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ABSTRACT 

Analyses of Deformation in Viscoelastic Sandwich Composites Subject to Moisture 

Diffusion. (August 2008) 

Nikhil P. Joshi, B.E., Sardar Patel University, India 

Chair of Advisory Committee: Dr. Anastasia Muliana 

 

 Sandwich composites with polymer foam core are currently used in load-bearing 

components in buildings and naval structures due to their high strength to weight and 

stiffness to weight ratios, excellent thermal insulation, and ease of manufacturing.  

During their service time, sandwich composites are exposed to various external 

mechanical and hygro-thermal stimuli.  It is known that the constituent properties of the 

sandwich composites are greatly influenced by the temperature and moisture fields.  For 

example extreme temperature changes and humid environmental conditions can 

significantly degrade the stiffness and strength of the polymer foam core.  This study 

analyzes the effect of moisture diffusion on the deformation of viscoelastic sandwich 

composites, which are composed of orthotropic fiber-reinforced laminated skins and 

viscoelastic polymeric foam core.  It is assumed that the elastic and time-dependent 

(transient) moduli at any particular location in the foam core depend on the moisture 

concentration at that location.  Sequentially coupled analyses of moisture diffusion and 

deformation are performed to predict overall performance of the studied viscoelastic 

sandwich systems.  A time and moisture dependent constitutive model is used for the 

polymer foam core.  A time-integration algorithm is developed to link this constitutive 
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model to finite element (FE) analyses framework.  The overall time-dependent responses 

of the sandwich composites subject to moisture diffusion are analyzed using 2D plane 

strain and 3D continuum elements.  A 23% increase in the transverse deformation of the 

viscoelastic sandwich beam is observed due to the moisture degradation.  Experimental 

data and analytical models available in the literature are used to verify the results 

obtained from the FE code.  Parametric studies on the effects of different diffusivity 

ratios of skin and core materials on stress, strain and displacement fields have been 

analyzed. At the initial times the effect of moisture on the field variables is found to be 

most pronounced in the case with the highest diffusivity ratio.  Contributions of moisture 

dependent elastic and the time-dependent moduli to the overall stress, strain and 

displacement field have been studied.  The structural analysis of the sandwich composite 

under combined moisture diffusion and mechanical loading for two kinds of problems 

using FE method is performed to complete the study. 
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 CHAPTER I 

1.INTRODUCTION 

 Application of sandwich composites has tremendously increased over a few 

decades in various industries like automotive, aerospace, marine, etc.  Polymeric foam 

cored sandwich composites are widely used in load-bearing components in buildings 

such as walls of mobile homes and naval structures because they can provide high 

strength and stiffness without significantly adding weight and the cost.  To improve the 

reliability in using sandwich composites, it is essential to understand their mechanical 

responses in terms of stresses and deformations under external mechanical and 

environmental stimuli.  One of the prominent characteristics of polymers is their 

viscoelasticity.  The viscoelastic behavior of polymers is even more aggravated under 

high stress levels and extreme environmental conditions. However, the effects of 

combined time-stress-temperature-moisture in the polymer foam on the performance of 

sandwich structures have not been fully understood.  For example, extreme temperature 

changes and humid environmental conditions can significantly degrade the stiffness and 

strength of the polymer foam core, which intern degrades the performance of the entire 

sandwich structure.   

 This study analyzes the effect of moisture concentration on the deformation of 

viscoelastic sandwich composites, which are composed of orthotropic fiber-reinforced 

laminated skins and viscoelastic polymeric foam core.  It is assumed that the elastic and  

____________ 
This thesis follows the style of Composite Science and Technology. 
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time-dependent (transient) moduli at any particular location in the foam core depend on 

the moisture concentration at that location.  To predict overall performance of the 

studied viscoelastic sandwich systems, sequentially coupled analyses of diffusion of 

fluid and deformation are performed.  Time and moisture dependent viscoelastic model 

is used for the polymeric foam core.  The generalized single integral constitutive relation 

for the linear viscoelastic material is modified to include the time-stress-moisture 

dependence.  A time-integration algorithm is developed to link this constitutive model to 

finite element (FE) analyses framework.   

 This chapter presents a literature review of analytical, numerical, and 

experimental works on effects of moisture concentration on polymer based sandwich 

composites, followed by research objectives. 

1.1 STATE OF THE ART KNOWLEDGE IN THE EFFECTS OF MOISTURE 

ON THE MECHANICAL BEHAVIOR OF COMPOSITES 

1.1.1 THE EFFECT OF MOISTURE ON THE MECHANICAL RESPONSE OF 

LAMINATED COMPOSITE MATERIALS 

 External temperature and moisture play important roles in determining the long 

term behavior of structures made of polymer matrix composite.  There is some concern, 

however, that the mechanical properties of such materials may suffer when the material 

is exposed to moisture for a long period of time.  In general, moisture can affect 

chemical, electrical, and physical properties of materials, such as strength, modulus, 

fatigue life, glass transition temperature, etc.  Hence, it becomes an issue of prime 
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interest to understand the effect of moisture on these performance characteristics of 

composites. 

 Springer and Shen [1] conducted experiments to reveal the significant influence 

of moisture on ultimate tensile strength of Thornel 300/Fiberite 1034 graphite epoxy 

composites with different fiber orientations.  For composites with 0°, 45° fiber 

orientation and moisture content (weight gain) above 1%, their ultimate tensile strength 

reduced by about 20%, while the ultimate tensile strength of composite along the 

transverse fiber orientation (90°) was reduced by about 60 to 90%.  Springer et al. [2] 

evaluated the effect of moisture on the ultimate tensile strength, tensile modulus, short 

beam shear strength and shear modulus.  Glass Fiber Reinforced Polyester and 

Vinylester Composites (SMC-R25, SMC-R50, and VE SMC-R25) subjected to different 

relative humidity showed variations in both strength and modulus.  Efforts were also 

made to evaluate permanent degradation of material properties on drying the specimen 

and performing the test again on the dried specimen.  It was then concluded that some, 

but not all, of the losses in strength and modulus are recovered.  Thus drying out the 

material does not restore either the strength or the modulus to their original values 

creating a permanent loss in the material properties.  Antoon and Koeing [3] used 

Fourier Transform infrared spectra to show that the mechanical properties of glass 

reinforced epoxy composites are irreversibly degraded when exposed to moist 

environment.  Burcham et al. [4] conducted experiments on graphite/polyimide 

composites to show that the glass transition temperature (Tg) is degraded with the 

increasing moisture concentration.  The Tg is recovered on drying the specimen.  It was 
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also observed that permanent toughness losses were observed in samples conditioned at 

room-temperature and 75% and 100% relative humidity (RH) environments indicating 

some local damage mechanism behind it.   

 Experiments conducted by Springer and Shen [5] show that the elastic moduli 

viz. tensile, compression, buckling are also affected by moisture concentration.  The 

buckling moduli of Thornel 300/Fiberite 1034 graphite epoxy composites were 

measured at temperature ranging from 105 °K to 422 °K and at moisture contents 

ranging from 0% (dry) to 1.5% (fully saturated).  The measurements were made using 

0°, 45°, 90° laminates.  It was observed that there is a very little impact of moisture on 

the elastic moduli over the entire spectrum of moisture content from dry to fully 

saturated for 0° and 45° laminates.  But for 90° laminates there was a considerable 

decrease in the elastic modulus of around 50 to 90% with the increase in moisture 

concentration.   

 Snead and Palazotto [6] performed an analytical investigation to evaluate the 

stability characteristics of cylindrical, composite graphite/epoxy (AS/3501-5) laminated 

panels subjected to axial loads under moist environment conditions. The influences of 

moisture and temperature were investigated by degrading the transverse elastic modulus 

E2 and the shear modulus G12, based upon test data for the AS/3501-5 system.  Results 

obtained from the Finite Element Analysis suggested the bifurcation load of the 

composite panel will degrade with the increasing moisture concentration and 

temperature. 

 
 



5 
 

 Allred [7] studied the effect of moisture on flexural response of Kevlar/Epoxy 

laminate with 0°, 90° fiber orientations.  Two commercially available epoxy resin 

namely 5208 and CE -9000 reinforced with Kevlar fibers where tested under three point 

bending test.  The experimental results show a reduction in the maximum load carrying 

capacity and the deflections with the increasing moisture concentration.  Substantial 

changes in the apparent flexural strength were exhibited with the increasing moisture 

concentration.  At 21°C and near saturation moisture content, nearly 35-40% loss in the 

flexural strength was observed.  The load-deflection curves depicted only a 15% loss in 

the maximum load carrying capacity.  Great differences in the strengths were observed 

because of the moisture induced swelling that takes place in the laminate thickness 

together with a 10% reduction in the stiffness.  Because the specimen thickness enters 

the equations of strength and stiffness as the reciprocal squared and cubed respectively, 

the reduction in apparent strength and stiffness is greater than the reduction of load 

carrying capacity.  At higher temperatures and higher moisture concentrations these 

effects were even more pronounced.  It was concluded that hygrothermal degradation is 

linear with increasing temperature and moisture content until the matrix transition 

temperature (Tg) is depressed to the test temperature by moisture salvation.  Above Tg, 

the matrix becomes rubbery and the Kevlar filaments do not get enough lateral support 

leading to the failure at lower load levels due to massive filament buckling.  Even at 

room temperature moisture reduces the strength substantially due to the matrix 

plasticization effect, which easy out the filament buckling mechanism.   
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 Gibson et al. [8] analyzed the effects of moisture on the dynamic properties of 

composites.  Chopped fiber composites SMC-R25 and SMC-R65 were subjected to 

flexural vibration.  With the increasing moisture concentration, significant changes in the 

storage modulus (E') and loss factor (tanδ), which is the ratio of loss modulus (E'') to 

storage modulus, were noted.  An increase of about 500% in the damping was observed.  

Efforts were also made to check the reversibility effect of moisture on these properties.  

It was observed that the moisture induced changes in damping were fully reversible and 

no permanent structural changes occurred.  Adam and Miller [9] suggested two basic 

mechanisms governing the damping behavior with increasing moisture concentration.  In 

the first mechanism, it is found that increasing the moisture concentrations lowers the 

glass transition temperature Tg, dropping of the damping peaks and stiffness drastically, 

for the temperature increasing through the glass transition range.  For operating 

temperatures below Tg, a moisture induced reduction in Tg would shift the stiffness and 

damping curves to lower temperatures causing the damping to increase and stiffness to 

decrease at the operating temperatures.  According to the second mechanism, the matrix 

swelling changes the residual stress distribution, which could increase friction at matrix-

fiber interfaces, thus increasing damping.   

 Woldesenbet et al. [10] analyzed the effect of high strain rate on the mechanical 

properties of polymer matrix composite immersed in water.  In contrast to the quasi-

static strains, the high strain rates (500 to 1000 per second) had opposite effects on the 

mechanical properties of the composite fully saturated with moisture.  The ultimate 

strength of fully saturated carbon-epoxy composite specimens was found to increase by 
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10-25% along the fiber direction with the increasing strain rate as compared to the dry 

specimen.  The effect was even more pronounced along the other two directions, 

indicating an increase of approximately 30-40% in the ultimate strength with the 

increase in the strain rate.  This effect was attributed to the fact that plasticization of the 

matrix is clearly the dominating factor in high strain rate properties when materials are 

partially or fully wet.   

 Bouadi and Sun [11] combined the theoretical and experimental work concerned 

with predicting the hygrothermal effects on the stress field of some laminated composite 

plates under hygothermal loading.   Three coefficients of moisture expansion (β1, β2, β12) 

expressed in terms of fiber and matrix properties were used in determining the moisture 

induced swelling (strains).  FE method was used to estimate the magnitude of 

hygrothermal stresses in laminated composites.  It was observed that hygrothermal 

loading induced very high stresses in cross ply laminates.  Whitney and Ashton [12] 

analyzed the effect of expansional strains (swelling) on vibration, buckling and bending 

behaviors of composite laminates.  Generalized Duhamel-Neumann form of Hooke's law 

was used in conjunction with classical laminated plate theory.  Analytical solution was 

developed to incorporate the effect of expansional strains due to moisture absorption.  

The results showed that inplane stresses are induced in plate with edge constrains due to 

the matrix swelling, which reduces fundamental vibration frequencies and increases 

deflections in plate subjected to lateral loads. 

 
 



8 
 

1.1.2 EFFECT OF MOISTURE ON THE VISCOELASTIC BEHAVIOR OF 

POLYMERS AND POLYMER MATRIX COMPOSITES 

 The effect of moisture on the mechanical and physical properties of polymers is 

significant.  Polymers, such as polyester resins, vinylester resin, and epoxy resins, are 

generally used as binders (matrix) in composite materials.  Polymeric foams such as 

polyurethane, divinycell, and honeycomb, etc are used as core in many sandwich 

composites.  Several experiments have been performed to analyze the effects of moisture 

on the viscoelastic behavior of these polymers.   

  Aiello et al. [13] evaluated the effect of moisture on the deformability of 

vinylester binders (resin).  It is observed that the creep strain for the  specimen with 

around 1.42% of moisture content increased by around 5% as compared to the dry 

specimen.  Significant changes were also observed in the elastic and dynamic moduli of 

the moisture absorbed specimen.  About 10% decrease in the dynamic modulus for the 

specimen with 1.86% of moisture content was observed.  Plushchik and Aniskevich [14] 

showed that the creep strains are highly sensitive to environmental effects such as 

moisture and temperature in polyester resins.  For a fully saturated material after an hour 

creep, the strain exceeds almost four times as compared to the dry one.  The creeping 

activation under moisture is described using the method of time-moisture superposition.  

The short-term creep data was used to analyze the long term creeping effects.  Zheng et 

al. [15] presented the moisture-time superposition principle for polymer nylon-6, 

analogous to the temperature-time superposition principle previously established.  

Experiments were also conducted which show that equivalence between moisture and 
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service time exists which affect the mechanical properties.  Experimental results of creep 

testing were also used to determine the shift factor and shift function for nylon-6.  

Harper et al. [16] investigated the effect of moisture on the stress relaxation in Kapton 

polyimide films.  Experiments were conducted to determine relaxation modulus as a 

function of time, temperature and moisture which was found to be decreasing with 

increasing temperature and moisture concentration.  Analytical model was also 

developed to describe the effect of temperature, moisture and strain on the relaxation 

modulus.  Of the horizontal and the vertical shift factors the latter was relatively minor 

and was found to depend only on the relative humidity. 

  Moisture also plays a significant role in affecting the viscoelastic properties of 

polymer based composite materials.  Flaggs and Crossman [17] explored the capability 

of the linear viscoelastic material model based upon single hereditary integral 

formulation to describe the response of polymeric composite laminates subjected to 

coupled hygrothermal and mechanical stimuli.  The hereditary integrals were integrated 

exactly using an incremental solution procedure, in which temperature, moisture, and 

external boundary conditions were assumed to remain constant during the viscoelastic 

time steps (Δt).  Changes in the hygrothermal conditions and/or boundary conditions are 

made in elastic steps during which time is held constant (Δt=0).  The model predicted 

that the viscoelastic stress relaxation during complete moisture absorption-desorption 

cycle at constant temperature leads to a nonrecoverable dimensional and in-plane stress 

changes in a quasi-isotropic composite laminate.   
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 Bothelho et al. [18, 19] performed experiments to analyze the effect of moisture 

on the dynamic mechanical properties obtained by free vibration damping test of glass 

fiber/epoxy composites.  It was observed that as a result of the matrix plasticization with 

the increasing moisture concentration, the natural frequencies and stiffness of all the 

tested samples decreased and the damping factor increased.  The vibration damping 

curves showed that the maximum peaks of the amplitude decay exponentially as a 

function of time, also the amplitude decay are more pronounced with the increasing 

moisture concentration.  It was observed that there was a loss of around 19% in the 

storage modulus (E') at the saturated moisture condition.  Loss modulus (E'') increased 

by approximately three times from dry to fully saturated state indicating that the wet 

specimen dissipates more energy per damping cycle then the dry specimen.  Fraga et al. 

[20] analyzed the dynamic mechanical properties of the unsaturated polyester and 

vinylester glass fiber composites with a dynamic mechanical analysis (DMA) instrument 

in three-point bending mode. The samples were dried prior to conducting the 

experiments in order to determine the aging produced by the water immersion.  The loss 

tangent (tanδ) values decrease with the increase in moisture concentration.  The storage 

moduli (E') were measured at two stages: glass stage (Tg-50K) and rubbery stage 

(Tg+50K).   The glass transition temperature was found to increase after the immersion 

in the hot water due to the extraction of soluble making the matrix more rigid.   E' in the 

rubber state of before immersion is lower than after immersion indicating that the 

crosslinking density increases after immersion and part of the material is extracted.   
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1.1.3 EFFECT OF MOISTURE ON THE RESPONSE OF SANDWICH 

SYSTEMS 

 Sandwich composites are generally made up of fiber reinforced laminated skins 

and polymeric core.  Major progress has been made on understanding the environmental 

effects on the response of polymers and laminated composites.  It is necessary to 

understand the effect of the environmental factors like temperature and moisture on 

these laminates and polymeric foam when glued together as a sandwich composite.  

Limited work has been done till date to understand the effect of environmental condition 

on the sandwich composites.   

 Doxsee et al. [21] described the procedure for calculating the inplane 

deformation and curvature changes in the sandwich panels composed of honeycomb core 

and fiber reinforced laminated skin, due to non-uniform temperature and moisture 

distributions.  It was assumed that all the material properties were independent of 

temperature and moisture concentration.  Classical lamination theory was used to predict 

the inplane deformations and curvature.  Granville [22] conducted experiment to carry 

out a comparative study on the effects of moisture and temperature on the performance 

of sandwich composites composed of polymethacrylimide (PMI) foams and honeycomb 

foams glued to glass/epoxy facesheets.  Work was intended to understand the effects of 

moisture on structural, dimensional stability, weight gain and peel strength of sandwich 

composites. It was observed that moisture absorbed by the PMI foam core sandwich 

structure was significantly higher than the honeycomb core panels.  However the torque 

required for peeling did not suffer much due to the migration of moisture.  Morganti et 
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al. [23] also analyzed the effects of moisture on the dimensional stability of sandwich 

composites.  It was concluded that moisture and temperature affects the physical 

behavior of the composite directly by modifying its structural characteristics such as 

degrading the matrix properties and inducing microcracks between fibers and matrix etc.  

The geometric stability of is affected by the “sweeling” phenomenon attributed to the 

moisture absorption and can induce stress effects.   

1.2 RESEARCH OBJECTIVES 

 This study analyzes the effect of moisture diffusion on the deformation of 

viscoelastic sandwich composites, which are composed of orthotropic fiber-reinforced 

laminated skins and viscoelastic polymeric foam core. Time and moisture dependent 

constitutive model is used for the polymer foam core.  It is assumed that the elastic and 

time-dependent (transient) moduli at any particular location in the foam core depend on 

the moisture concentration at that location.  The effects of moisture on the elastic and 

time-dependent material properties are incorporated, which allow predicting time-

dependent responses under general stress-moisture loading histories.  Sequentially 

coupled analyses of moisture diffusion and deformation are performed to predict overall 

time-dependent performance of the studied sandwich systems.  A time-integration 

algorithm is developed to link this constitutive model to finite element (FE) analyses 

framework.  In this study, the integrated material-structural analyses using FE Method 

are performed on a three point bend test specimen under combined moisture-mechanical 

loadings. Furthermore, the experimental data and analytical models available in the 

literature are used to verify the results obtained from the FE code.  Parametric studies on 
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the effects of different diffusivity ratios of skin and core materials on stress, strain and 

displacement fields have been analyzed. Contributions of moisture dependent elastic and 

the time-dependent moduli to the overall stress, strain and displacement field has been 

studied.  In the final section of this study, structural analysis of the sandwich composites 

under combined moisture diffusion and mechanical loading for two kinds of problems 

using FE method is presented.   

 Chapter II presents constitutive material models for the linear isotropic 

viscoelastic responses of the foam core material and the moisture diffusion in the 

sandwich composites.  The single integral constitutive relation used to model the 

viscoelastic materials is generalized to multiaxial (3D) constitutive relations of isotropic 

materials by applying the integral model separately for the deviatoric and volumetric 

strain-stress relations.  It is assumed that the material moduli of the polymeric foam core 

are functions of moisture concentration.  The unsteady Fick’s law of diffusion is used to 

model the moisture diffusion process through the sandwich composite.  Constant 

moisture diffusivity independent of the moisture concentration and stress level at any 

time is assumed.   

 Chapter III presents FE results to the problem of coupled moisture diffusion and 

deformation in the viscoelastic sandwich composite.  The FE analysis is performed using 

2D and 3D solid continuum elements.  With 2D elements plane strain condition is 

imposed to solve for the deformation in the viscoelastic sandwich beam.  Analytical 

solutions to the problems of moisture diffusion and deformation in the 2D viscoelastic 

sandwich composite are also developed in order to verify the results obtained from FE 
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code.  FE analysis of coupled moisture diffusion and deformation of the viscoelastic 

sandwich beam under three point bending test is presented.  It is assumed that the 

material moduli of the viscoelastic foam core degrade linearly with moisture 

concentration.  Parametric study is performed to evaluate the effect of different 

diffusivity ratios of the skin to the core.  Finally, the effect of moisture dependent elastic 

and transient moduli of the viscoelastic foam core on the overall behavior of the 

sandwich beam is analyzed. 

 Chapter IV presents structural analyses of the sandwich composites under the 

combined moisture diffusion and mechanical loading.  Two kinds of problems are 

studied.  In the first problem, the effect of moisture diffusion on the delamination 

between the skin-core interface in a sandwich beam under double cantilever beam 

(DCB) and tilted sandwich debond (TSD) tests is analyzed.  The skin and core are glued 

together by the polymeric adhesive, whose modulus is assumed to degrade with moisture 

concentration.  The second problem deals with the hygroscopic swelling induced due to 

moisture diffusion in the sandwich panel.  A sandwich panel fixed at the four sides is 

subjected to moisture diffusion to analyze the stresses and strains induced due to 

hygroscopic swelling.   

 Conclusion and further research are stated in Chapter V.  
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 CHAPTER II 

2.CONSTITUTIVE MODEL GOVERNING THE DEFORMATION 

AND THE MOISTURE DIFFUSION IN THE VISCOELASTIC 

SANDWICH COMPOSITES 

 This chapter presents constitutive material models for linear isotropic viscoelastic 

responses of the foam core material in the sandwich composites and the moisture 

diffusion in sandwich systems.  The sandwich composites are made of linear elastic fiber 

reinforced laminated skins and viscoelastic polymer foam core.  A single integral 

constitutive relation is used to model viscoelastic materials.  The single integral model is 

generalized to multiaxial (3D) constitutive relations of isotropic materials by applying 

the integral model separately for the deviatoric and volumetric strain-stress relations.  

The material moduli at a particular time are functions of moisture concentration at that 

instant time and independent of the history of moisture diffusion.  The moisture 

diffusion process through the sandwich structure is assumed to be governed by the 

unsteady Fick’s law.  It is assumed that the moisture diffusivities of the skin and the core 

are independent of moisture concentration and stress level at any time. 

2.1 MECHANICAL RESPONSE OF VISCOELASTIC MATERIALS 

 Viscoelastic response of a material possesses characteristics of elastic solid and 

viscous fluid.  When subjected to mechanical stimuli, an instantaneous response from 

the elastic solid followed by a delayed response (time dependent) from the viscous fluid 

is observed.  Several analogs mechanical models involving various spring and dashpot 

arrangements have been developed to explain the viscoelastic response of the material.  
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There are several methods to characterize the material parameters in viscoelastic 

materials such as creep test, relaxation test, dynamic mechanical loading (DMA).  The 

Fig. 2.1 (a) shows the typical response of a viscoelastic material subjected to a constant 

stress state (creep load) which is instantaneously increased to σ0 at time t=0 and then 

held constant.  The strain response comprises of an instantaneous elastic part (OA) and a 

time dependent (ABC) part.  This continued straining or flow under the constant stress is 

called creep.  The Fig. 2.1 (b) shows the typical response of a viscoelastic material 

subjected to a constant strain state which is instantaneously increased to ε0 at time t=0 

and then held constant.  In response the stress instantaneously jumps to a value (OA).  In 

order to maintain the constant strain ε0 the stress gradually decreases with time (ABC).  

For the viscoelastic solid material, this stress decreases asymptotically to some non-zero 

residual value.  This decrease of stress at constant strain value is called stress relaxation.   

 
 

 
Fig. 2.1. (a) Creep (b) Relaxation 
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 The DMA essentially characterizes the behavior of viscoelastic polymers under 

dynamic loading.  The storage modulus obtained from the tests represents the elastic 

component of the material behavior.  Whereas the loss modulus is associated with the 

non recoverable part of the mechanical energy dissipated.  The testing is carried out over 

a range of temperature and loading frequency so as to obtain these properties as 

functions of temperature and loading rate.  The response of the viscoelastic materials is 

also dependent on temperature and moisture conditions under which they operate.  For a 

class of materials, called the Thermorheologically Simple Materials (TSM), a change in 

temperature is equivalent to a shift of the behavior on the time or frequency axis (time-

temperature superposition).  In order to determine the shift factor, which characterizes 

the material behavior, a set of creep, relaxation, or dynamic tests at different isothermal 

temperatures is performed.  For the viscoelastic materials exhibiting a nonlinear 

response, a single creep or relaxation test is not sufficient to characterize the material 

response.  A series of creep test at different stress levels or relaxation test at different 

strain levels are required to characterize the non linear material properties.  If the 

obtained stain responses or stress responses follow the principle of superposition and 

linear scaling, then the material is categorized as a linear viscoelastic material or else the 

material belongs to as a non-linear viscoelastic material.  For an applied step (creep) 

stress changed by a factor α if the corresponding strain response is changed by the same 

factor α then it implies that scaling is satisfied.  If the strain history induced when 

subjected to multistep stress history can be obtained by superposition of responses to 

each step considered separately or vice versa then the material is said to have satisfied 
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the principle of superposition.  Another important feature governing the viscoelastic 

response is the history of the loading and time when the load is applied.   

 The solution to the problem in linear viscoelasticity (i.e. the field variables such 

as stress, strain and displacements) can be obtained directly from the corresponding 

linear elasticity problem by means of Correspondence Principle also called as elastic-

viscoelastic analogy as discussed by Rajagopal and Wineman [24] and Christenen [25].  

The principle incorporates the use of Laplace transform applied to the elasticity solution 

assuming that the Laplace transform of all the time variables exists.  The Laplace 

transformed viscoelastic solution is obtained directly from the solution of the 

corresponding elasticity problem by replacing the elastic material properties by the 

Laplace transformed viscoelastic properties multiplied with the Laplace transform 

variable and reinterpreting the elastic field variable as corresponding Laplace 

transformed viscoelastic field variables.  The final solution is then obtained on inverting 

the transformed solution.  However, for the Correspondence Principle to work certain 

restrictions on the boundary conditions must be satisfied.  The interface between 

boundaries under prescribed traction and boundaries under prescribed displacement must 

not change with time, although the loads and displacements may be time dependent.    

 As discussed by Rajagopal and Wineman [24] for certain class of problems the 

Correspondence Principle does not work.  As per the discussion, if all the material points 

of the body under consideration are not a part of the body for all the times t≥0 then the 

Correspondence Principal breaks.  Also, for a fixed point on the boundary, if the 

boundary condition is changed from one specifying a displacement to one specifying a 
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surface traction during the deformation then the Correspondence Principle is no more 

applicable.  Lee and Rogers [26] discussed the solution of stress and strain fields for 

more general viscoelastic materials that are represented by general hereditary integral 

stress strain relations.  These stress and strain relations were deducted directly by 

superposition of relaxation and creep responses.  The stress-strain relations are expressed 

by convolution integral form and so more general problems that are beyond the scope of 

Laplace Transform method could be solved by this method.  

2.1.1 GENERALIZED SINGLE INTEGRAL CONSTITUTIVE RELATION FOR 

THE LINEAR ISOTROPIC VISCOELASTIC MATERIAL 

The sandwich composites are generally made up of metallic or fiber reinforced 

laminated skins and polymeric cores.  These polymeric cores can exhibit significant 

viscoelastic responses.  In this study a generalized single integral constitutive relation is 

used to model the linear viscoelastic behavior of the polymeric core of the sandwich 

structure.  The general single integral constitutive relation for a linear viscoelastic 

material under uniaxial loading (non aging) is written as: 

0
0

( ) ( )
t

t t dt D tD d

τσ dε τε σ
τ

≡ = + Δ −∫ τ                                                                           (2.1) 

Where D0 and ΔD are the uniaxial instantaneous and transient creep compliances.  

As discussed in the Chapter I moisture is found to have a pronounced effect on the 

material moduli of viscoelastic materials.  This dependence of the material moduli on the 

moisture concentration is incorporated by modifying the Eq. (2.1) which is then written 

as: 
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00 1
0

( ) ( ) ( ) ( )
t

t t dt c c D tg gD d

τσ dε τε σ
τ

≡ = + Δ −∫ τ                                                          (2.2) 

Here g0 measures the increase or decrease in the instantaneous compliance with 

the change in moisture concentration and the parameter g1 measures the increase or 

decrease in the transient compliance with the change in moisture concentration.     

This uniaxial viscoelastic relation in Eq. (2.2) is generalized for multiaxial (3D) 

constitutive relations of isotropic materials [27] by separating the deviatoric and 

volumetric stress-strain relations as: 

0 0 1
0

0 0 1
0

1
3

1 1( ) ( ) ( )
2 2

1 1( ) ( ) ( )
3 3

t t t t
ij ij kk ij

t
ijt t

ij ij

t
t t kk
kk kk

e

dS
e g c J S g c J t d

d

dg c B g c B t d
d

τ

τ

ε ε δ

τ τ
τ

σε σ τ
τ

= +

= + Δ −

= + Δ −

∫

∫ τ

                                                           (2.3) 

Here eij, εkk, Sij and σkk are used to denote the deviatoric strains, volumetric strain, 

deviatoric stress and volumetric stress respectively.  The parameters J0 and B0 are the 

instantaneous elastic shear and bulk compliances, respectively.  The transient shear and 

bulk compliances are represented by ΔJ and ΔB, respectively.  There are quite a few 

ways in which these transient parts can be expressed such as the power series, rational 

polynomial form, Prony series etc.  Here, a Prony series (series of exponential functions) 

is used for the transient part owing to the advantage this representation provides in 

solving the integral form in Eq. (2.3) recursively. The parameters of the multi-axial 

behaviors are modeled as a function of the current moisture content ct.  The matrix 
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Poisson’s ratio, υ, is assumed to be time independent, as a result of which the shear and 

bulk compliances are expressed as: 

0 0 02(1 )                      3(1 2 )

2(1 )                 3(1 2 )t t t

J D B

J D B
0

t

D

D

υ υ

υ υ

= + = −

Δ = + Δ Δ = − Δ
                                                          (2.4) 

Where the uniaxial transient compliance in terms of the Prony series coefficients 

is expressed as: 

1
(1 exp[ ])  

N
t

n
n

D D tλ
=

Δ = − −∑ n                                                                                         (2.5) 

Here N is the number of terms, Dn is the nth coefficient of the Prony series, and λn is the 

nth reciprocal of creep time.   

Using the Eqs. (2.4) and (2.5), the deviatoric and volumetric strains in Eq. (2.3) 

can be written as: 
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                                                             (2.7) 

These integral forms in Eqs. (2.6) and (2.7) are called the Stieltjes convolution.  

The solutions to these integrals are generally obtained by utilizing Laplace transforms.  

In certain cases where it is not feasible or almost impossible to obtain a closed form 

solution of the integral, a numerical approach is often employed.  One of the numerical 
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approaches known is the recursive integration method.  Taylor et. al. [28] used the 

recursive method to solve the 1D viscoelastic integral model.  In this study, the recursive 

approach is used to solve the integral parts in Eqs. (2.6) and (2.7).  A recursive method 

allows for developing incremental formulation and integration of the current stress state 

based on the given time, strain, and moisture increments and the history variables stored 

at the previous time step.  As illustrated in Eq. (2.8), the trial incremental strain tensor 

t
ijεΔ and moisture  are obtained at each iteration within the incremental time-steptcΔ tΔ .  

The goal is to calculate the current total stress t
ijσΔ  and the material’s consistent tangent 

stiffness from given current variables and history variables stored from the previous 

converged solution at time .  The converged at the current time t will be used 

to provide incremental trial strains for the next time step (

t
ijklC

(t t−Δ )

)

t
ijklC

t t+Δ .  This procedure in Eq. 

(2.8) is performed at every material (Gaussian) integration point within each element at 

each structural iteration to achieve structural and material convergence simultaneously 

as shown in Fig. 2.2.
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Thus, the hereditary integrals in Eqs.(2.6) and (2.7) using the recursive 

integration method are expressed as: 
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Here the incremental time is expressed as ( )th t t tΔ = − −Δ .  The first part includes 

the integral with limits (0, t-Δt), i.e. up to the previous time step, which is considered as 

history variable stored and updated at the end of each time increment. The limits of the 

second part are taken as (t-Δt, t), which is the current incremental step. The parameters 

and , n=1...N are the hereditary integral for every term in the Prony series in 

the form of deviatoric and volumetric strains.  Total number of history variables is 

7xNxNGauss; where 7 is the total number of deviatoric and volumetric components, N is 

the number of terms in the Prony series, and NGauss is the number of Gaussian 

integration points.   

,
t t
ij nq −Δ

,
t t
kk nq −Δ

 
 

 
 

• Nodal point 

X  Material integration point 

Fig. 2.2. UMAT incorporating the recursive algorithm to obtain converged solution for 

each element in the foam core of the sandwich structure 
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2.2 GOVERNING EQUATION FOR MOISTURE DIFFUSION THROUGH THE 

SANDWICH COMPOSITE 

It has been experimentally shown that moisture can degrade the material 

properties of the composites significantly.  It becomes essential to understand the 

moisture diffusion through the sandwich composite and deformation due to the existence 

of moisture concentration.  To investigate the effect of moisture diffusion on the 

degradation of the composite materials and its subsequent response, simultaneous study 

of the problem of moisture diffusion (which is assumed to be governed by unsteady 

Fick’s equation) and deformation of viscoelastic materials is carried out.  The equations 

for the motion of the fluid and the motion of the composite are coupled as the material 

moduli depend on the concentration of the fluid (moisture). 

Diffusion in polymer systems is generally Non-Fickian or anomalous 

accompanied by damage formation when subjected to external stress.  The Non-Fickian 

diffusion can adequately capture the changes to the polymer system induced by the 

absorbed penetrant such as chemical degradation, swelling and/or changes induced due 

to microcracks (damage) etc.  Despite the diffusion process being generally Non-

Fickian, in absence of damage or negligible damage, the diffusion of moisture through 

the composite solids can be assumed to be Fickian.  The limitation that the Fickian 

diffusion model exhibits is that it tends to overestimate the moisture absorption for a 

short diffusion time.  In this specific study it is assumed that the moisture diffusion 

through the sandwich composite is governed by the unsteady Fick’s law of diffusion.  

The concentration of the fluid at any point (x, y, z) in the sandwich structure and at time 
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t is denoted by c = c (x, y, z, t).  The rate of the diffusing fluid related to the 

concentration gradient through the three dimensional form of Fick’s law of diffusion is 

written as:  

iff[ ]c c
t
∂

= −∇⋅− ∇
∂

D                                                                                                      (2.11) 

Here Diff is a second order diffusivity tensor and ∇
 

denotes the gradient 

operator.  For the case when the components Dij of the diffusivity tensor are independent 

of the spatial coordinates (x,y,z) and the moisture concentration at any time (constant 

diffusivity tensor) the Eq. (2.11) becomes: 

2
iff

c c
t
∂

= ∇
∂

D                                                                                                                (2.12)
 

In the case when the diffusing fluid is more pronounced in one direction, the 

three dimensional form of Fick’s law of diffusion can be reduced to one dimensional 

form which is stated as:  

2
iff

c D c
t
∂

= ∇
∂

                                                                                                               (2.13)
 

Here the diffusivity Diff is now a scalar.  One could incorporate the effect of 

stress assisted diffusion by allowing the diffusivity D to depend on the stress.  The 

details of this could be obtained from the early study on stress assisted diffusion by 

Weitsman [29].  Thus the concentration of the fluid is now a function of only one spatial 

coordinate and time written as c = c (x, t).   
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In this study, the moisture concentration at every location and every time 

throughout the sandwich structure can be obtained by solving Eqs. (2.12) or (2.13) by 

imposing the initial and boundary conditions.  Once the moisture concentration profile 

throughout the structure is known, the material properties that depend on the moisture 

concentration, g0 and g1 in Eq (2.2), can be determined and the viscoelastic deformation 

can be solved.  In order to accomplish this a numerical algorithm (UMAT in Abaqus an 

FE commercial code) is derived based on implicit stress integration solutions within a 

general displacement based FE structural analyses for small deformations and coupled 

moisture-mechanical problems.  Iterative scheme as stated above is used to obtain 

solutions at structural and material levels.   
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 CHAPTER III 

3.SOLUTIONS TO PROBLEM OF COUPLED MOISTURE 

DIFFUSION AND DEFORMATION IN THE VISCOELASTIC 

SANDWICH COMPOSITES   

In this chapter, the problem of coupled moisture diffusion and deformation in the 

viscoelastic sandwich composite is analyzed.  As discussed in the Chapter I moisture is 

found to have a significant impact on the behavior of the viscoelastic materials.  

Therefore, there arises a need to analyze the effect of moisture diffusion when coupled 

with the deformation in the viscoelastic sandwich composite.  A FE approach is used to 

analyze this problem.  The analysis is performed using 2D and 3D continuum solid 

elements.  The results obtained by FE code are first validated using the analytical 

solutions.  To begin with, the analytical solution to the moisture diffusion problem in 

two layered composite is developed for unsteady Fick’s law of diffusion.  The results 

obtained from the FE code for the diffusion of moisture in the two layered composite are 

validated using the analytical solution developed.  The two layered composite model 

provide simpler closed form solutions compared to three layered systems and this 

solution is used to determine suitable range of time-increments in the FE analyses.  

Further, the analytical solution to the problem of deformation in the viscoelastic 

sandwich beam is obtained based on the strength of material approach and 

Correspondence Prinicple.  The analytical solution is to validate responses from the FE 

analyses in terms of mesh size and time increment convergent studies.   
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The later part of the chapter presents the FE analyses of coupled moisture 

diffusion and deformation of the viscoelastic sandwich beam under three point bending.  

The material modulus of the viscoelastic foam core, in the coupled problem of moisture 

diffusion and deformation is assumed to be linearly degrading with moisture 

concentration.  ABAQUS FE software is used to simulate the analyses.  The results 

obtained show the aggravated effect of moisture on the viscoelastic response of the 

sandwich beam.  Parametric studies are performed to understand the effect of different 

moisture diffusivity ratios of the skin and core in the sandwich beam and the effect of 

moisture dependent elastic and transient moduli of the viscoelastic foam core on the 

overall behavior of the sandwich beam.     

3.1 ANALYSES OF THE MOISTURE DIFFUSION IN THE SANDWICH 

COMPOSITE 

3.1.1 ANALYTICAL SOLUTION  

 As stated in the beginning of the chapter, a FE approach is used to obtain the 

solution to the moisture diffusion problem through the sandwich composite.  Therefore, 

there arises a need to ensure that the results obtained from the FE code are in good 

agreement with the analytical solution developed.  In order to reduce the complexity in 

developing the analytical solution to the moisture diffusion problem of the sandwich 

(three layered) composite, a two layered composite is considered.  Fig 3.1 shows all the 

dimensional details of the two layered composite.   Moisture concentration is applied at 

the surface of the layer 1 as shown in the Fig 3.1.  It is assumed that the moisture 

diffuses from the surface of the layer 1, through the thickness of the composite into the 
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layer 2.  No other mode of diffusion such as moisture diffusion from the sides of the 

composite is considered.  The problem of moisture diffusion thus reduces to a one 

dimensional (through the thickness) moisture diffusion problem.  

 
 

 

C0

Fig. 3.1. A schematic of the two layered composite 

 
 
 

The solution to this problem of moisture diffusion through the two layered 

composite is derived using the unsteady Fick’s law of diffusion as stated in the Eq. 

(2.13).  The solution to the Eq. (2.13) can be obtained by prescribing proper initial and 

boundary value conditions, which are written as:  
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The conditions of moisture concentration and flux of the fluid at the interface 

being continuous yield the following interfacial conditions: 

(1) (2)

(1) (2)
(1) (2)

(0, ) (0, ),   0

(0, ) (0, ),   0iff iff

c t c t t

c cD t D t t
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∂ ∂
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                                                                         (3.2) 

Here the superscripts (1) and (2) denote the layer number as shown in the Fig 3.1.  

c(i) denotes the moisture concentration at any point in the ith layer and  denotes the 

moisture diffusivity of the ith layer, where i = 1 or 2. 

( )i
iffD

The solution to the Eq. (2.13) for a two layered composite using the boundary 

and the initial condition as in Eqs. (3.1) and (3.2), respectively, is written as: 
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Here βm are the roots of the Eq. 3.4, which is written as: 

( ) ( )cos sin sin cos 0m
m m

al R l
R R
ββ β⎛ ⎞ ⎛ ⎞+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
maβ

=                                                           (3.4) 

For an applied concentration of C0 = 0.5606 gm/mm3 the moisture diffusion 

profile through the thickness of the two layered composite at various times beginning 

from time t=0 sec to steady state time of t=1828 sec is shown in the Fig 3.2.  The 

dimensional details and the required material properties are given in Table 3.1.  A Finite 

Element (FE) analysis is done on the same problem using 2D solid continuum elements 

(DC2D4 elements form ABAQUS element library).  The moisture profiles obtained 

from the FE analyses are in good agreement with the analytical solution developed in 

Eq. (3.3). 

A similar approach can also be used to obtain the analytical solution to the 

problem of moisture diffusion for the sandwich composite.  Once this moisture diffusion 

profile is obtained it can then be coupled with the deformation to analyze the effect of 

moisture concentration on the deformation in the viscoelastic sandwich composite. 
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Fig. 3.2. Evolution of the moisture diffusion profile through the two layered composite 

 

 

Table 3.1. Material properties and dimensional details of the two layered composite 

Moisture Diffusivity of the first layer 
 (mm2/sec) (1)

iffD 0.1144 

Moisture Diffusivity of the second 
layer  (mm2/sec) (2)

iffD 0.2 

Thickness of the first layer l (mm) 1 

Thickness of the second layer a (mm) 25.4 
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3.1.2 CONVERGENCE STUDY USING FE METHOD 

A sandwich beam 254 mm long, 27.4 mm thick, and 25.4 mm wide is subjected 

to moisture loading as shown in the Fig 3.3.  The skin is carbon epoxy laminate and the 

core is polyurethane foam with the assumed identical moisture diffusivities of 1.06E-2 

mm2/sec.  Moisture concentration of 1 gm/mm3 is applied at the surface of the top skin 

of the sandwich composite.  It is assumed that the moisture diffuses from the surface of 

the top skin, through the thickness of the sandwich structure to the bottom skin.  No 

other mode of diffusion such as moisture diffusion from the sides of the sandwich 

structure is considered.  The problem of moisture diffusion thus reduces to a one 

dimensional (through the thickness) moisture diffusion problem.   

The solution to this problem governed by the Fick’s law of diffusion stated in the 

Eq. (2.13) can be obtained by prescribing proper initial and boundary value conditions, 

which are written as:  

(1)

(1)

(2)

(3)

(27.4, ) 1,   0
( ,0) 0,   26.4 27.4
( ,0) 0,   1 26.4
( ,0) 0,   0 1

c t t
c x x
c x x
c x x

= ∀ ≥

= ∀ ≤ <

= ∀ ≤ ≤

= ∀ ≤ ≤

                                                                                    (3.5) 
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Fig. 3.3. A schematic of the sandwich composite 

 

 
The continuity of the moisture concentration and the flux of the fluid flow at the 

interface are written as: 

(1) (2)

(2) (3)

(1) (2)
(1) (2)

(2) (3)
(2) (3)

(26.4, ) (26.4, ),    0
(1, ) (1, ),    0

(26.4, ) (26.4, ),    0

(1, ) (1, ),   0

iff iff

iff iff

c t c t t
c t c t t

c cD t D t
x x

c cD t D t t
x x

= ∀ >

= ∀ >

∂ ∂
= ∀

∂ ∂
∂ ∂

= ∀ >
∂ ∂

t >

                                                           (3.6) 

 In this study, FE approach has been used to simulate the moisture diffusion 

process through the sandwich structure. Therefore, it becomes extremely essential to 

evaluate the parameters such as the time increment and the tolerance that affect the 

accuracy of the numerical solution.  With the boundary conditions stated in the Eqs. 
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(3.5) and (3.6) the steady state is said to have reached when the concentration throughout 

the sandwich structure reaches a value of 1 gm/mm3.  The chosen time increment in the 

FE analyses can significantly affect the accuracy of the numerical results.  Table 3.2 

shows the effect of different initial time increment size on the time required to reach the 

steady state.  The larger initial time increments tend to predict a higher time to reach the 

steady state as shown in the Table 3.2.   

 
 

Table 3.2. Effect of different initial time increment size 

Initial Time 
Increment (seconds) 

Steady State 
Time (hours) 

4000 52.22 

2000 50.56 

1000 49.72 

500 49.17 

200 48.83 

100 48.72 

50 48.67 

10 48.66 

Converged 

 

 
 With the initial time increment size of 4000 seconds the steady state is reached at 

around 52.2 hours whereas with the initial time increment of 1000 seconds, the steady 

state is reached at 49.7 hours.  A difference of around 5 % in the steady state times is 

observed.  For an initial time increment of 200 seconds the steady state is reached at 
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even a lower value of time equal to 48.8 hours.  The difference in the steady state time 

reduces to around 1.5 % when compared with the initial time increment size of 1000 

seconds.  Thus with the smaller time increments the difference in the time required to 

reach the steady state decreases.  It is observed that on reducing the time increment 

convergence in terms of steady state time is achieved.  For the time increments less than 

50 seconds negligible difference is observed at the steady state times.  Further reduction 

in the time increment results into insignificant resolution at the cost of large 

computational time.  As a result, it is concluded that an initial time increment can be 

chosen in the range: 10-50 s in order to obtain an accurate time required to reach the 

steady state to the moisture diffusion problem.   

Another parametric study is done to determine appropriate tolerance on the 

moisture diffusion study.  The value of this parameter indicates that if all the nodal 

moisture concentrations are changing at less than a certain rate (tolerance) then the FE 

analysis considers to have reached the steady state.  Table 3.3 shows the effect of 

different tolerances on the time required to reach the steady state.  With the tolerance of 

1e-5 the calculated steady state to the moisture diffusion problem is obtained at around 

12.2 hours as compared to the calculated steady state time of 126.6 hours with the 

tolerance of 1e-11.  With the tolerance of 1e-11 the moisture concentration at the time 

126.6 hours throughout the body reaches a value of 1 gm/mm3, which indicates that the 

body has reached the actual steady state.  Whereas with the tolerance of 1e-5 the 

moisture concentration at time 12.2 hours is 0.7 gm/mm3 in the bottom skin of the 

sandwich beam, indicating that body has not reached the actual steady state although the 
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FE analysis indicates the numerical steady state to have reached.  For the tolerance of 

1e-7 it is observed that moisture concentration throughout the sandwich beam is nearly 1 

gm/mm3 with the least moisture concentration 0.99722 gm/mm3 in the bottom layer of 

the sandwich beam.  With this tolerance (1e-7) the steady state is reached at time 49.72 

hours.  Thus, even with the tolerance value of 1e-7 moisture concentration throughout 

the sandwich structure is almost 1 gm/mm3.  It is therefore concluded that a tolerance 

can be chosen in the range: 1e-7 to 1e-11 in order to represent moisture concentration 

profile throughout the sandwich composite.  In the entire study further, a tolerance of 1e-

7 is chosen so as to reduce the computational time required while preserving the 

accuracy of the solution desired.   

 

 
Table 3.3. Effect of different tolerance on the convergence rate 

Tolerance Steady State 
Time (hours) 

Moisture 
concentration 
at the furthest 

distance 

1.00E-05 12.22 0.717 

1.00E-07 49.72 0.997 

1.00E-08 68.33 0.9997 

1.00E-09 86.94 0.999972 

1.00E-11 117.12 1.0 
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3.2 ANALYSES OF THE DEFORMATION IN THE VISCOELASTIC 

SANDWICH COMPOSITE 

3.2.1 ANALYTICAL SOLUTION 

The solution to the deformation of a viscoelastic sandwich structure subjected to 

three point bending test can be obtained using the elasticity or to some extent strength of 

material approach.  Here the strength of material approach has been used.  The total 

deflection of the beam would comprise of bending and the shear components.  For a 

sandwich beam with the span length L, width b, face and core thickness of f and c, 

respectively and Young’s moduli of the face and core to be Ef  and Ec respectively, the 

bending component of deflection at the midspan of the beam (L/2) is written as: 

3

2

48( )

Where, the equivalent flexural rigidity ( )  is written as:

( )
2

b
eq

eq

f
eq

PL
EI

EI

E bfc
EI

δ =

=

                                        (3.7) 

Similarly, the shear deflection is written as: 

4( )

Here,  cross sectional area and  is the shear modulus of the core

s
c

c

PL
AG

A G

δ =

                         (3.8) 

Thus, the total deflection is written as: 
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3

48( ) 4( )eq c

PL PL
EI A

δ = +
G

                                                                                                (3.9) 

 The sandwich under consideration in this study consists of a linear viscoelastic 

foam core and linear elastic facings.  Considering the time dependent behavior of the 

foam core, shear component of the total deflection increases with time due to the 

decrease in the shear modulus.  The effect of the decreasing value of the material 

modulus of the viscoelastic core has negligible effect on the equivalent flexural rigidity.  

Therefore, the bending component is assumed to remain constant with time.  Thus, the 

total time dependent deflection of the beam as shown by Gibson [30] is then written as: 

( ) ( )

( )

3

48( ) 4( )

Here,  is the shear creep compliance of the foam  core

c

eq

c

PLJ tPLt
EI A

J t

δ = +

                                     (3.10) 

Here (EI)eq is assumed to be constant since the since the degrading modulus of 

the core has a negligible impact on the overall value of (EI)eq.  The FE results obtained 

are verified with the analytical solution developed in Eq. (3.10).  To accomplish this, a 

254 mm long and 25.4 mm wide sandwich beam composed of 1 mm thick aluminum 

facings and 25.4 mm thick polyurethane foam core is subjected to three point bending 

test with point load of 250 N applied at the half span of the beam.  The details of the 

loading and the boundary conditions are shown in the Fig 3.4.  The calibrated time-

dependent parameters (Prony series) representing the creep compliance upto 1200 hours 

and elastic properties for the polyurethane foam core are given in Table 3.4.  Similarly, 
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the elastic properties of aluminum are given in Table 3.5.  With these properties and 

testing conditions, the viscoelastic deformation at the midspan of the sandwich structure 

with two different mesh densities is as shown in Fig 3.5.  A uniform mesh (relatively 

coarser) is used in case of FEA model 1 whereas a finer mesh in the region near the 

point of application of the load and the constrains is used in FEA model 2.  As expected 

the response is captured more realistically in FEA model2 as compared to FEA model 1 

as the localized effect of point load and point constrains is captured much better using a 

finer mesh near the point of application of the load and the constrains.  In general, FE 

results are found to be in a good agreement with the analytical solution.    

 

Fig. 3.4. Loading and boundary conditions on the sandwich beam 
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Fig. 3.5. Viscoelastic deformation at the midspan 

 

Table 3.4. Elastic properties and Prony series coefficients for polyurethane foam core 

n λn (sec-1) Dn X 10-3(MPa-1) 

1 1 1.5 

2 10-1 2 

3 10-2 2.5 

4 10-3 4.25 

5 10-4 8.4 

6 10-5 10.68 

7 10-6 11.45 

8 10-7 24 

E=31 Mpa                            ν=0.35     
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Table 3.5. Elastic properties of aluminum facings 

E (MPa) ν 

70,000 0.29 

 

 
3.2.2 CONVERGENCE STUDY USING FE METHOD FOR DEFORMATION 

 When FE approach is used to obtain various field variables such as displacement, 

stresses and strains for the sandwich beam subjected to a three point bending test, it is 

extremely essential to check the adequacy of the type of element and the size of elements 

used.  In order to validate the adequacy of the size of elements used in the FE mesh, a 

sandwich beam composed of carbon-epoxy facings and divinycell H-250 core is 

subjected to a three point bending test with a load of 2018 N at the center of the beam.  

Table 3.6 shows the elastic properties of carbon epoxy faces and the divinycell H-250 

core.  It is assumed that the facings and the core are linear elastic materials.  The 

problem is a modeled using the two dimensional continuum plane strain elements 

(CPE4) in ABAQUS.  The total deflection at the midspan of the beam obtained is shown 

in Fig 3.6.  The results from FE code are in good agreement with the experimental data.  

This ensures the adequacy of the number of elements used in the mesh.    
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Table 3.6. Elastic properties of Carbon Epoxy laminate and Divinycell H250 

Material  Properties Values 

Core: Divinycell H250 

Youngs modulus E ( MPa) 227.5 

Poisson's ratio ν 0.19 

Skin: Carbon Epoxy 

Composite(AS4/3501-6)

Youngs modulus E11 ( MPa) 147000 

Youngs modulus E22 ( MPa) 10000 

Youngs modulus E33 ( MPa) 10000 

Shear modulus G12 ( MPa) 7600 

Shear modulus G13 ( MPa) 7600 

Shear modulus G23 ( MPa) 3355 

Poisson's ratio ν12 0.27 

Poisson's ratio ν13 0.27 

Poisson's ratio ν23 0.49 

  

For sandwich beam with the viscoelastic core, the response to the applied static 

(creep) load is time dependent and hence the size of the initial time increment 
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significantly affects the instantaneous (elastic) material response.  A parametric study is 

performed to examine the effect of different initial time increment sizes on the 

instantaneous material response.  This study helps to determine the range of initial time 

increment that can be used to simulate creep testing of the sandwich beam using FE 

code.  A sandwich beam composed of orthotropic carbon epoxy facing and polyurethane 

foam core is subjected to a three point bending test with a load of 250 N applied at the 

center of the beam.  The instantaneous creep displacement values for different time 

increment sizes at the midspan of the beam on the bottom surface are shown in the Fig 

3.7.  It is very clear the initial time increment size can significantly affect the accuracy of 

the results.  Large time increments can lead to a diverging solution.  As a result, it is 

concluded that an initial time increment can be chosen in the range: 0.001 – 0.01 s in 

order to represent an instantaneous response of this sandwich beam. 
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Fig. 3.7. Effect of different time increments sizes on instantaneous displacements 

 

 
3.3 COUPLED MOISTURE DIFFUSION AND DEFORMATION IN THE 

VISCOELASTIC SANDWICH BEAM 

In this study, a sandwich beam subjected to simultaneous moisture diffusion and 

mechanical loading is considered.  The sandwich beam composed of orthotropic linear 

elastic carbon-epoxy laminated skin and isotropic viscoelastic polyurethane foam core is 

subjected to simultaneous moisture prescribed at the surface of the top skin and a point 

load at the midspan of the beam in a three point bending test.  The solution to the 

coupled displacement-transport equations is obtained in two sequential steps.  In the first 

step, the moisture diffusion profile through the sandwich beam is obtained.  Once the 

moisture distribution throughout the sandwich beam during the transient analysis is 

known, the deformation of the viscoelastic sandwich composite with moisture dependent 
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material properties are determined.  It must also be noticed that the analysis does not 

address a fully coupled problem.  While the deformation depends on the moisture 

concentration, the moisture concentration can be obtained without the knowledge of 

stress/strain.  The moisture diffusion process is not stress or strain assisted.  It is assumed 

that material properties (material modulus and Poisson’s ratio) of the carbon epoxy 

facings with 0° fiber orientation are independent of the moisture concentration.  Because 

for the 0° fiber orientation the effect of moisture on the material properties is negligible 

[5].  It is assumed that the instantaneous part (E0) of the polyurethane foam core 

degrades linearly with moisture concentration as per Eq. (3.11). 

0 0
0 0

1 * cE E
D C

α= = −                                                                                                 (3.11) 

where C0 (gm/ mm3)  is the applied moisture concentration, α (MPa) is the slope of the 

graph of instantaneous modulus E0 (MPa) versus nondimensionalized moisture 

concentration c/C0. 

The parameter g0 that measures the moisture dependent elastic compliance can 

therefore be written as: 

0
0

0
0

*

Eg
cE

C
α

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

                                                                                                     (3.12) 

The specific choice of the type of degradation is made to merely illustrate that 

the strain induced due to the degradation can be pronounced.  The magnitude of the 

strain certainly depends upon the form of degradation assumed.  For more severe 
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degradation than the linear form, the magnitude of strains could be much higher.  In this 

case the value of α is chosen to be 12 MPa.  The Eq. (3.12) is then written as: 

0
0

0
0

12*

Eg
cE

C

=
⎛ ⎞

−⎜ ⎟
⎝ ⎠

                                                                                                    (3.13) 
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Fig. 3.8. Evolution of concentration of diffusing moisture 
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The evolution of the concentration of moisture is plotted in Fig 3.8.  The 

moisture diffusivities of the carbon-epoxy facings is assumed to be 1.06E-03 mm2/sec 

and that of the polyurethane core equal to 1.06E-02 mm2/sec [31].  Thus, the ratio of the 

moisture diffusivity of the skin to that of the core materials is 0.1.  With the moisture 

diffusion governed by the one dimensional (through the thickness) Fick’s law of 

diffusion, the boundary and initial conditions as per the Eqs. (3.5) and (3.6) and the 

concentration applied at the surface of the top skin, the sandwich composite reaches a 

steady state when the moisture concentration at the bottom skin reaches a value of the 

applied moisture concentration of 1 gm/mm3.  Fig 3.9 shows the evolution of the 

moisture diffusion profile at a fixed distance (x=0) in the bottom skin. 
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The degradation of the instantaneous modulus (E0) due to the moisture 

concentration is incorporated in the constitutive material model in the Eq. (2.3) and is 

solved numerically and implemented in the material subroutine (UMAT) of the 

ABAQUS FE code.  2D (CPE4) and 3D (C3D8) solid continuum elements are used to 

solve the coupled problem of moisture diffusion and deformation in the sandwich beam.  

The results obtained using 3D elements are in good agreement with those obtained using 

2D elements.  Fig 3.10 shows the graph of transverse displacement through the thickness 

of the beam at the midspan at t=1200 hours using both 2D and 3D elements.  In order to 

reduce the computational time required the further analysis is performed using 2D 

elements.  The analysis is performed upto 1200 hours (greater than the steady state time 

of 432 hours for moisture diffusion).  To highlight the effect of moisture degradation on 

the overall response of the sandwich beam, three cases are considered.   
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case (i) The sandwich beam composed of orthotropic elastic carbon epoxy laminated 

skin and linear elastic polyurethane foam core whose material modulus degrades with 

the moisture concentration as governed by the Eq. (3.11).   

case (ii) The sandwich beam composed of orthotropic elastic carbon epoxy laminated 

skin and isotropic linear viscoelastic polyurethane foam core without any effect of 

moisture concentration. 

case (iii) The sandwich beam composed of orthotropic elastic carbon epoxy laminated 

skin and isotropic linear viscoelastic polyurethane foam core with the instantaneous 

material modulus degrading with the moisture concentration as governed by the Eq. 

(3.11).   
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The effect of degradation on the displacement in the transverse direction (U2, 

direction of loading) at the midspan of the beam is as shown in the Fig 3.11.  At a 

distance of half the thickness of the sandwich beam (x=13.5 mm) an increase of about 

23% in the transverse displacement is observed in the case (iii) as compared to case (ii) 

at time t=1200 hours.  This is because of the decreasing instantaneous modulus of the 

viscoelastic polyurethane foam core with time.  There is an increase of about 46% in the 

transverse displacement in the case (iii) as compared to the case (i).  This shows that the 

effect of moisture degradation is found to be more pronounced in case of the viscoelastic 

materials because of their time dependent behavior.  At time t=0 the displacements in all 

the three cases is the same as expected.     
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The effect of degradation on the transverse strain (ε22) at the midspan of the beam 

is shown in Fig 3.12.  A jump in the transverse strain is observed at both the top and the 

bottom interfaces of the sandwich beam.  The increase in the transverse strain in the top 

skin at the interface (x=26.4 mm) for the case (iii) is 8% more as compared to the case 

(ii).  Whereas an increase of 13.3% in the degrading core for the case (iii) is observed as 

against the case (ii) at the interface (x=26.4 mm).  The magnitude of the jump in case 

(iii) is the maximum and at the top interface is about 13.5% higher as compared to the 

case (ii) at time t=1200 hours.  Whereas the magnitude of jump at the bottom interface is 

about 22% higher as compared to the case (ii) at time t=1200 hours.  It is worth noting 

that for the jump exceeding a certain critical value the transverse strain can aid to the 

delamination at the interface.  An increase of approximately 30% in the top skin at the 

interface for the case (iii) is observed as compared to the case (i).  Whereas the 

transverse strain in the degrading core at the interface (x=26.4mm) for the case (iii) is as 

high as 52% when compared to the case (i).  The magnitude of the jump in case (iii) at 

the top interface is about 35% higher as compared to the case (i) at time t=1200 hours.  

Whereas the magnitude of jump at the bottom interface is about 52% higher as compared 

to the case (ii) at time t=1200 hours.  This shows that the effect of moisture degradation 

on the behavior of viscoelastic materials is much more pronounced as compared to the 

elastic materials.        
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Fig. 3.12. Comparison of the transverse strain field for case (i), case (ii) and case (iii) 

 
 

The Fig 3.13 shows the effect of moisture degradation on the longitudinal 

displacement (U1) at the midspan of the beam.  The longitudinal displacement in case 

(iii) is about 28% higher in comparison to the case (ii) at time t=1200 hours.  An 

increase of about 100% in the displacement is observed in case (iii) as compared to case 

(i).   
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Fig. 3.13. Comparison of the longitudinal displacement field for case (i), case (ii) and 

case (iii) 

 
 

Fig 3.14 shows the effect of moisture degradation on the longitudinal strain (ε11) 

at the midspan of the beam.  As expected the longitudinal strain is maximum for the case 

(iii) as compared case (ii) and case (i).  It is worth observing that there is no jump in the 

longitudinal strain at the interfaces, which satisfies displacement compatibility. 
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Fig. 3.14. Comparison of the longitudinal strain field for case (i), case (ii) and case (iii) 
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Fig. 3.15. Comparison of the bending stress field for case (i), case (ii) and case (iii) 
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The effect of moisture degradation on the longitudinal (bending) stress (σ11) at a 

distance of 70mm from the midspan of the beam is shown in the Fig 3.15.  At the 

midspan (point of application of load) highly localized stress concentrations are 

observed as expected which will be discussed in more detail in the later part of this 

study.  As we move away from the point of application of load the effect of localized 

stress concentration goes on diminishing.  Thus, in order to avoid the effect of localized 

stress concentrations the stresses are measured at a distance of 70mm from the midspan 

of the beam.  The stress distribution throughout the beam can been seen from the contour 

plots presented in the later part of the discussion in this section.  In all the three cases, 

the bending stresses at time t=1200 hours are higher than the stresses at initial time t=0 

hours as expected.  The magnitude of the bending stresses for all the times greater than 

t=0 hours is maximum in case (iii) as compared to the case (ii) and case (i).  The 

magnitude bending stresses at all the times greater than t=0 hours in case (ii) is higher in 

comparison to case (i) highlighting the effect of the time dependent behavior of the 

viscoelastic materials in comparison to the elastic materials.  A jump in the bending 

stresses at the top and the bottom interfaces in the sandwich beam is also observed.  The 

magnitude of the jump in case (iii) is the maximum and at the top interface is about 9.5% 

higher as compared to the case (ii) at time t=1200 hours.  Whereas the magnitude of 

jump at the bottom interface is about 17% higher as compared to the case (ii) at time 

t=1200 hours.  This jump can act as a critical parameter in deciding the delamination at 

the interface.  It is worth observing that even though the increase in the jump at the 

bottom interface is higher but the magnitude of the jump is higher at the top interface.        
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Fig 3.16 shows the effect of moisture on the shear strain (ε12) at a distance of 70 

mm from the midspan of the beam.  As expected the shear strains at time t=0 for all the 

three cases is the same.  Shear strains in the core (through the thickness) are almost 

constant in all the three cases at a particular time and increases with increase in time.  At 

time t=1200 the shear strains are maximum in case (iii) as compared to case (i) and case 

(ii).  In other words, the shear strain at time t =1200 hrs in case (i) is 48% lower as 

compared to case (iii) and in case (ii) is 20% lower as compared to case (iii).   
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Fig. 3.16. Comparison of the shear strain field for case (i), case (ii) and case (iii) 

 
 

Fig 3.17 shows the effect of moisture on the shear stress (σ12) at a distance of 70 

mm from the midspan of the beam.  As expected high shear stresses are observed in the 

core as compared to the skin in all the three cases at every time.  In addition to it, the 
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shear stresses in the core are nearly constant throughout the thickness.  A jump of around 

0.02 MPa in the shear stresses at the top and the bottom interfaces in all the three cases is 

observed at time t=0.  The change in the jump with time is negligible in all the three 

cases. 

 
 

 

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30

S1
2 
(M

Pa
)

Distance (mm)

case(i),(ii), (iii),t=0

case (iii), t=1200

case (i), t=1200

case (ii), t=1200

“bottom”  “top” 

x2 

Fig. 3.17. Comparison of the shear stress field for case (i), case (ii) and case (iii) 

 

 

The contour plots at time t=1200 hours of the stress, strain and displacement 

fields are shown in Figs 3.18 to 3.25.  In the region near the point of application of the 

load and the region near the constraints localized stress concentration effect is observed 

as expected.  The stresses are therefore measured at a distance of 70 mm from the 

midspan of the beam where the effect is almost negligible.   
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Fig. 3.18. Contour plot of transverse displacement (U2) at 1200 hours 

 
 

 

Fig. 3.19. Contour plot of axial displacement (U1) at 1200 hours 
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Fig. 3.20. Contour plot of transverse strain (E22) at 1200 hours 

 
 

 

Fig. 3.21. Contour plot of axial strain (E11) at 1200 hours 
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Fig. 3.22. Contour plot of shear strain (E12) at 1200 hours 

 
 

 

Fig. 3.23. Contour plot of bending stress (σ11) at 1200 hours 
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Fig. 3.24. Contour plot of transverse stress (σ22) at 1200 hours 

 

 

 

Fig. 3.25. Contour plot of shear stress (σ12) at 1200 hours 
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3.4 PARAMETRIC STUDY 

3.4.1 EFFECT OF DIFFERENT MOISTURE DIFFUSIVITY RATIOS OF THE 

SKIN AND THE CORE MATERIAL ON THE RESPONSE OF THE 

VISCOELASTIC SANDWICH BEAM 

 In the previous discussion, it is assumed that the ratio of moisture diffusivity of 

the skin to that of the core is 0.1.  In general, the moisture diffusivity of the skin/facings 

and core can vary in any ratio.  The lower the moisture diffusivity of the skin, the longer 

it would take for the entire sandwich composite to attain the steady state.  In addition, 

the moisture concentration at any point at a particular instant time can be significantly 

different with the different moisture diffusivity ratios of the skin and core.  As a result of 

this the moisture dependent material properties can vary significantly with the different 

diffusivities of the skin and the core thus affecting the overall response of the sandwich 

composite.  In this section, the effect of different moisture diffusivity ratios of the skin to 

that of core materials is being analyzed.  Three different cases of the moisture diffusivity 

ratios have been considered. 

Case (i) Moisture diffusivity ratio of the skin to that of the core is 1.0 

Case (ii) Moisture diffusivity ratio of the skin to that of the core is 0.1 

Case (iii) Moisture diffusivity ratio of the skin to that of the core is 0.01 

Table 3.7 shows the values of the moisture diffusivities used for the skin and the core 

material.       
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Table 3.7. Different moisture diffusivities of the skin and the core 

 

 

Moisture diffusivity

ratios 

Moisture diffusivity 

of skin, D (mm2/sec) 

Moisture diffusivity 

of core, D (mm2/sec) 

1 1.06E-02 1.06E-02 

0.1 1.06E-03 1.06E-02 

0.01 1.06E-04 1.06E-02 
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Fig. 3.26. Evolution of the moisture diffusion profile with different diffusivity ratios 
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Fig 3.26 shows the evolution of the moisture concentration with different 

diffusivity ratios for an applied moisture concentration of 1 gm/mm3 at the surface of the 

top skin.  As far as the transients are concerned, the concentration varies through the 

thickness of the composite differently.  However, the asymptotic solution in all the three 

cases is the same and concentration reaches a value of 1 asymptotically when all the 

three ratios reach the steady state.  It is observed that the moisture diffuses through the 

sandwich beam for the case (i) faster as compared to case (ii) and case (iii).  Similarly, 

the moisture diffuses comparatively faster in case (ii) when compared to case (iii).  The 

steady state for the case (i) is reached at 117 hours, for case (ii) is reached at 233 hours, 

and for case (iii) is reached at 932 hours.  The different moisture diffusion profiles with 

the different moisture diffusivity ratios affect the overall behavior of the entire sandwich 

structure.  At any time less than about 230 hours the magnitude of the field variables is 

always greater for the case (i) as compared to case (ii) and case (iii).  For the case (i) the 

moisture diffuses at a faster rate as compared to the case (ii) and case (iii) and hence the 

material modulus is degraded faster.  As a result of this higher displacements and strains 

are observed for the case (i).  At any time greater than 230 hours the differences in the 

field variables of the case (i) as compared to case (ii) are almost negligible as the steady 

state is already reached for both the cases.  This is because the viscoelastic materials 

posses a property of fading memory due to which the effect of the previous histories at a 

longer time becomes negligible.  For any time greater than 932 hours, the differences in 

the field variables with the three diffusivity ratios are negligible as the steady state with 

all the three ratios is attained.      
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Fig 3.27 shows the variations in transverse displacement (U2) at different times 

for the three cases.  At time t=0.91 hours the transverse displacement in the case (i) is 

3% and 5% higher than the cases (ii) and case (iii) respectively.  In the initial range of 

time this difference in the displacement values keep on increasing upto a particular time.  

At time t=3.6 hours, the transverse displacement in the case (i) is about 6% and 11% 

higher in comparison to the case (ii) and case (iii) respectively.  This signifies that the 

effect of different moisture diffusivity ratios is quite significant in the beginning times.  

At time t=29 hours the transverse displacement in the case (i) is about 4% higher in 

comparison to the case (ii).  Thus, there is a decrease in the percentage of increase in the 

transverse displacement as compared to the increment at time t=3.6 hours.  This signifies 

that the effect of different moisture diffusivity ratio of the case (i) as compared to case 

(ii) begins to diminish at time t=29 hours.  In contrast, the transverse displacement in the 

case (i) is about 16% higher in comparison to the case (iii).  Thus, the effect of different 

diffusivity ratios for the cases (i) as compared to case (iii) is still on an increasing trend 

at time t=29 hours.    At time t=466 hours the difference in the transverse displacements 

for the case (i) and case (ii) is less than 0.001% because the steady state for both the 

cases has been attained.  Whereas the difference in the transverse displacement for the 

case (i) as compared to case (iii) is still about 1% as the steady state for the case (iii) is 

not yet attained.  At time t=932 hours the steady state is already attained for all the three 

moisture diffusivity ratios as a result of which negligible differences are observed.  Thus, 

the effect of different diffusivity ratios is found to be prominent at the initial times but  
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Fig. 3.27. Comparison of the transverse displacement field at the midspan of the 
sandwich beam for different moisture diffusivity ratios 
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with the increase in time, this effect goes on decreasing and at any time greater than 932 

hours the effect is almost negligible  

Fig 3.28 shows the variations in the bending stresses (σ11) at different times for 

the three moisture diffusivity ratios.  At time t=0.91 hours the magnitude of jump at the 

top interface for the case (i) is about 2.5% and 4% higher than the cases (ii) and case (iii) 

respectively.  The magnitude of the jump at the bottom interface for the case (i) is about 

2% and 3.5% higher as compared to the cases (ii) and case (iii) respectively.  In the 

initial range of time, a continuous increase in the value of jump is observed upto a 

particular time.  At time t=3.6 hours, the magnitude of jump at the top interface for the 

case (i) is about 7% and 9% higher in comparison to the case (ii) and case (iii) 

respectively.  At the bottom interface, the magnitude of jump for the case (i) is about 5% 

and 7.5% higher as compared to the case (ii) and case (iii) respectively indicating the 

impact of the different diffusivity ratios during the initial times.  It is observed that the 

magnitude of jump at the top interface in all the three cases decreases with time for all 

times t greater than 29 hrs.  At time t =117 hours the magnitude of jump at the bottom 

interface in case (i) is 20% higher as compared to case (iii).  Whereas the difference in 

the magnitude of jumps in case (i) and case (ii) is almost negligible for all times greater 

than 223 hours.  This is attributing to the fact that the steady state is already reached in 

case (ii) at time 223 hours.  At time t=932 hours the steady state is attained for all the 

three diffusivity ratios as a result of which negligible differences in the magnitude of 

jumps is observed.  The effect of moisture on the other field variables is as shown in 

Figs 3.29 to 3.33. 
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Fig. 3.28. Comparison of the axial stress field at a distance of 70 mm from the midspan 
of the sandwich beam for different moisture diffusivity ratios 
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Fig. 3.29. Comparison of the shear stress field at a distance of 70 mm from the midspan 
of the sandwich beam for different moisture diffusivity ratios 

 

 
 



73 
 

 

 

 

Fig. 3.30. Comparison of the longitudinal displacement field at the midspan of the 
sandwich beam for different moisture diffusivity ratios 
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Fig. 3.31. Comparison of the longitudinal (axial) strain field at the midspan of the 
sandwich beam for different moisture diffusivity ratios 
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Fig. 3.32. Comparison of the transverse strain field at the midspan of the sandwich beam 
for different moisture diffusivity ratios 
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Fig. 3.33. Comparison of the shear strain field at a distance of 70 mm from the midspan 
of the sandwich beam for different moisture diffusivity ratios 
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3.4.2 INSTANTANEOUS AND TIME DEPENDENT MODULI BOTH MADE 

FUNCTIONS OF MOISTURE CONCENTRATION 

The entire discussion until now was based on the analysis performed with the 

instantaneous modulus of the viscoelastic foam core degrading with the moisture 

concentration.  However, for the viscoelastic materials the time dependent modulus can 

also be a function of moisture concentration.  This can have a significant impact on the 

overall behavior of the sandwich composite, depending upon the form in which the time 

dependent modulus degrades with the moisture concentration.  The time dependent 

modulus in this study is assumed to degrade with moisture concentration.  This is 

accounted through the non-dimensionalized parameter g1 in the Eq. (2.3) as: 

1
0

1 * cg
C

β= +                                                                                                              (3.14) 

Here C0 is the applied moisture concentration of 1gm/mm3 and β is a constant equal to 

0.62.   

At the different depths through the thickness of the sandwich beam, the creep 

compliance of the viscoelastic polyurethane foam core is allowed to change with the 

moisture concentration at various times.  In this study, the overall response of the 

sandwich structure under the three point bending test, with both the instantaneous and 

transient modulus of the viscoelastic polyurethane foam core degrading with moisture is 

analyzed.  The Eq. (3.11) governs the degradation of the instantaneous part, while the 

transient part degrades as per the Eq. (3.14).  Fig 3.34 shows the graph of the moisture 

dependent creep compliance at half the thickness (x=13.7 mm) of the sandwich beam for 
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the two cases shown below.  A specific case of the moisture diffusivity ratio of 0.1 (skin 

to core) is considered for the two cases.   

Case (i) Only the instantaneous modulus of the viscoelastic polyurethane foam core 

degrades with the moisture concentration as per the Eq. (3.11). 

Case (ii) Both the instantaneous and transient moduli of the viscoelastic polyurethance 

foam core degrade with the moisture concentration as per the Eq. (3.11). and Eq. (3.14). 

respectively.   
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At the initial times the degradation of the transient modulus with the moisture 

concentration is not very significant.   As a result, not much difference is observed in the 

field variables for the case (ii) when compared to case (i).  But with the increase in the 

time the moisture diffusion through the sandwich beam progresses and the creep 

compliance for the case (i) is significantly different than the case (ii).  As a result, 

differences in the field variables for the case (ii) as compared to case (i) are observed.  

Once the steady state for the moisture diffusion process is reached, for all the times 

ahead nearly a constant difference in the field variables is observed when the two cases 

are compared as expected. 

As shown in Fig 3.35 at time t=3.64 hours an increase of around 2.5% in the 

transverse displacement for the case (ii) as compared to case (i) is observed.  With the 

increase in time this difference increases.  At time t=116 hours the increase is about 

9.5% in the case (ii) as compared to case (i).  At any time greater than 233 hours (the 

time required to reach the steady state for the moisture diffusion process), a nearly 

constant increase of around 8.5% is observed in case (ii) when compared to case (i).  The 

instantaneous and the transient modulus for any time greater t=233 hours do not change 

with moisture concentration as the steady state is already attained.  This results into a 

constant difference in the values of the transverse displacement for any time greater than 

233 hours when the case (ii) is compared with case (i).    However, the deformation in 

the two cases are still progressing with time. 
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Fig. 3.35. Comparison of the transverse displacement field at the midspan of the 
sandwich beam for case with moisture dependent instantaneous part and the case with 

moisture dependent instantaneous and time dependent part 
 

Fig 3.36 shows the variation in the bending stress with time.  As explained before 

a jump in the bending stress (σ11) is observed at both the top and the bottom interfaces in 

both the cases (i) and (ii).  At time t=3.64 hours the magnitude of jump at the top 

interface (x=26.4 mm) for the case (ii) is about 2% higher in comparison to the case (i).  

At the bottom interface (x=1 mm) magnitude of the jump is about 2.5% higher for the 

case (ii) as compared to case (i).  It is worth observing that the magnitude of jump at the 

top interface decreases with the increase in time for both the cases.  Whereas the 
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magnitude of jump in the bottom interface for both cases increases upto time t=116 

hours and then decreases for the later times.  It is also observed that the magnitude of the 

maximum stresses (in the facings) increase with the increase in time in both the cases.   

 
 

 

 

Fig. 3.36. Comparison of the bending stress field at a distance of 70 mm from the 
midspan of the sandwich beam for case with moisture dependent instantaneous part and 

the case with moisture dependent instantaneous and time dependent part 
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Fig. 3.37. Comparison of the shear stress field at a distance of 70 mm from the midspan 
of the sandwich beam for case with moisture dependent instantaneous part and the case 

with moisture dependent instantaneous and time dependent part 
 
 

Figs 3.37 to 3.41 show the variations in the other field variables with time. 
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Fig. 3.38. Comparison of the longitudinal displacement field at the midspan of the 
sandwich beam for case with moisture dependent instantaneous part and the case with 

moisture dependent instantaneous and time dependent part 
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Fig. 3.39. Comparison of the longitudinal strain field at the midspan of the sandwich 
beam for case with moisture dependent instantaneous part and the case with moisture 

dependent instantaneous and time dependent part 
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Fig. 3.40. Comparison of the transverse strain field at the midspan of the sandwich beam 
for case with moisture dependent instantaneous part and the case with moisture 

dependent instantaneous and time dependent part 
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Fig. 3.41. Comparison of the shear strain field at a distance of 70 mm from the midspan 
of the sandwich beam for case with moisture dependent instantaneous part and the case 

with moisture dependent instantaneous and time dependent part 
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 CHAPTER IV 

4.FINITE ELEMENT ANALYSIS OF THE SKIN-CORE 

DELAMINATION AND THE HYGROSCOPIC SWELLING IN 

SANDWICH COMPOSITES 

This chapter presents the structural analysis of the sandwich composites under 

the combined moisture diffusion and mechanical loading.  It has already been shown in 

the previous chapters that moisture is found to have pronounced effects on the 

deformation of the viscoelastic sandwich composites.  In the first section, the effect of 

moisture diffusion delamination between the skin-core interface in a sandwich beam 

under double cantilever beam (DCB) and the tilted sandwich debond (TSD) tests is 

studied.  The sandwich beam is composed of orthotropic S2-glass/epoxy laminate and 

linear viscoelastic polyurethane foam core.  The FM73M adhesive polymer is used to 

glue the skin and the core at the interface of the sandwich structure.  The material moduli 

of the core and the glue at a particular time are functions of moisture concentration at 

that instant time.  The second part of this chapter deals with the hygroscopic swelling in 

sandwich panels.  The sandwich panels are fixed at the four sides.  Significant amount of 

stresses and strains are induced in the sandwich panels due to the moisture 

concentration.  The viscoelasticity in the sandwich systems causes gradual change in the 

deformations.   
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4.1 DELAMINATION AT THE SKIN-CORE INTERFACE OF THE 

SANDWICH COMPOSITE 

Adhesive polymers are widely used for joining structural components made of 

similar and dissimilar materials.  The adhesive bonds provide flexibility in design, 

weight reduction, cost reduction, and more uniform stress distribution over an entire 

bonded surface.  Adhesive polymers are also widely used in the aircraft structural 

components, automotive components, naval transportations and railway carriages for 

joining composite to steel.  One of the important requirements of these polymeric 

adhesives is its durability and capability to sustain mechanical loads under various 

environmental conditions of temperature and moisture.  Adhesive polymer is also used 

in gluing the skin-core interface of a sandwich composite.  Because the sandwich 

composites may be exposed to severe temperature and moisture conditions depending 

upon the application, it becomes essential to study the delamination behavior at the skin-

core interface under such hostile environmental conditions.       

Berggreen et al. [32] analyzed the debonding between core and face sheets in 

foam–cored sandwich structures.  A FEM based numerical model for the predictions of 

the propagation of debond damage is developed and validated.  Face tearing experiments 

are carried out for structures with three different core densities.  The developed FEM 

model is validated using the experimental data.  It was observed that for the low core 

density sandwich composites, the crack propagated at the interface just above the core, 

whereas for the higher density cores, the crack tends to propagate in the face sheets 

(laminate) itself.   Saha et al. [33] analyzed the effect of addition of nanoparticles to the 
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foam core on the debond fracture behavior of the sandwich panels.  It was concluded 

that the infusion of nanoparticles in the foam core improved the adhesion property and 

enhanced the debond fracture toughness of the sandwich composites.  Veazie et al. [34] 

investigated the interfacial fracture toughness of E-Glass/Vinylester facesheets, closed-

cell PVC core sandwich composites submersed in the sea-water for 5000 hours.  A 50% 

reduction in the interfacial fracture toughness as compared to the dry specimen was 

observed under the double cantilever beam test.  Scudamore and Cantwell [35] 

performed experiments to analyze the skin-core interfacial fracture properties of a 

number of dry and moisture-conditioned sandwich structures under the three point 

bending test.  Four sandwich specimens with different skin and core materials were 

tested.  It was observed that the prolonged exposure to the seawater was found to affect 

the bond between the skin and the core, facilitating crack advance along the skin-core 

interface.  It was concluded that great care should be exercised before selecting 

sandwich structures for hostile marine environment.    

In all the previous chapters a perfect bonding at the skin-core interface was 

assumed.  With the use of the polymeric adhesive at the skin-core interface there is a 

possibility that delamination at the interface may occur under severe loading conditions.  

In majority of the work done till date, the delamination at the skin-core interface is 

analyzed under static loading conditions for a short span of time.  This study is 

performed to analyze the transient effect of moisture diffusion on the delamination at the 

interface under the creep loading for about 1200 hours (greater than the steady state time 

of 1150 hours for the moisture diffusion process).  A sandwich beam composed of 
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orthotropic S2-glass epoxy laminate and linear viscoelastic polyurethane foam core 

under the combined moisture and mechanical stimuli is studied.   The material properties 

of the facing and the core are as shown in the Tables 4.1 and 3.2 (Chapter III) 

respectively.  The instantaneous part (E0) of the polyurethane foam core is assumed to 

degrade linearly with the moisture concentration as per the Eq. (3.11).  The facings and 

the core material are glued together by the FM73M adhesive.  The calibrated time-

dependent parameters (Prony series) representing the creep compliance and the elastic 

properties for the FM73M [36] are given in the Table 4.2.  The constitutive relation 

stated in Eq (2.3) is used to model the material response of the glue.  It is also assumed 

that the instantaneous part (E0) of the FM73M adhesive degrade linearly with moisture 

concentration as per the Eq. (3.11).  In this case the value of α is chosen to be 1335 MPa.  

The moisture dependent elastic moduli for the FM73M is then written as:  

0 0
0 0

1 1335* cE E
D C

= = −                                                                                              (4.1) 

Here E0 = 2710 MPa is the instantaneous modulus of the FM73M adhesive and c 

(gm/mm3) is the moisture concentration.  The parameter g0 in Eq. (3.12) that measures 

the moisture dependent elastic compliance can therefore be written as: 

0
0

0
0

( 1335* )

Eg cE
C

=
−

                                                                                                   (4.2) 
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Table 4.1. Elastic properties of S2-glass epoxy laminate 

Material  Properties Values 

Skin: S2-glass epoxy  

Youngs modulus E11 ( MPa) 76419 

Youngs modulus E22 ( MPa) 20184 

Youngs modulus E33 ( MPa) 20184 

Shear modulus G12 ( MPa) 7395.8 

Shear modulus G13 ( MPa) 7395.8 

Shear modulus G23 ( MPa) 4031.9 

Poisson's ratio ν12 0.265 

Poisson's ratio ν13 0.265 

Poisson's ratio ν23 0.335 
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Table 4.2. Elastic properties and Prony series coefficients for FM73M 

N λn (sec-1) Dn X 10-6(MPa-1) 

1 1 3.70 

2 10-1 0.296 

3 10-2 40.7 

4 10-3 33.3 

5 10-4 55.6 

6 10-5 259 

7 10-6 1000 

8 

9 

10-7

10-8 

3810 

7040 

E0=2710 Mpa                            ν=0.35     

 
 

The analysis is performed using the FE framework.  The purpose of the 

numerical study is to simulate the crack initiation time and the cumulative crack length 

under the effect of moisture degradation.  The analysis is performed using two different 
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testing procedures named DCB and TSD developed by Carlsson [37, 38].  Fig 4.1 (a) 

and (b) shows the configuration for the DCB and TSD procedures respectively. 

   

 

 

Fig. 4.1. a) DCB test b) TSD test 
 
 

 

Fig. 4.2. A schematic of the sandwich composite glued together with adhesive 
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Fig. 4.3. A schematic of the double cantilever beam 

 
 

The analysis is performed using the DCB test on the sandwich beam (254 mm X 

32.6mm X 38.1mm) [39] composed of S2-glass epoxy laminated facings and linear 

viscoelastic polyurethane foam core with an initial crack length of 50 mm.  The coupled 

analysis is performed in two sequential steps.  In the first step, the moisture diffusion 

profile through the sandwich beam is obtained by applying the moisture concentration at 

the top surface of the skin as shown in the Fig 4.2.  To simulate the moisture diffusion 

process using FE code, (DC2D4) 2D diffusivity elements are used.  With the moisture 

diffusivity of the skin and the core assumed to be to 1.06E-3 mm2/sec and 1.06E-2 

mm2/sec respectively the steady state of the moisture diffusion process for the applied 

moisture concentration of 1gm/mm3 is reached at around 1150 hours.  Once the moisture 

distribution profile throughout the beam is obtained, mode I failure analysis is performed 

on the double cantilever beam (DCB) specimen as shown in the Fig 4.3.  For this 
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purpose, a 2D plane strain condition is imposed.  To simulate the structural problem of 

DCB using FE code, (CPE4) plain strain elements are used.  Total 5 and 66 numbers of 

meshes are generated along the adhesive’s thickness and bonded length, respectively.  

Cohesive elements are applied along the predetermined failure path, which is located at 

(a) the interface between the top skin and the core (i.e. between the skin and adhesive 

and between core and adhesive) and (b) within the adhesive itself. The last four nodes 

near the fix end are tied, no longer allowing the crack propagating. Thus, complete 

debonding is determined once the current crack tip reaches the tied node. The crack 

opening displacement (COD) failure criterion, available in the ABAQUS FE code [40], 

is first used to evaluate crack initiation and propagation: 

c

f δ
δ

=                                                                                                                           (4.3)

  

 

Here δ is the current (measured) normal displacement across the cohesive surface 

and δc is the critical opening displacement.  The failure a criterion in the Eq. (4.3) is 

monitored at the distance of 3 mm ahead the current crack tip.  When the failure criterion 

reaches a value of one, crack is initiated and the fracture energy is released to create two 

traction free surfaces.   
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Fig. 4.4. Cumulative crack length vs. time for a DCB in mode I under creep loading with 
the crack at the skin-core interface 

 
 

The analysis is performed for two different constant load levels of 110 and 120 

N, which correspond to 46% and 50% of the failure load of the dry specimen 

respectively.  Fig 4.4 shows the graph of cumulative crack length versus time for these 

applied loads of 110 N and 120 N and the moisture concentration of 1 gm/mm3 at the top 

surface with an assumed value of critical displacement as 0.34 mm and the 

predetermined failure paths between the skin and adhesive and between core and 

adhesive.  With the increase in the time the moisture diffusion progresses and the 

material properties degrade further.  As a result the crack propagates ahead at the 

interface as the time increases.  From the FE simulation it is observed that for the same 

sandwich beam in a dry condition (without moisture concentration), with the same value 

of the applied load the crack does not propagate till time t=1200 hours.  This indicates 
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the detrimental effect of moisture concentration on crack propagation.  Fig 4.5 shows the 

test results for the predetermined failure path within the adhesive with the same 

geometry, boundary and loading conditions and failure criterion.   
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Fig. 4.5. Cumulative crack length vs. time for a DCB in mode I under creep loading with 
the crack within the glue 

 
 

A similar analysis is performed using the TSD test for a 10° tilt angle (θ) for the 

same geometry.  Fig 4.6 shows the graph of cumulative crack length versus time for the 

applied loads of 120 N and 130 N and the moisture concentration of 1 gm/mm3 at the top 

surface with value of critical displacement as 0.34 mm [33] and the predetermined 

failure path between the skin and adhesive and between core and adhesive.   
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Fig. 4.6. Cumulative crack length vs. time for a TSD beam in mode I under creep 
loading 

 
 

Another failure criterion that can govern the crack propagation at the interface 

between the skin and the core is the critical stress criteria.  Depending upon the material 

properties, the bond strength between the skin and the adhesive and the adhesive and the 

core, the uniformity with which the adhesive is applied at the skin-core interface etc. the 

failure can either be governed by the COD or by the critical stress criterion.  In case of 

the availability of the material data, the crack propagation using the COD or the critical 

stress criterion can be predicted using the FE analysis.  This section of the study 

highlights the effects of moisture on the crack propagation using critical stress criterion.  

The critical stress criterion is defined as [40]: 

2 2

cr cr

f σ σ
σ σ
⎛ ⎞ ⎛ ⎞

= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                                                                                  (4.4) 
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Where σcr and τcr are the normal and shear critical stress, respectively.   

Fig 4.7 shows the graph of cumulative crack length versus time for the applied 

loads of 110 N and 120 N and the moisture concentration of 1 gm/mm3 at the top surface 

with assumed values of normal and shear critical stress as 5 MPa and 2 MPa respectively 

and the predetermined failure paths between the skin and adhesive and between core and 

adhesive.  The critical stresses are determined from the stresses fields near the crack tip 

developed in the dry specimen.   
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Fig. 4.7. Cumulative crack length vs. time for a DCB in mode I under creep loading with 
the crack at the skin-core interface using the critical failure stress criterion 

 

 
Fig 4.8 shows the Von Mises stress plots at the crack tip at the times just before 

and after the crack opens.  As expected high stresses are observed at the crack tip before 
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the crack opens.  Eventually as the crack opens two traction free surfaces are generated 

which results into stress free surfaces as shown in the figure. 

 

 

 

Fig. 4.8. Von Mises stress plot at the crack tip 

 

 
From this study it is observed that the depending upon the failure criterion (COD 

or the critical failure stress) governing the delamination at the interface, the cumulative 

crack length and the time of crack initiation are affected.  In practice it is essential to 

know whether the delamination is governed by the COD criterion or critical failure stress 

criterion or a combination of both or some other criterion.  This can depend upon the 

density of the core material, the strength of the glue and the uniformity with which the 

glue is applied at the skin-core interface.  If it is possible to know the failure criterion 
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from the experimental studies, FE method can then be used to predict the delamination at 

the interface.   

4.2 HYGROSCOPIC SWELLING IN SANDWICH PANELS 

Another major application of the sandwich composites is in the form of panels.  

The sandwich panels are used as floors in the airplanes, cabinet walls and several other 

naval structures.  The epoxy resin in the carbon/epoxy laminate (skin of the sandwich 

composite) has a tendency to absorb moisture when exposed to moist environment.  In 

addition to this, the polymeric cores also absorb moisture when exposed to moist 

environment.  As a result of this, it is quite possible that large expansional strains 

(swelling) can be induced in the sandwich composite as a whole, resulting into 

significant stresses.  Therefore, it is of prime interest to study the hygroscopic swelling 

and induced stresses in the sandwich panels when exposed to moist environment.   

Abot et al. [41] experimentally analyzed the hygroscopic behavior of a woven 

fabric carbon-epoxy composite and its effect on the viscoelastic properties and glass 

transition temperature.  The tests were conducted at full immersion in water and at a 

specific temperature condition.  It was observed that the absorption in through-the-

thickness direction was determined to be lower than in the in-plane directions.  Also the 

coefficients of moisture expansion were found to be similar in the warp and the fill 

directions but much lower in the through-the-thickness direction.  It was also concluded 

that the viscoelastic properties were not affected during the process but the plasticization 

was very pronounced.  Bouadi and Sun [11] analyzed the effect of humidity on the stress 

field of laminated composites induced due to the hygroscopic strains.  A three-
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dimensional finite element approach was used to analyze the problem.  It was observed 

that some of the stress components induced by the hygroscopic change are significant to 

cause failure of the laminate.  Cairns and Adams [42] presented experimental techniques 

for determining the moisture and thermal expansion coefficients of polymers and 

polymer-matrix composite materials.  Experiments were conducted on Hercules 3501-6 

neat epoxy resin, Hercules AS/3501-6 graphite/epoxy unidirectional composite.  The 

results obtained from the experiments were found to be in good agreement with the 

numerical predictions.  The results obtained could serve as a base from which designers 

may account for moisture-induced stresses and strains in composites.  Xiaoming and 

Weitsman [43] studied the effects of sea-water on foam cored sandwich structures under 

long-term exposure with the focus on the sea-water induced damage in foam materials, 

weight gains and expansional strains.  Two closed-cell polymeric foam materials (H100 

and H200 PVC), and their polymeric composite facing sandwich specimens, immersed 

in the sea water showed a substantial amount of swelling strains.   

In this study, the effect of moisture induced swelling on the behavior of the 

sandwich panel is analyzed.  A sandwich panel 1200 X 1000 X 50 mm (as per the panels 

manufactured by Beijing Baodu Steel Structure Project Limited Company) is subjected 

to moisture concentration on the top surface of the panel.  The skin is made up of 

orthotropic carbon/epoxy laminate (1 mm thick) and the core is isotropic linear 

viscoelastic polyurethane (48 mm thick).  The instantaneous part (E0) of the 

polyurethane foam core is assumed to degrade linearly with the moisture concentration 

as per the Eq. (3.13).  FE approach is used to simulate this problem of moisture induced 
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swelling.  The geometry is modeled using continuum 3D diffusivity elements (DC3D8) 

to account for the moisture diffusion problem and (C3D8) elements to model the 

expansional strains.  The analysis is performed upto 1200 hours (greater than the steady 

state time of 466 hours required for the moisture diffusion process).  As discussed by 

Springer [44] the moisture concentration applied at the surface of the material, denoted 

by cm is related to the relative humidity by the empirical relationship: 

  b
m dc aρ= H                                                                                                                 (4.5) 

Here ρd is the density of the dry material, H is the relative humidity and a and b 

are empirical constants which depend on the material.  For the carbon-epoxy facing 

exposed to 100% relative humidity (RH) the values of these empirical constants as given 

by Loos et al. [45] are a=0.018 and b=1.  For these values of a, b and RH the applied 

moisture concentration at the surface of the carbon-epoxy facing is 2.916e-5 gm/mm3.  

For the applied moisture concentration of 2.916e-5 gm/mm3 at the top surface of the 

panel and assumed moisture diffusivity of the skin and the core as 1.06E-3 mm2/sec and 

1.06E-2 mm2/sec respectively, the moisture diffusion process reaches a steady state 

(fully saturated) at 432 hours.  The known moisture diffusion profile is then used to 

couple with the expansional swelling.  The coefficient of moisture expansion (CME) for 

the skin along the fiber direction (β1) and perpendicular to the fiber directions (β2, β3) as 

per Cairns and Adams [42] are given in Table 4.3.  Since, the value of CME for the 

polyurethane foam core is not available in the literature, an assumed value of 200 

mm3/gm of that of a polymeric material used in the electronic packaging [46] has be 
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used to perform the analysis.  The panel is constrained as shown in the Fig 4.9.  The 

hygroscopic strains induced in the panel are written as: 

( )i i ref ic c cε β= − = Δβ                                                                                                   (4.6) 

Here βi is the coefficient of moisture expansion and cref is the moisture 

concentration in reference state (the dry state).   

 

 
Table 4.3. The coefficient of moisture expansion of skin and core material 

Material  

Coefficient of 
Moisture expansion 

(mm3/gm) Values 

Core: Polyurethane β 200 

Skin: Carbon Epoxy 
Composite(AS4/3501-6)

β1 12.34  

β2 240 

β3 240  
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Fig. 4.9. Finite Element mesh and boundary conditions of the sandwich panel 
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Fig. 4.10. Hygroscopic strain in the 1-direction (along the fiber) versus time 

 
 

 
 



106 
 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0 200 400 600 800 1000

E2
2

Time (hrs)
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The Fig 4.10 to 4.12 shows the hygroscopic strains induced in all the three 

directions due to the moisture absorption at the center on the surface of the bottom 

facing.  The results are plotted for up to t=950 hours.  From the graphs it can be 

observed that significant changes in the strains are observed up to around 500 hours as 

the steady state is reached at 466 hours.  For all the times greater than 500 hours the 

strains remain almost constant.  As expected the hygroscopic strain in the fiber direction 

is quite less as compared to the other two directions.  Whereas the strain in transverse to 

the fiber direction is quite significant.  Maximum strain is observed in through the 

thickness directions as expected.  These strains can be used in designing naval structures 

which are exposed to sever moisture concentrations as the hygroscopic strains lead to 

significant amount of stresses which can lead to the failure of the structure.  Fig 4.13 

shows von Mises stress plot for the sandwich panel at 1200 hours.  Stresses of around 80 

MPa in the fiber direction (1-direction), around 70 MPa in the through the thickness 

direction (3-direction) are developed in the center region of the skin at 1200 hours.  As 

expected negligible stresses are developed in the transverse to the fiber direction (2-

direction) since the body is free to expand in the 2-direction except for constrained 

boundaries.  Fig 4.14 show the von Mises stress plots for the skin (top and bottom).  

Negligible stresses are developed in the core as shown in the Fig 4.15.   
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Fig. 4.13. Von Mises stress plot for the sandwich panel 

 

 

 

Fig. 4.14. Von Mises stress plot for the skin 
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Fig. 4.15. Von Mises stress plot for the core 
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CHAPTER V 

5.CONCLUSIONS AND FURTHER RESEARCH  

5.1 CONCLUSIONS 

Effect of moisture diffusion on the deformation of viscoelastic sandwich 

composites, which are composed of orthotropic fiber-reinforced laminated skins and 

viscoelastic polymeric foam core, is analyzed.  It is assumed that the elastic and time-

dependent (transient) moduli at any particular location in the foam core depend on the 

moisture concentration at that location.  Sequentially coupled analyses of moisture 

diffusion and viscoelastic deformation are performed to predict overall performance of 

the studied sandwich systems.  The analysis is performed in two sequential steps.  In the 

first step the moisture concentration profile throughout the sandwich composite is 

obtained using the unsteady Fick’s law of diffusion.  In the next step, the time-dependent 

deformation is performed with the materials properties allowed to degrade with the 

moisture concentration, so as to highlight the impact of moisture on the field variables.  

Since the viscoelastic materials exhibit a history dependent response, it becomes very 

essential to incorporate the effect of stress, strain histories.  Because, the material moduli 

are dependent on the moisture concentration which is directly affects in the field 

variables there arises a need to perform a sequential analysis so as to capture the history 

dependent field variables (stress and strain).  Time and moisture dependent constitutive 

model is used for polymer foam core.  A time-integration algorithm is developed to link 

this constitutive model to finite element (FE) analyses framework.  2D plane strain and 

3D continuum elements are used to analyze the overall time-dependent responses of the 
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sandwich composites subject to moisture diffusion.  The results obtained from the FE 

code are verified with the analytical models and the available experimental data.  Since 

FE code is used to perform the analysis, it becomes essential to analyze the effect of 

various parameters such as the time increment, tolerance and the size of mesh on the 

overall response of the sandwich structure.  A detailed convergence study is performed 

to obtain the values of theses parameters which ensures that the results obtained are 

within the required accuracy.  Parametric studies on the effects of different diffusivity 

ratios of skin and core materials on stress, strain and displacement fields are analyzed.  It 

is observed that for a higher diffusivity ratio the effect of moisture on the field variables 

is more pronounced in the initial times because the material properties degrade at a faster 

rate.  Since viscoelastic materials are history dependent the effect of material properties 

degrading at different rates has a varied effect on the field variables.  For all times 

greater than the steady state time (for the case with the least diffusivity ratio), the 

differences in the (corresponding) field variables with different diffusivity ratios is 

almost negligible.  This is because the viscoelastic materials posses a property of fading 

memory due to which the effect of the previous histories at a longer time becomes 

negligible.  Contributions of moisture dependent elastic and the time-dependent moduli 

to the overall stress, strain and displacement field for a specific case of the diffusivity 

ratio of 0.1 are studied.  To accomplish this, two different cases were considered.  In the 

first case only the instantaneous part was allowed to degrade with moisture whereas in 

the second both the instantaneous and the transient part were allowed to degrade with 

moisture.  At the initial times the differences between the field variables in the two cases 
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was negligible since the degradation of the transient modulus with moisture is not very 

significant.  But with the increase in the time the moisture diffusion through the 

sandwich beam progresses and the creep compliance for the two cases is significantly 

different.  This results into significant differences in the field variables.  For all the times 

greater than the steady state time of the moisture diffusion, a nearly constant difference 

in the field variables is observed in the two cases as expected. The effect of moisture on 

the phenomenon such as delamination at the skin-core interface in the sandwich beam 

and hygroscopic swelling induced in the sandwich panels due to moisture absorption is 

also analyzed.  The time-dependent delamination at the skin-core interface of the 

sandwich structure under coupled moisture and mechanical stimuli is analyzed, so as to 

highlight the impact of moisture concentration on the delamination at the interface.  

FM73M adhesive is used to glue the skin and the core of the sandwich composite.  Time 

and moisture dependent constitutive model used for the polymeric foam core is also used 

to model the FM73M adhesive at the interface, with different moisture dependent 

parameters.  Another application of the sandwich composites in the form of sandwich 

panels subjected to moisture loading is also analyzed.  The hygroscopic swelling induced 

in a sandwich panel fixed in the four sides due to the moisture absorption in the skin and 

the core material is found to be significant.               

5.2 FURTHER RESEARCH 

The current study on the effect of moisture concentration in the sandwich 

composites is limited to linear viscoelastic polymeric foam core.  The study can be 

extended to non-linear viscoelastic response of these polymeric foam cores.  The stress 
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and moisture dependent material properties can be incorporated to obtain the stress, 

strain and displacement fields.  In the present study the coupled problem of moisture 

diffusion and viscoelastic deformation is analyzed where in the viscoelastic deformation 

at a particular instant time depends on the moisture concentration at that instant, but the 

moisture concentration at any time is obtained without the knowledge of stress or strain 

at that instant time.  A fully coupled problem where in the stress or strain assisted 

moisture diffusion coupled with the deformation in the viscoelastic sandwich can be 

analyzed.  As the sandwich composites can be exposed to severe temperature and 

moisture conditions, a combined effect of both moisture and temperature on the 

viscoelastic deformations in the sandwich composites can be analyzed.       
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