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ABSTRACT 

 

Incident Data Analysis Using Data Mining Techniques. (August 2008) 

Lisa M. Veltman, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. M. Sam Mannan 

 

There are several databases collecting information on various types of incidents, and 

most analyses performed on these databases usually do not expand past basic trend 

analysis or counting occurrences.  This research uses the more robust methods of data 

mining and text mining to analyze the Hazardous Substances Emergency Events 

Surveillance (HSEES) system data by identifying relationships among variables, 

predicting the occurrence of injuries, and assessing the value added by the text data.  The 

benefits of performing a thorough analysis of past incidents include better understanding 

of safety performance, better understanding of how to focus efforts to reduce incidents, 

and a better understanding of how people are affected by these incidents.   

 

The results of this research showed that visually exploring the data via bar graphs did not 

yield any noticeable patterns.  Clustering the data identified groupings of categories 

across the variable inputs such as manufacturing events resulting from intentional acts 

like system startup and shutdown, performing maintenance, and improper dumping.  

Text mining the data allowed for clustering the events and further description of the data, 

however, these events were not noticeably distinct and drawing conclusions based on 

these clusters was limited.  Inclusion of the text comments to the overall analysis of 

HSEES data greatly improved the predictive power of the models. Interpretation of the 

textual data’s contribution was limited, however, the qualitative conclusions drawn were 

similar to the model without textual data input.  Although HSEES data is collected to 

describe the effects hazardous substance releases/threatened releases have on people, a 

fairly good predictive model was still obtained from the few variables identified as cause 

related.   
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1.  INTRODUCTION 

 

There is a need to understand how industry as a whole is performing from a safety 

standpoint.  To date, no one can really answer this question with certainty.  People do a 

decent job collecting data on incidents, but few take the analyses of the data past basic 

trending.  Having the capability to collect enormous amounts of data is a feat in and of 

itself; however, it begs the question, “So what?”  With the amount of resources spent to 

collect data, it seems logical to look at the data under extreme scrutiny to obtain as much 

knowledge about the data as possible.  Data in a database is just that, data.  By analyzing 

and understanding what is in the database yields knowledge.  Passing this knowledge on 

to others can improve the understanding of what went wrong with incidents from the 

past thereby greatly enabling the prevention of future incidents. 

 

Trending analyses do provide useful comparisons in the data, however, going beyond 

comparisons by using data mining techniques can enable one to build predictive models, 

unveil relationships within the data that are not necessarily intuitive, and perhaps answer 

the question, “How is industry’s safety performance doing?”  Marketers have 

successfully harnessed the power of data mining to build predictive models to increase 

profit by, for example, determining customer buying habits based on advertisement 

campaigns.  The advantage of using data mining is its ability to analyze an enormous set 

of data [1].  Using the data mining as an analysis tool applied to incident databases can 

make a huge, positive impact on industry and the public at large. 

 

The benefits of performing a thorough analysis of incident databases include better 

understanding of safety performance, better understanding of how to focus efforts to  
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reduce incidents, and a better understanding of how people are affected by these 

incidents.  The data chosen for this research comes from the Hazardous Substances  

Emergency Events Surveillance (HSEES) system for the years 2002 to 2004.  This 

system collects data on incidents where there was a release or threatened release of a 

hazardous substance that resulted in some public health action [2].  It is unique in that it 

collects data for the purpose of analyzing the effects these incidents have on the health of 

the public as opposed to other databases that focus on environmental impact. 

The objective of this research is to use data mining and text mining to analyze the 

HSEES system data by identifying relationships among the variables, predicting 

variable(s) of interest, and assessing the value added by the text data.  Furthermore, the 

results of this research will define what can be done with this type of data in terms of 

analyses and what types of questions more thorough analyses may answer. 
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2.  BACKGROUND 

 

Analyses of the information in databases help connect the dots between what went 

wrong and what people can do to prevent it—the relationship between the cause of an 

incident and its consequences.  Trevor Kletz time and time again reminds us that an 

essential part of not repeating mistakes from history is to make sure that lessons are 

learned, and to make sure these lessons are shared as new generations join in.  Several 

people have put their mark on assessing what knowledge is available from incident 

databases and some of these are discussed in the following. 

 

Eboni Trevette McCray compared several incident databases in an effort to formulate 

improvements for these databases as well as determine national safety goals to be 

implemented given these improvements.  It was argued that comparing and trending data 

from the databases is impossible due to the overall discrepancy in data collection 

agendas, methods, and definitions from year to year.  As a result, it was proposed to 

create a single database with a thorough amount of information on incident details 

including the causes and effects of the incidents.  This proposed database will originate 

from the existing Emergency Response Notification System (ERNS) database and is 

expanded upon with questions from an Accidental Release Information Program (ARIP) 

survey [3].  Although it is agreed that there are errors and discrepancies in data 

collection, it is disagreed that ascertaining any useful analysis from these databases is 

impossible.  It is implicit through modeling these data that there is some level of 

variability and uncertainty, yet the overall trend and relationships will be foretelling 

enough to draw conclusions and make recommendations for safer practices regarding 

chemicals.  In the case of my research, the data used from 2002 to 2004 have common 

definitions and the inherent nature of HSEES being an active system means the data are 

more reliable. 
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Others have made strides to analyze databases such as Fahad Al-Qurashi’s work where 

the combined effects of accidental, failure rate, and reactive chemical databases were 

considered.  Specifically, the Environmental Protection Agency’s (EPA) Risk 

Management Program (RMP) database was used to decipher the most significant 

chemicals released and ultimately it was concluded that there is a need for more data 

with regard to failure rates and reactive chemicals.  It was stressed that with the 

appropriate understanding of equipment reliability and the inherent hazards of chemicals 

used, the number of incidents can be reduced [4].  Although the focus of this research is 

to link different data sources together to find new learnings, it still identified the most 

frequently occurring offenders and basic trends with the analysis, but did not incorporate 

predictive modeling.   

 

Looking at the benefits of using data mining, one can consider Sumit Anand’s work 

where data mining techniques were applied to the National Response Center’s database 

to uncover interesting patterns in data pertaining to fixed facilities in Harris County, 

Texas from 1990-2002.  Example techniques applied to these data are decision trees 

where consequences of an incident are compared to the type of equipment failure and 

incident cause, and association analysis used to compare the type of equipment failure 

and the chemical involved.  Using the data mining results, Anand updated equipment 

failure probabilities and built a decision support system [5].  Finding associative 

behaviors between variables, like type of injury and chemical released, might be a viable 

option for the HSEES dataset.  It could show how likely the presence of some chemical 

X will result in some injury y.  An alternative option is clustering events. 

 

Terry L. Bunn et al analyzed tractor fatality data for the state of Kentucky focusing on 

the added benefits of analyzing the text given by way of incident investigation reports.  

They showed that analyzing text entries in addition to coded data provides far more 

information then looking at coded data alone [6].  The advantage with the tractor fatality 

dataset is that the text entries are detailed incident investigation reports, not short 
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comments on the nature of the event like what is contained in the HSEES dataset.  

Relationships in the tractor data were extracted about pre-event, event, and post-event 

conditions, namely the initiating event, the actual injury or outcome, and the response to 

the event.  The consequence of “Dead at the scene” events were linked with the causes 

“operation of a tractor with a bucket, muddy terrain, and being thrown from the tractor” 

[6].  Causes of dying from being “crushed” were identified as “the lack of tractor 

maintenance, the lack of brakes, or a clutch as well as the lack of a seat belt on the 

tractor, the lack of an attached [rollover protective structure], the lack of tractor 

counterweights for tractor balance, overturning the tractor, and operating the tractor on 

an embankment or a slope” [6].  Using logistic regression analysis, it was found that an 

individual is 8.8 times more likely to die of being crushed where the tractor is overturned 

or rolled over, and that a driver is more likely to be crushed when operating on a slope 

than on level ground [6].  This example goes to show the benefits for including the 

analysis of text data in finding patterns and building models.  A similar approach is used 

to combine the HSEES text comments with the other structured data to build a predictive 

model. 

 

Already the HSEES data is benefitting the public at large.  The Agency for Toxic 

Substances and Disease Registry (ATSDR) produces annual reports from the HSEES 

data.  These reports include things such as the number of victims and types of injuries, 

the types of substances released, the number of evacuations, and information on the most 

commonly reported category of substances [7].  In addition to the ATSDR report, 

participating states are required to analyze the data and use their findings for outreach 

programs [2].  Doing so ensures that the data collected is used to benefit the public. 

States like New York have done an excellent job with their analysis to accomplish things 

such as removal of mercury from schools and identifying sources of carbon monoxide 

poisoning in buildings [8].   
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ASM Obidullah analyzed the HSEES data by considering the relationship between the 

causes and consequences of the recorded incidents for Texas manufacturing facilities as 

well as proposed a national estimate.  In this research, trend, cause, and consequence 

analysis were used to conclude and recommend further study and integration of 

equipment failure data, the need for more training on safe practices when conducting 

maintenance and further study of the environmental impact chemical releases are having 

since many of the releases in the HSEES database did not have recorded injuries.  Some 

of the findings were that equipment failure was a major cause for process interruption, 

process upset is the most frequent type of process interruption in the industries analyzed, 

and respiratory irritation was the type of injury that frequently occurred among workers 

[9].  Obidullah made good progress in the effort to learn from past manufacturing 

incidents from the HSEES database, however, more learning can be wrought from this 

database by using the predictive power that data mining can provide.   

 

The commonality between all of these works is that society as a whole can learn from 

past incidents through data analysis in order to prevent future incidents from occurring.  

There is an enormous potential to learn from the information housed in today’s databases 

with the wide availability of various approaches.  Analyses that are done on data such as 

HSEES are just scratching the surface.  Ramping up these analyses with analyses that 

data mining can help produce will further help meet the overall goal with any type of 

analyses—taking data and gaining knowledge from it.  In the case of analyses on the 

HSEES data, the idea is to gain knowledge and understandings of incidents such that one 

can identify what areas need to be focused on to reduce the occurrences of harm to the 

public.  Adding predictive power to the reports and findings that are currently available 

will greatly aid in this effort. 
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3.  HSEES DATA 

 

The Hazardous Substances Emergency Events Surveillance (HSEES) data includes 

information on events where: 

• There was an uncontrolled/illegal release or threatened release of at least one 

hazardous substance NOT including petroleum (due to the Petroleum Exclusion 

clause of CERCLA) and the release of the hazardous substance(s) requires 

removal, clean up, or neutralization, or 

• There was a threatened release of a hazardous substance that would have needed 

to be removed, cleaned up, or neutralized AND the threatened release resulted in 

a public health action. 

Although CERCLA has a Petroleum Exclusion, events where petroleum is released 

along with other hazardous substances are included in HSEES and petroleum is reported 

along with the other substances [2].   

 

HSEES is unique compared to other databases since its focus is on public health whereas 

other databases focus on environmental impact.  This focus on public health is aligned 

with ATSDR’s mission “to serve the public by using the best science, taking responsive 

public health actions, and providing trusted health information to prevent harmful 

exposures and disease related to toxic substances” [2].  The purpose for collecting the 

data is to assess the acute effects hazardous substance emergencies have on the 

morbidity and mortality of the first responders, general public, and employees, and 

thereby reduce these occurrences [2]. 

 

The data for 2002 to 2004 were obtained in an excel spreadsheet format.  There are four 

different worksheets: event data, chemical data, victim data, and text comments.  The 

event data includes information on unique record number for each incident, the type of 

event (fixed facility or transportation), whether there was an actual release or a 

threatened release, location, the type of area, time, date, and day of the week the event 
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occurred, type of industry, and contributing factors to the incident.  The latter is not to be 

confused with root causes as a more thorough investigation is required to find this type 

of information.  These data are formatted such that each row represents a single event.   

 

The chemical data contain information such as the unique record number, type of 

chemical released, the chemical category, and the quantity of the chemical released.  

Each row in the chemical dataset represents a single chemical involved in the incident.  

Incidents with several chemicals involved will have several rows of data in the chemical 

file.   

 

The victim data contain the unique record number, specific information on the types of 

injuries incurred, the type of personal protective equipment (PPE) used if at all, 

decontaminations, whether or not an evacuation or shelter-in-place was ordered, age and 

gender of the victim, victims distance from the event, and type of victim (first responder, 

general public, employee, or student).  Each row of data in this dataset represents a 

single victim.  Consequently, the victim data will have multiple rows for a single 

incident if there are multiple victims.  

 

The text worksheet contains the record number and the text comment inputted for the 

incident.  The formatting of this file is inconsistent.  Text comments for a single incident 

were in most cases split into different cells on different rows and columns within the 

spreadsheet.  Heavy cleaning was necessary to get the comments rejoined into a single 

cell for each subsequent event.  Once cleaned, these data will have a single row per 

incident. 
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4.  DATA MINING 

 

The capabilities of generating and collecting data has rapidly grown in the last couple of 

decades and as such there is a need for technology that can assist a user by transforming 

large amounts of data into useful information [10].  Cue data mining.  Data mining can 

be defined as “the process of discovering interesting knowledge from large amounts of 

data stored either in databases, data warehouses, and other information repositories” 

[10].  The process can be described in three steps—describe the data, build a predictive 

model, and verify the model.  Data are described by its statistical attributes such as 

means and standard deviations, by visually reviewing charts and graphs, and looking for 

relationships among variables.  Predictive models are built based on patterns found in 

known results.  The model must be tested with a separate data sample that was not used 

to build the model and contains known results.  Finally, the model should be verified 

with new data without known results [11]. 

 

4.1 Describing the Data 

 

Visualization, summaries, and cluster analysis are used to describe the structured HSEES 

data.  Text mining is used to describe the unstructured data in HSEES.  These methods 

are described in the following sections. 

 

4.1.1 Variables 

 

Structured data consist of three main types of variables—nominal, ordinal, and 

continuous.  Nominal variables are unordered categorical variables, ordinal variables are 

ordered categorical variables, and continuous variables are numeric [11].  Examples of 

nominal variables are names or type of event (fixed facility versus transportation event).  

Examples of ordinal variables include class ranks and letter grades.  Continuous 
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variables are attributes such as age or temperature.  Data such as text comments are 

considered unstructured data.  

 

4.1.2 Visualization and Summaries 

 

Plots and graphs are used to visually compare different groups of variables.  Visualizing 

the data in this way is helpful particularly because patterns and relationships are easier to 

perceive graphically then they are when looking at text or numerical values.  Visualizing 

the data and looking at the statistical summaries is extremely beneficial with promoting 

understanding of the data, because it helps the modeler easily recognize patterns or 

relationships that might otherwise go unnoticed [11]. 

 

4.1.3 Clustering 

 

The intention of clustering a database is to divide data into groups that are distinct from 

one another, but whose elements are similar.  Furthermore, the idea is to segment the 

data into groups that are not previously defined so that the clusters can be used to 

classify new data.  This might require excluding variables that are not meaningful or 

otherwise insignificant until reasonable clusters are formed [11].  SAS displays attributes 

in each cluster using bar graphs that the modeler can use to ascertain the distinctness of 

the clusters. 

 

4.1.4 Text Mining 

 

Text mining is used to find patterns in unstructured data.  Common problems with 

analyzing textual data are misspellings, synonymy, and polysemy (same word can have 

different meanings in different contexts) [10].  The text mining node in SAS creates a 

term frequency matrix and displays a term table that shows the total number of times 

each term appears and the number of documents the term appears in.  Synonym lists, 
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stop lists, and start lists can be created and implemented to guide what terms the text 

mining node groups together (synonym list), what terms to omit because they are 

deemed irrelevant (stop list), and what terms to keep (start list).  Furthermore, the text 

mining node may be set up to automatically cluster, allowing for closer inspection of the 

documents that contain similar sets of words. 

 

One method of structuring text data to incorporate into models is to use latent semantic 

indexing (LSI).  The LSI method uses the technique of singular value decomposition 

(SVD) to reduce the size of the term frequency matrix [10].  As depicted in Table 1 

below, the n x m term frequency matrix shows the frequency (ai,j) of terms (ti) per 

document (dj). 

 
 
 

Table 1      Term Frequency Matrix 

Frequencies d1 d2 d3 d4 d5 … dm

t1 a 1,1 a 1,2 a 1,3 a 1,4 a 1,5 … a 1,m

t2 a 2,1 a 2,2 a 2,3 a 2,4 a 2,5 … a 2,m

t3 a 3,1 a 3,2 a 3,3 a 3,4 a 3,5 … a 3,m

t4 a 4,1 a 4,2 a 4,3 a 4,4 a 4,5 … a 4,m

t5 a 5,1 a 5,2 a 5,3 a 5,4 a 5,5 … a 5,m

… … … … … … … …
tn a n,1 a n,2 a n,3 a n,4 a n,5 … a n,m  

 
 
 
For example, there are a1,1 occurrences of the term t1 in document d1.  The SVD method 

takes this n x m matrix and reduces it to a K x K matrix by removing rows and columns 

with the least significant information.  The latent semantic indexing method can be 

generalized to the following steps: 

1. Create a term frequency matrix. 

2. Compute SVD of the term frequency matrix by splitting the matrix into three 

matrices, U, S, and V.  U and V are orthogonal matrices (UTU=1 and 

VTV=1), and S is the reduced K x K matrix. 
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3. Replace each document d’s vector by a new one that excludes the terms 

eliminated during SVD. 

4. Store the set of all vectors and index them using advanced multi-dimensional 

indexing techniques [10]. 

SAS Text Miner node performs these functions and the new SVD variables can be used 

as input in subsequent nodes that build the predictive models. 

 

4.2 Building Predictive Models 

 

Logistic regression and decision trees are two methods of building predictive models.  

 

4.2.1 Decision Trees 

 

Decision trees can predict categorical or continuous variables.  The decision trees 

represent a series of rules that lead to some class or value.  The top node is the decision 

node, which specifies the test to be carried out.  Each branch off of the top node leads to 

either another decision node or to the leaf node (at the end of a branch).  The trees are 

grown with an iterative process that splits the data into discrete groups with the “goal to 

maximize ‘distance’ between groups at each split” [11]. 

 

To control the size of the tree, stopping rules may be implemented such as limiting the 

depth the tree may grow to.  The tree may also be pruned—the modeler or the built-in 

heuristics can prune the tree to the smallest size that still maintains its accuracy [11].   

 

A drawback of using decision trees are that they do not consider the effects splits might 

have on future splits.  Furthermore, the tree makes splits sequentially resulting in each 

split being dependent on its predecessor.  Thus, changing a split somewhere in the tree 

can greatly impact the resulting splits after it.  Although the model builds quickly since it 

considers a single predictor variable at a time, this limits the number of splitting rules to 
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test as well as increases the difficulty of detecting relationships among predictor 

variables [11].   

 

4.2.2 Logistic Regression 

 

Logistic regression is used to predict binary variables with values yes/no or 1/0.  

Because the target variable is not continuous, it cannot be predicted with linear 

regression.  Instead, logistic regression predicts the logarithm of the odds of the event 

occurring as opposed to predicting if the event will occur.  The logarithm is referred to 

as the log odds or logit transformation and is expressed as the following ratio of 

probabilities: 

)Pr(
)Pr(

occurnotdoesevent
occurseventratioodds =  

 

For example, if the odds ratio is 3, then the probability of the event occurring is three 

times as much as the probability of the event not occurring.  In other words, the odds are 

3 to 1 that the event will occur, or there is a 75% chance the event will occur and 25% 

chance it will not [11]. 

 

4.3 Measuring Model Performance 

 

This section discusses the metrics used to decipher how well a predictive model has 

performed.   

 

4.3.1 Lift and Gain  

 

Lift is the ratio of the target response to the average response of the population.  It can be 

expressed as lift per decile or as the cumulative lift across the population.  Gain 
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describes the ratio of the target response to the total number of positive responses.  

These are defined in the following equations: 

 
b
aLift i=  

nb

a
LiftCumulative

n

i
i

*
1
∑
==  

A

a
GainCumulative

n

i
i∑

== 1  

 

where  ia  = number of predicted positive responses in decile i  

T
Ab = , the total number of positive responses A  per total events T  

n  = is the decile being considered. 

 

Typically lift is illustrated using cumulative gains and lift charts.  To demonstrate these 

calculations and the resulting charts, consider Table 2, which is populated with fictitious 

data.  Consider decile 3 in Table 2.  The lift is 240/160 = 1.5, the cumulative lift is 

1,040/480 = 2.2, and the cumulative gain is 1,040/1,600 = 65%. 
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Table 2      Example of Calculated Lift Values 

Decile
Total 

Number of 
Events

Predicted 
Positive 

Responses

Average 
Positive 

Response

Cumulative 
Gains

Cumulative 
Lift

Predicted 
Positive 

Responses

Average 
Positive 

Response
Lift

0 0 0 0 0 0
    1       2,000 480 160 30% 3.0 480 160 3.0
    2       4,000 800 320 50% 2.5 320 160 2.0
    3       6,000 1,040 480 65% 2.2 240 160 1.5
    4       8,000 1,264 640 79% 2.0 224 160 1.4
    5      10,000 1,360 800 85% 1.7 96 160 0.6
    6      12,000 1,440 960 90% 1.5 80 160 0.5
    7      14,000 1,504 1,120 94% 1.3 64 160 0.4
    8      16,000 1,552 1,280 97% 1.2 48 160 0.3
    9      18,000 1,584 1,440 99% 1.1 32 160 0.2
  10      20,000 1,600 1,600 100% 1.0 16 160 0.1

Cumulative by Decile By Decile

 
 
 
 
The data in the table for all 10 deciles yield the cumulative gain chart found in Figure 1 

and the lift chart in Figure 2. 
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Figure 1      Example of Cumulative Gain Chart 
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The cumulative gains chart in Figure 1 shows that by taking 10% of the total events, the 

predictive model has successfully predicted positive responses for 30% of the total 

possible positive responses.   
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Figure 2      Example of Lift Chart 
 
 
 
The lift chart in Figure 2 shows that by taking 10% of the total events, the model 

predicts 3 times more positive responses then the average number of responses. 

 

In general, the larger the lift, the more effective the model is predicting the target 

compared to not using the model at all.  There is no definite rule on what level of lift 

indicates a good model as this depends on the application.  The goal is to get the best lift 

possible for the model under consideration.  After doing this for several models, the lift 

for each model can be used to compare, on a relative basis, which model performs the 

best i.e. has the higher lift [12].  
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4.3.2 Maximum Likelihood Estimates 

 

Maximum likelihood estimates are convenient for determining whether the predictor 

variables in the model are statistically significant.  These estimates are provided in the 

output for the logistic regressions.  To check for statistical significance, the modeler can 

review the p-values for each predictor variable used in the model.  A value less than 0.05 

means the variable is statistically significant.  The odds ratio is given for each variable, 

and this number indicates the relative importance of each variable’s contribution to the 

overall response prediction.  Ideally, the modeler will want several variables to 

contribute importantly to the overall model. The other measurements used to assess the 

model’s predictive ability are found in the association of the predicted probabilities and 

actual responses statistics, which can show what percent of the predicted probabilities 

matched the actual responses [13]. 



 18

5.  METHODS 

 

Data mining is a method to find patterns in data and build predictions using these 

patterns.  The general steps are first to describe the data in terms of its statistical 

attributes, visually look at charts and graphs to identify meaningful relationships among 

the variables, build predictive models based on the patterns found, test if the model 

appropriately predicts variables using known data separate from the data used to build 

the model, and finally verify the model with real data [11].   

 

For this project, a similar approach is used and it is summarized in the following steps:  

1. Define a data mining goal. 

2. Clean the data and prepare it for analysis. 

3. Choose samples to analyze. 

4. Look for patterns and relationships. 

5. Modify dataset as necessary. 

6. Apply models to the dataset. 

7. Assess how well these models fit the data. 

8. Compare the data mining results to previous work. 

Steps 2 through 6 can be repeated as necessary to develop a reasonable model and details 

of the steps are provided later.   

 

5.1 Define Data Mining Goal 

 

Before beginning the data mining process, a clear, well-defined objective must be 

established.  The objective for the data and text mining is to build a model that predicts 

whether an event will result in injured or killed victims.  More specifically, the goal is to 

build a model that relates whether victims are injured or killed, a consequence, to event 

characteristics that logically can be considered causal information.  Three variables that 

could be used as targets for such an assessment are the total victims (a number), whether 
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there was an injury (yes/no), and whether there was a fatality (yes/no).  Closer inspection 

of the data revealed that only 49 events out of 19,165 resulted in at least one fatality 

(0.3% of the total events) and 1,592 events out of 19,165 resulted in an injury (8% of the 

total events).  Because of the small number of fatalities, the occurrence of fatalities was 

omitted as a possible target leaving the number of victims and occurrence of an injury.  

The decision was made to predict the occurrence of an injury since it is binary and will 

result in a simpler model. 

 

5.2 Data Cleaning and Preparation 

 

Data cleaning and preparation is the second step in the data mining process.  Relative to 

this research, step 1 entails consolidating the data into a single flat file with each row of 

data representing a single event.  Since the event file is already set up this way, the 

summarized chemical and victim data as well as the text data were imported into the 

event file by matching the unique identification number for each incident.  The 

following are a list of summarized data added to the event file: 

• Day of the year the event occurred with values ranging from 1 to 366. 

• Number of substances released in 4 subcategories—chemical, radiological, 

medical, and biological. 

• Number of chemicals released in each of 15 subcategories that include Acids, 

Ammonia, Bases, Chlorine, Other Inorganic Substances, Paints and Dyes, 

Pesticides/Agricultural, Polychlorinated Biphenyls, Volatile Organic 

Compounds, Other, Mixture Across Chemical Categories, Formulations, 

Hetero-Organics, Hydrocarbons, and Oxy-Organics. 

• Number of each type of release—air emission, spill, fire, explosion, 

threatened or other. 

• Number of each type of injury—trauma, respiratory system irritation, eye 

irritation, gastrointestinal problems, heat stress, burn injuries, skin irritation, 
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dizziness or other central nervous system symptom, headaches, heart trouble, 

shortness of breath, and other. 

• Number of victims with each type of severity, which covers treatment needs 

as well as fatalities. 

• Number of each type of victim such as student, firefighter, employee, general 

public, and police officer. 

• Number of people using each type of personal protective equipment (PPE) 

ranging from Level A to level D as well as those using firefighter turnout 

gear, gloves, hardhats, and steel toed boots. 

• Number of victims in each of 8 age categories—employee, responder, 

general public, career firefighter, volunteer firefighter, firefighter (not 

specified), police officer, EMT personnel, hospital personnel, company 

response team employee, and student. 

 

Some other tasks performed to prepare the data for analysis were: 

• Concatenate the text comments into a single cell per event before importing 

into the event dataset.   

• Delete events that do not fit ATSDR’s definition of a surveillance event, 

which reduces the dataset from 36,218 events to 26,211 events.   

• Filter the “Fixed Facility” events and save these events as a separate dataset.  

This dataset consists of 19,165 events. 

• Retained states that collected data for each year from 2002-2004. These states 

include Alabama, Colorado, Iowa, Minnesota, Missouri, Mississippi, North 

Carolina, New Jersey, New York, Oregon, Texas, Utah, Washington, and 

Wisconsin. 

• Deleted variables with 60% or more missing values. 

• Save the fixed facility data in a SAS compatible format. 
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5.3 Data Analysis 

 

The data analysis steps 3 to 7 in this research’s procedure are adapted from a process of 

logical steps SAS developed.  This iterative process of logical steps is designed to help 

the user apply the data mining tools in the SAS software.  These steps are Sample, 

Explore, Modify, Model, and Assess, and these steps are commonly referred to with the 

acronym SEMMA.   

• Sample entails choosing a subset of data that is large enough to contain all 

pertinent information, but small enough to process quickly.  This subset is then 

divided into three subsets—training, validation, and test sets.  The training set of 

data is used to fit the model, the validation set of data is used to prevent over 

fitting a model, and the test set is used to evaluate how well the model fits the 

data.   

• Explore is the step to gain a better understanding of the data by identifying trends 

or anomalies in the data either visually or using statistical methods like cluster 

analysis.   

• Modify entails changing the dataset by performing tasks such as creating new 

variables, eliminating other variables, and eliminating anomalies.  The changes 

made in this phase are based on the discoveries made in the explore phase. 

• Modeling the data is the step where different types of models are chosen for the 

software to fit to the data automatically.   

• Assessing the data is the final step in the iterative process where one checks the 

validity of the results.  This assessment is done by taking a test dataset and 

applying the model to these data to test if the model predicts the correct result.   

This process continues until the data miner is satisfied with the results [14]. 

 

Because decisions on what to do from step to step are dependent on the results of the 

former step, the specifics of what data mining tools were used for each stage of this 

SEMMA process are given in the results section. 
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6.  RESULTS 

 

The results in the section are summarized in the order of the steps taken for the analysis. 

 

6.1 Sample 

 

To develop a meaningful model, the dataset was simplified by considering only data 

pertaining to fixed facility events.  Consequently, transportation events and events with 

no classification type were omitted.  The events where an injury did occur only comprise 

8% of the total dataset.  Because the desired model needs to predict the positive outcome 

of an injury (injury = yes), weights were set such that positive injury occurrences are 

treated as 1.5 times more important then the negative injury occurrences.   

 

6.2 Explore and Modify 

 

The tasks for these steps are to identify potential relationships in the data, identify ways 

to edit the list of predictor variables, and make data modifications as deemed necessary.   

 

Keeping in mind that injury occurrence is the target variable, definitions were closely 

inspected to identify desirable predictor variables that describe the cause of an event tp 

allow for a model that relates causes to the consequence of an injury occurrence.  The 

following observations were made: 

1. Many variables describe event consequences such as who was notified because 

of the event, who responded to the event, and number of people decontaminated. 

2. Many variables provide redundant information about injury occurrences 

including variables that describe the types of injuries, severity of injuries, victim 

category, and victim age.  These variables are redundant because these data are 

only given for victims in the event, not for all people involved in the incident. 
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3. Many variables described event characteristics that are not considered a cause or 

consequence such as the number of people at home or number of people that live 

within various distances from the event, the existence of different establishments 

within a quarter mile of the event (school, nursing home, recreational facility, 

etc.), and the number of people visiting or working at a facility. 

4. Variables considered as cause related include number of hazardous substances 

released or threatened to be released in their respective subcategories, the type of 

release, primary and secondary contributing factors, and industry type.  The latter 

is more subtle and is better described as an opportunistic variable.  Industry type 

is included because the existence of hazardous substances might be more 

prevalent in some industries then it is in other industries.  

Table 3 provides the list of nominal cause related variables that will be used in the 

predictive modeling. 

 
 
 

Table 3      Categorical Variables 
Variable Name Description Categories
INJ_YorN Injury, yes or no Y = Yes, N = No
PRIM_FACT Primary factor contributing to cause of 

incident
2 = Equipment failure, 3 = Operator Error, 8 = Other, G 
= Intentional, H = Bad weather condition, S = Illegal 
act

SEC_FACT Secondary factor contributing to incident 1=Improper mixing, 2=Equipment failure, 3=Human 
error, 4=Improper filling, loading, or packing, 8=Other, 
A=Performing maintenance, B=System/process upset, 
C=System start up and shutdown, E=Power 
failure/electrical problems, F=Unauthorized/improper 
dumping, I=Vehicle or vessel collision, P=Vehicle or 
vessel derailment/rollover/capsizing; J=Fire, 
K=Explosion, L=Overspray/misapplication, Q=Illicit 
drug production related, N=No secondary factor, 
O=Loadshift, R=Forklift puncture

NIND_CODE General Industry categories 1 = Agriculture, 2 = Mining, 3 = Construction, 4 = 
Manufacturing, 5 = Transportation, 6 = 
Communications, 7 = Utilities, 8 = Wholesale trade, 9 
= Retail trade, 10 = Finance and real estate, 11 = 
Business and repair services, 12 = Personal services, 13 
= Entertainment, 14 = Professional services, 15 = 
Public administration, 16 = Abandoned facilities, 17 = 
Private vehicle or property, 18 = Illegal activity (non-
illicit drug related), 19 = Illegal activity (illicit drug 
related), 20 = Unspecified and unknown  
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Table 4 provides the list of interval cause related variables that will also be used in the 

predictive modeling. 

 
 
 

Table 4      Continuous Variables 

Variable Name Description
REL_AIREMIS Number of Air Emission type releases
REL_EXPLOS Number of Explosion type releases
REL_FIRE Number of Fire type releases
REL_OTHER Number of Other type releases
REL_SPILL Number of Spill type releases
REL_THREAT Number of Threatened type releases
SC_ACID Number of chemicals released in the Acid subcategory
SC_AMMONIA Number of chemicals released in the Ammonia subcategory
SC_BASES Number of chemicals released in the Bases subcategory
SC_CHORLINE Number of chemicals released in the Chlorine subcategory
SC_FORM Number of chemicals released in the Formulations subcategory
SC_HETEROORG Number of chemicals released in the Hetero-Organics subcategory
SC_HYDROCARB Number of chemicals released in the Hydrocarbons subcategory
SC_MIX Number of chemicals released in the Mixture Across Chemical Categories subcategory
SC_OISC Number of chemicals released in the Other Inorganice Substances subcategory
SC_OTHER Number of chemicals released in the Other subcategory
SC_OXYORG Number of chemicals released in the Oxy-Organic subcategory
SC_PANDD Number of chemicals released in the Paints and Dyes subcategory
SC_PESTAG Number of chemicals released in the Pesticides/Agricultural subcategory
SC_POLYCHLBPHNNumber of chemicals released in the Polychlorinated Biphenyls subcategory
SC_VOC Number of chemicals released in the Volatile Organic Compounds subcategory
TOT_CHEM Total number of chemicals spilled  
 
 
 
6.2.1 MultiPlot 

 

The MultiPlot node was used to compare each input variable to the target variable via 

bar charts that illustrate distributions across the entire population of data.  Visual 

inspection of these charts aided in describing the HSEES data. 

 

The hazardous substances subcategories did not reveal any interesting patterns within 

each subcategory.  However, comparing all of the subcategories to one another showed 
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the subcategory groups other inorganic substances, mixtures, oxy-organic, other, acids, 

and ammonia were present in a larger number of events compared to pesticides, bases, 

chlorine, paints and dyes, hydrocarbons, polychlorinated biphenyls, hetero-organics, and 

formulations. Table 5 shows the number of events each subcategory was present in. 

 
 
 

Table 5      Events per Hazardous Substance Subcategory 

Hazardous Substance 
Subcategories # Events

SC_OISC 5,119
SC_MIX 4,128
SC_VOC 3,743
SC_OXYORG 1,906
SC_OTHER 1,536
SC_ACID 1,512
SC_AMMONIA 1,404
SC_PESTAG 740
SC_BASES 627
SC_CHORLINE 576
SC_PANDD 429
SC_HYDROCARB 316
SC_POLYCHLBPHNL 245
SC_HETEROORG 162
SC_FORM 36  

 
 
 
Primary and secondary contributing factors are nominal variables with categorical 

inputs.  Bar charts with distributions related to these contributing factors show the 

number of events each classification type.  In Figure 3, primary contributing factor 

equipment failure (2) has the largest number of events.  Operator error (3) has less then 

half the number of events as equipment failure, but contains more injury related events.  

Intentional act (G) is similar in magnitude to operator error, but has fewer injuries. 
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Figure 3      Primary Factor by Injury Occurrence 

 
 
 
Referring to the secondary contributing factor bar chart in Figure 4, it is evident that the 

majority of the events did not have a secondary contributing factor (N) and that there 

were more injuries in events without a secondary contributing factor then the other 

events.  The top three secondary contributing factors are system process upset (B), 

system startup/shutdown (C), and performing maintenance (A).  Note that illicit drug 

production (Q) has a smaller amount of events then system process upset (B), system 

startup/shutdown (C), and performing maintenance (A), however, it also has more injury 

related events. 
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Figure 4      Secondary Factor by Injury Occurrence 

 
 
 
The industry type is another nominal variable with categorical information.  In Figure 5, 

the leading industry involved in fixed facility HSEES events is manufacturing (4).  The 

next highest number of events are from utilities (7), wholesale trade (8), transportation 

(5), personal services (12), professional services (14), and illegal activity (19), but these 

trail much further behind. 
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Figure 5      Industry Code by Injury Occurrence 

 
 
 
Reviewing release types showed spills and air emissions as the types of releases that 

dominated the fixed facility HSEES events.  These are shown in Figure 6 and Figure 7 

below.  All other release types had hardly enough events to make note. 
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Figure 6      Spills by Injury Occurrence 

 
 
 

 
Figure 7      Air Emissions by Injury Occurrence 

 
 
 
6.2.2 Clustering 

 

To cluster the data, the cause related variables were selected as input initially and the 

remaining variables were added and taken away in various arrangements throughout 
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several iterations.  The best discernable clusters obtained came from using primary and 

secondary contributing factors, type of area the event occurred in, the industry type, and 

the state.  The clustering produced segments with 49.7%, 32.9%, and 17.4% of the total 

events for segments 1, 2, and 3, respectively. Because the hazardous substances 

subcategory variables showed no distinctness, they were replaced with the total number 

of chemicals variable to summarize this finding strictly for illustration purposes.  The 

resulting clusters are shown in Figure 8. 

 
 
 

 
Figure 8      Clustered Data 

 
 
 
Close inspection of these segments revealed the following: 

• Segment 1 shows a large number of manufacturing type events, industrial area 

type events, equipment failure as the leading primary contributing factor, 
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equipment failure as the second largest contributor, and Texas as the primary 

state captured in this cluster. 

• Segment 2 shows about 55% of events are in a commercial area type, the 

industries are fairly spread out with utilities, transportation, manufacturing, and 

wholesale trade representing about half of the events, almost an equal 

contribution between equipment failure and operator error as the primary factor, 

and presence of a secondary factor contributing to half of segment 2 as well.  

• Segment 3 has more contribution from residential area types then it does from 

industrial and commercial, a little over half of the events are related to 

manufacturing and illegal activities as the industry type, illegal acts are about 

98.5% of the events with respect to primary contributing factors, and illicit drug 

production is the leading secondary contributing factor with performing 

maintenance, system startup and shutdown, and unauthorized/improper dumping 

trailing behind.   

• There is no difference between segments with respect to the number of chemicals 

involved. 

• Texas, New York, and Utah’s percent varies the most between segments.  The 

other states maintain a fairly even contribution across the segments. 

 

Given the previously listed findings, one might expect the following scenarios: 

• Many of the events in segment 1 occurred in Texas with the manufacturing 

industry as a result of equipment failure and system/process upset. 

• Many of the events in segment 2 are in a commercial with almost an equal 

chance of being the result of equipment failure or operator error. 

• Just less than half of the events in segment 3 are in residential areas as a result of 

illegal acts, predominately illicit drug production.  The methamphetamine events 

are probably most prominent in this segment.  The remaining half of the events 

are commercial or industrial area types dealing with mostly the manufacturing 

industry as a result of intentional acts.  These intentional acts are related to 
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performing maintenance, system startup and shutdown, and 

unauthorized/improper dumping. 

 

Note that the clustering method does not consider the target variable.  Instead, the 

clustering helps describe the nature of the data content completely independent from 

what is going to be predicted later in the data mining process. 

 

6.2.3 Text Mining 

 

Before connecting the text mining node, the data were partitioned into the following 

sets: 40% training set, 30% validation set, and 30% test set.  The text mining node was 

set to ignore punctuation, different parts of speech, terms that appear only in a single 

document, determiners (a, an, the), conjugations (and, but, or), auxiliary verbs (may, can, 

should), prepositions (of, for, from), pronouns (he, it, them), participles (not, to, be), 

interjections (yes, thank you, hello), and finally numbers.  This greatly reduces the 

number of terms to decipher, which include nouns, verbs, proper nouns, adjectives, 

adverbs, and abbreviations.  Finally, the text mining node was set to automatically 

cluster terms and to transform the data using SVD. 

 

After running the text miner, the interactive capability of this node allowed for a close 

inspection of identified terms and their links as well as clustered terms.  At this point, a 

synonym list, start list, and stop list can be created.  A term frequency table can be sorted 

in various arrangements; a subset of documents that contain selected terms can be 

filtered.  This is helpful for reading groups of text descriptions with similar terms to 

better understand the significance and relationship of the selected terms.  Also, concept 

links can be used to illustrate the links between terms.   

 

To clean the text data, misspelled words were grouped with their correctly spelt 

alternatives, abbreviations were combined with their definitions when available, and 
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other obvious synonyms were grouped together like “PRV”, “pressure relief valve”, and 

“relief valve”.  After all of these changes were made, the synonym list was saved. 

 

Next, the words that appeared fewer then 3 times in total were eliminated.  Any words 

that describe the type of injury or the consequence of being injured or killed were also 

eliminated.  Eliminating these words is essential, since the end goal is to build a model 

that links causes to the consequence of being injured.  Other erroneous terms were 

eliminated as well such as “on” and “when”.  After eliminating these irrelevant terms, a 

stop list was saved.  The text miner was run again with the updated synonym and stop 

lists.   

 

Table 6 shows the clustered terms per segment.  

 
 
 

Table 6      Clustered Terms per Segment 

Cluster Percent Terms
1 33%
2 17% + result, + release, + response, + shut, + shutdown, + pressure, + fail, + company, + 

failure, + unit, + line, + gas, equipment, + flare, + secure    
3 8% + chemical, + mix, + police department, + laboratory, + methamphetamine, + spray, 

+ treat, + explode, + home, + find, + fire department, + respond, + 
methamphetamine lab, + fire, + area

4 4% additional, + worker, + fume, + on-site, + expose, + area, + clean, + report, + fire 
department, + evacuate, + work, + out, + contain, ammonia, + time                            

5 29% + break, + receive, + clean up, + drum, + spill, + fire, up, into, + water, + fire 
department, + leak, + out, + contain, + occur, + tank                                                 

6 3% + evacuate, + build, + people working, + unknown, visiting unknown, + work, 
people, + measure, + visit, + decontamination, + read, emergency, + result, scene, + 
time                    

7 3% additional, + school, anhydrous ammonia, anhydrous, ammonia, + student, + fume, 
+ eye, + valve, + respond, + expose, + police department, + laboratory, + evacuate, 
+ tank               

8 3% + expose, + wear, ppe, enforcement, + residence, + length, special agents, toxic, + 
affect, + action, + perform, + child, + wearing ppe, + respiratory protection, + 
methamphetamine lab  
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Table 7 provides a brief description of the events found in each clustered segment.  

 
 
 

Table 7      Cluster Descriptions 

Cluster Percent Description
1 33% No text entries available.
2 17% Contains many of equipment failure events and flare stack events
3 8% Large portion of the events are related to methamphetamine labs and the remainder 

dealt with general chemical releases that required the police or fire department to 
respond.

4 4% Contains mostly operator error events.
5 29% Varying types events that do not have any obvious connections to one another.
6 3% Events are mostly associated with each other by the word evacuate.  However, there 

are a large number of events that stated "no evacuation".
7 3% Mostly ammonia and school related events.
8 3% Events are mostly associated with methamphetamine events and the use of PPE.  

 
 
 
A Segment Profile node illustrates the clustered terms distributions as they relate to input 

variables.  Events within each segment are depicted by either concentric rings for 

categorical input variables or bar charts for interval variables.  The outer circle of the 

concentric ring shows the distribution of the attributes within each segment, and the 

inner ring shows the distribution of the same attributes within the entire population of 

data.  In the bar charts, the solid bars represent the events in the segment and the hollow 

outlined bars represent the population.  Although we want segments distinct from one 

another, the distribution of the attributes within each segment should be similar to the 

distribution of the attributes within the population. 
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Figure 9 is a snapshot of the cluster results for each segment. 

 
 
 

 
Figure 9      Cluster Rings 

 
 
 
The segments are listed by the number of events they contain in decreasing order.  The 

input variables are depicted in decreasing order of their worth.  The following 

observations were made based on the concentric ring illustration: 

• Segment 1 events represent the industry types similarly to the entire population 

of events, but the segment events lack 5 industries.  The secondary factors are 

also fairly well represented in the segment with some variations.  Air emission 

and spill releases as well as the mixture substance subcategory are similar 

between the population (hollow outlined bars) and the segment (solid bars).  

Finally, the primary factor is similar in distribution between the population and 
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segment events.  This segment contains the events with no text entries, so there is 

no text-based theme for this segment to compare to the population. 

• Segment 5 represents the secondary factor distribution almost exactly like the 

population.  The industry codes are also well represented in this segment, but the 

air emission and spill releases do not perform as well.  This segment is an 

assortment of different types of events, so it is difficult to compare the text-based 

theme of the segment with the population. 

• Segment 2 represents the industry type distribution similarly to the population, 

but the larger amount of wholesale trade industry represented in the segment.  

The other inorganic substances subcategory representation in the segment 

compared to the population is acceptable, and so are the secondary and primary 

contributing factors, the air emission releases, and the volatile organic compound 

subcategory.  The text comments described equipment failure and flare stack 

release events and this is consistent with the concentric rings showing a large 

proportion of manufacturing events with equipment failure as the primary factor.  

The similarities between the segment and population with regard to air emission 

releases can be attributed to the large number of flare stack events contained in 

this segment. 

• Segments 3, 4, 6, 7, and 8 all do poorly with representation of the population.  

This is expected because these segments have a small number of events.  Recall 

that segment 3 contains events that describe methamphetamine labs and other 

types of labs where chemicals were released.  Reviewing the concentric rings for 

secondary contributing factors shows a larger portion of illicit drug production 

then any of the other segments as well as a larger portion of illegal activity as the 

industry type. 

 

The results of the text mining node that is passed on to the modeling nodes are 36 SVD 

vector inputs.   
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6.3 Model 

 

To model the HSEES data, two different types of models were applied—the decision 

tree and the logistic regression.  These models were run with various arrangements of the 

cause related variable inputs to maximize its predicting power, and then a separate set of 

decision tree and logistic regression models were run that included both the cause related 

variables and the text SVD inputs.  The comparison of both sets of models will help 

delineate the value added by the text data. 

 

6.3.1 Decision Tree without Text Input 

 

The decision tree node was connected directly to the partition node and the cause related 

variables were set to input, occurrence of injuries set to target, and all other variables set 

to reject.  The decision tree node was adjusted multiple times to optimize the accuracy of 

the model.  Table 8 contains the event classification table.   

 
 
 

Table 8      Classifications for Decision Tree with No Text Input 

Data FALSE TRUE FALSE TRUE
Role Target Negative Negative Positive Positive

TRAIN INJ_YorN 534          6,994          34          103           
VALIDATE INJ_YorN 409          5,225          47          68             

TRAIN INJ_YorN 6.97% 91.25% 0.44% 1.34%
VALIDATE INJ_YorN 7.11% 90.89% 0.82% 1.18%

Frequencies

Percent of Total

 
 
 
 
In the event classification table, “FALSE Negative” refers to the predicted outcome of 

injuries = no when it should have been injuries = yes.  Similarly, “TRUE Negative” is 

the number of events the model correctly predicts as injuries = no, “FALSE Positive” is 

the number of events the model predicts as injuries = yes when it should have been 
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injuries = no, and finally “TRUE Positive” is the number of events correctly predicted as 

injury = yes.   For this decision tree, it correctly predicted 1.34% injuries, but incorrectly 

predicted no injuries for the other 6.97% of events that had injuries.  In other words, it 

correctly predicted 16% of the injury events. 

 

Table 9 contains the variable importance table.  NRULES is the number of times the 

variable appears in a node, IMPORTANCE shows the level of importance for the 

variable in the training dataset, and VIMPORTANCE shows the level of importance for 

the variable in the validation dataset.  RATIO is the IMPORTANCE divided by the 

VIMPORTANCE.  In this table, it is clear that the industry code has equal importance 

across the two sets, air emission releases have absolutely no importance with relation to 

the validation set, and the remaining release types and chemical subcategories do not 

have much importance in either dataset. 

 
 
 

Table 9      Variable Importance for Decision Tree with No Text Input 

Obs NAME NRULES IMPORTANCE VIMPORTANCE RATIO
1 NIND_CODE 1 1.000 1.000 1.000
2 SEC_FACT 3 0.693 0.662 0.955
3 REL_AIREMIS 1 0.404 0.000 0.000
4 PRIM_FACT 3 0.372 0.400 1.073
5 SC_OISC 2 0.269 0.310 1.153
6 SC_AMMONIA 3 0.235 0.214 0.911
7 SC_ACID 3 0.222 0.250 1.127
8 SC_OXYORG 1 0.220 0.160 0.730
9 REL_SPILL 2 0.183 0.081 0.443

10 SC_MIX 1 0.180 0.159 0.882
11 SC_OTHER 1 0.114 0.084 0.738
12 SC_CHORLINE 2 0.107 0.111 1.037
13 REL_FIRE 1 0.107 0.070 0.659  
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An example rule produced by this decision tree is: 

• If the primary factor is something other than Human Error,  

o AND the secondary contributing factors are system/process upset or 

power failure/electrical problems 

o AND industry type is manufacturing or mining, then 

 Occurrence of injuries is estimated to be 0.1% for 1,902 events. 

Take this same set of rules except consider the scenario where there is at least one acid 

present, then the occurrence of injuries jumps to 5.9% for 17 events.  This percentage 

increase makes sense because the presence of an acid is adding a hazard to the scenario.   

 

Looking at the leaf nodes with large percent estimations for injuries = yes can help 

identify the main scenarios that cause injuries.  Branches with higher percent predictions 

for injuries also contain few events, which is intuitive since only a small percentage of 

the total events result in injury.  In addition, the predicted percentages for injuries 

between the training and validation set differ significantly more for smaller groupings of 

events.  Thus, a more qualitative approach was taken to identify key components for 

these high injury yielding events.  

• Explosions in the utilities or transportation industries is expected to have 53.8% 

occurrence of injuries in 13 events for the training set and 35.3% occurrence of 

injuries in 17 events for the validation set. 

• Illicit drug production or improper mixing in the utilities or transportation 

industries is predicted to have 22.5% occurrence of injuries in 111 events and 

13.8% occurrence of injuries in 87 events in the training and validation datasets, 

respectively. 

• The presence of at least one hazardous substance mixture in an event that 

involves improper mixing or performing maintenance and is in the professional 

services or illegal activity industries is expected to have 75.6% occurrence of 

injuries in 41 events and 65.1% occurrence of injuries in 43 events for the 
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training and validation datasets, respectively.  These events account for many 

methamphetamine related events. 

• The presence of at least 1 ammonia substance, released via air emission due to 

operator error in the utilities or transportation industries is expected to have 

100% occurrence of injuries in 13 events and 88.9% occurrence of injuries in 9 

events for the training and validation datasets, respectively.  Events where a tank 

of ammonia is accidentally spilled fits this scenario description well. 

• The presence of at least 1 acid, released via air emission due to operator error in 

the utilities or transportation industries is expected to have 82.6% occurrence of 

injuries in 23 events and 73.7% occurrence of injuries in 19 events for the 

training and validation datasets, respectively.   

 

6.3.2 Decision Tree with Text Input 

 

A second decision tree node was connected to the text miner node and the settings were 

set identically to the decision tree discussed in section 6.3.1.  The cause related variables 

and the SVD variables from the text mining node were set as input, occurrence of 

injuries was set as the target, and all other variables were set to reject. 

 

Table 10 on the following page contains the event classification table.   

 
 
 



 41

Table 10     Classifications for Decision Tree with Text Input 

Data FALSE TRUE FALSE TRUE
Role Target Negative Negative Positive Positive

TRAIN INJ_YorN 271          6,918          110        366           
VALIDATE INJ_YorN 264          5,117          155        213           

TRAIN INJ_YorN 3.54% 90.25% 1.44% 4.77%
VALIDATE INJ_YorN 4.59% 89.01% 2.70% 3.70%

Frequencies

Percent of Total

 
 
 
 
The decision tree with the incorporated SVD vectors from the text node classified the 

events much better then the decision tree without the SVD vectors.  Table 10 shows the 

decision tree with SVD input correctly predicted 4.79% injuries, but incorrectly 

predicted no injuries for the other 3.52% of events that had injuries.  This translates to 

correct predictions for 57% of the injury events, a sizeable improvement from the 

decision tree model without the text input. 

 

Table 11 contains the variable importance table.  In this table, it is clear that the _SVD_4 

vector has equal importance across the training and validation datasets, the secondary 

contributing factors have about 0.6 importance, and the industry type and _SVD_1 

vector have about 0.5 importance across the training and validation datasets.   
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Table 11     Variable Importance for Decision Tree with Text Input 

Obs NAME NRULES IMPORTANCE VIMPORTANCE RATIO
1 _SVD_4 1 1.000 1.000 1.000
2 SEC_FACT 1 0.688 0.595 0.865
3 NIND_CODE 3 0.577 0.471 0.816
4 _SVD_1 2 0.523 0.461 0.881
5 _SVD_3 3 0.449 0.448 0.999
6 _SVD_8 2 0.325 0.261 0.801
7 _SVD_6 2 0.304 0.260 0.854
8 _SVD_11 3 0.261 0.142 0.543
9 _SVD_21 3 0.252 0.000 0.000

10 _SVD_10 1 0.248 0.000 0.000
11 _SVD_23 2 0.239 0.160 0.671
12 _SVD_27 1 0.211 0.000 0.000
13 _SVD_26 3 0.211 0.152 0.722
14 _SVD_25 1 0.201 0.000 0.000
15 _SVD_7 1 0.184 0.114 0.621
16 _SVD_32 1 0.182 0.000 0.000
17 PRIM_FACT 1 0.181 0.266 1.472
18 _SVD_2 1 0.164 0.106 0.646
19 REL_SPILL 1 0.158 0.000 0.000
20 SC_ACID 1 0.149 0.000 0.000
21 _SVD_18 1 0.145 0.000 0.000
22 SC_OISC 1 0.145 0.122 0.846
23 SC_OXYORG 1 0.142 0.000 0.000
24 _SVD_17 1 0.139 0.000 0.000
25 _SVD_28 1 0.132 0.000 0.000
26 _SVD_5 1 0.122 0.000 0.000
27 _SVD_20 1 0.089 0.142 1.600  
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The weights per cluster segment for SVD_1 and SVD_4 are provided in Table 12 below.  

The percents are the portion of events per cluster. 

 
 
 

Table 12     Cluster Weights for SVD_1 and SVD_4 

Cluster Percent _SVD_1 _SVD_4
1 33% 0.000 0.000
2 17% 0.187 -0.077
3 8% 0.241 -0.063
4 4% 0.645 -0.091
5 29% 0.235 -0.096
6 3% 0.216 -0.107
7 3% 0.182 0.082
8 3% 0.184 -0.096  

 
 
 
Compared to the other SVD vectors (not shown), SVD_1 has the highest weights across 

the largest number of clusters.  This is a result of SVD_1 accounting for most of the 

variability in the model.  Clusters 2, 3, 5, 6, 7, and 8 are all weighted about 0.2 and the 

clusters include various types of events that are not generally related to operator error.  

Cluster 4 has the largest weight of 0.65 and only accounts for 4% of the events; cluster 4 

contains mainly operator error events.  The weight for cluster 1 is 0 since this cluster 

represents the set of events with no text entries.  The vector SVD_4 has equal weights of 

about -0.1 for clusters 2-6 and 8.  Cluster 7 is weighted as 0.1 and contains ammonia and 

school related events.  Because the clusters are not very distinct from one another, 

interpretation of the scenarios in the decision tree is limited, and drawing meaningful 

conclusions from these events is limited as well. 

 

The low event number and high percent predicted injury occurrence scenarios were 

reviewed and the following are some of the findings: 

• Events where the primary contributing factor is operator error and the secondary 

factor is either improper mixing or performing maintenance with events weighted 
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< 0.00413 in SVD_4 are predicted to result in 57.6% occurrence of injuries in 

110 events and 51.8% occurrence of injuries in 85 events for the training and 

validation datasets, respectively.   

o This scenario is describing events where the operator erred via improper 

mixing or performing maintenance and events that are not grouped in 

cluster 7. 

• Events where fire or illicit drug production were the secondary contributing 

factors with weights < 0.00413 in SVD_4 are predicted to result in 17.7% 

occurrence of injuries in 844 events and 15.8% occurrence of injuries in 659 

events for the training and validation sets, respectively. 

o This scenario is describing events that are most likely coming from 

cluster 3, 4, or 5 which contain the clustered word “fire”.  Cluster 3 

contains events with explosions from methamphetamine labs. 

• Events in the wholesale trade or professional services industry with weights 

between 0.00413 and 0.10328 for SVD_4 are predicted to have 52.0% 

occurrence of injuries in 102 events and 58.5% occurrence of injuries in 65 

events for the training and validation sets, respectively. 

o The events in this scenario are singled out to cluster 7 which is described 

as mostly ammonia and school-related events.  The wholesale trade 

industry has a large number of events with ammonia releases and the 

professional services industry has a large number of school services 

(elementary school, colleges and universities, etc.) grouped with it.   

 

6.3.3 Logistic Regression Node without Text Input 

 

A few iterations were required to build the best possible logistic regression model with 

the cause related predictor variables.  The final setup for this model includes industry 

type, release types, primary and secondary contributing factors set to input, occurrence 
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of injuries set to target, and all other variables set to reject.  The model selection of 

choice is stepwise regression.   

 

Table 13 shows the event classification table.  The logistic regression model correctly 

predicted 1.72% injuries, but incorrectly predicted no injuries for the other 6.59% of 

events that had injuries.  Similarly stated, this decision tree model correctly predicted 

21% of the injury events. 

 
 
 

Table 13     Classifications for Logistic Regression with No Text Input 

Data FALSE TRUE FALSE TRUE
Role Target Negative Negative Positive Positive

TRAIN INJ_YorN 505          6,939          89          132           
VALIDATE INJ_YorN 368          5,174          98          109           

TRAIN INJ_YorN 6.59% 90.53% 1.16% 1.72%
VALIDATE INJ_YorN 6.40% 90.00% 1.70% 1.90%

Frequencies

Percent of Total

 
 
 
 
Table 14 on the following page lists the parameter estimate results for the selected 

variables. 
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Table 14     Maximum Likelihood Estimates for Logistic Regression without Text 

Parameter INJ 
YorN Category DF Estimate Standard 

Error
Wald Chi-

Square
Pr > 

ChiSq
Standardized 

Estimate Exp(Est)

Intercept Y 1 -3.1579 2.5627 1.52 0.2178 0.043
NIND_CODE Y 1 1 -0.2421 0.3355 0.52 0.4704 0.785
NIND_CODE Y 2 1 -2.3574 0.9511 6.14 0.0132 0.095
NIND_CODE Y 3 1 -0.0246 0.2863 0.01 0.9314 0.976
NIND_CODE Y 4 1 -1.0436 0.1513 47.56 <.0001 0.352
NIND_CODE Y 5 1 -1.073 0.2803 14.65 0.0001 0.342
NIND_CODE Y 6 1 0.4252 1.033 0.17 0.6807 1.53
NIND_CODE Y 7 1 -0.7176 0.2238 10.28 0.0013 0.488
NIND_CODE Y 8 1 -0.6896 0.2755 6.26 0.0123 0.502
NIND_CODE Y 9 1 1.0625 0.2327 20.85 <.0001 2.894
NIND_CODE Y 10 1 0.5574 0.3805 2.15 0.143 1.746
NIND_CODE Y 11 1 0.3295 0.3662 0.81 0.3682 1.39
NIND_CODE Y 12 1 0.6858 0.1683 16.61 <.0001 1.985
NIND_CODE Y 13 1 0.3664 0.4045 0.82 0.365 1.443
NIND_CODE Y 14 1 1.0046 0.1842 29.75 <.0001 2.731
NIND_CODE Y 15 1 -0.0418 0.3574 0.01 0.907 0.959
NIND_CODE Y 16 1 -0.3209 0.5403 0.35 0.5525 0.725
NIND_CODE Y 17 1 1.3005 0.3566 13.3 0.0003 3.671
NIND_CODE Y 18 1 1.0943 0.4605 5.65 0.0175 2.987
NIND_CODE Y 19 1 -0.1151 0.2544 0.2 0.651 0.891
PRIM_FACT Y 2 1 -0.4992 0.1645 9.21 0.0024 0.607
PRIM_FACT Y 3 1 0.7239 0.1591 20.7 <.0001 2.062
PRIM_FACT Y 8 1 0.5335 0.4222 1.6 0.2064 1.705
PRIM_FACT Y G 1 -0.6747 0.2107 10.25 0.0014 0.509
REL_AIREMIS Y 1 0.3838 0.0735 27.28 <.0001 0.1524 1.468
SC_ACID Y 1 0.6764 0.1281 27.87 <.0001 0.1226 1.967
SC_AMMONIA Y 1 0.6665 0.1625 16.83 <.0001 0.0963 1.947
SC_BASES Y 1 0.5161 0.2107 6 0.0143 0.0533 1.676
SC_CHORLINE Y 1 0.8852 0.2134 17.21 <.0001 0.0841 2.424
SC_OISC Y 1 -0.6551 0.0976 45.05 <.0001 -0.2708 0.519
SC_OTHER Y 1 0.385 0.1368 7.92 0.0049 0.0642 1.47
SC_OXYORG Y 1 0.3609 0.1071 11.35 0.0008 0.0873 1.435
SEC_FACT Y 1 1 2.3502 2.5676 0.84 0.36 10.488
SEC_FACT Y 2 1 0.0123 2.5727 0 0.9962 1.012
SEC_FACT Y 3 1 1.9573 2.575 0.58 0.4472 7.08
SEC_FACT Y 4 1 0.1735 2.5675 0 0.9461 1.189
SEC_FACT Y 8 1 1.3584 2.5712 0.28 0.5973 3.89
SEC_FACT Y A 1 0.7002 2.5668 0.07 0.785 2.014
SEC_FACT Y B 1 -0.8022 2.5887 0.1 0.7567 0.448
SEC_FACT Y C 1 -0.5688 2.5951 0.05 0.8265 0.566
SEC_FACT Y E 1 -5.4724 7.9975 0.47 0.4938 0.004
SEC_FACT Y F 1 -0.2557 2.577 0.01 0.9209 0.774
SEC_FACT Y I 1 0.00208 2.74 0 0.9994 1.002
SEC_FACT Y J 1 1.4371 2.5666 0.31 0.5755 4.209
SEC_FACT Y K 1 3.3018 2.5814 1.64 0.2009 27.163
SEC_FACT Y L 1 1.5423 2.5739 0.36 0.549 4.675
SEC_FACT Y N 1 0.8416 2.5592 0.11 0.7423 2.32
SEC_FACT Y O 1 -7.2505 45.3653 0.03 0.873 0.001
SEC_FACT Y P 1 0.1933 2.7746 0 0.9445 1.213
SEC_FACT Y Q 1 1.7903 2.5715 0.48 0.4863 5.991  
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Recall that logistic regression builds a model that predicts the likelihood of some 

response via odds ratio.  The “Estimate” column gives the estimated coefficient for each 

variable.  For interval variables such as air emission release type, the coefficient will be 

multiplied by the number of air emission releases.  For categorical variables such as 

industry type, the model splits these into binary variables of industry code 17, industry 

code 18, and so on such that if NIND_CODE 17 = Yes, the value 1 will be multiplied by 

the coefficient.   

 

Using the coefficient estimates from Table 14, the equation for this model is: 

 

===== )Pr(/)ln[Pr()](ln[ NoInjuryYesInjuryYesInjuryOddsRatio  

LL ++++− AIREMISRELCODENINDCODENIND _*4.018_*3.117_*2.3  

 

If there is an event involving illegal activity (industry type 18), then NIND_CODE 18 = 

1 else it is 0.  The other categorical variables are treated the same way.  If there are 3 

substances that were released via air emission, then REL_AIREMIS = 3.  The other 

interval variables are treated similarly.  The final results gives the odds ratio, which 

describes how much more likely it is for an injury to occur then for an injury not to 

occur.  The equation can be manipulated to solve for Pr(Injury=Yes). 

 

Note that the statistical significance of the variables should be considered in terms of 

identifying the more important factors.  Looking at the coefficients alone does not give 

an adequate assessment of the variable significance since the order of magnitude among 

the variables is different.  Reviewing the odds ratio in the column “Exp(est)” can give a 

good indication of what variables have a larger effect on the occurrence of injury.  

Considering both the odds ratio and the p-values found in column “Pr > ChiSq” helps 

discern which variables affect the occurrence of an injury and are still statistically 

significant.  The variables with p-values less than 0.05 were filtered out and ranked in 

decreasing order by their odds ratio estimate.  The results are given in Table 15. 
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Table 15     Reduced Variable List for Logistic Regression with No Text Input 

Parameter Category Category Description Estimate Standard 
Error

Wald 
Chi-

Square

Pr > 
ChiSq

Standardized 
Estimate Exp(Est)

NIND_CODE 17 Private vehicle or property 1.3005 0.3566 13.3 0.0003 3.671
NIND_CODE 18 Illegal activity (non-drug related) 1.0943 0.4605 5.65 0.0175 2.987
NIND_CODE 9 Retail trade 1.0625 0.2327 20.85 <.0001 2.894
NIND_CODE 14 Professional services 1.0046 0.1842 29.75 <.0001 2.731
SC_CHORLINE 0.8852 0.2134 17.21 <.0001 0.0841 2.424
PRIM_FACT 3 Operator error 0.7239 0.1591 20.7 <.0001 2.062
NIND_CODE 12 Personal services 0.6858 0.1683 16.61 <.0001 1.985
SC_ACID 0.6764 0.1281 27.87 <.0001 0.1226 1.967
SC_AMMONIA 0.6665 0.1625 16.83 <.0001 0.0963 1.947
SC_BASES 0.5161 0.2107 6 0.0143 0.0533 1.676
SC_OTHER 0.385 0.1368 7.92 0.0049 0.0642 1.47
REL_AIREMIS 0.3838 0.0735 27.28 <.0001 0.1524 1.468
SC_OXYORG 0.3609 0.1071 11.35 0.0008 0.0873 1.435
PRIM_FACT 2 Equipment failure -0.4992 0.1645 9.21 0.0024 0.607
SC_OISC -0.6551 0.0976 45.05 <.0001 -0.2708 0.519
PRIM_FACT G Intentional act -0.6747 0.2107 10.25 0.0014 0.509
NIND_CODE 8 Wholesale trade -0.6896 0.2755 6.26 0.0123 0.502
NIND_CODE 7 Utilities -0.7176 0.2238 10.28 0.0013 0.488
NIND_CODE 4 Manufacturing -1.0436 0.1513 47.56 <.0001 0.352
NIND_CODE 5 Transportation -1.073 0.2803 14.65 0.0001 0.342
NIND_CODE 2 Mining -2.3574 0.9511 6.14 0.0132 0.095  
 
 
 
The following observations are made based on these results: 

• None of the secondary contributing factors were considered statistically 

significant. 

• A private vehicle or property related event is 3.7 times more likely to result in an 

injury. 

• Events related to illegal activity that is non-drug related, retail trade, and 

professional service industries all are roughly 3 times more likely to have an 

injury.   

• Chlorine events are 2.5 times more likely to result in an injury whereas acid, 

ammonia, and base events are only 2 times more likely to result in an injury.  

Substances in the oxy-organic and other substances categories are only about 1.5 

times more likely to result in an injury.  Interestingly enough, the presence of 
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substances in the other inorganic substances category are 2 times more likely to 

NOT result in an injury. 

• The only statistically significant release type is air emissions, which has the odds 

of 3 to 1 that a person will be injured. 

• Events caused by operator error have 2 to 1 odds that someone will be injured, 

but events caused by equipment failure and intentional act are respectively 1.6 

and 2.0 times more likely NOT to result in an injury. 

• Events in the wholesale trade and utilities industries are 2.0 times more likely to 

NOT result in injury and events in the manufacturing and transportation 

industries are showing respectively 2.8 and 2.9 times the likelihood of resulting 

in an injury.  Mining industry events are showing the occurrence of an injury is 

10 times less likely. 

 

Based on this logistic regression model, efforts to decrease the occurrence of injuries can 

be focused on the private frontier, illegal activities, retail trades, and professional 

services.  Data inspection of these industry types revealed the following: 

• Illegal activities as events dealing with disgruntled employees, vandalism, and 

domestic disputes.   

• Retail trade events dealt primarily with ammonia releases/leaks, improper mixing 

of chemicals, use of pesticides without proper ventilation, or other substance 

leaks.  Many of the events with ammonia leaks were related to someone stealing 

the ammonia to make methamphetamines and not completely shutting the valves. 

• Professional services events typically dealt with broken thermometers or 

accidentally spilling materials.   

• Personal services industry included many meth lab related events where 

surrounding households had to be evacuated.   

An effective way to reduce injuries is something ATSDR and participating states are 

already doing—focusing on outreach programs to educate people about hazards 

associated with substances such as mercury, chlorine, and pesticides.  Another 
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suggestion to reduce the opportunity for injuries with respect to thieves stealing 

ammonia is to collaborate with retail trades to identify and implement ways of storing 

their chemicals in a more secure location. 

 

6.3.4 Logistic Regression Node with Text Input 

 

A few iterations were required to build the best possible logistic regression model with 

the cause related predictor variables and SVD variables.  The final setup for this model 

includes industry type, release types, primary and secondary contributing factors set to 

input, occurrence of injuries set to target, and all other variables set to reject.  The model 

selection of choice is stepwise regression.   

 

Table 16 shows the event classifications and Table 17 lists the parameter estimate 

results. The logistic regression with SVD input correctly predicted 3.65% injuries, but 

incorrectly predicted no injuries for the other 4.66% of events that had injuries. 

 
 
 

Table 16     Classifications for Logistic Regression with Text Input 

Data FALSE TRUE FALSE TRUE
Role Target Negative Negative Positive Positive

TRAIN INJ_YorN 357          6,935          93          280           
VALIDATE INJ_YorN 239          5,186          86          238           

TRAIN INJ_YorN 4.66% 90.48% 1.21% 3.65%
VALIDATE INJ_YorN 4.16% 90.21% 1.50% 4.14%

Frequencies

Percent of Total
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Table 17     Maximum Likelihood Estimates for Logistic Regression with Text 

Parameter INJ 
YorN Category DF Estimate Standard 

Error
Wald Chi-

Square
Pr > 

ChiSq
Standardized 

Estimate Exp(Est)

Intercept Y 1 -3.1579 2.5627 1.52 0.2178 0.043
NIND_CODE Y 1 1 -0.2421 0.3355 0.52 0.4704 0.785
NIND_CODE Y 2 1 -2.3574 0.9511 6.14 0.0132 0.095
NIND_CODE Y 3 1 -0.0246 0.2863 0.01 0.9314 0.976
NIND_CODE Y 4 1 -1.0436 0.1513 47.56 <.0001 0.352
NIND_CODE Y 5 1 -1.073 0.2803 14.65 0.0001 0.342
NIND_CODE Y 6 1 0.4252 1.033 0.17 0.6807 1.53
NIND_CODE Y 7 1 -0.7176 0.2238 10.28 0.0013 0.488
NIND_CODE Y 8 1 -0.6896 0.2755 6.26 0.0123 0.502
NIND_CODE Y 9 1 1.0625 0.2327 20.85 <.0001 2.894
NIND_CODE Y 10 1 0.5574 0.3805 2.15 0.143 1.746
NIND_CODE Y 11 1 0.3295 0.3662 0.81 0.3682 1.39
NIND_CODE Y 12 1 0.6858 0.1683 16.61 <.0001 1.985
NIND_CODE Y 13 1 0.3664 0.4045 0.82 0.365 1.443
NIND_CODE Y 14 1 1.0046 0.1842 29.75 <.0001 2.731
NIND_CODE Y 15 1 -0.0418 0.3574 0.01 0.907 0.959
NIND_CODE Y 16 1 -0.3209 0.5403 0.35 0.5525 0.725
NIND_CODE Y 17 1 1.3005 0.3566 13.3 0.0003 3.671
NIND_CODE Y 18 1 1.0943 0.4605 5.65 0.0175 2.987
NIND_CODE Y 19 1 -0.1151 0.2544 0.2 0.651 0.891
PRIM_FACT Y 2 1 -0.4992 0.1645 9.21 0.0024 0.607
PRIM_FACT Y 3 1 0.7239 0.1591 20.7 <.0001 2.062
PRIM_FACT Y 8 1 0.5335 0.4222 1.6 0.2064 1.705
PRIM_FACT Y G 1 -0.6747 0.2107 10.25 0.0014 0.509
REL_AIREMIS Y 1 0.3838 0.0735 27.28 <.0001 0.1524 1.468
SC_ACID Y 1 0.6764 0.1281 27.87 <.0001 0.1226 1.967
SC_AMMONIA Y 1 0.6665 0.1625 16.83 <.0001 0.0963 1.947
SC_BASES Y 1 0.5161 0.2107 6 0.0143 0.0533 1.676
SC_CHORLINE Y 1 0.8852 0.2134 17.21 <.0001 0.0841 2.424
SC_OISC Y 1 -0.6551 0.0976 45.05 <.0001 -0.2708 0.519
SC_OTHER Y 1 0.385 0.1368 7.92 0.0049 0.0642 1.47
SC_OXYORG Y 1 0.3609 0.1071 11.35 0.0008 0.0873 1.435
SEC_FACT Y 1 1 2.3502 2.5676 0.84 0.36 10.488
SEC_FACT Y 2 1 0.0123 2.5727 0 0.9962 1.012
SEC_FACT Y 3 1 1.9573 2.575 0.58 0.4472 7.08
SEC_FACT Y 4 1 0.1735 2.5675 0 0.9461 1.189
SEC_FACT Y 8 1 1.3584 2.5712 0.28 0.5973 3.89
SEC_FACT Y A 1 0.7002 2.5668 0.07 0.785 2.014
SEC_FACT Y B 1 -0.8022 2.5887 0.1 0.7567 0.448
SEC_FACT Y C 1 -0.5688 2.5951 0.05 0.8265 0.566
SEC_FACT Y E 1 -5.4724 7.9975 0.47 0.4938 0.004
SEC_FACT Y F 1 -0.2557 2.577 0.01 0.9209 0.774
SEC_FACT Y I 1 0.00208 2.74 0 0.9994 1.002
SEC_FACT Y J 1 1.4371 2.5666 0.31 0.5755 4.209
SEC_FACT Y K 1 3.3018 2.5814 1.64 0.2009 27.163
SEC_FACT Y L 1 1.5423 2.5739 0.36 0.549 4.675
SEC_FACT Y N 1 0.8416 2.5592 0.11 0.7423 2.32
SEC_FACT Y O 1 -7.2505 45.3653 0.03 0.873 0.001
SEC_FACT Y P 1 0.1933 2.7746 0 0.9445 1.213
SEC_FACT Y Q 1 1.7903 2.5715 0.48 0.4863 5.991  
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Both the odds ratio and the p-values found in column “Pr > ChiSq” were used to discern 

which variables affect the occurrence of an injury and are still statistically significant.  

The variables with p-values less than 0.05 were filtered out and ranked in decreasing 

order by their odds ratio estimate.  The results are given in Table 18. 

 
 
 

Table 18     Reduced Variable List for Logistic Regression with Text Input 

Parameter Category Category Description Estimate Standard 
Error

Wald 
Chi-

Square

Pr > 
ChiSq

Standardized 
Estimate Exp(Est)

_SVD_4 5.9036 0.4387 181.09 <.0001 0.3314 366.372
_SVD_1 5.6878 0.378 226.45 <.0001 0.486 295.234
_SVD_11 2.3812 0.4042 34.7 <.0001 0.1506 10.818
SEC_FACT K Explosion 2.2691 1.112 4.16 0.0413 9.671
_SVD_25 2.1992 0.5262 17.47 <.0001 0.1398 9.018
_SVD_24 2.0997 0.4458 22.19 <.0001 0.1593 8.164
_SVD_20 1.8752 0.4127 20.65 <.0001 0.1507 6.522
_SVD_23 1.6062 0.4209 14.56 0.0001 0.1774 4.984
NIND_CODE 17 Private vehicle or property 1.5191 0.3991 14.49 0.0001 4.568
_SVD_6 1.3335 0.4397 9.2 0.0024 0.0645 3.794
_SVD_29 1.0776 0.4578 5.54 0.0186 0.0643 2.938
SC_CHORLINE 1.0645 0.2409 19.53 <.0001 0.1011 2.9
_SVD_10 1.0116 0.3533 8.2 0.0042 0.0963 2.75
NIND_CODE 14 Professional services 0.877 0.2237 15.36 <.0001 2.404
_SVD_9 0.8092 0.3817 4.5 0.034 0.055 2.246
SC_AMMONIA 0.8093 0.1849 19.15 <.0001 0.117 2.246
NIND_CODE 9 Retail trade 0.7375 0.284 6.75 0.0094 2.091
PRIM_FACT 3 Operator error 0.5119 0.1868 7.51 0.0061 1.668
NIND_CODE 12 Personal services 0.5085 0.201 6.4 0.0114 1.663
REL_FIRE 0.4024 0.1546 6.77 0.0093 0.0453 1.495
REL_AIREMIS 0.3282 0.0884 13.78 0.0002 0.1304 1.388
PRIM_FACT 2 Equipment failure -0.4227 0.1931 4.79 0.0286 0.655
PRIM_FACT G Intentional act -0.5836 0.2345 6.19 0.0128 0.558
NIND_CODE 5 Transportation -0.6431 0.3235 3.95 0.0468 0.526
NIND_CODE 4 Manufacturing -0.6691 0.1776 14.2 0.0002 0.512
_SVD_31 -1.2139 0.5183 5.48 0.0192 -0.072 0.297
_SVD_17 -1.2473 0.4199 8.82 0.003 -0.1072 0.287
_SVD_15 -1.7313 0.4306 16.17 <.0001 -0.0975 0.177
_SVD_2 -2.5201 0.3756 45.01 <.0001 -0.1857 0.08
NIND_CODE 2 Mining -2.7277 1.2407 4.83 0.0279 0.065
Intercept -3.6029 1.057 11.62 0.0007 0.027  
 
 
 
There are 15 SVD vectors that show statistical significance, 11 of which have odds ratios 

larger than 2.2 with a maximum of 366.  The weights were reviewed for each of the 15 
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SVD vectors and no discernable conclusions could be drawn because clustered events 

and terms are not distinct enough.   

The following observations are made based on these results: 

• Only one secondary contributing factor (Explosion) was determined statistically 

significant. 

• A private vehicle or property related event is 4.6 times more likely to result in an 

injury. 

• Professional service events are 2.4 times more likely to result in injuries.   

• Events related to retail trade, operator error, and personal services industries all 

are roughly 2 times more likely to have an injury.   

• Chlorine events are 2.9 times more likely to result in an injury whereas ammonia 

events are only 2.2 times more likely to result in an injury.   

• The only statistically significant release types are air emissions and fire, which 

are 1.5 and 1.4 times more likely to result in injury, respectively. 

• Events caused by equipment failure and intentional act are respectively 1.6 and 

2.0 times more likely NOT to result in an injury. 

• Events in the transportation and manufacturing industries are 2.0 times more 

likely to NOT result in injury.  Mining industry events are showing the 

occurrence of an injury is 37 times less likely. 

 

Based on the listed findings, similar conclusions to the non-text logistic regression 

model results can be drawn.  Note that the logistic regression model with text input did 

identify explosions as a statistically significant event.  

 

6.4 Assess 

 

Finally, the model comparison node was connected to the two regression nodes.  The 

accuracy of the regression models were compared by applying the models to all data 

subsets (train, validate, and test).  The logistic regression model with the text input was 
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determined to predict injury occurrences the best as can be seen by the higher lift in each 

dataset.  Cumulative lift charts for the train, validate, and test sets are provided in Figure 

10, Figure 11, and Figure 12, respectively.  The lift in all three datasets is similar 

showing the models performed consistently. 

 
 
 

 
Figure 10     Cumulative Lift Comparison for Train Dataset 

 
 
 

 
Figure 11     Cumulative Lift Comparison for Validate Dataset 
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Figure 12     Cumulative Lift Comparison for Test Dataset 
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7.  CONCLUSIONS AND RECOMMENDATIONS 

 

The conclusions and recommendations for this research are presented in this section. 

 

7.1 Conclusions 

 

Data mining proved to be beneficial in both describing the HSEES events and building a 

fairly good model to predict the occurrence of injuries.  The following are some 

conclusions drawn based on the analysis: 

• Although HSEES data is collected to describe the effects hazardous substance 

releases/threatened releases have on people, a fairly good predictive model was 

still obtained from the few variables identified as cause related.  

• Visually exploring the data via bar graphs did not yield any noticeable patterns. 

• Clustering the data identified groupings of categories across the variable inputs 

such as manufacturing events resulting from intentional acts such as system 

startup and shutdown, performing maintenance, and improper dumping.   

• Text mining the data allowed for clustering the events and further description of 

the data, however, these events were not noticeably distinct and drawing 

conclusions based on these clusters was limited.   

• Inclusion of the text comments to the overall analysis of HSEES data greatly 

improved the predictive power of the models. Interpretation of the textual data’s 

contribution was limited, however, the qualitative conclusions drawn were 

similar to the model without textual data input. 

 

Probably the most beneficial part of performing a data mining analysis on the HSEES 

data is having the capability to relate characteristics across several variable types to one 

another.  Annual reports provided by ATSDR do not go into such detail—the annual 

reports describe the number of occurrences and percent distributions of event 

characteristics with some associations made to other variable types.  For example, in the 
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2004 report, the percent of events with victims with respect to the number of substances 

present from a single category or more than one category was determined [7].  The data 

mining analysis was able to address questions with regard to types of events that occur 

without having to read individual data entries. 

 

7.2 Recommendations 

 

This study focused on identifying causal factors that result in injury, however, there are 

other potential studies that would be beneficial to explore such as: 

• Use data mining techniques to describe the victim data. 

• Translate the chemical quantities into a common unit, compare the quantities of 

each substance type to their corresponding permissible exposure limits (PEL) 

defined by OSHA, and incorporate these data into an analysis such that the 

consequence severity can be assessed. 

• Use link analysis to build association rules for text comment entries and 

determine if there are any strong cause-consequence associations. 

• Try different approaches to build more distinct clusters within the textual data 

such that more interpretable conclusions may be drawn. 
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