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ABSTRACT 

 

Ultrashort Laser Pulse Propagation in Water. (August  2008) 

Joong-Hyeok Byeon, B.S., Ajou University; 

M.S., Seoul National University 

Chair of Advisory Committee: Dr. George W. Kattawar 

 

We simulate ultrashort pulse propagation through water by numerical methods, which 

is a kind of optical communication research. Ultrashort pulses have been known to have 

non Beer-Lambert behavior, whereas continuous waves (CW) obey the Beer-Lambert 

law. People have expected that the ultrashort pulse loses less intensity for a given 

distance in water than CW which implies that the pulse can travel over longer distances. 

In order to understand this characteristic of the pulse, we model numerically its spectral 

and temporal evolution as a function of traveling distance through water. We achieve the 

pulse intensity attenuation with traveling distance, obtain the temporal envelope of the 

pulse and compare them with experimental data. This research proves that the spectral 

and temporal profile of a pulse can be predicted knowing only the intensity spectrum of 

the input pulse and the refractive index spectrum of water in the linear regime. The real 

feasibility and the advantage of using an ultrashort pulse as a communication carrier will 

also be discussed.  
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

As femtosecond laser pulse technology has developed [1], studies of ultrashort pulse 

propagation through a linear dielectric medium such as water [2, 3, 4] are now just 

beginning to be explored. A continuous wave (CW) has been the main communication 

carrier until this time. However it attenuates exponentially in water because it follows 

the Beer-Lambert law. On the other hand, an ultrashort pulse has been reported to have 

non Beer-Lambert behavior [5]. The attenuation of the transmitted intensity of the pulse 

is less than a CW for a given distance. This characteristic of the pulse has attracted a 

great deal of attention in optical communication research even though it is known as a 

linear phenomenon. The objective of this thesis is to understand this characteristic of the 

pulse using numerical computation. We will model ultrashort pulse propagation through 

water and obtain the spectral and temporal evolution of the pulse along the water path 

length, taking into account the complete refractive index dispersion of water. First of all, 

we need to understand the following basic concepts. 

 

A. Beer-Lambert Law 

The Beer-Lambert law states the linear relationship between the absorbance and the 

product of the absorption coefficient and the path length of a medium.  

 

 
____________ 
The journal model is Optics Express. 
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There is a logarithmic dependence between absorbance and transmissivity of light, 

which is an empirical relationship.  

ln t

i

A Nl l

I
A

I

σ α= =

 
= −  

 

                                                                                                           (1.1) 

 where A is an absorbance, It is the transmitted intensity, Ii is the initial intensity. 

            σ is an absorption cross section,  ( m2 ) 

            N is the number density of absorbers. ( N/m3 ) 

             l is traveling distance . ( 1/m ) 

            α is an absorption coefficient ( 1/m ) 

 
 
 

 
 
 
 
Fig. 1. Intensity attenuation through dissipative medium 
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The Beer-Lambert law describes the amount of the intensity that is lost by the light as it 

propagates through a dissipative medium. A continuous wave has a single frequency 

component and follows the Beer-Lambert law, whereas a pulse does not [5]. What 

physical difference causes this discrepancy?  We will seek the answer through this 

research. 

 

B. Ultrashort pulse as communication carrier 

Even though the term “Ultrashort” is not defined commonly, if the pulse duration is on 

the order of femtoseconds or shorter, it is called an ultrashort pulse. Its duration time is 

much shorter than the reorientational relaxation time of water molecules [6], which is on 

the order of picoseconds.  

The non Beer-Lambert characteristic of the ultrashort pulse gives new perspective to 

communication studies. An ultrashort pulse is supposed to survive longer and travel 

further than a continuous wave. Why does the pulse behave in such a way? Is it a kind of 

simple interaction between the pulse and water? Does the ultrashort pulse have an 

advantage over continuous waves? We will answer these questions by numerically 

modeling the spectral and temporal evolution of an ultrashort pulse in water with 

distance. The spectral evolution will give the transmitted intensity spectrum and we can 

obtain the intensity attenuation from that. The temporal profile reveals how the dielectric 

character of a medium affects the pulse. This study will find numerical methods to 

simulate ultrashort pulse propagation through water, obtain the spectral and temporal 

evolution of the pulse over traveling distance through water and compare the results with 

experimental data.  
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CHAPTER II 

SIMULATION METHODS 

 

A.  Finite-difference time-domain method 

The finite-difference time-domain (FDTD) method is one of the most powerful and 

popular numerical computational techniques for electrodynamics [8, 9, 10, 11]. As 

expected from its nomenclature, it provides the spatial and temporal solution of the 

electromagnetic field, which propagates in a dielectric medium and interacts with a 

dielectric system. It can also be applied to photonic and optoelectronic device simulation 

[12, 13]. With the advent of high speed computers, FDTD is used much more broadly. 

We will review the FDTD method briefly and seek the way in which we can apply it to 

our research. 

 

1.  FDTD formula in a non-dissipative medium 

The strongest point of the FDTD technique is that it seeks a temporal and spatial 

solution by directly solving Maxwell equations in the time domain. The time dependent 

Maxwell equations in a dielectric medium without a current source are given by: 

 
0

0

t

t

εε

µ

∂
∇× =

∂
∂

∇× = −
∂

E
H

H
E

                                                                                                        (2.1) 

where ε0 and µ0 are the vacuum electric permittivity and magnetic permeability 

respectively, and  ε is the relative permittivity, a pure real value and independent of time. 
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Actually the magnitude difference between E and H is several orders since ε0 and µ0 

differ by that magnitude, which is inconvenient for numerical computation. We adopt 

the following change of variables in order to remove this inconvenience [9].  

0

0

ε
µ

=E E                                                                                                                   (2.2) 

Substituting Eq. 2.2  into Eq. 2.1 gives 

1
c t

c t

ε ∂
∇× =

∂
∂

∇× = −
∂

E
H

H
E

                                                                                                           (2.3) 

 For simplicity, a one-dimensional case using only Ex and Hy will be considered. Eq. 

2.3 reads  

1

y x

yx

H E

z c t

HE

z c t

ε∂ ∂
= −

∂ ∂
∂∂

= −
∂ ∂

                                                                                                           (2.4) 

They are the plane wave equations of the electric field and the magnetic field 

propagating in the z direction, pointing the x and y directions respectively. Discretizing 

them by the central difference approximation for both the temporal and spatial 

derivatives gives [11] 

1/ 2 1/ 2

1/ 2 1/ 2 1

( 1/ 2) ( 1/ 2) ( ) ( )

( 1) ( ) ( 1/ 2) ( 1/ 2)1

n n n n
y y x x

n n n n

y y y y

H k H k E k E k

z c t

E k E k H k H k

z c t

ε + −

+ + +

+ − − −
− =

∆ ∆
+ − + − +

=
∆ ∆

                                       (2.5) 

where n, the temporal index means a time t = ∆t⋅n  

k, the spatial index means the distance z=∆z⋅k.  
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As Eq. 2.5 indicates, E and H are not calculated at the same time nor at the spatial 

position. One field (E) values are located between the other field (H) values. This 

interweaving arrangement makes each derivative of the fields match at the same 

temporal and spatial position.  

 
 
 

 

 
 
 

       Fig. 2. Interweaving of both fields in space and time in the FDTD equation [11]. 

Discretized expressions for an iterative algorithm are 

1/ 2 1/ 2

1 1/ 2 1/ 2

1 1
( ) ( ) ( 1/ 2) ( 1/ 2)

1 1
( 1/ 2) ( 1/ 2) ( 1) ( )

n n n n

x x y y

n n n n

y y y y

E k E k H k H k
S

H k H k E k E k
S

ε

ε

+ −

+ + +

 = − + − − 

 + = + − + − 

                              (2.6) 

where 
c t

S
z

∆
=

∆
 

k-2        k-1           k            k+1         k+2 

 k-1 1/2     k-1/2       k+1/2      k+1 1/2      k+2 1/2 

k-2        k-1         k              k+1         k+2 

1/ 2n

xE
−

n

yH

1/ 2n

xE
+
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The above FDTD formulation shows that the new E field value ( Ex
n+1/2 ) at the position 

k is calculated from the previous E field value ( Ex
n-1/2 ) at the position k and the most 

recent H values at the position k+1/2 and the position k-1/2. Such repeating iterative 

process will give the temporal and spatial evolution of the field at any desired time and 

position. It is the basic algorithm of the grid-based differential time-domain numerical 

modeling technique [8].    

c t
S

z

∆
=

∆
 is the numerical stability factor [10] ( or Courant number ).  A spatial grid 

( space increment ) and a time-step should be chosen so that the simulation ensures 

numerical  stability. They must satisfy the following Courant-Friedrichs-Levy (CFL) 

condition. 

 1
c t

S
z

∆
= ≤

∆
                                                                                                                  (2.7) 

For example, If S=1/2, Eq. 2.7 reads 2
z

t
c

∆
∆ = meaning that it takes two time steps for 

a wave to propagate one space step. If S=1/3, it takes three time steps. One can easily 

understand without mathematical proof that the more time steps that are taken to reach 

some distance, the more stable a numerical computation can be achieved. This is the 

reason why S is called the numerical stability factor. However, the total computation 

time is inversely proportional to S. The higher accuracy can be achieved by reducing 

grid size,  z∆ , however it also increases the total computation time. 
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2.  FDTD formula in a dissipative medium 

A dissipative or absorptive medium gives ε a non zero imaginary part. So ε = εr + iεi. Eq. 

2.6 reads [14] with a little algebra.  

1/ 2 1/ 2

1 1/ 2 1/ 2

1 exp[ ] 1
( ) exp[ ] ( ) ( 1/ 2) ( 1/ 2)

1 exp[ ] 1
( 1/ 2) exp[ ] ( 1/ 2) ( 1) ( )

n n n n

x x y y

i

n n n n

y y y y

i

t
E k t E k H k H k

t S

t
H k t H k E k E k

t S

τ
τ

τ ε

τ
τ

τ ε

+ −

+ + +

− − ∆
 = − ∆ − + − − ∆

− − ∆
 + = − ∆ + − + − ∆

 (2.8) 

where 
2

, , & : averages of & of two adjacent grids.i

i r i r

r

kc
k

ε π
τ ε ε ε ε

ε λ
= =   

 

B.  Fourier Superposition method 

Since this research is conducted in a linear regime, the linear superposition principle 

can be used for numerical computation. As long as a pulse propagates only in one 

dimension without scatterings, the detailed information of its initial spectrum can be 

given, the Fourier Superposition (FS) method is a good choice for fast calculation. In 

order to obtain the temporal evolution of propagating pulses, we need to superpose fields 

in the frequency domain. 

1
( , ) ( , ) exp[ ]

2

1
( 0, ) exp[ ]

2

x z t z i t d

z ikz i t d

ω

ω

ω ω ω
π

ω ω ω
π

∞

−∞

∞

−∞

= −

= = −

∫

∫

E E

E

                                                  (2.9) 

( ) ( )
( ) ( ) ( ) ( )

2r i rk n in n i
c c

ω ω α ω
ω ω ω ω= + = +                                                           (2.10)  

where nr(ω) : the real part of refractive index,  

ni(ω) : the imaginary part , α(ω) : the absorption coefficient. 
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Once the spectrum of the refractive index is given and scatterings can be neglected, the 

intensity spectrum, the total intensity and the temporal evolution of propagating pulses 

can be numerically calculated. The Beer-Lamber law can also be derived from the above 

equation. 

( , ) (0, ) exp[ ]z ikzω ωω ω=E E                                                                                     (2.11) 

*( , ) ( , ) ( , )I z z zω ω ωω ω ω= E E  : Intensity                                                                   (2.12) 

*(0, ) (0, ) exp[ ( ) ]zω ωω ω α ω= −E E  

0 ( ) exp[ ( ) ]I zω ω α ω= −  

0

( , ) ( , )

( , ) (0, ) exp[ ( ) ]

( ) (0, ) exp[ ( ) ]t

I z I z

I z I z

I z I z d

ω λ

λ λ

λ

ω λ

λ λ α λ

λ α λ λ
∞

− >

= −

= −∫

  : the Beer-Lambert law                                      (2.13) 

where α(λ) is the wave length dependent absorption coefficient. 

Iλ(0,λ) is the initial intensity spectrum and It(z) is the total intensity at path distance z. 

 Österberg [5] measured the intensity spectra of the transmitted ultrashort laser pulse 

through water at different path lengths and predicted theoretically those spectra and the 

total intensity attenuations by Eq. 2.13.  

Several other groups [2, 15] also measured and calculated the total transmitted intensity 

attenuations by Eq. 2.13. There is good correlation between the measured data and the 

calculations. 
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C.  Refractive index of water 

 Both of the above methods require the wavelength (or frequency) dependent refractive 

index for numerical computation. The imaginary part is directly related to the absorption 

coefficient. The measured imaginary part of Pope [16] and Kou [17] will be used. The 

real part is calculated from the refractive index spectrum formulation [18] adopted by the 

International Association for the Properties of Water and Steam (IAPWS) [19]. 

2
2 25 64

0 1 2 3 72 2 2 2 2 2

1

2
r

r UV IR

a an a
a a a T a T a

n
ρ λ ρ

λ λ λ λ λ
−

= + + + + + + +
+ − −

                      (2.14) 

where         dimensionless variable and  reference constants 

* * -3

* *

* *

Density          : / , 1000 kg m

Temperature  : T / , 273.15

Wavelength    : / , 0.589 m

T T T K

ρ ρ ρ ρ

λ λ λ λ µ

= =

= =

= =

and Table 1. 

 
 
Table 1. Coefficients of Eq. 2.14 

 
 

 

 

 

 

 

 
 
 

0 0.244 257 733a =  -3
4 1.580 205 70 10a = ×  

3
1 9.74634476 10a −= ×  -3

5 2.459 342 59 10a = ×  

3
2 3.732 349 96 10a −= − ×  6 0.900 704 920a =  

4
3 2.686 784 72 10a −= ×  -2

7 -1.666 262 19 10a = ×  

0.299 202 0UVλ =  5.432 937IRλ =  
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The FDTD method uses relative permittivity. The real part and the imaginary part of 

relative permittivity can be calculated by the following formulas. 

4in
αλ
π

=          where α is the absorption coefficient. 

r iiε ε ε= +  

2 2
r r in nε = −  

2i r in nε =      

Figure. 3 displays the measured absorption coefficient and the calculated refractive 

index.  

As seen Fig. 3, the variation of the real part of the refractive index in this spectral range 

is less than 2%, however, its effect on the temporal profile is large. 

 
 
 

0.01

0.10

1.00

10.00

100.00

1000.00

500 600 700 800 900 1000 1100 1200 1300

Wavelength(nm)

A
b
so

rp
ti
o
n
 c

o
ef

f 
(1

/m
)

1 .32

1.322

1.324

1.326

1.328

1.33

1.332

1.334

1.336

R
eal R

efractiv
e In

d
ex

Absorpt ion Coeff

Refract ive Index

 
 
 
 
Fig. 3. The absorption coefficient [17] and the real refractive index [18] spectrum. 
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The absorption coefficient and the imaginary part of the refractive index tell us how an 

electromagnetic wave loses its energy as it propagates through a dissipative medium. So 

the total intensity decreases and the profile of the intensity spectrum shrinks as a wave 

travels through the dissipative medium. They also affect the temporal profile of the wave. 

The real refractive index is defined as the ratio of the vacuum phase velocity to the phase 

velocity in the medium. The wavelength dependence of the real refractive index means 

that each wave component has a different phase velocity. Since the real part does not 

lead to energy loss, the intensity spectrum profile is unchanged; however, the temporal 

profile of the pulse varies as it propagates in water. It is common for the temporal and 

spatial width of the pulse envelope to spread as it travels in a dispersive medium. 

 

D.  Simulation example 

 A simple example is given and will be simulated by the FDTD and the FS methods. A 

10fs Gaussian wave pulse centered at 755nm will propagate in water. Because the FDTD 

method solves the equations in time and space, the simulation process is the same as 

reality. This pulse is generated in a vacuum, travels in one dimension, is incident on 

water and propagates through water. (see Figure 4 (a))  FDTD needs an initial pulse 

spectrum and the spectrum of the relative permittivity.  The simulation parameters are  

1, , 750
20
c

c

c t
S z nm

z

λ
λ

∆
= = ∆ = =

∆
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                (a) Simulation example                        (b) Results of FDTD & FS 
 
 
Fig. 4. An example of simulation and results. 

 

The intensities were calculated by 
2

xE  at given distances. 

We simulate the same propagation by the FS method which needs the spectrum of the 

absorption coefficient. As seen in Figure 4 (b), both results coincide with each other. The 

ultrashort pulse reveals the non Beer-Lambert behavior as expected [5].  

 

 

 

 

 

 

water 
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CHAPTER III 

RESULTS AND CONCLUSION 

 

A.  Intensity attenuation of a pulse 

      1. Experimental data and simulation results 

Our experimental group measured the transmitted pulse intensity spectra for a series of 

propagation distances ( 0.5~2.5m ). They provided the total transmitted intensity 

attenuation of the passing distance through water. A laser pulse of 30fs, 80Mhz, was 

employed (see Figure 5 (a)). The E-field amplitude spectrum was calculated from the 

input intensity spectrum for the initial condition of the FDTD method (see Figure 5 (b)). 

Since a pulse in the time domain is the sum of an infinite number of discrete single 

frequency components, we calculated 200 discrete single frequency solutions in the 

pulse spectrum range and then added them together to find the temporal solution. We 

included only the imaginary part of the relative permittivity because we had the 

measured absorption data of the pulse. 
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Fig. 5. The spectrums of the initial intensity and field measured by Lucas Naveira and 

Dr. Alexie Sokolov. 

 

           (a) The intensity spectrum of the input pulse. 

           (b) Calculated E-field amplitude spectrum from (a). I=E  

 2Pulse in time domain ( , ) ( , ) ii f t

t f i

i

x t x f e
π−= = ∑E E   

We calculated the total intensities at given passing distances by 
2

( ) ( , )
t

I x x t= ∑ E  

( see Figure 6 ) 
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Fig. 6. Attenuations of measured and predicted intensities. 

 

The X-axis is the path length through water.  

The Y axis is the ratio of the transmitted intensity to the input intensity on a Log10 

scale. 

As Figure 6 displays, even though the predicted absorption of the pulse is more than 

the measured absorption, it shows a similar trend. Like a continuous wave, the 

attenuation line of the pulse is straight on a Log10 scale. We defined an effective 

absorption coefficient of the pulse and calculated it from the above results by the least 

squares fitting as shown in Table 2. We found an error of 4.2%. This low error validates 

our experimental group’s good experimental technique.  
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Table 2. Extracted effective absorption coefficients 

Our group’s experimental data 2.2578 (1/m) 

Simulation result 2.3584 (1/m) 

 
 
 
The absorption coefficients were extracted from our experimental data as the next step 

and compared to Kou’s data [17]. 
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Fig. 7. Extracted absorption coefficients from the measured spectra of  

intensity attenuations. 

 

Kou used CW instead of pulses, measured the transmission and derived the Beer-

Lambert absorption coefficients. He calculated them precisely by eliminating all possible 
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experimental errors, whereas we simply used the Beer-Lambert formula without refining 

the measured data. As seen in Figure 7, our absorption coefficients are lower than Kou’s 

data up to 5% in the main power spectral range, 780~ 830nm. The difference may be due 

to water quality and the experimental scheme. For this reason, the measured intensity 

attenuation is less than the predicted attenuation. 

      2. Conclusion 

The measured absorption function for our pulse with the water path distance is different 

from what we expected. The intensity of our 30fs pulse attenuates exponentially, which 

is the same as continuous waves. However, the attenuation of the 10fs pulse is 

subexponential [5] as predicted in Fig. 4(b). The physical reason of that difference can 

be deduced by comparing the intensity spectra of the two pulses. 

As Figure 8(a) indicates, the 10fs pulse has a broader spectral range than the 30fs pulse 

because the bandwidth is inversely proportional to the duration time of a pulse. Figure 

8(b) shows that the curved attenuation line of the 10fs pulse is located between the 

straight attenuation lines of CW, 750nm and 650nm, which are in the spectral range of 

the 10fs pulse.  

The subexponential attenuation of the 10fs pulse is due to the characteristics of an 

optical pulse. The pulse is the linear sum of an infinite number of continuous waves that 

obey the Beer-Lambert law. The 10fs pulse has more continuous components which 

have less absorption coefficients of the range of 600nm to 700nm than the 30fs pulse. 
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Fig. 8. Input spectra of pulses and attenuation lines. 

 

(a) Input Spectra of 10fs and 30fs pulses.  

(b) Attenuation lines of pulses and continuous waves. 

These lower attenuation components compensate for the intensity loss of higher 

absorptive components of the spectral range beyond 750nm. The compensation is the 

characteristic of the linear phenomenon and induces the subexponential attenuation of 

the 10fs pulse. On the other hand, the 30fs pulse has almost constant absorption 

coefficient values in its spectral range of 750nm~850nm. There is less compensation 

among continuous wave components composing the 30fs pulse. This is the reason why 

the intensity of the 30fs pulse attenuates exponentially.  

People have believed that it is of great advantage to use ultrashort pulses as a 

communication carrier rather than continuous waves. Even though the pulse releases the 

subexponential attenuation of its intensity, some continuous wave components (600nm) 
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attenuate less than the ultrashort pulse (10fs pulse) as seen Figure 8(b). All short pulses 

do not have such forte. It depends on absorption coefficient values in its spectral range.  

The optical precursor is an ideal candidate for a communication carrier, which has 

lower attenuation characteristic, however, no one has observed it yet. 

  

B. Temporal profile of a pulse 

      1. Experimental data and simulation results 

In order to investigate the temporal profile of a propagating pulse by numerical 

simulation, we had to include not only the imaginary part of the refractive index but also 

the real part. We used the Fourier Superposition method for fast computation. At first, 

the dispersion relation of water should be found, namely k=k(ω) and ω=ω(k). The 

functional relationship between the wave vector and the angular frequency can be 

illustrated by the curve fitting in the graph.  

Figure 9 indicates that k has a linear relationship with ω. The polynomial expression of 

one parameter in terms of the other parameter was derived. 
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Fig. 9. The graph of the wave vector in water vs the angular velocity  

in the spectral range of our pulse. 
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 terms, 2ka  and 2aω .  

They are directly related to Group Velocity Dispersion (GVD) parameter, D, which 

causes a pulse spread in time and space while it propagates in a dispersive medium. 
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We can roughly estimate how wide the pulse envelope width spreads from Eq. 3.2 [20]. 
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When a 10fsec pulse passes through 1m of water, the calculated width is 124 times as 

wide as the initial width. 

 Österberg [3] measured the temporal evolution of a pulse which was thought to have a 

precursor behavior. Their initial 0.54 ps pulse was centered around 780nm with a 

bandwidth of 60nm. The pulse broke up and its temporal width spread up to 3ps after it 

propagated through 0.7m of deionized water. We simulated this pulse propagation with 

Österberg’s given condition and the dispersion relation, Eq. 3.1.  

As shown in Figure 10, our simulated pulse also reveals breakup after it propagated 

through 0.7m of water, however, its temporal width of 16ps is much wider than 

Österberg’s 3ps.  

Gaeta also simulated Österberg’s pulse[15] (See Figure 11(a)). Österberg’s pulse 

propagated over 0.7m at most, whereas Gaeta’s result shows the pulse profile after 2.5m 

propagation.  We repeated it with the same condition as Figure 10 (See Figure 11(b)). 

There is still a significant difference in temporal widths. The width of our predicted 

pulse is twice as wide as Gaeta’s width. Gaeta’s refractive index formula is different 

from our formula. However, we used Gaeta’s refractive index formula and obtained the 

same result as Figure 11(b). 
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Fig. 10. The simulation result of Österberg’s pulse. Even though the result shows  

the pulse breakup after 0.7m propagation, the temporal width is much wider.  
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             (a) Gaeta’s simulation                                            (b) Our simulation. 

 
 
 
Fig. 11. Gaeta’s simulation result. Gaeta modeled Österberg’s pulse by Gaussian 

function in time domain adding a linear chip condition. (a) shows the temporal profile of 

the pulse after 2.5m propagation. 
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Fig. 12. The simulation results with reduced GVD. 

 

(a) Simulation with 2aω  extracted from the IAPWS refractive index formula. Same as 

Figure 9. 

(b) Simulation with a new reduced coefficient  2
2 5

a
a ω

ω′ =  

To see the effect of the Group Velocity Dispersion on pulse propagation, we 

simulated it with a reduced coefficient, 2
2 5

a
a ω

ω′ =  (see Figure 12 (b)). The newly 

simulated pulse profile is compatible with the measured profile. The pulse breakup is 

mainly induced by the absorption process because both pulse shapes, Figure 12. (a) and 

(b) are the same even though the time scale changes. The temporal shape of the pulse 

itself can be predicted except for the time scale. The reduced coefficient 2aω′ does not 

significantly affect the refractive index spectrum (see Figure 13). It makes the maximum 
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difference between two real refractive indexes 0.9%. This difference looks minor but its 

effect is large. 

We found another temporal profile of the pulse from Alfano’s paper [4]. His pulse had 

a 100nm spectral range and was centered at 790nm. We also simulated Alfano’s 

experiment (Figure 14). We obtained better agreement with Alfano’s results than 

Österberg’s results. Figure 14 indicates that there is no pulse breakup like Österberg’s. 
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Fig. 13. Calculated refractive index with 2aω  and 2
2 5

a
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The solid line and the dotted line represents 2aω  and 2
2 5

a
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As Alfano mentioned, the spectrum profile and range critically determined the 

temporal shape. Even though we used the same refractive index spectrum as Österberg’s 

case, the trends of simulations between two experimental data sets are different. We 
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need more temporal profile data of a pulse measured by experiment for further 

investigation. 
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Fig. 14. The simulated results of Alfano’s pulse. The solid line and the dotted line  

represent a simulated pulse and a measured one after 1.2m propagation.  

 

2. Conclusion 

We obtained temporal profiles of pulses and compared them with Österberg’s and 

Alfano’s experimental data which required the whole complex refractive index as the 

simulation parameters. It is clearly understood that the dispersion of real refractive index 

plays a role in changing the pulse profile. Even though there are some discrepancies 

between temporal widths of measured and the simulated pulse profiles, we can predict 

the shapes of propagating pulses except the temporal scales. 
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CHAPTER IV 

SUMMARY 

In this thesis, the physical characteristics of ultrashort pulse propagation in water were 

studied by numerical computation. An ultrashort pulse was found to attenuate 

subexponentially as it propagates in water in opposition to a continuous wave. In order 

to understand such behavior, we simulated ultrashort pulse propagation through water by 

the FDTD and the FS methods and obtained the total intensity attenuation and the 

temporal profile of the pulse as a function of the propagation distance.  

The simulation results of the intensity attenuation agree with our experimental data. 

The precisely measured absorption coefficient data enabled us to model the pulse 

absorption process as well. The non-exponential decay of the pulse is induced by a 

compensation of the intensity loss among the CW components composing the pulse. 

Because the pulse is the sum of an infinite number of continuous waves which obey the 

Beer-Lambert law, the less absorptive components compensate for the intensity loss of 

high absorptive components. However, the subexponential attenuation of the ultrashort 

pulse does not always mean less decay than continuous waves.  

 We investigated how the real part and the imaginary part of the refractive index affect 

the pulse profile by modeling the temporal profiles of the pulses. The temporal width of 

the pulse increases as it travels through water due to the dispersive effects induced by the 

non constant real part. The absorption process determines the shape of the temporal 

pulse profile. In spite of discrepancies between temporal widths of the measured and 

simulated pulses, the shapes of the temporal profiles of a pulse can be estimated. 
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Through this research, it has been shown that one can predict the dynamics of the pulse 

knowing only the initial spectral and temporal profile of the input pulse and the 

refractive index of water. This technique can be applied to any pulse propagation 

through any linear dielectric medium. 
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