
MIXTURE MODELING AND OUTLIER DETECTION IN MICROARRAY DATA

ANALYSIS

A Dissertation

by

NYSIA I. GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2008

Major Subject: Statistics



MIXTURE MODELING AND OUTLIER DETECTION IN MICROARRAY DATA

ANALYSIS

A Dissertation

by

NYSIA I. GEORGE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Naisyin Wang

Committee Members, Raymond J. Carroll

Robert Chapkin

Erning Li

F. Michael Speed

Head of Department, Simon J. Sheather

August 2008

Major Subject: Statistics



iii

ABSTRACT

Mixture Modeling and Outlier Detection in Microarray Data Analysis.

(August 2008)

Nysia I. George, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Naisyin Wang

Microarray technology has become a dynamic tool in gene expression analysis

because it allows for the simultaneous measurement of thousands of gene expressions.

Uniqueness in experimental units and microarray data platforms, coupled with how

gene expressions are obtained, make the field open for interesting research questions.

In this dissertation, we present our investigations of two independent studies related

to microarray data analysis.

First, we study a recent platform in biology and bioinformatics that compares

the quality of genetic information from exfoliated colonocytes in fecal matter with

genetic material from mucosa cells within the colon. Using the intraclass correlation

coefficient (ICC) as a measure of reproducibility, we assess the reliability of density

estimation obtained from preliminary analysis of fecal and mucosa data sets. Nu-

merical findings clearly show that the distribution is comprised of two components.

For measurements between 0 and 1, it is natural to assume that the data points are

from a beta-mixture distribution. We explore whether ICC values should be modeled

with a beta mixture or transformed first and fit with a normal mixture. We find that

the use of mixture of normals in the inverse-probit transformed scale is less sensitive
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toward model mis-specification; otherwise a biased conclusion could be reached. By

using the normal mixture approach to compare the ICC distributions of fecal and

mucosa samples, we observe the quality of reproducible genes in fecal array data to

be comparable with that in mucosa arrays.

For microarray data, within-gene variance estimation is often challenging due

to the high frequency of low replication studies. Several methodologies have been

developed to strengthen variance terms by borrowing information across genes. How-

ever, even with such accommodations, variance may be inflated by the presence of

outliers. For our second study, we propose a robust modification of optimal shrink-

age variance estimation to improve outlier detection. In order to increase power, we

suggest grouping standardized data so that information shared across genes is similar

in distribution. Simulation studies and analysis of real colon cancer microarray data

reveal that our methodology provides a technique which is insensitive to outliers, free

of distributional assumptions, effective for small sample size, and data adaptive.
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CHAPTER I

INTRODUCTION

Microarray technologies simultaneously measure the expression levels of thousands

of genes and are widely used in biomedical research. Because these high-throughput

instruments facilitate large-scale experiments and advanced research, microarray data

analysis is constantly progressing. New statistical methodologies for analyzing gene

expression data are emerging in order to gain biological insights. This dissertation

presents two independent studies of microarray data analysis. The methods that we

develop for both topics are very applicable and their considerations are necessary to

accurately analyze microarray data sets.

Our first work is motivated by the need to evaluate fecal mRNA microarray

reproducibility. We study a recent platform in biology and bioinformatics that com-

pares the quality of genetic information from exfoliated colonocytes in fecal matter

with genetic material from mucosa cells within the colon. Colon cancer is a leading

cause of cancer death and it believed that attitudes towards the colonoscopy are a

deterrent for colorectal cancer screening. The goal is to offer patients an alternative

so that those who are at-risk for cancer are diagnosed and treated at an early stage.

To address the issue of gene reproducibility between the two platforms, we use the

intraclass correlation coefficient (ICC) as a measure of reproducibility. For measure-

ments between 0 and 1, it is natural to assume that the data points are from a beta

distribution. As an alternative, consider the fact that a uniform random variable after

The format and style follow that of Biometrics.
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being transformed by the inverse-probit function will be normally distributed, where

the probit function is the cumulative distribution function (CDF) of the standard

normal distribution. This suggests that a plausible distributional assumption for the

inverse-probit transformed ICC values is the normal distribution. Both are consid-

ered to be acceptable approaches. However, will both lead to comparable results? If

not, then under what circumstances does one model fail? These are the questions we

wish to address.

Chapters II and III of this dissertation are devoted to our first study. In Chap-

ter II we give a complete description of the problem and discuss the details of each

methodology used in the data analysis. In Chapter III we explore whether ICC values

should be modeled with a beta mixture or transformed first and fit with a normal

mixture. We carry out a simulation study and use the chi-square goodness of fit test

to determine the accuracy of each model. We are particularly interested in the effect

of transformation under model mis-specification.

Secondly, we introduce statistical tools to improve variance estimation and out-

lier identification in microarray data. A core goal of microarray analysis is to identify

an informative subset of differentially expressed genes under different experimental

conditions. Typically, this is done through hypothesis testing, which relies on test

statistics that properly summarize and evaluate information in the sample(s). A

reliable variance estimator that is applicable to all genes is important for analysis.

In microarray analysis we often find that genome-scale expression analysis generates

large data sets with a small number of replicates for each gene. The widespread

statistical limitations due to low replication make it necessary to devise adaptive

methods for estimating gene-specific variance. Further complicating variance esti-

mation is the frequent presence of outliers in microarray data. Not only is outlier

identification critical for reliable estimation of variance, but we also require accurate
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variance estimation in order to successfully identify outliers.

In Chapter IV, we introduce several variance estimation methodologies and out-

lier identification procedures. We propose a robust modification of optimal shrinkage

variance estimation (Tong and Wang, 2007). Our variance estimator is uninfluenced

by outliers and allows for gene-specific, rather than pooled, estimates of variance.

Additionally, we stabilize estimators by allowing each variance estimate to be the

product of a gene-specific and common variance estimate. In order to increase power,

we estimate the common variance term by grouping standardized data so that in-

formation shared by genes post-standardization can be more efficiently utilized. For

outlier detection we adopt a technique which is based on the false discovery rate

approach.

Chapter V describes the setup of two simulation studies. The first setup does

not assume any relationship between gene variability and location center, while the

second is structured such that variance is modeled as a quadratic function of mean.

These studies are used to compare the performances of numerous variance estimators

and adaptive methodology.

In Chapter VI, we investigate the performance of variance estimation and outlier

identification on colon cancer microarray data. We introduce the between extreme

expression deviation to MAD (BEED-MAD) ratio statistic as an assessment tool for

outlier classification when the truth is unknown.

Finally, we provide a summary of all our findings in Chapter VII.
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CHAPTER II

MIXTURE MODELING OF THE INTRACLASS CORRELATION

COEFFICIENT

2.1 Introduction

Microarrays, which measure gene expressions at the transcription level where RNA

is made from DNA, take us from the days of detecting messenger RNA (mRNA)

expression of a single gene to the current stage in which scientists can simultaneously

measure the expression of thousands of genes. Daily improvement in this technology

frequents the production of new assays and new microarray data platforms. Among

them, and of particular interest, is a recent development that enables the collection of

genomic information from exfoliated colonocytes in fecal matter. It is known that an

early detection of cancerous colon cells results in high cure and survival rates among

colon cancer patients. However, people tend to shy away from invasive procedures

such as the colonoscopy. Consequently, it is of great interest to develop non-invasive

early detection instruments.

Although evidences exist in the fecal platform that partially degraded mRNA

in fecal samples can produce meaningful measurements (Schoor et al., 2003), and

the conclusions by Davidson et al. (2003) and Kanaoka et al. (2004) suggest that it

is possible to isolate intact fecal eukaryotic mRNA, it is unknown whether one can

expect the same quality from the large amount of fecal microarray data. The current

study, to the best of our knowledge, is the first one that investigates and reports the

reproducibility of fecal microarray data.

Biological variation in gene expression data can be assessed with subject to sub-

ject replication. In order to determine if one can successfully obtain the same findings
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from the same biological sample when the experiment is repeated, it is necessary to

determine whether the gene expression levels of a gene from the same subject behave

more similarly to each other compared to those of the same gene from different sub-

jects. One can observe this type of similarity even when the biological samples from

the same subject are processed through two independent bioassays, as is done for

samples using different biological materials. Precisely, under the best scenario that

the same biological sample is used, we evaluate the similarity between independent

results produced by the same bioassay in a lab. While we focus only on subject to

subject variation, we acknowledge that there are other types of replication in gene

expression data (Nguyen et al., 2002).

In order to assess the agreement between measurements from microarray data

collected from the same subject we use the intraclass correlation coefficient as a

reliability index (Carrasco and Jover, 2002). Intraclass correlation (ICC), defined

in simplest terms as a measure of reproducibility, is used as a statistical measure to

assess methodological and biological variation in DNA microarray analysis. The larger

the intraclass correlation coefficient, the more differentiation among gene readings

collected from different biological samples relative to that among readings using the

same biological material. Thus, an ICC value near 1 signifies a strong indication of

reproducibility and agreement between experiments. On the other hand, if the ICC is

near 0, then within-subject variance is relatively large compared to between-subject

variance and it is likely that one can not obtain the same expression level in a repeated

experiment.

Considering how replicative arrays are produced, it may be harder to recognize

the phenomenon commonly associated with ”reproducibility” when a gene is neither

up nor down regulated. Although the same biological materials are produced, the

dominating variation could be caused by the two different bioassay processes. If this
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is true, then we expect to observe at least a small proportion of genes to always have

low reproducibility, thus resulting in a mixture model for the distribution of ICC val-

ues. The use of mixture-modeling in bioinformatic research is not new. Researchers

have devoted much attention to methodology that can appropriately separate gene

expressions into meaningful groups. Allison et al. (2002) and Ji et al. (2005) use

beta-mixture modeling to describe distributional properties of different genes’ corre-

lation coefficients. Like measurements of ICC, the values of correlation coefficients

are between 0 and 1. On the other hand, He et al. (2006) and McLachlan et al.

(2006) prefer the use of normal mixture distributions which eliminate the (0,1)-range

constraint.

In a study comparing the fecal and mucosa bioarray platform we obtained con-

flicting results when modeling inverse-probit transformed ICC (IPT-ICC) values with

a two-component normal distribution and when modeling ICC values with a two-

component beta distribution. It is our conjecture that, considering the boundary

problem of the beta distribution, normal mixture modeling might be less sensitive to-

ward model mis-specification. We have observed components of the beta mixture to be

strictly decreasing with the density f(y|α, β) approaching infinity. This phenomenon

causes the maximum likelihood estimate (MLE) of β parameters to be unstable. In

order to address which of the two mixture models more accurately analyzes ICC val-

ues of gene expression levels, we conduct a simulation study. Our ultimate goal is

to select the better of the two systems to ascertain whether the fecal array samples

share similar reproducibility as the mucosa array samples.

2.2 Methods

In order to carry out this analysis, we rely on numerous statistical methods. These

methodologies are described in detail in the following subsections.
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2.2.1 The Intraclass Correlation Coefficient

As with most measurements, measuring gene expression levels even from the same

biological materials involves measurement error. In order to assess the agreement

between measurements, we look to intraclass correlation coefficients whose use in

genomic study was promoted by Carrasco and Jover (Carrasco and Jover, 2003). In-

traclass correlation, in its simplest term, is defined as a measure of reproducibility.

Consider the following simple model where the response Yij = ai + eij is the jth mea-

surement collected from the ith subject. Further, variables ai and eij are independent

with means 0 and variance σ2
a and σ2

e , respectively. ICC is the ratio of the variance

between subjects to the total variance and is given by the following equation:

ICC =
σ2

a

σ2
a + σ2

e

, (2.1)

where σ2
a represents the between-subject variation, σ2

e is the within-subject variance,

and 0 ≤ ICC ≤ 1. In the situation that samples from the same subject give an

identical reading, then σ2
e = 0 and ICC = 1. We have perfect reproducibility. On

the other hand, if all the ai are close to zero such that the different measurements

corresponding to the same subject give the dominating variation, then we expect the

ICC to be small.

Here, we use the ICC as a statistical measure to assess methodological and bi-

ological variation in DNA microarray analysis. The larger the intraclass correlation

coefficient, the more differentiation among gene readings collected from different bi-

ological samples relative to that among readings using the same biological material.

Thus, an ICC value near 1 signifies a strong indication of reproducibility and agree-

ment between experiments. On the other hand, if the ICC is near 0, then within-

subject variance is relatively large compared to between-subject variance and it is

likely that the actual gene expression is irreproducible.
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Shrout and Fleiss (1979) give guidelines for choosing among six different forms

of the ICC, where each form is specifically defined by the experimental design and

intent of the study. Since our design has each subject under different treatments

measured by 1-2 randomly selected microarrays, we let the measurements from the

same subject share the same random intercept and let the different treatments be the

fixed effect. We then use this mixed-effects model to obtain the overall and random

intercept variation and set them to be the denominator and numerator of the ICC

value.

Classifying the ICC as a measure of reproducibility has long been in debate. Lin

(1989) discusses two drawbacks that discredits the ICC as a reliable reproducibility

index. First, it allows duplicate readings to be interchangeable in the sense that dupli-

cate readings are considered as replicates rather than two distinct readings. Secondly,

it is faulted for assessing uncorrelated paired readings with negative values. However,

Carrasco and Jover (2003) argue that the ICC is a valid measure of agreement among

microarrays and identify it as one of the most popular aggregate procedures used

in measuring the agreement of continuous-scaled data. An aggregate procedure is

characterized by its use of a single measure to assess agreement, whereas a disaggre-

gate approach calculates agreement for each component of the measurement model

separately (Carrasco and Jover, 2003).

2.2.1.1 Obtaining ICC Values for Genes on a Microarray Chip

We define a data observation Y
[g]
ijk as being the gene expression g for subject i, treat-

ment j, and array k. The observations are modeled by

Y
[g]
ijk = µ

[g]
j + a

[g]
i + e

[g]
ijk, (2.2)

for
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i = 1, 2, . . . , I, j = 1, 2, . . . , J , and k = 1, 2, . . . , Kij

This describes a microarray experiment where we consider I subjects, J treatments,

and Kij arrays for subject i under treatment j. Also, µj is the overall mean for the

jth treatment, ai ∼ N(0, σ2
a) is the random effect due to the different subjects, and

eijk ∼ N(0, σ2
e) is the random effect due to array to array replication. We assume

that the error terms, eijk, are iid.

After having formulated the model for the data observations taken from the

microarray, we can easily characterize the ICC for each gene. The following expression

for ICC allows us to quantify the reproducibility index of gene g.

ICCg =
σ2

a,g

σ2
a,g + σ2

e,g

, g = 1, 2, . . . , G, (2.3)

where G is the number of genes.

2.2.2 Two-Component Mixture Models

The numerical findings of ICC and IPT-ICC values clearly show that the data comes

from a mixture of two populations. Thus, we analyze the data as clusters to minimize

within-group variance and maximize between-group variance.

When data is modeled by a mixture of two distributions we suppose that an

observation comes from distribution 1 with probability π or from distribution 2 with

probability 1− π. Suppose Zi is a random indicator variable such that

Zi =





1 , with prob = π

0 , with prob = 1− π

Let Wi be the actual outcome observed through the process. Then Wi is distributed

as follows:

Wi ∼





f1(w) , Zi = 1

f2(w) , Zi = 0,
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where f1 and f2 are the probability density functions of distributions 1 and 2, respec-

tively. If we consider the joint distribution of (W,Z), then

f(w, z) = f(w|z)f(z).

Thus,

f(w) =
∑

z f(w|z)f(z)

and the resulting probability distribution function is given by

f(w) = πf1(w) + (1− π)f2(w) (2.4)

Furthermore, if we observe W = W1, . . . ,Wn, the likelihood function is

n∏
i=1

[πf1(wi) + (1− π)f2(wi)]. (2.5)

2.2.3 Parameter Estimation using Expectation-Maximization Algorithm

We use the expectation-maximization (EM) algorithm (Dempster et al., 1977) to

obtain parameter estimates of the mixture distributions. The EM algorithm is an

iterative approach for estimation of incomplete data problems. Given starting values

of the model parameters, the EM algorithm iteratively updates the estimates until

a specified convergence is reached. In Sections 2.2.3.1 and 2.2.3.2 we describe pro-

cedures for estimating the two-component mixture of beta and normal distributions,

respectively.

2.2.3.1 Mixture of Beta Distributions

Suppose y1, . . . yn are n independent observations from fY (y|θB), where fY is the

density of a beta distribution and θB = (π, α1, α2, β1, β2). Let the random vector

X = (Z, Y ) = {zi, yi}, where zi is an indicator variable which assumes the value 1 (0)

when the ith observation comes from the first (second) component for i = 1, . . . , n.
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In the algorithm, we iteratively perform the “E” and “M” steps with the ’com-

plete’ data likelihood function, L(θB|yi), for θB being

L(θB|yi) =
n∏

i=1

πf(yi|α1, β1) + (1− π)f(yi|α2, β2) (2.6)

and the corresponding log-likelihood being

`(θB|yi) =
n∑

i=1

log[πf(yi|α1, β1) + (1− π)f(yi|α2, β2)].

(2.7)

In the E-step, z is updated with its conditional expectation given the observed

data y. Consequently,

z
(k)
i = E[zi|yi, π̂

(k), α̂
(k)
1 , α̂

(k)
2 , β̂

(k)
1 , β̂

(k)
2 ]

=
π̂(k)f(yi|α(k)

1 , β
(k)
1 )

π̂(k)f(yi|α(k)
1 , β

(k)
1 ) + (1− π̂(k))f(yi|α(k)

2 , β
(k)
2 )

,

(2.8)

where the super index, k, denotes an estimate at the kth iteration.

In the M-step of the EM algorithm we use z
(k)
i to estimate the mixing proportion,

where

π̂(k+1) =

∑n
i=1 z

(k)
i

n
, (2.9)

and obtain maximum likelihood estimates of α̂1, α̂2, β̂1, and β̂2 numerically. The E-

and M-steps are iterated until the convergence criteria is met.

The starting values for α1, α2, β1, and β2 were set to 0.01 and {zi} was initialized

by setting one half of the indicator variables equal to 0 and the other half equal to 1

so that π̂(0)=0.50. We utilize the ’optim’ function in R to obtain parameter estimates

for the two beta density functions. The procedure was repeated until we observed a

negligible change in the value of the log-likelihood given in (2.7).
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2.2.3.2 Mixture of Normal Distributions

Let x1, . . . , xn be n iid observations from fX(x|θN), where fX is the density of a

normal distribution and θN = (π, µ1, µ2, σ
2
1, σ

2
2). In order to estimate the parameters

for a two-component normal mixture, we use the MCLUST software package for R

(Fraley and Raftery, 1999). MCLUST implements the EM algorithm (Section 2.2.3.1)

to carry out the computations of a maximum likelihood approach for normal mixture

modeling. For model selection, Mclust determines the number of clusters and the

clustering model by maximizing the Bayesian Information Criterion (BIC) (Schwartz,

1978).

See Fraley and Raftery (1999) and Fraley and Raftery (2002) for more details

regarding the MCLUST software package.

2.2.4 Distribution of Transformed Random Variables

In our simulation study of mixture model mis-specification, it is necessary to define

the distribution of transformed random variables. In Section 2.2.4.2, we describe

the distribution of probit transformed normal random variables (Normal → Beta).

Likewise, in Section 2.2.4.1 we describe the distribution of inverse-probit transformed

beta random variables (Beta → Normal).

2.2.4.1 Normal → Beta

Let X be a random variable from a two-component normal mixture model with prob-

ability density function (pdf) fN given by

fN(x) = π φ(x; µ1, σ
2
1) + (1− π) φ(x; µ2, σ

2
2), (2.10)

where 0 < π < 1 and φ(x; µi, σ
2
i ) is the pdf of a normal random variable with mean

µi and variance σ2
i , i = 1, 2.
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Furthermore, consider transforming the data via the probit transformation given

by Y = Φ(X). Then the density function of Y is given by

fB(y) = fN(g−1(y))

∣∣∣∣
d

dy
g−1(y)

∣∣∣∣

= fN(g−1(y))

∣∣∣∣
1

g′{g−1(y)}

∣∣∣∣

= fN(Φ−1(y))

∣∣∣∣
1

φ{Φ−1(y)}

∣∣∣∣ . (2.11)

2.2.4.2 Beta → Normal

Let Y be a random observation from a two-component beta mixture model with pdf

fB given by

fB(y) = π f(y|α1, β1) + (1− π) f(y|α2, β2), (2.12)

where 0 < π < 1 and

f(y|αi, βi) =
yαi−1(1− y)βi−1

∫ 1

0
tαi−1(1− t)βi−1dt

f(y|αi, βi) =
yαi−1(1− y)βi−1

B(αi, βi)
(2.13)

is the pdf of a beta random variable with shape parameters αi, βi, for i = 1, 2

We consider transforming the observations using the inverse-probit transforma-

tion by letting X = g(Y ) and g(·) = Φ−1(·). Then the range of X becomes (−∞,∞)

and its density function is expressed as

fN(x) = fB(g−1(x))

∣∣∣∣
d

dx
g−1(x)

∣∣∣∣
= fB(Φ(x)) |φ(x)| . (2.14)

2.2.5 Chi-square Goodness of Fit

Let X1, . . . , Xn be an observed dataset. Suppose we divide the range of the data

into k bins. By comparing the number of observations that fall into a given bin with
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the expected number of observations for that bin, we are able to use the Pearson’s

chi-square (χ2) goodness of fit test to assess how well the proposed distribution fits

the observed data. The χ2 statistic for testing the null hypothesis H0 : The data

follow the specified distribution, is

X2 =
k∑

i=1

(Oi − Ei)
2

Ei

, (2.15)

where Oi and Ei are the observed and expected, respectively, frequencies for bin i.

To ensure that the expected frequency count is never zero, data is binned according

to the following quantiles of observed data: 0, k − 1 equally spaced values between

0.025 and 0.975, and 1. This results in k disjoint bins.

If a dataset is fit with a mixture of normal distributions, then the density function

defined in (2.10) is used to determine the expected frequencies. Likewise, we use (2.14)

to calculate expected frequencies when a dataset is fit with a mixture of betas. The

cdf of (2.14) does not have a closed form solution. Thus, for both distributions,

the area of a given bin is approximated with the trapezoidal rule for computing a

Riemann sum. The trapezoid approximation of
∫ b

a
f(x)dx associated with a partition

a = x0 < x1 < . . . < xn = b is

T =
1

2
[f(x0) + 2f(x1) + . . . + 2f(xn−1) + f(xn)] ∆x. (2.16)

Each of the k intervals is divided into 4 equal parts so that n = 4 and ∆x = b−a
4

.

2.2.6 Likelihood Ratio Test

We use the likelihood ratio test in order to test for distributional differences in the

reproducibility of fecal and mucosa samples. Let L1 be the maximum value of the

likelihood without placing any assumptions on the model parameters. L1 is evalu-

ated by substituting the maximum likelihood estimates for the unknown unrestricted
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parameters. Let L0 be the maximum value of the likelihood function when the pa-

rameters are restricted by assumptions placed on the model. We can then define the

likelihood ratio statistic by

λ =
L1

L0

.

Furthermore, let us assume that k parameters were lost by moving from the unre-

stricted to the restricted setting. Under the restricted model, as n →∞, 2 log λ → χ2
k

in distribution. The likelihood ratio test rejects the testing assumption if 2 log λ >

χ2
k,α, where α is the level of significance.
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CHAPTER III

DATA ANALYSIS AND SIMULATION STUDY OF ICC VALUES

3.1 Introduction

We begin this chapter with a description of the fecal and mucosa data used in the

study. In Section 3.3 we present the nature of the problem by showing discrepancies

in the beta mixture fit of ICC values and the normal mixture fit of IPT-ICC values.

Section 3.4 discusses a simulation study that was carried out to analyze sensitivity

to model mis-specification. Finally, in Section 3.5 we compare the ICC distributions

of fecal and mucosa samples in order to evaluate the quality of reproducible genes

between the two platforms.

3.2 Fecal and Mucosa Data Description

Gene expression levels from the colon mucosa and fecal data samples were collected

using the CodeLink System. From the thousands of genes included in both data sets,

our working data set of statistically significant genes consisted of 2171 genes for the

fecal data and 2241 genes for the mucosa data. The bioassays that were used to

extract fecal mRNA were developed much later than the mucosa data used in this

study, which was collected earlier in a different experiment. Although we did not

have access to the original dataset, the available summary statistics were sufficient

for us to produce ICC measurements.

3.2.1 Fecal Data

The fecal array data were collected from rat fecal samples in a study designed to

explore the affect that diet has on genes being differentially expressed after exposure
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to carcinogen/radiation (Liu et al., 2005). Rats in the study were exposed to carcino-

gen azoxymethane (AOM) and randomly assigned to one of four different treatments

resulting from a 2× 2 factorial design. The two experimental factors were diet - fish

oil/pectin (D1) and corn oil/ cellulose (D2), and radiation - with radiation exposure

(IRT) and without radiation exposure (RCT). Fecal samples were collected 14 weeks

after the last exposure to carcinogen AOM. There are respectively 7, 6, 8, and 7 bioar-

rays collected under IRT-D1, IRT-D2, RCT-D1, and RCT-D2, respectively. Genes

which were not disqualified and which had at least 3 usable replicates were kept.

3.2.2 Mucosa Data

Spraque Dawley rats used in the study to obtain mucosa array data were randomly

assigned in a 3× 2× 2 factorial experiment to a treatment with diet, exposure, and

time points as factors (Davidson et al., 2004). Corn oil/n-6 polyunsaturated fatty acid

(PUFA) or fish oil/n-3 PUFA or olive oil/n-9 monounsaturated fatty acid (MUFA)

was used as the dietary fat source; carcinogen AOM was used as the exposure source;

time points were either 12 hours or 10 weeks after the first injection. The units were

terminated at the appropriate time point in order to remove the mucosal layer from

each colon so that RNA could be extracted from the mucosal samples.

3.3 Preliminary Data Application

The original ICC values were fit with a two-component beta mixture using the EM

algorithm, producing the following density estimation for the fecal and mucosa data,

f f
B and fm

B respectively,

f f
B(.; θ̂B) = 0.50 Beta(0.30, 0.64) + 0.50 Beta(0.27, 0.63)

fm
B (.; θ̂B) = 0.53 Beta(2.20, 2.40) + 0.47 Beta(0.25, 1.22).
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After transforming the original ICC values via the inverse-probit transformation, we

estimate the following two-component normal mixture densities for the fecal and

mucosa data, f f
N and fm

N respectively,

f f
N(.; θ̂N) = 0.72 N(0.04, 0.84) + 0.28 N(−3.50, 0.07)

fm
N (.; θ̂N) = 0.81 N(−0.29, 0.64) + 0.19 N(−3.35, 0.12).

A simple observation of the difference in proportion estimates for fecal and mu-

cosa data leads us to question the accuracy of the two fits. It is unclear what the

proportion of reproducible genes (upper component of the two mixtures) for fecal

samples should be, 0.50 or 0.72? Unfortunately, the answer to this question depends

on the mixture model we use to fit the data.

It is well known that when α < 1 (β < 1), the beta distribution increases to

infinity at the lower (upper) endpoint, respectively. We find this to be the case

with components of the beta mixture for both data sets. This phenomenon is easily

seen in the graphs displayed in Figure 1, where we plot the fitted beta mixture

superimposed on the histogram of ICC values for the fecal and mucosa data. Because

the beta distribution has such a boundary issue, we suspect that a simple violation of

distributional assumption near the boundary could have profound effects on maximum

likelihood estimates. In comparisons, the fitted normal mixture superimposed on the

histogram of IPT-ICC values is plotted in Figure 2. It is worth noting that the visual

evaluation of Figures 1 and 2 might not be helpful to the comparisons of these two

modeling approaches. We investigate the veracity of the comparisons with numerical

studies.

In light of the numerical outcomes from our Monte Carlo investigation, we plot

three estimated density functions in Figure 3. The solid curves in each plot of Fig-

ure 3 provide the kernel estimated density functions of the fecal and mucosal IPT-ICC
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Figure 1: Histogram of ICC values. The density of the fitted two-component beta
mixture to the (a) fecal data and (b) mucosa data is superimposed.

values, respectively. The estimated density functions based on the normal-mixture

models are given by the dashed lines. Finally, the estimated density function calcu-

lated using the transformation theory give the estimated density functions of IPT-ICC

values in the dotted lines, when the ICC values were fitted with beta-mixtures. Even

though not perfectly, the kernel density estimates and the normal-mixture based

estimates correspond roughly well with each other. However, the transformed beta-

mixture based density estimates misfit the lower mixture component for the mucosa

data. For fecal data, this approach almost concluded that there was a single compo-

nent – a feature which could not be clearly seen in Figure 1.
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Figure 2: Histogram of IPT-ICC values. The density of the fitted two-component
normal mixture to the (a) fecal data and (b) mucosa data is superimposed.

3.4 Simulation Study

To investigate the fit of a beta mixture to probit transformed normal random variables

and the fit of a normal mixture to inverse-probit transformed beta random variables,

we conduct a Monte Carlo simulation study for each of the fecal and mucosa data sets.

Our goal is to determine how well the densities fit data under model mis-specification.

In other words, we want to assess the loss in accuracy if data is really normal but we

transform and fit with beta or otherwise, if data is truly beta but we transform and

fit with normal. Simulation for the fecal data is described as follows:

Simulation 1: Data Generated from Beta-mixtures, Fit with Normal-mixtures

(1) Generate Y1, . . . , Yn from f̃ f
B = 0.7 Beta(2.6, 1.7) + 0.3 Beta(0.2, 0.8).
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Figure 3: Plot of the IPT-ICC values, fitted mixture of normal distribution, and pdf
of transformed beta random variables for the (a) fecal and (b) mucosa data.

(2) Transform Y1, . . . , Yn using the inverse-probit transformation and fit the trans-

formed data with a two-component normal mixture.

Simulation 2: Data Generated from Normal-mixtures, Fit with Beta-mixtures

(1) Generate X1, . . . , Xn from f̃ f
N = 0.7 N(0.04, 0.80) + 0.3 N(−3.5, 0.07).

(2) Transform X1, . . . , Xn using the probit transformation and fit the transformed

data with a two-component beta mixture.

We repeat each simulation s=250 times for sample size n=1600 and use the

EM algorithm to obtain estimates θ̂B and θ̂N . The steps above are repeated for

the mucosa dataset where the beta random variables are generated from f̃m
B =

0.8 Beta(2.3, 2.3) + 0.2 Beta(0.3, 1.3) and the normal random variables are gener-
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ated from f̃m
N = 0.8 N(−0.30, 0.60) + 0.2 N(−3.3, 0.10).

We could not compare the outcomes of Simulations 1 and 2 directly when the

estimated parameters are for normal-mixtures and beta-mixtures, respectively. To

ease the comparisons, we transform the resulting estimates in Simulation 2 so that

the outcomes correspond to means and variances of distributions that would give

observations on the whole real line.

Consider the following approach:

1. Retrieve (α̂L, β̂L) and (α̂U , β̂U) from the EM algorithm.

2. Generate 10,000 random variables from ZL ∼ Beta(α̂L, β̂L) and 10,000 random

variables from ZU ∼ Beta(α̂, β̂).

3. Transform ZL and ZU using the inverse-probit transform.

4. Calculate the mean and variance of the transformed random variables.

Steps 1-4 are repeated for each simulation.

We present Monte Carlo statistics corresponding to the two components of the

mixture distribution. Summary statistics for both simulation scenarios are presented

in Table 1 and Table 2. We identify the target estimate of a scenario as ”Truth” and

report Monte Carlo estimates of mean, bias, standard deviation, and the square root

of mean squared error (RMSE).

When comparing the true estimates to those obtained from the fitted distribu-

tion, we find that summary statistics from fitting transformed normal random vari-

ables with a beta mixture closely resemble the phenomenon observed when analyzing

the fecal and mucosa data. Namely, it is the case that although the true proportions

for the upper components of the fecal and mucosa data are 0.7 and 0.8, respectively,

estimates of πU resulting from the fit of a two-component beta distribution average



23

0.5. Moreover, the measure of bias in parameter estimation for fitting transformed

normal random variables with a beta mixture is at least twice the bias in fitting

transformed beta random variables with a normal mixture. This is true for almost

every parameter estimation. These results lead us to believe that the two-component

normal mixture is more robust to model mis-specification. Naturally, the normal mix-

ture model fits normal data well. However, we also find that even if the data is truly

beta distributed, we still retain significant accuracy if we alternatively transform the

data into z-scores and fit with a normal distribution. On the other hand, assuming

that the data is beta distributed could be costly if, in fact, it is not. We find that

a biased conclusion could be reach if we model the two sets of ICC values using the

mixture of betas.

Table 1: Monte Carlo mean, bias, standard deviation, and square-root MSE (RMSE)
of estimates from simulation study ”Data Generated from Beta-mixtures, Fit with
Normal-mixtures.”

Data Generated from Beta-mixtures, Fit with Normal-mixtures
Dataset π̂U µ̂U σ̂2

U µ̂L σ̂2
L

Fecal Truth 0.700 0.328 0.446 -1.771 3.330
Mean 0.725 0.302 0.440 -1.951 3.321
Bias 0.025 -0.026 -0.006 -0.180 -0.009

Std Dev 0.018 0.023 0.028 0.152 0.283
RMSE 0.031 0.035 0.029 0.235 0.283

Mucosa Truth 0.800 -0.033 0.391 -2.090 2.722
Mean 0.816 -0.049 0.398 -2.254 2.823
Bias 0.016 -0.016 0.007 -0.164 0.101

Std Dev 0.015 0.022 0.022 0.157 0.272
RMSE 0.022 0.027 0.023 0.227 0.290

We further analyze the simulated outcomes and compare the sensitivity of each

modeling approach toward distributional mis-specification through performing good-

ness of fit tests against assumed models. Analysis of goodness of fit (Section 2.2.5)

test statistics resulting from the simulation study are given in Table 3. Precisely, for

each simulated data set, we let the null hypothesis, H0, be that the observed ICC (or
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Table 2: Monte Carlo mean, bias, standard deviation, and square-root MSE (RMSE)
of estimates from simulation study ”Data Generated from Normal-mixtures, Fit with
Beta-mixtures.”

Data Generated from Normal-mixtures, Fit with Beta-mixtures
(beta estimates valued on real line)

Dataset π̂U µ̂U σ̂2
U µ̂L σ̂2

L

Fecal Truth 0.700 0.328 0.446 -1.771 3.330
Mean 0.453 0.282 0.521 -1.995 3.409
Bias -0.247 -0.046 0.075 -0.224 0.079

Std Dev 0.010 0.036 0.032 0.050 0.138
RMSE 0.247 0.059 0.082 0.229 0.159

Mucosa Truth 0.800 -0.033 0.391 -2.090 2.722
Mean 0.527 -0.149 0.387 -1.691 2.546
Bias -0.273 -0.116 -0.004 0.399 -0.176

Std Dev 0.011 0.031 0.023 0.049 0.111
RMSE 0.273 0.120 0.023 0.402 0.208

IPT-ICC) values are from the assumed model. We then compare the observed and

the expected counts of observations within k bins, where k = 5, 8, 12, respectively,

using Pearson’s chi-square goodness of fit tests with significance level α=0.05 and

k− 1 degrees of freedom. For large values of the test statistic, namely X2 > χ2
0.05,k−1,

we reject the null hypothesis that the data comes from the assumed distribution.

Ideally, if the H0 is true, there should be no more than 5% chance to reject the

H0 when α=0.05. Except for when k = 5, the proportion of tests that reject H0

with normal-mixture modeling are all less than nominal level of 0.05. Further, in all

cases, the outcomes obtained by normal-mixture modeling are comparable to those

obtained when the true underlying distributions are assumed. The same does not

hold for beta-mixture modeling. When the data are not generated according to the

beta-mixture scheme, the goodness of fits tests are rejected close to or equal to 100%

throughout. That is, the best fits of beta-mixtures still could not provide sufficiently

close approximations that could pass the goodness of fit tests under Simulation 1.
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Table 3: P (X2 > χ2
0.05,k−1) for fecal (mucosa) data using 5, 8, and 12 bins.

True

Fit Beta Normal
5 Beta 0.12 (0.08) 0.98 (0.01)

Normal 0.13 (0.09) 0.36 (0.01)
8 Beta 0.00 (0.01) 1.00 (1.00)

Normal 0.00 (0.01) 0.04 (0.02)
12 Beta 0.02 (0.01) 1.00 (1.00)

Normal 0.02 (0.00) 0.03 (0.01)

3.5 ICC Comparisons of Fecal and Mucosa Data

Since our findings from the simulation study suggest that we use a two-component

normal distribution to fit the probit transformed ICC values, we can accurately com-

pare the fecal and mucosa array platform. In order to measure the quality of fecal

array data, we first test for a distributional difference between ICC values from colon

fecal and mucosa samples. With a p-value equating to 0, the likelihood ratio test

(Section 2.2.6) rejects the null hypothesis. Thus, as expected, we deduce that the

ICC values of genes obtained from the mucosa data are differentially expressed from

those obtained from the fecal array data.

We further explore the extent of these distributional differences using bootstrap-

ping for hypothesis testing. The first bootstrap analysis is designed to test for a differ-

ence in the proportion of irreproducible genes contained in each data set. Specifically,

we test Ha : πF−πM 6= 0, where πF and πM are the proportion of irreproducible genes

(genes with lower ICC values) in the fecal and mucosa data, respectively. Secondly, we

determine whether there is a difference in the quality of information for reproducible

genes. We test the hypothesis Ha : µF − µM 6= 0, where µF and µM are means of the

upper mixture components for the fecal and mucosa data, respectively. Bootstrapped

confidence intervals for the two respective tests are calculated to be (0.06,0.10) and
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(0.27,0.40). As a result, we find that while the fecal array has a higher proportion of

irreproducible genes, it averages ICC values for reproducible genes that are no worse

than those obtained from the mucosa platform.
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CHAPTER IV

VARIANCE ESTIMATION AND OUTLIER DETECTION METHODOLOGY

4.1 Introduction

Chapter IV is divided into two major components. First, we review variance esti-

mation and introduce competing methodologies. Special focus is given to techniques

which group genes in order to strengthen estimation. We discuss grouping G=50

genes to estimate variance. However, we also considered grouping 25 and 75 genes.

While G=25 led to suboptimal power in detecting true outliers, there was no added

benefit in G=75. Secondly, we give an overview of outlier detection algorithms.

4.2 An Overview of Variance Estimation

Microarray experiments are generally large in scale because a single array hybridiza-

tion can generate thousands of data. However, since microarrays are costly and RNA

samples are limited, replication of experiments is typically low in number. An issue of

major concern in data analysis is the ability to estimate gene-specific variances from

a small number of samples. Statistical tests such as the traditional t-test, which rely

heavily on the sample variance, will have low power to detect differentially expressed

genes if tests are carried out gene by gene. For example, a gene with small estimated

variance could, by chance, have a large test statistic and be classified as differentially

expressed even when the fold-change is small. This hinders the ability to draw reli-

able biological conclusions. Previous work (Arfin et al., 2000) suggested estimating a

global variance by pooling information across all genes. If variances are homogeneous

across genes, then this is a suitable approach. However, this assumption is likely to

be untrue since variation of expression levels are known to vary from gene to gene.
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Various methods have been devised to stabilize gene-specific variances by bor-

rowing information across genes. Alternative variance-stabilization approaches, such

as the statistical analysis of microarrays (SAM) t-test (Tusher et al., 2001), adjust

gene-specific variances by adding a small constant to each variance estimate. The

methodology proposed by Baldi and Long (2001) assumes a dependent relationship

between mean and standard deviation in array data and models the statistics jointly

using a conjugate normal-inverse gamma prior distribution. Each estimate of variance

is a weighted contribution of gene-specific and global variation. Lonnstedt and Speed

(2002) formulate the B-statistic by using an empirical Bayes approach and combining

information across many genes. Kendziorski et al. (2003) also use Bayesian techniques

in their consideration of a hierarchical gamma-gamma model.

Using the idea that there are strengths in numbers, various approaches seek to im-

prove variance estimation by grouping genes according to intensity values and apply-

ing nonparametric smoothing techniques. Kamb and Ramaswami (2001) group genes

by increasing average intensity and use regression to estimate gene-by-gene variance.

Huang and Pan (2002) compare variance estimation obtained by (1) regression using

equal weights, (2) loess regression giving less weight to more distant observations,

and (3) nonparametric smoothing of the sample variance. Jain et al. (2003) propose

local-pooled-error (LPE) estimation of within-gene expression error by pooling vari-

ance estimates for genes with similar expression intensities as other gene expressions

under the same experimental condition. Lin et al. (2003) use smoothed medians

and smoothed MAD’s to estimate center and spread, respectively and construct stan-

dardized test statistics. Comander et al. (2004) consider a different intensity-variation

relationship and pool together variance estimates of genes with similar minimum in-

tensity in hopes of pooling together genes that are likely to have similar variances.

Several additional studies not only acknowledge, but also model the mean-variance
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dependency that has been observed in some microarray data. Rocke and Durbin

(2001) assert that the variance of raw spot intensities increases with their mean and

model intensities with a two-component model. Durbin et al. (2002) also develop an

error model to quantify variance as a function of mean intensity. Based on the as-

sumption of a quadratic relationship between center and spread, Huber et al. (2002)

propose variance stabilizing methodology in order to stabilize variance at low inten-

sities.

Two recent methodologies by Cui et al. (2005) and Tong and Wang (2007) make

no presumptions about a variance-intensity relationship for microarray data and es-

timate gene-specific variance components using shrinkage estimators. The method

proposed by Cui et al. (2005) (referred to as the CHQBC estimator) presents esti-

mates based on the James-Stein estimator (Lindley, 1962). Tong and Wang (2007)

extend the shrinkage estimator methodology and suggest an optimal shrinkage pa-

rameter to replace the James-Stein shrinkage factor. Throughout, we refer to this

technique as the TW estimator.

We propose gene-specific variance estimates based on shrinkage estimation of ro-

bust variance estimates. In the presence of outliers, performances of the CHQBC and

TW methods deteriorate because each depend on the sample variance. To overcome

this drawback, our approach replaces the sample variance by a robust variance estima-

tor. In order to present a baseline comparison, we compare our proposed methodology

to one which uses grouped estimation of variance determined by robust standard de-

viation of residuals (Motulsky and Brown, 2006). Both methods borrow information

across genes in order to increase power. They are described in detail in sections 4.3.1

and 4.3.2.

It is our belief that grouping genes by similar intensities does not guarantee that

data pooled together share similar variability. If this is true and grouped estimates
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of variation are inaccurate representations of the observed variation for genes within

that group, then any conclusions drawn will be misleading. Furthermore, we are

likely to underestimate (overestimate) gene-specific variances for genes with high (low)

variation. Our goal is to stabilize variance estimates in order to detect outliers, so

that we can better quantify gene-specific variation in microarray data.

4.3 Variance Estimation Methodologies

We describe leading variance estimation techniques, and variants thereof, in the sub-

sections to follow.

4.3.1 Grouped Estimation of the Robust Standard Deviation of the Residuals

Motulsky and Brown (2006) consider a robust non-linear regression setting and use

residuals of the curve fitting to estimate variance. Since it is expected that 68.27% of

the values in a Gaussian distribution fall within one standard deviation of the mean,

Motulsky and Brown quantify variation in the residuals by calculating the 68.27

percentile of the absolute values of the residuals. The robust standard deviation of

the residuals (RSDR) has a breakdown point of 32%.

Rather than use all the data in a large-scale microarray expression data set, we

propose an alternative method based on local grouped estimation of the RSDR (gr-

pRSDR). Under an ideal setup we should have that each gene expression is scattered

around its median expression value. Thus, residuals are computed from subtracting

a gene’s median from its expression value. The steps for computing grpRSDR are:

1. Pool data by grouping 50 genes together and let I be the number of groups; I

= G/50.

2. RSDRi = the 68.27th percentile of absolute residuals obtained from gene ex-

pression data in group i.
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Thus, the grpRSDR estimation of variance for genes g in group i is given by RSDRi.

4.3.2 Tong & Wang’s Optimal Shrinkage Estimation of Variance

In order to estimate variance, we adopt Tong and Wang’s procedure for optimal

shrinkage variation estimation (Tong and Wang, 2007). They propose a shrinkage

estimator for gene-specific variance components which borrows information across

variances.

4.3.2.1 Gene-specific Variance Estimation

Let Xg be the residual sum of squared errors (SSE) and σ2
g be the true variance of

gene g. It is assumed that Xg/σ
2
g are independent and Chi-square distributed with ν

degrees of freedom, for g = 1, . . . , G genes. Thus,

Xg ∼ σ2
gχ

2
ν .

After natural logarithmic transformation on Xg, the above expression is equivalent

to the following location model:

X ′
g = ln σ2

g + ε′g, (4.1)

where X ′
g = ln(Xg/ν)−m, ε′g = ln(χ2

ν/ν)−m , and m = E(ln(χ2
ν/ν)).

Cui et al. (2005) extend Stein’s theory for estimation of multiple means to mul-

tiple variances and use the James-Stein shrinkage estimator to shrink the variance

component of each gene towards the bias corrected geometric mean of variances. The

James-Stein shrinkage estimator of ln σ2
g is given by

X̄ ′ +

(
1− (G− 3)V∑

(X ′
g − X̄ ′)2

)

+

(X ′
g − X̄ ′), (4.2)

with shrinkage factor
(
1− (G− 3)V/

∑
(X ′

g − X̄ ′)2
)
+
. The estimator is proven to

have uniformly smaller mean square error than the maximum likelihood estimator. It
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also requires no assumptions about the distribution of variances across genes. How-

ever, the authors do note that the sampling distribution of the logarithm of variance

estimates is assumed to be normal.

The CHQBC estimate of σ2
g that Cui et al. (2005) propose emerges upon trans-

forming (4.2) back to the original scale. We have that,

σ̃2
g = (

G∏
g=1

(Xg/ν)1/G) B × exp

[(
1− (G− 3) ∗ V∑

(ln Xg − ln Xg)2

)

+

× (ln Xg − ln Xg)

]
,

(4.3)

where V = var(ε′g), ln Xg =
∑G

g=1 ln(Xg)/G and B = exp(−m). If we let Zg = Xg/ν,

Zpool =
∏G

g=1 Z
1/G
g , and α̂0 = 1− (1− (G− 3)V/

∑
(ln Xg− ln Xg)

2)+. With α = α̂0,

the CHQBC estimator may be written as

σ̃2
g(α) = B(Zpool)

α(Zg)
1−α. (4.4)

Tong and Wang revise (4.4) by combining two unbiased estimators of σ2
g . If

variance homogeneity holds, then σ2
g = σ2 for all g, E(Zpool) = σ2/B, and BZpool is

an unbiased estimator of σ2
g . It is also the case that Zg is an unbiased estimate of σ2

g .

Hence, they present the following modification

σ̂2
g(α) = (BZpool)

α(Zg)
1−α, 0 ≤ α ≤ 1. (4.5)

The estimator σ̂2
g is referred to as the TW estimator.

4.3.2.2 Estimation of the Shrinkage Parameter

In lieu of the shrinkage factor given in (4.2), Tong and Wang (2007) derive optimal

estimation of the shrinkage estimator α. We implement the authors’ adaptation of

optimization under the Stein loss function. The Stein Loss function,

L(σ2, σ̂2) = σ̂2/σ2 − ln(σ̂2/σ2)− 1, (4.6)
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converges to infinity as σ̂2 approaches zero and as σ̂2 approaches infinity. Thus, gross

overestimation and underestimation of the true variance are equally penalized.

The authors present a family of shrinkage estimators for (σ2
g)

t given by

σ̂2t
g (α) = (hG(t)Zt

pool)
α (h1(t)Z

t
g)

1−α, 0 ≤ α ≤ 1, (4.7)

where

hn(t) = (
ν

2
)t

(
Γ(ν

2
)

Γ(ν
2

+ t
n
)

)n

(4.8)

and Γ(·) is the gamma function. It is the case that when t = 1 and G is large, (4.7)

reduces to (4.5).

The optimal α under Stein loss function minimizes the average risk for each gene,

which is given by

R(σ2t, σ̂2t) =
1

G

G∑
g=1

E(L(σ2t
g , σ̂2t

g ))

=
hα

G(t)h1−α
1 (t)

hG−1
1 (αt

G
)h1((1− α + α

G
)t)

(σ2
pool)

αt 1

G

G∑
g=1

(σ2
g)
−αt

−ln (hα
G(t)h1−α

1 (t))− tΨ(
ν

2
) + tln (

ν

2
)− 1, (4.9)

where t > ν/2, Ψ(t) = Γ′(t)/Γ(t) is the digamma function. The optimal estimator is

denoted as σ̂2
Z,g(α

∗
1), where α∗1 = argmin

αε[0,1]

R(σ2t, σ̂2t).

4.3.2.3 Some Important Algorithm Details

In order to obtain an estimate of the optimal shrinkage parameter, it is necessary

to assume that Zg → σ2
g a.s. Let b(σ2) = (σ2

pool)
αt 1

G

∑G
g=1(σ

2
g)
−αt. Then we can

estimate b(σ2) with b(Z) in (4.9). For small ν, we also find it necessary to implement

an alternative two-step procedure:

1. Estimate b(σ2) with b(Z) in (4.9) and compute a temporary optimal shrinkage

parameter and resulting temporary optimal shrinkage estimators, σ̂2
∗.
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2. Substitute b(σ̂2
∗) for b(σ2) in (4.9) in order to find the final optimal shrinkage

parameter and estimators.

As the authors suggest, we truncate the smallest 1% of Zg’s in the procedure so that

estimation of α remains stable. We use the built-in optimization code ’nlminb’ within

the R computing environment to estimate α.

4.3.3 Proposed New Methodology: TW(mix/mad)

When outliers are present in the data, the gene-specific estimator of variance that

Tong and Wang propose is prone to inaccurate estimation. The estimator relies

heavily on the sample variance, which overestimates variance when the data is con-

taminated by outliers. Alternatively, we propose to replace Zg in (4.7) with a vector

of robust variance estimates. The square of the median absolute deviation (MAD)

would be a natural consideration for robust estimation of variance, but this statistic

alone is insufficient. MAD has a tendency to underestimate standard deviation even

when no outliers are present and could potentially create a problem with high counts

of false positives. Our alternative uses information in the MAD and sample standard

deviation to find the best variance estimate for a given gene.

To estimate the likelihood of an outlier in each gene’s expression data, we assess

the relative change in standard deviation between an estimate robust to outliers and

one influenced by outliers. Let

rg =
Sg −MADg

MADg

, (4.10)

where Sg and MADg are the sample standard deviation and MAD, respectively, of

gene g. The MAD is defined to be

MAD = k ×median{xi −median{xi}}, (4.11)
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where k ≈ 1.4826 for normally distributed data, unless otherwise stated. We will

observe small values of rg when there is little deviation between MAD and sample

standard deviation, which suggests that the gene data may be free of outliers. On the

other hand, we expect to observe large values of rg for genes with significant outlying

expressions.

We consider shrinking the following vector of variance estimates:

Vg =





1
2
(S2

g + MAD2
g) if rg <= R

MAD2
g if rg > R.

(4.12)

In order to specify the cutoff for the piecewise function, and also to justify why we

choose to send Vg into Tong and Wang’s optimal shrinkage algorithm, we use the

following illustration: Simulate n=6 random observations from a N(0,1) distribution

for G = 10, 000 genes. Possible values of R were determined by percentiles of rg

ratios obtained from the simulated data. We ultimately choose R=3.6, which was the

approximated 99th percentile of rg ratios. For all genes g with rg values exceeding 3.6,

we avoid any sensitivity to outlier observations since the relative change in variation is

large. Instead, we quantify variation solely using the square of the MAD statistic. On

the other hand, for all genes g with rg values at most 3.6, we send into the algorithm

the average of sample variance and the square of the MAD statistic.

Ideally, we want to shrink estimates of variance which are not already believed

to be distorted. In Figure 4, we plot the distribution of deviance from the true

variance when using the square of the MAD statistic, the sample variance, and also,

the average of the two to estimate variance. When there are no outliers in the data,

the sample variance is most centered at zero deviation. We retain most of the same

accuracy even when using the average of the sample variance and the square of the

MAD statistic. However, the square of the MAD statistic is shown to consistently

underestimate the true variance. For this reason, we choose not to rely solely on
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the square of the MAD statistic in computing optimal shrinkage variance estimators.

Certainly the sample variance will overestimate variance in the presence of outliers;

however, the MAD statistic underestimates variance even when the data is free of

outliers. By using the average of the two, we are able to protect against extreme

overestimation and underestimation of the true variance. Thus, we derive Vg as the

population of variance estimates we wish to shrink.
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Figure 4: Density plots of the difference between estimated variances and the true
variance for simulated N(0,1) gene expression data. Variance is estimated using three
statistics - (1) square of the MAD statistic (dashed line), (2) sample variance (solid
line), and (3) the average of sample variance and the square of the MAD statistic
(dotted line).

The optimal shrinkage estimators based on our proposed methodology arise natu-

rally after substituting b(V ) for b(Z) in estimating b(σ2) (section 4.3.2.3). We denote

these optimal shrinkage estimators as σ̂2
V,g, which we reference as the TW(mix/mad)
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estimate.

4.3.3.1 Grouped Estimation of TW(mix/mad) Methodolgy

As an extension of the previous section, we suggest further stabilizing variance es-

timation by grouping together residuals that are standardized with robust optimal

shrinkage variance estimators, σ̂2
V,g (Section 4.3.3). The estimate of common variance

measures grouped estimation of the robust standard deviation of the standardized

residuals (RSDSR). Because standardized residuals follow an approximately stan-

dard normal distribution, we are now able to pool data from the same distribution.

We refer to this approach as grpTW(mix/mad). It is detailed as follows:

1. Pool data by grouping 50 genes together and let I be the number of groups; I

= G/50.

2. Compute RSDSRi = 68.27th percentile of absolute standardized residuals from

expression data in group i.

Thus, the grpTW(mix/mad) estimation of variance for genes g in group i is given by

σ̃2
V,g = σ̂2

V,g ∗RSDSR2
i , (4.13)

where σ̂2
V,g is the optimal shrinkage estimator of gene g using the TW(mix/mad)

methodology.

4.3.4 Grouped Estimation of Variance as a Function of Mean

Modeling variance as a quadratic function of mean is a common approach in modeling

gene expression data. Strimmer (2003), Rocke and Durbin (2001), and Huber et al.

(2002) (and references therein) each suggest a quadratic variance-mean dependency

in microarray data. We follow this trend in proposition of grouped estimation of

variance as a function of mean. The data fitting routine for each treatment requires
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the robust fitting of linear models. We use the ’rlm’ function contained in the MASS

package of R. In ’rlm’, fitting is done by iterated re-weighted least squares using

M-estimation. Initial values for the coefficients are found using ”lts,” an unweighted

least-trimmed squares fit with 200 samples.

We estimate the variance of Ygj (observation j of gene g) with its squared resid-

ual and substitute the mean for median, a robust measure of center. Let Xgj be

the median of gene g for observation j. Consequently, the estimated gene-specific

variances Ŷgj are the fitted values from robust quadratic regression of Ygj on X2
gj. We

use the square root of Ŷgj to standardize residuals and estimate RSDSR by:

1. Pool data by grouping 50 genes together and let I be the number of groups; I

= G/50.

2. Compute RSDSRi = 68.27th percentile of absolute standardized residuals from

expression data in group i.

Thus, the grpVM estimation of variance for genes g in group i is given by Ŷgj ∗
RSDSR2

i .

4.4 An Overview of Outlier Detection

Outliers are common in microarray data and generally arise from either biological

variation or measurement error from systematic sources of variability. While both

anomalies present observations that are inconsistent with the remainder of the data

(Barnett and Lewis, 1984), we are solely interested in identifying the latter since

any variation resulting from true biological differences is important for analysis. The

high-dimensionality of microarray datasets coupled with low gene-by-gene repetition

makes outlier identification considerably challenging. The process of detecting outliers

is essentially automated since visual inspection of such large data sets is impractical.
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The ”3σ rule” is often used to detect outliers in data of any nature. This is

true for microarray data as well. Under the assumption that the data is independent,

i.i.d., and normally distributed, the probability that an observation lies more than

3 standard deviations away from the mean is 0.3%. Extreme points lying within

the tails of this distribution are considered to be outliers. We determine this by

calculating a z-score for every observation,

zgj =
Xgj − X̄g

Sg

, (4.14)

where Xgj is expression data for gene g of array j, and X̄g and Sg are the sample mean

and standard deviation, respectively, of gene g. Any observation with an absolute z-

score that exceeds three is classified as an outlier. There are other variations of the

”3σ rule” in which data producing absolute z-scores above a certain threshold are

flagged as outliers. Moffitt et al. (2005) adopt this rule in order to detect outliers

on a gene-by-gene basis. Prolla (2002) and Du et al. (2005) also rely on standard

z-scores to detect anomalous gene expressions.

However, if outliers are indeed present, then measures of the sample mean and

sample standard deviation are highly influential and it is likely to experience both

masking and swamping. As an alternative, the Hampel identifier (Davies and Gather,

1993) substitutes the mean and standard deviation for outlier resistant statistics - the

median and median absolute deviation (MAD), respectively in (4.14). The median

and MAD are robust estimates of center and spread, respectively. Yang et al. (2006)

use resistant z-scores to identify outliers and then classify outlier arrays based on the

percentage of detected outliers. The Hampel identifier presents an outlier resistant

alternative to standard z-scores especially when the sample size is small. However, it

may cease to be useful when the distribution of data is not symmetric.

Departing from z-scores altogether, Mariani et al. (2003) compute fold-changes
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for pairwise comparisons of gene expressions within a treatment and classify outlier

genes based on the number of fold-changes that exceed a 2 point cutoff. Li and Wong

(2001) use a statistical model to identify array, probe, and single Perfect Match (PM)

- Mismatch (MM) outliers through an iterative, sequential process. A drawback to

this approach is that a large number of arrays is required to obtain accurate standard

error estimates for parameters in the model.

We consider the process of detecting outliers in replicated microarray data similar

to that of detecting multiple outliers in regression. The ”pseudo” regression curve is

constructed by the median values of genes within a treatment and we are interested

in identifying points that deviate far from the curve. Motulsky and Brown (2006)

propose a method for identifying outliers when fitting data with nonlinear regression

that mimics the false discovery rate (FDR) approach for multiple comparisons. We

adopt their outlier elimination method and apply it holistically to all the arrays within

the same treatment group.

By analyzing arrays from different treatments, we are able to retain only those

gene expressions that are consistent with other measurements for the same gene un-

der the same experimental setup. We believe that any striking variation due mainly

to noise is corrected in the normalization step of microarray analysis. Furthermore,

gene expressions under the same treatment are believed to be consistent enough across

arrays so that when analyzed for systematic outliers, the biological variation is pre-

served and only those expressions which do not provide valuable information will be

classified as outliers.

4.5 Outlier Detection Methodology

Motulsky and Brown (2006) outline an algorithm for detecting outliers based on the

false discovery rate (FDR) approach to multiple hypothesis testing (Benjamini and
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Hochberg, 1995). They liken the problem of determining when a point is far enough

from the curve to be considered an outlier similar to the problem of determining

when a p-value is small enough to be labeled statistically significant. In this way, we

are able to incorporate the empirical distribution of p-values in deciding a decision

threshold.

When making multiple comparisons, correction techniques like the Bonferroni

adjustment, which sets a significance cutoff equal to the family-wide error rate di-

vided by the number of comparisons, can be too conservative when analyzing a large

number of tests. Benjamini and Hochberg developed the FDR procedure to control

the expected proportion of false positives among all tests declared significant. This

test is most prevalent in microarray analysis when detecting differentially expressed

genes. It mimics a data reduction problem in that we are able to narrow a search

from thousands of genes to a reduced set. Since we are more concerned with making

certain the reduced data set contains all possible differentially expressed genes, we

are willing to accept a set which includes some false positives.

4.5.1 Choosing a Value of Q

The number of detected outliers, and consequently the proportion of false positives,

is controlled by specifying a value Q for the FDR. Choosing an FDR of 5% means

that 5% of the points we detect as outliers are actually false positives. Decreasing

(increasing) the value of Q will simultaneously decrease (increase) the number of false

positives and decrease (increase) the number of true positives. Thus, any criterion

specification offers a tradeoff between the number of false positive and false negative

errors.

Motulsky and Brown consider values of Q equal to 0.1%, 1%, and 10%. While

Q=10% is too aggressive, Q=0.1% is too conservative. They make a subjective deci-
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sion to choose Q=1%, which we follow for our analysis.

4.5.2 Algorithm

Let σ̄2
g be the estimate of variance for gene g as determined by any particular method-

ology e.g. grpRSDR, grpTW(mix/mad), grpVM etc. The standardized residual for

gene expression g is given by

tigj =
y∗igj − ymed

g

σ̄g

, (4.15)

where y∗igk is the normalized gene expression of rat i, array j(i), and gene g and ymed
g is

the median expression of gene g. We can now compute a p-value for each test statistic

testing the null hypothesis that the statistic follows a t-distribution. The steps for

outlier detection are as follows:

(i) For each test statistic, tigj, in group k of grouped gene expression data:

1. Compute pigj, the two-tailed p-value from a tdf=Nk−2, where Nk is the number

of observations in group k

(ii) For all pigj:

1. Order all pigj from lowest to highest and let p[t] denote the t-th order-statistic.

2. Find the largest t for which p[t] < (Q ∗ t) /
∑

j Nj, where Nj is the number of

observations in array j and Q is pre-specified, e.g. 1%.

3. Classify p[1], . . . , p[t] as outliers.

We leave it to the researcher of subject-level expertise to decide whether to delete the

anomalous data or further analyze in order to identify the false positives.
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CHAPTER V

ANALYSIS OF OUTLIER DETECTION FOR SIMULATED MICROARRAY

DATA

5.1 Introduction

This chapter presents analysis of simulated microarray data. In Sections 5.2 and 5.3

we discuss two simulation scenarios and present analytical results. For each simulation

study, we perturb the data with outliers and evaluate the performances of each method

primarily based on positive predictive values and false negative rates. We initially

consider ten different methodologies for estimating variance, but currently narrow our

focus to a comparison of grpRSDR, grpTW(mix/mad), and grpVM.

5.2 Simulation I: Independent Gene Variance-Intensity Relationship

In this section we conduct a study based on a simulation setup described in Tong and

Wang (2007) which assumes a completely independent relationship between a gene’s

location center and spread. We consider several methods of estimating gene-specific

variance, which include approaches documented in existing literature. The methods

are evaluated for data simulated with and without outliers. First, we simulate ex-

pression data for G=5000 genes by generating σ2
g , g = 1, . . . , G from a U(0.05, 0.30)

distribution. For each σ2
g , we simulate n = 6 observations from N(µg, σ

2
g), where each

µg is a random sample from N(0, 1). We repeat simulation s = 200 times.

Second, we perturb each simulated data set with 2500 outliers and measure the

positive predictive value (PPV) (Altman and Bland, 1994) and false negative rate

(FNR) (Fleiss, 1981) of each methodology. PPV and FNR measure the proportion

of correct-detection among all detected outliers and the proportion of false negatives
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among true outliers, respectively. Precisely,

PPV =
true positives

true positives + false positives
(5.1)

and

FNR =
false negatives

true positives + false negatives
(5.2)

In real data, outlier identities and features are random and unknown. Hence, we

contaminate data by moving observations 3 and 10 standard deviations away. Specif-

ically, we introduce outliers by considering a subset of every other gene. For each of

these genes, we find the observation, yg,i, farthest from the median in absolute value

and replace that gene expression with

yg,i =





yg,i − cσg, if yg,i − ymed
g < 0

yg,i + cσg, if yg,i − ymed
g > 0,

where c=3 for all subsetted g or c=10.

5.2.1 Methodologies

We consider ten different methodologies for estimating variance. They are listed in

Table 4.

As an overview, the prefix ’grp’ indicates that an estimate of robust standard

deviation of the residuals is obtained by grouping 50 genes in sequential order. The

’-OBM’ suffix indicates that in lieu of sequential order, we group genes by increasing

median intensity. For optimal shrinkage estimation the statistic inside the parentheses

represents what we send into the algorithm detailed by Tong and Wang (TW).

The design of simulation studies presented in the following subsections assist in

investigating properties of the different variance estimators. Our goals are to examine

the effects of grouping, examine the effectiveness of gene-specific variances, and to
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Table 4: Descriptive procedures for ten methodologies of estimating gene-specific
variance.

Methodology Description
MAD divide each residual by the the estimate of MAD for that gene
grpMAD standardize each expression using MAD; estimate RSDSR
grpSTD standardize each expression using sample standard deviation;
— estimate RSDSR
TW(var) divide each residual by the TW shrinkage estimators
grpTW(var) standardize each expression using the TW shrinkage estimators;
— estimate RSDSR
grpTW(mad) standardize each expression by sending MAD2 into the
— TW algorithm; estimate RSDSR
grpTW(mad50/std50) standardize each expression by sending 1

2 (S2 + MAD2) into the
— TW algorithm; estimate RSDSR
grpTW(mix/mad) as described in section 4.3.3.1
grpRSDR-OBM as described in section 4.3.1
grpVM-OBM as described in section 4.3.4

determine the strengths and weaknesses of estimators when we assume no functional

relationship between gene variance and intensity. By perturbing the simulated data

with outliers we are better able to characterize each of these properties.

5.2.2 Simulated Data: No Outliers

With no outliers we direct our attention to quantifying the average number of false

positives, see Table 5. Results seen here offer a baseline of what to expect from these

variance estimators once outliers are added. With large data sets, we expect to observe

some false positives even when there are no outliers. We observed in Figure 4 that

the sample standard deviation and the average of the square of the MAD and sample

standard deviation accurately estimate variance for non-outlier data. We find that

methodologies which depend on these statistics are extremely conservative and fail to

misclassify any observations. We also observe that grpMAD and grpTW(mad), which

group residuals that are standardized with MAD estimates, are several times more

liberal than the other methods. This supports our findings of negative deviance when

estimating variance with MAD. The effects of underestimation are demonstrated with
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Table 5: The average number of detected outliers for simulated data with no outliers.

Methodology # of FP
MAD 10
grpMAD 699
grpSTD 0
TW(var) 0
grpTW(var) 0
grpTW(mad) 413
grpTW(mad50/std50) 0
grpTW(mix/mad) 54
grpRSDR-OBM 55
grpVM-OBM 54

an increase in the detection of false positives.

5.2.3 Simulated Data: With Outliers

With non-outlier simulated data we were able to generalize tendencies in the method-

ologies. Additionally, we perturb the data with outliers so that we are better able

to assess the effects of grouping and draw additional conclusions about the variance

estimators themselves. Table 6 shows the positive predictive values and false negative

rates of simulated data with outliers for each methodology listed in Table 4.

grpTW(mix/mad) and grpRSDR-OBM are most robust to outlier distance and

do well in performance measures i.e. high predictive probability and low false neg-

ative rate. In general, we see a vast improvement in performance when we allow

the variance term to be supplemented with local grouped estimation of a common

variance. For example, grpMAD is much more stable in outlier detection than MAD.

We find that using MAD to estimate gene-specific performs great when outliers are

known to be considerably far from non-outlier data (i.e. c=10). However, this lim-

its analysis to an unreasonable constraint. Although grpMAD has smaller positive

predictive value, its stability over outlier distance provides an advantage in real data
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Table 6: Positive Predictive Value (PPV) and False Negative Rate (FNR) of outlier
detection methodologies for simulated data perturbed by outliers.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
MAD 0.923 0.862 0.966 0.033
grpMAD 0.781 0.075 0.792 0
grpSTD 0 1 0.886 0.420
TW(var) 0 1 0 1
grpTW(var) 0.978 0.177 0.897 0.017
grpTW(mad) 0.870 0.023 0.872 0
grpTW(mad50/std50) 0.958 0.047 0.822 0
grpTW(mix/mad) 0.922 0.058 0.946 0
grpRSDR-OBM 0.943 0.088 0.946 0
grpVM-OBM 0 0.166 0 0.166

analysis. Grouped estimation of the TW estimator, grpTW(var), is less powerful

than grpTW(mix/mad) and grpRSDR-OBM because it relies on the sample vari-

ance, which is unreliable in the presence of outliers. It is within reason to anticipate

an increase in performance when outliers are forced to be substantially far from the

remainder of the data. However, grpTW(var) decreases in positive predictive prob-

ability as outliers are moved from 3 to 10 standard deviations away. The effects of

grouping are further demonstrated in the inability of the ungrouped TW estimator

to detect any outliers. Recall that grpVM-OBM methodology is constructed under

the assumption that variance increases as a quadratic function of mean. Since gene

spread and center are simulated completely independent of one another, we see the

repercussions - zero PPV and relatively high FNR - in using parametric models of

variance-intensity to fit data which is nonparametric in structure.

Equally important to reports of PPV and FNR is understanding where the false

positives (FP) and false negatives (FN) occur. This is especially of interest in compar-

ing grpRSDR-OBM and grpTW(mix/mad). Both methodologies consistently perform

well; however, there is a tradeoff in PPV and FNR for c=3. While grpRSDR-OBM
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has higher positive predictive probability, grpTW(mix/mad) has lower false negative

rate. For one simulated data set, we record counts of misclassified observations based

on properties of the data. Specifically, we subset data using a 5× 5 MAD versus me-

dian grid system, where MAD and median values are divided into 5 equally spaced

intervals. Data in Figure 5 summarizes the counts of false negatives for this grid

system. We find that grpRSDR-OBM is extremely conservative and shows difficulty

in detecting outliers in the lowest variable region. Throughout the range of median

intensities for lowest variability, it fails to detect 215 observations compared to the

68 that grpTW(mix/mad) fails to detect.

Data in Figure 6 reports the counts of false positives over the same grid system for

the same simulated data set. We acknowledge that grpTW(mix/mad) is more liberal

with classifying outliers in the lowest variable region. However, we find this to be less

alarming since one is afforded the opportunity to examine a smaller subset of genes

in order to verify outlier classification. We have developed a diagnostic tool which

allows for further investigation of these observations which we discuss in Chapter VI.

Figure 6 also demonstrates that grpRSDR-OBM continues to falsely classify non-

outlier observations as the measure of spread increases. This is particularly alarming

since the ability to distinguish between outliers and non-outliers naturally diminishes

as the variability increases.

We gather from Figures 5 and 6 that grpRSDR-OBM suffers from classifying false

negatives for low variable genes and false positives for high variable genes. There is

also evidence to suggest that grpTW(mix/mad) mistakenly classifies non-outliers as

outliers for low variable genes. We extend the investigation of misclassified observa-

tions to the entire simulation study and report the average number of false positives

and false negatives based on quantiles of the true variance, see Figure 7. We divide

true variances into 10 equal frequency bins and report the average FN and FP counts
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over all simulations. Since FP and FN averages for grpTW(mix/mad) are near equal

across variance quantiles, it is impossible to draw meaningful conclusions. On the

other hand, it is clear that grpRSDR-OBM struggles to correctly identify outliers

for low variable genes and incorrectly detects twice as many outliers for the most

variable genes. Moreover, the high false negative counts seen with grpRSDR-OBM

indicate that a significant number of true outliers are undetected and misclassified as

non-outlier data. This drawback is certain to inflate gene-specific variance estimates

and distort any biological conclusions.

5.2.4 Additional Analysis

We also consider perturbing simulated data with a total 500 and 250 outliers by

adding outliers to every 10th and 20th gene, respectively. As the number of true

outliers decreases, we observe a decrease in PPV and for c=3, we generally see an

increase in FNR. Overall, we observe similar relative relationships between method-

ologies. It is still the case that grpRSDR-OBM and grpTW(mix/mad) appear to be

competing methodologies. However, the additional studies with fewer outliers sug-

gest that grouped estimation of TW(mad50/std50) may be an acceptable alternative

when there are fewer outliers, especially when outliers are more distinct and further

from non-outlier data. For c=3, our methodologies suffer in false negative rate. We

take a closer look at the methodologies for our second simulation scenario and for real

data analysis. Complete tables of PPV and FNR reports for the ten methodologies

are presented in Appendix VII for each additional simulation.

5.3 Simulation II: Gene Variance-Intensity Dependency

We include an additional simulation study to reflect a mean-variance relationship in

expression data. Based on real data structure, we model variance as a quadratic
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function of mean using the following piecewise function

Yg =





0.054 if Xg < 6,

0.09− 0.004(Xg − 9)2 6 ≤ Xg ≤ 9

0.09 otherwise,

(5.3)

with Xg generated from a gamma distribution with shape parameter 21 and rate

parameter 3 for g = 1, . . . , 5000. For each g, we randomly sample 6 observations from

N(Xg, Yg). We adopt the same protocol as outlined in the previous section for outlier

perturbation of the data.

The PPV and FNR for competing methodologies are given in Table 7. We include

grpRSDR-OBM, grpTW(mix/mad)-OBM, and grpVM-OBM from the previous sim-

ulation. We also include grouped estimation of variance as a nonparametric function

of mean, which we call grpLoess-OBM. For this methodology we use loess regression

to obtain the fitted values of gene-specific variance before computing estimates of

RSDSR. In order to further allow for grouped genes to share similar variation, we

estimate robust standard deviation of the residuals by ordering genes according to

increasing median intensity for all four methodologies. Though least influential for

residuals that are standardized first, this modification could offer some stability since

data is simulated with a mean-variance dependency. Table 7 also presents the PPV

and FNR for grpTW(mix/mad) methodology in which genes are grouped simply in

natural, sequential order. These statistics vary minimally from those reported for

grpTW(mix/mad)-OBM, suggesting that grouped estimation of TW(mix/mad) pro-

tects against any contingency on the belief similar expression intensity will imply

similar variability.

By modeling variance as a function of mean, grpRSDR-OBM, grpVM-OBM,

and grpLoess-OBM perform considerably well. Each attains extremely high positive

predictive values and near zero false negative rates. By design, we expect grpVM-
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Table 7: Positive Predictive Value (PPV) and False Negative Rate (FNR) of out-
lier detection methodologies for simulated data with mean-variance relationship per-
turbed by outliers.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
grpRSDR-OBM 0.975 0 0.971 0
grpTW(mix/mad)-OBM 0.892 0.067 0.94 0
grpVM-OBM 0.970 0.004 0.970 0
grpLoess-OBM 0.970 0.004 0.970 0
*grpTW(mix/mad) 0.883 0.134 0.936 0.013

OBM to do well. grpVM-OBM showed no power for detecting outliers when gene

variance and intensity were completely independent; however, the efficacy of the

methodology significantly improves when analyzing data which is modeled with a

quadratic variance-mean dependency. Also, the data structure of this simulation

study guarantees that large (small) mean will imply large (small) variance. This

strengthens the performance of grpRSDR-OBM since unstandardized data grouped by

increasing intensity will be similar in variation. Loess regression also relates variance

to mean so that grpLoess-OBM is able to efficiently utilize the structure in data for

accurate variance estimation. Although grpTW(mix/mad)-OBM does well with more

distant outliers, its performance suffers when c=3. Thus, for methods which do make

use of data structure when one is clearly defined, we actually lose power.

Additionally, we investigate PPV and FNR for simulated data with outliers added

to every 10th and 20th gene; results are presented in Appendix VII. As with the

previous simulation study, we find that decreasing the number of outliers does not

change the relative relationships between methodologies; however, the probability of

correct detection among all detected outliers decreases as the number of outliers de-

creases. Based on the additional analysis for our first simulation study, we incorporate

grpTW(mad50/std50)-OBM into our analysis of variance-mean dependency data. We
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find that it outperforms the other methodologies under this scenario. Though not

presented in Table 7, the PPV/FNR for simulated data with 2500 true outliers are

0.974/0 (0.821/0) for c=3 (c=10). Thus, its comparative performance varies depend-

ing on the number of outliers and outlier distance.

In the following chapter, we explore the performance of grpRSDR-OBM,

grpTW(mix/mad)-OBM, and grpVM-OBM on colon cancer microarray data. We

exclude grpLoess-OBM in real data analysis since its performance is equivalent to

grpRSDR-OBM when analyzing data simulated to reflect real data. In addition, both

are non-parametric methodologies and grpRSDR-OBM is more easily implemented

and computationally efficient. We also exclude grpTW(mad50/std50)-OBM due to

analytical results of the real data.
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CHAPTER VI

ANALYSIS OF OUTLIER DETECTION FOR REAL DATA

6.1 Introduction

The purpose of this chapter is to illustrate the performance of grpRSDR,

grpTW(mix/mad), and grpVM using real microarray data sets. Simulation studies

in Chapter V present two opposing arguments for mean-variance relationship. The

first assumes no relationship and the second assumes a completely dependent and

quadratic relationship. Though good arguments, neither are believed to model the

true non-trivial relationship between mean and variance for gene expression data.

The data, which is taken from the lab of Dr. Laurie Davidson, is described in detail

in Section 6.2. We outline steps for data normalization in Section 6.3. Section 6.4 is

devoted entirely to data analysis and results of our findings.

In real data analysis we find within-gene distribution to be an issue which further

complicates the problem, yet contributes to successful outlier classification. The

distribution of within-gene expression data affects the MAD constant k (4.11). While

some gene data is normally distributed, others are more uniformly distributed. Both

require a different constant k (Rousseeuw and Croux, 1993) which plays a significant

role in shrinkage estimation. It is beyond the scope of this dissertation to tackle the

difficulties in determining the distribution of gene-by-gene data. However, we offer

some demonstration of the problem and show success in the necessity of accurate

MAD k constants.

Initially, we remove genes with any missing data. For each treatment, there

remains over 12,500 genes for analysis. In Section 6.4.2 we present analysis of outlier

detection for all genes with at least 5 observations.
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6.2 Data Description

Colon cancer polysomal microarray data will be used in this paper. Researchers sim-

ulated the colonic environment in vitro in order to determine if different media could

detect microbial changes influenced by cancer promotive and cancer preventative fac-

tors. The study was carried out using a 2 × 2 × 2 factorial design of experiment.

Male Sprague-Dawley rats were given dietary treatments composed of a fiber source

- either cellulose or pectin, and fatty acids - either corn oil (enriched with Omega-6)

or fish oil (enriched with Omega-9). The rats were weighed and assigned to one of

the four diet treatments. Group assignments were done so that each group measured

an equal initial weight. After five weeks of age, the rats were injected subcutaneously

with either azoxymethane (AOM) or an equal amount of saline. Azoxymethane is a

carcinogen or cancer producing agent that is colon specific. Saline is used to control

for any confounding variables that would arise from injection itself. When data was

collected at 6 months of age, the rats were housed in double gridded polycarbonate

cages in order to prevent them from tampering with bedding or feces. At 10 months

of age, the rats were relocated to wire mesh hanging cages. Rats were given unlimited

access to diet and water and all animal handling procedures were approved by the

Texas A&M University Laboratory Animal Care Committee.

The 8 treatments resulting from this design are denoted as Acp, Acc, Acp, Afc,

Afp, scc, scp, sfc, and sfp. We compose each treatment acronym by using the first

letter of the factor level. For exposure, diet, and fiber we have A or s, c or f, and c

or p, respectively. The total number of arrays used in analysis for each treatment are

Acc - 6, Acp - 8, Afc - 6, Afp - 8, scc - 6, scp - 5, sfc - 6, and sfp - 8.
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6.3 Data Normalization

Normalization is a critical step in microarray data processing. Due to the nature of

microarray analysis, measured gene expression intensities are subject to noise arising

from various sources. These factors include, but are not limited to, tissue-handling,

labeling efficiency, image scanning, and hybridization efficiency. The purpose of nor-

malization is to correct microarray data for systematic and technical biases.

There are numerous normalization procedures available today. Yang et al. (2000)

discuss various normalization methods in detail. Some common normalization pro-

cedures for one-channel microarray data include the globalization method, median

normalization, local regression, and quantile normalization. We choose the latter in

order to adjust the multiple high density oligonucleotide arrays used in this study.

Quantile normalization uses the whole data set and makes no assumption about the

distribution of data. By matching percentiles of each array, its effect aligns the distri-

bution of expression intensities across arrays so that they are the same. Bolstad et al.

(2003) demonstrate that the quantile method of normalization leads in performance

based of bias, variance, and computational efficiency.

We utilize quantile normalization software developed by Ben Bolstad and made

available in the Bioconductor affy package. After normalization, data are transformed

via log2 transformation. This scaling adjusts the variances to be the same for all

intensities. For the remainder of this paper, we refer to normalized gene expressions

as data that has been both normalized and transformed.

6.3.1 Additional Bias Correction

In order to further minimize artifacts between arrays within the same treatment, we

make use of regression techniques. Normalized data for each array was regressed onto

a vector of median values for genes under the same treatment. Regression was carried
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out using least trimmed squares (LTS) (Rousseeuw and Leroy, 1987) to estimate

unknown parameters of the linear regression model. Least trimmed squares is a

robust alternative to ordinary least squares (OLS) regression. It is a high breakdown

point method and is able to accommodate highly contaminated data. Rather than

estimating coefficients based on minimizing the sum of squared residuals, coefficients

from LTS regression are estimated by minimizing the sum of the h smallest squared

residuals. Namely,

argmin
θ̂

h∑
i=1

(r2)i:n, (6.1)

where r2
1:n ≤ . . . ≤ (r2)n:n are the ordered squared residuals.

The effects of normalization are shown by plotting array data against median

expression values for arrays under the same treatment. As shown in Figure 8, array

bias is virtually eliminated with bias corrected normalization of the raw data for

treatment Acp. We include bias correction as a precautionary step to control for

array intensity based biases should there be a need after log2 transformation of the

normalized data. The other treatments show similar trends.

6.3.1.1 Bias Correction Algorithm

Let Ỹ be a vector of median expressions for G genes of treatment k. For each array j

of treatment k, let Yj be the normalized gene expressions of G genes. We define the

steps for bias correction of a single treatment to be:

1. Obtain the fitted values, Ŷj, from regressing Yj on Ỹ,

Ŷj = f(Ỹ), (6.2)

where f is the linear function resulting from LTS regression.
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Figure 8: Two methods of reducing systematic bias in gene expression data. Data
are taken from treatment Acp. A different loess curve was fit to each array data
plotted against median expression values of data under the same treatment. (a) Log2
transformation of raw data. (b) Array bias corrected data as described in 6.3.1. A
perfect diagonal is represented by the solid line.
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2. Calculate bias corrected values by removing array intensity based biases and

adding the center back.

Y∗
j = Yj − (Ŷj − Ỹ) (6.3)

3. Repeat steps 1 and 2 for each array j.

For completeness, repeat steps 1-3 for each experimental condition. We denote bias-

corrected array data as {Y ∗}.

6.4 Colon Cancer Microarray Data Analysis

In this section we present analyses from applying the proposed methodology to colon

cancer microarray data. We consider grpRSDR-OBM, grpTW(mix/mad)-OBM, and

grpVM-OBM to be competing methodologies since each perform well under certain

realized data structures. grpRSDR-OBM accommodates the belief that genes with

similar intensity will share similar variation and if true, will demonstrate superior per-

formance whether the relationship between gene spread and location is parametric or

nonparametric. On the other hand, grpVM-OBM is ideal if the variance of a gene truly

increases as a quadratic function of its central measure. Finally, grpTW(mix/mad)-

OBM presents a platform for which neither assumption must hold true.

The total number of detected outliers for data under each experimental treat-

ment is presented in Table 8 for each methodology. After additional investigation of

outlier classification for grpRSDR-OBM and grpVM-OBM, it was determined that

their performance on real data is identical for nearly every gene expression. For any

treatment where the counts for grpRSDR-OBM and grpVM-OBM are not the same,

the method with more outliers simply picked up a few that the other did not. Thus,

for the remainder of this paper we compare grpTW(mix/mad)-OBM with grpRSDR-

OBM, noting that the same conclusions can be drawn for grpVM-OBM. We proceed
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Table 8: The number of outliers detected at Q=0.01 in real data when using
grpRSDR-OBM, grpTW(mix/mad)-OBM, and grpVM-OBM to estimate within-gene
variance.

Treatment grpRSDR-OBM grpTW(mix/mad)-OBM grpVM-OBM
Acc 536 142 536
Acp 1446 165 1446
Afc 1010 334 1010
Afp 746 127 746
scc 973 284 975
scp 665 989 665
sfc 674 226 674
sfp 679 121 677

with a comparative study of two methods which assume no functional relationship

between gene variance and intensity.

We focus our analysis of real data on two experimental conditions - Acp and

scp. This allows for the study of treatments that are both biologically and statis-

tically interesting. Biologically, we are able to study the effect of colon cancer pro-

motive corn oil diets in combination with pectin fiber to enhance colonic apoptosis

against azoxymethane-induced colon cancer. From a statistical standpoint, results

presented in Table 8 show that grpRSDR-OBM and grpTW(mix/mad)-OBM differ

most in the number of outliers detected in Acp data. We also find that the only

time grpTW(mix/mad)-OBM returns more outliers is when analyzing treatment scp.

Taking a closer look at these two unique data sets facilitates our assessment of ac-

curacy and reliability of the variance estimation methodologies. More specifically,

we want to make certain that there is no flaw in the systematic implementation of

grpTW(mix/mad)-OBM which makes it prone to a limited number of detected out-

liers.
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6.4.1 Between Extreme Expression Deviation to MAD Ratio

The uncertainty of truth concerning outlier classification presents a challenge in real

data analysis. As one tool for assessing accuracy, we introduce a statistic that mea-

sures the relative deviation level of outliers. We denote this measure as the between

extreme expression deviation to MAD (BEED-MAD) ratio. For each outlier gene g,

the BEED-MAD ratio is calculated as the absolute difference between the outlier ex-

pression and its closest non-outlier neighbor divided by the gene’s measure of MAD.

Precisely, we denote the BEED-MAD ratio of outlier gene g as

BEED-MADg =
|yg,i − yg,j|

MADg

, (6.4)

where yg,i is the outlier expression and yg,j is the expression value of its closest non-

outlier neighbor. Without loss of generality, MAD is computed with k=1 (4.11) for

all g. If there are multiple outliers detected for a gene, then the BEED-MAD ratio is

taken to be the average of BEED-MAD ratios for all detected outliers in that gene.

The average BEED-MAD ratio of detected outliers in each experimental condi-

tion is shown in Table 9 for both methodologies. Based on the reported averages,

grpRSDR-OBM is consistently less powerful in detecting outliers that deviate most

from non-outlier observations. On average, grpTW(mix/mad)-OBM detects outliers

with BEED-MAD ratios that exceed those of grpRSDR-OBM by more than a fac-

tor of 3. It is important to stress that we do not devise the BEED-MAD ratio as

a tool for detecting outliers. Doing so would require dependency on a cutoff value

for classification. Rather, we promote a technique that is data adaptive and use the

BEED-MAD ratio to give insight on the plausibility of detected outliers.

For further analysis, we pool all outliers detected by grpRSDR-OBM and

grpTW(mix/mad)-OBM and order the BEED-MAD ratios from lowest to highest. A

comparison of gene expression scatter for genes with the 40 lowest and 40 highest
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Table 9: Average BEED-MAD ratio for detected outliers when using grpRSDR-OBM
and grpTW(mix/mad)-OBM to estimate gene variability.

Treatment grpRSDR-OBM grpTW(mix/mad)-OBM
Acc 2.99 17.39
Acp 3.62 12.96
Afc 5.48 17.57
Afp 4.04 13.62
scc 4.87 17.61
scp 6.49 24.25
sfc 4.6 18.38
sfp 3.99 13.38

ratios for treatments Acp and scp is shown in Figures 9 and 10, respectively. Out-

liers detected by grpRSDR-OBM dominate the lowest BEED-MAD ratio region. For

each of these genes, the between extreme expression deviation is minimal compared

to within-gene variability. As a result, we observe outliers that appear to be false

positive observations. This would explain the relatively high counts of detected out-

liers reported in Table 8 for grpRSDR-OBM and grpVM-OBM. Outliers with highest

BEED-MAD ratios are shown in the bottom panel of Figures 9 and 10. For Acp data,

there are many distant outliers that both methodologies detect, many outliers that

grpTW(mix/mad)-OBM uniquely detects, and only two outliers that are uniquely

detected by grpRSDR-OBM. For scp, the grpTW(mix/mad)-OBM methodology is

superior in detecting outliers which deviate most from their non-outlier neighbors.

Thus, estimating variance using grouped estimation of TW(mix/mad) does well in

identifying observations that appear to be true outliers.

The top panels of Figures 9 and 10 affirm our conjecture and support previous

findings that grpRSDR-OBM is too liberal in outlier detection. Ironically, it tends

to be most conservative when handling genes for which positive outlier identification

is likely to be feasible. The grpTW(mix/mad)-OBM methodology is shown to suffer
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some when gene expressions are more uniformly than normally distributed. This

is evident with the high BEED-MAD ratio outliers in Figure 9 that are uniquely

detected by grpRSDR-OBM. We believe that these points are rejected as outliers by

grpTW(mix/mad)-OBM because the distribution of expressions within those genes

are more uniform. After setting the MAD constant to 1.15 (an appropriate constant

for making the estimator consistent in estimating σ for uniformly distributed data) for

only those two genes and rerunning the algorithm, we analyze the same genes and find

that the two observations in question have also been identified by grpTW(mix/mad)-

OBM. The remainder of observations in Figure 9 had no change in outlier classification

by either method. This fact suggests that further improvement can be obtained if

an improved robust measurement of the heterogeneity level of gene-specific variation

can be proposed.

6.4.2 Outlier Detection for Genes with Sample Size ≥ 5

In order to detect outliers in genes with missing data, we make a small modification to

the average risk function (4.9) used in determining the optimal shrinkage parameter.

This function was originally specified for gene expression data with a fixed degrees

of freedom. However, this constraint does not allow for variance estimation of genes

with varying sample sizes so we de-generalize the average risk function so that genes

with missing data, but sufficient sample size can be included in analysis. The updated

risk function is given by

R(σ2t, σ̂2t) =
1

G

G∑
g=1

E(L(σ2t
g , σ̂2t

g ))

=
1
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Figure 9: Scatterplot of residual values for genes with outlier expressions for Acp data.
Outliers detected by grpRSDR-OBM and grpTW(mix/mad)-OBM are pooled together
and ordered by BEED-MAD ratios. Outlier genes with the 40 lowest and 40 highest
ratios are plotted in the top and bottom panels, respectively. Genes in the top panel are
ordered by increasing BEED-MAD ratio and genes in the bottom panel are ordered by
decreasing BEED-MAD ratio. Outliers are classified by either grpRSDR-OBM (×),
grpTW(mix/mad)-OBM (plus sign), or both (triangle).
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Figure 10: Scatterplot of residual values for genes with outlier expressions for scp
data. Outliers detected by grpRSDR-OBM and grpTW(mix/mad)-OBM are pooled
together and ordered by BEED-MAD ratios. Outlier genes with the 40 lowest and
40 highest ratios are plotted in the top and bottom panels, respectively. Genes in
the top panel are ordered by increasing BEED-MAD ratio and genes in the bottom
panel are ordered by decreasing BEED-MAD ratio. Outliers are classified by either
grpRSDR-OBM (×), grpTW(mix/mad)-OBM (plus sign), or both (triangle).
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Table 10: Number of detected outliers (average BEED-MAD ratio) for detected out-
liers when using grpRSDR-OBM and grpTW(mix/mad)-OBM to estimate gene vari-
ability for genes with sample size ≥ 5.

Treatment grpRSDR-OBM grpTW(mix/mad)-OBM
Acc 694 (2.96) 336 (17.12)
Acp 1795 (3.58) 407 (12.56)
Afc 1241 (5.41) 548 (17.06)
Afp 1012 (3.99) 307 (13.47)
scc 1124 (4.96) 477 (17.25)
scp 665 (6.49) 989 (24.25)
sfc 767 (4.52) 411 (18.02)
sfp 963 (3.98) 325 (13.19)

where

hn(t, ν) = (
ν

2
)t

(
Γ(ν

2
)

Γ(ν
2

+ t
n
)

)n

, (6.6)

t = 1, Ψ(t) = Γ′(t)/Γ(t) is the digamma function, and νg is the degrees of freedom

for gene g.

We incorporate into our analysis genes with at least 5 observations for sufficient

sample size. In Table 10 we report the updated number of detected outliers and

the average BEED-MAD ratio for these outliers. Again, we find that the average

BEED-MAD ratio for outliers detected by grpTW(mix/mad)-OBM exceed the aver-

age BEED-MAD ratio for outliers detected by grpRSDR-OBM by a factor of 3 for

every treatment. Our findings also show consistency in the quality of outlier obser-

vations for both methodologies. The average BEED-MAD ratio for outliers detected

in genes with varying sample sizes are congruous with those obtained when analyzing

only genes with complete data. We still find that grpRSDR-OBM detects observa-

tions that appear to be false positives, while on average, grpTW(mix/mad)-OBM

classifies outlier observations which deviate most from their non-outlier neighbors.
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6.4.3 Additional Analysis and Discussion

Through our consideration to perturb simulated data with fewer outliers, we find that

introducing a cutoff criterion for specifying which genes to send only the square of

the MAD statistic into our modification of the TW algorithm may not prove superior

based on the number of true outliers. Thus, we analyze outlier detection for real

data using grpTW(mad50/std50)-OBM to estimate variance. In Appendix VII we

present tables which report the number of detected outliers and the average BEED-

MAD ratio for each experimental treatment. grpTW(mad50/std50)-OBM not only

detects considerably less outliers than grpTW(mix/mad)-OBM, but also averages

lower BEED-MAD ratios. It appears that properties of real data which depart from

structured simulated data make it necessary to assess the likelihood of an outlier

gene in order to determine which variance statistics should be sent into Tong &

Wang’s optimal shrinkage algorithm. Thus, for real colon cancer data, we analyze

the performance of grpRSDR-OBM and grpTW(mix/mad)-OBM.

The numbers of detected outliers presented in Tables 8 and 10 definitely re-

veal discrepancies in the competing methodologies. On average, grpRSDR-OBM and

grpVM-OBM detect hundreds more outliers than grpTW(mix/mad)-OBM. However,

based on the BEED-MAD averages which range between 3 and 6.5 for grpRSDR-

OBM and grpVM-OBM and 13 and 24 for grpTW(mix/mad)-OBM, we can deduce

that many of these observations are indeed false positives. This is especially clear in

the gene expression scatter plot for selected outlier genes presented in Figures 9 and

10.

The consistency in grpTW(mix/mad)-OBM’s ability to classify relatively dis-

tant observations as outliers convince us that differences in the number of detected

outliers across treatments are ultimately explained by uniqueness in data. As an
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example let us consider the number of outlier observations for our representative

treatments. grpTW(mix/mad)-OBM detects 407 outlying observations in treatment

Acp and detects 989 outliers in treatment scp. Yet, the average BEED-MAD ratio

of outliers is approximately 3 times the average BEED-MAD ratio for outliers de-

tected by grpRSDR-OBM. This is true for both treatments. We find that despite

the differences in numbers, the quality of information is equally powerful because

grpTW(mix/mad)-OBM is data adaptive.

It is clear that the benefits of grouping are impressive; however, grouping genes

to estimate variance is only effective if genes share similar variability. If variance is

non-homogenous across genes within a group, then methodologies which depend on

this assumption are subject to problems which stem from inaccurate variance estima-

tion. For grouped estimation of robust standard deviation of the residuals, the effect

of variance heterogeneity is amplified since the procedure groups non-standardized

expressions. For these microarray data, most genes have low within-gene variability.

Thus for grpRSDR-OBM, the 68% percentile of residuals is likely to be small. The

variance for genes which are truly more variable, but share similar median intensity,

will be underestimated. Consequently, test statistics for these high variable gene

expressions will be inflated, resulting in an increased number of false positives.

In addition, it appears that grpRSDR-OBM classifies an observation as an out-

lier based on its deviation from the median while completely ignoring the within

gene variability. We see this to be evident in Figures 9 and 10 where outliers de-

tected by grpRSDR-OBM are more reflective of a threshold criterion. This would

be acceptable if genes shared similar variability; however, we observe variance to be

heterogeneous across grouped genes. If the measure of variability for a gene is large,

then an expression with a large residual may not be a legitimate outlier. Moreover,

if the within-gene variability is small, then an observation with a mild residual value
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could very well be an outlier. Thus, we expect to see some data with small residuals

classified as outliers. This is especially true when within-gene variability varies. We

are not interested in selecting outliers based on a cutoff for residuals. This approach is

known to favor high variable genes. Rather, our intent is to truly identify expressions

that are statistically distant from their within-gene neighbors.

Outlier detection by grpVM-OBM methodology also suffers in estimation of the

true variance. Recall that its detection of outliers is almost completely synonymous

with that of grpRSDR-OBM. Thus, it, too, is extremely liberal with classification of

high variable genes. We observed superior performance in the proportion of correct

detection when the procedure was implemented on simulated data generated to have

a quadratic relationship between location center and spread. Undeniably it does well

under this scenario; however, results of real data analysis are indicative of drawbacks

in the methodology when the model is misspecified.

Our proposed methodology shows strength here because we abandon any re-

liance on non-random data structure. Although genes are ordered by median, the

methodology itself is not constructed under this assumption. For simulated data,

grpTW(mix/mad)-OBM has considerable power in detecting outliers although it suf-

fers some when the relationship between gene variance and intensity is perfectly de-

fined. We observe superior performance in real data analysis for which gene centrality

and variability has neither a completely random or completely specified relationship.

In microarray data analysis, assumptions of variance heterogeneity across genes and

gene variance-intensity dependency is important in gene-specific variance estimation.

Such assumptions are powerful and can either improve or fracture the performance

of methodologies depending on realized data structure. When the true data struc-

ture and outlier features are unknown, we observe substantial power in using robust

methodology for optimal shrinkage variance estimation which requires no assumptions
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about data structure.
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CHAPTER VII

CONCLUSION

The success of both colon cancer screening methodologies hinges on the ability of

mRNA to move the information contained in DNA to the translation machinery. Ob-

taining gene expressions from mucosa cells presents no issue of partially degraded

mRNA; unfortunately, we do not have the same assurance with fecal array data.

Colon cancer takes lives of more than fifty thousand Americans every year because

only 38% of cases are diagnosed at an early stage. The potential of being able to re-

cover information from fecal samples is important since technological advances seek to

provide at-risk patients with a non-invasive alternative for testing their susceptibility

to colon cancer.

Although formal tests have shown that genetic material collected from feces is

not as good as that collected from mucosal cells within the colon, it is still believed

that partially degraded RNA samples can produce meaningful measurements (Schoor

et al., 2003). Research is currently underway to develop normalization techniques

that can accurately measure gene expression levels from partially degraded genetic

materials. Liu et al. (2005) report a new two stage semiparametric normalization

method that performs favorably when compared to the global median and quantile

normalization methods. Also promising to this area of research is the demonstration

by Kanaoka et al. (2004) in isolating intact fecal eukaryotic mRNA.

Our investigations suggest that even though there tends to be a higher proportion

of genes that have low reproducibility in the fecal array data than in the mucosa array

data, for the group of genes which possess high ICC values in the fecal data, their

reproducibility is no worse than that of the mucosa data. We note that the inverse
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probit transformation of ICC values enables us to easily adopt the mixture of normal

modeling approach carried out by MCLUST. Our findings also suggest that this

modeling approach allows us to separate the low and high ICC components so that

meaningful conclusions can be reached. In our study investigating mixture modeling

of intraclass correlation coefficients, we demonstrate that the normal mixture model

is less sensitive toward model mis-specification than that of mixture of betas. By

modeling the IPT-ICC values with normal mixtures, we are able to obtain accurate

density parameter estimates. We also avoid the problem of estimating parameters for

a beta distribution which may increase to infinity at the boundaries. We risk losing

valuable information if we incorrectly model data with a mixture of betas.

The objective of the second study was to develop a robust methodology for es-

timating gene-specific variance. It is motivated by the need for adaptive techniques

that are able to accommodate limitations seen in microarray gene expression data.

We believe that a suitable method should be insensitive to outliers, free of any as-

sumptions, effective for small sample size, and data adaptive. Ultimately, we desire

accurate estimation of variance in order to detect outlier observations. The successful

identification and handling of outliers will, in turn, lead to reliable variance estimation

which is essential for detecting differentially expressed genes.

Numerous innovative approaches have been devised to strengthen the variance

term, many of which center around the idea of gathering information across genes. Al-

though a common trend in estimation procedures, methodologies which group genes

by similar median or mean intensity will suffer greatly from inaccurate variance esti-

mation when gene-specific variance is heterogeneous across genes. Likewise, method-

ologies which assume a quadratic variance-mean dependency in the data will also be

less powerful in detecting outliers when the assumption does not hold. From sim-

ulation studies based on parametric and nonparametric data structures, we observe
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the strengths and weaknesses of both approaches. When data is generated to model

variance as a quadratic function of center location then both methodologies perform

considerably well. However, both suffer to some extent when data is generated to

have a completely random data structure. The former shows suboptimal false nega-

tive rates and the latter is unable to successfully identify almost any outliers.

In response to these drawbacks, we extend the optimal shrinkage variance esti-

mation work of Tong and Wang (2007). We formulate a robust modification which

is necessary for microarray data analysis. Simulation studies and real data analysis

in this dissertation demonstrate that our methodology is capable of handling both

functional and non-functional relationships in data structure. Our proposed method-

ology performs well with genes of sample size as small as 5. For real data analysis we

support our findings based on a statistic that measures the relative deviation level

of outliers. On average, this measure for outliers detected by our methodology, is

more than 3 times that of the other methodologies. We find that our methodology

consistently detects observations that are relatively distant from their non-outlier

neighbors.

Our work also contributes to previous work which promotes the argument that

there are strengths in numbers. Even methodology which is believed to be extremely

effective in estimating variance for small sample size performs poorly unless we con-

sider an additional grouped estimated variance. There are substantial power increases

when gene-by-gene variance is computed to be ciσ
2, where ci and σ2 are gene-specific

and local common variance estimates, respectively. We emphasize that grouping will

be ineffective when similar intensity does not imply similar variation. Methodolo-

gies which produce gene-specific variance estimates have an advantage here because

gene-by-gene variance estimates allow for standardized test statistics, which have a

standard normal distribution. By grouping data that come from the same distribu-
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tion, the information shared by genes after standardization is efficiently utilized.
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APPENDIX A

ADDITIONAL ANALYSIS OF SIMULATED STUDIES PRESENTED IN

CHAPTER V

Simulation I: Independent Gene Variance-Intensity Relationship

In this section we report the PPV and FNR for gene data simulated to have no re-

lationship between location center and spread. Our analyses in Chapter V reflect a

study where outliers are added to every other gene, resulting in 2500 outliers. Alter-

natively, we consider the effects of adding a total of 500 and 250 outliers. Tables 11

and 12 present results where outliers are added to every 10th and 20th, respectively.

Table 11: Positive Predictive Value (PPV) and False Negative Rate (FNR) of outlier
detection methodologies for simulated data perturbed by outliers added to every 10th

gene.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
MAD 0.620 0.964 0.887 0.215
grpMAD 0.338 0.103 0.361 0
grpSTD 0 1 0 1
TW(var) 0 1 0 1
grpTW(var) 0.932 0.891 0.997 0.115
grpTW(mad) 0.511 0.051 0.522 0
grpTW(mad50/std50) 0.951 0.352 0.968 0
grpTW(mix/mad) 0.798 0.434 0.867 0
grpRSDR-OBM 0.760 0.141 0.776 0
grpVM-OBM 0 0.167 0 0.167

Simulation II: Gene Variance-Intensity Dependency

In this section we report the PPV and FNR for data which is simulated such that

the variance of a gene is a quadratic function of its mean intensity. Tables 13 and 14
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Table 12: Positive Predictive Value (PPV) and False Negative Rate (FNR) of outlier
detection methodologies for simulated data perturbed by outliers added to every 20th

gene.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
MAD 0.421 0.975 0.831 0.348
grpMAD 0.200 0.111 0.218 0
grpSTD 0 1 0 1
TW(var) 0 1 0 1
grpTW(var) 0.885 0.911 0.995 0.026
grpTW(mad) 0.347 0.063 0.360 0
grpTW(mad50/std50) 0.939 0.474 0.964 0
grpTW(mix/mad) 0.648 0.525 0.784 0
grpRSDR-OBM 0.651 0.167 0.677 0
grpVM-OBM 0 0.168 0 0.168

present results where outliers are added to every 10th and 20th gene, respectively.
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Table 13: Positive Predictive Value (PPV) and False Negative Rate (FNR) of out-
lier detection methodologies for simulated data with mean-variance relationship per-
turbed by outliers added to every 10th gene.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
grpRSDR-OBM 0.915 0.006 0.916 0
grpTW(mix/mad)-OBM 0.863 0.222 0.886 0
grpVM-OBM 0.916 0.005 0.916 0
grpLoess-OBM 0.916 0.090 0.915 0
grpTW(mad50/std50)-OBM 0.974 0 0.984 0
*grpTW(mix/mad) 0.844 0.318 0.882 0

Table 14: Positive Predictive Value (PPV) and False Negative Rate (FNR) of out-
lier detection methodologies for simulated data with mean-variance relationship per-
turbed by outliers added to every 20th gene.

Outliers (c=3) Outliers (c=10)
Methodology PPV FNR PPV FNR
grpRSDR-OBM 0.885 0.015 0.886 0
grpTW(mix/mad)-OBM 0.740 0.398 0.817 0
grpVM-OBM 0.885 0.014 0.885 0
grpLoess-OBM 0.885 0.015 0.884 0
grpTW(mad50/std50)-OBM 0.972 0.180 0.982 0
*grpTW(mix/mad) 0.727 0.433 0.813 0
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APPENDIX B

ADDITIONAL ANALYSIS OF REAL DATA PRESENTED IN CHAPTER VI

The additional simulated studies (as reported in Appendix A) suggest that grouped

estimation of TW(mad50/std50) may be a reasonable methodology for estimating

gene-specific variance. We report the number of outliers and average BEED-MAD

ratios for each treatment of the real data analysis in Table 15.

Table 15: Number of detected outliers (average BEED-MAD ratio) for detected out-
liers when using grpTW(mad50/std50)-OBM to estimate gene variability for genes
with complete data and those with sample size ≥ 5.

Treatment Complete Data Sample Size ≥ 5
Acc 4 (11.95) 5 (13.04)
Acp 29 (8.15) 71 (6.8)
Afc 86 (9.89) 132 (9.12)
Afp 37 (10.01) 76 (9.01)
scc 60 (11.15) 72 (11.00)
scp 31 (16.43) 31 (16.43)
sfc 8 (7.46) 21 (9.39)
sfp 26 (9.11) 70 (8.06)
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