Fig.39 represent the light particle spectra of systems “°Ar+'2*Sn
and 91Zn+121Sn respectively. The proton spectra in the backward angle (Ring 11,
Ring 12, Ring 13) in Bin4 from all of the reaction systems have cut off because those
Csl detectors are thinner and proton particles punch through at energies around 50
MeV.

For the full list of all spectra in window Bin4, Bin3, Bin2, Binl, they are attached
in Appendix B, C, D, E, respectively.

From Ring2 to Ring13, the multiplicities of all the light particles progressively de-

crease except for the *He+'?*Sn and “*He+'2Sn because the electronics of the forward
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Table VI. Angle parameters in very forward NIMROD rings.

Ringld 2 3 4 5 6 7

0 4.3 6.41 9.43 12.93 18.15 24.45
s} 9.56x10™ 2.67x1073 4.26x107% 7.99x1073 1.61x1072 1.27x1072

Table VII. Angle parameters in forward and backward NIMROD rings.

Ringld 8 9 10 11 12 13

0 32.08 40.39 61.17 90.0 120.0 152.5
dQ2 3.36x1072 2.76x1072 1.54x107! 2.07x107! 3.78x107! 2.41x107*

rings had some problems during the experimental runs.

For the most violent collision events, the light particle emssion increases as the
projectile mass increases. This increase is consistent with the results of the transport
code calculations.

Even though the mass numbers, charge numbers and deposited excitation en-
ergies differ significantly among these reaction systems similar spectral patterns are
observed, particularly for the higher energy particles. This strongly suggests a similar
mechanism of emission for those particles, presumably indicating the similar source

contribution of light particle emission.
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B. Global Three Source Fitting

A widely used technique to characterize light particle emission in this energy range has
been to fit the observed spectra assuming contributions from three emitting sources,
a projectile-like fragment (PLF) source, an intermediate velocity (NN) source, and a
target like fragment (TLF) source [13, 14]. We follow the same procedure in our initial
analyses. However, given the continuous dynamic evolution of the system, source fits
should be considered as providing a rough schematic picture of the emission process
[13].

We will try to use them to estimate the multiplicities and energy emission at
each stage of the reaction. In this analysis the source velocities, emission barriers,
temperatures, and particle multiplicities for the three different sources are searched

for [12]. The individual formulas for the source fitting are

d*N M, N; . _mn
TLF : — source ag E// E “ E, —F /Tsource 5 1
dElabdQlab 47T2 : b/ ¢ ( )

source

with

1
E' = Elab - 2\/Elab§mLCPU§ou7‘ceCOS(0> + émLCvaource

" /
E = B — Vsource

Here Ny,g is the number of observed LCPs, Mgource is the multiplicity associated
to the source, Tyource is the temperature and Vgguree is the Coulomb barriers. vegurce
is the magnitude of the source velocity in the direction of the beam. 6 is the angle

from the source direction to the detected LCP [12].
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d*N M. N, )
NN : _ sourcet Vtag /E, —E" [ Tsource 59
B 20 eguree P (5.2)

d*N M ource Ny ,
PLF N — source ag A/ E/E// -E /Tsource 53
dBiapday, AT ¢ (5.3)

source

with

/
E = Elab - ‘/;ource

1 1
E'" = E - 2\/E/§mLCPU§ouTceCOS(0> + émLCvaource' (54)

Certainly, to depict the time evolution of the system in more detail a more sophisti-
cated analysis of the particle emission is necessary. As an example, the Fig.40 - 44
indicate the p, d, t,>He, *He energy spectra from the reaction system “°Ar+12Sn. All
of the values of fitted parameters are indicated in the spectra.

In the fitting process, which assumes isotopic emission and a Maxwellian spec-
tral shape in the particular source frame considered, accounting for forward emitted
particles with projectile like velocities, requires a PLF source. For the violent col-
lisions, we consider these particles to be of pre-equilibrium emission origin and not
evaporated from a fragment.

Even though the system evolves in a continuous fashion, such source fits pro-
vide a useful schematic picture of the emission process. From the fits, we obtained
parameters describing the ejectile spectra and multiplicities that can be associated
to the three different sources. As in the earlier works, the NN source is found to
have a source velocity very close to half of that of the projectile reflecting the ini-

tial decoupling of the momentum sphere of the participant matter from that of the
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remaining nucleons. This important feature of the dynamically evolving system man-
ifests itself as kinematic differences between the early emitted light (gas) ejectiles and
the remaining (liquid) matter (TLF). As the system relaxes toward equilibrium the
two momentum spheres become more and more similar. Eventually the distinction is
lost. The source fitting has been done for the four different windows on violence of
the collision. The full list of source fitting spectra from different systems are listed in
Appendix F, G, H, I, and J, in which all of source parameteres, i.e. multiplicity (M),
temperature (T MeV), Coulomb barrier (E; MeV) and source velocity (Vs cm/ns),
are indicated in the spectra. One typical set of result of the extracted parameters
are listed in Table VIII. We emphasize that for the later analysis the primary event

selection is on the most violent and presumably more central collisions.
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Table VIII. Typical results of multiplicity (M) temperature (T MeV) Coulomb barrier
(Er MeV) and source velocity (Vs cm/ns).

System | Particle | Parameter Bin4

TLF NN PLF

0.691 | 4.398 | 0.6040

D T 3.97 | 13.8440 | 4.0000
Er 3.997 | 1.0010 | 2.0010
Vg 0.398 | 5.4130 | 9.8860

0.3640 | 2.0750 | 0.3406

d T 4.2520 | 18.1390 | 5.3920
Er 0.001 | 5.0021 | 12.0000
Vg 0.001 | 4.6330 | 8.8600

0.1001 | 1.0620 | 0.2738

647n t T 5.0930 | 19.5100 | 7.7540
+ Er 3.2050 | 2.3800 | 12.0000
1128n Vg 0.6360 | 4.4400 | 8.3170

0.0725 | 0.3957 | 0.2606

3He T 4.4080 | 25.0000 | 10.8400

Er 3.4950 | 2.3260 | 12.0000

Vg 2.0010 | 3.9190 | 8.7400

2.7050 | 2.0090 | 1.3980

‘He T 7.4560 | 12.9510 | 7.9460

Er 0.0010 | 11.00 4.00

Vg 1.5120 | 4.7150 | 8.1930




Table VIII Continued

System | Particle | Parameter Bin4
NN PLF | TLF
0.6074 | 2.9020 | 0.5102
P T 5.00 12.87 | 4.00
EL 1.430 4.5 2.0
Vg 0.001 | 5.594 | 9.73
0.4159 | 1.783 | 0.3473
d T 4.839 | 18.846 | 5.646
Er 0.001 | 3.998 | 11.557
Vg 0.035 | 4.627 | 8.756
0.1980 | 1.137 | 0.2676
647n t T 5.610 | 19.165 | 7.586
+ EL 3.027 | 2.238 | 0.001
1248 Vg 0.675 | 4.589 | 8.881
0.05173 | 0.2797 | 0.1890
3He T 3.481 | 23.383 | 9.863
Er 2.831 | 2.002 | 12.00
Vg 1.856 | 4.610 | 8.783
2.129 | 1.632 | 1.495
‘He T 7.110 | 13.158 | 8.857
EL 0.001 11.00 | 4.001
Vg 1.396 | 4.351 | 8.042
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Fig. 40. X axis is energy in MeV. Y axis is multiplicity distribution.
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CHAPTER VI

DATA ANALYSIS

The light particles which are emitted carry essential information on the evolution of
the collision. This chapter begins with an overview of the experimental results for
light particle emission selected for 4 different windows of collision violence as indicated
by the combined neutron and charged particle multiplicities. This is qualitatively
explored assuming that the observed light charged particle emission can be attributed
to three primary sources moving in the laboratory frame [13, 14]. The emission
is assumed to have a Maxwellian distribution in the source frame and each of the
sources is described by a source velocity, temperature, Coulomb barrier and particle
multiplicity.

We derive information on the early thermalization stage of the reaction [13, 53,
54] by focusing on the properties of early emitted mid-rapidity particles identified with
the NN source frame. Such a selection minimizes contributions from the other sources.
In addition, yields assigned to the TLF source are subtracted from the experimental
yields. Thus, the yields of higher energy particles are relatively uncontaminated by
later emission processes. AMD-V calculations reported previously [14, 48] indicate
that the velocities of early emitted light particles decrease rapidly with increasing
average emission time. We have exploited this correlation by determining various
parameters characterizing the ejectile yields, i.e., temperature and isoscaling parame-
ters, as a function of ejectile velocity. The velocity employed is the “surface velocity”,
Viurg, of the emitted particles, defined as the velocity of an emitted species at the
nuclear surface, prior to acceleration in the Coulomb field [13]. The energy prior
to Coulomb acceleration is obtained in our analysis by subtraction of the Coulomb

barrier energy derived from the source fits. In earlier studies we have employed the
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calculated correlation from AMD-V calculations to calibrate the time-scale associated
with our data [13, 48, 49, 54].

The focus of the data analysis is then shifted to the events with the highest
collision violence. A variety of observables are explored employing invariant velocity
plots. Simulated plots of the same observables are also generated using the fitting
parameters derived from the source fits. For later analysis, in the spirit of thermal co-
alescence models [52], the Coulomb contributions to the energy spectra are subtracted
and new velocity plots, referred to as V¢ plots, are generated.

In order to further isolate the low density nuclear matter which results from
early emission, the source fits (also in Vj,,s) are later employed to remove the TLF
component to minimize the contamination from LCP emitted in the later stages of
reaction evolution.

Finally we derive temperatures and densities from the yield data and carry out

an isoscaling analysis of the selected data and derive Symmetry Free Energies.

A. Reaction Tomography of the Most Violent Collision Events

A more general view of the particle emission patterns can be obtained using Gallilean
invariant velocity plots. For the reactions studied, typical light cluster results are
shown in figures 47 and 48, which contain plots of the intensities of the light charged
particles plotted as a function of their parallel and transverse velocities in the labora-
tory frame. Those plots are for the most violent collision events, whose full list can be
found in Appendix K. To construct this plot, the histogrammed data from the discrete
detector rings were smoothed by assignment of the position for a particle detected
in a given detector according to the angular distribution function generated with the

parameters derived from the three source fitting. For the most violent collisions these
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plots for p,d, t, 3He, and *He reveal very strong similarities for the different systems.

For the most peripheral events, the plots of proton and alpha velocity for all
of the systems are presented in figures 45 and 46. The contour level patterns of
the particle intensity distributions in the velocity frame show emission dominated by
PLF sources with velocity close to that of projectile and TLF sources with source
velocities with low velocities near to zero. Those velocity patterns show that the

reaction mechanism is similar even for the least violent collision events.
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We also took the source fitting parameters to simulate the individual source to
generate the velocity plot to remove the particluar components that we need. We can
use the simulated TLF source velocity plot to remove the late emission part.

One of typical pictures is shown in Fig.49 which demonstrates the PLF + NN +

TLF simulated spectra of proton agree very well the experimental spectra.

B. Experimental Determination of Temperature and Density

Coalescence and thermodynamic equilibration models are widely used in interpreta-
tions of light cluster emission. For the most violent collision events, the temperature
and density of the emitting systems were first calculated using the Albergo model
[68]. The Albergo model evaluates the temperatures and free nucleon densities based
on a dilute-nuclear-matter chemical equilibrium assumption which makes use of the
known data for 2H, 3H , 3He, *He cluster emission. The Albergo model assumes that
the first stage of a heavy-ion collison creates a hot interaction region. During the
second stage, this hot system will cool and expand leading to lower densities and
temperatures. Eventually the reacting system reaches the chemical freeze-out stage.
At that point it is assumed that the particles do not interact further except by the
Coulomb repulsion and are emitted from the system and identified by the experi-
mental detection system. Based on those assumptions, the emitted clusters carry the
essential information on the freeze-out stage temperature, density, N/Z composition,
etc.

While spectral “temperatures” may be extracted from fitting exponential slopes
of the measured particle spectra, those observed spectra slopes are not necessarily
appropriate estimates of the temperatures because they reflect dynamic effects in the

evolving systems. For early emitted particles, for example, the spectral slopes are
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generally consistent with those calculated with transport models. They are charac-
terized by high apparent temperatures but the observed spectra are convolutions of
the spectra at different emission times and include high energy particles which are
emitted before the thermal equilibrium is reached. For this reason, in this work we
employ chemical temperatures derived from relative yields of the emitted species. In
order to probe the temperature evolution of the systems we determine these tempera-
tures as a function of Vj,,s. This is based upon a large body of previous experimental
work and comparisons with transport model calculations which indicate that there is
a strong correlation between energy and emission time for the early emitted particles
[68]. Of course, for the concept of temperature to make sense, statistical equilibrium
is required, at least on a local basis. We have addressed the question of evidence for
equilibration in a number of previous papers on similar collisions [68] and will provide
further evidence that this assumption seems justified in the following chapter.

The Albergo Model assumes that a thermal equilibrium is established between
free nucleons and composite fragments contained within a certain interaction volume
V at a temperature T. The density of P(A,Z) of a particle (A,Z) with Z bound protons
and (A-Z) bound neutrons can be written as Equation 6.2.

As pointed out by Albergo et al [68], knowledge of the temperature allows the
extraction of the free proton densities from the yield ratios of ejectiles which differ by

one proton, e.g., the yield ratio of *He to 3He. Specifically,
pp = 0.62 x 1057327 198/T [y ("He) /Y (*H)). (6.1)

Here T is the temperature in MeV, Y refers to the yield of the species under
consideration, and p, has units of nucleons/cm®. Correspondingly, the free neutron
densities may be extracted from the yield ratios of ejectiles which differ by one neu-

tron, e.g., the yield ratio of 3H to 2H . For this work we have first derived the free
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nucleon densities and then determined densities of the Z = 1 and Z = 2 clusters from

their yield ratios relative to the free protons.

p(A, Z) = (6.2)

N(A Z)  A¥w(A, Z)FMB lu(A, Z)]
T ,

Vo Ay
where N'(A, Z) is the number of particles (A,Z) within the volume V; A3, = h/(2mmoT)"/?
is the thermal nucleon wave-length, where mg is the mass of a nucleon N. T is the

temperature expressed in MeV; (A, Z) is the chemical potential of the particle (A,Z7);

w(A, Z) =3 {[25i(A, Z) + Llexp[-E;(A, Z)/T]} (6.3)

j
is the internal partition function of the particle (A,Z7), where s;(A, Z) are ground- and
excited-state spins and E;(A, Z) are energies of these states and Fyp[u(A4, 2)/T] =
explu(A, 2)/T).

Here the Maxwell-Boltzmann statistics is chosen for temperature more than some
MeV and p < po /2.0. Also Albergo Model assumes the system is in chemical equi-

librium which satisfies the equation:

WA, Z) = Zpyp + (A— Z)pnr + B(A, Z), (6.4)

where B(A,Z) is the binding energy of cluster (A,Z). p,r and ji,,r are the chemical
potentials of free proton Py and of free neutrons N, respectively.

From the above equations, Albergo derives the formula:

N(A,Z A32NAY 4, 7 B
p(A7 Z) = (V ) = £ ( )A,ZngpﬁFZeXp T ) (65)

(25pF + 1)Z(28nF + 1)
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p(A,Z), ppr and p,r being the densities of the composite fragment (A,Z), of free
protons and of free neutrons, respectively, contained in the same interaction volumes
V at the temperature T. Based on the above analysis, Albergo also derived the ratio

of experimental yields of two clusters as the equation 6.6:

A-A’
Y(A,2) _ pAZ) (é)m A w(A, 7) L7 (A=Z)~(N=2)
Y(A,Z")  p(A,Z") A 2 w(A, Z1)"PE
B(A,Z)— B(A" — Z’)]
= .

X exp [ (6.6)

By calculation of experimental yield ratios between the two fragments differing
only a proton, such as (A,Z) and (A+1, Z+1), Albergo showed the free-proton density

(nucleons/cm?) of the emitting source during the system disassembly.

PpF

( A )3/2 10 2s(A,Z) + 1 32

T

A+1 21 2s(A+1,Z+1)+1

B(A,Z)-B(A+1,Z+1)|| Y(A+1,Z+1)
T Y (A, Z)

= (67)

Similarily, using the yield ratio of the two fragments differing only for a neutron,

such as (A,Z) and (A+1,Z), Albergo derived the free-neutron density:

PnF

< A >3/2 1036 QS(A, Z) +1 T3/2
A+1 21 2s(A+1,2)+1
B(A,Z) — B(A+1, Z)] } Y(A+1,2)

X exp [ (6.8)

T Y (4, 2)

Given the experimental yields of 2H , 3H , 3He and “He, Albergo derived the free

proton and neutron density (nucleons/cm?) formula:

Y (®He)

por = [0:39- 107" exp(~5.5/T)| 5 s
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Y (“He)

= [0.62-10%T%?exp(—19.8/T
[0.62- 10 exp(—19.8/T)] YEOR

(6.9)

~

(*H
(*H
Y (*He)

Y (*He)’

~—

pnr = [0.39 - 10373 2exp(—6.3/T)]

~

= [0.62-10°°T%%exp(—20.6/T)] (6.10)

Albergo deduced a very simple formula to calculate the temperature using the
double ratios of light clusters which can be measured with experimental detection

systems. For our case, using the light charged particles,

14.3
L [\/9/8(159)Ry.,,.,| (611)
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In the case of strong system evolution the double isotope yield ratio temperatures
derived from integrated yields are certainly not accurate because the isotopes can be
produced at very different times or by different mechanisms [13]. Selection of yields
in a particular energy range, even when the energies are Coulomb corrected, may also
lead to errors in temperature determinations if the isotopes are not in fact produced
during the same time interval of the system evolution [13, 14].

In this dissertation project, particle velocities are employed to select the particles
emitted at particular emission times. This is done for a range of velocities in the NN
source frame for which emission from other sources is minimal. If secondary emission
contributions are negligible, derivations of double isotope yield ratio temperatures as a
function of particle velocity allow us to follow the average temperature evolution of the
system. In our data analysis, the relative yields of the light clusters are taken in the
invarant velocity frame. We have derived the double isotope yield ratio temperature
True, from the yields of d, t, 3He, and *He particles as a function of parallel and
perpendicular velocity. We note that for particles emitted from a single source of
temperature T and having a volume Maxwellian spectrum E'/2e~#/T the HHe double
isotope yield ratio evaluated for particles of equal surface velocity is \/% times
the ratio derived from either the integrated particle yields or the yields at a given
energy above the barrier. Thus the formula is given as Equation 6.11, where the
constants 14.3 and 1.59 reflect binding energy, spin, masses and mass differences of
the ejectiles and Ry, , = Y(d)Y("He)/Y (t)Y (*He) with cluster yields Y taken at
the same surface velocity.

In Fig.50 we present the derived temperatures as a function of Vg, . The tem-

peratures increase slightly with projectile mass and decrease with decreasing Vg, ¢.
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C. Reaction Tomography of Densities

In references [48, 49] we discuss this evolution and present the evidence that chemical
equilibrium is achieved, at least on a local basis. Although densities are not easily
accessible experimental quantities in collision studies, knowledge of the densities at
which the symmetry free energy Fiy,, determinations are being made is critical to an
interpretation of the measured values. As pointed out by Albergo et al, knowledge of
the temperature allows the extraction of the free proton densities from the yield ratios
of ejectiles that differ by one proton. Correspondingly, the free neutron densities may
be extracted from the yield ratios of ejectiles which differ by one neutron. Once the
free nucleon densities are known, the densities of the other particles may be calculated
from the experimentally observed yields. This, again, is done as a function of surface
velocity. The results, obtained by summing the densities of particles with A =1 to
4, for the all reaction systems with the removal of TLF components, are presented in
Fig. 51. The values for the two systems with same projectiles, but different targets
show quite similar results and low densities. From the light projetciles to heavy ones,
‘He, 9B, ?°Ne, %Zn, the density evolution pattern in the velocity frame changes
significantly. For a given system, the density changes as velocity evolves. It is worth
noting that our measurements of both the temperature and the associated Alpha
mass fraction, also provide a means of estimating the densities by comparison with
the Schwenk and Horowitz, Shen, Lattimer, or Roepke calculations. Like the Albergo
calculation these calculations assume chemical equilibrium and lead to similar low
densities. protal = Pp + Pn + 24 + 3pt + 3pspe + 4pape. The unit of total density protal

is nucleons/cm?.
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D. Isocaling Parameter Alpha

Horowitz and Schwenk have pointed out that extensive alpha clustering in the low-
density gas leads naturally to an increase in the symmetry energy for the clustering
system [39]. For comparison to the symmetry energy predictions of the VEOS model
we will derive symmetry free energies from the ejectile yield data by employing an
isoscaling analysis. Such analyses have been reported in a number of recent articles
[43, 41, 42]. In this approach the yields of a particular species Y (N,Z) from two differ-
ent equilibrated nuclear system 1 and 2 of similar temperature but different neutron

to proton ratios, N/Z are expected to be related through the isoscaling relationship

Y;
?j — CeN+AZ. (6.12)

where C'is a constant, a = [ua(n) — p1(n)]/T and 5 = [u2(p) — u1(p)]/T, rep-
resenting the difference in chemical potential between the two systems, may be ex-
tracted from suitable plots of yield ratios. Either parameter may then be related to
the symmetry free energy, F,,,. With the usual convention that system 2 is richer

in neutrons than system 1,

a = AFn[(Z1/A1)? — (Z2/A2)°)/ T,

B = 4Fym[(N1/A1)? = (N2/A2)?)/T, (6.13)

where Z is the atomic number and A is the mass number of the emitter. Thus,
Fyym may be derived directly from determinations of system temperatures, Z/A ratios,
and isoscaling parameters. In this work, the isoscaling parameter Alpha is determined

from yield ratioes of p, d, t 3He “He for the two targets studied.



93

Figures 52 and 53 present a representation of the isoscaling parameter alpha for
reactions with '2Sn and '?*Sn in velocity space. In order to focus on the low density
matter ejected from the the system, we focus on the mid-velocity region of this plot.
The velocity region has V| from 4.75 to 5.75 cm/ns. For this V)|, the V is sampled.
To illustrate those values, the fitting line and data points are plotted in Fig.52.

The Y axis in each figure represents the ratio of ejectile yields, yield ratios are
displaced to make a clear representation for different V. All results shown here have
error on Alpha less than 10%. The data are for *°Ar Projectiles. Some typical results

of *He, B, 2°Ne, %4Zn projectiles are shown in Appendix L.
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E. Symmetry Free Energies

Figure 54 shows results in the mid rapidity region, from which one sees relatively low
values of the symmetry free energy consistent with those reported in our previous work
on low density gases [43]. In the target-like region near 0 cm/ns and the projectile-like
region above 10 cm/ns significantly larger values are derived. These values are close
to symmetry energy coefficients of Liquid Drop Model mass formulae and of those
derived from earlier isoscaling experiments reported in the literature. It is tempting
to associate the observed evolution with an evolution in density at emission. However
a detailed understanding of the density variations requires very careful evaluation of
the secondary evaporative contributions in the PLF and TLF regions as well as a

consideration of in-medium effects as addressed at the end of the previous section.
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CHAPTER VII

RESULTS AND CONCLUSIONS

The primary focus of this research was to isolate and characterize low density nuclear
matter produced in the reactions of various 47A MeV projectiles with 1'2Sn and ?4Sn
target nuclei. Our results indicate that a low density nuclear gas consisting of nucleons
and light clusters with A < 4 is produced in these collisions. The dynamics of the
collision process allow us to associate this gas with an assumed nucleon-nucleon or
intermediate velocity source required to fit the global emission pattern. This source is
most easily sampled at mid-rapidity in the invariant velocity plots where contributions
from other sources are minimized. The total mass of this gas increases with projectile
mass and is approximately 0.6 times the projectile mass. These gases appear to
equilibrate at temperatures near 5 MeV and densities in the range of 0.03 to 0.10
times the normal nuclear density. They manifest a large degree of clusterization as
predicted in various theoretical treatments of low density nuclear matter [39]. Table
IX contains a summary of some of the parameters which have been derived for the
low density matter produced in the five systems studied. For this purpose we have
selected Bins in the Vg, plot corresponding to equal to 4.5-6.0 cm/ns and V is in the
range 0.0-5.0 cm/ns to form on the equilibrated systems. Only those Bins for which
the isocaling parameters alpha have errors of less than 10% were included. Listed in
the table for each value of V| are the values for the Albergo model temperatures and
densities, the Roepke Model temperatures and densities, the symmetry free energies
derived from the isocaling analysis and the alpha mass fractions. All the quantities
are averaged over the 4.5-6.0 cm/ns range in V.

In the following sections we discuss some of these results.
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Table IX. V is the particle perpendicular velocity in units of cm/ns, T,y is the Al-
bergo temperature in MeV, p,y, is the Albergo density in units of nuc/fm?,
Fsam is the Albergo symmetry free energy, T,.. is Roepke temperature in
MeV, proe is Roepke density in nuc/fm?, Fg.. is the Roepke symmetry free
energy in MeV, and X,, is the Alpha mass fraction.

Beam VL Talb Palb Fsalb Troe Proe Fsroe Xa

4.25 | 7.38 | 0.00729 | 15.5 | 6.8 | 0.01339 | 16.9 | 0.225

3.75 1 6.37 1 0.00652 | 13.9 | 5.99 | 0.01373 | 14.8 | 0.316

3.25 | 5.67 | 0.0064 | 13.7 | 5.39 | 0.01613 | 14.5 | 0.414

2.75 | 4.61 | 0.00587 | 9.53 | 4.48 | 0.01561 | 9.79 | 0.579

647n || 2.25 | 4.61 | 0.00527 | 9.53 | 4.48 | 0.01561 | 9.79 | 0.579

1.75 | 4.23 | 0.00457 | 8.52 | 4.15 | 0.01325 | 8.82 | 0.637

1.25 1 3.77 1 0.0026 | 6.4 | 3.75 | 0.0053 | 6.54 | 0.634

0.75 | 3.82 1 0.00272 | 3.87 | 3.79 | 0.00606 | 4.15 | 0.593

0.25 | 3.75 ] 0.00217 | 3.44 | 3.74 | 0.00388 | 3.53 | 0.592

4.25 | 8.05 | 0.00766 | 16.7 | 7.48 | 0.01259 | 18.0 | 0.159

3.75 | 6.81 | 0.0067 | 13.6 | 6.42 | 0.01283 | 14.3 | 0.257

3.25 1 5.89 | 0.00617 | 12.3 | 5.67 | 0.01283 | 12.9 | 0.361

2.75 1 5.25 ] 0.00558 | 13.0 | 5.08 | 0.01374 | 13.6 | 0.458

WAr | 2.25|5.11 | 0.00667 | 12.9 | 4.8 | 0.02273 | 14.2 | 0.535

1.75 1 4.83 | 0.00662 | 9.32 | 4.57 | 0.02472 | 10.0 | 0.59

1.25 | 4.45 | 0.00547 | 8.67 | 4.29 | 0.01929 | 9.25 | 0.618

0.75 | 4.38 | 0.00563 | 8.9 | 4.24 | 0.02105 | 9.52 | 0.633

0.25 | 4.38 | 0.00507 | 9.89 | 4.2 | 0.01631 | 10.4 | 0.616




Table IX Continued

Beam

Talb

Palb

Fsalb

Troe

proe

Fsroe

20Ne

4.25

7.14

0.00471

13.8

6.97

0.0069

14.9

0.159

3.75

6.44

0.00432

13.8

6.18

0.0069

14.7

0.231

3.25

5.99

0.00474

13.1

2.75

0.00858

13.6

0.302

2.75

5.49

0.0047

12.7

2.3

0.00952

13.0

0.381

2.25

5.19

0.00503

14.6

5.02

0.01158

15.1

0.455

1.75

2.0

0.00554

12.8

4.82

0.01498

13.7

0.525

1.25

4.79

0.00526

11.9

4.65

0.0146

12.6

0.551

0.75

4.58

0.00435

12.3

4.48

0.0106

12.5

0.55

0.25

4.51

0.00464

9.83

4.4

0.01227

9.72

0.562

1OB

4.25

7.13

0.00314

12.4

6.9

0.00411

12.8

0.113

3.75

6.58

0.00322

13.7

6.38

0.00448

14.4

0.167

3.25

6.08

0.00322

11.8

0.92

0.00475

12.4

0.219

2.75

2.75

0.00327

12.2

2.6

0.00509

12.7

0.265

2.25

5.64

0.00386

14.2

5.48

0.00664

14.7

0.319

1.75

9.3

0.00357

12.1

0.18

0.00625

12.5

0.359

1.25

5.1

0.00339

11.1

4.99

0.00603

11.5

0.384

0.75

0.26

0.00406

12.5

0.12

0.00792

13.4

0.379

0.25

0.28

0.00428

6.28

5.12

0.0087

6.7

0.38

1He

3.25

5.14

0.00152

9.21

2.67

0.00191

8.25

0.142

2.75

4.71

0.0019

8.67

2.63

0.00235

7.38

0.174

2.25

5.32

0.00185

7.79

0.21

0.00215

7.94

0.216

1.75

4.78

0.00243

9.26

0.2

0.00279

8.52

0.249

1.25

8.06

0.0027

6.68

5.31

0.00328

10.3

0.247

0.75

0.25

0.00359

10.3

2.77

0.00524

9.42

0.246

100
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A. Alpha Mass Fractions

As indicated in the introduction to this work, at low densities and high temperatures
strong alpha clustering of nuclear matter is predicted. Such clusterization can be
expected in a gas or the low density surface of an expanded high temperature nucleus.
The data presented in the previous chapter provide experimental evidence for a large
degree of alpha clustering in low density matter. In Table IX the degree of alpha
clustering we observed in the experiments is quantified in terms of alpha mass fraction.

Our first order analysis of the particle yields was based upon the assumption of
chemical equilibrium of free nucleons and clusters at low density, i.e., the clusters are
assumed to be non interacting and to have their free binding energies. We designate
this as the Albergo Model and present the temperatures and densities derived from
this model in the previous chapter. In figure 55 we present the temperatures and
densities derived from this model for several different temperatures (solid lines). As
the temperature increases, the alpha mass fraction at a given density decreases.

In contrast to this simplest model, the Virial Equation of State model of Horowitz
and Schwenk [39] takes particle interactions into account through the use of Virial
coefficients derived from experimental scattering phase shifts. While the original work
on the VEOS did not include A=3 clusters, this has now been remedied [43] and the
authors of that work have provided us with calculated results for low density nuclear
matter at several different temperatures. Since the VEOS model does not include
competition with species heavier than alpha particles its range of applicability is
confined to systems for which no additional species are important. In the astrophysical
context this VEOS implies relatively low densities. At those low densities this is
believed to set a benchmark for all other theoretical nuclear equations of state. The

results of the Virial calculation are also presented in Figure 55 (dotted lines). We
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note that there are some differences from the Albergo Model results, suggesting that
at densities above 0.001 nucleons/fm? the particle interactions are important.

The VEOS paper [39] employs the alpha mass fraction, X,, to characterize the
degree of alpha clustering at different densities and temperatures. As seen in table
IX, we have determined experimental values of X, as a function of velocity, for mid-
rapidity emissions. For this purpose it was assumed that the unmeasured neutron
multiplicity at a given velocity was the product of the ¢/3He yield ratio times the
proton yield for that velocity. This is consistent with the results of thermal equilib-
rium coalescence models [13], and consistent with experimental results [69]. In this

way both the total mass yields and the mass fractions could be calculated.

Alpha Mass Fraction

. 0.01
Density, nucleons/fm®

Fig. 55. Alpha mass fraction vs total nuclear density. Solid lines - Albergo Model’s
results and dotted lines - VEOS Model results. Solid points T = 5 MeV results
from the Albergo Model.
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From Table IX we have taken all Alpha mass fraction results with Taipergo between
4.75 and 5.25 MeV. We refer to these as the T = 5 results and plot them in Figure
55 where they may be compared with the calculated lines for T = 5 MeV. Here we
note that the data plotted as a function of the “Albergo Density,” are in reasonable
agreement with the model calculations at the higher densities sampled but deviate
more from the models at lower densities. This appears to be somewhat counter
intuitive.

To this point, the analysis has explicitly assumed that at such low densities
the chemical equilibrium model of Albergo et al. is applicable. However the differ-
ences between the results of the Albergo model calculation and those of the VEOS
calculations, together with the data comparison suggest that, even at the densities
sampled, particle-particle interactions are important. Thus more sophisticated treat-
ments which are appropriate over a wider range of densities are clearly needed. Such
treatments have in fact been attempted both in the astrophysical context and in nu-
clear matter studies. In the former, chemical equilibrium of free nucleons and light
clusters, are in equilibrium with a heavier nucleus which serves as a surrogate for all
heavier species. The system includes electrons and is charge neutral. Results of the
two models most commonly employed for astrophysical calculations are presented in
Figures 56 and 57. These are taken from tabulations provided by the authors [39, 38]
and thus are not at exactly the same temperatures as chosen for Figure 55.

The most notable features of these calculations are the general decrease with
increasing T and the the rapid decline in alpha mass fraction for a given T seen as
heavier species become more competitive. The peaks in the mass fraction have been
used by Horowitz and Schwenk to define the upper density limits, of applicability for
their current VEOS model.

A more sophisticated treatment of clustering in low density matter is that of G.



104

Lattimer SKM* Alpha Mass Fraction vs Density
1.00E+00
-
o
.= 8.00E-01 - —314
(@]
@ —417
-
LL 6.00E-01 4 —503
(7))
0 —6.07
o]
S 4.00E01 4 —3805
© —971
e
£ 200E-01 - —117
<
0.00E+00 -
1.00E-04 1.00E-03 1.00E-02 1.00E-01
: 3
Density nucleons/fm

Fig. 56. Alpha mass fractions at different densities and temperatures from the Lat-

timer-Swesty Model

Roepke and his collaborators who explicitly treat the density-dependent in-medium
modification of cluster properties. Nucleon correlations are calculated in a quantum
statistical approach starting from a nucleon-nucleon potential and including the effects
of the mean field and of Pauli blocking [44, 45]. They find that, the model of an ideal
mixture of free nucleons and clusters applies to the low density limit (up to densities of
about 0.001 fm®). At higher baryon density medium effects are important. In Figure
58 values of the in-medium binding energies of A = 2, 3 and 4 clusters derived from
this model, are plotted as a function of density [70] for T = 10 MeV. For a temperature
of 10 MeV, the binding energies of the clusters decrease from the standard values (at
0 on the density axis) with increasing density and reach 0 at a point known as the

Mott density. At this point the cluster is no longer bound relative to the surrounding
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Fig. 57. Alpha mass fractions with different densities and temperatures from Shen—
Toki model.

medium. For alpha particles this occurs near 0.1 times the normal density. This
disappearance of the cluster binding energy in medium is closely related to the peaks
in the calculated alpha mass fractions seen in Figure 56.

The Mott density for a cluster increases with temperature as is seen in Figure 59
where the calculated binding energy variations for deuterons and tritons are presented
for both 10 and 20 MeV [70]. In addition to this, any collective motion of a cluster
relative to the center of mass of the system in which it resides acts to decrease the
rate of binding energy decrease with increasing density and further increase the Mott
density. This effect is seen in Figure 59 where the binding energy shifts for tritons
are calculated for increasing values of the total momentum relative to the medium

[70]. There we see that as these momenta increase the Pauli blocking effect becomes
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Fig. 58. Calculated in medium binding energies of light clusters at T = 10 MeV [70].

less important and the binding energy at any particular density moves closer to that

of the free cluster.
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Fig. 59. Difference of cluster binding cluster on T (top) and on cluster momentum in
medium (bottom) [70].
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Using this model, G. Roepke has made calculations of the low density symmetry
energy for comparison to our experimental results [43]. That the alpha mass fractions
predicted by this calculation differ significantly from those seen in the previous cal-
culations is easily seen by comparison of the relevant figures, such as Figure 60. The
major change reflects the calculated variation of the in-medium binding energies.

Clearly, if these binding energies are changing then the temperatures and den-
sities derived from the simpler Albergo model, which assumes free cluster binding
energies, are derived from yield ratios and only approximations to the actual tem-
peratures and densities. Thus, to compare our results with the Roepke calculation
results requires that we take account of the binding energy shifts. At this point the
reader will note that, since both temperature and density are determined from ob-
served yields of the species produced there is a correlation between the model assumed
and the results presented. Recognizing this we proceed, arguing only that the ideal
gas limit is probably not reached and that more sophisticated approach of Roepke
demands these corrections.

G. Roepke has provided us with analytical formulae to calculate the binding
energy shifts. The formulae assume no collective motion of the clusters relative to
the medium. Any such contribution would reduce the rate of binding energy shift

and increase the Mott densities for a given temperature. The formulae are:

i _ ot 8269.8
d T3/2 1 (0.042995 + 1.1125/T)1/2
~15301e"112/T Exfc[(0.042095 + 1.1125/T) 2]} ,
. 2 4
Apyt = <§pp + gpn) 2939.7(1+ 0.1114T) /2,

| 142
AEP™ = (épﬁ?pn) 3527.9(1 +0.145197) 72,
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AE‘E’auli _ (pp+pn> 42775(1—*—0084227-')73/2, (71)

where p, and p,, are the total proton and neutron densities, T is the temperature
and Erfc is the associated error funaction.

In order to determine the binding energy shifts required we use the Albergo model
temperatures and densities as input and carry out a single step iteration to determine
new temperatures and densities. These are the temperatures and densities referred
to as Roepke temperatures and Roepke densities in the Table IX. Temperatures
change only slightly. The lower densities (Roepke density < 0.005 nucleons/ fm?)
hardly change, reflecting the fact that the binding energy changes are small at low
density. At higher densities the Roepke densities are about 2 times the Albergo model
densities.

In Figure 60 we present the alpha mass fraction results for T Roepke = 5 +
0.25 MeV, plotted as a function of the new Roepke density and compare them to the

results of the various calculations which we have discussed.
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Fig. 60. Alpha mass fraction in low density matter.
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At the lower densities, the agreement between the data and the calculation of
Roepke is quite good. However, the turnover at the calculated Mott density is not
observed. We believe that the reason for this is that the technique that we use,
selection of the mid-rapidity particle group which constitutes our low density nuclear
gas, isolates a gas of particles of A < 4 which, constituted of scattered nucleons and
clusters formed from these nucleons, exists in a momentum sphere that is initially
detached from that of the surrounding matter and thus has some collective motion
relative to the bulk of the medium. In this case the Mott density for T = 5 is shifted
to a higher density. Clusters with A>4 associated with this NN source are very rare.
A parallel analysis of these systems by C. Bottoso indicates that inclusion the °Li
and “Li clusters will change the derived alpha mass fractions by only ~ 1% [44, 71].
This result is also supported by recent calculations taking into account the dynamic

time limitations to cluster formation [44, 72].

B. Symmetry Free Energies

In their VEOS paper, Horowitz and Schwenk have pointed out that extensive alpha
clustering in the low density gas leads naturally to an increase in the symmetry
energy and the symmetry free energy for the clustering system [39]. See Figure 61
which presents the VEOS results for unclustered and clustered matter at T = 4 MeV.
In the clustered matter the symmetry energy and symmetry free energy at low density
are both much larger than in the unclustered matter. It is also noteworthy that in
contrast to the unclustered case, the symmetry energy in the clustered system is
larger than the symmetry free energy. In this calculation the signs of the symmetry
entropy coefficients at low density, are different in the two cases considered.

As discussed in the previous chapter, we have derived symmetry free energies
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from the ejectile yield data by employing an isoscaling analysis. The resultant sym-
metry free energy coefficients are presented in Table IX. For Roepke temperature T =
5 MeV, the values are plotted against density in Figure 62. There they are compared
to those calculated by Roepke for clustering matter and to the T = 0 values (Egy,)
which are predicted by the Gogny effective interaction for uniform density nucleonic
matter [73]. At low density, the experimentally derived symmetry energies reported
in Fig. 62 are far above those obtained in common effective interaction calculations
and reflect the cluster formation, primarily of alpha particles, not included in such
calculations.

In Kowalski et al. [43] the symmetry entropy coefficients were also derived from
the experimental data. In the present work we find that the differences between
the entropies of the two systems are small and it is difficult to extract a meaningful
symmetry entropy coefficient. Roepke has calculated these values in his model. In
Table IX we show the symmetry energies which are derived from our measurements
for T = 5 MeV if the symmetry entropy coefficients of the Roepke calculation are

assumed to be correct,
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Fig. 61. Calculated densities dependence of symmetry energy and symmetry free en-

ergy in unform nuclear matter and clustered matter for T = 4 Mev and Yp
= 0.5 by Horowitz.
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Fig. 62. Symmetry free energy vs density. Lines—Results of Roepke calculation, open
points — Experimental Resluts for T = 5 MeV, with both T and density based

on Roepke model.
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C. Possible Future Directions

We finish with a brief discussion of some futher analyses which might be done with

these data and suggestions of future work in this area.

1. Symmetry free energies and symmetry energies at higher densities

Our velocity plots for the symmetry free energy clearly indicate a wide variation of
Fgym values over different regions of velocity. The most natural explanation of this is
a wide range of densities being sampled. In recent times the extraction of symmetry
energies at somewhat higher densities has been attempted by a number of groups
using various techniques. However, in essentially all of the reaction based symmetry
energy determinations previously reported there are significant uncertainties of the
actual densities (and temperatures) being sampled. For the low density systems
sampled in this work we believe that these are under much better control. However,
these techniques are not applicable at much higher densities. Thus, while various
observation indicate that the values of Fyy, in the 20 - 25 MeV range seen in the
TLF region of the velocity plots reflect emission from near normal density nuclei and
the decrease in symmetry free energy as we move toward the mid-rapidity region
reflects a lowering of the density, quantitative extraction of the density is difficult.
Our previous work suggests two different approaches to determining the densities in
the TLF (liquid) region and both will be tested in the near future. If these methods
are successful we believe we should be able to construct an experimental symmetry
energy curve valid in the density range 0.03 < p/pg < 1.

The present data also constitute an important resource for investigations of other
observables which have been predicted to be sensitive to the symmetry energy. Among

these are ratios of triton/*He emission and differential neutron and proton flow- as
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manifested in proton-deuteron flow comparisons [74, 75].

2. Low density matter and Bose Condensates in nuclei

The ability to isolate low density matter in near Fermi Energy collisions and the high
degree of alpha clustering which is observed suggest that we search for evidence of
Bose Condensates which are predicted to occur in the density and temperature range
which we are exploring [44, 75].

The phenomena in quantum many-particle systems about the formation of quan-
tum condensates, particularly, strongly coupled fermion systems where bound states
arise is very intersting [44]. In the low-density limit, where even-number fermionic
bound states can be considered as bosons, Bose-Einstein condensation may be ex-
pected to occur at low temperatures. Condensates can be investigated in systems
where the crossover from Bardeen-Cooper-Schrieffer (BCS) pairing to Bose-Einstein
condensation (BEC) can be observed. Strong correlations in nuclear matter can be in-
dicated by the formation of bound states which can make changes or even disappear
with the density changing. In reference [44], Roepke et al. point that in the low-
density region the transition to triplet pairing is not realized, because four-particle
correlations are more dominant there. At chemical equilibrium, in the low-density
region at low temperatures the dominant part of nuclear matter will be found in
Alpha particles which are much more strongly bound than the deuteron. Therefore,
the triplet pairing (Bose condensation of deuterons) has to compete with quartetting
(Bose condensation of Alpha particles). As an example of the type of results which are
obtained theoretically we present Figure 63 from reference [44]. This figure shows the
critical temperature of neutron-proton triplet pairing T; and quartetting T, obtained
from the solution of the Gorkov equation as a function of the uncorrelated density

n;. In the low-temperature limit, with increasing chemical potential the transition to
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quartetting occurs prior to the pairing transition. A simple argument for the behavior
of T4 and Ty as a function of n; in the limit of low densities can be given from the
law of mass fraction, which is discussed in this article.

This calculation leads to Bose Condensation of both alpha and deuterons at low
density. In addition to pursuing this question with the present data the group is cur-
rently planning experiments on alpha cluster nuclei which might show a more natural
predilection to evolve into a Bose Condensate. The definitive experimental signature
of the phase transition to the condensate is yet to be determined but we believe that
the cluster formation itself continues to be an interesting area of investigation [76, 77].
We are currently discussing this problem with A. Bonasera, G. Roepke and S. Shlomo,

all theorists interested in clustering and quantum phase changes in nuclear matter.

10 . . .

————— T, (deuteron pairing)
—— T, (e—quartetting )

tEEmperature T [MeW]

density n, I

Fig. 63. Alpha and deuteron Bose condensation by Roepke [44].
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APPENDIX A

SPECTRA OF d, t, *He, AND “He AFTER SECOND NORMALIZATION

The typical light particle spectra of third ring from system %Zn+''2Sn.
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APPENDIX B

ANGULAR DISTRIBUTION SPECTRA IN BIN4

The differential angular distributions of the particle multiplicity are listed.
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Fig. 68. X axis is energy in MeV. Y axis is the multiplicity distribution
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APPENDIX C

ANGULAR DISTRIBUTION SPECTRA IN BIN3

The differential angular distributions of the particle multiplicity are listed.
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APPENDIX D

ANGULAR DISTRIBUTION SPECTRA IN BIN2

The differential angular distributions of the particle multiplicity are listed.
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Fig. 91. X axis is energy in MeV. Y axis is the multiplicity distribution
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Fig. 92. X axis is energy in MeV. Y axis is the multiplicity distribution
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APPENDIX E

ANGULAR DISTRIBUTION SPECTRA IN BIN1

The differential angular distributions of the particle multiplicity are listed.
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Fig. 93. X axis is energy in MeV. Y axis is the multiplicity distribution
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APPENDIX F

THREE SOURCE FITTING SPECTRA FROM PROJECTILE “He

This appendix lists all of three source fitting spectra of systems “He + ''2Sn and “He

+ 124Sn in which the parameters Multiplicity, Temperature , Coulomb Barrier and

Source Velocities are indicated.
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APPENDIX G

THREE SOURCE FITTING SPECTRA FROM PROJECTILE '°B

This appendix lists all of three source fitting spectra of systems '°B+''2Sn and

1UB+41248n in which the parameters Multiplicity, Temperature , Coulomb Barrier and

Source Velocities are indicated.
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Fig. 113. X axis is energy in MeV. Y axis is multiplicity distribution
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APPENDIX H

THREE SOURCE FITTING SPECTRA FROM PROJECTILE *’Ne

This appendix lists all of three source fitting spectra of systems 2°Ne+''2Sn and

20Ne4-124Sn in which the parameters Multiplicity, Temperature , Coulomb Barrier

and Source Velocities are indicated.
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APPENDIX I

THREE SOURCE FITTING SPECTRA FROM PROJECTILE “°Ar

This appendix lists all of three source fitting spectra of systems ° Ar+124Sn in which

the parameters Multiplicity, Temperature , Coulomb Barrier and Source Velocities

are indicated.



hGoodCsl_p_RING_ld_2 i

hGoodCsl_p_RING_Id_3 i

hGoodCsl_p_RING_Id_4 i

203

d N/AQAE
g

200

: Yy \ A B
0 50 100 150 200

hGoodCsl_p_RING_ld_8 i

250

d N/dQdE

d N/dQdE

o
=)

Y \
50 100

250

L
150 200 250

hGoodCsl_p_RING_Id_9 i

f

o
S)

d N/dQdE

g !
50 100

d NIdQJE
g

10

| |
150 200 250

hGoodCsl_p_RING_Id_10 i

d N/dQdE

T

N
o,

L 1 ’ 1
50 00 50 200

250
hGoodCsl_p_RING_Id_11|
80
C:10 =
2
z
T
10°
10
\ o
L | | 90100 |
50 100 150 200 250

d N/dQdE

d N/dQdE

=
=)

N
AN
. \
\
n

K
50 100

hGoodCsl_p_RING_Id_12

=
=)

b&\‘
'\\ \ Il
150 200 250

version8Full-Multi-Bin4_Wang_40Ar124Sn_bin4_p

A 120.00.
150 200 250

NN
M 2.695e+00. 1.534e-01
T 12.217 0.507
Ec 1.001 0527
Vs 5.158 0.297

d N/dQdE
g

N
5]

=
5]

10°

hGoodCsl_p_RING_Id_13

w
D107
g
z
©10°
10*
10° [
3 0
) I 152.50 |
100 150 200 250
TLF PLF
7.029e-01'1.521e-01 2.217e-01'8.680e-02
5.000° 1.896 4,000 0.697
0.007 2.231 2.001° 4.998
0.001" 1.382 10.307" 0.706
12=44.644

Fig. 133. X axis is energy in MeV. Y axis is multiplicity distribution
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APPENDIX J

THREE SOURCE FITTING SPECTRA FROM PROJECTILE %Zn

This appendix lists all of three source fitting spectra of systems %Zn+''2Sn and

647Zn+'24Sn in which the parameters Multiplicity, Temperature , Coulomb Barrier

and Source Velocities are indicated.
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APPENDIX K

REACTION TOMOGRAPHY OF THE MOST VIOLENT COLLISION EVENTS

Surface velocity plots of light particles from different reaction systems.
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Fig. 153. Particle Surface Velocity Plot of 2*Ne+ 24Sn
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Fig. 154. Particle Surface Velocity Plot of ®4Zn+ 12Sn
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APPENDIX L

ISOSCALING PARAMETER ALPHA

This appendix list some of typical isoscaling parameters at parallel velocity from 4.75

cm/ns to 5.75 cm/ms range.
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Alpha Scaling Paramters At Given V” and V|
47 MeVIA “He + ™?sSn /*'sn z=1
Alpha Error < 10%
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Fig. 156. Scaling parameter Alpha at parallel velocity 4.75 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA °B +*?sn [ *?%sn z=1
Alpha Error < 10%
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Fig. 157. Scaling parameter Alpha at parallel velocity 4.75 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA °B +*?sn [ *?%sn z=1
Alpha Error < 10%
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Fig. 158. Scaling parameter Alpha at parallel velocity 5.25 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA °B +*?sn [ *?%sn z=1
Alpha Error < 10%
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Fig. 159. Scaling parameter Alpha at parallel velocity 5.75 cm/ns and different per-

pendicular velocities



233

Scaling Parameter Alpha At Given V// and V|
47 MeVIA *Ne + *2sn / **sn z=1
Alpha Error < 10%
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Fig. 160. Scaling parameter Alpha at parallel velocity 4.75 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA *Ne + *2sn / **sn z=1
Alpha Error < 10%
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Fig. 161. Scaling parameter Alpha at parallel velocity 5.25 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA “°Ar +112gn /2450 z=1
Alpha Error < 10%
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Fig. 162. Scaling parameter Alpha at parallel velocity 5.25 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeVIA “°Ar +112gn /2450 z=1
Alpha Error < 10%
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Fig. 163. Scaling parameter Alpha at parallel velocity 5.75 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeV/IA %'zn +12gn [ 24gn z=1
Alpha Error < 10%
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Fig. 164. Scaling parameter Alpha at parallel velocity 4.75 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeV/IA %'zn +12gn [ 24gn z=1
Alpha Error < 10%
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Fig. 165. Scaling parameter Alpha at parallel velocity 5.25 cm/ns and different per-

pendicular velocities
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Scaling Parameter Alpha At Given V// and V|
47 MeV/IA %'zn +12gn [ 24gn z=1
Alpha Error < 10%
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Fig. 166. Scaling parameter Alpha at parallel velocity 5.75 cm/ns and different per-

pendicular velocities
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