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ABSTRACT

Experimental and Numerical Study of Molecular Mixing Dynamics in

Rayleigh�Taylor Unstable Flows. (May 2008)

Nicholas J. Mueschke, B.S., University of Louisiana at Lafayette;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Malcolm J. Andrews

Experiments and simulations were performed to examine the complex processes that

occur in Rayleigh�Taylor driven mixing. A water channel facility was used to examine

a buoyancy-driven Rayleigh�Taylor mixing layer. Measurements of �uctuating den-

sity statistics and the molecular mixing parameter � were made for Pr = 7 (hot/cold

water) and Sc � 103 (salt/fresh water) cases. For the hot/cold water case, a high-

resolution thermocouple was used to measure instantaneous temperature values that

were related to the density �eld via an equation of state. For the Sc � 103 case, the

degree of molecular mixing was measured by monitoring a di¤usion-limited chemical

reaction between the two �uid streams. The degree of molecular mixing was quanti-

�ed by developing a new mathematical relationship between the amount of chemical

product formed and the density variance �02. Comparisons between the Sc = 7 and

Sc � 103 cases are used to elucidate the dependence of � on the Schmidt number.

To further examine the turbulent mixing processes, a direct numerical simu-

lation (DNS) model of the Sc = 7 water channel experiment was constructed to

provide statistics that could not be experimentally measured. To determine the key

physical mechanisms that in�uence the growth of turbulent Rayleigh�Taylor mixing

layers, the budgets of the exact mean mass fraction em1, turbulent kinetic energy fE 00,
turbulent kinetic energy dissipation rate e�00, mass fraction variance gm002

1 , and mass

fraction variance dissipation rate f�00 equations were examined. The budgets of the



iv

unclosed turbulent transport equations were used to quantitatively assess the relative

magnitudes of di¤erent production, dissipation, transport, and mixing processes.

Finally, three-equation (fE 00-e�00-gm002
1 ) and four-equation (fE 00-e�00-gm002

1 -f�00) turbulent
mixing models were developed and calibrated to predict the degree of molecular mix-

ing within a Rayleigh�Taylor mixing layer. The DNS data sets were used to assess

the validity of and calibrate the turbulent viscosity, gradient-di¤usion, and scale-

similarity closures a priori. The modeled transport equations were implemented in a

one-dimensional numerical simulation code and were shown to accurately reproduce

the experimental and DNS results a posteriori. The calibrated model parameters

from the Sc = 7 case were used as the starting point for determining the appropri-

ate model constants for the mass fraction variance gm002
1 transport equation for the

Sc � 103 case.
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1

1. INTRODUCTION

1.1 Overview and Motivation

A fundamental understanding of the physics of turbulence and its e¤ects on molecu-

lar mixing processes is crucial to the development of predictive models of turbulent

mixing. Historically, shear-driven turbulence, passive scalar mixing, and combustion

have received extensive experimental, numerical, and theoretical attention (Warhaft

2000; Veynante & Vervisch 2002; Fox 2003; Dimotakis 2005). Mixing induced by

buoyancy-driven turbulence remains an open area of research, especially when the

complexity of the �ow physics increases due to the dynamic coupling of the density

�eld with the velocity �eld (Chassaing et al. 2002; Hanjalíc 2002). The present work

is motivated, in part, by the development of inertial con�nement fusion (ICF) tech-

nology, where the implosion of target capsules is susceptible to acceleration-driven

instabilities and turbulent mixing. Lindl (1995) noted that such hydrodynamic in-

stabilities limit the upper bound implosion velocity, and hence the overall neutron

yield from the thermonuclear reactions. Thus, a thorough understanding of the role

of hydrodynamic instabilities in ICF is crucial to the development of viable capsule

designs (Lindl 1998; Nakai & Takabe 1996; Nakai & Mima 2004; Atzeni & Meyer-

ter-Vehn 2004; Pfalzner 2006). Hydrodynamic instabilities can also a¤ect implosion

symmetry, as well as introduce cold shell material into the high temperature core of

the capsule during the implosion deceleration phase, thereby degrading (or possibly

quenching) the burning of the capsule. Shock and acceleration-driven hydrodynamic

instabilities, such as the Richtmyer�Meshkov instability (Richtmyer 1960; Meshkov

1969) and the Rayleigh�Taylor instability (Rayleigh 1884; Taylor 1950), respectively,

This dissertation follows the style of the Journal of Fluid Mechanics.
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are a limiting factor in the overall thermonuclear yield of an ICF capsule (Takabe et

al. 1988; Dittrich et al. 1994; Keane et al. 1995a,b; Radha et al. 2002; Li et al. 2002;

Wilson et al. 2003). Their mitigation is, therefore, desirable and perhaps essential to

the success of high-gain ICF.

The design of ICF capsules requires the optimization of a variety of design pa-

rameters. Typically, many simulations must be performed to adequately de�ne the

design phase-space. Direct numerical simulations (DNS) of the complete physics that

occur in ICF implosions is not feasible with current computational capabilities. In

particular, a complete physical description of the hydrodynamics of ICF implosions

over the range of typical length scales and time scales remains di¢ cult (Zhou et al.

2003), and thus hydrodynamic instability and turbulence models are required. Mod-

eling of ICF capsule implosions requires hydrodynamic models to accurately predict

the turbulent transport of mass, momentum, energy and materials across the entire

range of Reynolds numbers, from quiescent material layers to high Reynolds number

mixing layers. The present work is motivated by the challenge of developing more

predictive and physically complete transport and mixing models for buoyancy-driven

turbulence. This work used a combination of experiments, DNS, and mixing models

to examine the physics of Rayleigh�Taylor generated turbulent mixing. Experiments

were conducted to measure the degree of molecular mixing within a Rayleigh�Taylor

mixing layer. A DNS of the water channel experiment was used to further diagnose

the mixing dynamics which could not be experimentally-measured. The results from

the experiments and DNS were then used to test the feasibility and predictive capabil-

ity of Reynolds-averaged turbulent transport and mixing models for Rayleigh�Taylor

driven mixing layers.
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1.2 The Rayleigh�Taylor Instability

Buoyancy-driven hydrodynamic instabilities arise when one �uid of density �1 is accel-

erated into another of density �2. Speci�cally, the Rayleigh�Taylor instability arises

when a heavier �uid �1 is unstably strati�ed above a lighter �uid �2 in the presence

of a gravitational �eld (Rayleigh 1884; Taylor 1950) such that r� �rp < 0, where

p is the pressure. The dynamics of the penetration of one �uid into another in a

Rayleigh�Taylor instability-driven mixing layer can be classi�ed into three regimes

(Sharp 1984; Youngs 1984). First, in the presence of su¢ ciently small perturbations

at the initial interface separating the two �uids, each mode grows exponentially and

independently according to linear theory (Chandrasekhar 1961; Drazin & Reid 2004).

As the amplitude of each mode reaches �̂(k) � �=2, where k = 2�=� is the wavenum-

ber, nonlinear interactions become important and neighboring structures begin to in-

�uence the growth of rising �bubbles�and falling �spikes�(Sharp 1984; Haan 1989).

The extent of penetration of one �uid into another is de�ned as the distance between

the centerplane of the mixing layer and the bubble and spike fronts, hb and hs, respec-

tively. Following the onset of nonlinearity, secondary Kelvin�Helmholtz instabilities

(Kelvin 1871; Helmholtz 1868) develop as regions of high vorticity form between ris-

ing bubbles and falling spikes. As the instabilities grow, an increase in the range

of scales present in the mixing layer is driven by the nonlinear interactions between

buoyant structures. Bubbles and spikes merge to form larger buoyant structures,

while shearing forces generate smaller-scale structures, as well as more topologically-

complex interfaces. Finally, as highly-nonlinear interactions continue to develop, the

mixing layer eventually transitions to turbulence. In this turbulent regime, nonlinear

extensions of classical linear instability theory (Youngs 1984), dimensional analysis

(Anuchina et al. 1978; Cook & Dimotakis 2001), self-similar analysis (Ristorcelli &
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Clark 2004), bubble merger or competition models (Shvarts et al. 1995; Rikanati et

al. 2000; Dimonte et al. 2005), experiments (Andrews & Spalding 1990; Linden et

al. 1994; Snider & Andrews 1996; Dimonte & Schneider 2000; Banerjee & Andrews

2006), and numerical simulations (Youngs 1994; Ramaprabhu et al. 2005; Cabot &

Cook 2006) showed that the late-time penetration of the bubbles and spikes (for cases

where dissipative, di¤usive and surface tension e¤ects can be neglected) scale as

hb;s = �b;sAg t
2 ; (1.1)

where �b;s is dimensionless, A � (�1 � �2)=(�1 + �2) is the Atwood number, g is the

acceleration, and t is time. For the small Atwood number mixing layers considered

here hb = hs and �b = �s = �. A schematic of turbulent Rayleigh�Taylor mixing is

shown in �gure 1.1.

Rayleigh�Taylor instabilities occur in a variety of physical processes, and over a

wide range of length- and time-scales. Buoyancy-driven hydrodynamic instabilities,

including the Rayleigh�Taylor instability, may limit the formation of heavy elements

during stellar implosions (Smarr et al. 1981). On a smaller scale, many oceanographic

and atmospheric currents are buoyancy-driven due to temperature or concentration

gradients (Molchanov 2004; Cui & Street 2004). On a yet smaller scale, the breakup

of fuel droplets in internal combustion engines has been related to Rayleigh�Taylor

instabilities, as the air-fuel interface is unstable when the droplets are accelerated

by the local �ow �eld (Thomas 2003; Marmottant & Villermaux 2004). As noted

above, at the smallest scales, the acceleration and subsequent deceleration of an ICF

capsule fuel-shell interface is susceptible to Rayleigh�Taylor driven instabilities and

signi�cantly a¤ects the design and analysis of target capsules (Lindl 1995, 1998).

Buoyancy-generated turbulence provides an e¢ cient mechanism for mixing the con-

stituent miscible �uids (Linden & Redondo 1991). Despite the importance that mole-
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Figure 1.1 Schematic of canonical arrangement of a Rayleigh�Taylor instability-driven

turbulent mixing layer taken from slices of a three-dimensional direct nu-

merical simulation. See § 3 for a detailed description of the DNS.

cular mixing may have in these applications, a comprehensive understanding of the

buoyancy-driven mixing process, the coupled molecular mixing, and the associated

modeling remain largely unexplored.

1.3 Previous Work

The study, measurement, and modeling of turbulence-induced mixing has remained

at the forefront of turbulence research due to its impact in such �elds of study as cli-



6

mate dynamics (Adkins et al. 2002; Wunsch 2002), combustion and chemical reactor

processes (Veynante & Vervisch 2002), pollutant dispersion (Britter & Hanna 2003),

inertially-con�ned fusion (Lindl 1998; Betti et al. 2001; Atzeni & Meyer-ter-Vehn

2004), and cosmic and stellar dynamics (Colgate & White 1966). In this work, the

terms �turbulent mixing�and �molecular mixing� imply the process of producing a

homogenous mixture at the molecular level, as opposed to the intermingling of pock-

ets of unmixed �uid produced by laminar stirring motions. The study of turbulent

mixing can be broken down into three categories (Dimotakis 2005), where �Level 1�

mixing is categorized by the mixing of passive scalars, which do not in�uence the

turbulent dynamics. �Level 2�mixing is categorized by �ows where there is an active

feedback from the scalar �eld on the turbulent dynamics, such as in Rayleigh�Taylor

mixing layers. Finally, �Level 3�mixing is categorized by �ows where the mixing pro-

duces changes in the �uid composition, such as in combustion. From Levels 1 to 3,

the complexity of the theory, measurement, simulation, and modeling of the mixing

processes increases. The historical study of turbulent mixing has been focused on

the study of passive scalar mixing, with the assumption that various aspects of the

simpli�ed mixing dynamics may be used to model more complex �ows.

1.3.1 Experimental studies of turbulent mixing

The history of experimental measurements of turbulent mixing have primarily focused

on shear-driven �ows, such as shear layers and jets. Far less attention has been given

to the buoyancy-driven case, likely due to di¢ culties associated with the development

of experimental facilities and the application of high-�delity diagnostics to such ex-

periments. A brief review of some pertinent shear-driven results are presented �rst,

followed by a review of previous experimental measurements of molecular mixing in

Rayleigh�Taylor driven turbulence.
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Quantitative measurements of molecular mixing have been reported for many

classical, shear-driven turbulent �ows. In particular, a variety of experiments have

been designed to monitor a di¤usion-limited chemical reaction to quantify the degree

of molecular mixing. Konrad (1977) examined gas-phase mixing in free-shear �ows

with an associated Schmidt number Sc = �=D = 0:7 (� is the kinematic viscosity and

D is the mass di¤usivity). Breidenthal (1979, 1981) performed similar measurements

in liquid-phase turbulent shear layers with Sc � 103. Both Konrad and Breidenthal

quanti�ed the degree of molecular mixing using backlit optical techniques to measure

the absorption of light by a speci�c chemical species. A key result from these studies

was an integral measure of the chemical product concentration, P=�, where P is the

equivalent thickness of chemical product across the mixing layer, and � is the width

(vorticity thickness) of the turbulent shear layer. It was reported that P=� is a func-

tion of the Schmidt number, velocity ratio r = U1=U2, initial conditions, and Reynolds

number up to a transition range after which the mixing layer became entrainment-

limited, i.e. the turbulent motions generated su¢ cient surface area that molecular

di¤usion produced mixed �uid at a greater rate than pure �uid could be introduced

into the mixing layer. Once the mixing layer crossed the threshold Reynolds number

range, P=� became independent of all parameters except the Schmidt number. For

Sc = 0:7 experiments, Konrad (1977) reported P=� � 0:65 for Re� = �U �=� < 5000,

and P=� � 0:81 at higher Reynolds numbers. This contrasts with much lower values

reported for liquid-phase experiments (Breidenthal 1979, 1981), where P=� = 0:05�

0:3 was measured in pre-transitional mixing layers at di¤erent velocity ratios, and

P=� = 0:365 � 0:02 at Re� > 8000. Koochesfahani and Dimotakis (1986) extended

this work by using a combination of passive scalar and reacting �ow techniques to

quantify the amount of chemical product formed (measuring post-transition values of

P=�), and the probability density function (PDF) of the high-speed �uid. The statis-
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tical composition of the mixed �uid was quanti�ed by calculating the �rst moment of

the interior portion of the high-speed �uid PDF. In summary, in all of these results,

the scalar Schmidt number had a signi�cant in�uence on the degree of molecular

mixing both before and after the mixing transition in shear �ows.

Reacting �ow techniques have also been used to measure mixing in turbulent

jets. Shea (1976) used chemically-reacting gases to measure the e¤ects of the Reynolds

number and equivalence ratio on the reduction of the initial chemical reactants. Zhang

et al. (1995) and Zhang and Schneider (1995) used a similar liquid-phase con�gu-

ration, phenolphthalein indicator, and experimental methods as Breidenthal (1979,

1981) to study how variations in exit geometry a¤ected the degree of molecular mix-

ing in turbulent jets. Analogous to the measurement of P=� by Konrad (1977) and

Breidenthal (1979, 1981), Zhang et al. (1995) also quanti�ed the degree of molecu-

lar mixing by integrating the measured concentration chemical indicator across the

span of the jet at downstream locations. It was concluded that the total amount of

chemical product formed can be increased by adding �tabs�near the jet exit, thereby

increasing the turbulent �uctuations at the injection point of the jet.

Fewmeasurements of molecular mixing have been reported for turbulent Rayleigh�

Taylor driven mixing layers. Using a water channel (Wilson & Andrews 2002; Ramap-

rabhu & Andrews 2004a; Mueschke et al. 2006) analogous to the two-stream con�gu-

rations used by Konrad (1977) and Breidenthal (1979, 1981), the degree of molecular

mixing was measured for a buoyancy-driven mixing layer, where one stream was

heated so that T1 6= T2. A complete description of the water channel facility is pro-

vided in § 2. In this con�guration, temperature was a marker for the density and

Pr = �=� � Sc = 7, where � is the thermal di¤usivity of water. No chemical reac-

tion was used in these experiments; instead a high resolution thermocouple system

measured pointwise temperatures that were then related to density through an equa-
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tion of state (Kukulka 1981). Mueschke et al. (2006) reported the time-evolution of

the molecular mixing parameter �, de�ned in (2.1) and analogous to the intensity of

segregation parameter (Dankwerts 1952), along the centerplane of the mixing layer.

Here, � = 0 when the two �uids are completely unmixed (i.e. an emulsion) and � = 1

when the two �uids are homogeneously mixed at the molecular level. Banerjee et

al. (2007) used hot-wire techniques to measure late-time values of � in analogous

gas-phase experiments using air and helium, in which Sc = 0:7.

The water and gas channel experiments, discussed in the previous paragraph,

provided measurements for moderate species di¤usivities Sc = 0:7 and Sc = 7. A

di¤erent set of experiments by Linden and Redondo (1991) and Linden et al. (1994)

considered the degree of molecular mixing in a Rayleigh�Taylor mixing layer, in which

the density di¤erence was created by adding salt to the top �uid, such that Sc � 103.

In these experiments, an unstable strati�cation of salt water over fresh water was

created when a thin barrier separating the �uids was quickly removed. Linden et al.

(1994) used two separate measurement techniques to quantify the degree of mixing.

First, electrical conductivity probes were used to measure the salt concentration point-

wise. In addition, methods similar to those used by Breidenthal (1979) and Zhang

et al. (1995) were adopted to measure the formation of colored phenolphthalein in-

dicator. However, the resulting product formation measurements were limited to the

concentration pro�les of the indicator for a single equivalence ratio [see (2.36)], and

the time-evolution of the centerplane indicator concentration at several equivalence

ratios. The present work extends these previous e¤orts by developing a relationship

between the measured product concentrations, the molecular mixing parameter �,

and its global equivalent �, both de�ned in § 2.
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1.3.2 Numerical simulations of buoyancy-driven turbulent mixing

Experimental studies of buoyancy-driven mixing that yield quantitative measure-

ments of molecular mixing are limited due to di¢ culties generating unstable density

interfaces, and applying the necessary high �delity (in both time and space) diag-

nostics. In contrast, numerical studies of turbulent Rayleigh�Taylor mixing have

been more numerous as computational resources have increased. Just as with the

simulation of shear-driven turbulent mixing layers (Rogers & Moser 1994), simula-

tion of Rayleigh�Taylor mixing requires a large domain so that the both horizon-

tal and vertical turbulent structures can grow without the in�uence of the bound-

ary conditions. As the Rayleigh�Taylor mixing layer Reynolds number Reh in-

creases, complete resolution of all spatial scales requires that the grid spacing scale as

Sc�1=2Re
�3=4
h (Fox 2003), and thus, simulations of Rayleigh�Taylor mixing quickly be-

come computationally-expensive and challenging for the combination of high Reynolds

and high Schmidt number �ows for at least several generations of computational

power.

To relax the small-scale resolution requirements, increase the computational ef-

�ciency, increase the Reynolds numbers, and allow for a more robust treatment of

initial conditions, implicit large eddy simulations (ILES) and monotone-integrated

large eddy simulations (MILES) have been widely applied to numerical studies of

Rayleigh�Taylor mixing (Linden et al. 1994; Youngs 1994; Dalziel et al. 1999; Di-

monte et al. 2004; Ramaprabhu et al. 2005). Both the ILES and MILES methods

represent a class of large eddy simulation (LES) methods that do not explicitly include

subgrid-scale (SGS) models; rather, the di¤usion inherent in the numerical algorithm

damps small-scale �uctuations in the velocity and scalar �eld in a process similar to

physical di¤usion (Boris et al. 1992; Grinstein et al. 2007). Both ILES and MILES
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exhibited similar late-time values �(z = 0) � 0:8 (Linden et al. 1994; Youngs 1994;

Dimonte et al. 2004) and � = 0:77�0:84 (Linden et al. 1994; Youngs 1994; Dalziel et

al. 1999; Dimonte et al. 2004); however, Ramaprabhu et al. (2005) reported a range

of late-time molecular mixing parameter values � = 0:63�0:82, depending upon the

exact initial conditions used. Cook et al. (2004) used an incompressible LES with an

explicit SGS �lter and hyperviscosity model to simulate an A = 0:5 Rayleigh�Taylor

mixing layer, and reported a late time-value � = 0:78. Mellado et al. (2005) used an

LES to simulate a compressible Rayleigh�Taylor mixing layer. Despite the di¤erence

in �ow physics and numerical schemes, a late time value � = 0:75 was also found.

While good agreement was observed in the late-time degree of molecular mixing

amongst all LES-type simulations, such methods are poorly suited for the simulation

of �ows where Sc 6= 1 without further modi�cation or SGS modeling e¤orts (Pullin

2000; Hickel et al. 2007). In contrast, direct numerical simulation (DNS) of Rayleigh�

Taylor mixing avoids SGS modeling by fully-resolving the smallest velocity and scalar

�uctuations. DNS have been used to study Rayleigh�Taylor driven mixing, where

Ristorcelli and Clark (2004) reported late-time values �(z = 0) � 0:8 for small Atwood

number, Sc = 1 mixing layers with varying initial conditions. Cabot and Cook (2006)

reported a late-time value � = 0:8 (analogous to �) for a high Reynolds number,

Sc = 1 Rayleigh�Taylor mixing layer. Young et al. (2001) performed a set of DNS of

a small Atwood number Rayleigh�Taylor mixing layer where the density di¤erence was

induced by a temperature di¤erence; however, the thermal di¤usivity was taken to be

equal to the viscosity � = �, so that Pr = 1. Livescu and Ristorcelli (2007) used DNS

to examine homogeneous, variable-density turbulent mixing, which was intended to

approximate the internal turbulent core of a Rayleigh�Taylor mixing layer. Due to the

need for large computational facilities to account for the small scales associated with

Sc� 1, this study examined a small range of Schmidt numbers, 0:1 � Sc � 2, where
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even small di¤erences in the Schmidt number were found to a¤ect the production and

dissipation rates of both the turbulent kinetic energy and scalar variance.

1.3.3 Modeling of buoyancy-driven turbulent mixing

The complexity and range of scales involved in many realistic turbulent �ows preclude

the use of DNS, and thus, the turbulent and mixing dynamics must be modeled

statistically (Pope 2000; Wilcox 2006). However, application of RANS-type models

to buoyancy-driven turbulence has been hindered by an observed counter-gradient

behavior in some variable-density �ows (Veynante et al. 1997; Chassaing et al. 2002;

Schmitt et al. 2003), complexity of the turbulent �ow physics (Ristorcelli et al. 2005),

and the interaction of the scalar and momentum �elds (Hanjalíc 2002). To model

mixing dynamics, scalar variance (Fox 2003; Liu & Fox 2006; Ristorcelli 2006), scalar

�ux (Besnard et al. 1992; Fox 2003), and scalar variance dissipation rate (Veynante &

Vervisch 2002; Mura et al. 2007) RANS-type transport models have been developed,

but these additional transport models have only received cursory attention from the

Rayleigh�Taylor community.

RANS models represent one of the most computationally economical approaches

to turbulence modeling, but much of the RANS modeling e¤ort has been focused on

passive scalar mixing, reacting �ow, and combustion applications. Only a small por-

tion of turbulence modeling e¤orts have focused on the modeling of Rayleigh�Taylor

and Richtmyer�Meshkov instability-induced turbulence. Youngs (1989) adopted a

multiphase �ow approach, where the required closures in the mean momentum, den-

sity, kinetic energy, and length-scale equations were closed by phenomenological ob-

servations of bubble and spike dynamics. The model coe¢ cients were calibrated by

comparing the model predictions with experimentally-measured growth rates a pos-

teriori from a small Atwood number Rayleigh�Taylor mixing layer. Dimonte and
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Tipton (2006) and Chiravalle (2006) used single-�uid k-L models, analogous to the

two-�uid model of Youngs (1989), where the primary buoyancy terms in the k and

L equations were modeled via a relation with buoyancy-drag type models (Dimonte

2000). Using a combination of buoyancy-drag model analysis and self-similar analysis

of the transport equations, Dimonte and Tipton (2006) were able to calibrate their

k-L model and demonstrated the ability of the model to reproduce both Rayleigh�

Taylor and Richtmyer�Meshkov mixing layer growth rates. Besnard et al. (1992) also

developed a k-L formulation (BHR) to model variable-density and buoyancy-driven

turbulence, where eddy viscosity and scale-similarity moment closures were used to

construct the modeled transport equations. Additional transport equations for the

turbulent mass �ux and density-speci�c volume correlation were also included in the

model with the intent of increasing its physical accuracy and to predict the degree of

molecular mixing. The only published results for a calibrated form of this model were

reported by Valerio et al. (1999), where the model was used to predict the growth of

a set of Richtmyer�Meshkov mixing layers in shock tube experiments.

For k-� models, much of the research e¤ort has investigated the calibration of the

buoyancy source terms in the modeled k and � equations, where the dimensionless

model parameters �� and C�0 (see § 4.3.3 and 4.3.5 for a complete de�nition) have been

the primary focus. Andrews (1984) examined self-similar solutions to the k-� model

equations to determine the proper calibration of the buoyancy production terms in

the modeled k and � equations. Andrews (1984) reported that C�0 = 0:9 provided

good agreement with the mixing layer growth measurements of Read (1984). Spitz

and Haas (1991) also examined self-similar solutions to the k and � equations. They

reported that �� = 1:48 and C�0 = 0:815, along with a set of canonical model clo-

sure parameters for the remaining terms (Wilcox 2006), best reproduced the growth

of a small Atwood number Rayleigh�Taylor mixing layer (Read 1984). Snider and
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Andrews (1996) also used self-similar analysis to examine the role of the buoyancy

production of � on the growth of an incompressible, small Atwood number mixing

layer. They reported that �T � �� = 0:6 and C�0 = 0:9 produced favorable agree-

ment between the model and water channel experiment mixing layer growth rate

measurements. Gauthier and Bonnet (1990) demonstrated that a k-� model with cal-

ibrated buoyancy source terms could reproduce the experimentally-measured growth

of a Richtmyer�Meshkov mixing layer. Grégoire and Sou­ and (1999) expanded upon

the model of Gauthier and Bonnet (1990) by developing a second-order Reynolds

stress model in order to capture local anisotropy e¤ects. Transport equations for

the turbulent mass �ux and density variance were also included to better capture

buoyancy-driven e¤ects and the turbulent mixing of the two �uids. Despite the in-

clusion of additional transport mechanisms, only fair agreement was found in com-

parisons of the model with experiments and simulations for both the Rayleigh�Taylor

and Richtmyer�Meshkov cases.

1.4 Research Objectives

The objectives of this research are to examine the turbulent transport and molecular

mixing processes within a Rayleigh�Taylor mixing layer. This research aims to answer

the following questions:

1. To what degree are the constituent �uids mixed at the molecular level within

a turbulent Rayleigh�Taylor mixing? How does the Schmidt number a¤ect the

amount of mixing, as measured by the molecular mixing parameter �?

2. What are the key physical processes that determine the degree of molecular

mixing?
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3. Provided the experimental and numerical results from the �rst two questions,

how can the amount of molecular mixing be properly modeled within the frame-

work of Reynolds-averaged Navier�Stokes (RANS) models?

These questions have been answered using a combination of experiments, direct nu-

merical simulations and a four-equation (fE 00-e�00-gm002
1 -f�00) turbulence model. The meth-

ods by which the above questions were answered are listed below. The primary ex-

perimental objectives of this work are as follows:

1. Measure the molecular mixing parameter � in the water channel using a hot/cold

water arrangement (Pr � Sc = 7).

2. Develop the experimental techniques and associated optical diagnostics to mea-

sure the degree of chemical product formation using a chemically-reacting,

salt/fresh water arrangement (Sc � 103).

3. Perform the necessary validation experiments to support the developed optical

techniques used in the reacting �ow experiments.

4. Develop a mathematical relationship between the total amount of chemical

product formed in the reacting �ow case and the density variance �02. Com-

bining the measurements of �� and �02, obtain a measurement of the molecular

mixing parameters � and � for the Sc � 103 case.

The primary numerical objectives of this work are as follows:

1. Develop a direct numerical simulation (DNS) model of the water channel exper-

iment and, in addition, develop the methodology required to directly implement

experimentally-measured initial conditions into the DNS. Note that computa-

tional requirements for a DNS preclude a simulation of the Sc � 103 experiment.
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2. Validate the DNS by comparing results with experimental measurements made

in the water channel.

3. Obtain quantitative measures of the degree of molecular mixing and statistical

composition of the mixed �uid which cannot be measured experimentally.

4. Use the DNS data to evaluate the budgets of transport equations for the mean

momentum ~ui, mean mass fraction em1, turbulent kinetic energy fE 00, turbulent
kinetic energy dissipation rate e�00, mass fraction variancegm002

1 , and mass fraction

variance dissipation rate f�00.
The primary modeling objectives of this work are as follows:

1. Directly compare transport equation budgets from the DNS a priori with their

associated gradient-di¤usion and scale-similarity based closures. Use the DNS

data to calibrate the required closures in the turbulent transport equations for

em1, fE 00, e�00, gm002
1 and f�00. Assess the validity and accuracy of such closures with

respect to Rayleigh�Taylor driven turbulent mixing.

2. Numerically-implement the transport equations to test the predictive accuracy

and initialization methods of RANS models when applied to Rayleigh�Taylor

turbulent mixing. Validate the ability of the model to reproduce mixing layer

growth and molecular mixing statistics in the water channel experiments.

3. Starting from the Sc = 7 calibration for thegm002
1 transport equation, determine

the model parameters required to reproduce the Sc � 103 case. Examine the

physical justi�cation of the variation in the parameters with respect to turbulent

and mixing time-scales.
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1.5 Outline of Dissertation

First, experimental measurements of the degree of molecular mixing in a Rayleigh�

Taylor instability-driven turbulent mixing layer are presented. Measurements have

been made using hot and cold water as the working �uids, which use temperature

as a �uid marker, resulting in a Prandtl number Pr = �=� = 7. Another set of

experiments were performed using fresh and salt water, resulting in a Schmidt number

Sc = �=D � 103, whereD is the approximate mass di¤usivity of the salt and chemical

indicator in water. Measurements of molecular mixing for the di¤erent di¤usivity

cases are compared to illustrate the in�uence of the Schmidt number (or Prandtl

number) on the degree of molecular mixing.

Second, a numerical model of the hot/cold water experiments is used to further

examine the mixing dynamics of a turbulent Rayleigh�Taylor mixing layer. Numeri-

cal details of the DNS, initial conditions, and validation are presented and discussed.

The DNS data set is then used to further quantify the degree of molecular mixing,

measuring parameters that could not be obtained from the experiments. The dis-

sertation concludes with the formulation of a numerical model of the turbulent and

mixing dynamics, calibrated using the numerical results. It is demonstrated that the

calibrated turbulent mixing model reproduces the mixing layer growth and the degree

of mixing for the Schmidt number cases of interest.
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2. EXPERIMENTAL MEASUREMENTS OF MOLECULAR MIXING

2.1 Overview of Goals and Methodology

For the experimental portion of this work, the relative degree of molecular mixing in

a turbulent Rayleigh�Taylor mixing layer was quanti�ed for the cases Pr � Sc = 7

(hot/cold water) and Sc � 103 (fresh/salt water). In both cases, the degree to which

the two constituent �uids are mixed is given by a combination of the measured mean

density �eld �� and the density variance �02, where the overbar denotes Reynolds aver-

aging and the prime indicates a �uctuation about the mean. Based on the intensity

of segregation parameter (Dankwerts 1952), the molecular mixing parameter is

� =
f1 f2
�f1 �f2

= 1� f 021
�f1 �f2

; (2.1)

where

f1 =
�� �2
�1 � �2

(2.2)

is the volume fraction of �uid 1 (dimensionless measure of density), f 021 = �02=(��)
2,

and �� = �1 � �2 (Youngs 1984). The molecular mixing parameter � is a measure

of homogeneity of a mixture such that � = 1 if the mixture is completely mixed at

the molecular level and � = 0 if the mixture is stirred but no di¤usive mixing has

occurred, e.g. an immiscible emulsion.

In both the hot/cold and salt/fresh water experiments, � was used to indicate the

degree of molecular mixing, and thus a measurement of both the mean density and

density variance was required. Such measurements were achieved directly in hot/cold

water experiments, where a series of instantaneous density values was recorded and

the necessary density statistics were calculated. However, due to the small size of

the spatial scales in the Sc � 103 experiments, direct measurements of instantaneous

density values within the mixing layer were not possible. Thus, an alternate approach
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was taken, where image analysis techniques were applied to a series of reacting �ow

experiments to measure �02. In addition to the measurement of �, alternate means of

quantifying the degree of molecular mixing, such as the equivalent product thickness

integrals P=h [see (2.37)], the probability density function of the density �uctuations,

and the global mixing parameters � and � [see (2.53) and (2.39)], were also measured

and are reported here.

2.2 Experimental Facility

The water channel is an open-loop facility in which two streams of water enter the

channel horizontally. Each stream is initially separated by a 3:2 mm thick Plexiglas

splitter plate. A schematic of the water channel, diagnostics, and reference axes is

shown in �gure 2.1. A density di¤erence between the two streams is created by either

increasing the temperature (�T � 5 �C) or adding salt to one stream. The water

channel is supplied from two 500 gallon tanks; a typical experiment has a running time

of approximately ten minutes. Sump pumps in each tank ensure adequate stirring

of the water to maintain temperature uniformity. The heavy and light streams are

pumped into the entrance plenum and each stream �ows through an arrangement

of �ow-straighteners, followed by a series of screen meshes (30 � 30 wires/in). The

screen meshes reduce the free-stream velocity �uctuations, and reduce the momentum

de�cit caused by boundary layers along the walls of the channel and splitter plate.

The splitter plate terminates at a 2:5� knife-edge followed immediately by another

screen mesh (35 � 35 wires/in). This �nal screen mesh (end-screen) minimizes the

momentum de�cit at the end of the splitter plate, thereby reducing the magnitude

and wavelength of the wake shed from the splitter plate (Koop 1976; Browand &

Weidman 1976; Stillinger et al. 1983).
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Figure 2.1 Schematic of the water channel facility, diagnostics, and associated coordi-

nate system.

Upon entering the mixing section of the channel, an adverse density strati�ca-

tion exists between the two water streams and a Rayleigh�Taylor instability-driven

mixing layer forms downstream. The mixing section is 100 cm long (x-direction)

with cross-sectional dimensions of 20 cm � 32 cm (width � height). In the present

experiments, the mean advection velocity is Um � 4:75 cm/s, with the two stream

velocities matched so that there is no shear due to mean velocity gradients. The

time-evolution of the mixing layer was related to downstream distance by Taylor�s

hypothesis t = x=Um (Pope 2000). Time was normalized as

� = t

r
Ag

H
; (2.3)

where H = 32 cm is the vertical height of the channel. The sidewalls were shown

to have negligible in�uence on the growth rate of the mixing layer (Snider & An-
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Figure 2.2 Photographic image of a hot/cold water experiment in the water channel.

The mean �ow is from left-to-right.

drews 1994). The water channel provides a unique facility for measuring turbulence

statistics, as the mixing layer is statistically-stationary and long sampling times are

available. Water channel measurements were shown to be statistically-stationary for

higher-order moments of velocity and density �uctuations (Wilson 2002; Ramaprabhu

2003). A sample image from the experiment is shown in �gure 2.2.

2.3 Hot/Cold Water Experiments

The �rst set of experiments involve the mixing of hot and cold water streams, where

the temperature of the bottom stream is elevated such that a di¤erence in density

is created by thermal expansion (Snider & Andrews 1994; Wilson & Andrews 2002;

Ramaprabhu & Andrews 2004a; Mueschke et al. 2006). The thermal di¤usivity

of heat in water gives a Prandtl number Pr = �=� � 7. Accordingly, pointwise

temperature measurements become a marker for the local �uid density. Thus, the

thermal di¤usivity � is equivalent to the species di¤usivity of the concentration of

the bottom �uid; hence, the Prandtl number is equivalent to the Schmidt number

Sc = �=D, where D is the equivalent mass di¤usivity.



22

2.3.1 Thermocouple diagnostics

The measurement of the density perturbation in the streamwise (x) direction was

performed using a high-resolution thermocouple measurement system. Temperature

�uctuations were measured using E-type thermocouples positioned at multiple down-

stream locations from the splitter plate, as listed in Table 2.1. The thermocouples

were constructed from 40 gauge wire (0:08 mm diameter) with a weld bead diame-

ter of 0:16 mm�a smaller diameter than used by previous researchers in this water

channel (Snider & Andrews 1994; Ramaprabhu & Andrews 2004a), resulting in a

less intrusive diagnostic and improved spatial resolution. The time constant of the

thermocouple was determined (Mills 1999) to be tc = 0:0047 s with a correspond-

ing frequency response of (3tc)�1, i.e. 71 Hz (corresponding to kH = 1500, where

k = 2�=� is the wavenumber). Mueschke and Andrews (2006) showed that these

spatial resolution enhancements reduced the uncertainty in the mixing statistics and

scalar �uctuation spectra. The thermocouple wire, extension wire, and all connec-

tions were shielded and grounded to minimize external electromagnetic and radio

frequency noise. Temperature measurements were recorded at a rate of 50 kHz us-

ing a 16-bit data acquisition system. Spurious noise from the temperature trace was

eliminated using a 50-point averaging window, thus reducing the sampling rate to 1

kHz. Hence, the window averaging procedure did not a¤ect the temperature �uctu-

ations measured by the thermocouple. Using Taylor�s hypothesis, a sampling rate of

1 kHz and a mean advection velocity of Um � 4:75 cm/s, each pointwise tempera-

ture measurement was separated by 0:048 mm, which is approximately 30% of the

diameter of the probe volume. Fluctuations of the temperature measurements at the

Nyquist frequency (500 Hz) were below the system noise, obviating the need for a

more complex �ltering algorithm that retains spectral resolution. Temperatures were
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Downstream location x (cm) Dimensionless time �

0:5 0:016

2:0 0:061

5:0 0:166

6:0 0:204

8:0 0:255

10:0 0:342

11:3 0:334

12:5 0:400

15:0 0:473

16:0 0:552

20:1 0:694

25:0 0:865

27:0 0:924

40:0 1:363

Table 2.1 Downstream locations of centerplane temperature (density) measurements

and the corresponding dimensionless times.

converted to density using the equation of state of water

�(T ) =

0B@ 999:8396 + 12:2249T � 0:007922T 2 � 55:448� 10�6 T 3

+149:756� 10�9 T 4 � 393:295� 10�12 T 5

1CA
1 + 18:159� 10�3 T (2.4)

in units of kg/m3 (Kukulka 1981). Hereafter, density and temperature are used

interchangeably, as they are related by (2.4).

Three measurements were performed to ensure an accurate measurement of the

dimensionless time � , as x, Um, and A are parameters that can vary from one ex-
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periment to another and must be measured accurately to determine � . First, the

distance between the splitter plate and the probe volume was carefully measured.

Second, the Atwood number was accurately measured using a digital temperature

probe with a K-type thermocouple to measure the water temperature in each 500

gallon tank. Finally, the mean �ow velocity in the channel was accurately measured

as follows. First, the mean advection velocity of both streams was adjusted until no

shear was present and Um � 4:5�5:0 cm/s. The presence of a mean velocity gradient

between the two streams was determined in several ways. The pumping system was

regularly calibrated by injecting dye into the top and bottom streams and adjusting

the �ow rates to eliminate relative motion. In addition, dye was also injected onto the

splitter plate just before the end-screen. Once the dye was entrained into the mixing

layer, the �lean�of developing Rayleigh�Taylor bubbles with respect to the vertical

(z) axis was examined at downstream locations. In the absence of any �leaning�, the

di¤erence between the top and bottom stream velocities was shown to be at most

jU1 � U2j < 0:2 cm/s or � 5% of the mean advection velocity (Ramaprabhu 2003). A

�nal determination of the existence of shear was performed by examining the skew of

the PDF of density (volume fraction) �uctuations. In the small Atwood number limit

of the Rayleigh�Taylor instability, bubbles and spikes grow symmetrically. Due to

the symmetry in the geometry of the apparatus, the PDF of the density �uctuations

should also be symmetric, with no skew. Any measurement containing a skewed PDF

due to excessive shear was discarded. To measure Um, a syringe was used to inject

�uid containing a high concentration of Nigrosine dye. The time tm required for a

blob of dye to travel a distance Lm from the end-screen to a marked downstream

location was recorded, so that Um = Lm=tm.

To measure the density values, a thermocouple was mounted on a thin vertical

rod that allowed �ne adjustment of the probe location in the vertical (z) direction. All
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measurements in the present study were performed at the centerplane of the mixing

layer (z = 0), de�ned as the plane at which equal average volume fractions of hot

and cold water exist, i.e. the centerplane corresponds to the z-location at which the

average of the volume fraction of �uid 1 is

�f1(z; t) =
��(z; t)� �2
�1 � �2

=
1

2
; (2.5)

where the spatial (Reynolds) average of a scalar quantity � is

��(z; t) =
1

Lx

Z Lx

0

�(x; t) dx : (2.6)

Spatial averaging of pointwise measurements utilizes Taylor�s hypothesis such that

x = Umt, L = UmNsamp=fsamp is the distance (cm) over which �(x; t) was measured

in the x-direction, Nsamp is the number of samples, and fsamp is the sampling rate

(Hz).

The initial interface between the two �uids, and subsequent centerplane of the

mixing layer that forms, is nominally a horizontal plane normal to the direction of

gravity. As the splitter plate is not perfectly horizontal, the location of the centerplane

drifts slightly with downstream distance; however, there is no evidence that the results

are a¤ected by this drift. In addition, it was concluded that a visual inspection of the

thermocouple probe placement could not provide an accurate measure of the mixing

layer centerline with respect to (2.6). Consequently, the following procedure was used

to accurately position the probe: a set of temperature measurements was recorded at

200 Hz and �f1 was evaluated; depending upon the value of �f1, the position of the probe

was adjusted vertically until �f1 = 0:50 � 0:025; once the probe was located at the

centerplane, data collection commenced with a two minute interval of temperature

measurements recorded at 50 kHz. A two minute collection period corresponds to

the passage of approximately eighty large-scale (long-wavelength) plumes, ensuring
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statistical convergence (Wilson & Andrews 2002; Ramaprabhu & Andrews 2004a).

2.3.2 Density �uctuations measurement

Measured density data was also used to determine an integral measure of the degree

of molecular mixing �(�) at a given downstream location. All molecular mixing

measurements were taken at the centerplane of the mixing layer (z = 0), and thus

do not represent the degree of molecular mixing over the entire mixing layer. The

measure of molecular mixing used here was �rst introduced by Dankwerts (1952) as

the degree of �uid segregation, and has been used by various researchers in a variety

of forms (Youngs 1984; Dalziel et al. 1999; Wilson & Andrews 2002; Cook et al.

2004). The de�nition of � requires two quantities, B0 and B2:

B0 = f 021 =
�02

(��)2
(2.7)

is the dimensionless density variance corresponding to two miscible �uids at a given

downstream location, and

B2 = �f1 �f2 = �f1 (1� �f1) (2.8)

is the maximum dimensionless density variance possible corresponding to two immis-

cible �uids (i.e. a pure two-�uid mixture) at a given downstream location, and is

readily obtained from (2.7). In (2.7)�(2.8), the overbar indicates spatial averaging

[see (2.6)] and the prime denotes a �uctuation about the mean, �(x)0 = �(x)� ��.

The molecular mixing parameter at a given downstream location is then de�ned

as

�(t) = 1� B0(t)
B2(t)

; (2.9)

such that � = 0 when the two �uids are completely segregated, and � = 1 when they

are completely molecularly mixed (i.e. when the density is uniform). The evolution
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Figure 2.3 Evolution of the molecular mixing quantities B0, B2 and � on the center-

plane for the Pr = 7 experiments. The values of B2 all approach a value

of 0:25 (dashed line), indicating that the measurements were taken at the

centerplane of the mixing layer. The error bars on the measurements are

also shown.

of the centerplane values of B0, B2 and � are shown in �gure 2.3. All measurement

points are taken at the centerplane where �f1 = �f2 = 0:5, so that B2 = �f1 �f2 = 0:25

on the centerplane.

Figure 2.3 reveals two stages of evolution of the molecular mixing parameter

�. At early times (� < 0:4), � decreases rapidly, which occurs during the early-

time linear and weakly-nonlinear growth of the initial perturbations. The second

stage is characterized by an increase in � (� > 0:4). The evolution of � suggests

the following dynamical interpretation. A decrease in � during the �rst stage is

attributed to the initial growth of Rayleigh�Taylor unstable perturbations, leading

to a straining of the initial density interface shed from the splitter plate. At the

centerplane, the two �uids are �stirred�with little molecular mixing. A subsequent

increase in � during the second stage is due to the �ow complexity associated with
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the development of strong nonlinearities. Secondary Kelvin�Helmholtz instabilities

develop between rising bubbles and falling spikes, rapidly increasing the interfacial

area between the �uids and the associated molecular di¤usion. This transition is

observed in the water channel experiments at � � 0:4, when � attains its minimum

value. Ristorcelli and Clark (2004) noted similar behavior in a DNS of a small Atwood

number, miscible Rayleigh�Taylor instability-driven mixing layer.

In the present experiment, the degree of molecular mixing at the centerplane of

the mixing layer varies signi�cantly over the measurement times 0:016 � � � 1:36.

The time-evolution of the volume fraction PDF, volume fraction variance and kur-

tosis, and molecular mixing parameter is shown in �gures 2.3�2.5, which indicate

the same early-time imbalance between the rates of �uid engulfment and molecular

mixing. The term �engulfment�is used here in analogy with the term �entrainment�,

typically used in shear layers in which the physical mechanism by which �uid enters

the mixing layer is di¤erent from that in Rayleigh�Taylor instability-driven mixing.

Comparison of �gures 2.3�2.5 at � � 0:4 shows an early-time transition point in the

development of the mixing layer when the rates of �uid engulfment and molecular

mixing are comparable. Prior to the onset of strong nonlinearity, the growth of the

initial buoyant structures engulfs unmixed �uid into the mixing layer before develop-

ing substantial surface area between the two �uids, thereby limiting the amount of

molecular mixing. Beyond this transition point, the rate of molecular mixing due to

turbulent �uctuations is greater throughout the mixing layer and, as a result, both the

rate of molecular mixing and the amount of mixed �uid at the centerplane increase.

Molecular mixing in a miscible Rayleigh�Taylor mixing layer is di¢ cult to mea-

sure due to the large number of samples required for the statistical convergence of �f1

and f 021 , with the measurement points taken with su¢ cient spatial resolution to resolve

all density gradients (Mueschke & Andrews 2006). Other researchers have typically
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reported �(z) across the mixing layer or �(t) (a global measure of molecular mixing)

for late times (Youngs 1991), rather than the evolution of �(z = 0; t), as reported

here. Ramaprabhu and Andrews (2004a) also measured �(z = 0; t) in the same water

channel used in the present investigation. In the present work, a minimum value of

� � 0:4 was measured at � � 0:4 as in Ramaprabhu and Andrews (2004a), but is

lower than their reported value � = 0:68. The di¤erence between the measured values

of � reported here and by Ramaprabhu and Andrews (2004a) is attributed to the dif-

ference in the size of the thermocouple probes and to the noise elimination techniques

used in the present work (Mueschke 2004; Mueschke & Andrews 2006). Ristorcelli

and Clark (2004) reported a similar two-stage behavior of �(z = 0; t); however, the

exact time of transition and the minimum value of � di¤er. The di¤erence between

the present early-time measured results and the simulation results of Ristorcelli and

Clark may be due to the fact that the initial velocity �eld was zero in the numerical

simulations.

2.3.3 Statistical composition of mixed �uid

To further examine the degree of molecular mixing, the probability density function

(PDF) of the density �uctuations is examined. While � is a function of the �rst

and second moments of the density �uctuations, an in�nite number of PDFs may

be constructed of di¤erent shapes that yield the same value of �. Thus, a better

understanding of the composition of the mixed �uid within the mixing layer may

be achieved by examining the PDF of f1 directly. The PDF of a measured scalar

quantity � is de�ned discretely by

P (�) =
F (�)

Nsamp��
; (2.10)
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where F (�) is the discrete frequency distribution (histogram) of the scalar �, Nsamp is

the number of samples, and �� is the bin width of F (�). The kurtosis (fourth-order

moment) of an ensemble of scalar measurements is

K� =
�04�
�02
�2 : (2.11)

The variance of the volume fraction �uctuations is a measure of the spread of volume

fraction values away from the mean value �f1 = 0:5, while the kurtosis is a measure

of the sharpness of the volume fraction PDF. Kurtosis values Kf1 < 1:8 indicate

a bimodal distribution with peaks at f1 = 0 and f1 = 1, whereas values Kf1 >

1:8 correspond to a centrally-peaked PDF, in this case at �f1 = 0:5 (a Gaussian

distribution has a value Kf1 = 3). The skewness (normalized third-order moment) of

the density �uctuations was measured to be approximately zero on the centerplane,

consistent with the expected symmetry of P (f1) in this small Atwood experiment,

and is not discussed further.

Figure 2.4 shows both the early and intermediate time-evolution of P (f1). At

early-times (� = 0:016 and 0:06) the volume fraction distributions are peaked at

f1 = 1=2, indicating that most of the �uid at the centerline is mixed. However, as the

initial bubbles and spikes grow (� = 0:204 and 0:473), a large portion of the region

near the centerplane becomes occupied by pockets of pure hot and cold water engulfed

by the mixing layer, causing the distribution to become strongly bimodal. This trend

is reversed at later times (� > 0:473), as a central peak reemerges in the distribution

of P (f1) as � and the Reynolds number increases. Similar volume fraction distrib-

utions were reported by Ramaprabhu and Andrews (2004a) using lower resolution

thermocouples; however, a greater degree of bimodality is reported here. The present

measurement re�nes those reported by Ramaprabhu and Andrews (2004a), as smaller
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Figure 2.4 Evolution of the early-time (top) and late-time (bottom) volume fraction

PDF P (f1) on the centerplane of the mixing layer.

thermocouples were used to better resolve the sharp density gradients present during

the early stages of mixing (Mueschke & Andrews 2006).

The time-evolution of Kf1 shown in �gure 2.5 quanti�es the modality observed in

�gure 2.4. The initial, single-mode distribution of P (f1) evolves to a bimodal distrib-

ution, and the values of Kf1(�) correspondingly decrease below 1:8. This indicates a

strong segregation of the two �uids at early and intermediate times 0:204 < � < 0:473.

As nonlinear interactions become increasingly dominant, the range of scales contin-

ues to increase, as do the associated interfacial areas between pockets of hot and cold
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Figure 2.5 Evolution of the volume fraction kurtosis on the centerplane.

�uid. Thus, as the rate of molecular di¤usion increases, so does the value of Kf1.

2.3.4 Evolution of the density variance spectrum

A better understanding of the spatial scales within the mixing layer may be achieved

by examining the spectrum of density �uctuations. The density variance spectrum

is critical for the validation and calibration of spectral equilibrium models of mixing,

such as the one proposed by Liu and Fox (2006). A brief review of the calculation of

the density variance spectrum is given below; more details of the procedure are given

in Appendix B.

The amplitudes of the density �uctuations are given by the one-dimensional

Fourier transform of the density

�̂(k; �) =
2

Lx

Z Lx

0

�(x; �) e�ikx dx ; (2.12)

where k � 2�=� is the wavenumber corresponding to wavelength �, and Lx is the

distance over which �(x) was measured. The change from temporal variation to spatial



33

variation utilizes Taylor�s hypothesis to relate �(t) and �(x) (Pope 2000). As the probe

volume records pointwise measurements, the dependence of the density �eld upon

the other spatial and temporal dimensions is suppressed for brevity. The complex-

valued amplitude and phase is given by (2.12), from which the one-dimensional energy

spectrum is

E�(k; �) =
�̂(k; �)� �(k; �)

4�k
; (2.13)

where �̂� is the complex conjugate of �̂, and �k = 2�=L is the wavenumber bin width.

It follows that
�02(�)

2
=

Z 1

0

E�(k; �) dk (2.14)

in the continuum wavenumber limit.

In general, density variance spectra calculated from pointwise measurements are

noisy for several reasons, including the �nite recording time of data points and ran-

dom errors due to electronic noise. The �uctuations in E�(k; �) render it di¢ cult

to accurately estimate the spectral slopes in various power-law regimes. In order to

elucidate possible scaling laws of the density variance spectra, the original spectra

must be smoothed. Ramaprabhu and Andrews (2004a) used Savitsky�Golay �ltering

techniques, which �t an nth-order polynomial to a moving window (2n + 1 points

wide) to perform smoothing. However, signi�cant �ltering is required to smooth the

intermediate-to-large wavenumber variance spectra. The present study further im-

proves upon this by implementing a smoothing procedure that conserves energy in lo-

cal wavenumber regions by binning variance values into wavenumber bins, �k, which

increase in size logarithmically. This method is conservative by construction and sig-

ni�cantly smooths the intermediate and large wavenumber spectra. As in standard

discrete sampling theory, E�(k; �) is originally sorted in wavenumber bins of constant

size �k = 2�=L. To smooth the spectra, the density variance per unit wavenumber
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Figure 2.6 Illustration of a smoothed density variance spectrum using the logarithmic

binning procedure.

from (2.13) was apportioned into wavenumber bins logarithmically increasing in size

and normalized by the local wavenumber bin width: this results in a procedure that

averages the density variance over a wavenumber bin width that increases in size at

the same rate as the number of modes resolved at larger wavenumbers. This proce-

dure conserves the energy content of the spectrum, which was con�rmed by comparing

the integrals of the original spectra with those of the smoothed spectra. Figure 2.6

illustrates the results of the smoothing procedure by plotting the unsmoothed and

smoothed spectra.

Another characteristic of experimentally-measured variance spectra is the hor-

izontal �tail� at large wavenumbers, indicating the level at which the system noise

is greater than the measured �uctuations. It is possible to improve the dynamic

range of E�(k; �) measured by subtracting the system noise from the measured den-

sity variance spectrum using Wiener �ltering (Press et al. 2002), requiring either

an estimate or a measurement of the noise. In the present work, the background
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noise was measured by �lling the channel with water and allowing thermal equilib-

rium to be attained. A thermocouple probe was placed in the water channel and a

two-minute sample of the background noise was measured at 50 kHz. Fluctuations

in the temperature induced by EMF and RFI noise were converted to density using

(2.4). The variance spectrum of the background noise was then calculated and sub-

tracted from the measured density variance spectrum. This procedure provided an

additional decade of measurable values at the largest wavenumbers. The subtraction

of the background noise also eliminated a large portion of spurious noise from the

initial density variance spectrum at � = 0:016, which will be discussed in detail next.

The early-time density variance spectra (� = 0:016) shown in �gure 2.7 exhibit

broad-banded perturbations at the onset of the instability. However, the spectrum at

� = 0:06 contains considerably more energy in the dimensionless wavenumber range

kH < 100. As the mixing layer develops, a steep decay in the energy spectrum is

noted at larger dimensionless wavenumbers (kH > 100) as small-scale �uctuations are

damped by di¤usion, as shown in �gure 2.7. However, de�nitive power-law scalings

are di¢ cult to determine due to the short interval over which the decay occurs (less

than one decade). At later times (� = 0:865 and 1:36), a small range of scales

exhibit an approximate k�5=3 spectrum, as shown in �gure 2.8. Compensated density

variance spectra are also shown in �gure 2.8, with an apparent inertial subrange over

approximately one decade of wavenumbers. The slight deviation may be due to the

limited Reynolds numbers attained in the experiment: Ramaprabhu and Andrews

(2004a) also estimated the integral-scale Reynolds number Reh � 1000�1450 at � =

1:21, depending upon the choice of length scale L and velocity-scale U (see § 2.4.7 for

further details). Wilson and Andrews (2002) and Ramaprabhu and Andrews (2004a)

reported a late-time k�5=3 scaling. They also showed that an inertial subrange exists

over approximately one decade of wavenumbers at � = 2:08, consistent with the
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Figure 2.7 The normalized density variance spectrum at � = 0:016 or at x = 0:5 cm

downstream (top-left), � = 0:06 or at x = 2:0 cm downstream (top-right),

� = 0:204 or at x = 6:0 cm downstream (bottom-left), and at � = 0:473 or

at x = 15:0 cm downstream (bottom-right).
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Figure 2.8 The normalized density variance spectrum at � = 0:865 or at x = 25:0 cm

downstream (top-left). The compensated spectrum (top-right) at � = 0:865

indicates a short range of apparent k�5=3 scaling. The normalized density

variance spectrum at � = 1:36 or at x = 40:0 cm downstream (bottom-left).

The compensated spectrum (bottom-right) at � = 1:36 indicates a short

range of apparent k�5=3 scaling.
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current results.

An accurate measure of the density variance spectrum and of the molecular mix-

ing parameter � requires measurement times su¢ cient for statistical convergence of

the larger scales, while adequately resolving the small-scale structures. As stated in

§ 2.3.1, the frequency response of the thermocouple probe is 71 Hz or kH � 1500,

depending upon the exact mean �ow velocity. Ramaprabhu and Andrews (2004a) esti-

mated Reh = 1250 at � = 1:21, resulting in a Kolmogorov scale �K = hbRe
�3=4
h = 0:29

mm (kH = 6900) and a Batchelor scale �B = �KPr
�1=2 = 0:11 mm (kH = 18300).

Thus, the thermocouple measurement system is not capable of resolving approxi-

mately the �nal decade of wavenumbers in the dissipation subrange of the density

variance spectrum. However, the error introduced by not resolving this �nal decade

can be shown to be negligible. For example, taking B2 = 0:25 at the centerplane (by

de�nition) and substituting (2.7) and (2.14) into (2.9), � can be written in terms of

the density variance spectrum:

�(�) = 1� 8

(��)2

Z 1

0

E�(k; �) dk : (2.15)

To examine the integral contribution of higher wavenumber density �uctuations to �,

consider the spectral molecular mixing parameter

�(k; �) = 1� 8

(��)2

Z k

0

E�(k
0; �) dk0 : (2.16)

As additional wavenumbers are included in the integration of the measured E�(k; �),

�(k; �) converges to �(�), as shown in �gure 2.9. This demonstrates that the majority

of the energy content is in the smaller wavenumbers of the spectrum. The same

conclusion was reached by Wilson and Andrews (2002) by examining the cumulative

energy distribution of density �uctuations. More importantly, �(k; �) attains the

asymptotic value of �(�) before the measurement resolution limit kH = 1500. Thus,
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Figure 2.9 Spectral molecular mixing fraction �(k) versus dimensionless wavenumber

at � = 1:36.

the additional decade of energy in the dissipation subrange beyond the resolution

limit of the probe can be assumed negligible in terms of the measurement of �(�) for

the mixing layer and Prandtl number considered here.

2.4 Salt/Fresh Water Experiments

In a di¤erent set of experiments, salt (NaCl) was added to the top stream of the

channel to create a density di¤erence. In this case, the concentration of salt served

as a marker for the density �eld. The resulting species di¤usivity of the Na+ and

Cl� ions gave a Schmidt number Sc = 620 (Lide 2006). Direct measurements of

the salt concentration �eld were not feasible due to the large magnitudes of the

scalar gradients (Mueschke & Andrews 2006). Instead, a di¤usion-limited chemical

reaction between the two streams was monitored to measure the degree of molecular

mixing. The pH of each stream was altered by adding either hydrochloric acid (HCl)

or sodium hydroxide (NaOH) to each stream. As the two �uids mixed at the molecular
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level, a neutralization reaction occurred and the local pH of the mixture reached

a new equilibrium. The reaction was monitored by the addition of a pH-sensitive

chemical indicator (phenolphthalein) to the acidic stream. As the local pH of the

mixture changed, the transparent phenolphthalein changed color to a translucent

shade of pink. The concentration of the colored form of the indicator was measured

using backlit optical techniques. This section presents an overview of the prerequisite

chemistry, optical measurement techniques, and estimated measurement uncertainty

bounds.

2.4.1 Reaction chemistry

In the current experiments, �uid 1 is the heavier �uid with pH1 > 7 (alkali) and �uid

2 is the lighter �uid with pH2 � 7 (either acidic or neutral), where the subscript

denotes either the top (heavy) or bottom (light) stream. In aqueous solutions, the

concentration of hydrogen and hydroxide ions remains balanced according to the

reversible reaction

H2O
 H+ +OH� (2.17)

with associated equilibrium constant

Kw = [H
+][OH�] = 1� 10�14 ; (2.18)

where square brackets [�] denote molar concentration, i.e. moles per liter (Harris

2003). As �uid from each stream molecularly mix, the local concentrations of H+

and OH� adjust to a new equilibrium value satisfying (2.18). The pH of the resulting

mixture is pHmix = � log10[H+]mix. Further details on the neutralization reaction are

given in Appendix C.

In this work, the pH is controlled by the addition of HCl or NaOH to either



41

stream. Given stoichiometric quantities of HCl and NaOH (i.e. both reactants are

completely consumed in the reaction) the resulting mixtures will react according to

the exothermic reaction HCl (aq) + NaOH (aq) �! H2O(l) + NaCl (aq) with heat

release �h0f = �59:8 kJ/mol. Given a speci�c heat capacity of water Cp = 4:179

J/g-K, the local temperature increase in the �uid is �T � 0:02� C for the case of

pH1 = 11:5 and pH2 = 2:5. Accordingly, the local decrease in density due to thermal

expansion is negligible and thus, the neutralization reaction has a negligible e¤ect on

the Atwood number or on the buoyancy e¤ects driving the mixing.

To monitor the neutralization reaction, a small quantity of phenolphthalein

(C20H14O4) indicator was dissolved in the bottom (acidic) stream; In is used to de-

note the indicator. Typical concentrations [In]2 = 6 � 10�6 M were used, where the

subscript indicates that the indicator was added to the bottom stream. While the

chemistry of the neutralization reaction is straightforward, the chemistry of the pH-

sensitive indicator is complex. Phenolphthalein is a weak acid, and will dissociate

depending upon the local pH (Bishop 1972). Schematically, the indicator follows the

reversible reaction

Transparent Indicator+ 2OH� �! Colored Indicator : (2.19)

Phenolphthalein has multiple ionization states and, thus, several di¤erent chemical

forms (denoted by Roman numeral subscripts):

InI 
 InIII +H
+ ; (2.20)

InIII 
 InIV +H
+ ; (2.21)

InIII 
 InV II + 2H
+ : (2.22)

All forms of the indicator in (2.20)�(2.22) are transparent with the exception of the
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pink quinone phenolate form (InIV ). The equilibrium constants for the �rst two

reactions are (Koltho¤ 1937)

K1 =
[InIII ] [H

+]

[InI ]
= 1:15� 10�9 ; (2.23)

K2 =
[InIV ] [H

+]

[InIII ]
= 2:8� 10�10 : (2.24)

As the pH of a mixture rises above pH = 8, the equilibria of the �rst two reactions in

(2.20)�(2.21) move to the right according to Le Chatelier�s principle, and the colored

form of the indicator is produced. However, as pH > 11:3, the equilibrium of the

last reaction (2.22) also moves to the right and, as a result, less InIII is available to

convert to the colored form InIV . Zhang et al. (1995) reported a measurement of the

equilibrium constant

K3 =
[InV II ] [H

+]
2

[InIII ]
� 2:75� 10�23 (2.25)

for this reaction. An expression for the fraction of indicator in its colored form can

be obtained by substituting the equilibrium constant expressions (2.23)�(2.25) into

the mass balance equation

[In] = [InI ] + [InIII ] + [InIV ] + [InV II ] : (2.26)

Solving for [InIV ]=[In] gives a relative measure of concentration of InIV as a function

of the H+ concentration (Harris 2003). The fraction of dissociation of InIV ,

�InIV =
[InIV ]

[In]
=

K1K2

K1K2 +K1 [H+] + [H+]
2 +K1K3 [H+]

�1 ; (2.27)

is de�ned such that �InIV = 0 when none of the indicator is in its colored form, and

�InIV = 1 when all of the indicator is in its colored form. Figure 2.10 shows the

fraction of dissociation �InIV as a function of the pH.

The indicator reaction has been shown to be su¢ ciently fast to capture the
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Figure 2.10 Fraction of dissociation for the colored form of the chemical indicator InIV .

mixing dynamics of ReD = U D=� = 32; 000 jets (Zhang 1995). The Damköh-

ler number (ratio of hydrodynamic to chemical reaction time scales) is de�ned as

Daent = � ent=� chem, based upon the entrainment time scale � ent of the mixing layer,

and Damix = �mix=� chem, based upon the mixing time scale of the layer. For the

concentrations of indicator used in the water channel experiment, � chem = 2� 10�7 s

(Caldin 1964; Zhang 1995), and � ent = (hb�hs)=
�
d
dt
(hb � hs)

�
� 10 s, based upon the

mixing layer width measurements reported in § 2.4.4, and �mix = � entRe
�1=2
h � 0:18

s. This results in Daent = 5 � 107 and Damix = 9 � 105, where Da > 40 for either

de�nition is required to observe di¤usion-limited mixing (Mungal & Frieler 1988).

Thus, the use of phenolphthalein as a chemical indicator is well-suited for this �ow.

2.4.2 Optical imaging system and calibration

All constituents of the mixing layer and forms of the chemical indicator are trans-

parent except for the �nal product InIV , which absorbs green light (�peak = 552 nm),

and is therefore pink (Green 1990). The attenuation of a light ray passing through
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the mixing layer is related to the concentration of colored indicator [InIV ] through

the Beer�Lambert law (Hecht 2002)

� = "

Z L

0

[InIV ] dx ; (2.28)

where � is the absorption of light, " is a molar absorptivity constant for phenolph-

thalein, and L is the total path-length of the light ray through the absorbing medium.

The absorption of light is related to the ratio of measured light intensity I to the back-

lighting intensity I0 by

� = � ln
�
I

I0

�
= "L[InIV ] ; (2.29)

where [InIV ] is the spanwise average concentration of colored indicator. Thus, given a

calibrated value of ", [InIV ] is linearly related to a light absorption measurement. Col-

ored indicator concentration measurements normalized by the free stream indicator

concentration C = [InIV ]=[In]2 are presented in § 2.4.5.

In the present work, the molar absorptivity coe¢ cient of phenolphthalein was

measured by �lling a Plexiglas wedge with a known concentration of indicator at a

speci�ed pH. The variation in light absorption across the wedge provided a measure of

the light absorption versus depth of the wedge. The molar absorptivity coe¢ cient was

measured by calculating the slope of the absorption curve shown in �gure 2.11. The

calibration experiment was repeated using three di¤erent indicator concentrations:

each produced similar slopes such that " = 2:935 � 104 � 0:67% (M�cm)�1, which

agreed well with the value " = 2:934�104 (M�cm)�1 measured by Zhang et al. (1995).

It was found that at absorptions � > 1:5 the system response became nonlinear, so the

phenolphthalein concentration in the acidic stream was limited to exclude absorptions

� > 1:2.

To measure the concentration of the colored form of phenolphthalein in the chan-
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Figure 2.11 Calibration of molar absorptivity coe¢ cient "In for phenolphthalein. A

�ducial for "In = 2:935� 10�4 (M� cm)�1 is shown (dashed line).

nel, the experiment was backlit by multiple �uorescent lights. Prismatic panels and

sheets of translucent velum were placed between the light source and the mixing

section of the channel to create a uniform backlighting source. Attenuation of the

background lighting by the colored phenolphthalein indicator was measured using an

8-bit, three-channel CCD array. The total amount of backlighting scattered by the

mixing layer (due to the index of refraction di¤erence) is negligible compared with the

absorption by the indicator for the small Atwood numbers considered here. A green

optical �lter was used to minimize the transmission of wavelengths above and below

the peak absorption wavelength of phenolphthalein to the CCD array. Approximately

two hundred photographs were used to measure the average light absorption by the

indicator, and thus, through the Beer�Lambert law (2.29), the average concentration

of [InIV ] at downstream locations.
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2.4.3 Uncertainty analysis

The density di¤erence between the two �uids was created by adding salt to the top

stream. The density of each �uid was obtained by measuring the mass of a 50 ml

sample in a high-accuracy �ask on an electronic balance. Multiple samples were

measured (N � 8�10) and the density of each �uid stream �r = mr=V (where r = 1,2

denotes the top and bottom streams) was determined. The 95% con�dence interval

bounds were obtained from

wmr = �1:96
r
s2mr

N
; (2.30)

where s2mr
is the variance of the mass measurements, and N is the number of samples

(Benedict & Gould 1996). The resulting uncertainty in the density of each �uid is

w�r = �

s�
@�r
@mr

wmr

�2
+

�
@�r
@V

wV

�2
; (2.31)

where wV = �0:05 ml is the uncertainty in the volume measurement. Similarly, the

uncertainty in the Atwood number for a given experiment is

wA = �

s�
@A

@�1
w�1

�2
+

�
@A

@�2
w�2

�2
= �1% : (2.32)

The velocity of each stream was measured by injecting dye into the top and bottom

streams, and recording the time required for the dye to travel a measured distance.

Using similar uncertainty propagation estimates as in (2.31) and (2.32), the mean

advection velocity of the two streams was known to within �2%. The uncertainty in

the mean advection velocity was the greatest contributor to the uncertainty of the

dimensionless time � [see (2.3)], which was also known to within �2%.

Uncertainties in the mean colored indicator concentration measurements were

due to several sources, including the uncertainty in the free-stream concentration of

the indicator w[In]2, the molar absorptivity coe¢ cient w", the light absorption mea-
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surement w�, and the width of the channel wLy . Furthermore, uncertainty in the

phenolphthalein concentration in the bottom stream was determined by uncertainties

in the volume of phenolphthalein added (�5 ml) and the volume of water in the bot-

tom stream tank (1890�38 liters). Taken together, this gives a relative uncertainty in

the concentration of chemical indicator in the bottom stream of �1:4%. The molar

absorptivity coe¢ cient from the calibration experiments in § 2.4.2 was determined

to have an uncertainty of �0:67%. Finally, uncertainty in the light absorption mea-

surements were due to variations in the background lighting intensity and statistical

uncertainty in the estimation of the mean light intensity measured from an ensemble

average of � 200 images. The root-mean-square amplitude of the background light-

ing �uctuations was 0:8 intensity units on a scale from 0�255 from the 8-bit CCD.

Accordingly, the intensity of the background lighting was steady to within �0:5%.

Combining these gives an uncertainty of the measured chemical concentration C of

wC = �

s�
@C

@�
w�

�2
+

�
@C

@"
w"

�2
+

�
@C

@Ly
wLy

�2
+

�
@C

@[In]2
w[In]2

�2
= �3% :

(2.33)

2.4.4 Measurement of mixing layer growth

As an initial check of the experimental facility and diagnostics, the mixing layer width

was measured for the salt/fresh water con�guration. Nigrosine dye (5 g) was added

to the tank supplying the top stream and the absorption of light was measured using

the techniques discussed in § 2.4.2. A sample image from an experiment using the

inert dye is shown in �gure 2.12, where no discernible di¤erences between the high

Schmidt number salt/fresh water mixing layer and moderate Prandtl number hot/cold

water mixing layer (see �gure 2.2) are visible. The dye absorptivity coe¢ cient was

measured using the same Plexiglas wedge and light absorption techniques discussed
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in § 2.4.2. Experiments using the dye were then performed and the absorption of the

backlighting was related to the mean dye concentration. The mean dye concentration

was normalized by the free stream dye concentration and related to the mean heavy

�uid (top stream) volume fraction by

�f1 =
��� �2
�1 � �2

=
[Dye]

[Dye]1
; (2.34)

where �f1 is a dimensionless measure of the mean density �eld. Pro�les of �f1 at several

downstream locations are shown in �gure 2.13. As expected for small Atwood number

Rayleigh�Taylor mixing (Youngs 1984; Snider & Andrews 1994), the growth of the

layer is symmetric about �f1 = 0:5 with approximately linear pro�les. The mixing

layer width was determined by identifying the 5�95% thresholds from the pro�les.

The growth parameter � = 0:085 � 0:005, was obtained by measuring the slope

of the half-width of the mixing layer plotted against Agt2, as shown in �gure 2.14.

Ristorcelli and Clark (2004) showed that a measurement of � directly from h = �Agt2

is not independent of additional terms that scale as t1 and t0. The dependence on

such additional terms can be minimized by measuring � from the time-derivative

_hb = 2�Agt instead, where _hb = dhb=dt. Thus, as a con�rmation, the instantaneous

value of � = _hb=(2Agt) is also shown in �gure 2.14, where a self-similar, asymptotic

value � = 0:086� 0:01 is measured for � � 1:1. While this measure of � has a larger

degree of statistical uncertainty due to the time-derivative of hb, both values of �

are consistent. The growth parameter for the salt/fresh water case is slightly larger

than that for the hot/cold water case, where � = 0:07 � 0:011 (Snider & Andrews

1994). Thus, the increase in � for the salt/fresh water case suggests that the Schmidt

number may have only a minor in�uence on the late time growth rate of the mixing

layer.
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Figure 2.12 Photograph of the buoyancy-generated mixing layer in a typical water

channel experiment. Nigrosine dye was added to the top stream (contrast

enhanced for visualization).
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Figure 2.13 Mean volume fraction pro�les across the mixing layer at dimensionless

times � = 0:25, 0:50, 0:75, 1:00, 1:25, and 1:50. Two �ducials indicating

the boundaries of the mixing layer are shown.
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Figure 2.14 Measurement of the mixing layer growth parameter � for the Sc � 103

case. The half-width of the mixing layer is plotted against Agt2 with 95%

con�dence interval bounds. An alternative measure of � is obtained by

normalizing _h (right). In both cases, a �ducial is shown for � = 0:085

(dashed line).

2.4.5 Measurements of chemical product formation

Using the backlit optical techniques described in § 2.4.2, the average concentration of

the colored chemical indicator was measured in a turbulent Rayleigh�Taylor mixing

layer. Figure 2.15 shows an image of the layer, where the pink chemical indicator

represents regions of mixed �uid. Figure 2.16 shows the pro�les of C = [InIV ]=[In]2

(the concentration of colored indicator normalized by the free stream concentration)

for pH2 = 7:02 and pH2 = 2:44. The resulting pro�les are approximately parabolic

and, as expected, less chemical product is produced in the latter case. By decreasing

the pH of the bottom stream, the concentration of H+ ions is increased, so that the

quantity of OH� ions required to mix with the bottom stream to achieve a color

change in the indicator is increased. Therefore, given the same degree of molecular

mixing between the two streams, less colored indicator is produced when the pH

of the bottom stream is lowered. In the pH2 = 7:02 and pH2 = 2:44 cases, the
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Figure 2.15 Photograph of the buoyancy-generated mixing layer in a typical water

channel experiment. Phenolphthalein was added to the bottom stream,

which changes to its pink form as the two streams molecularly mix.

measured concentration of the colored indicator increases as the mixing layer grows

spatially downstream. This is expected, as the intensity of turbulence increases and

the internal structure of the mixing layer becomes more complex with increasing

Reynolds numbers. Turbulent �uctuations continuously stretch the interface between

pockets of fresh and salt water, which increases the reaction surface area and brings

fresh reactants into contact.

Previous researchers found that the quantity of indicator produced is a function of

the equivalence ratio ', and is a measure of balance or excess of reactants. Typically,

the equivalence ratio for shear and jet �ows is de�ned for the reaction involving the

chemical indicator [see (2.19)] such that

'In =
[In]=[OH�]�
[In]=[OH�]

�
st

; (2.35)

where
�
[In]=[OH�]

�
st
= 1=2 is the stoichiometric ratio of reactants in (2.19). In the

limit 'In ! 0, the quantity of colored chemical indicator C produced attains an

asymptotic value and is a function only of the degree of molecular mixing between

the two �uids (Shea 1977; Breidenthal 1979, 1981; Mungal & Dimotakis 1984; Zhang

et al. 1995).



52

­10 ­5 0 5 10
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

­10 ­5 0 5 10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Figure 2.16 Normalized colored indicator concentration pro�les across the mixing layer

at dimensionless times � = 0:25, 0:50, 0:75, 1:00, 1:25, and 1:50 for the

pH2 = 7:02 (left) and pH2 = 2:44 (right) cases. For both experiments,

pH1 = 11:5.

The equivalence ratio for the indicator reaction neglects the neutralization reac-

tion in (2.17) that occurs as �uid from each stream mixes. Accordingly, 'In does not

account for the reduced quantity of indicator formed in the pH2 = 2:44 experiment.

To account for this e¤ect, it is more appropriate to examine the equivalence ratio of

the neutralization reaction in (2.17), where

'n =
[H+]=[OH�]�
[H+]=[OH�]

�
st

(2.36)

and
�
[OH�]=[H+]

�
st
= 1 is the stoichiometric ratio of hydroxide and hydrogen ions.

The neutralization equivalence ratio 'n controls the volume fractions of �uid 1 and

�uid 2 that must mix to achieve the pH increase required for the indicator to change

color. For 'n ! 0, a large excess of OH� ions exists in the top stream and only a

small fraction of �uid 1 must mix with �uid 2 to achieve a signi�cant pH increase and

resulting indicator color change. Conversely, for 'n ! 1, a large excess of H+ ions

exists and an in�nite amount of �uid 1 is required to mix with �uid 2 to achieve the
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required pH increase. As a result, no indicator will be converted to its colored form.

For the pH combination pH1 = 11:5 and pH2 = 7, 'n = 3:2 � 10�5 � 1 and only

a small fraction of �uid 1 is required to mix with �uid 2 to achieve a color change.

Accordingly, a measure of C for 'In = 1:8� 10�3 and 'n = 3:2� 10�5 (pH1 = 11:5,

pH2 = 7, [In]2 = 6 � 10�6) should be insensitive to the exact equivalence ratio and

representative of the degree of molecular mixing.

2.4.6 Species di¤usivity considerations

In previous works examining high Schmidt number liquid-phase mixing (Breiden-

thal 1979, 1981; Koochesfahani & Dimotakis 1986; Linden et al. 1994; Zhang et al.

1995), acid-base neutralization reactions coupled with pH-sensitive chemical indica-

tors quanti�ed the degree of molecular mixing. While it is customary to estimate

Sc � 103 in liquid-phase mixing, each speci�c molecule or ion within the mixture

di¤uses at a di¤erent rate. Table 2.2 lists the di¤usivities of the species and their

respective Schmidt numbers for the current experiments. It is important to note that

the neutralization reaction front will precede the indicator reaction front because of

the relatively high di¤usivities of H+ and OH�. Accordingly, the total quantity of

colored indicator is not limited by the di¤usivities of the H+ and OH� ions. Larger

ions (such as those of sodium and chloride) have lower mobilities, resulting in an

e¤ective Schmidt number ScNaCl = �=DNaCl = 620 (Lide 2006). The di¤usivity of

phenolphthalein was measured by Desai and Vadgama (1991) and give an indicator

Schmidt number ScIn = �=DIn = 1200. Due to the di¤erence in ScNaCl and ScIn, the

nominal Schmidt number of the experiments reported here is considered as Sc � 103.

An experiment was performed using a temperature increase in the bottom �uid

stream (�T � 5 oC) to create a density di¤erence in order to demonstrate that

the di¤usivity of the chemical indicator determines the nominal Schmidt number
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D [cm2/s] Sc

Na+ 1:334� 10�5 750

Cl� 2:032� 10�5 492

NaCl 1:611� 10�5 620

H+ 9:311� 10�5 107

OH� 5:273� 10�5 190

Phenolphthalein 8:3� 10�6 1200

Table 2.2 Ion and phenolphthalein di¤usivities in water (Desai & Vadgama 1991; Lide

2006).

of the experiment. For this reference experiment, the pH of each stream was set

to pH1 � 11:5 and pH2 � 7 to match 'In and 'n of the baseline salt/fresh water

experiments. No salt was added to the top stream, and thus the temperature of the

water becomes a marker for the density �eld through an equation of state (Kukulka

1981). In this arrangement, the nominal Schmidt number of the scalar marking

the density �eld is Pr = 7 � Sc; however, the Schmidt number for the chemical

indicator remains unchanged at ScIn = 1200. Measurements of the colored indicator

concentration for this hot/cold water case are shown in �gure 2.17. These pro�les

indicate that similar amounts of colored chemical product are produced, despite the

increased scalar di¤usivity and presumably increased amount of mixed �uid within

the layer. This experiment demonstrates that the di¤usivity of the indicator limits its

use to �ows where the di¤usivities of the scalar marking the density �eld are similar

to the di¤usivity of the indicator. It will be shown in § 2.4.10 that a factor of 10

di¤erence in Schmidt numbers results in only a small change in the measurement of

the molecular mixing parameter �, and thus, a factor of two di¤erence in the Schmidt

numbers of salt and phenolphthalein is negligible.
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Figure 2.17 Normalized colored indicator concentration pro�les across the mixing layer

at � = 0:25, 0:50, 0:75, 1:00, 1:25, and 1:50 for the hot/cold water case.

While the results in �gure 2.17 demonstrate that the di¤usivity of the scalar

associated with the density �eld has a negligible e¤ect on the production of colored

indicator, another concern exists due to the di¤usivities of hydrogen and hydroxide

ions. As H+ and OH� ions di¤use down their respective concentration gradients at

the interface between pure heavy and light �uids, the local pH on each side of the

interface is altered. If the pH on the acidic side of the interface is su¢ ciently elevated,

a color change in the chemical indicator may be induced. This e¤ect is independent

of the indicator Schmidt number, and may even occur when ScIn = 1. This e¤ect

has not been documented in any of the previous molecular mixing studies that use

pH-sensitive chemical indicators to study high Schmidt number mixing (Breidenthal

1979, 1981; Koochesfahani & Dimotakis 1986; Corriveau & Baines 1993; Linden et

al. 1994; Zhang et al. 1995; Karasso & Mungal 1996; Kastrinakis & Nychas 1998).

It is believed that the production of colored indicator by this e¤ect is small due

to the continuous straining of the ion concentration gradients by three-dimensional
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turbulent �uctuations; however, no means of quantifying the experimental bias has

been developed and is recommended for future work.

2.4.7 Product thickness integrals

An integral measure quantifying the amount of chemical product formed (and rep-

resenting the fraction of the mixing layer occupied by the colored indicator) is the

equivalent product thickness

P

h
=
1

h

Z hb

hs

[InIV ]

[In]2
dz ; (2.37)

which is analogous to P=� for shear �ows (Konrad 1977; Breidenthal 1979, 1981). For

all experiments that used salt to create a density di¤erence, a correction to (2.37) was

applied to account for the absorption of light by the salt water from the measurement

of P :
P

h
=
1

h

"Z hb

hs

[InIV ]

[In]2
dz � h

2
�

#
; (2.38)

where � � 0:0075 is the value of C measured outside the mixing layer in the salt

water stream.

To validate the diagnostic techniques described in § 2.4.2, the water channel

was used to create a reacting, turbulent shear layer similar to the �ow created by

Breidenthal (1979, 1981). The pH of each stream was set to pH1 = 11:73 and

pH2 = 7:04 to match Breidenthal�s conditions. The indicator concentration was

set to [In]2 = 5 � 10�6 M, whereas Breidenthal used [In]2 = 1 � 10�5 M. The indi-

cator concentration in the current experiments was lowered to keep the diagnostics

in the linear range of the calibration. Salt was also added to the bottom stream as

necessary to balance the increased density of the top stream due to the addition of

NaOH, so that �1 = �2. The velocities of the top and bottom streams in the channel
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were adjusted to U1 = 5:8 and U2 = 3:5 cm/s, respectively, giving a velocity ratio

r = U2=U1 = 0:61. While Breidenthal reported results for r = 0:38�0:80, the absolute

velocities of each stream were much larger than those used in the current water chan-

nel. In Breidenthal�s work, the high speed stream was U1 = 300 cm/s, with a resulting

low speed stream velocity U2 = rU1. In addition, Breidenthal�s facility used a series of

�ow straighteners and meshes, and included a large cross-sectional area contraction to

minimize boundary layers on the splitter plate and adjustable side walls to account for

streamwise pressure gradients. The current water channel experiments also use a se-

ries of �ow-straighteners and screen meshes to control boundary layers on the splitter

plate, but no contraction was implemented. Due to di¤erences in facility designs and

�ow velocities, the initial conditions for each experiment are not identical. Breiden-

thal reported that P=� is a non-unique function of Reynolds number for Re� < 8000.

This was attributed to the observation that early-time, two-dimensional vorticity dy-

namics of the mixing layer was controlled by the initial vorticity in the high-speed

�uid boundary layer. Remnants of initial conditions a¤ected the value of P=� until

the mixing layer had completely transitioned to a fully-developed, three-dimensional

state. Thus, slightly di¤erent initial conditions resulted in di¤erent measures of P=�

before the asymptotic value P=� � 0:365 for Re� > 8000 was reached.

Figure 2.18 shows a comparison of P=� for r = 0:62 and r = 0:76 from Breidenthal

(1979) and a corresponding shear layer experiment conducted in the water channel as

a function of shear layer Reynolds number Re� = �U �=�, where � = �U=(@u=@z)max

is the width (vorticity thickness) of the shear layer. In the absence of velocity mea-

surements to obtain � directly, the width of the shear layer was determined visually

from the measured indicator concentration pro�les. The visual width of the mixing

layer is related to the vorticity thickness by �vis=� = 2:1 (Brown & Roshko 1974;

Koochesfahani & Dimotakis 1986). The water channel Reynolds numbers were lim-
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Figure 2.18 Equivalent chemical product thickness, P=�, for the case of a liquid-phase,

turbulent shear layer.

ited to Re� < 2000. Thus, the asymptotic value of P=� ! 0:365 for Re� > 8000

observed by Breidenthal could not be reproduced in the channel; however, over the

range of comparable Reynolds numbers shown in �gure 2.18, the measurements of

P=� are within the scatter of Breidenthal�s results for comparable velocity ratios.

A measurement of the relative product thickness for the Rayleigh�Taylor case, de-

noted P=h, is shown in �gure 2.19. For Rayleigh�Taylor mixing layers, any Reynolds

number de�nition relies upon a choice of an integral-scale velocity and length. This

work adopts Reh = 0:35
p
Agh3=� (Ramaprabhu & Andrews 2004a), where the mix-

ing layer width (5�95% volume fraction thresholds used) is the length-scale, and the

terminal velocity of the dominant bubble is the velocity-scale. It is di¢ cult to directly

compare shear-driven mixing layers with the buoyancy-driven case due to the di¤er-

ence in Reynolds number de�nitions. For Rayleigh�Taylor mixing layers, the visual

width of the layer de�ned the integral length scale that in-turn was used to de�ne

h, and hence P=h and Reh. Thus, for comparison purposes in �gure 2.19, the shear
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Figure 2.19 Equivalent product thickness measurements for a liquid-phase buoyancy-

driven mixing layer, P=h, and shear-driven mixing layers, P=�, at various

velocity ratios r. Outer-scale Reynolds numbers are Reh = 0:35
p
Agh3=�

for the Rayleigh�Taylor case and Re�vis = �U �vis=� for the shear case.

layer Reynolds numbers and product thicknesses have been de�ned using �vis instead

of �. For the shear layer cases in �gure 2.19, it is evident that the time at which a

signi�cant rise in P=�vis occurs is a function of the Reynolds number, velocity ratio,

and initial conditions. While the Reynolds number de�nitions are not completely

equivalent for the buoyancy- and shear-driven cases, their comparison in �gure 2.19

shows that the buoyancy-driven case exhibits an increasing trend in P=h, indicative

of the onset of turbulence and a mixing transition at similar Reynolds numbers as

the shear-driven case. However, higher Reynolds number experiments are needed to

determine if buoyancy-driven turbulent mixing is capable of producing larger quanti-

ties of chemical product, and if P=h attains an asymptotic value. Extrapolation from

the shear-driven experiments suggests that an asymptotic behavior of P=h may not

be seen in Rayleigh�Taylor mixing until Reh � 8000�10000, necessitating a di¤erent
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experimental facility for investigating asymptotic Sc � 103 mixing.

2.4.8 Measurements of product formation mixing parameter

The backlit optical technique described in § 2.4.2 provided measurements of the av-

erage concentration of colored indicator [InIV ] given two streams at pH1 and pH2.

While these measurements of chemical product formation are a function of the degree

of molecular mixing at small equivalence ratios, it is desirable to relate C to more

convenient measures of molecular mixing. In this section, the measured passive scalar

and reacting scalar concentration �eld, �f1 and C respectively, will be used to compute

several parameters that quantify mixing.

The measured indicator concentration pro�les can be used to compute integral

measures of the total quantity of chemical product formed, such as P=h. However,

such a measure does not indicate the maximum quantity of chemical product that

may be formed for the same equivalence ratio. Koochesfahani and Dimotakis (1986)

quanti�ed the degree of mixing in a reacting shear layer by normalizing the amount

of product formed by the maximum product that could be formed if the two �uids

homogeneously mixed. Cook and Dimotakis (2001) extended this concept to de�ne

an integral mixing parameter

�('In) =

R hb
hs
[InIV ] dzR hb

hs
[InIV ]max dz

; (2.39)

where [InIV ]max is the maximum chemical product that can be produced if all �uid

within the mixing layer was homogeneously mixed at a set equivalence ratio 'In. This

parameter is de�ned such that � = 0 if no product is produced (i.e. the constituent

�uids are completely segregated). Conversely, � = 1 if all potential product has been

produced (i.e. the mixing layer is homogeneously mixed). For the two-�uid case
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Figure 2.20 Schematic of [InIV ] formation as a function of �f1 and the equivalence ratio

'In. The maximum product formed occurs when the stoichiometric ratio

of reactants are available at ( �f1)st = 'In=(1 + 'In).

(where �f1 + �f2 = 1), [InIV ]max depends upon the lean reactant such that

[InIV ]max =

8><>:
�f1[OH

�]1 �f1 � ( �f1)st ;

(1� �f1)[In]2 �f1 > ( �f1)st ;
(2.40)

where

( �f1)st =
'In

1 + 'In
: (2.41)

is the stoichiometric volume fraction of �uid 1 required to achieve a stoichiometric

reaction, i.e. all reactants in (2.17) are entirely consumed. An illustration of the

maximum product produced for a given equivalence ratio is shown in �gure 2.20.

The global mixing parameter � is shown in �gure 2.27, where it is compared with the

global mixing parameter � de�ned in § 2.4.10.
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2.4.9 Relationship between chemical product formation measurements and �uctu-

ating density statistics

Measurements of the relative quantity of chemical product formed (given by �) are

dependent upon the equivalence ratio 'In. An alternative description of molecular

mixing is given by a combination of the mean and �uctuating density statistics, which

are independent of the equivalence ratio. The mean density and density variance can

be combined to form a molecular mixing parameter �, which is de�ned in § 2.3.2.

The formation of colored chemical product can be related to the volume frac-

tion variance f 022 , or more speci�cally, the second moment of the volume fraction

probability density function (PDF), where f 22 = ( �f2)
2 + f 022 . Given a mixture with

varying density (such as within a Rayleigh�Taylor mixing layer), the probability of

�nding a given fraction of �uid r is quanti�ed by the PDF of the volume fraction

�uctuations P (f2). Using P (f2), the quantity of chemical indicator and fraction of

colored indicator within the mixing layer can be expressed as functions of the local

�uid composition, i.e. the PDF of f2. As noted earlier, �uid 1 is the heavier �uid with

a pH > 7 (alkali) and �uid 2 is the lighter �uid with pH � 7 (acidic or neutral) with

a dilute amount of phenolphthalein added. Accordingly, the average concentration of

indicator present within the mixing layer depends upon the indicator concentration in

the lighter �uid (bottom stream) [In]2 and �f2, which is equivalent to the �rst moment

of P (f2),

[In] = [In]2

Z 1

0

f2 P (f2) df2 : (2.42)

The total amount of indicator that is in its colored form depends on both the fraction

of �uid 2 present and the fraction of dissociation �InIV [see (2.27)]. Similar to (2.42),
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the concentration of colored indicator is expressed as

[InIV ] = [In]2

Z 1

0

�InIV (pH) f2 P (f2) df2 : (2.43)

Consequently, C = [InIV ]=[In]2 can be expressed as a function of the local composition

of the mixed �uid, or P (f2). To relate C and f 022 , the integral on the right-hand side

of (2.43) requires further evaluation.

While the right-hand side of (2.43) cannot be analytically evaluated, an approx-

imation for �InIV can be obtained to allow an analytical treatment. If pH1 is taken

to be su¢ ciently large (pH1 � 11:5 here), then �InIV becomes a function only of the

local composition of the �uid, de�ned by f1, f2, and pH2. Only two-�uid systems are

considered here, so that �InIV is a function of only f2 and pH2. As pH2 is decreased,

a larger quantity of OH� ions from the top stream is required [see 'n in (2.36)], and

hence a greater value of f1, to mix with the bottom stream to achieve the same rise

in pH and indicator color change. Figure 2.21 shows �InIV (f2; pH2) as a function of

local volume fraction f2 with pH2 as a parameter. The fraction of dissociation is then

approximated by a step function

�InIV (f2; f
50%
2 ) =

8><>: �maxInIV
= �InIV (pH = 11:5) = 0:96 f2 � f 50%2 ;

0 f2 > f
50%
2 ;

(2.44)

where f 50%2 is the f2 value where half of the indicator exists in its colored form, i.e.

�InIV = 0:5, for a speci�ed pH1=pH2 combination. Note that �
max
InIV

= 0:96 because

�InIV does not attain unity at its maximum.

Substituting (2.44) into (2.43) allows the integral to be split into two parts and
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Figure 2.21 Fraction of dissociation for InIV as a function of the volume fraction f2
and pH2 of the acidic stream.

simpli�ed:

C
�
f 50%2

�
=

Z f50%2

0

�InIV
�
f2; f

50%
2

�
f2 P (f2) df2

+

Z 1

f50%2

�InIV
�
f2; f

50%
2

�
f2 P (f2) df2 (2.45)

= �maxInIV

Z f50%2

0

f2 P (f2) df2 :

Integrating over all values of f 50%2 gives

1

�maxInIV

Z 1

0

C
�
f 50%2

�
df 50%2 =

Z 1

0

(Z f50%2

0

f2 P (f2) df2

)
df 50%2 : (2.46)
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Changing the order of integration on the right-hand side gives

1

�maxInIV

Z 1

0

C
�
f 50%2

�
df 50%2 =

Z 1

0

�Z 1

f2

f2 P (f2) df
50%
2

�
df2

=

Z 1

0

f2 P (f2)
n
f 50%2

��1
f2

o
df2 (2.47)

=

Z 1

0

(1� f2) f2 P (f2) df2

and evaluating the remaining outer integral gives

1

�maxInIV

Z 1

0

C
�
f 50%2

�
df 50%2 = �f2 � f 22 : (2.48)

Since f 22 = ( �f2)
2 + f 022 , the volume fraction variance becomes

f 022 =
�f1 �f2 �

1

�maxInIV

Z 1

0

C
�
f 50%2

�
df 50%2 ; (2.49)

and the degree of molecular mixing becomes

� = 1� f 021
�f1 �f2

=

R 1
0
C
�
f 50%2

�
df 50%2

�maxInIV
�f1 �f2

: (2.50)

At the centerplane of the mixing layer, �f1 = �f2 = 1=2, and � reduces to

� =
4

�maxInIV

Z 1

0

C
�
f 50%2

�
df 50%2 : (2.51)

The integral of C
�
f 50%2

�
over 0 � f 50%2 � 1 in (2.49) may be physically interpreted

as a sum of the chemical product produced given all possible equivalence ratios. Before

this integral is evaluated for the �ow considered here, several considerations regarding

the bounding values of C
�
f 50%2

�
at f 50%2 = 0 and f 50%2 = 1 are discussed. For highly

acidic streams, [H+]2 !1 or f 50%2 ! 0, and thus, no chemical indicator will exist in

its colored form, i.e. C
�
f 50%2 = 0

�
= 0. For the case of pH1 = pH2 = 11:5, no �uid

from the top stream is required to mix with the bottom stream to achieve a color
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Figure 2.22 Values of colored indicator concentration C for f 50%=0:4712 (left:

pH1 = 11:52 and pH2 = 2:44) and f 50%=0:4712 (right: pH1 = 11:48 and

pH2 = 7:02) at di¤erent downstream locations.

change. Then, the chemical indicator acts as a passive scalar, such that

[InIV ] = [In]2

Z 1

0

�InIV (pH) f2 P (f2) df2 (2.52)

= �maxInIV
[In]2 �f2 :

Thus, the two bounding values C
�
f 50%2 = 0

�
and C

�
f 50%2 = 1

�
= �maxInIV

�f2 are known

a priori. To approximate the integral of C
�
f 50%2

�
, the amount of colored product

was measured for pH2 = 7:02 and pH2 = 2:44. Keeping pH1 � 11:5, this gave

f 50%2 = 0:986 and f 50%2 = 0:471, respectively. Several curves of C
�
f 50%2

�
are shown

for various evolution times in �gure 2.22, using the chemical product measurements

shown in �gure 2.16.

2.4.10 Measurement of molecular mixing parameters

The terms on the right-hand side of (2.49), which include mean volume fraction

and mean chemical indicator product pro�les, have been measured and are shown
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Figure 2.23 Pro�les of f 021 across the mixing layer at dimensionless times � = 0:25,

0:50, 0:75, 1:00, 1:25, and 1:50.

in �gures 2.13, 2.16, and 2.22. Combining these measured concentration pro�les

according to (2.49) provides a measure of the volume fraction variance pro�les shown

in �gure 2.23 across the mixing layer from �f1 = 0:1 to �f2 = 0:9. The 10�90%

volume fraction boundaries were used because measurements near the edges of the

mixing layer are not converged due to a high degree of intermittency. The pro�les in

�gure 2.23 are approximately parabolic in shape with peaks at the centerplane of the

mixing layer. The magnitude of f 021 on the centerplane (z = 0) has bounding values

of 0 (perfectly mixed) and 0:25 (perfectly segregated). As the mixing layer grows,

f 021 (z = 0) decreases in time, moving away from the immiscible limiting value of 0:25,

which indicates that a greater quantity of mixed �uid exists at later times.

The pro�les of f 021 alone do not quantify the relative degree of molecular mixing,

but such a measure is given by � [see (2.1)]. To obtain pro�les of �, the volume frac-

tion �uctuations (shown in �gure 2.23) are combined with the mean volume fraction

pro�les (shown in �gure 2.13) according to (2.49). Pro�les of � across the mixing layer
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Figure 2.24 Pro�les of � across the mixing layer at dimensionless times � = 0:25, 0:50,

0:75, 1:00, 1:25, and 1:50.

are shown in �gure 2.24 plotted between the 10�90% volume fraction thresholds. For

the small Atwood number case considered here, the pro�les of � are expected to be

approximately constant across the mixing layer, as found in experiments (Wilson &

Andrews 2002) and in numerical simulations (Youngs 1994; Ristorcelli & Clark 2004).

Indeed, the measured pro�les of � in �gure 2.24 are approximately �at at later times

across most of the mixing layer, and no conclusions can be drawn from the oscilla-

tions near the boundaries of the mixing layer because of increased uncertainty due to

intermittency e¤ects away from the centerplane.

Uncertainties in f 021 and � are given by a combination of the uncertainties in the

mean volume fraction and indicator concentration measurements. Uncertainties in the

mean Nigrosine dye concentration measurements [as a result of (2.33)] contribute to

uncertainties in the measured pro�les of �f1 and �f2. Similarly, uncertainties in the mean

chemical indicator concentration pro�les contribute to uncertainties in the integral of

(2.48). Combined, the relative uncertainty in f 021 is less than �5% within the core
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Figure 2.25 Relative uncertainties in the f 021 (left) and � (right) pro�les at dimension-

less times � = 0:25, 0:50, 0:75, 1:00, 1:25, and 1:50.

of the mixing layer. However, the statistical uncertainty in the f 021 measurements

increases near the mixing layer boundaries due to a greater degree of intermittency.

Combining the uncertainties in the mean and �uctuating volume fraction statistics

gives a relative measure of the uncertainty in the measurement of �. Along the mixing

layer centerplane, the absolute uncertainty in � remains relatively unchanged for all

times measured (0:1 < � < 1:9) at approximately w� � 0:015. While this is a modest

absolute uncertainty, the relative uncertainty is large at early times due to the small

values of �. Away from the centerplane, the uncertainty estimates in � increase to

w� � �0:05. Pro�les of the relative uncertainties for f 021 and � are shown in �gure

2.25.

Measurements of � on the centerplane (z = 0) of the mixing layer have been re-

ported in previous water channel experiments (Wilson & Andrews 2002; Ramaprabhu

& Andrews 2004; Mueschke et al. 2006) and in gas channel experiments (Banerjee et

al. 2007). The current centerplane measurements of � are plotted in �gure 2.26 with

measurements from the gas channel where Sc = 0:7 (Banerjee et al. 2008), and the
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Figure 2.26 Evolution of � on the centerplane of the mixing layer for various Schmidt

numbers. Uncertainty bounds for the Sc � 103 measurements are indi-

cated by the dashed lines. Measurements for the Sc = 0:7 case are taken

from Banerjee et al. (2008), and measurements for the Pr � Sc = 7 case
are taken from Mueschke et al. (2006).
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water channel for the hot/cold water case where Pr � Sc = 7 (Mueschke et al. 2006).

Inspection of �gure 2.26 reveals that a factor of ten di¤erence in Schmidt/Prandtl

numbers between the water and gas channel experiments gives a small di¤erence in

� over 0:5 < � < 1:5. However, comparison of the moderate Schmidt number Sc � 1

results with the new Sc � 103 measurements results in a much larger and distinct

di¤erence. In particular, the minimum value of � � 0:4 was measured in the hot/cold

water experiments at � = 0:4 before the mixing layer had transitioned to a fully

three-dimensional, turbulent state. A similar value of � � 0:4 was only measured

in the salt/fresh water experiments when the mixing layer reached Reh � 2000 at

� = 1:5. At the latest time measured (� = 1:9) � � 0:5, which begins to approach

the late-time values of � measured in the water channel. Thus, the current Rayleigh�

Taylor measurements are similar to shear layer results (Konrad 1977; Breidenthal

1979, 1981), which indicates that the Schmidt number has a smaller e¤ect on the

degree of molecular mixing at higher Reynolds number.

Youngs (1994) introduced a global measure of mixing

� =

R hb
hs
f1f2 dzR hb

hs
�f1 �f2 dz

= 1�
R hb
hs
f 021 dzR hb

hs
�f1 �f2 dz

(2.53)

which is analogous to the mixing parameter � de�ned in § 2.4.8. As for � and �,

� = 0 when the two �uids are completely segregated, and � = 1 when the two

�uids are perfectly mixed. The mixing progress variables �('In ! 0) and � were

obtained from the present salt/fresh water experiments by integrating across the 10�

90% volume fraction thresholds. The evolution of � and � is shown in �gure 2.27. For

� < 0:4, � < 0:06 and � < 0:15, indicating that the majority of the �uid within the

mixing layer exists as pockets of pure �uid that are stirred, but not molecularly mixed.

Just as with the evolution of � shown in �gure 2.26, both parameters increase and
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Figure 2.27 Evolution of the global mixing parameters � and � for the Sc � 103 case.

reach late-time values � � 0:28 and � � 0:5, but neither appear to attain asymptotic

values by � = 1:9. In comparison, Ramaprabhu et al. (2005) reported late-time

values � � 0:7�0:8 using monotone-integrated large-eddy simulations (MILES) to

examine the in�uence of initial conditions on molecular mixing. Using a large-eddy

simulation, Cook et al. (2004) obtained � � 0:78 for a moderate Atwood number

(A = 0:5), Sc = 1 mixing layer. Thus, it is unclear whether � or � in the Sc � 103

case reach the same asymptotic values measured in Sc � 1 experiments.

As shown in �gure 2.19, the relative fraction of chemical product formed remains

small until the onset of a fully-turbulent regime, or equivalently, the Reynolds number

attains su¢ cient magnitude. This e¤ect can be seen clearly in �gure 2.27, where a

transition in the slopes of � and � occurs at � � 0:5. Before this transition point,

both � and � exhibit shallow, approximately linear slopes. Following this transition

(� > 0:5) the slopes of � and � increase, indicating that the production rate of

mixed �uid has increased. The weak e¤ect of the Reynolds number before � � 0:5 is

because the mixing layer contains little three-dimensional structure and is in a weakly
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Figure 2.28 Evolution of mixing parameters as a function of Reynolds number

Reh = 0:35
p
Agh3=�. A �ducial is indicated at Reh = 300 indicating

the onset of nonlinear, transitional dynamics.

nonlinear regime. However, as the bandwidths of velocity and spatial scales increase,

stretching of the interface between the two �uids increases both the surface area and

concentration gradients driving molecular di¤usion. This Reynolds number e¤ect on

�, �, and � is shown more clearly in �gure 2.28. As functions of Reh, it is evident

in �gure 2.28 that the centerplane evolution of � also exhibits the transition in slope

at � � 0:5, corresponding to an integral-scale Reynolds number Reh � 300. Before

this Reynolds number threshold, the Sc � 103 mixing layer exists in a �stirred�state

with little molecular mixing. Beyond Reh � 300, the production rate of mixed �uid

increases.

As seen in the shear layer results of Konrad (1977) and Breidenthal (1979, 1981),

a second transition is expected in the large Reynolds number limit, when each mixing

parameter is expected to asymptote. Ristorcelli and Clark (2004) reported that the

centerplane value of f 021 (and as a result �) must be constant under the assumption



74

of self-similarity. Approximately asymptotic behavior in � at the centerplane was

observed in Sc = 0:7 gas-phase experiments (Banerjee et al. 2008) and in Pr = 7

liquid-phase experiments (Mueschke et al. 2007). Dalziel et al. (1999) used light-

induced �uorescence (LIF) in a set of retracting plate experiments in a Sc � 103

salt/fresh water experiment and measured an approximately constant value � � 0:55

over the range 0:4 < � < 1:5 (when scaled to match the time normalization used in this

work). However, LIF measurements are not resolution independent. The Batchelor

scale for the analogous salt/fresh water experiments reaches �B = hSc�1=2Re
�3=4
h

�m, and thus, under-resolved pointwise concentration measurements will over-predict

the degree of molecular mixing (Mueschke & Andrews 2006). In the present work,

where the measurement technique is free of optical resolution constraints, no such

asymptotic behavior of the mixing parameters is observed by the largest Reynolds

numbers achieved, Reh � 3000. From �gure 2.28, if buoyancy-driven mixing layers

have an asymptotic value of P=h similar to that in shears layers, then an asymptotic

behavior of � and � in the Sc � 103 mixing layers may not be observed until Reh �

8000�10000.

2.4.11 Implications for turbulent transport and mixing modeling

Mathematical models of turbulent transport and mixing are designed to predict

large-scale observables, such as the mixing layer width h and its late-time growth

rate �. To predict the degree of mixing, such models must also accurately predict

second-order turbulence statistics, including the turbulent kinetic energy and density

variance. These quantities have been an important subject of study in the react-

ing �ow and combustion communities (Fox 2003; Poinsot & Veynante 2005), but

have thus far received little attention in the Rayleigh�Taylor instability community.

Anisotropy e¤ects, statistical inhomogeneity, and nonequilibrium physics in Rayleigh�
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Taylor mixing layers also complicate the modeling process. Predictive models should

also encompass a large dynamic Reynolds number range. As shown in �gure 2.28,

mixing models must capture the small mixing rate (shallow slope of � and �) at

Reh < 300. At higher Reynolds numbers, these models must account for an increased

mixing rate, the expected self-similar collapse of the volume fraction variance pro�les

shown in �gure 2.29, and the eventual asymptotic behavior of P=h, �, and �. This

suggests that the model parameters in the production and dissipation terms in the

modeled density variance �02 (or equivalently f 021 ) transport equation may strongly

depend on an integral-scale Reynolds number Reh or a turbulent Reynolds number

Ret =
�
E 0
�2
=(� �0), where E 0 and �0 are the turbulent kinetic energy and its dissipation

rate, respectively. Liu and Fox (2006) addressed this issue by analytically integrat-

ing model scalar spectra to determine the relationship between mechanical and scalar

time-scales as a function of Ret and Sc. However, the model proposed by Liu and Fox

implies that the integral length scale is set by the bounding geometry (rather than the

�ow), which is not the case in Rayleigh�Taylor driven mixing. In addition, the model

kinetic energy and scalar variance spectra neglect nonequilibrium e¤ects (Pope 2000;

Fox 2003). Thus, the dependence of the mixing rate on the initial perturbations at

the �uid interface cannot be incorporated, which has been shown to have persisting

e¤ects out to at least Reh > 103 (Cook & Dimotakis 2001; Ramaprabhu et al. 2005;

Mueschke et al. 2006).

Accordingly, a complete calibration of transport models for high Schmidt num-

ber Rayleigh�Taylor mixing requires measurements of quantities such as �f1 and f 021 .

However, there is currently little detailed data available from direct numerical simu-

lations (DNS) and experiments (compared with shear-driven turbulence) to aid in the

calibration and validation of such models for Rayleigh�Taylor mixing. While DNS

studies of Rayleigh�Taylor driven mixing are available at Sc = 1 (Cook & Dimotakis
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Figure 2.29 Self-similar collapse of the colored indicator concentration (left) and the

volume fraction variance (right) pro�les. Parabolic pro�les are shown as

a reference (dotted line).

2001; Ristorcelli & Clark 2004; Cabot & Cook 2006), no such data is available for

the large Schmidt number case, for which DNS is too computationally expensive. In

addition, there are few subgrid-scale models suitable for large-eddy simulation (LES)

of large Schmidt number mixing (Pullin 2000; Burton 2008). Furthermore, monotone-

integrated large-eddy simulation (MILES) and implicit large-eddy simulation (ILES)

do not include molecular dissipation and di¤usion terms [having a numerical Schmidt

number of O(1)] and are thus poorly-suited to investigating Schmidt number e¤ects

on molecular mixing. Thus, the results of this work presently provide the sole ex-

perimental data for calibrating density variance transport models for high Schmidt

number Rayleigh�Taylor mixing.

2.5 Summary of Experimental Measurements

The time-evolution of the volume fraction PDF, volume fraction variance and kurtosis,

molecular mixing parameter, and density variance spectra were measured for a Pr �
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Sc = 7 Rayleigh�Taylor mixing layer. These measurements indicate that an early-

time transition exists in the degree of molecular mixing in which (before the onset

of strong nonlinearities and secondary Kelvin�Helmholtz instabilities) the interfacial

area between the two �uids remains relatively small when compared to the area at

later times. However, after the early-time onset of strong nonlinearities, the degree of

molecular mixing within the �ow steadily increases. It was shown that this increase

in � is associated with the decrease in f 021 and with the shift in the energy-containing

modes to smaller wavenumbers. In addition, this work has investigated the linear

and nonlinear growth of the Rayleigh�Taylor instability (depending on the initial

perturbation amplitudes and wavelengths), mode-coupling and growth of successively

larger scales, and the transition to a well-mixed state.

Experiments measuring the degree of molecular mixing in a liquid-phase, high

Schmidt number, Rayleigh�Taylor instability-driven mixing layer have been per-

formed using a salt/fresh water con�guration in a water channel. Measurement of

the mixing layer growth parameter � for this case indicates that the Schmidt number

may have a minor in�uence on the late-time self-similar growth rate of the mixing

layer. To quantify the degree of molecular mixing, the pH of each water stream was

altered and a di¤usion-limited neutralization reaction was monitored by the addi-

tion of a pH-sensitive chemical indicator. For the limiting case of the equivalence

ratio 'In ! 0, the chemical indicator concentration pro�les indicate the degree of

molecular mixing between the two �uids. As the buoyancy-driven mixing developed,

the quantity of chemical indicator measured continued to increase, suggesting that

the quantity of mixed �uid within the turbulent core of the mixing layer continued

to increase with time. The degree of molecular mixing was further quanti�ed by

the equivalent product thickness P=h. At late times, P=h increased slightly with

increasing Reynolds number. However, a mixing transition indicated by an increase
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and eventual Reynolds number invariance in P=h (as previously observed in P=�

for shear-driven mixing layers) was not observed for the facility-limited, late-time

Reynolds number Reh � 3000.

The degree of molecular mixing was measured both by the relative fraction of

chemical product formed and �uctuating density statistics. A mathematical relation-

ship between the measured chemical indicator concentration pro�les and the density

variance was developed. Pro�les of f 021 for Sc � 103 were obtained by integrating

the total indicator formation over the range of equivalence ratios 0 < 'n < 1 (or

0 < f 50%2 < 1). These pro�les are approximately parabolic and the peak magni-

tude decreases in time, indicative of the greater volume of mixed �uid at later times.

Combining measurements of �f1 and f 021 , the molecular mixing parameter � was ob-

tained for the Sc � 103 case and compared with lower Schmidt number (0:7 and 7)

experiments. It was found that the increase in Schmidt number for the salt/fresh

water experiments resulted in a signi�cant decrease in � for all times measured. In

addition to the local mixing parameter �, the global mixing parameters � and � were

also measured. At the latest time measured, all mixing parameters demonstrated an

increasing trend. It remains unclear whether the Sc � 103 mixing layers reach the

same asymptotic value of � as in lower Schmidt number experiments.
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3. EXAMINATION OF TURBULENT TRANSPORT AND MIXING

USING DNS DATA

3.1 Overview of Goals and Methodology

To further examine Rayleigh�Taylor driven mixing dynamics, a direct numerical sim-

ulation (DNS) will be used to obtain measures of molecular mixing and turbulent

statistics that are not readily measured in the water channel facility. As an outline of

this section, the numerical methods, physical parameters used, and initial conditions

are presented �rst. The DNS results are validated by comparing various integral-

scale, turbulence, and mixing statistics with measurements from the water channel.

The degree of molecular mixing is quanti�ed by the mixing parameters P=h, �, �,

�, the probability density function of the �uctuating density �eld P (f1), and the

mean mixed �uid composition �fm1 . Finally, the physics of Rayleigh�Taylor turbulent

mixing is examined by evaluating the budgets of the relevant equations to quantify

the relative importance of di¤erent physical transport and mixing processes.

The experiments discussed in § 2 reported measurements of mixing for Sc = 7

(hot/cold water) and Sc � 103 (salt/fresh water). Due to current computational

limitations, the DNS of the water channel experiments is limited to the Sc = 7 case.

Indeed, a DNS of the Sc � 103 experiments would require a twelve-fold increase in grid

resolution in each coordinate direction, which is not currently feasible, and probably

will not be for at least another 20 years. As a comparison, resolution requirements

for Sc � 1 DNS imposes a severe limitation on the achievable Reynolds numbers.

Schumacher et al. (2005) performed a 10243 DNS of isotropic, passive scalar mixing

for Sc = 32, but were limited to a Taylor�Reynolds number Re� = 24. Yeung et al.

(2004) performed a similar DNS of isotropic, passive scalar mixing for Sc = 1024, but

were limited to Re� = 8. As an alternative to DNS, large-eddy simulations (LES)



80

require a priori knowledge of the physics of subgrid-scale mixing. Currently, DNS,

LES, and MILES are not feasible for studying high Schmidt number Rayleigh�Taylor

mixing.

3.2 Direct Numerical Simulation of Rayleigh�Taylor Mixing: Hot/Cold Water Case

This study uses the Miranda code (developed at the Lawrence Livermore National

Laboratory) to solve the incompressible, variable-density conservation of mass and

momentum equations (Cook & Dimotakis 2001)

@�

@t
+

@

@xj
(� uj) = 0 ; (3.1)

@

@t
(� ui) +

@

@xj
(� ui uj) = � gi �

@p

@xi
+
@�ij
@xj

; (3.2)

where � is the density, vi is the velocity �eld, gi is the gravitational �eld, p is the

pressure, and

�ij = �

�
@ui
@xj

+
@uj
@xi

�
� 2
3
� �ij

@uk
@xk

(3.3)

is the viscous stress tensor with dynamic viscosity � = �� taken to be a linear

function of the local density and average kinematic viscosity � = (�1 + �2)=(�1 + �2).

The divergence term in �ij is retained as the �ow is not solenoidal due to density

gradients that exist (Joseph 1990; Sandoval 1995). However, the velocity divergence

term is expected to be relatively small compared with the other terms for the small

Atwood number �ow considered here.

In the hot/cold water experiments reported in § 2, a temperature di¤erence was

used to induce a density di¤erence. However, the heat equation is not directly solved

by the numerical algorithm. Instead, the mass fraction evolution equation is solved



81

in the Fickian di¤usion approximation (Cook & Dimotakis 2001),

@

@t
(�mr) +

@

@xj
(�mr uj) =

@

@xj

�
�D

@mr

@xj

�
; (3.4)

wheremr is the mass fraction of �uid r = 1; 2, andD is the species mass di¤usivity for

both �uids, i.e. D12 = D21. In the Fickian approximation, the analogy of temperature

and species concentration is mathematically equivalent under the assumption ofD12 =

D21 = D. Thus, to simulate the water channel experiment, the species di¤usivity D

was equated to the thermal di¤usivity of water, so that Pr � Sc = 7.

The DNS code uses accurate, high-resolution methods to minimize numerical

di¤usion, which are required when fully-resolving density gradients in mixing appli-

cations. Speci�cally, a hybrid spectral/compact-di¤erencing scheme was used to solve

(3.1)�(3.4). Periodic boundary conditions were imposed in the x- and y-directions (or-

thogonal to gravity), which allowed the use of a spectral discretization with uniform

grid spacing (Canuto et al. 2007). In the z-direction (parallel to gravity), free-slip

boundary conditions were imposed at the top and bottom of the domain, and a tenth-

order compact-di¤erencing scheme was implemented (Lele 1992). As a result of the

di¤erence in resolving power of the spectral and compact-di¤erencing schemes, the

grid resolution in the vertical direction was set to �z = 0:75�x. Details on resolution

considerations and the implementation of the boundary conditions can be found in

Cook and Dimotakis (2001) and Cook et al. (2004).

A third-order Adams�Bashforth�Moulton predictor-corrector scheme was used

to advance (3.1)�(3.4) in time. This two-step predictor-corrector scheme was further

decomposed to advance the momentum equations, where an incompressible pressure-

projection scheme was used to separate the advection/di¤usion and acceleration/body

force updates. First, the momentum �eld without pressure gradient or body forces

was estimated at time step n + 1. Next, a pressure Poisson equation was solved to
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Figure 3.1 Schematic of computational domain for the DNS with associated axes and

direction of gravity. The iso-surface of initial interfacial perturbations

�(x; y) is shown at the centerplane (z = 0).

ensure mass conservation. The pressure gradient and body forces were then included

to estimate the momentum �eld at time step n + 1, denoted (�ui)�. Applying the

corrector step to (�ui)� yields a �nal value of the momentum �eld (�ui)n+1.

The physical parameters in the DNS were chosen to closely match a typical

water channel experiment, and are summarized in Table 3.1. The water channel

has cross-sectional dimensions of 20 cm deep and 32 cm high (direction of gravity).

With a typical mean advective velocity Um � 4:75 cm/s and data capture times

from 1�10 minutes in duration, the longest resolvable wavelengths in the streamwise

direction are & 190 cm. However, a computational domain size of 190 cm � 20 cm

� 32 cm is not feasible due to resolution requirements and computational resource

limitations. Thus, an acceptable domain size must be chosen such that resolution

considerations could be met while also incorporating longer wavelengths that may

in�uence the dynamics of the mixing layer (Linden et al. 1994; Dimonte et al. 2005).
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Parameter Value

�1 0:9985986 g/cm3

�2 0:9970479 g/cm3

A 7:5� 10�4

gz 981 cm/s2

�1 0:009 g/(cm s)

�2 0:011 g/(cm s)

Sc � Pr 7

Table 3.1 Parameters used in the direct numerical simulation of the water channel

experiment.

The chosen computational domain size was Lx � Ly � Lz = 28:8 cm � 18 cm � 24

cm and the grid resolution was Nx �Ny �Nz = 1152� 760� 1280. A schematic of

the computational domain is shown in �gure 3.1. The estimated Kolmogorov scale

�K � hRe
�3=4
h � 0:055 cm gives a lower bound resolution limit velocity �eld near the

end of the simulation, where h � 15 cm and Reh � 1700. As Sc > 1 in the DNS,

the resolution requirements for the scalar �eld are even more stringent, where the

smallest scalar �uctuations are given by the Batchelor scale �B = �K Sc
�1=2 � 0:021

cm. The DNS has a resolution of �x = �y = 0:025 cm and �z = 0:01875 cm, so

that the �ow is slightly under-resolved and aliasing errors will be generated as the

Reynolds number increases towards the end of the simulation. Such aliasing errors

(predominantly in the scalar density �eld) were �ltered out using a sharp spectral low-

pass �lter at wavenumber kx = ky = 113:8 cm�1, or approximately at twice the grid

spacing. While this �ltering procedure e¤ectively removed the aliasing errors, a small

fraction of energy was also removed from the largest wavenumbers (� 1 � 10�7% of

the total energy), which was found to have a negligible e¤ect on the mixing dynamics.
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More details on the �ltering methods can be found in Cook et al. (2004).

The initial perturbations used in the DNS were parameterized from the data

presented by Mueschke et al. (2006). The initial interface between the two �uids was

perturbed in the x- and y-directions

�(x; y) =
kmaxX

kx=kmin

�̂(kx) e
ikxx +

kmaxX
ky=kmin

�̂(ky) e
ikyy ; (3.5)

where kx = 2�=�x and ky = 2�=�y are the wavenumbers in the x- and y-directions.

The amplitudes of the perturbations in each orthogonal direction, �̂(kx) and �̂(ky),

were taken from experimental measurements of density and interfacial perturbations

in the streamwise and spanwise directions just o¤ the trailing edge of the splitter plate

(Mueschke et al. 2006). In addition to interfacial perturbations, the initial velocity

�eld of the DNS was perturbed to account for velocity �uctuations induced by the

wake of the splitter plate. This was accomplished by de�ning a velocity potential

�eld

�r(x; t = 0) =
kmaxX

kx=kmin

ŵ(kx)

kx
eikxx�kxjzj ; (3.6)

where the initial velocity �eld was taken to be the gradient of a potential �eld

ui(x; t = 0) =
@�r
@xi

� D
�

@�

@xi
; i = x; y; z : (3.7)

In addition to the gradient of the potential �eld, the formulation of the initial velocity

�eld accounted for di¤usion velocity at the interface (Joseph 1990),

@ui
@xi

= � @

@xi

�
D

�

@�

@xi

�
6= 0 : (3.8)

Further details on the implementation of the initial perturbations in the DNS can be

found in Appendix D.
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3.3 Statistical Averaging

Statistical analysis of Rayleigh�Taylor mixing requires averaging over an ensemble of

realizations. Due to the extreme computational requirements of DNS, it is generally

impractical to perform an ensemble of simulations for averaging purposes. However,

the simple �ow geometry implies statistical homogeneity in the x- and y-directions

(orthogonal to the direction of gravity). Thus, ensemble averages are de�ned as the

average over xy-planes (Youngs 1984). The Reynolds average (denoted by an overbar)

of a �eld �(x; t) is then

�(z; t) =
1

Lx Ly

Z Lx

0

Z Ly

0

�(x; t) dy dx : (3.9)

The instantaneous values of a given �eld can be decomposed into mean and �uctuating

components according to

�(x; t) = �(z; t) + �(x; t)0 : (3.10)

As a consequence of this averaging, the �uctuation of a �eld (denoted by a prime)

averages to zero in a given plane, �0 = 0.

To facilitate the analysis of variable-density e¤ects, a mass-weighted (Favre)

average is also considered (Chassaing et al. 2002; Wilcox 2006). The mean and

�uctuating components are decomposed such that

�(x; t) = e�(z; t) + �(x; t)00 ; (3.11)

where the Favre-average (denoted by a tilde) denotes a mass weighted two-dimensional

average over xy-planes,

e�(z; t) = � �(z; t)

�(z; t)
=

R Lx
0

R Ly
0
�(x; t)�(x; t) dy dxR Lx

0

R Ly
0
�(x; t) dy dx

: (3.12)
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In the Favre-average case, the �uctuation of a �eld (denoted by a double prime) does

not average to zero, �00 6= 0; instead ��00 = 0 so that, as a consequence of (3.12),

�� = ��e�.
By de�ning statistical quantities on xy-planes, each statistic becomes a function

of the z-coordinate and time only. All pro�les presented are plotted along the z-axis

and are normalized by the mixing layer width h(t), as typically done in a self-similar

scaling analysis (Ristorcelli & Clark 2004). In this work, the total mixing layer width

h(t) is based upon 5�95% volume fraction thresholds.

3.4 Comparison with Water Channel Experimental Data

In this section, the DNS is validated by comparing simulation results and experimental

measurements from the water channel. Qualitative observations of the experiment

and mixing layer show good agreement. Measurements of the mixing layer growth rate

parameter �, �uctuating velocity statistics, and mixing statistics are also compared

and exhibit favorable agreement.

3.4.1 Qualitative observations and comparisons

The initial velocity perturbations in the DNS were found to dominate the initial

growth of the mixing layer in the water channel experiments (Mueschke et al. 2006).

This was also observed in the DNS, where the initial growth of the mixing layer was

primarily two-dimensional. In simulations employing isotropic initial conditions (see

Appendix D for a more detailed discussion), the initial structures that develop from

the unstable con�guration are approximately spherical in shape (Laney et al. 2006).

Each rising and falling structure roughly follows single-mode dynamics until secondary

instabilities develop and nonlinear dynamics overtake the mixing layer (Youngs 1984;
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Haan 1989). This is not the case here, where the initial growth of the mixing layer bet-

ter resembles the early-time growth from two dimensional simulations (Cabot 2006).

This is clearly seen in the early-time evolution of the f1 = 0:5 isosurface shown in

�gure 3.2. Such growth is also observed in the water channel experiments, where little

spanwise structure or variation is observed during the early-time development of the

mixing layer.

At the onset of the instability, the initial velocity �eld model forms a vortex

sheet with variations only in the x-direction. As a result, little structure exists in the

spanwise or y-direction. The spanwise structure slowly develops due to the baroclinic

production of vorticity in the x-direction that is a result of spanwise perturbations

�̂(ky) [see (3.5) and Appendix D]. As the penetration rate of the initial structures

grows in magnitude, the material surface area on the rising bubble and falling spikes

is stretched. As a result, this stretches the vortex lines in the x-direction, increasing

their strength and creating �rib-like�structures along the cylindrical structures. Such

rib-like structures are evident by � = 0:5, as shown in �gure 3.2.

At approximately � = 1, the mixing layer transitions to a more three-dimensional

�ow. The late-time f1 = 0:5 iso-surface shows the more three-dimensional �ow struc-

ture in �gure 3.3. This nonlinear transition to a more complex internal structure

is also observed in the water channel experiments at approximately � = 1. This

transition is more easily visualized in the DNS, where the nonlinear interactions of

the stretched vortex lines in the x- and y-directions begin to contort the f1 = 0:5

iso-surface in a direction not aligned with the x- and y-axes, as seen before � = 0:5.

During this nonlinear transition, individual vortex lines are broken to form vortex

rings creating more three-dimensional bubbles and spikes. At this time the bubbles

and spikes appear to be closer to spherical in morphology than cylindrical.

The iso-surfaces of the density �eld can be qualitatively compared with the water
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Figure 3.2 Early-time evolution of the f1 = 0:5 volume fraction iso-surface at � = 0:21

(top) and � = 0:50 (bottom).
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Figure 3.3 Late-time evolution of the f1 = 0:5 volume fraction iso-surface at � = 1:01

(top) and � = 1:52 (bottom).
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Figure 3.4 Photograph of the initial development of a Rayleigh�Taylor mixing layer

in the water channel, where a small amount of milk has been added to the

bottom stream for visualization purposes. The �ow is from left-to-right.

channel experiments. An image of the initial development of the mixing layer in a

water channel experiment is shown in �gure 3.4. The initial, two-dimensional distur-

bance generated by the splitter plate is evident on the left-hand side of the �gure,

which is similar to the initial development observed in the DNS. As the Rayleigh�

Taylor mixing layer grows, so do the perturbations in the spanwise direction as seen

in both the DNS and the experiment. As the mixing layer continues to grow, ripples

along the top edges of the rising structures break into individual bubbles, and more

three-dimensional structure is evident at later times. This process is seen in both the

water channel, on the right-hand side of �gure 3.4, and in the DNS in �gure 3.3.

3.4.2 Mixing layer growth rate

A �rst-order validation of the DNS results is given by a comparison of the mixing layer

growth and its late-time growth rate. A comparison of mixing layer widths from the

DNS and the Sc = 7 water channel experiment is shown in �gure 3.5, where time has
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Figure 3.5 Bubble and spike penetration (in cm) from the DNS (black) and water

channel (dashed) (Wilson 2002).

been normalized as in (2.3). This dimensionless time has been adopted to facilitate

a comparison of the DNS results and water channel experiments; however, other

time scales may be used. Other researchers have used the most unstable wavelength

according to linear stability analysis (Chandrasekhar 1981)

�max � 4�
�
�2

Ag

�1=3
= 0:66 cm (3.13)

to normalize time according to (Cook et al. 2004; Kadau et al. 2007)

�� = t

r
Ag

�max
: (3.14)

Another time scale can be used, where time is normalized by the growth rate of

the most unstable wavelength smax. Results are then characterized in terms of the

number of e-folding periods

� e = t smax : (3.15)

This time scaling becomes advantageous when studying transitional �ows, where ap-
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proximately nine e-folding periods are required for temporal instabilities to transition

to turbulence (Smith & Gamberoni 1957; van Ingen 1956). The relationship between

these alternate time-scalings and (2.3) is given by ��=� = 6:96 and � e=� = 11:47.

Depending upon the dimensionless time used, the present DNS reaches � = 1:52,

�� = 10:6, and � e = 17:4. Thus, it may be possible to classify the �nal stages of

the DNS as �turbulent�according to the e-folding de�nition above. A more detailed

discussion of the transitional and turbulent regimes observed in the DNS is given in

§ 3.5.1.

Both the DNS and the experiment show similar growth rates. In addition, the

self-similar growth parameter � from (1.1) can be compared. Equation (1.1) is recov-

ered for the late-time growth of a small Atwood number mixing layer by self-similar

analysis (Youngs 1984; Ristorcelli & Clark 2004) or dimensional analysis (Cook &

Dimotakis 2001). A more general expression for the self-similar growth of a mixing

layer is given by the ordinary di¤erential equation (Ristorcelli & Clark 2004; Cabot

& Cook 2006) �
dhb
dt

�2
= 4�bAg hb ; (3.16)

Expanding (3.16), as shown by Ristorcelli and Clark (2004), shows that the mixing

layer width is proportional to a sum of terms that scale as t2, t1, and t0.

While various methods for determining a late-time value of � are possible, three

independent measurements of � are examined here. First, from (1.1), the late-time

slope of (hb�hs)=2 plotted against Agt2 is measured. While this method is robust, it

is not free from the in�uence of t1 and t0 terms. The second method directly computes

a time-dependent, e¤ective � from the time derivative of (1.1),

�(t) =
1

2Ag t

dhb
dt
; (3.17)
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Figure 3.6 Measurement of growth parameter � from the DNS using the mixing layer

half-width (left) and from (3.16) and (3.17) (right). Fiducials denoting

� = 0:07 are shown in each �gure.

which eliminates the original t1 dependence and reduces the t0 dependence implicit

in h. Finally, a time-dependent, e¤ective � is directly calculated from the ordinary

di¤erential equation in (3.16). The various measures of � are shown in �gure 3.6.

The current DNS reaches a dimensionless time � = 1:52, which should be su¢ ciently

late to realize self-similar growth as measured in the water channel. It has been noted

that self-similar scaling of the mixing layer width (i.e. quadratic growth) is observed

at � & 1:2 (Snider & Andrews 1994). The growth parameter in the DNS appears

to approach the experimentally reported value � � 0:07 for � > 1:3; however, it is

di¢ cult to conclude if � = 0:07 is the asymptotic growth parameter in the DNS due

to the limiting domain size constraints.

3.4.3 Statistical convergence

Before a comparison of �uctuating velocity and density statistics is presented, a mea-

sure of the relative uncertainty in the measured statistics is required. The uncertainty
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(95% con�dence interval bounds) in the averaged statistics may be quanti�ed by

w� = �1:96

s
s2�
N�

; (3.18)

where s2� is the sample variance of statistic � and N� is the number of samples

(i.e. turbulent structures) over which the average was taken (Benedict & Gould

1996). Accordingly, the statistical uncertainty in a given mean is proportional to

N
�1=2
� . Thus, as the DNS evolves in time and the turbulent length scales grow, fewer

structures are available to calculate a mean value, unlike in the water channel. Due

to the decreasing number of turbulent structures at late-time, the bootstrap method

of estimating statistical uncertainties is problematical and was not used in this work.

The dominant wavelength corresponding to a �uctuating scalar �eld �(x; t)0,

based upon the energy content of its spectrum E�(k; z; t) is (Batchelor 1953)

��(z; t) = 2�

R kmax
kmin

E�(k;z;t)

k
dkR kmax

kmin
E�(k; z; t) dk

; (3.19)

where the factor of 2� results from de�ning wavenumbers as k = 2�=�, kmin = 2�=Li,

and kmax = �=�xi. Due to the anisotropy of the implemented initial conditions, the

turbulent scales of motion and statistics may not be equal in the x- and y-directions.

Accordingly, the dominant wavelengths in both homogeneous coordinate directions

are de�ned

��;x(z; t) = 2�

R kmax
kmin

E�(kx;z;t)

kx
dkxR kmax

kmin
E�(kx; z; t) dkx

; ��;y(z; t) = 2�

R kmax
kmin

E�(ky ;z;t)

ky
dkyR kmax

kmin
E�(ky; z; t) dky

(3.20)

and examined separately. The evolution of the dominant wavelengths for all three

velocity components and the density �eld at the centerplane (z = 0) of the mix-

ing layer is shown in �gure 3.7. As the Reynolds number increases, the dominant

energy containing scales also increase in size. In general, the velocity and density
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Figure 3.7 Dominant wavelengths in x- and y-directions on the centerplane based upon

each velocity component and density �eld from the DNS.

�elds yield similar dominant wavelength magnitudes. However, due to the sustained

anisotropy resulting from the initial conditions, the dominant wavelengths in the x-

and y-directions remain unequal even out to the �nal time of � = 1:52.

The total number of turbulent structures within the domain may be de�ned

N� =

�
2Lx
��;x

��
2Ly
��;y

�
; (3.21)

where two structures, one bubble and one spike, are taken per wavelength. It is

important to note that as Reh increases, the total number of dominant, energy-

containing structures included in the ensemble averages in (3.9) decreases. The total

number of turbulent structures in the DNS (based on the vertical velocity and density

�elds) as a function of the Reynolds number is shown in �gure 3.8. As might be

expected, in a �ow with rising and falling structures, the strong correlation between

the vertical velocity and density �uctuations results in N� � Nw. The uncertainty in

all statistics presented scales as N�1=2
� , and thus, statistical oscillations in averaged

quantities are expected to grow at late-time as there are N� � 50 structures at



96

10 1 10 2 10 310 1

10 2

10 3

Figure 3.8 Number of turbulent structures on the centerplane of the mixing layer based

upon the dominant wavelengths �� and �w.

� = 1:52.

3.4.4 Fluctuating velocity and density statistics

In addition to comparing integral-scale statistics, the evolution of �uctuating velocity

statistics along the centerplane of the mixing layer are also compared in �gure 3.9 and

show good agreement with the experiment up to � � 0:5. Beyond � = 0:5, the DNS

yields lower values of w02 than measured in the experiment. This is likely attributed

to the �nite computational domain size, which limits the spectral dynamics of the

larger scales of motion. The nonlinear velocity correlation in the advection term of

the Navier�Stokes equation can be written in wavenumber space as

F
�
@(uiuj)

@xj

�
= i kj F(uiuj) = i kj

X
k0

ûi(k
0) ûj(k

00) ; (3.22)

where k = k0 + k00 (Pope 2000). Accordingly, energy is transferred from wavevectors

k0 and k00 , which are supported on the discrete numerical grid, to wavevector k, which
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Figure 3.9 Comparison of �uctuating velocity statistics on the centerplane of the mix-

ing layer from the DNS and the water channel. Uncertainty estimates (95%

con�dence interval bounds) are denoted by dashed and dotted lines.

may or may not be supported on the grid. This is analogous to the interaction of

supergrid, cross, or subgrid scale triadic interactions in large-eddy simulations (Pope

2000; Cabot et al. 2004). When the magnitude of the wavevector satis�es jkj < ��x,

the triadic wavevector interaction supplies energy to a scale too small to be supported

on the grid and aliasing errors are generated. If properly resolved, this energy transfer

is negligible and numerical �lters are used to eliminate the in�uence of aliasing errors

on the solution. At the other end of the spectrum, if jkj > 2�=Lx or jkj > 2�=Ly,

then energy from wavevectors k0 and k00 is transferred to a wavelength too large to be

supported by the numerical domain. In this event, the energy is entirely lost. Thus,

two resolution requirements exist for fully-resolving a DNS of any experiment. First,

the grid resolution must be �ne enough to prevent the loss of energy to scales too small

to be resolved, causing aliasing errors. Second, the domain must be large enough to

allow the triadic interactions of the larger scales of motion. Thus, the domain size

must be large enough to facilitate the creation of increasingly longer wavelengths,
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minimizing the loss of energy to modes not supported by the discrete grid. These

criteria are loosely satis�ed by the current domain size and is further explored below.

To satisfy the �rst resolution requirement, the grid spacing must be the same size

or smaller than the smallest dynamic scale in the �ow. While this �rst requirement

can typically be satis�ed a priori, the second resolution requirement may not be

for simulations of Rayleigh�Taylor mixing. The large-scale resolution requirement

implies that the energy in the largest scales (low wavenumber regime of the spectrum)

must constitute only a fraction of the total energy of the �ow. Here, the normalized

cumulative energy spectra

C�(k) =

R k
kmin

E�(k
�) dk�R kmax

kmin
E�(k�) dk�

(3.23)

are examined, which provides a measure of the cumulative energy in the spectrum of

� from mode 1 to mode m = 2�=k. If the spectrum of �uctuations for a given scalar

is fully-resolved, including the small-wavenumber peak of the energy spectrum, then

lim
k!0

dC�(k)

dk
� 0 : (3.24)

If (3.24) is not satis�ed, then the peak of the energy spectrum is not fully resolved

and the energy transfer to larger scales cannot be assumed to be negligible. The

normalized cumulative energy spectra for the vertical velocity �uctuations and density

�uctuations on the centerplane from the DNS are shown in �gure 3.10. At early

times, � < 0:5, the slopes of Cw(k) and C�(k) at m = 1 (i.e. k = 2�=Lx) are small.

However, beyond � � 0:5, the criteria in (3.24) is not satis�ed, especially for the

velocity spectrum. Thus, the discrepancy between the DNS and the experimentally

measured values of w02 beyond � � 0:5 is due to the fact that the full dynamic range

of Ew(k) is not resolved.
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Figure 3.10 Cumulative energy distributions of the vertical velocity and density vari-

ance spectra from the DNS.

The velocity variance evolution shown in �gure 3.9 can be further examined

by comparing the centerplane vertical velocity variance spectra from the DNS and

the water channel experiment, which are shown in �gure 3.11. Caution must be exer-

cised when comparing experimentally-measured spectra, which use a one-dimensional

��ying-wire�measurement technique (Pope 2000), and spectra from the DNS typically

calculated from annular summations of energy within wavenumber rings (Dimonte et

al. 2004; Ramaprabhu et al. 2005; Cabot & Cook 2006). The experimentally-

measured spectra contain additional, low-wavenumber energy content from wavevec-

tors not aligned with the x-axis. This spectral information cannot be distinguished

or removed from the signal in a one-dimensional measurement (Pope 2000). However,

it is possible to recreate an analogous spectrum from the two-dimensional spectrum

calculated from the DNS. Starting with the Fourier transform of a scalar �eld �,

�̂(kx; ky) =
1

LxLy

Z Lx

0

Z Ly

0

�(x; y) e�i(kxx+kyy) dy dx ; (3.25)
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Figure 3.11 Comparison of E�w(kx) from the DNS and water channel experiment on

the centerplane of the mixing layer at � = 0:31 (top), � = 0:58 (middle),

and � = 0:92 (bottom).
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the energy content may be calculated by

E�(kx; ky) =
�̂(kx; ky) �̂(kx; ky)

�

2
; (3.26)

where the superscript � indicates the complex conjugate of �̂. The analogous �ying-

wire, one-dimensional spectra in the x-direction can be calculated by adding the

o¤-axis energy content to the appropriate kx wavenumber,

E��(kx) =
2

�kx

�=LyX
ky=��=Ly

E�(kx; ky) : (3.27)

A comparison of the one-dimensional vertical velocity variance spectra from the

experiment and the DNS is shown in �gure 3.11. For the overlapping range of

wavenumbers, the DNS and the experiment exhibit good agreement. The largest

discrepancy is seen in the longest wavelengths measured in the DNS. As shown in

Appendix D and in �gure 3.10, the domain size Lx = 28:8 cm limits the resolution

of the long-wavelength content in the initial vertical velocity spectrum and the dy-

namic energy transfer amongst the largest scales. Thus, the DNS model of the water

channel experiment well-represents the mixing layer dynamics with the exception of

the very longest of wavelengths, i.e. modes 1 and 2. To better resolve wavelengths

of size � � 15�30 cm, the domain size in the x-direction must be increased four- to

eight-fold, which is not feasible with current computational facilities.

A similar comparison of the centerplane density variance spectrum can be made,

where a similar operation is performed to calculate an estimated ��ying-wire�one-

dimensional spectrum from the DNS. The comparison of E��(kx) from the experiment

and the DNS is shown in �gure 3.12. Again, the longest wavelengths in the DNS

exhibit less energy than the experimentally-measured spectra. As shown by the cu-

mulative energy spectrum in �gure 3.10, the total amount of energy in the �rst two
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Figure 3.12 Comparison of E��(kx) from the DNS and water channel experiment on

the centerplane of the mixing layer at � = 0:17, 0:4, 0:87, and 1:36 (left�
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modes accounts for < 5% of the total variance of density �uctuations at early times

(� � 1). Thus, the inability of the DNS to fully resolve the dynamics of the lowest

two modes has little e¤ect on the measurement of �02. At the latest times in the sim-

ulation (� = 1:52), the energy de�cit in the longest wavelengths remains; however, as

shown in �gure 3.10, the energy content in the �rst two modes is greater than 5% of

the total variance, and thus, to better resolve the late-time mixing dynamics, a larger

domain size in the x-direction is required.

3.4.5 Molecular mixing parameter �

In addition to �uctuating velocity statistics, the degree of molecular mixing from

the DNS and water channel experiment compare favorably. The evolution of the

molecular mixing parameter � [see (2.1) for the de�nition] on the centerplane of the

mixing layer is shown in �gure 3.13. Both the experiment and the DNS show the

same dynamic trend of a decreasing � at early times, followed by a slow rise to an

approximately late-time asymptotic value � � 0:6. Both exhibit minimum values

� � 0:35 at similar times � � 0:4�0:5. The DNS exhibits a lower value of � than

reported by Mueschke et al. (2006); however, as shown in �gure 3.13, uncertainties

in the statistical measurements from the DNS and experiments overlap. More details

on the measurement of mixing dynamics will be presented in the subsequent sections

§ 3.5 and 3.6.

3.5 Measurements of Molecular Mixing

In § 2, the degree of molecular mixing was quanti�ed using parameters that depend

upon measures of �uctuating density statistics or chemical product formation. In this

section, measures of molecular mixing from the DNS data that are not readily mea-
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Figure 3.13 Comparison of � on the centerplane of the mixing layer from the water

channel experiment (Pr = 7) and the DNS (Sc = 7). Uncertainty esti-

mates (95% con�dence interval bounds) are shown by dashed lines.

sured in the hot/cold water experiment from § 2 are presented. This includes chemical

product formation measurements, global measures of mixing, and the statistical com-

position of the mixed �uid across the mixing layer. These results are compared with

results from gas-phase Rayleigh�Taylor mixing experiments at Sc = 0:7 (Banerjee et

al. 2008), and the liquid-phase Sc = 7 and Sc � 103 experiments reported in § 2, as

well as shear-driven results at Sc = 0:7 and Sc � 103.

3.5.1 Reynolds number regimes

As shown in § 2.4.10, the degree of molecular mixing is sensitive to the integral-scale

Reynolds number of the mixing layer. The �nal Reynolds number reached in the DNS

depends upon the choice of a length and velocity scale. Two de�nitions are considered

here, both of which take the mixing layer width h as the integral length scale. Cook

and Dimotakis (2001) used the growth rate of the mixing layer dh=dt as the integral
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velocity scale. Ramaprabhu and Andrews (2004) used the terminal velocity of the

dominant wavelength or bubble: relating the dominant wavelength or bubble diameter

to the width of the mixing layer, Db � hb � h=2. Assuming symmetry of bubble and

spike growth in the small Atwood number limit gives v1 = 0:5C1
p
Agh, where

C1 = 0:7 depends on the Atwood number (Daly 1967). Based upon these choices of

velocity scales, the corresponding Reynolds numbers are

Re
_h
h =

h

�

dh

dt
; (3.28a)

Re1h =
h v1
�

; (3.28b)

the evolution of which are shown in �gure 3.14. Depending upon the volume fraction

thresholds chosen to de�ne the mixing layer width, the �nal Reynolds number ranges

from Re1h � 1700 (5�95% thresholds) to Re _hh � 4500 (1�99% thresholds). The

evolution of Re _hh becomes non-monotonic at late times due to oscillations in the

derivative of h. For this reason, Re1h is used henceforth and the superscript 1 is

implied.

While an integral-scale Reynolds number de�nition remains ambiguous, the tur-

bulence within the mixing layer may be quanti�ed by a Reynolds number which does

not rely upon an arbitrary choice of a length or velocity scale. Studies of homogeneous

turbulence, which have no geometric boundaries, de�ne a Taylor�Reynolds number

Re� =
�uiT u

02
i

�
; (3.29)

where

�uiT =

�
�1
2

d2fui
dr2

����
r=0

��1=2
(3.30)
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Figure 3.14 Evolution of integral-scale Reynolds number calculated using the mixing

layer width h, based upon 5�95% (black) and 1�99% (grey) volume frac-

tion thresholds.

is the Taylor microscale for the ith-component of the velocity �eld, and

fui(r; z) =
ui(x+ r)0 ui(x)0

u02i (z)
(3.31)

is the autocorrelation of the velocity �eld ui (Pope 2000). In anisotropic turbulence,

the Taylor scales and velocity �uctuations in each coordinate direction are not nec-

essarily equal, i.e. �uT 6= �vT 6= �wT and u02 6= v02 6= w02. Thus, for the case of

Rayleigh�Taylor mixing, the Taylor�Reynolds number can be de�ned in each coor-

dinate. The evolution of Re� is shown in �gure 3.15. Dimotakis (2000) suggested

that a sustained Taylor�Reynolds number Re� & 100�140 must be achieved to realize

entrainment-limited mixing dynamics. The current DNS reaches Rew� � 95 at the

latest time (� = 1:52). Thus, according to the criteria suggested by Dimotakis, the

DNS cannot be used to determine the existence of (or observe) the mixing dynamics

in an entrainment-limited Rayleigh�Taylor mixing layer.
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Figure 3.15 Evolution of the Taylor�Reynolds number Re� based upon the centerplane

u, v, and w velocity �elds.

Vertical slices of the density �eld from the DNS at Reh = 10, 100, 1000, and 1710

are shown in �gure 3.16, and the corresponding slices on the centerplane are shown

in �gure 3.17. A reference table of times and Reynolds numbers for the visualizations

in �gures 3.16 and 3.17 and the pro�les in § 3 and 4 is given in Table 3.2. At the

earliest times, the amplitudes of the initial perturbations are small with respect to

the di¤usion layer separating pure �uids. Accordingly, at Reh � 10, the mixing layer

width is approximately the same size as the di¤usion layer thickness, and thus, the

majority of the �uid within the 5�95% volume fraction thresholds can be viewed

as mixed. As the growth rate of the initial perturbations increases, the interface

between the two �uids remains relatively simple in topology, but the mixing layer

width becomes much larger than the di¤usion layer thickness separating the two �uids.

Without the magnitude of velocity �uctuations found in higher Reynolds number

mixing layers, there is only a marginal increase in surface area between the heavy and

light �uids by Reh � 100. At this point, the majority of the �uid within the 5�95%
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t � Reh Rew�

0:68 0:10 10 0:6

1:36 0:21 21 1:7

2:82 0:43 94 11

3:32 0:50 137 14

6:65 1:01 708 44

7:62 1:16 978 64

10:03 1:52 1712 101

Table 3.2 Integral-scale and Taylor�Reynolds numbers for selected times.

volume fraction thresholds exists as pockets of pure, unmixed �uid. Beyond Reh �

200, the mixing layer transitions to a nonlinear growth phase, where the topology

of the interface separating the heavy and light �uids becomes very complicated. As

a result, the surface area available for di¤usion increases and the quantity of mixed

�uid within the mixing layer continues to increase with Reynolds number.

Due to the moderate Reynolds numbers achieved in the DNS, the amount of

mixed �uid is limited by the mass di¤usion across density gradients. However, other

researchers suggest that a �nal dynamic stage may exist, where the Reynolds number

is su¢ ciently large that the mixing layer becomes entrainment-limited (Breidenthal

1981; Dimotakis 2000). Beyond this �nal transition, it has been demonstrated in

shear-driven mixing layers that the equivalent product thickness [see (3.36)] becomes

invariant with Reynolds number (Konrad 1977; Breidenthal 1979, 1981; Koochesfa-

hani & Dimotakis 1986). However, for the Reynolds numbers achieved in the Sc = 7

DNS considered here, no such asymptotic behavior was realized by Reh = 1710 or

Re� � 95.

As observed in the visualizations of the density �eld shown in �gures 3.16 and
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Figure 3.16 Vertical slices of the density �eld at Reh � 101, 102, 103, and 1710, corre-
sponding to dimensionless times � = 0:10, 0:43, 1:16, and 1:52. The heavy

and light �uids are denoted by the color red and blue, respectively. Mixed

�uid is denoted by intermediate shades, i.e. green and yellow.
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Figure 3.17 Evolution of centerplane density slices corresponding to the vertical slices

shown in �gure 3.2. Centerplane slices are at � = 0:10 (top-left), � = 0:43

(top-right), � = 1:16 (bottom-left), and � = 1:52 (bottom-right).
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Figure 3.18 Evolution of the diagonal components of the Reynolds stress anisotropy

tensor on the centerplane.

3.17, the initial structure of the mixing layer is highly anisotropic. The relative

degree of anisotropy of the velocity �uctuations is quanti�ed by the Reynolds stress

anisotropy tensor

bij =
u0iu

0
j

u0ku
0
k

� 1
3
�ij : (3.32)

A maximum value of bij = 2=3 indicates that all of the energy in the turbulent �uc-

tuations is in the Reynolds stress component u0iu
0
j. The evolution of the centerplane

values of b11, b22, and b33 is shown in �gure 3.18. At early times, the bulk of the

energy in the �ow exists in vertical velocity �uctuations, with little energy in the

u-component and zero in the v-component. As the mixing layer develops, the �uc-

tuations move closer to an isotropic state with b33 � 1=3 at late time; however a

fully-isotropic state of b11 = b22 = b33 is not realized. Furthermore, the velocity

�uctuations in the homogeneous directions remain anisotropic (i.e. b11 6= b22) out to

� = 1:52, indicating that the turbulent mixing layer retains a memory of the initial

conditions.
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Figure 3.19 Pro�les of the diagonal components of the Reynolds stress anisotropy ten-

sor b11 (top), b22 (middle), and b33 (bottom).
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In addition, the anisotropy of the velocity �uctuations from the DNS can be

examined across the mixing layer. Pro�les of the diagonal components of bij are

shown in �gure 3.19. Again, within the core of the mixing layer (jz=hj < 0:5), vertical

velocity �uctuations dominate. Once the mixing layer transitions into a nonlinear,

pre-turbulent state (� > 0:5), the pro�les of bij from the DNS are approximately

constant across the mixing layer, although they are not steady in time. It cannot be

determined from the current DNS whether the degree of anisotropy within the mixing

layer achieves steady, asymptotic values of bij. It is expected that �uctuations in the

homogenous directions will continue to move towards a similar degree of anisotropy

as memory of the initial conditions is lost.

As shown in �gure 3.15, the mixing layer reaches a Taylor�Reynolds number

Re� � 95, which approaches the value suggested by Dimotakis (2000) to realize

entrainment-limited dynamics in shear-driven �ows. However, the Reynolds number

does not reach a large enough value that the largest and smallest scales are separated

by a constant spectral cascade regime. Under these circumstances, the bandwidth of

scales in the velocity variance and density variance spectra is large enough to support

an inertial subrange scaling of k�5=3 over a large range of scales. The evolution of the

velocity and density variance spectra are shown in �gure 3.20. Both the accumulation

of energy in the longer wavelengths and expansion of scales at the longer wavelengths

are observed, but the existence of a substantial inertial subrange is not.

To examine the separation of scales and inertial subrange scaling, the compen-

sated spectra of Ew(k) and E�(k) are shown in �gure 3.21. The vertical velocity

variance spectra exhibit an approximate k�5=3 scaling for less than one decade of

wavenumbers. The density variance spectra exhibit slightly di¤erent inertial subrange

scaling of approximately k�5=4 over a decade of wavenumbers. While the classical

k�5=3 scaling is not recovered for E�(k), it remains unknown whether the k�5=4 scal-
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Figure 3.20 Evolution of centerplane density and velocity variance at � = 0:21,

� = 0:50, � = 1:01, and � = 1:52. The initial spectra (when available) are

shown in grey and the �nal spectra are bold.
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Figure 3.21 Compensated vertical velocity variance and density variance spectra at

� = 1:52.

ing is a result of the moderate Reynolds number achieved or a Sc > 1 e¤ect. In either

case, the inertial subranges achieved in Ew(k) and E�(k) are not wide enough that

the e¤ects of production and dissipation are su¢ ciently separated to exhibit Reynolds

number independence with respect to the turbulence or the mixing dynamics (Zhou

et al. 2003; Zhou 2007).

3.5.2 Chemical product measurements

There are canonical measurements of mixing that rely upon chemical product for-

mation in a di¤usion-limited mixing layer (Breidenthal 1979, 1981; Koochesfahani &

Dimotakis 1986; Zhang & Schneider 1995; Karasso &Mungal 1996). The current DNS

does not explicitly include reaction source terms in the conservation of mass fraction

equations solved; however, it is possible to examine a hypothetical, in�nitely-fast,

reversible chemical reaction between two species,

A+B 
 C : (3.33)
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This reaction is analogous to the phenolphthalein chemical indicator reaction in

§ 2.4.1, where the heavy and light �uids contain reactants A and B, respectively.

The equivalence ratio

' =
[A]=[B]

([A]=[B])st
(3.34)

de�nes a measure of the balance or excess of reactants, where ([A]=[B])st = 1 is the

stoichiometric ratio of the reactants for the reaction in (3.33). The local formation of

product is a function of degree of mixing and ', where

[C] =

8><>: f1 [A]1 f1 � '
'+1

(1� f1) [B]2 f1 >
'
'+1

; (3.35)

and [A]1 and [B]2 are the base concentrations of A and B in the top and bottom �uids,

respectively. The chemical product concentration for the limiting case ' ! 0 and

the stoichiometric case ' = 1 are shown in �gure 3.22. The pro�les of [C] for '! 0

exhibit a skew to the spike side of the mixing layer, while the ' = 1 pro�les are more

symmetric. This is expected as the maximum potential for product formation exists

at the lower boundary of the mixing layer for the '! 0 case and at the centerplane

for the ' = 1 case.

The total amount of chemical product formed can be obtained by integrating the

pro�les in �gure 3.22 over the mixing layer width. Normalizing this integral by the

mixing layer width gives the equivalent product thickness

P

h
=
1

h

Z hb

hs

[C]

[B]2
dz ; (3.36)

which measures the fraction of the mixing layer occupied with chemical product. The

evolution of the equivalent production thickness for the Sc = 7, '! 0 case is shown

in �gure 3.23, where the DNS results are compared with both shear- and buoyancy-

driven reacting �ows at ' ! 0 (Konrad 1977; Breidenthal 1979; Mueschke et al.
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Figure 3.22 Pro�les of mean product concentration [C]=[B] for '! 0 (left) and ' = 1

(right) across the mixing layer at various times.
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Figure 3.23 Equivalent product thickness for the Sc = 7, ' ! 0 case. Shear- and

buoyancy-driven results at Sc � 103 and Sc = 0:7 are shown as a reference.
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2008).

In the DNS, at small Reynolds numbers (Reh � 102), mass di¤uses across the

species interface su¢ ciently to mix the majority of the �uid within the small mixing

layer, resulting in a large P=h. This is in contrast with the Sc � 103 Rayleigh�Taylor

measurements that do not exhibit a large quantity of product for Reh � 102. There-

fore, the amount of mixed �uid present at the onset of mixing is a strong function of

the Schmidt number. In the DNS at Reh � 102, the mixing layer has yet to develop

su¢ cient turbulent �uctuations to mix the entrained �uid, and the penetrating bub-

bles and spikes exist primarily as pockets of unmixed �uid. As the Reynolds number

increases, the relative fraction of chemical product increases slowly. By Reh = 1710,

the equivalent product thickness is approaching the pre-transitional values of P=�vis

measured in gas-phase (Sc = 0:7) shear-driven mixing at moderate Reynolds numbers

(Konrad 1977). However, as noted in § 3.5.1, an asymptotic measure of P=h is not

expected in the current DNS at Reh = 1710.

The equivalent product thickness provides a measure of the total amount of

chemical product formed; however, a more meaningful measure of mixing is given by

� =

R hb
hs
[C] dzR hb

hs
[C]max dz

; (3.37)

which is the fraction of product formed relative to the maximum amount of product

that may be formed for a given equivalence ratio. In (3.37), the maximum possible

chemical product is de�ned

[C]max =

8><>:
�f1 [A]1 �f1 � '

'+1

(1� �f1) [B]2 �f1 >
'
'+1

:
(3.38)

The evolution of both P=h and � for the cases '! 0 and ' = 1 are shown in �gure

3.24 as a function of Reh. Both P=h and � have relatively high values at Reh � 101,
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Figure 3.24 Evolution of equivalent product thickness P=h and mixing parameter �

as a function of Reh and ' obtained from the DNS.

but then decrease rapidly to local minima at Reh � 102. Above Reh � 200, each

mixing parameter increases with Reynolds number up to the �nal value Reh = 1710.

In addition, �gure 3.24 illustrates that � is a non-unique function of '.

3.5.3 Fluctuating density statistics

The degree of molecular mixing in § 3.5.2 was quanti�ed by the amount of chemical

product formed within the mixing layer given a hypothetical chemical reaction. As

shown in �gure 3.16, it is also possible to quantify the degree of molecular mixing by a

measurement of concentration or density �uctuations. In this section, two molecular

mixing parameters are examined, including the local parameter � [de�ned in (2.1)]

and the global parameter � [de�ned in (2.53)]. The primary factor determining the

values of � and � is the volume fraction variance f 021 , which is a measure of the

intensity of segregation of two �uids (Dankwerts 1952). As the two �uids become

homogeneously mixed, the density �uctuations about the mean will be small, and
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Figure 3.25 Evolution of centerplane volume fraction variance (left) and pro�les across

the mixing layer (right) obtained from the DNS.

hence, f 021 will be small. Conversely, if the two �uids are stirred but not mixed, the

density �uctuations about the mean will be larger in magnitude, and hence, f 021 will

be large.

The evolution of the volume fraction variance on the centerplane of the mixing

layer and pro�les of f 021 are shown in �gure 3.25. At very early times, f
02
1 is very small.

This agrees with the image of the Reh � 10 density �eld shown in �gure 3.16, where

most of the mixing layer is mixed �uid. When � � 0:5, f 021 reaches a maximum value,

which corresponds to the Reh � 100 density �eld shown in �gure 3.25. Similar to

the mixing parameters P=h and �, f 021 continues to decrease as the Reynolds number

increases, indicating greater mixing.

Combining the mean and �uctuating volume fraction statistics gives the mixing

parameters � and �. The evolution of � on the centerplane and � are shown in �gure

3.26. Pro�les of � across the mixing layer are also shown in �gure 3.26. Similar to

the measures of mixing from § 3.5.2, both � and � indicate that most of the �uid

within the mixing layer is molecularly mixed at very early times. At � � 0:5, both
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Figure 3.26 Evolution of molecular mixing parameters � and �(z = 0) (left), and

pro�les of � across the mixing layer (right) obtained from the DNS.

� and � reach a minimum value, after which both parameters exhibit a gradual rise

with Reynolds number. The pro�les of � indicate that the degree of molecular mixing

remains relatively constant across the mixing layer. During the nonlinear transitional

stage of the mixing layer development, Reh � 200�1000, the pro�les of � from the DNS

are not perfectly constant. Instead, the �uid within the interior core, jz=hj . 0:4,

has slightly larger values of �. This greater degree of mixing is attributed to the

onset of nonlinear, turbulent dynamics within the core of the mixing layer before the

edges of the layer. As the Reynolds number increases, the inner turbulent core of the

mixing layer occupies a greater fraction of the layer, as seen the di¤erence between

the � pro�les at � = 0:5 and 1:01. At the latest time, the turbulent �uctuations are

su¢ ciently large that � remains approximately constant across the layer.

The mixing parameters shown in �gure 3.26 were obtained from the Sc = 7 DNS,

and are compared with measurements from the gas-phase experiments of Banerjee et

al. (2008) and the liquid-phase experiments of § 2 in �gure 3.27. At early times

(� < 0:2), the species di¤usivity in the Sc = 7 case is su¢ ciently large that the
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Figure 3.27 Evolution of � on the centerplane of the mixing layer from gas-phase

(Banerjee et al. 2008) and liquid-phase Rayleigh�Taylor experiments, and

from DNS.

di¤usion layer and mixing layer width are of similar size, resulting in a large value of �.

For the Sc � 103 case, the opposite is true, where the species di¤usivity is su¢ ciently

small that only a small fraction of the mixing layer exists in a mixed state. During

the transition to turbulence, 0:5 < � < 1:5, the degree of molecular mixing is a strong

function of the Schmidt number. In addition, the higher Schmidt number results

appear to require greater Reynolds numbers to achieve an approximately steady late-

time value of �. By � � 0:8, the Sc = 0:7 results appear to have reached a steady

value � � 0:7. The Sc = 7 results show that a late-time value � � 0:6 is reached

between � � 0:9�1:5. For the Sc � 103 water channel experiments, an asymptotic

value of � has not been reached by � = 1:9.

3.5.4 Statistical composition of mixed �uid

In § 3.5.2, the degree of molecular mixing was quanti�ed by measuring the amount

of chemical product formed within the mixing layer, which implied molecular mixing.
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In § 3.5.3, the degree of molecular mixing was further quanti�ed by a statistical mea-

surement of concentration �uctuations. The mixing parameters de�ned in (2.1) and

(2.53) rely upon measurements of the mean density and density variance. However,

it is possible to mathematically de�ne an in�nite number of probability distribution

functions that yield the same mean and variance. Accordingly, a complete quanti�ca-

tion of the degree of molecular mixing is provided by a measurement of the probability

density function (PDF) of density or concentration �uctuations. A measure of the

volume fraction PDF from the DNS across the mixing layer is given at several times

in �gure 3.28, where P (f1) is the probability of �nding a concentrations of f1 of heavy

�uid and 1� f1 of light �uid within a sample volume or grid cell.

At the earliest time shown in �gure 3.28, a large fraction of the mixing layer exists

as mixed �uid; however, P (f1) retains a bimodal pro�le across the mixing layer. At

� = 0:5, where the least amount of mixed �uid is present, P (f1) continues to exhibit

a bimodal distribution across the mixing layer. However, at � = 0:5, the probability

of �nding mixed �uid [i.e. P (f1) > 0 for �f1 < f1 < 1 ��f1] is lower than that at

� = 0:21. By � = 1:01, the transition to a three-dimensional, turbulent mixing layer

has begun. Accordingly, P (f1) re�ects this transition by exhibiting a growing peak

about f1 = 0:5� 0:3, that indicates a greater fraction of the �uid within the layer is

mixed. By � = 1:52, this central peak of mixed �uid continues to grow in magnitude,

indicating that the fraction of mixed �uid within the layer continues to increase at

the latest times.

Another observation can be made about the �nal PDF at � = 1:52. The shape of

P (f1) and location of its peak changes across the mixing layer. Above the centerplane

(z = 0), the peak of P (f1) is located at f1 � 0:4. This indicates that the composition

of the mixed �uid primarily consists of the lighter �uid. Conversely, the peak of P (f1)

below the centerplane occurs at f1 � 0:6, indicating that the mixed �uid composition
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Figure 3.28 Probability density function P (f1) across the mixing layer at � = 0:21,

0:50, 1:01, and 1:52.
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favors the heavy �uid. This is physically rationalized by the following argument.

Heavy �uid falling downward has little residence time within the mixing layer before

it crosses the centerplane. Thus, the probability of �nding pockets of pure heavy

�uid is greater above the centerplane than lower below the centerplane. Conversely,

the probability of �nding pockets of pure light �uid is greater below the centerplane.

The pockets of pure �uid require a �nite time to be broken down into smaller eddies,

where molecular di¤usion processes e¢ ciently mix the two �uids. As a result, the

statistical composition of the mixed �uid favors the lighter �uid above the mixing

layer and the heavier �uid below the mixing layer.

Karasso and Mungal (1996) presented a thorough overview of scalar PDF mea-

surements in shear-driven mixing layers. They reported that the shape of P (�), where

� represents either instantaneous concentration or volume fraction measurements,

across the mixing layer is a function of both the Reynolds number (even beyond the

mixing transition threshold) and the entrainment ratio. At Reynolds numbers just

beyond the mixing transition threshold, the location of the inner peak of P (�) re-

mains relatively unchanged across the mixing layer, where such a PDF was labeled

a �non-marching�type PDF (Konrad 1977; Koochesfahani & Dimotakis 1986; Frieler

1992; Karasso & Mungal 1996). However, some results and models predicted that the

location of the peak within the mixing changes as the mixing layer is traversed (Batt

1977; Karasso & Mungal 1996). Such a model PDF is labeled a �marching�PDF.

A combination of the marching and non-marching PDF shapes was also measured

(Frieler 1992; Karasso & Mungal 1996), and is labeled as a �tilted�PDF.

Measurements in shear-driven mixing have examined the statistics of solely the

mixed �uid, where the peak values at P (f1 = 0) and P (f1 = 1) that represent

unmixed �uid are removed from the statistical measurement of �f1 (Koochesfahani

& Dimotakis 1986; Karasso & Mungal 1996; Dimotakis 2005; Meyer et al. 2006).
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As a consequence of removing the unmixed �uid contribution of P (f1) from �f1, the

in�uence of intermittency e¤ects may also be removed as the entrained pockets of

unmixed �uid are primarily irrotational. The average composition of the mixed �uid

�f m1 , denoted by the superscript m, quanti�es the location of such a peak and the

statistical composition of the mixed �uid by calculating the �rst moment of P (f1)

without the pure-�uid contributions of P (f1 = 0) and P (f1 = 1), such that

�f m1 =

R 1��f1
�f1

f1 P (f1) df1R 1��f1
�f1

P (f1) df1
; (3.39)

where �f1 = 0:05 was selected to parallel the analysis of shear-driven mixing by

Koochesfahani and Dimotakis (1986). The mean mixed �uid composition was cal-

culated using several values above and below �f1 = 0:05 and was found to have a

negligible dependence on the exact value of �f1. Pro�les of �f m1 across the mixing

layer are shown in �gure 3.29. Once the mixing layer enters a nonlinear transition

to turbulence stage (Reh > 200), the mean mixed �uid composition remains rela-

tively constant with an oscillatory behavior about �f m1 = 0:5 � 0:1. However, at the

highest Reynolds number achieved, the mixed �uid PDF relaxes into a tilted form,

as seen by the continuous increase in �f m1 across the mixing layer (jz=hj < 0:4). It

remains unclear whether the mixing layer reverts to a non-marching PDF after the

mixing transition is reached, as seen in post-mixing transition shear layers (Karasso

& Mungal 1996).

The statistical composition of the mixed �uid within the mixing layer, shown

in �gure 3.28, can be further quanti�ed by calculating the skewness and kurtosis of

P (f1). The skewness

S� =
�03�
�02
�3=2 (3.40)

measures the asymmetry of P (�). The kurtosis K� [see (2.11) for a complete de�-
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Figure 3.29 Pro�les of average mixing �uid composition �f m1 across the mixing layer at

various times.

nition] measures the �peakedness�of P (�). Pro�les of Sf1 and Kf1 , measured from

P (f1), are shown in �gure 3.30. The skewness Sf1 indicates a bias towards the heavier

�uid above the centerplane of the mixing layer and the lighter �uid below the center-

plane. This is expected as pockets of unmixed, irrotational �uid are entrained into the

layer at the boundaries of the layer. These pockets of unmixed �uid are subsequently

broken up and mixed as they cross through the turbulent layer. The kurtosis of P (f1)

indicates highly non-Gaussian behavior; Sf1 = 0 and Kf1 = 3 indicate a Gaussian

distribution.

The statistical composition of the mixed �uid across the mixing layer is shown in

�gures 3.28 and 3.29. The statistical composition of the entire �uid within the layer

may be examined by calculating the global volume fraction PDF

�P (f1) =
1

h

Z hb

hs

P (f1) dz : (3.41)

The evolution of the global volume fraction PDF is shown in �gure 3.31. At � = 0:21
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Figure 3.30 Pro�les of the skewness and kurtosis of P (f1) across the mixing layer at

various times.

and 0:5, the bimodal distribution of P (f1) seen in �gure 3.28 at the same times,

becomes more evident. Once the �ow transitions into a turbulent mixing layer, greater

quantities of mixed �uid are found.

3.6 Budgets of Turbulent Transport and Mixing Equations

The mixing measurements shown in § 3.5 are a result of the complex interactions of

a turbulent velocity �eld and scalar density �eld. Thus, to predictively model the

mixing dynamics, a complete understanding of both the stochastic velocity and den-

sity �eld dynamics is required. Here, the appropriately-averaged turbulent transport

equations are examined and the dominant mechanisms in the transport and mixing

processes are identi�ed. As noted in § 3.3, the �ow is statistically-ho-mogeneous

in the x- and y-directions; thus, the three-dimensional �ow is reduced to a statisti-

cally one-dimensional system for analysis. The exact unclosed transport equations

for pertinent statistics will be presented in the following subsections.
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Figure 3.31 Evolution of the global volume fraction probability density function P (f1)

at various times.

3.6.1 Mean continuity equation

In general, buoyancy-driven turbulence does not satisfy the Boussinesq (1903) approx-

imation. Accordingly, the Favre-averaged transport equations are typically employed

when examining Rayleigh�Taylor mixing layers. While the Boussinesq approxima-

tion remains valid for the small Atwood numbers considered in this work, the Favre-

averaged framework is retained for generality. As a result, the mean velocity �eld is

not assumed to satisfy the incompressible velocity �eld constraint @~ui=@xi = 0. The

Reynolds-averaged continuity equation is

D��

Dt
=
@��

@t
+ ~uj

@��

@xj
= 0 ; (3.42)

where
D

Dt
=
@

@t
+ ~uj

@

@xj
: (3.43)
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Figure 3.32 Divergence of the Favre-averaged velocity �eld (left) and advection by

the mean velocity �eld (right) across the Rayleigh�Taylor mixing layer at

various times.

The advection by the mean velocity ~uj term is negligible for this small Atwood number

�ow, as shown in �gure 3.32 and in § 3.6.2. The divergence of the Favre-averaged

velocity �eld is shown in �gure 3.32.

The existence of a non-zero mean (Favre-averaged) vertical velocity is a result

of turbulent �ux of mass, where ~w = �w + �0w0=��. For small Atwood number, incom-

pressible �ows the mean (Reynolds-averaged) vertical velocity is not zero due to the

di¤usive miscibility of the mixing layer (Joseph 1990), but is still negligible,

�w = �
�D

��

@��

@z
� 0 ; (3.44)

where �D = ��=Sc. Thus for the incompressible, miscible Rayleigh�Taylor mixing

layer considered here, ~w � �0w0=��. While the divergence of the Favre-averaged mean

velocity �eld is non-zero, it will be shown in § 3.6.2 that the magnitude of ~w is

small when compared with the turbulent �uctuations and that the mean advection

of transport quantities by ~w is negligible.
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Figure 3.33 Pro�les of the Favre-averaged velocity components eui across the

Rayleigh�Taylor mixing layer at various times (left column) obtained from

the DNS. Pro�les of the relative magnitudes of the mean-square velocities

with respect to the turbulent velocity �uctuations (right column).
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3.6.2 Mean momentum transport

The averaged Navier�Stokes equations are

��
D~ui
Dt

= �� gi �
@�p

@xi
+

@

@xj
(��ij � � ij) ; (3.45)

where � ij = ��]u00i u00j is the Reynolds stress tensor. Unlike shear-driven turbulence,

where velocity gradients are the driving force, Rayleigh�Taylor mixing layers have

no mean velocity or mean velocity gradients in their canonical arrangement. Figure

3.33 shows the mean pro�les for each velocity component and its relative magnitude

compared with the velocity variance fu002i at various times. The mean velocities in the

homogeneous directions are small and oscillatory. The departure of ~u and ~v from

zero is a result of the departure from statistical convergence, as noted in § 3.4.3.

While the mean advective velocities are not identically zero, it will be shown that

the in�uence of all mean velocity gradients is negligible on both the turbulence and

mixing dynamics. The Favre-averaged velocity in the z-direction is not oscillatory;

rather, it is small in magnitude and negative. This is a result of ~w = �w + �0w0=��,

where �0w0 is the turbulent mass �ux of the heavy �uid in the downward direction.

While the mean velocity �eld and its gradients are of minimal importance to the

mixing dynamics, the Reynolds stress tensor is responsible for the turbulent transport

of momentum. All six components of ]u00i u00j are shown in �gure 3.34. The diagonal

components are clearly dominant, as expected in the absence of any signi�cant mean

velocity gradient. The vertical velocity �uctuations gw002 are also the largest, as � 33
is aligned with the forcing term ��g3. For the case considered in the DNS, where the

mixing layer has only one direction of statistical inhomogeneity, the vertical velocity

�uctuations are the most important redistribution mechanism. The in�uence of the

turbulent velocity �uctuations will be further examined in § 3.6.3�3.6.7.



133

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

0.08

0.1

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­0.2

­0.15

­0.1

­0.05

0

0.05

0.1

0.15

0.2

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

0.08

0.1

Figure 3.34 Pro�les of �uctuation velocity correlations]u00i u00j across the Rayleigh�Tay-
lor mixing layer at various times obtained from the DNS.
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Figure 3.35 Pro�les of the terms in the ~w-component of the mean momentum equation

across the Rayleigh�Taylor mixing layer at various times.
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While the mean velocity in the vertical direction is small, it is related to the

downward turbulent �ux of the heavy �uid. For completeness, the budget of the

~w-component of the mean momentum equation is examined here. The advection,

forcing, di¤usive, and Reynolds stress terms for the mean vertical velocity are

A ~w = �� ~w
@ ~w

@z
; (3.46a)

F ~w = �@�p
@z
� �� g ; (3.46b)

D ~w =
@��33
@z

; (3.46c)

R ~w = �@� 33
@z

: (3.46d)

Pro�les of each term are shown in �gure 3.35. In small Atwood number �ows, the

contribution of the advection term is negligible. The di¤usive term smoothes small

�uctuations and gradients in the ~w �eld, which become larger at late time. However,

the overall contribution of D ~w also remains negligible. As a result, the remaining

forcing and Reynolds stress term are signi�cant, but balance one another, F ~w = �R ~w.

For the vertical velocity component, the mean pressure gradient does not balance the

hydrostatic head alone; however,

��� g � @�p
@z
=
@� 33
@z

: (3.47)

3.6.3 Mean mass fraction transport

While the mean momentum equation has little in�uence on the development of the

mixing layer, the mean density �eld and its gradient serve as the potential energy

source for the generated turbulence. The unclosed averaged heavy-�uid mass fraction

transport equation is

��
D~m1

Dt
= T ~m1 ; (3.48)
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where the turbulent transport term is

T ~m1 =
@

@xj

�
��

Sc

@ ~m1

@xj
� �� û00j m00

1

�
; (3.49)

where �� is the average dynamic viscosity. In variable-density �ows, �uctuations in

the dynamic viscosity � = ��+ �0 must be considered. However, in the limit of small

density and viscosity �uctuations (i.e. �0�00 � �� ~�), the transport assumptions can

be simpli�ed (Vandromme & Ha Minh 1983; Chassaing et al. 2002)

�

Sc

@m1

@xj
=
��

Sc

@ ~m1

@xj
: (3.50)

The mass fraction �eld has values 0 � ~m1 � 1 and, in the absence of chemical

reactions, has no physical source or sink terms. As a result, the only physical mecha-

nisms for the transport of ~m1 are viscous di¤usion (related to the gradient of ~m1) and

turbulent velocity �uctuations given by the �ux ŵ00m00
1. The mean heavy-�uid mass

fraction pro�les are shown in �gure 3.36. Similar to the experimentally-measured

volume fraction pro�les in �gure 2.13, the pro�les of ~m1 collapse to an approximately

linear form. This is expected for small Atwood number mixing layers as the mean

mass fraction is related to the volume fraction �eld by

�� em1 = �1 �f1 : (3.51)

As a result, the di¤usive transport of ~m1 is only signi�cant at very early times when

@ ~m1=@z is signi�cant and ŵ00m00
1 ! 0 as Reh ! 0.

The transport term T ~m1 is shown in �gure 3.37. Positive values of T ~m1 on the

spike side of the mixing layer indicate an accumulation of heavy �uid, while the

negative values of T ~m1 on the bubble side indicate a loss of heavy �uid. Physically,

this is expected as the heavy �uid continues to fall into the lighter �uid. The transport
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Figure 3.36 Pro�les of the mean heavy-�uid mass fraction em1 across the Rayleigh�

Taylor mixing layer at various times obtained from the DNS.

term T ~m1 can be broken down into its di¤usive and turbulent �ux components

F ~m1
d = � ��

Sc

@ ~m1

@z
; (3.52)

F ~m1
t = �� ŵ00m00

1 : (3.53)

Pro�les of each �ux component at di¤erent times are shown in �gure 3.38. The

turbulent �ux term dominates; however, the di¤usive term cannot be neglected for

� � 0:2.

3.6.4 Turbulent kinetic energy transport

While the mean momentum andmass fraction transport equations describe the growth

of the mixing layer, they do not describe the nature of the turbulent �ow �eld or the

mixing dynamics. In addition, a priori knowledge of otherwise unknown turbulent

correlations is required to close the mean �eld transport equations. In the following

sections, the transport equations that govern the turbulent �ow �eld and �uctuating
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Figure 3.37 Pro�les of the mean mass fraction turbulent transport term T em1 across

the Rayleigh�Taylor mixing layer at various times.

density statistics are presented and analyzed.

The �rst equation examined is the turbulent kinetic energy transport equation.

Pro�les of the turbulent kinetic energy per unit mass fE 00 = fu002i =2 are shown in �gure
3.39. As seen in the Reynolds stress tensor pro�les, the pro�les of fE 00 are peaked in
the turbulent core of the mixing layer.

In classical turbulent �ows, such as boundary layers, shear �ows, wakes, and

jets, there is steady exchange of energy between the mean and turbulent kinetic

energy �elds. Typically, energy is removed from the mean kinetic energy ( eE = ~u2i =2)
by shearing forces, transferred to the turbulent kinetic energy (fE 00 = fu002i =2), and
�nally dissipated to thermal energy by viscous forces, i.e. into the mean temperature

�eld. However, this is not the case in Rayleigh�Taylor driving mixing. Instead, the

turbulent kinetic energy is driven directly by the release of potential energy from the
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Figure 3.38 Pro�les of the mean mass fraction �ux terms in the transport term T em1

across the Rayleigh�Taylor mixing layer at � = 0:034, 0:21, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 3.39 Pro�les of the turbulent kinetic energy fE 00 across the Rayleigh�Taylor
mixing layer at various times.

falling heavy �uid. The total amount of potential energy per unit volume is

PE(t) = � 1

Lz

Z Lz=2

�Lz=2
�� g z dz ; (3.54)

and the cumulative amount of potential energy released �PE(t) = PE(t = 0)�PE(t)

is shown in �gure 3.40. The evolution of the total mean kinetic energy per unit volume

MKE(t) =
1

Lz

Z Lz=2

�Lz=2
eE dz ; (3.55)

total turbulent kinetic energy per unit volume

TKE(t) =
1

Lz

Z Lz=2

�Lz=2
fE 00 dz ; (3.56)

and cumulative turbulent kinetic energy dissipated per unit volume

D(t) =
1

Lz

Z t

0

Z Lz=2

�Lz=2
D
fE00 dz dt (3.57)

are also shown in �gure 3.40 [see (3.59a) below for a formal de�nition of the dis-
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Figure 3.40 Evolution of potential energy released, turbulent kinetic energy, mean

kinetic energy, and cumulative turbulent kinetic energy dissipated (left).

Ratio of turbulent kinetic energy to potential energy released (right).

sipation rate]. The release of potential energy into the Rayleigh�Taylor mixing

layer in the form of turbulent kinetic energy can be seen in �gure 3.40. The ra-

tio of turbulent kinetic energy to potential energy released is also shown in �gure

3.40, where TKE=�PE � 0:57 at the latest time. This is larger than the values

TKE=�PE � 0:48�0:52 from experimental measurements (Ramaprabhu & Andrews

2004; Banerjee 2006) and numerical simulations (Youngs 1994; Ramaprabhu et al.

2005; Cabot & Cook 2006); however, the ratio TKE=�PE in the current DNS is still

decreasing at � = 1:52. In addition, Ramaprabhu et al. (2005) demonstrated that the

speci�c initial conditions can impact this ratio, where a range of TKE=�PE � 0:48�

0:70 was reported.

As observed in § 3.6.2, the dynamics of the mean momentum equation are negli-

gible for small Atwood number Rayleigh�Taylor mixing layers. This is also con�rmed

from the evolution of MKE in �gure 3.40. The ratio of mean-to-turbulent kinetic

energy is also shown in �gure 3.41, where the mean �eld remains less than 1% of the

turbulent �eld. Thus, the classical energy transfer phenomenology used to describe
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Figure 3.41 Ratio of mean kinetic energy to turbulent kinetic energy within the mixing

layer.

shear-driven �ows, where energy is exchanged between the mean and turbulent kinetic

energy �elds by shearing forces, does not apply to Rayleigh�Taylor driven mixing.

The exact, unclosed turbulent kinetic energy transport equation is

��
DfE 00
Dt

= P
fE00
b + P

fE00
s +�

fE00 + T fE00 �DfE00 ; (3.58)

where the buoyancy production, shear production, pressure dilatation, turbulent

transport, and dissipation terms are (Chassaing et al. 2002; Wilcox 2006)

P
fE00
b = �u00j

@�p

@xj
; (3.59a)

P
fE00
s = � ��]u00i u00j

@~ui
@xj

; (3.59b)

�
fE00 = p0

@u00i
@xi

; (3.59c)

T
fE00 = � @

@xj

�
�� û00j E

00 + p0 u00j � u00i �00ij
�
; (3.59d)

D
fE00 = �� e�00 = �00ij @u00i@xj

+ u00j
@~�jk
@xk

: (3.59e)
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Figure 3.42 Pro�les of the dominant terms in the turbulent kinetic energy transport

equation across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01,

and 1:52 (left-to-right, top-to-bottom).
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Figure 3.43 Pro�les of the buoyancy and shear production terms P fE00
b and P fE00

s in the

turbulent kinetic energy transport equation across the Rayleigh�Taylor

mixing layer at various times.

Pro�les across the mixing layer of the dominant terms from the fE 00 transport equation
are shown in �gure 3.42 at various times. The overall form of the transport terms

remain similar for all times observed, where the buoyancy production remains positive

and generates turbulent kinetic energy within the core of the mixing layer (jz=hj <

0:5). The viscous dissipation term is negative de�nite and removes turbulent kinetic

energy from the core. The transport term has a more complex shape, where it is

negative within the core of the mixing layer (jz=hj . 0:4) and positive near the outer

regions of the mixing layer (jz=hj & 0:4), demonstrating that energy is removed from

the turbulent core and transported to the edges of the layer.

Pro�les of the buoyancy and shear production terms are shown in �gure 3.43. As

noted in § 3.6.2, the mean velocity gradient contribution to the overall production of

turbulent kinetic energy is negligible. The primary source of kinetic energy for this

�ow arises from the mean pressure gradients in P fE00
b . In models of P fE00

b , the mean

pressure gradient is a known mean �eld quantity. Therefore, an accurate closure for
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Figure 3.44 Pro�les of the pressure dilatation term �fE00 in the turbulent kinetic energy
transport equation across the Rayleigh�Taylor mixing layer at various

times.

the density-velocity correlation u00i = ��0u0i=�� is critical when modeling Rayleigh�

Taylor mixing.

In compressible �ows, energy may be transferred between turbulent kinetic en-

ergy and internal energy (thermal energy) by the compression or expansion of a

volume of �uid. Pro�les of �fE00 are shown in �gure 3.44. The �ow considered here is
incompressible, but �fE00 6= 0 as a result of miscibility of the two �uids (Joseph 1990).
However, while the divergence of the velocity �eld is not zero, it does scale with the

local density gradients. Thus, for the small Atwood numbers considered in this work,

�
fE00 remains negligible.
The conservative redistribution of fE 00 throughout the mixing layer is given by the

turbulent transport term T fE00, shown in �gure 3.45. Regions of positive T fE00 indicate
a gain of fE 00, whereas negative regions of T fE00 indicate loss of fE 00. Pro�les of T fE00
show that energy is transferred from the central core of the mixing layer, jz=hj . 0:3,
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Figure 3.45 Pro�les of the transport term T fE00 in the turbulent kinetic energy transport
equation across the Rayleigh�Taylor mixing layer at various times.

to the outer edges. Thus, the turbulent kinetic energy migrates in a down-gradient

manner from regions of higher energy within the core of the mixing layer to regions

of lower energy at the edges of the layer.

While the total transport term T
fE00 is shown in �gure 3.45, this term can be

decomposed into its turbulent kinetic energy �ux components due to turbulent, pres-

sure, and viscous transport

F
fE00
t = �� ŵ00E 00 ; (3.60a)

F
fE00
p = p0w00 ; (3.60b)

F
fE00
d = �w00 �0033 (3.60c)

These terms are examined in detail as canonical closure phenomenology typically

neglects F fE00
d and groups F fE00

t + F
fE00
p into a single gradient-di¤usion closure (Wilcox

2006). As shown here, these assumptions are not entirely accurate for Rayleigh�

Taylor driven mixing layers. Early-time pro�les (� � 0:3) of each �ux are shown in
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Figure 3.46 Early-time pro�les of the turbulent kinetic energy �ux terms in the trans-

port term T fE00 across the Rayleigh�Taylor mixing layer at � = 0:034, 0:10,
0:21, and 0:29 (left-to-right, top-to-bottom).
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Figure 3.47 Intermediate- and late-time pro�les of the turbulent kinetic energy �ux

terms in the transport term T
fE00 across the Rayleigh�Taylor mixing layer

at � = 0:41, 0:50, 1:01, and 1:52 (left-to-right, top-to-bottom).
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�gure 3.46. Figure 3.47 shows the same pro�les at later times (� > 0:4). Several

qualitative observations can be made about the early-time �ux components. First,

all �ux components follow a similar pro�le, transferring energy away from the cen-

terplane of the mixing layer. Second, the turbulent �ux F fE00
t is least important at

� � 0:1. Accordingly, standard gradient-di¤usion models are not expected to capture

the transport physics accurately. Finally, the pressure transport has a signi�cant,

non-zero energy �ux at the boundaries of the mixing layer and beyond. While the

�uid outside the mixing layer remains nearly inviscid, instantaneous velocity �uctua-

tions outside the layer exist due to the �uctuating pressure �eld created by the rising

bubbles and falling spikes. Accordingly, all �uctuations outside the mixing layer are

driven by pressure �uctuations resulting from the incompressible nature of the �ow.

This is the same process noted by Bradshaw (1994), where irrotational velocity �uc-

tuations are induced at the free stream edges of shear layers and jets by pressure

�uctuations.

For � � 0:4, F fE00
t becomes the dominant �ux, transferring turbulent kinetic

energy away from the central core of the mixing layer by means of velocity �uctuations.

All other �uxes are negligible with the exception of the pressure transport term F fE00
p ,

which has a more complex behavior. Within the core of the Rayleigh�Taylor mixing

layer (jz=hj � 0:5), F fE00
p opposes the turbulent �ux of kinetic energy in a counter-

gradient manner. However, outside the core of the Rayleigh�Taylor mixing layer

(jz=hj > 0:5), the pressure-�ux term becomes re-aligned with the down-gradient �ux

of fE 00. Similar to results shown at early time, F fE00
p is the only signi�cant mechanism

for the transport of velocity �uctuations outside of the mixing layer.

To further examine F fE00
p , pro�les of the normalized pressure transport are shown

in �gure 3.48. The early-time bifurcation is clearly seen as F fE00
p transports energy

away from the centerplane of the Rayleigh�Taylor mixing layer at � < 0:288, and
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Figure 3.48 Pro�les of the normalized pressure transport term across the Rayleigh�

Taylor mixing layer at early-times (left) and intermediate-times (right).

The bifurcation point for the sign of p0w00 within the core of the mixing

layer is seen at � = 0:288.

quickly switches to opposing F fE00
t at � > 0:288. This bifurcation corresponds to the

initial formation of secondary vortices in-between rising and falling structures. As

a result, pockets of low pressure form in the centers of the vortices. Figure 3.49

shows the early-time evolution of a slice of the density and pressure �elds, where

the formation of the secondary instabilities is visible. This transition at � = 0:288,

however, does not a¤ect the behavior of F fE00
p at the edges of the mixing layer and

beyond (jz=hj � 0:5), where F fE00
p continues to remove energy from the mixing layer

to induce velocity �uctuations in the quiescent pure �uid above and below the mixing

layer. This behavior complicates the formulation of models of T fE00 and will be further
discussed in § 4.3.4.

The �nal term in the transport equation of fE 00 is the turbulent dissipation term
D
fE00 = ��e�00. Pro�les of DfE00 are shown in �gure 3.50. Similar to the buoyancy-

production pro�les, the viscous dissipation term is also approximately parabolic with

a peak around z � 0. In Rayleigh�Taylor driven mixing, the turbulent kinetic energy
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Figure 3.49 Vertical slices of the density �eld with red and blue pressure contours indi-

cating high and low pressure regions (left-column), respectively, and �uc-

tuating pressure regions (right-column) show the formation of secondary

vortical instabilities at � � 0:3. The slices are shown at � = 0:206, 0:288,
0:405, and 0:674.



152

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

Figure 3.50 Pro�les of the turbulent dissipation term DfE00 in the turbulent kinetic en-
ergy transport equation across the Rayleigh�Taylor mixing layer at various

times.

within the mixing layer grows due to the continual release of potential energy. As

a result, the production of fE 00 does not equal dissipation, and the production-to-
dissipation ratio is not constant. Figure 3.51 shows the evolution of the production

and dissipation terms integrated over the entire domain. The buoyancy production-

to-dissipation ratio for both the integral case and on the centerplane is also shown in

�gure 3.51. At � < 0:7, the ratio P fE00
b =D

fE00 is unsteady, which makes the modeling
of such processes more di¢ cult. At later times, � > 0:7, the mixing layer reaches an

approximate steady-state ratio P fE00
b =D

fE00 � 2:2.
In general, two-equation modeling of turbulent �ows requires that the production-

to-dissipation ratio remain close to unity, i.e. turbulent statistics vary slowly in time

with respect to mean �ow changes. This is one reason why standard fE 00-e�00 type mod-
els (Jones & Launder 1972) perform adequately in simple �ows, such as round jets

with P fE00=DfE00 � 0:8 (Pope 2000), homogenous shear �ows with P fE00=DfE00 � 1:4�1:8
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Figure 3.51 Evolution of buoyancy and shear production, and dissipation integrals

(left). Evolution of production-to-dissipation ratios (right).

(Rogers & Moin 1987; Tavoularis & Corrsin 1981), and shear-driven mixing lay-

ers with P fE00=DfE00 � 1:4 (Rogers & Moser 1994). Rayleigh�Taylor driven mixing

layers exhibit larger production-to-dissipation ratios P fE00=DfE00 � 2�2:4 as reported

here. Mellado et al. (2005) reported P fE00=DfE00 � 2�2:5 for a compressible, miscible,
A = 0:5 Rayleigh�Taylor mixing layer. Ristorcelli and Clark (2004) reported even

larger values of P fE00=DfE00 � 3:5 for an A = 0:01, Sc = 1 Rayleigh�Taylor mixing

layer. The di¤erence between the Rayleigh�Taylor and shear-driven production-to-

dissipation ratios is likely attributed to the di¤erence in the production mechanisms

of the turbulent �uctuations, where turbulent kinetic energy is created from mean

density gradients and not from mean velocity gradients.

The departure from P
fE00=DfE00 = 1 indicates that turbulent statistics are rapidly

changing with respect to the mean density �eld. In the early-time growth stage

(� < 0:5), the production-to-dissipation ratio exhibits a large dynamic range. As the

growth rate of the initial perturbations increases, P fE00=DfE00 continues to rise until a
peak P fE00=DfE00 � 5 is reached at � � 0:25. The peak P fE00=DfE00 corresponds with the
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nonlinear transition time, where secondary vortices begin to form in between rising

and falling structures. With the onset of nonlinear dynamics comes the bifurcation

of the pressure transport p0w00. Also, this represents the earliest time in which phe-

nomenological turbulence concepts can be appropriately applied to the mixing layer,

albeit in the low Reynolds number limit. After the onset of the transition at � = 0:25,

the mixing layer begins to relax to the asymptotic state P fE00=DfE00 � 2:2. This process
occurs more rapidly until � � 0:5, after which turbulent statistics begin to change

more slowly.

3.6.5 Turbulent kinetic energy dissipation rate transport

To construct turbulent viscosity models, one other quantity in combination with fE 00
is required. In this work, the transport equation for the turbulent kinetic energy

dissipation rate e�00 is examined. Pro�les of e�00 are shown in �gure 3.52. While the
Favre-averaged framework is adopted here, the complete Favre-averaged e�00 transport
equation contains many complicated terms, and thus, the budget of the turbulent

kinetic energy dissipation rate transport equation is evaluated instead, where

�0 = �

�
@u0i
@xj

�2
: (3.61)

Pro�les of the incompressible dissipation rate �0 and the general dissipation rate

e�00 = 1

��
�00ij
@u00i
@xj

(3.62)

are shown in �gure 3.52 at di¤erent times. It was observed in the DNS that the

solenoidal and general formulations show similar pro�les, as expected for small At-

wood number Rayleigh�Taylor mixing layers. Thus, the resulting budgets and analy-

sis of the Reynolds-averaged transport equation should be similar for incompressible,

small Atwood number mixing layers.
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Figure 3.52 Pro�les of the turbulent kinetic energy dissipation rate �0 (black) and e�00
(grey) across the Rayleigh�Taylor mixing layer at various times.

The complete, unclosed transport equation for �0 (Wilcox 2006; Jakirlíc & Han-

jalíc 2002), generalized to include a buoyancy production term is

��
D�0

Dt
= P �

0
b + P

�0
s + P

�0
t + P

�0
c + T

�0 �D�0 ; (3.63)

where

P �
0
b = 2 �� gi

@u0i
@xj

@�0

@xj
; (3.64a)

P �
0
s = �2 ��

 
@u0i
@xk

@u0j
@xk

+
@u0k
@xi

@u0k
@xj

!
@�ui
@xj

; (3.64b)

P �
0
t = �2 �� @u

0
i

@xk

@u0i
@xm

@u0k
@xm

; (3.64c)

P �
0
c = ���u0k

@u0i
@xm

@2�ui
@xk@xm

; (3.64d)

T �
0
=

@

@xj

 
��
@�0

@xj
� �� u0j �0 � 2 ��

@p0

@xm

@u0j
@xm

!
; (3.64e)

D�0 = �2 �� ��2
�

@u0i
@xk@xm

�2
: (3.64f)
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The four production mechanisms of �0 are given by the buoyancy production P �0b ,

shear production P �0s , turbulent production P
�0
t , and mean velocity curvature produc-

tion P �0c . Analogous to the fE 00 transport equation, the conservative transport and
turbulent destruction of �0 are given by T �0 and D�0, respectively. Unlike the budgets

of fE 00 in § 3.6.4 which have been reported for Rayleigh�Taylor mixing layers (Ris-
torcelli & Clark 2004; Mellado et al. 2005), the budgets of the �0 transport equation

shown in �gures 3.54�3.59 are novel for Rayleigh�Taylor �ows.

Figure 3.53 shows pro�les of the dominant transport terms from the �0 equation

across the mixing layer at various times. Similar to the fE 00 transport equation, the
buoyancy production term remains positive-de�nite and the viscous destruction term

remains negative-de�nite. In addition to the buoyancy forcing, an additional turbu-

lent production term P �0t exists and becomes the dominant production mechanism at

late time. The turbulent transport of �0 exhibits a structure similar to the transport

of fE 00, where �0 is transported away from the centerplane to the edges of the mixing

layer.

Similar to the production of turbulent kinetic energy, �0 may be created by both

buoyancy forces and mean velocity gradients. However, two additional production

mechanisms exist which do not parallel the transport equation of fE 00. The dissipation
rate �0 may be produced by turbulent �uctuations alone, free of mean �eld in�uences,

and by a curvature term which is proportional to the second derivative of the mean

velocity �eld. However, as noted in § 3.6.2, the mean velocity pro�les are negligible

and so is the curvature production P �0c . Pro�les of each production mechanism are

shown in �gure 3.54. Similar to the shear production of fE 00, P �0s negligibly contributes
to the overall production of �0. The buoyancy production dominates at early times,

but begins to diminish in magnitude at later times. The turbulent production term

remains nearly negligible until � > 0:5, when the mixing layer begins to transition
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Figure 3.53 Pro�les of the dominant terms in the turbulent kinetic energy dissipa-

tion rate transport equation across the Rayleigh�Taylor mixing layer at

� = 0:21, 0:50, 1:01, and 1:52 (left-to-right, top-to-bottom).
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Figure 3.54 Pro�les of the production terms P �0b , P
�0
s , P

�0
t , and P

�0
c in the turbulent

kinetic energy dissipation rate transport equation across the Rayleigh�

Taylor mixing layer at various times.
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Figure 3.55 Pro�les of the transport term T �
0 in the turbulent kinetic energy dissipa-

tion rate transport equation across the Rayleigh�Taylor mixing layer at

various times.

into a fully three-dimensional mixing layer. By � = 1, P �0t becomes the dominant

production mechanism.

The conservative transport of �0, given by T �0, occurs in a similar manner to

the transport of fE 00: �0 is transported away from the turbulent centerplane of the

Rayleigh�Taylor mixing layer in an approximately down-gradient manner. The tur-

bulent transport term T �0, shown in �gure 3.55, can be subdivided into contributions

from three di¤erent physical mechanisms, where

F �
0
d = ��� @�

0

@z
; (3.65)

F �
0
t = w0 �0 ; (3.66)

F �
0
p = 2 ��

@p0

@xm

@w0

@xm
(3.67)

are the �ux components due to molecular di¤usion, turbulent transport, and pressure

transport. The early-time (� � 0:3) pro�les of each �ux are shown in �gure 3.56, and
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the late-time (� � 0:4) pro�les are shown in �gure 3.57. In the early-time pro�les,

the �ux of �0 due to molecular di¤usion remains non-negligible. Again, as Reh ! 0,

the turbulent �ux is either negligible or of the same order of magnitude as the other

�uxes. At later times, as shown in �gure 3.57, the turbulent �ux of �0 becomes the

sole dominant �ux contributing to T �0.

The pressure transport at early times compliments the turbulent �ux, transport-

ing �0 away from the centerplane. However, a similar bifurcation is seen in the pressure

transport of �0 as seen in the pressure transport of fE 00: F �0p opposes the down-gradient
�ux of �0 within the core of the Rayleigh�Taylor mixing layer after � = 0:5. Unlike

the pressure transport of fE 00, the overall contribution of F �0p to T �0 is relatively small,
especially at late time. Additional complicating physics, such as the transport of �0

beyond the edges of the mixing layer as seen in F fE00
p , was not observed in the DNS.

Due to the minimal impact of F �0p , especially at late time, it may not be critical for

turbulent transport models to capture the in�uence of the �uctuating pressure �eld

on �0.

Finally, pro�les of the viscous destruction of �0 are shown in �gure 3.58. Similar

to the production pro�les shown in �gure 3.54, the viscous destruction of �0 occurs

primarily within the turbulent core of the mixing layer and only becomes signi�cant

when nonlinear, three-dimensional, turbulent �uctuations begin to form after � � 0:5.

The total contributions of the dominant production and viscous destruction terms

were calculated by integrating each pro�le over the entire domain. The evolution of

the production and destruction integrals are shown in �gure 3.59. As noted earlier,

the shear production is negligible. Buoyancy production dominates at early times

(� < 1), and while non-negligible, becomes less important as the Reynolds number

increases. Both the turbulent production and destruction terms are small until the

mixing layer transitions into a nonlinear, three-dimensional phase at � � 0:5. The
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Figure 3.56 Early-time pro�les of the turbulent kinetic energy �ux terms in the trans-

port term T �
0 across the Rayleigh�Taylor mixing layer at � = 0:034, 0:10,

0:21, and 0:29 (left-to-right, top-to-bottom).
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Figure 3.57 Intermediate- and late-time pro�les of the turbulent kinetic energy �ux

terms in the transport term T �
0 across the Rayleigh�Taylor mixing layer

at � = 0:41, 0:52, 1:01, and 1:52 (left-to-right, top-to-bottom).
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Figure 3.58 Pro�les of the viscous dissipation term D�0 in the turbulent kinetic en-

ergy dissipation rate transport equation across the Rayleigh�Taylor mix-

ing layer at various times.

production-to-dissipation ratios for the entire mixing layer and on the centerplane

are also shown in �gure 3.59. Again, the turbulent �ow �eld is highly non-stationary

before � � 0:7; however, P �0=D�0 approaches unity after. This late-time value of

P �
0
=D�0 � 1 is expected in the high Reynolds number limit, as the spectral cascade

rate of turbulent kinetic energy becomes equivalent to the turbulent kinetic energy

dissipation rate.

3.6.6 Mass fraction variance transport

In § 3.6.4 and 3.6.5, the turbulent transport dynamics of the mixing layer were inves-

tigated by evaluating the budgets of the fE 00 and �0 transport equations. To properly
model the mixing dynamics, additional correlations must also be included, such as

the �uctuating density variance �02. In scalar mixing and reacting �ows, a dimension-

less approach is taken where the mass fraction variance or volume fraction variance
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Figure 3.59 Evolution of buoyancy, shear, turbulent production, and dissipation inte-

grals (left). Evolution of production-to-dissipation ratios (right).

transport equation are advanced (Veynante & Vervisch 2002). To retain the most

general approach suitable for both incompressible and compressible �ows, the budget

of the averaged mass fraction variance transport is examined. The di¤erence between

f 021 and
gm002
1 remains under 0:3% for the small Atwood number considered here. Thus,

the di¤erence between the transport budgets of f 021 and
gm002
1 should be negligible. The

exact relationship between gm002
1 and f 021 does not formally exist without some degree

of approximation. Using the relationship between the mass and volume fractions, it is

possible to write the relationship between the mass fraction variance and �uctuating

volume fraction-speci�c volume correlation,

gm002
1 =

�21
��

"
�f 21

�
1

�

�
+ 2 �f1

�
f 01
�

�
+

�
f 021
�

�
�
�f 21
��

#

� �21
��

�
f 021
�

�
+ higher order terms .

Thus, without introducing approximations for the speci�c volume term under the

averaging operator as done in some models (Besnard et al. 1992), the mass fraction

variance is not linearly related to the volume fraction variance.
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Figure 3.60 Pro�les of the Favre-averaged mass fraction variance gm002
1 across the

Rayleigh�Taylor mixing layer at various times.

Pro�les of gm002
1 are shown in �gure 3.60. The mass fraction variance transport

equation is (Veynante & Vervisch 2002)

��
Dgm002

1

Dt
= P

gm002
1 + T

gm002
1 �Dgm002

1 ; (3.68)

where

P
gm002
1 = �2 �� û00j m00

1

@ ~m1

@xj
; (3.69a)

T
gm002
1 =

@

@xj

 
�D

@m002
1

@xj
� �� û00j m002

1

!
; (3.69b)

D
gm002
1 = �2 ��f�00 = �2 �D�@m00

1

@xj

�2
: (3.69c)

The turbulent production and destruction of gm002
1 are given by P

gm002
1 and D

gm002
1 , re-

spectively. The conservative transport of gm002
1 across the mixing layer is given by

T
gm002
1 . Pro�les of the terms in the mass fraction variance transport equation across

the mixing layer at various times are shown in �gure 3.61, where a similar production,
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Figure 3.61 Pro�les of the terms in the mass fraction variance transport equation

across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 3.62 Pro�les of the production term P
gm002
1 in the mass fraction variance trans-

port equation across the Rayleigh�Taylor mixing layer at various times.

transport, and dissipation structure is observed as in the fE 00 and �0 transport equa-
tions. The late-time oscillations in the production and transport terms are remnants

of the gradient of the mean mass fraction �eld.

Pro�les of P
gm002
1 , which is physically related to the entrainment of unmixed �uid

into the mixing layer, are shown in �gure 3.62. At early times, before the onset of

three-dimensional, nonlinear dynamics, the mixing layer directly entrains pockets of

pure �uid with little mixing, and therefore P
gm002
1 is large at � � 0:5. This can also be

seen in the evolution of the mass fraction-velocity correlation coe¢ cient

R
ŵ00m00

1

=
ŵ00m00

1pgw002qgm002
1

(3.70)

shown in �gure 3.63. Combining the large �ux of �uid into the mixing layer (where

R
ŵ00m00

1

approaches unity at � � 0:2) and the large gradient of ~m1 at early times, the

total production of gm002
1 is relatively large at � � 0:5. At later times, the density-

velocity correlation relaxes to R
ŵ00m00

1

� 0:75 and the gradient of ~m1 scales as h�1.
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Figure 3.63 Evolution of the density-velocity correlation coe¢ cient R
ŵ00m00

1

on the cen-

terplane of the Rayleigh�Taylor mixing layer.

Accordingly, the production of gm002
1 decreases with time.

The conservative �ux of gm002
1 is similar to the �ux of fE 00 and �0, where gm002

1 is

transferred away from the centerplane of the mixing layer in an approximately down-

gradient manner. Unlike fE 00 and �0, which are unbounded quantities, gm002
1 is bounded

by [0; 1=4]. Thus the magnitude of the transport term T
gm002
1 decreases with time. The

individual �ux components can be examined, where

F
gm002
1

d = ��D @m
002
1

@z
� ��� �D @

gm002
1

@z
; (3.71)

F
gm002
1

t = �� ŵ00m002
1 : (3.72)

are the di¤usive and turbulent �uxes of gm002
1 . Figure 3.65 shows pro�les of each

�ux component at various times. For all times examined, the turbulent �ux of gm002
1

dominates the transport of gm002
1 to the exterior edges of the Rayleigh�Taylor mixing

layer. As Sc > 1, the di¤usive �ux of gm002
1 is relatively small at all times, even at

� � 0.
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Figure 3.64 Pro�les of the transport term T
gm002
1 in the mass fraction variance transport

equation across the mixing layer at various times.

The production of gm002
1 represents the entrainment of unmixed �uid into the

mixing layer, which increases the magnitude of gm002
1 . Conversely, the destruction

of gm002
1 , given by f�00, represents the molecular di¤usion of each �uid species into one

another, homogenizing the �uid within the mixing layer and decreasing the magnitude

of gm002
1 . Pro�les of the dissipation term D

gm002
1 are shown in �gure 3.66. Analogous

to DfE00, the dissipation of gm002
1 primarily occurs within the turbulent core of the

mixing layer. This is expected as fE 00 is also peaked in the core, where the turbulent
�uctuations increase the local strain rates at the �uid interface, which increases the

magnitude of the local mass fraction gradients.

The production of gm002
1 is driven by the expansion of the mixing layer and en-

trainment of unmixed �uid. The destruction of gm002
1 depends upon the generation of

su¢ cient turbulent �uctuations to generate the necessary surface area required for

molecular di¤usion to mix the constituent �uids. Figure 3.67 shows the evolution

of P
gm002
1 and D

gm002
1 integrated over the numerical domain. At early times (� < 0:4),
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Figure 3.65 Pro�les of the mean mass fraction �ux terms in the transport term T
gm002
1

across the Rayleigh�Taylor mixing layer at � = 0:034, 0:21, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 3.66 Pro�les of the molecular dissipation term D
gm002
1 in the mass fraction vari-

ance transport equation across the Rayleigh�Taylor mixing layer at various

times.
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Figure 3.67 Evolution of production and dissipation integrals (left). Evolution of pro-

duction-to-dissipation ratios (right).
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the total production of gm002
1 is an order of magnitude larger than D

gm002
1 . As three-

dimensional, turbulent structures within the mixing layer develop (� > 0:7), the ratio

of P
gm002
1 =D

gm002
1 approaches unity. A late-time ratio P

gm002
1 =D

gm002
1 = 1:25 is observed

in the DNS, which is expected to remain greater than unity due to the continuous

entrainment of unmixed �uid into the mixing layer.

3.6.7 Mass fraction variance dissipation rate transport

Similar to the dissipation rate of fE 00, it is possible to derive a transport equation for
the dissipation rate of gm002

1 ,

f�00 = �D
^�@m00

1

@xj

�2
:

Pro�les of f�00 are shown in �gure 3.68. The transport equation of f�00 may be written
as (Mantel & Borghi 1994; Veynante & Vervisch 2002; Mura & Borghi 2003; Mura,

Robin & Champion 2007)

��
Df�00
Dt

= P
f�00
s + P

f�00
m + P

f�00
t + P

f�00
c + T

f�00 �Df�00 ; (3.73)

where

P
f�00
m = �2 �D @m

00
1

@xi

@u00j
@xi

@ em1

@xj
; (3.74a)

P
f�00
s = �2 �D @m

00
1

@xj

@m00
1

@xi

@euj
@xi

; (3.74b)

P
f�00
t = �2 �D @m

00
1

@xj

@m00
1

@xi

@u00j
@xi

; (3.74c)

P
f�00
c = �2 �D u00j

@m00
1

@xi

@2 em1

@xi@xj
; (3.74d)

T
f�00 = � @

@xj

�
�D

@�00

@xj
� ��]u00j �00

�
; (3.74e)

D
f�00 = 2 �D2

�
@2m00

1

@xi@xj

�2
(3.74f)
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Figure 3.68 Pro�les of the mass fraction variance dissipation rate f�00 across the
Rayleigh�Taylor mixing layer at various times.

are the production, transport, and destruction terms. The four production mecha-

nisms of f�00 are given by the mean gradient production P f�00
m , shear production P

f�00
s ,

turbulent production P
f�00
t , and mean curvature production P

f�00
c . The conservative

transport and turbulent destruction of f�00 are given by T f�00 and Df�00 , respectively.
Pro�les of the terms in the mass fraction variance dissipation rate transport

equation across the mixing layer are shown in �gure 3.69. Similar to the �0 transport

equation, the buoyancy and turbulent production terms are the primary production

mechanisms of f�00 within the core of the mixing layer. The turbulent destruction off�00 is also negative-de�nite across the mixing layer. The conservative transport off�00 retains the expected pro�le, where f�00 is transported away from the centerplane;

however, the relative role of turbulent transport in the dynamics off�00 is smaller than
observed in the other transport equations examined.

Figure 3.70 shows pro�les of the mean gradient, shear, turbulent, and curvature

production terms in (3.73). Similar to all transport budgets examined here, the shear
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Figure 3.69 Pro�les of the dominant terms in the mass fraction variance dissipa-

tion rate transport equation across the Rayleigh�Taylor mixing layer at

� = 0:21, 0:50, 1:01, and 1:52 (left-to-right, top-to-bottom).
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Figure 3.70 Pro�les of the production terms Pf�00
m , P

f�00
s , P

f�00
t , and P

f�00
c in the mass frac-

tion variance dissipation rate transport equation across the Rayleigh�Tay-

lor mixing layer at various times.
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Figure 3.71 Pro�les of the transport term Tf�00 in the mass fraction variance dissipation
rate transport equation across the Rayleigh�Taylor mixing layer at various

times.

production of f�00 is negligible, compared with the other production mechanisms. The
curvature production Pf�00

c is larger in magnitude at early times when the layer width

is small and @2 ~m1=@z
2 is large at jz=hj � 0:5. Despite the large value of Pf�00

c at

early times, it is still negligible when compared with the mean gradient production

term P
f�00
m at all times. The mean gradient production decreases in time; however,

the total contribution to the production of f�00 remains approximately constant as
shown in �gure 3.74. This is the expected Re0 scaling, as predicted by Mura and

Borghi (2003). Beyond � = 0:3, the turbulent production term P
f�00
t becomes the

dominant production mechanism. Fluctuating velocity gradients strain the existing

density gradients, thereby increasing the total surface area available for mass di¤usion.

These combined processes result in an increased rate of molecular mixing.

The conservative transport off�00 is shown in �gure 3.71. Similar to the transport
terms of fE 00, �0, andgm002

1 , f�00 is transferred away from the turbulent core of the mixing
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layer in an approximately down-gradient manner. The individual �ux components of

T
f�00 can be broken down into their di¤usive and turbulent �uxes,

F
f�00
d = ��D @�

00

@z
� ��� �D @

f�00
@z

; (3.75)

F
f�00
t = �� ŵ00 �00 : (3.76)

Pro�les of each �ux are shown in �gure 3.72: at all times examined, the turbulent

�ux dominates. As Sc > 1, the di¤usive �uxes of both gm002
1 and f�00 are negligible,

even at the earliest times.

The destruction of f�00 by molecular di¤usion, given by Df�00, remains small until
the mixing layer begins to develop signi�cant velocity �uctuations at � � 0:3. Pro�les

of Df�00 are shown in �gure 3.73. As the mixing layer develops, Pf�00
m decreases in

magnitude, while P
f�00
t and Df�00 increase. The total contribution of the production

and destruction terms is shown in �gure 3.74. For all times examined, P
f�00
t � D

f�00.
Similar to the turbulent kinetic energy dissipation rate �0, the total production of f�00
is greater than the destruction of f�00 until � � 0:7, after which the production-to-

dissipation ratio remains approximately unity.
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Figure 3.72 Pro�les of the mean mass fraction �ux terms in the transport term T
f�00

across the Rayleigh�Taylor mixing layer at � = 0:034, 0:21, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 3.73 Pro�les of the molecular dissipation term D
f�00 in the mass fraction vari-

ance dissipation rate transport equation across the Rayleigh�Taylor mix-

ing layer at various times.
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Figure 3.74 Evolution of mean gradient, shear and turbulent production, and dissipa-

tion integrals (left). Evolution of production-to-dissipation ratios (right).
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4. REYNOLDS-AVERAGED NAVIER�STOKES MODEL FOR

RAYLEIGH�TAYLOR TURBULENT MIXING

4.1 Overview of Goals and Methodology

The modeling of variable-density turbulent mixing by means of eddy viscosity-type

turbulence models, such as the standard two-equation E 0-�0 model (Jones & Laun-

der 1972), requires that the physics embodied in the closures accurately re�ect the

complex dynamics of the �ow. In this work, fundamental assumptions of turbulent

viscosity, gradient-di¤usion, and scale-similarity closures are critically examined in

the context of Rayleigh�Taylor turbulent mixing. First, an overview of turbulent

viscosity models, gradient-di¤usion, and scale-similarity approximations is presented.

Next, in the spirit of Chen et al. (1991), budgets of unclosed terms in the mean

and turbulent transport equations are compared with their respective closure models

using the DNS data. From such comparisons, the applicability and accuracy of these

closure models are assessed, and the model parameters providing the best agreement

with the DNS are presented. Finally, the model parameters are tested by numeri-

cally implementing a one-dimensional, transient three- and four-equation turbulence

and mixing model. The calibrated and validated model is then used to predict mea-

surements of growth and mixing for the Sc = 7 experiment and DNS. Finally, the

Sc � 103 experiment and the DNS are used to determine the necessary calibration

required to accurately model the high Schmidt number experiments discussed in § 2.

4.2 Overview of Turbulent Viscosity-Based Reynolds-Averaged Turbulence Models

4.2.1 Eddy viscosity, gradient-di¤usion, and scale-similarity hypotheses

First-order, single-point closure models of turbulent transport and mixing require ex-

pressions for various unclosed correlations such as the Reynolds stress tensor]u00i u00j and
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turbulent scalar �uxes ]u00i �
00. Eddy viscosity closure formulations used in Reynolds-

averaged Navier�Stokes (RANS) type turbulence models make use of the concept that

a turbulent �ow �eld will di¤use mass, momentum, and energy at a greater rate than

by molecular processes alone. Accordingly, this enhanced di¤usivity is expressed in

terms of an additional turbulent stress. Boussinesq (1877) introduced the turbulent

viscosity concept, drawing on an analogy from the kinetic theory of gases, by relating

the deviatoric part of the Reynolds stress tensor to the mean strain-rate tensor by

]u00i u00j �
2

3
fE 00 �ij � �2 �t�eSij � 1

3

@~uk
@xk

�ij

�
; (4.1)

where �t = �t=�� is a turbulent viscosity and

eSij = 1

2

�
@~ui
@xj

+
@~uj
@xi

�
(4.2)

is the mean strain-rate tensor. Dimensionally, the turbulent viscosity is the product of

a characteristic turbulent velocity and a turbulent length scale, �t / u�l�. Typically,

the turbulent kinetic energy is used to determine the velocity scale u� =
p
2fE 00 and,

thus, one other turbulent quantity is required for the length scale l�. While many

choices exist for l�, the turbulent kinetic energy dissipation rate e�00 is often used to
dimensionally construct

�t = C�

�fE 00�2e�00 ; (4.3)

where C� is a dimensionless constant of proportionality (Jones & Launder 1972; Pope

2000; Wilcox 2006).

In addition to the eddy viscosity approximation for the Reynolds stress tensor,

the turbulent viscosity is also used to de�ne the gradient-di¤usion hypothesis. Tur-

bulent �uxes (i.e. velocity-scalar correlations) that appear in the averaged transport

equations (see § 3.6) are not known a priori and must be modeled. The gradient-
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di¤usion hypothesis is phenomenologically analogous to Fourier�s law of heat conduc-

tion, in that regions of high values of the mean scalar ~� will di¤use in a �down-gradient�

manner proportional to the intensity of turbulent �uctuations

]u00i �
00 = � �t

��

@~�

@xi
; (4.4)

where �� is the dimensionless turbulent Schmidt number corresponding to ~�.

Additional closures are required for more complicated terms that appear in the

�0, gm002
1 , and f�00 transport equations which are not implied directly by the turbu-

lent viscosity or gradient-di¤usion hypotheses, such as the buoyancy production and

dissipation terms in the �0 transport equation

P �
0
b = 2 �� gi

@u0i
@xj

@�0

@xj
; (4.5)

D�0 = �2 �� ��2
�

@2u0i
@xk@xm

�2
: (4.6)

While the gradient-di¤usion hypothesis relates the �uctuating velocity-density cor-

relation to known mean �eld quantities, no analogous hypothesis exists for relating

the correlation in (4.5) or higher-order derivative correlations in (4.6). Accordingly,

phenomenological similarities between the behaviors of the transport equations of fE 00
and �0 are made to construct closure hypotheses. For such phenomenological scale-

similarity closures, a dimensionless constant of proportionality is used to relate the

closures, e.g. P �0b = C�0
�
�0=fE 00�P fE00

b .

4.2.2 Assumptions and limitations of eddy viscosity-based models

Full-physics simulations of inertial con�nement fusion capsule implosions require large

computational resources, even when considering two-dimensional problems (Schurtz

et al. 2000; Atzeni et al. 2005). Thus, it is advantageous to employ computationally-
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economical hydrodynamics and mixing models. For this reason, engineering eddy-

viscosity models similar to the standard E 0-�0 model (Jones & Launder 1972) are

examined here. However, several intrinsic assumptions embodied in eddy viscosity

models are known to directly con�ict with the dynamics of Rayleigh�Taylor driven

mixing, several of which are outlined next.

First, in the standard Boussinesq approximation of the Reynolds stress tensor, it

is assumed that all turbulent �uctuations are isotropic, i.e. fu002 = fv002 =gw002. While
this assumption is violated by most turbulent �ows, even in grid-generated turbulence

often used to approximate decaying homogeneous isotropic turbulence (Ling & Huang

1970), this assumption clearly fails in Rayleigh�Taylor driven mixing where turbulent

�uctuations and transport occurs primarily in the coordinate direction aligned with

the gravitational forcing (see �gure 3.19). A full account of the shortcomings of

the Boussinesq eddy viscosity approximation with respect to Rayleigh�Taylor driven

mixing is provided by Ristorcelli et al. (2005). However, it will be shown in § 4.4�

4.7 that more advanced models of the Reynolds stress tensor may not be necessary

to capture the fundamental turbulent transport and mixing dynamics for the small

Atwood number �ows considered here.

Another detracting property of eddy viscosity models is that both the Boussi-

nesq approximation and the gradient-di¤usion hypothesis rely upon a single scalar

to relate vector quantities. In doing so, turbulent �uxes are assumed to be aligned

with their respective mean �eld gradients. However, this assumption is not always

correct (Deardor¤ 1966, 1972; Gerz & Schumann 1996; Chassaing 2001; Chassaing et

al. 2002; Schmitt et al. 2003), and a more rigorous treatment of the gradient-di¤usion

hypothesis is required to achieve greater physical accuracy. One means of achieving
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this is through the generalized gradient-di¤usion hypothesis (Batchelor 1949),

]u00i �
00 = �ij

@e�
@xj

; (4.7)

where �ij is the turbulent di¤usivity tensor. Younis et al. (2005) demonstrated that

�ij is functionally-dependent on no less than ten terms for any general, incompressible,

non-buoyant turbulent �ow with a passive scalar. Many more terms are needed

for buoyancy-driven �ows with active scalars, compressible �ows, or reacting �ows.

However, phenomenologically-simpler approaches have been proposed, most notably

by Daly and Harlow (1970), where the turbulent di¤usivity tensor was constructed

only from the Reynolds stress tensor

]u00i �
00 =

fE 00
�0�
e�00 ]u00i u00j @~�@xj ; (4.8)

where �0� is a turbulent Schmidt number di¤erent from �� de�ned above. Note

that if the Reynolds stress tensor is modeled isotropically by � ij = (2=3) �fE 00�ij and
�0� = (2=3)��, then (4.7) exactly reduces to (4.4).

Rayleigh�Taylor driven mixing further complicates the hydrodynamics modeling,

in that shear production is no longer the sole source of turbulent kinetic energy. In-

stead, buoyancy production, which is proportional to the turbulent mass �ux, becomes

the most important production mechanism. This term is often modeled algebraically

by the gradient-di¤usion approximation, where the turbulent Schmidt number �� has

a signi�cant impact on the accurate prediction of the production rate of fE 00. As noted
by Chassaing et al. (2002), the scalar turbulent �uxes and their respective turbulent

Schmidt numbers are strong functions of the particular �ow being studied. For this

reason, the predictive capability of gradient-di¤usion closures for Rayleigh�Taylor

driven mixing may be limited.

Another drawback of eddy viscosity models is the requirement that the �ow be
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weakly in a state of equilibrium, i.e. the production-to-dissipation ratios remain

close to unity. The failure of RANS-type models in �ows with large excursions from

P
fE00=DfE00 � 1 has been well documented (Pope 2000; Jakirlíc & Hanjalíc 2002; Ris-

torcelli & Clark 2004). As shown in § 3.6, the production-to-dissipation ratios for the

transport equations of interest have values far from unity before � � 0:7. This re-

quirement is due, in part, to the large Reynolds number assumption used to formulate

scale-similarity closures, where there is a su¢ cient separation between the produc-

tion and dissipation scales to facilitate the existence of an inertial cascade range of

scales. However, Rayleigh�Taylor driven �ows are initially-quiescent and transition

through a number of stages before satisfying the high Reynolds number requirements

of scale-similarity closures. Thus, at low and moderate Reynolds numbers, the model

parameters are expected to exhibit some form of Reynolds number dependence until

late-time asymptotic values are approached.

For the reasons above, the application of eddy viscosity models to Rayleigh�

Taylor driven mixing may be problematic, and a complete analysis of the physics

embodied in eddy viscosity, gradient-di¤usion, and scale-similarity based closures is

required to justify the application of such models. In the following sections, the

closure models are tested by an a priori comparison of the pro�les predicted by the

models with the exact, unclosed pro�les calculated in § 3.6. The model calibrations

are then shown to predict the experimentally-measured degree of molecular mixing

from the Sc = 7 and Sc � 103 experiments in § 2.

4.3 Determination of Model Parameters

In this section, budgets of the closed form of the transport equations examined in

§ 3.6 are presented to quantify the validity and accuracy of turbulent viscosity-based
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closures for Rayleigh�Taylor turbulent mixing. This is important, as noted in § 4.2.2,

where various phenomenological arguments used to formulate RANS-type models

con�ict with the �ow physics that occur in buoyancy-driven mixing. In addition to

justifying the predictive capabilities of the turbulent mixing models, it is possible

to obtain a calibration of all model coe¢ cients from the direct comparison of the

unclosed and closed budgets. In doing so, a measure of the low-Reynolds number

applicability of such models becomes evident. While the calibrated coe¢ cients for

canonical, shear-driven �ows have been examined in great detail (Jones & Launder

1974; Launder & Sharma 1974; Orszag et al. 1996; Pope 2000; Wilcox 2006), far less

attention has been given to a rigorous calibration of RANS-type models for Rayleigh�

Taylor mixing (Spitz & Haas 1991; Besnard et al. 1992; Snider & Andrews 1996;

Grégoire & Sou­ and 1999; Dimonte & Tipton 2006). A brief review of the commonly

used values for the model parameters used in fE 00, e�00, and gm002
1 transport models is

given in table 4.1.

Typically, for Rayleigh�Taylor mixing applications, the model parameters used

were obtained from an a posteriori analysis of the model predictions compared with

a limited selection of experimental data. In the work presented here, a di¤erent

approach is used. Terms from the unclosed transport equation budgets will be com-

pared a priori with their respective model closures (Chen et al. 1991; Pruett &

Adams 2000). The closure model for each unclosed term was constructed from the

quantities that would otherwise be available in a model (e.g. ��, fE 00, e�00, etc.) from
the DNS, where the calibrated coe¢ cient is given by the modeled pro�le that best

matches the unclosed pro�le.
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Parameter Term Canonical Values Rayleigh�Taylor

C� Turbulent viscosity 0:0845; 0:09 0:09

��; �m Turbulent mass �ux 0:5�0:9 0:6�1:48

�k Turbulent �ux of fE 00 0:72; 1:0 0:87�1:0

�� Turbulent �ux of e�00 0:72; 1:3 1:3

�m2 Turbulent �ux of gm002
1 0:7; 1:0 �

Cpu Pressure transport of fE 00 0:2 �

C�0 Buoyancy production of e�00 � 0:815�0:95

C�1 Shear production of e�00 1:44 1:44�1:47

C�2 Turbulent dissipation of e�00 1:68�1:92 1:9�1:92

Cm2 Turbulent dissipation of gm002
1 1 1:5

Table 4.1 Model parameters for �standard�fE 00, e�00, gm002
1 transport models (Jones &

Launder 1972; Launder & Sharma 1974; Lumley 1978; Orszag et al. 1996;

Pope 2000; Chassaing et al. 2002; Liu & Fox 2006; Wilcox 2006; Brinkman

et al. 2006) and as used in Rayleigh�Taylor mixing (Spitz & Haas 1991;

Snider & Andrews 1996; Grégoire & Sou­ and 1999).
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4.3.1 Quanti�cation of calibration quality

Using the DNS data, the model parameters can be obtained through a direct compari-

son of the transport equation budgets presented in § 3.6 and their respective closures.

In doing so, the optimum performance of the predictive closures can be achieved.

Given the exact DNS pro�le E(z; t) and the modeled pro�le M(z; t;C�) for a given

model parameter C�, the calibrated parameter is given by the L2-norm minimization

of the di¤erence between E(z; t) and M(z; t;C�). The L2 norm is

L2 (t;C�) =

Z hb

hs

[E(z; t)�M(z; t;C�)]2 dz : (4.9)

This method of calibrating model coe¢ cients was found to be more robust than

algebraically solving for C�, which can produce singularities in regions where E(z; t)

or M(z; t;C�) change sign.

Qualitative comparisons are carried out by plotting an unclosed term from the

DNS against its respective closure model. A more quantitative assessment is given

by calculating the correlation between the model and the DNS pro�le. In the spirit

of Pruett & Adams (2000), the model correlation coe¢ cient

r(t;C�) =

R hb
hs

�
E(z; t)� �E(t)

��
M(z; t;C�)� �M(t;C�)

�
dzqR hb

hs

�
E(z; t)� �E(t)

�2
dz
R hb
hs

�
M(z; t;C�)� �M(t;C�)

�2
dz

(4.10)

may be de�ned, where

E(t) =
1

h(t)

Z hb

hs

E(z; t) dz ; M(t;C�) =
1

h(t)

Z hb

hs

M(z; t;C�) dz (4.11)

are the averages of E(z; t) andM(z; t;C�) over the mixing layer width. The coe¢ cient

r = 1 for a perfect one-to-one correlation between the DNS data and the model

prediction, r = 0 if there is no correlation, and r = �1 if the model and DNS are

perfectly anti-correlated. However, the correlation coe¢ cient only determines how



189

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 4.1 Pro�les of the turbulent viscosity �t across the Rayleigh�Taylor mixing

layer from the DNS at various times. The physical viscosity � � 0:01 is

indicated by a dashed line.

well the model predictions are correlated with the DNS data, but does not provide

information concerning how close the model predictions are in magnitude to the DNS

data. Thus, a ratio of magnitude of the model to the DNS data is formulated as

a(t;C�) =

vuutR hbhs M(z; t;C�)2 dzR hb
hs
E(z; t)2 dz

: (4.12)

If a > 1, the model over-predicts the magnitude of the DNS data and if a < 1, the

model under-predicts the data.

4.3.2 Boussinesq Reynolds stress model

In shear-driven �ows, the ability of a model to capture the behavior of the Reynolds

stress tensor is crucial for accurately modeling the mean �ow dynamics. The Boussi-

nesq eddy viscosity formulation of the Reynolds stress tensor [see (4.1)] relates the

unknown velocity correlations to the known mean strain �eld eSij through a turbulent
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viscosity �t. Adopting the canonical value C� = 0:09, pro�les of �t from the DNS are

shown in �gure 4.1. While this algebraic model is phenomenologically simple, it has

been shown to be su¢ ciently accurate for a wide range of �ows. However, the Boussi-

nesq model of the Reynolds stress tensor does not perform as well for Rayleigh�Taylor

mixing due to the sustained anisotropy of the velocity �uctuations. Pro�les of the

diagonal components of]u00i u00j from the DNS and the Boussinesq values from (4.1) are

shown in �gures 4.2�4.4.

In �gures 4.2�4.4, the eddy viscosity model of the Reynolds stress predicts the

overall shape of the pro�les reasonably well; however, the magnitudes do not match.

The model under-predicts the vertical velocity �uctuations and over-predicts the ve-

locity �uctuations in the homogeneous directions. These qualitative observations can

be seen more clearly in the evolution of the correlation and magnitude parameters [see

(4.10) and (4.12)], shown in �gure 4.5. Beyond � � 0:2, r � 1 for the predictedgw002
pro�les. Similarly, r � 1 for the predicted fu002 and fv002 pro�les beyond � � 0:5. Thus,
the Boussinesq approximation models the shape of the diagonal Reynolds stress com-

ponents well once the mixing layer transitions into a nonlinear development stage, i.e.

� > 0:5 or Reh > 140. The evolution of the magnitude coe¢ cient in �gure 4.5 shows

the degree to which the Boussinesq model under- or over-predicts the total magnitude

of the velocity �uctuations. However, the Boussinesq representation of ]u00i u00j is not

expected to be valid for Rayleigh�Taylor mixing applications. Highly-accurate pre-

dictions of the Reynolds stress tensor anisotropy may not be a necessary component

of a su¢ ciently-accurate model of Rayleigh�Taylor mixing. Fundamentally, the mean

momentum transport equation and the shear production rates of fE 00 and �0 depend
upon an accurate model of � ij. However, as shown in § 3.6, these aspects of the �ow

physics were found to be negligible for Rayleigh�Taylor driven mixing.
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Figure 4.2 Pro�les of the unclosed velocity variance fu002 and its eddy viscosity closure
across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 4.3 Pro�les of the unclosed velocity variance fv002 and its eddy viscosity closure
across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 4.4 Pro�les of the unclosed velocity variancegw002 and its eddy viscosity closure
across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52
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Figure 4.5 Evolution of correlation and amplitude coe¢ cients for the Reynolds stress

closures shown in �gures 4.2�4.4.

4.3.3 Gradient-di¤usion closures

Perhaps more important than an accurate prediction of the Reynolds stress tensor

is the prediction of the turbulent �ux of mass, energy, and other quantities of inter-

est. The turbulent mass �ux controls both the spreading rate of the mixing layer

in the transport of ~m1 and the production rates of fE 00 and gm002
1 . Furthermore, the

conservative redistribution of transported quantities, such as fE 00, �0, gm002
1 , and f�00, is

not negligible and must be modeled by the gradient-di¤usion hypothesis. Qualitative

comparisons of the gradient-di¤usion models for the turbulent �uxes �� ŵ00m00
1, �� ŵ00E 00,

��w0�0, �� ŵ00m002
1 , and ��]w00�00 are shown in �gures 4.6�4.10. To minimize oscillations

in the mean �eld gradients from the DNS used to construct the closures, a locally-

weighted, linear, least-squares regression (Cleveland 1979; Cleveland & Devlin 1988)

was applied to a 51-point stencil to �lter the mean pro�les before calculating gradi-

ents. Also, as noted by Spitz and Haas (1991), the density-velocity correlation in the

turbulent mass �ux w00 = ��0w0=�� is not shown as it is equivalent to the velocity-mass

fraction correlation shown in �gure 4.6.
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Figure 4.6 Pro�les of the unclosed turbulent �ux �� ŵ00m00
1 and its gradient-di¤usion

closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01,

and 1:52 (left-to-right, top-to-bottom).



196

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­5

­4

­3

­2

­1

0

1

2

3

4

5 x 10 ­3

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

0.08

0.1

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6
­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

­0.6 ­0.4 ­0.2 0 0.2 0.4 0.6

­0.5

­0.4

­0.3

­0.2

­0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.7 Pro�les of the unclosed turbulent �ux �� ŵ00E 00 and its gradient-di¤usion

closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01,

and 1:52 (left-to-right, top-to-bottom).
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Figure 4.8 Pro�les of the unclosed turbulent �ux ��w0 �0 and its gradient-di¤usion clo-

sure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and

1:52 (left-to-right, top-to-bottom).
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1 and its gradient-di¤usion

closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and

1:52 (left-to-right, top-to-bottom).
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Figure 4.10 Pro�les of the unclosed turbulent �ux �� ŵ00 �00 and its gradient-di¤usion

closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01,

and 1:52 (left-to-right, top-to-bottom).
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The model pro�les in �gures 4.6�4.10 are plotted using the optimized turbulent

Schmidt number ��(Reh) at each instance in time, calculated by minimizing the L2-

norm di¤erence between the DNS and model pro�les. The evolution of the calibrated

turbulent Schmidt numbers is shown in �gure 4.11, and show some degree of variability

in time. This is expected as the mixing transitions between linear growth, transitional,

and turbulent regimes. To further illustrate this point, the evolution of the turbulent

Schmidt numbers are plotted as a function of the integral-scale Reynolds number in

�gure 4.12. At early times (� < 0:7 or Reh < 500), each �� exhibits variations,

as the production-to-dissipation ratios for each transport equation have yet to reach

late-time steady values. Once the mixing layer becomes transitional (Reh & 500),

the turbulent Schmidt numbers for the fE 00 and �0 transport equations relax to the
late-time values �� � 0:09, �k � 0:11, and �� � 0:15; however, each exhibits a slight

increase with Reynolds number. The turbulent Schmidt numbers for the scalar �eld

exhibit a greater dynamic range and are more sensitive to Reh. Both �m2 and ��

show a more signi�cant rise with Reh at late time (Reh > 1000). This may be due to

the fact that the degree of molecular mixing and statistical composition of the mixed

�uid have yet to reach steady-state values (see § 3.5).

All calibrated turbulent Schmidt numbers, which are at least weak functions of

Reh beyond the transitional threshold of Reh � 500, exhibit much lower values than

typically used to model shear-driven �ows. Furthermore, all applications of RANS-

type models to Rayleigh�Taylor mixing also have used larger turbulent Schmidt num-

bers. However, all of these cases have either cited other buoyancy-driven applications

(Snider & Andrews 1996) or used a trial-and-error approach for selecting each turbu-

lent Schmidt number (Besnard et al. 1992; Grégoire & Sou­ and 1999). The present

work is the �rst to directly and systematically obtain turbulent Schmidt numbers for a

Rayleigh�Taylor mixing layer from a DNS and determine the dependence of the model
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Figure 4.11 Evolution of calibrated turbulent Schmidt numbers as a function of di-

mensionless time.
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Figure 4.12 Evolution of calibrated turbulent Schmidt numbers as a function of inte-

gral-scale Reynolds number.
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Figure 4.13 Evolution of the model correlation and magnitude coe¢ cients for the tur-

bulent �ux terms in the fE 00 and e�00 transport equations.
parameters on the Reynolds number. At late-time (� & 1:2), the turbulent Schmidt

numbers ��, �m2, and �� exhibit an increasing trend. For �m2, this is most likely

due to the elevated degree of molecular mixing at late-time; however, it may also be

due to the increased relative uncertainty in measured statistics at late-time. For the

dissipative turbulent Schmidt numbers �� and ��, this rise is most likely due to the

relative decrease in turbulent transport of �0 and f�00 at late time, as shown in �gures
3.53 and 3.69; however, this may also be due to the increased relative uncertainty at

late-time.

To quantitatively assess the quality of the closures shown in �gures 4.6�4.10, the

model correlation and magnitude coe¢ cients are shown in �gures 4.13�4.14. Unlike

the Boussinesq model of the Reynolds stress tensor, the gradient-di¤usion models of

the turbulent �uxes show favorable agreement for all closures beyond � > 0:2 when

using the Reynolds number-dependent turbulent Schmidt numbers ��(Reh). At the

latest times (� & 1:25), the model correlation and magnitude coe¢ cients deviate

from values close to r = 1 and a = 1, indicating that the models do not agree as
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Figure 4.14 Evolution of the model correlation and magnitude coe¢ cients for the tur-

bulent �ux terms in the scalar �eld transport equations.

well at these times. However, this is likely attributed to the increase in statistical

oscillations in the mean pro�les from the DNS, and hence increased oscillations in the

mean pro�le gradients required to construct the gradient-di¤usion closures.

4.3.4 Pressure transport closures

An interesting result from § 3.6.4 (see �gures 3.46�3.48) was the �nding that the

pressure transport p0w00 was non-negligible, has a complex pro�le shape, and has

a bifurcation in its transport behavior at early times. Typical closure formulations

either neglect the pressure transport (Daly & Harlow 1970) or group the pressure

transport together with the closure of the turbulent kinetic energy �ux ]u00iE 00 (Lumley

1978). However, this is not appropriate for Rayleigh�Taylor driven mixing.

While the mathematical form of the pressure transport is similar to the canonical

turbulent �ux closed by the gradient-di¤usion hypothesis (see § 4.2.1), such closures

do not apply to pressure �uctuations. The �rst model investigated here was proposed

by Lumley (1978), where the pressure transport simply subtracted from the overall
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�ux of fE 00,
p0 u00i = �Cpu �� û00i E 00 ; (4.13)

where Lumley suggested a value of Cpu = 2=5 in homogeneous turbulence. Pro�les

of the unclosed and closed pressure transport are shown in �gure 4.15. At very

low Reynolds numbers (Reh < 100), Lumley�s model does not correctly predict the

direction of the �ux of fE 00; however this may be recti�ed by a negative value of Cpu,
as shown in the pro�le of p0w00 at � = 0:21. At low and moderate Reynolds numbers

(100 < Reh < 1500), Lumley�s model correctly predicts the �ux direction of fE 00 within
the core of the mixing layer (jz=hj . 0:5). However, this model does not predict the

shape of the pro�le very well, nor does it capture the change in sign of the �ux at the

boundaries of the mixing layer (jz=hj & 0:5). This behavior is an important feature

of the pressure transport that has signi�cant e¤ects at the mixing layer boundaries

and should be captured by any realistic model.

Several researchers have also found Lumley�s model to provide an inadequate

description of the pressure transport in more complicated �ows, and thus, alternate

models have been proposed. Following the two-scale direct interaction approximation

(TSDIA) of Yoshizawa (1982), Shimomura (1998) showed that

p0 u0i =

�
E 0
�2
�0

�
Cpu1

@E 0

@xi
+ Cpu2

E 0

�0
@�0

@xi

�
; (4.14)

where Cpu1 = 0:0136 and Cpu2 = 0:00467. Studying the wake �ow past a rectangular

trailing edge, Yao et al. (2002) proposed

p0 u0i = �Cpu
E 0 u�i
�0

@

@xj
(E 0 u�j) ; (4.15)

where u�i is the di¤erence between the velocity ui and the trailing edge velocity

UTE. More closely related to Rayleigh�Taylor driven mixing, Chandra and Grötzbach
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Figure 4.15 Pro�les of the unclosed vertical pressure transport p0w00 and Lumley�s

(1978) closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50,

1:01, and 1:52 (left-to-right, top-to-bottom).
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(2007) found that the model proposed by Davidson (1969)

p0 u0i = �
2Cpu
Re0:8t

�
E 0
�2
�0

@E 0

@xi
; (4.16)

where Ret =
�
E 0
�2
=(��0) is the turbulent Reynolds number, performed better in tur-

bulent Rayleigh�Bénard and internally-heated natural convection problems. However,

these more advanced turbulent �ux models generate the same general pro�le shape as

Lumley�s model. None of these models capture the transport of kinetic energy away

from the mixing layer at the layer boundaries. The inability of pressure transport

models to capture this particular e¤ect will be discussed further in § 4.6.

Similar to the pressure transport of fE 00, �0 is also transported via pressure �uctua-
tions. While the pressure transport of fE 00 has received little attention in the literature,
even less consideration has been given to the pressure transport of �0. This is likely due

to the notion that the modeled �0 or e�00 transport equations are constructed on purely
phenomenological grounds. However, a complete budget of the unclosed �0 equation is

available in § 3.6.5 for the evaluation of the turbulent dynamics. Using an analogous

closure to Lumley�s (1978) pressure transport model, the pressure transport of �0 is

modeled as

2 ��
@p0

@xm

@u0i
@xm

= �C�pu �� u0i �0 : (4.17)

Both the unclosed and closed �0 pressure transport pro�les are shown in �gure 4.16

at various times. Similar to p0w00, the pressure transport of �0 augments the turbulent

�ux ��w0�0 at early times and then transitions to a pro�le that opposes ��w0�0. Also,

the pressure transport of �0 shows the same complex behavior as p0w00, where �0 is

transported away from the mixing layer at the boundaries of the layer. However, this

particular e¤ect is much smaller than the pressure transport of fE 00 away from the

layer by pressure �uctuations. This is expected as the velocity �uctuations induced



207

­1 ­0.5 0 0.5 1
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2 x 10 ­3

­1 ­0.5 0 0.5 1
­2

­1.5

­1

­0.5

0

0.5

1

1.5

2 x 10 ­3

­1 ­0.5 0 0.5 1
­5

­4

­3

­2

­1

0

1

2

3

4

5 x 10 ­3

­1 ­0.5 0 0.5 1
­8

­6

­4

­2

0

2

4

6

8 x 10 ­3

Figure 4.16 Pro�les of the unclosed pressure transport F �0p and Lumley�s (1978) closure

across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52

(left-to-right, top-to-bottom).
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Figure 4.17 Evolution of calibrated pressure transport coe¢ cients Cpu and C�pu as a

function of time (left) and integral-scale Reynolds number (right).

in the �uid around the mixing layer remains essentially irrotational, and hence, the

dissipation rate of these �uctuations is nearly negligible.

Analogous to the turbulent Schmidt number calibrations in § 4.3.3, the pressure

transport model coe¢ cients may also be calculated. Figure 4.17 shows the evolution

of Cpu and C�pu for Lumley�s model [see (4.13) and (4.17)] as a function of both time

and integral-scale Reynolds number. As the pressure transport is non-negligible,

even beyond the boundaries of the mixing layer, the L2 norm minimization used to

determine Cpu and C�pu was modi�ed such that the integral bounds were changed

to [�Lz=2; Lz=2]. Both parameters have negative values before � � 0:4, when the

mixing layer is at the beginning of its nonlinear transition regime. These negative

values indicate that the pressure transport terms are aligned with the turbulent �uxes

of fE 00 and �0. Once Reh � 500 has been reached, Cpu � 0:25, or approximately half
of Lumley�s predicted value Cpu = 0:4. However, from �gure 4.15, while Cpu � 0:2, it

is evident that Lumley�s model only captures the physics of p0w00 within jz=hj < 0:5

and does not account for the �ux away from the mixing layer at jz=hj > 0:5. The
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Figure 4.18 Evolution of the model correlation and magnitude coe¢ cients for the Lum-

ley pressure transport models in the fE 00 and �0 transport equations.
modeled form of the �0 pressure transport in (4.17) performs better, as very little �0

is transported away from the mixing layer by pressure �uctuations. In addition, as

shown in �gure 3.57, the turbulent �ux of �0 becomes more dominant with Reh, while

the pressure transport of �0 remains relatively unchanged in magnitude. Thus, C�pu

continues to decrease with Reh. It is plausible that at a su¢ ciently large Reynolds

number, the pressure transport of �0 may be negligible compared with the turbulent

�ux of �0.

To quantify the predictive capability of the closures in �gures 4.15 and 4.16, the

model correlation and magnitude coe¢ cients are shown in �gure 4.18. Similar to the

modi�ed calculation of the L2-norm for the pressure transport, the correlation and

magnitude coe¢ cients were also calculated using integral bounds of [�Lz=2; Lz=2].

Before the early-time nonlinear transition at � � 0:5, both models capture the pres-

sure transport of fE 00 and �0 given negative values of Cpu and C�pu. During the nonlin-
ear transition, � � 0:3�0:4 for fE 00 and � � 0:4�0:6 for �0, the correlation between the
model and DNS pro�les breaks down. After the transition, the model for the pressure
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transport of fE 00 is marginally adequate, while the model for the pressure transport of
�0 exhibits better agreement at � > 1. This is due to the fact that there is a negligible

�ux of �0 away from the mixing layer boundaries for the model to capture.

4.3.5 Scale-similarity closures

The �nal set of closures examined are the scale-similarity closures used to model some

of the more complex (non-�ux type) correlations in the �0, gm002
1 , and f�00 transport

equations. The �rst quantities examined are the production and destruction terms

in the �0 transport equation. The buoyancy production of �0 was shown to be the

dominant production mechanism of �0 for � < 1 and is non-negligible over the range

of Reynolds numbers examined here. The complex �uctuating velocity gradient-

density gradient correlation is taken to be phenomenologically similar to the buoyancy

production of fE 00, analogous to the scale-similarity closure for the shear production
rate of �0 (Jakirlíc & Hanjalíc 2002),

P �
0
b = 2 �� gi

@u0i
@xj

@�0

@xj
= C�0

�0fE 00 P fE00
b : (4.18)

A comparison of the unclosed and closed pro�les of P �0b is shown in �gure 4.19. In

general, the buoyancy production of �0 is well-captured by the simple scale-similarity

relationship with the buoyancy production of fE 00.
Even more complex than the buoyancy production term are the turbulent pro-

duction and destruction of �0 terms, which include triple �uctuating velocity gradient

correlations and correlations of higher-order derivatives. Adopting the large Reynolds

number closure (Jones & Launder 1972), the viscous destruction term and the tur-

bulent production terms are grouped to form

D�0 � P �0t = �2 �� ��2
�

@u0i
@xk@xm

�2
+ 2 ��

@u0i
@xk

@u0i
@xm

@u0k
@xm

= C�2 ��

�
�0
�2
fE 00 : (4.19)
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Figure 4.19 Pro�les of the unclosed buoyancy production term P �
0
b and its scale-sim-

ilarity closure across the Rayleigh�Taylor mixing layer at � = 0:21, 0:50,

1:01, and 1:52 (left-to-right, top-to-bottom).
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Pro�les of unclosed and closed forms of the di¤erence D�0 � P �0t are shown in �gure

4.20 at various times. Similar to the buoyancy production model, the simple scale-

similarity model shows good agreement with the DNS pro�les.

Both the buoyancy production and turbulent production/destruction models

shown in �gures 4.19 and 4.20 have been plotted using the model parameters C�0(Reh)

and C�2(Reh), shown in �gure 4.21. The parameter C�0 changes before � = 1, after

which a late-time steady value C�0 � 1:43 is attained. This is larger than the value

C�0 = 0:91 determined from the self-similar analysis and a posteriori model evalua-

tions of Snider and Andrews (1996), and C�0 = 0:95 used by Grégoire and Sou­ and

(1999) to model Rayleigh�Taylor and Richtmyer�Meshkov instability-driven mixing.

However, both of these studies relied upon inductive testing to determine an appro-

priate value of C�0, whereas the present work uses the buoyancy production term in

the �0 transport equation to directly determine C�0 for the �rst time.

The parameter for the combined turbulent production/destruction of �0 is also

shown in �gure 4.21, where C�2 � 2:8 when the Rayleigh�Taylor mixing layer enters

the transitional regime at � � 0:5. As Reh increases, this parameter decreases to

C�2 = 2:26 at the latest time (� = 1:52). The �nal asymptotic value of C�2 remains

unknown; however, it is possible that a late-time value of C�2 may be near the shear

turbulence value 1:92. The dissipation rate �0 is physically related to the small-

scale velocity �uctuations. However, from a turbulence modeling vantage point, �0

is better viewed as the rate of energy �ux through the inviscid inertial subrange of

scales. Thus, for C�0 and C�2 to reach late-time asymptotic values, it may be required

that the Reynolds number be large enough that a su¢ cient separation of scales exists

between the energy containing �uctuations and the dissipative �uctuations. As shown

in �gure 3.21, only a marginal portion of the wavenumbers form an inertial subrange,

and a larger separation is required to satisfy the large Reynolds number criteria of
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Figure 4.20 Pro�les of the di¤erence between the unclosed turbulent destruction and

production term D�0 � P �
0
t and its scale-similarity closure across the

Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52 (left�

to-right, top-to-bottom).
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Figure 4.21 Evolution of calibrated scale-similarity coe¢ cients for the �0 transport

equation as a function of time (left) and integral-scale Reynolds number

(right).

the closures. Thus, C�2 is a weak function of Reh until su¢ cient scale separation is

achieved.

The evolution of the model correlation and magnitude coe¢ cients is shown in

�gure 4.22. Despite utilizing the large Reynolds number form of the closed �0 trans-

port equation, the scale-similarity models for the buoyancy production and turbulent

production/destruction terms exhibit good agreement with the unclosed DNS pro-

�les after � = 0:2. Again, the models were computed using the Reynolds number-

dependent model parameters C�0(Reh) and C�2(Reh). Thus, the closed form of the

�0 transport equation could be used to model Rayleigh�Taylor driven mixing, given a

proper calibration in the small Reynolds number limit.

While the calibration and application of scale-similarity closures for the �0 trans-

port equation have been well-documented for a variety of �ows, the modeling of thegm002
1 andf�00 transport equation closures has been primarily limited to combustion ap-

plications (Veynante & Vervisch 2002). The production ofgm002
1 , physically-represented
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Figure 4.22 Evolution of the model correlation and magnitude coe¢ cients for the

scale-similarity models in the �0 transport equation.

by the entrainment of unmixed �uid, is given by the gradient-di¤usion closure of

ŵ00m00
1 (see �gure 4.6). However, the higher-order correlation of �uctuating mass frac-

tion gradients governing the molecular destruction of gm002
1 (physically represented by

the molecular mixing of �uids across a species interface) does not have a gradient-

di¤usion-based closure. Instead, the relationship between the turbulent mechanical

time scale �m = fE 00=e�00 and the scalar mixing time scale � s =gm002
1 =f�00 is used to model

the mass fraction dissipation rate D
gm002
1 = �2��f�00 (Corrsin 1951; Spalding 1971; Fox

2003). The ratio of the scalar-to-mechanical time scales may be used to model the

mass fraction variance dissipation rate

f�00 = Cm2 e�00fE 00 gm002
1 ; (4.20)

where Cm2 is a dimensionless parameter.

Pro�les of the mechanical and scalar time scales are shown in �gure 4.23. Once

the mixing layer transitions into its nonlinear phase (� � 0:5), the mechanical time

scale pro�les are approximately constant across the mixing layer (jz=hj < 0:5). Sim-
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Figure 4.23 Pro�les of the mechanical time scale �m (left) and the scalar mixing time

scale � s (right) across the Rayleigh�Taylor mixing layer at various times.
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Figure 4.24 Pro�les of the mechanical-to-scalar time scale ratio R across the Rayleigh�

Taylor mixing layer at various times.
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ilarly, the scalar time scale pro�les are approximately constant across the mixing

layer only after it becomes transitional at � � 0:7. Combining �m and � s gives the

mechanical-to-scalar time scale ratio (Fox 2003)

R =
2 �m
� s

; (4.21)

where Cm2 = R=2. Pro�les of R across the mixing layer are shown in �gure 4.24. The

time scale ratio R is approximately constant across the layer, which indicates that

the closure (4.20) is valid for this �ow. In addition, the pro�les in �gure 4.24 show

a continuous increase in R with time (and Reh). This is important to note, in that

many mixing models assume that this ratio is constant: typically R � 2 (Spalding

1971; Snider & Andrews 1996; Hanjalíc 2002). At the latest time measured, R � 2:0�

2:4 across the mixing layer, which is close to the values R � 2:0�2:2 for Re� > 100

predicted by Fox (2003) using a spectral equilibrium model. However, at earlier times,

this is not the case, where a range 0:5 < R < 2:2 is observed.

Pro�les of the unclosed and closed mass fraction variance destruction term D
gm002
1

at various times are shown in �gure 4.25. At early times (� � 0:5), the model exhibits

adequate agreement with the unclosed DNS pro�les. As the mixing layer becomes

more turbulent, the agreement improves, as seen in the pro�les at � = 1:01 and 1:52.

The simple relationship between the mechanical and scalar time scales appears to be

justi�ed. The evolution of Cm2(Reh) used to create the model pro�les in �gure 4.25

is shown in �gure 4.29.

The accuracy of a simple scale-similarity model for the mixing rate f�00 may be
improved by solving an additional transport equation for f�00 as done in many studies
where the degree of molecular mixing is important (Chidambaram et al. 2001; Vey-

nante & Vervisch 2002; Fox 2003; Brinkman et al. 2007). However, the transport

equation for f�00 contains more complicated terms which are not closed by either the
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Figure 4.25 Pro�les of the unclosed mass fraction variance destruction term D
gm002
1

and its scale-similarity closure across the Rayleigh�Taylor mixing layer

at � = 0:21, 0:50, 1:01, and 1:52 (left-to-right, top-to-bottom).
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Figure 4.26 Pro�les of the unclosed mass fraction variance dissipation rate mean

gradient production term P
f�00
m and its scale-similarity closure across the

Rayleigh�Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52 (left�

to-right, top-to-bottom).
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eddy viscosity approximation or the gradient-di¤usion hypothesis. Thus, phenomeno-

logical scale-similarity closures must be invoked. First, the mean gradient production

of f�00 is closed by (Mura & Borghi 2003; Mura et al. 2007)
P
f�00
m = �2 �D @m

00
1

@xi

@u00j
@xi

@ ~m1

@xj
= C�0 �t

e�00fE 00
�
@ ~m1

@xj

�2
: (4.22)

Pro�les of the unclosed and closed mean gradient production of f�00 are shown in
�gure 4.26. In general, this closure shows good agreement with the unclosed pro�les.

At later times, the oscillations in the model are due to the gradient of ~m1. The

calibrated model parameter C�0 is shown in �gure 4.29 as a function of both time

and integral-scale Reynolds number.

The mean gradient production term P
f�00
m represents only a small fraction of the

production of f�00, where the turbulent production P f�00
t is the dominant production

mechanism. Similarly, the destruction off�00 by molecular di¤usion processes is also at-
tributed to the �ne-scale velocity �uctuations that drive the molecular mixing process.

Thus, drawing an analogy to the closure of D�0 � P �0t , the di¤erence of the two terms

is modeled as (Mura et al. 2007)

D
f�00 � P f�00

t = 2 �D2

�
@2m00

1

@xi@xj

�2
+ 2 �D

@m00
1

@xj

@m00
1

@xi

@u00j
@xi

= ��f�00 C�2 e�00fE 00 � C�3 f�00gm002
1

!
; (4.23)

where C�2 is related to P
f�00
t and C�3 is related to D

f�00 . Pro�les of the closed and
unclosed forms of P

f�00
t and D

f�00 are shown in �gures 4.27 and 4.28. While the mod-
eledf�00 shown in �gure 4.25 appears to be valid for � > 0:2, the turbulent production
and destruction of f�00 closures do not capture the �ow physics until the mixing layer
transitions into a pre-turbulent nonlinear stage at � � 0:5. However, once the nonlin-

ear and turbulent regimes set in, the closures for P
f�00
t and D

f�00 show good agreement
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Figure 4.27 Pro�les of the unclosed mass fraction variance dissipation rate turbulent

production term P
f�00
t and its scale-similarity closure across the Rayleigh�

Taylor mixing layer at � = 0:21, 0:50, 1:01, and 1:52 (left-to-right, top�

to-bottom).
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Figure 4.28 Pro�les of the unclosed mass fraction variance dissipation rate destruction

term D
f�00 and its scale-similarity closure across the Rayleigh�Taylor mix-

ing layer at � = 0:21, 0:50, 1:01, and 1:52 (left-to-right, top-to-bottom).
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with the DNS pro�les.

The time-dependent scale-similarity model parameters for thegm002
1 andf�00 trans-

port equations are shown in �gure 4.29 as both a function of time and integral-scale

Reynolds number. For the case where Pf�00
m is negligible (which is true for this �ow

beyond � � 0:7 as shown in �gure 3.74), then Cm2 � C�2=C�3, which is evident in

�gure 4.29. Another important implication of measuring the time-evolution of Cm2

and C�2=C�3 is noting that the parameter governing the mixing rate f�00 is not steady
in time, as assumed in many models (Spalding 1971; Grégoire & Sou­ and 1999; Han-

jalíc 2002). Instead, there is a clear Reynolds number dependence across the entire

range.

Finally, the quality of the scale-similarity closures forgm002
1 and f�00 is examined in

�gure 4.30, where the model correlation and magnitude coe¢ cients are shown. The

simple time scale ratio closure for the destruction ofgm002
1 exhibits good agreement with

the DNS pro�les over all times shown when using the time-dependent value of Cm2

shown in �gure 4.29. Similarly, the buoyancy production of f�00 also shows excellent
agreement with the DNS pro�les over the range of Reynolds numbers examined. The

turbulent production and molecular destruction off�00 terms exhibit a poor correlation
with the DNS data until � � 0:5, after which point turbulent �uctuations became

more dominant, and the closures accurately re�ect the �ow physics.

4.4 Numerical Implementation of the fE 00-e�00-gm002
1 -f�00 Model

To verify that the model calibrations presented in § 4.3 are able to reproduce the

experimental and numerical results reported in § 2 and 3 a posteriori, the modeled

transport equations were implemented in a one-dimensional code. In this section,

the equations solved, numerical method, validation tests, and comparison with the
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Figure 4.29 Evolution of calibrated scale-similarity parameters for the gm002
1 transport

equation as a function of time (top-left) and the integral-scale Reynolds

number (top-right). Evolution of calibrated scale-similarity parameters

for the f�00 transport equation as a function of time (bottom-left) and the
integral-scale Reynolds number (bottom-right).
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Figure 4.30 Evolution of the model correlation and magnitude coe¢ cients for the

scale-similarity models in the gm002
1 and f�00 transport equations.

experiments and DNS are presented. Next, the numerical algorithm is validated by

comparing the current implementation with another E 0-�0 model of Rayleigh�Taylor

mixing (Snider & Andrews 1996) and with the analytical self-similar solutions of

the modeled transport equations. The current model was used to demonstrate that

the current calibration yields physically-realistic solutions of the transport equations.

Finally, the experiment and DNS results were used to determine the necessary cali-

bration required to reproduce measured quantities from the Sc � 103 water channel

experiment.

4.4.1 Model equations

In the small Atwood number limit of a statistically one-dimensional Rayleigh�Taylor

mixing layer, the transport equations can be simpli�ed by neglecting the advection

terms and all mean �eld gradients in the homogeneous directions. In this case, the

following mean mass fraction, turbulent kinetic energy, turbulent kinetic energy dis-
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sipation rate, and mass fraction variance transport equations are solved:

��
@ ~m1

@t
=
@

@z

��
��

Sc
+
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; (4.24)
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where the turbulent viscosity is de�ned in (4.3). The pressure gradient in (4.25) and

(4.26) is taken to be @�p=@z = ���g, where the contribution of the gradient of the

Reynolds stress component � 33 is negligible as shown in § 3.6.2. In (4.27), the mass

fraction variance dissipation rate may be modeled as shown in (4.20) or a transport

equation

��
@f�00
@t

= C�0 �t
e�00fE 00
�
@ ~m1

@z

�2
+
@

@z

"�
��

Sc
+
�t
��

�
@f�00
@z

#
(4.28)

+��f�00 C�2 e�00fE 00 � C�3 f�00gm002
1

!

may be solved.

The Favre-averaged mass fraction of �uid component r (where r = 1; 2) is related

to the mean density �eld by �� = ( ~m1=�1+ ~m2=�2)
�1, and ~m1+ ~m2 = 1 for the binary

�uid system considered here. The Favre-averaged mass fraction of �uid r is related to

the mean volume fraction �fr by �� ~mr = �r
�fr . The viscosity di¤erence between �uids

1 and 2 is assumed to be small and � is taken to be a linear combination of �1 and

�2, such that �� = ~m1 �1 + ~m2 �2.



227

4.4.2 Spatial discretization

Equations (4.24)�(4.28) form a system of unsteady, parabolic partial di¤erential equa-

tions. The spatial discretization of each equation can be written in general form,

assuming a three-point, second-order �nite di¤erence stencil (Ferziger & Períc 2002)

@�

@t
= A�W �W + A

�
P �P + A

�
E �E + S

� : (4.29)

The coe¢ cients for each equation are
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8>>>>>>>>>>><>>>>>>>>>>>:

A
fE00
W = 1

��W (�z)2

h
��+ (1�Cpu)�t

�k

i
w

A
fE00
E = 1

��E (�z)
2

h
��+ (1�Cpu)�t

�k

i
e

A
fE00
P = � 1

��P (�z)
2

nh
��+ (1�Cpu)�t

�k

i
w
+
h
��+ (1�Cpu)�t

�k

i
e

o
S
fE00
P = g

2���z
(�t)P (��E � ��W )� ��P e�00P
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(4.34)

In (4.33), the mass fraction variance dissipation ratef�00 can be either included directly
as f�00P = Cm2 e�00PfE 00P

�gm002
1

�
P
; (4.35)

or the transport equation forf�00 may be evolved independently. In this case, the value
of f�00P is used in (4.33). Intermediate values of ��, fE 00, e�00, and �t were interpolated
using a second-order, linear interpolation scheme and are denoted by the standard

�west�and �east�convention of Ferziger and Períc (2002) with subscripts �w�and �e�.

Dirichlet boundary conditions were imposed for the mean mass fraction transport

equation,

~m1 (z = �Lz=2; t) = 0 ; ~m1 (z = Lz=2; t) = 1 : (4.36)

Neumann boundary conditions were imposed for the fE 00, e�00, gm002
1 , and f�00 transport

equations,

@fE 00
@z

�����
z=�Lz=2

=
@ e�00
@z

�����
z=�Lz=2

=
@gm002

1

@z

�����
z=�Lz=2

=
@f�00
@z

�����
z=�Lz=2

= 0 ; (4.37)
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4.4.3 Time integration

To minimize stability concerns that arise when using explicit time integration, an

implicit, second-order accurate Crank�Nicholson time integration scheme was imple-

mented (Ferziger & Períc 2002),

�n+1P = �nP +
�t

2

�
A�W�W + A

�
P�P + A

�
E�E + S

�
�n+1

(4.38)

+
�t

2

�
A�W�W + A

�
P�P + A

�
E�E + S

�
�n
:

The current model consists of a system of four (or �ve) coupled partial di¤erential

equations, and each equation is advanced in time sequentially using an iterative quasi-

minimal residual method (Freund & Nachtigal 1991). Multiple outer iterations were

required for each time step to ensure the convergence of the system of equations

to the �nal solution at tn+1. For the �rst outer iteration, the coe¢ cients A� at

the next time step tn+1 are approximated with the coe¢ cients at the current time

step tn. Each inner iteration, which advanced one transport equation in time, was

iterated until the relative residual norm of the linear system of equations satis�ed

�inner < 1 � 10�12. Outer iterations, which solved one inner iteration per transport

equation, were performed until the maximum di¤erence between the predictions of

�n+1 at the previous and current outer iterations was �outer < 1� 10�18.

4.5 Model Validation

4.5.1 Comparison with Snider and Andrews (1996)

The �rst validation test compared results from the current model with those of the

E 0-�0 model of Snider and Andrews (1996), in which the incompressible, Reynolds-

averaged �T , E 0, and �0 transport equations were solved to model Rayleigh�Taylor

mixing layer growth in the water channel experiment. For this validation case, the
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Parameter Snider and Andrews Current Validation Case

C� 0:09 0:09

�m � 0:6

�� � 0:6

�T 0:6 �

�k 1:0 1:0

�� 1:314 1:314

C�0 0:90 0:90

C�2 1:92 1:92

Cpu � 0

C�pu � 0

Table 4.2 Model parameters used by Snider and Andrews (1996) and for the current

model validation.

parameters were set to those used by Snider and Andrews and are listed in table 4.2.

Instead of solving a mean mass fraction or mean density transport equation, Snider

and Andrews solved a mean temperature equation, where the buoyancy driving was

given by the thermal expansion coe¢ cient � = �(1=�0)(@�=@T ). Accordingly, the

turbulent Schmidt number �T is equivalent to the turbulent Schmidt numbers �� and

�m used in the current model.

The one-dimensional, transient calculations of Snider and Andrews (1996) showed

that, using the coe¢ cients in table 4.2, the self-similar growth parameter converged to

� = 0:062 as the grid spacing was decreased. Along with using the same parameters

as Snider and Andrews, the same densities and domain size were used, where the

densities of the heavy and light �uids were �1 = 0:9985986 and �2 = 0:9971018,

Lz = 50 cm, and gz = 981 cm/s2. A series of calculations were performed to test



231

�t = 0:1 s 0:05 s 0:02 s 0:01 s 0:005 s

Nz = 50 0:097 0:0968 0:095 0:0944 0:0938

75 0:0591 0:0596 0:0601 0:0602 0:0602

100 0:063 0:0632 0:0633 0:0634 0:0634

150 0:0616 0:0619 0:0621 0:0622 0:0621

200 0:0609 0:0613 0:0615 0:0616 0:0616

250 0:0606 0:061 0:0613 0:0614 0:0613

300 0:0605 0:061 0:0612 0:0613 0:0613

400 0:0606 0:061 0:0613 0:0614 0:0614

500 � 0:0611 0:0613 0:0614 0:0614

Table 4.3 Convergence of self-similar growth parameter � for various grid spacings and

time steps. Model parameters were chosen to match Snider and Andrews

(1996).

the dependence of the numerical algorithm on the grid spacing and time step. Table

4.3 shows the late-time values of � obtained by calculating the late time slope of

(hb � hs)=2 versus Agt2. As shown by Snider and Andrews, the model yields a grid

spacing and time step-independent solution for approximately Nz & 250 (�x . 0:2

cm) and �t . 0:02 s. Also, the current numerical implementation of the ~m1, fE 00,
and e�00 equations yields a late-time value � = 0:0614 using the parameters of Snider
and Andrews, which agrees well with their value � = 0:062. The slight di¤erence in

the late-time value of � may be attributed to the di¤erence in numerical algorithms:

�nite di¤erence versus �nite volume, Favre-averaged versus Reynolds-averaged, and

second-order Crank�Nicholson time integration versus �rst-order Euler-explicit time

integration.
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4.5.2 Self-Similar analysis

Another validation of the numerical implementation of (4.24)�(4.28) is given by a

comparison of the modeled pro�les ~m1, fE 00, e�00, gm002
1 , and f�00 with the analytical,

self-similar solutions. Given the assumptions:

� small density di¤erence,

� quiescent, pure �uid outside mixing layer (fE 00 = e�00 = 0 and gm002
1 =f�00 = 0),

� no mean velocity �eld within a Galilean reference frame moving with the mixing

layer (~ui = 0),

� pressure transport of fE 00 and e�00 are neglected,
� physical viscosity and di¤usivity contributions to the overall �ux of each term

neglected, i.e. T � = @
@z

�
�t
��

@~�
@z

�
,

the partial di¤erential equations in (4.24)�(4.28) have self-similar solutions (Andrews

1984; Spitz & Haas 1991; Snider & Andrews 1996; Dimonte & Tipton 2006). Given

the similarity variable

� =
z

h(t)
; (4.39)

the self-similar density (and hence, mass fraction) pro�les are linear in � and the

remaining turbulent quantities are all parabolic in �,

~m1(�) = � +
1

2
; (4.40)

fE 00(�) = CfE00 �1� 4�2� ; (4.41)

e�00(�) = C e�00 �1� 4�2� ; (4.42)

over �1=2 � � � 1=2. Analogous self-similar solutions are assumed for the modeledgm002
1 and f�00 transport equations, given the similar form of the partial di¤erential
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equations, gm002
1 (�) = Cgm002

1

�
1� 4�2

�
; (4.43)

f�00(�) = Cf�00 �1� 4�2� : (4.44)

However, due to the assumptions implicit in the formulation of the self-similar solu-

tions, such pro�les are taken to be approximations only.

Before the current numerical implementation of the model is tested, the approx-

imate self-similar solutions are compared with the DNS results. To facilitate such a

comparison, the de�nition of the self-similar pro�les must be altered to match the

de�nition of h(t) used here, where ~m1(� = �1=2) = 0:05 and ~m1(� = 1=2) = 0:95 (not

zero and one, respectively). Accordingly, the similarity variable is slightly altered to

� =
0:9 z

h(t)
; (4.45)

where h(t) is de�ned on a 5�95% threshold basis. A comparison of the normalized,

self-similar pro�les and the DNS pro�les at various times is shown in �gure 4.31. This

comparison shows that the self-similar pro�les are fair approximations of the DNS

pro�les; however, the DNS pro�les do not match the quiescent boundary conditions

at the edges of the mixing layer and the pro�les of fE 00, e�00, and f�00 are over-predicted
by self-similar parabolic pro�les within the core of the mixing layer (jz=hj < 0:5).

Next, the numerical implementation of the model is compared with the self-

similar pro�les as done by Snider (1994) and Dimonte and Tipton (2006). First,

the model was run with the parameters used by Snider and Andrews (1996) (see

table 4.2). A comparison of the model and self-similar pro�les is shown in �gure

4.32. The numerical implementation of the modeled transport equations is free from

the statistical convergence criteria of the DNS (see § 3.4.3), so that much smoother

pro�les are obtained, allowing easier comparisons with the self-similar pro�les. All
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Figure 4.31 Comparison of DNS pro�les (black) with self-similar solutions (red) across

the mixing layer at various times. All parabolic pro�les are normalized by

their respective centerplane value.
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Figure 4.32 Comparison of pro�les from the model with their self-similar solutions

(red). The initial model pro�le is denoted by a dotted line and the �nal

pro�le is denoted by a blue line. All parabolic pro�les have been nor-

malized by their respective centerplane value. The model parameters are

taken from Snider and Andrews (1996).
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pro�les exhibit good agreement with the linear and parabolic predictions. As noted

in the comparisons of the DNS and self-similar pro�les in �gure 4.31, the pro�les ofe�00 are over-predicted by the self-similar pro�le.
Two additional tests were performed to examine the predictions of the model

when using the Reynolds number-dependent parameters (see �gures 4.12, 4.21, and

4.29) for the three-equation fE 00-e�00-gm002
1 and four-equation fE 00-e�00-gm002

1 -f�00 models. A
comparison of the self-similar pro�les and the three-equation model predictions is

shown in �gure 4.33. The same comparison for the four-equation model is shown in

�gure 4.34. Both the three- and four-equation models reproduced the approximate

self-similar pro�les, as shown in the constant parameter case.

4.6 Mixing Model: Sc = 7 Case

In § 4.3, the gradient-di¤usion and scale-similarity models were calibrated for a set

of transport equations. To validate the model parameters obtained from the DNS,

the numerical implementation of the model is tested a posteriori. In § 4.6.1�4.6.3,

the numerical tests of the model were run using the Reynolds number-dependent

parameters and are compared directly with the experimental and DNS results of § 2

and 3. The model was also run using a set of constant parameters to compare with

Reynolds number-dependent parameter tests.

4.6.1 Evolution of model pro�les

To model the growth of the Rayleigh�Taylor mixing layer in the water channel experi-

ment, the numerical implementation of the modeled transport equations (4.24)�(4.28)

was initialized with mean pro�les from the DNS. Pro�les from the DNS at � = 0:1,

0:3, 0:5, and 0:7 were used to initialize the model, and are shown in �gure 4.35. As
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Figure 4.33 Comparison of pro�les from the three-equation model with self-similar

solutions (red). The initial pro�le is denoted by a dotted line and the �nal

pro�le is denoted by a blue line. All parabolic pro�les are normalized by

their respective centerplane value. The model parameters are taken from

the calibrations shown in �gures 4.12, 4.21, and 4.29.
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Figure 4.34 Comparison of pro�les from the four-equation model with self-similar so-

lutions (red). The initial pro�le is denoted by a dotted line and the �nal

pro�le is denoted by a blue line. All parabolic pro�les are normalized by

their respective centerplane value. The model parameters are taken from

the calibrations shown in �gures 4.12, 4.21, and 4.29.
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Figure 4.35 Pro�les of ~m1, fE 00, e�00, gm002
1 , and f�00 across the mixing layer from the DNS

used as initial conditions in the model.
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� IC Reh Regime

0:1 10 Early-time, linear growth stage

0:3 39

8><>: Onset of nonlinearity and secondary instabilities;

Peak P=D ratios

0:5 137

8>>>><>>>>:
Minimum value of �;

P=D ratio relaxation period;

Turbulent production terms become non-negligible

0:7 289 Approximately steady-state P=D ratios

Table 4.4 Dimensionless initialization times and integral-scale Reynolds numbers for

the four initial conditions cases examined.

shown in �gure 4.31, these pro�les are fairly approximated by the linear and parabolic

self-similar solutions; however, small statistical oscillations exist. The sensitivity of

the model to the exact initial conditions will be examined further below and in § 4.6.2.

The evolution of the modeled pro�les of ~m1, fE 00, e�00, gm002
1 , and f�00 are shown

in �gures 4.36�4.40 as a function of the initial conditions. The evolution of each

pro�le is shown for four di¤erent initial conditions, corresponding to four di¤erent

regimes of development of the mixing layer, as listed in table 4.4. These speci�c

initialization times were examined to test the ability of the model to capture the

early-time, transient, and late-time dynamics of the mixing layer.

For an initialization time � IC = 0:7 (Reh = 289), the mixing layer is fully

within the nonlinear transition stage. The production-to-dissipation ratios for all of

the transport quantities have reached their respective approximate late-time steady

value. This case represents a �best-case scenario�for the model initialization, as very

little of the initial transient dynamics must be captured by the model. For the case

� IC = 0:5 (Reh = 137), the mixing layer is in a nonlinear transitional state, where
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Figure 4.36 Evolution of ~m1 pro�les as a function of the initial conditions.
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Figure 4.37 Evolution of fE 00 pro�les as a function of the initial conditions.
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Figure 4.38 Evolution of e�00 pro�les as a function of the initial conditions.
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Figure 4.39 Evolution of gm002
1 pro�les as a function of the initial conditions.
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Figure 4.40 Evolution of f�00 pro�les as a function of the initial conditions.
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the production-to-dissipation ratios are relaxing towards their late-time steady values.

This case represents a greater challenge to the model in that it requires the model

to capture some of the weak, early-time transient dynamics as well as the late-time

turbulent dynamics. The initialization pro�les at � IC = 0:3 (Reh = 39) further

increase the demands on the predictive capabilities of the model. For this case, the

initial production-to-dissipation ratios are far from unity (see �gures 3.51, 3.59, 3.67,

and 3.74). The model must capture the low-Reynolds number, non-turbulent physics

related to the onset of secondary instabilities and the initial formation of a broad range

of scales across the turbulent spectrum of modes. Finally, the model is also initialized

with pro�les from the DNS at � IC = 0:1. In this case, the �turbulence�model must also

account for the linear growth stage of the mixing layer, where the neglected pressure

and viscous stress �uxes of fE 00, pressure transport of e�00, and curvature production ofe�00 and f�00 are important.
The evolution of the pro�les for each transport quantity is shown in �gures 4.36�

4.40. Despite the di¤erences in the initial dynamic regimes and statistical oscillations

present in the DNS pro�les used as initial conditions, the model produced smooth,

approximately symmetric pro�les for each initialization case. Accordingly, the model

appears to be qualitatively insensitive to small oscillations in the initial pro�les. In

addition, the magnitude of the �nal fE 00, e�00, gm002
1 , and f�00 pro�les are similar, despite

the strong di¤erences in the initial conditions. This suggests that the time-history

of the transported quantities is insensitive to the initial conditions, when using the

Reynolds number-dependent model parameters. This is important as it shows that

the model does not require high-Reynolds number initial conditions to capture the

time-evolution of the mixing dynamics.



247

0 0.5 1 1.5
0

1

2

3

4

5

6

7

8

0 20 40 60 80
0

1

2

3

4

5

6

7

8

Experiment
DNS

Figure 4.41 Comparison of the growth of the mixing layer (left) and late-time growth

rate (right) from the model, DNS, and experiment using various initial

conditions.

4.6.2 Comparison of model with DNS and experiments

The pro�les presented above in § 4.5.2 and 4.6.1 only indicate that the model quali-

tatively predicts pro�les expected for small Atwood number, Rayleigh�Taylor driven

mixing layers. Further comparisons with the water channel experiments and DNS

follow to quantitatively assess the model predictions. Figure 4.41 shows the evolu-

tion of the mixing layer width for the water channel experiment (Wilson 2002), the

DNS, and the model using various initial conditions. For the cases � IC = 0:5 and

� IC = 0:7, the model exhibits good agreement with the DNS. The model initialized

at � IC = 0:3 exhibits fair agreement with the DNS, but slightly over-predicts the

mixing layer width. However, this discrepancy is small and the model still predicts

the same late-time growth rate. Using � IC = 0:1, the model demonstrates only fair

agreement with the experiment and the DNS: the reasons for this discrepancy will be

discussed in § 4.6.3. While the model exhibits good agreement with the DNS, it may

be possible to improve the agreement with the experiment by manually decreasing
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Figure 4.42 Comparison of �(z = 0) from the model, DNS, and experiment using

various initial conditions: three-equation model (left) and four-equation

model (right).

the calibrated value of �� and �m or by decreasing the calibrated value of C�2.

In addition to comparing the growth of the mixing layer, the evolution of the

mixing parameters �(z = 0) and � are also compared. This is a novel comparison,

in that such results have not been shown by any previous RANS model of Rayleigh�

Taylor mixing. Figure 4.42 shows the evolution of �(z = 0) for the water channel

experiments (Mueschke et al. 2006), the DNS, and the model using various initial

conditions. Both the three-equation model fE 00-e�00-gm002
1 [�gure 4.42 (left)] and the

four-equation model fE 00-e�00-gm002
1 -f�00 [�gure 4.42 (right)] were tested to determine if the

inclusion of an additional transport equation yielded better accuracy. Both models

show very good agreement with the DNS. Even for the case of � IC = 0:1, the models

show reasonable agreement with the DNS. Similar trends are also observed in the

evolution of �, shown in �gure 4.43, where the models show good agreement for

� IC � 0:3 and adequate agreement for � IC = 0:1. Again, the model may be manually

adjusted to exhibit better agreement with the experiment by increasing the calibration
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Figure 4.43 Comparison of � from the model and DNS using various initial conditions:

three-equation model (left) and four-equation model (right).

of Cm2, which would increase the rate at which mixed �uid is produced resulting in

larger values of �.

4.6.3 Production-to-dissipation ratios

In general, the model shows fair-to-good agreement with the experiment and the

DNS from which the model was calibrated. However, the discrepancy between the

model and DNS increases as � IC decreases. This is primarily a result of applying a

turbulence transport and mixing model to a �ow which is not yet turbulent. Further-

more, RANS models are limited to applications where the turbulent dynamics of the

�ow are roughly in equilibrium with the mean �ow dynamics, such that the turbu-

lent �ow exhibits slow changes with respect to changes in the mean �eld velocity or

density �eld. However, for the mixing layer examined here, the mean mass fraction

is expanding relatively quickly compared with changes in the turbulence. Accord-

ingly, the production-to-dissipation ratios exhibit large variability during this time.

In general, standard RANS-type models do not perform well under the conditions
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Figure 4.44 Comparison of production-to-dissipation ratios from the DNS (blue) and

three-equation model (black) for various initial conditions.

of highly-variable production-to-dissipation ratios (Pope 2000). However, the early-

time, dynamic production-to-dissipation ratios observed in the low-Reynolds number

and transitional regimes can be recovered when using functional model parameters,

and is analogous to the formulation of low Reynolds number modi�cations to standardfE 00-e�00 models for wall-bounded �ows (Wilcox 2006).
The evolution of the production-to-dissipation ratios for both the DNS and model

are shown in �gures 4.44 and 4.45. For the case � IC = 0:1, the model qualitatively
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four-equation model (black) for various initial conditions.
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captures the rise and fall of the di¤erent production-to-dissipation ratios, but does

not accurately capture the magnitudes or time-history of the relaxation process. The

agreement between the DNS and model production-to-dissipation ratios improve as

the initial conditions are taken from the DNS at later times. This includes the cases

� IC = 0:3 and � IC = 0:5, where the relaxation of the production-to-dissipation ratios

to their respective late-time steady values is relatively well-captured.

4.6.4 Comparison with constant model parameters

While it is possible to model the mixing layer dynamics using variable model parame-

ters, this practice has not been adopted for Rayleigh�Taylor driven mixing, whether

using fE 00-e�00 type models (Spitz & Haas 1991; Snider & Andrews 1996; Grégoire &

Sou­ and 1999) or other RANS-type models (Besnard et al. 1992; Youngs 1995;

Dimonte & Tipton 2006). To illustrate the di¤erence between the dynamics of the

model using Reynolds number-dependent and constant model parameters, the model

was run using the constant parameters shown in table 4.5, which are the average

values of each parameter from the last three measurements in time.

A comparison of the mixing layer growth rate is shown in �gure 4.46, where

the late-time growth rate of the model, DNS, and experiment show good agreement.

However, the model exhibits a time-lag depending upon the exact initial conditions

used. This is due to the fact that the closures do not accurately model the early-

time physics of the mixing layer. Figure 4.46 also shows the development of the

centerplane molecular mixing parameter �. Again, the model, DNS and experiment

show fair agreement; however, the model approached the late-time steady value of

� � 0:6 faster than the DNS. Both the time-lag in h and discrepancy in � are discussed

below.

For the constant-parameter case examined here, the late-time growth rate of the
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Parameter Constant parameters case

C� 0:09

�m 0:087

�� 0:087

�k 0:105

�� 0:121y

�m2 0:120y

C�0 1:432

C�2 2:339y

Cm2 0:511y

Cpu 0

C�pu 0

Table 4.5 Model parameters used in the constant parameters case taken from an aver-

age of the �nal three Reynolds-number dependent parameter values. Cali-

brated model parameters that are still changing at the latest times calculated

are denoted by y.
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Figure 4.46 Comparison of the mixing layer growth rate (left) and �(z = 0) from the

model, DNS, and experiment for the constant parameters case.
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mixing layer and �(z = 0) is recovered; however, the early-time dynamics are poorly

captured because the model does not accurately predict the early-time production-to-

dissipation ratios. This is clearly demonstrated in �gure 4.47, where the production-

to-dissipation ratios for the constant parameters case do not resemble the evolutions

from the DNS during the initial transition stages of the mixing layer. However,

by selecting the parameters shown in table 4.5, the late-time asymptotic ratios are

recovered.

4.7 Mixing Model: Sc � 103 Case

4.7.1 Calibration of Cm2 for Sc � 103 experiments

The model calibration of Cm2 shown in �gure 4.29 is representative of the mixing

dynamics for the Sc = 7 case. However, the calibration of the mass fraction variance

transport equation must change to properly reproduce the Sc � 103 experiments.

Neither the production nor transport terms of gm002
1 are explicitly functions of the

mass di¤usivity �D. Note that both the growth of the mixing layer (given by ~m1) and

the production rate ofgm002
1 are functions of ŵ00m00

1. In § 2.4.4, it was reported that the

growth rate of the Sc � 103 mixing layer was slightly larger than measured for the

Pr = 7 case. Thus, ŵ00m00
1 may be a weak function of the Schmidt number; however,

the results in § 2.4.4 indicate that this functional dependence is very weak. The �nal

term in the transport equation of gm002
1 is the turbulent dissipation term

D
gm002
1 = �2 ��f�00 ; (4.46)

where the mass fraction dissipation rate is clearly a function of the mass di¤usivity:

f�00 = �D2
^�
@2m00

1

@xi@xj

�2
� Cm2

e�00fE 00 gm002
1 : (4.47)
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Accordingly, the parameter Cm2 must account for variations in �D to reproduce ex-

perimental results at various Schmidt numbers.

It is possible to estimate Cm2 for the high Schmidt number experiments by com-

bining the experimental measurements in § 2.4 with the transport equation budgets

reported in § 3.6. Integrating the transport equation for gm002
1 across the vertical

domain eliminates the conservative transport term T
gm002
1 , resulting inZ Lz=2

�Lz=2
��
@gm002

1

@t
dz =

Z Lz=2

�Lz=2
P
gm002
1 dz �

Z Lz=2

�Lz=2
D
gm002
1 dz : (4.48)

Inserting the scale-similarity model for the dissipation term and rearranging gives

Cm2 =

R Lz=2
�Lz=2 P

gm002
1 dz �

R Lz=2
�Lz=2 ��

@gm002
1

@t
dzR Lz=2

�Lz=2
e�00fE00gm002

1 dz
: (4.49)

As a validation, using the Sc = 7 DNS data to evaluate (4.49) results in the same

Cm2 as shown in �gure 4.29.

To calculate (4.49) and obtain a calibration of Cm2 for the Sc � 103 experi-

ments, the �uctuating density statistics from the Sc � 103 experiments (see § 2.4)

must be used to calculate the integrals
R Lz=2
�Lz=2 ��

gm002
1 dz and

R Lz=2
�Lz=2

e�00fE00gm002
1 dz. For the

small Atwood number case considered here, the substitution gm002
1 � f 021 is accurate to

within �0:2% (see § 3.6.6). However, several terms remain in (4.49), which require

approximations. The growth of the mixing layer is given by the mean mass fraction

transport equation, which is explicitly a function of the mass fraction-velocity corre-

lation ŵ00m00
1. As noted above, ŵ00m

00
1 may be considered to be independent of Schmidt

number. Using the same physical argument, the gradient-di¤usion closure of ŵ00m00
1

depends upon fE 00, e�00, and @ ~m1=@z. Thus, if both the Sc = 7 and Sc � 103 mixing

layers grow at the same rates, then to a �rst-order approximation, the pro�les and

evolutions of fE 00 and e�00 must be the same. Accordingly, the pro�les of Pgm002
1 , fE 00, and
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e�00 from the Sc = 7 DNS are used as an ansatz to calculate the remaining unknown

terms in (4.49).

Given the pro�les of P
gm002
1 from the DNS and the pro�les ofgm002

1 from the Sc � 103

experiments, the integrated dissipation pro�les [see (4.48)] may be calculated. As

expected, the molecular mixing rate during the early stages of the mixing layer is very

small. Similar observations were made in high Schmidt number shear layer studies,

where there is very little mixed �uid before the onset of three-dimensional, secondary-

instabilities (Breidenthal 1981). For the early time development of the mixing layer

(� < 0:5), the Sc = 7 and Sc � 103 cases exhibit similar integrated dissipation rates

because the Reynolds number is small enough that turbulent �uctuations have yet

to create su¢ cient surface area between pockets of unmixed �uid to allow signi�cant

rates of mixing to occur. However, once the mixing layer enters a nonlinear (or pre-

turbulent) state, the dissipation rate increases and a di¤erence between the Sc = 7

and Sc � 103 cases is observed. For all times � > 0:5, the Sc = 7 case has a higher

dissipation rate. The dissipation term D
gm002
1 is clearly a function of the Schmidt

number and not the Reynolds number, as the mixing layers are essentially the same

width.

Using the fE 00 and e�00 pro�les from the DNS, the �nal calibration of Cm2 for the

Sc � 103 case can be obtained using (4.49). As the dissipation rate for the Sc � 103

case is small for � < 0:5, the calibration in (4.49) is ill-posed as the denominator

approaches zero. However, Cm2 was calculated for later times (� > 0:5) and is shown

in �gure 4.49. While the calibration cannot be calculated directly for the initial low

Reynolds number regime of mixing, it possible to postulate a low Reynolds number

calibration. As observed in the Sc = 7 DNS and in the spectral-equilibrium model

of Liu and Fox (2006), Cm2 ! 0 as Reh ! 0. Accordingly, Cm2 was set to zero at

Reh = 0, which captures the dissipation term D
gm002
1 ! 0 for small Reynolds numbers.
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Figure 4.48 Evolution of the integrated production and dissipation pro�les for the

Sc = 7 and Sc � 103 cases.
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Figure 4.49 Comparison of Cm2 calibration for the Sc = 7 and Sc � 103 cases. The

approximate model for the Sc � 103 case is shown by the dashed line.
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Comparison with the Sc = 7 calibration shows that Cm2 for the large Schmidt number

case shows the same increasing trend with Reynolds number; however the magnitude

of Cm2 is smaller for the range of Reynolds numbers examined. This is expected, as

the dissipation rate of gm002
1 is shown to be lower for the Sc � 103 case in �gure 4.48.

4.7.2 Comparison with experiment

The model calibrations presented in § 4.3 have been directly obtained from the DNS,

and thus, have been used explicitly in the numerical tests in § 4.6. However, for the

Sc � 103 case, approximations were required to obtain a calibration of Cm2. Thus,

the evolution of Cm2 shown in �gure 4.49 has not been directly implemented in the

current numerical algorithm. Rather, the calibration curve was �tted with a straight

line over the range of Reynolds numbers and then forced to zero at Reh = 0:

Cm2 =

8><>: 0:000527Reh Reh � 300

0:1148 + 0:0001442Reh Reh > 300
; (4.50)

which is shown in �gure 4.49 by the dashed line.

The Cm2 calibration in (4.50) has been tested using the current numerical im-

plementation of the fE 00-e�00-gm002
1 transport equations. For the same reasons discussed

in § 4.7.1, the same initial pro�les of ~m1, fE 00, and e�00 as used in the Sc = 7 case were
used. However, the initial pro�les of gm002

1 were taken from the experimental measure-

ments in § 2.4. All of the Reynolds number-dependent model coe¢ cients remained

unchanged with the exception of Cm2. Accordingly, the same mixing layer growth was

achieved as shown in § 4.6.2; however the degree of molecular mixing was reduced

using the new Cm2 calibration. A comparison of the molecular mixing parameter

�(z = 0) from the high Schmidt number model and the reacting �ow measurements

is shown in �gure 4.50. The model and the experiment show favorable agreement,
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Figure 4.50 Comparison of �(z = 0) from the model using the high Schmidt number

calibration of Cm2 and the Pr = 7 and Sc � 103 experiments.

despite the approximations required to generate the calibration in (4.50).

As shown from the previous results, a good indicator of the physical accuracy

of a model is the ability to correctly predict the total amount of production and

dissipation for a given transport equation. Accordingly, the evolution of the integrated

dissipation pro�les from �gure 4.48 and the model are compared in �gure 4.51. Again,

the model is capable of capturing the evolution of the integrated dissipation rate. The

discrepancy at early times (� � 0:3�0:6) is due to the required approximation of Cm2

below Reh = 300.
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estimated integrals from �gure 4.48.
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5. CONCLUSIONS

5.1 Summary

This work combined experimental measurements, DNS, and the development of a

three- or four-equation RANS model to examine the turbulent mixing dynamics of a

small Atwood number Rayleigh�Taylor mixing layer at moderate and large Schmidt

numbers. A summary of the signi�cant accomplishments and conclusions from this

work is given below.

1. A hot/cold water (Pr � Sc = 7) arrangement of the Texas A&M Rayleigh�

Taylor water channel and a high-resolution thermocouple system were used

to make high-�delity measurements of density statistics, the molecular mixing

parameter �(z = 0) (see § 2.3.2), probability density functions of the centerplane

density �uctuations (see § 2.3.3), and density variance spectra (see § 2.3.4). A

minimum value �(z = 0) = 0:375�0:125 was measured at � � 0:35 (Reh � 200)

and a late-time (� = 1:36) value �(z = 0) = 0:6 � 0:05 was also measured. A

transition in � was observed at � � 0:35 orReh � 200, where the laminar stirring

motions of the mixing layer became more three-dimensional and � changed from

decreasing to increasing in time (see �gure 2.3).

2. Experimental measurements of the PDF of the density �uctuations (see �gure

2.4) on the centerplane of the mixing layer exhibited a bimodal shape at early

times (� < 0:8), indicating that the two �uids in the layer exist in a �stirred�

state (i.e. as separate �uids), with little �uid existing in a �mixed�state (i.e.

molecularly mixed). After � = 0:8, the PDF is more complex, with an approxi-

mate combination of a bimodal distribution similar to the early-time PDF and a

Gaussian distribution centered about f1 = 0:5, indicating a greater production

of molecularly-mixed �uid at later times. The symmetry of P (f1) also indicates
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that the composition of mixed �uid on the centerplane is not biased to either

the heavy or light �uid side.

3. A salt/fresh water arrangement in the water channel was used to study a

di¤usion-limited, chemically-reactive, Sc � 103 Rayleigh�Taylor mixing layer.

Experimental diagnostics were developed and validated to measure the amount

of chemical product formed within the mixing layer (see § 2.4.1�2.4.7). Mea-

surements of the chemical product pro�les and the equivalent product thickness

P=h were obtained for various neutralization equivalence ratios 'n (see § 2.4.5).

For 'n ! 0, the evolution of P=h was found to follow a similar nonlinear

transition process to that of shear-driven mixing layers, where P=h is small at

Reh . 200. Once the mixing layer enters a nonlinear transitional regime, P=h

begins to increase; however a �nal, late-time value of P=h was not observed for

the facility-limited Reynolds number Reh � 3000 or � � 1:9 (see �gure 2.19).

4. Analysis techniques for the experimental data were developed to obtain the

density variance �02 from the chemical product formation measurements (see

§ 2.4.9), and therefore the molecular mixing parameters � and �. The �rst

resolution-independent measurements of �, �, and � were reported for a Sc �

103 Rayleigh�Taylor mixing layer (see �gures 2.24, 2.26 and 2.27). Similar to the

early-time transition in P=h, both �(z = 0) and � demonstrated a transitional

behavior at Reh � 200, before which �(z = 0) � � � 0:1. After the transition

to a more three-dimensional mixing layer, both �(z = 0) and � continued to

increase (see �gures 2.26 and 2.27), indicating that the mixing layer contained

increasingly more mixed �uid with respect to the Reynolds number.

5. Comparison of the hot/cold (Pr � Sc = 7) and salt/fresh (Sc � 103) water

experiments with the Sc = 0:7 gas-phase experiments of Banerjee (2006) (see
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�gure 2.28) showed that the Schmidt number strongly in�uences the degree of

molecular mixing at small and moderate Reynolds numbers. At later times,

the dependence of �(z = 0) on the Schmidt number persists, but is reduced at

higher Reynolds numbers, where all Schmidt number experiments fall within

�(z = 0) = 0:5�0:7.

6. To further examine the dynamics in a Rayleigh�Taylor mixing layer, a three-

dimensional DNS model of the Sc = 7 water channel experiment was devel-

oped (see § 3.2). In addition, a methodology for implementing experimentally-

measured density, interfacial, and velocity perturbations within the simulation

was also developed (see Appendix D). This is the �rst reported DNS of a

Rayleigh�Taylor mixing layer for Sc > 1, and late-time Reynolds numbers of

Reh = 1712 and Rew� � 95 were achieved. Good agreement was demonstrated

between the simulation and experimental measurements of h, �(z = 0), u02i ,

Ew(k), and E�(k) (see § 3.4).

7. In addition to the comparison with experimental measurements, statistics quan-

tifying the degree of molecular mixing were obtained from the DNS. The evo-

lution of �, �('), and the PDF P (f1) were obtained. Comparison of �('! 0)

obtained from the Sc = 7 DNS with the Sc � 103 experiments indicates that

the Schmidt number has a signi�cant in�uence on the production of chemical

product for all Reynolds numbers examined (see �gure 3.23). At the latest times

measured, �('! 0) approaches the small Reynolds number limit of �('! 0)

measured in Sc = 0:7 shear-driven mixing layers.

8. Comparing the Sc = 7 DNS with the measurements of P (f1) from the Pr = 7

experiments (see �gures 2.4 and 3.28), the same bimodal structure of P (f1)

was observed for � < 1, with a more complex structure observed for � & 1.
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Measurements of P (f1) and the mean mixed �uid composition �fm1 across the

mixing layer from the DNS indicate that P (f1) has an approximate �tilted�

shape, where the mixed �uid contains more lighter �uid above the centerplane

and more heavy �uid below the centerplane.

9. The DNS data set was also used to obtain budgets for the mean heavy �uid mass

fraction, mean momentum, turbulent kinetic energy, turbulent kinetic energy

dissipation rate, mass fraction variance, and mass fraction variance dissipation

rate transport equations (see § 3.6.1�3.6.7). This work presents the �rst budgets

of the �0,gm002
1 , andf�00 transport equations for this �ow. The analysis has explic-

itly shown which terms are dominant and which have a negligible contribution

to the overall dynamics: the shear-driven production terms and dilatational

terms were shown to be negligible, whereas buoyancy and turbulent production

terms were not. The evolution of the production-to-dissipation ratios for each

transport equation were calculated, where the late time-values P fE00=DfE00 � 2,
P �

0
=D�0 � 1:1, Pgm002

1 =D
gm002
1 � 1:2, and Pf�00=Df�00 � 1 were obtained (see �gures

3.51, 3.59, 3.67, and 3.74).

10. From the a priori budget analysis, the pressure transport of fE 00 was found to
be non-negligible and complex in behavior (see �gures 3.46 and 3.47). A bifur-

cation point was observed (see �gure 3.48) at the onset of nonlinear, secondary

instabilities, where the pressure �uctuations transported fE 00 in a down-gradient
manner, away from the centerplane at early times (� � 0:29). After this transi-

tion point (� > 0:29), the pressure transport developed a more complex pro�le

that opposed the down-gradient turbulent �ux of fE 00 within the turbulent core of
the mixing layer (jz=hj < 0:5), but augmented the turbulent �ux of fE 00 outside
the boundaries of the layer (jz=hj > 0:5).
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11. Budgets of the transport equations taken from the DNS were compared a priori

with their respective gradient-di¤usion and scale-similarity closures to test the

predictive accuracy of RANS-type models for turbulent Rayleigh�Taylor mix-

ing (see § 4.3). The Boussinesq eddy viscosity model was found to predict the

overall shape of the diagonal Reynolds stress components; however, the intrin-

sic assumption of isotropy prevented the model from accurately predicting the

magnitudes of the stresses (see § 4.3.2). Furthermore, the contribution of the

Reynolds stress tensor to the mean momentum equations was negligible for this

small Atwood number mixing layer.

12. The a priori comparison of turbulent �uxes with their respective gradient-

di¤usion closures showed that these closures captured the turbulent redistribu-

tion in the di¤erent transport equations (see § 4.3.3). From this comparison, the

turbulent Schmidt numbers were calibrated by minimizing the L2 norm di¤er-

ence between the DNS and model pro�les. The values obtained were lower than

the values implemented in �standard�fE 00-e�00 models for Rayleigh�Taylor mixing,
where late-time values �� � �m = 0:09, �k = 0:11, �� = 0:15, �m2 = 0:19, and

�� = 0:18 were obtained.

13. Calibrations of the scale-similarity models used to close terms in the �0,gm002
1 , andf�00 transport equations were examined a priori (see § 4.3.5). The calibration of

the buoyancy production of �0 resulted in a model parameter C�0 = 1:43 at late

time, which is larger than the typically-reported value C�0 � 0:9. Similarly, the

calibration of the turbulent destruction model parameter C�2 = 2:26 was also

larger than the canonical value C�2 = 1:92; however, this parameter was still

changing at the end of the DNS (see �gure 4.21). The scale-similarity closures

in the gm002
1 and f�00 transport equations also exhibited good agreement with the
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DNS; however, the calibrated parameters also exhibited a similar low Reynolds

number dependence as C�0 and C�2. At late times (� � 1:3 or Reh � 1200),

the calibrated parameter corresponding to the turbulent destruction of gm002
1

approached the expected high-Reynolds number value Cm2 = 0:5 (see �gure

4.29).

14. The parameter calibrations obtained from the a priori analysis were validated

by an implementation of the modeled transport equations in a one-dimensional

numerical code (see § 4.4). A posteriori comparisons of the model predictions

with experimental measurements and DNS showed good agreement when the

Reynolds number-dependent parameters were used (see § 4.6). The model was

able to capture the early-time, low-Reynolds number dynamics of a transitional

mixing layer, as shown in the comparison of the DNS and model production-to-

dissipation ratios in �gures 4.44 and 4.45. When only the late-time parameters

were used, the model showed only fair agreement with the DNS and experiment,

and was not able to capture the early-time dynamics.

15. A combination of high Schmidt number measurements of �f1 and f 021 with the

DNS transport equation budgets were used to calibrate Cm2 for the Sc � 103

case [see (4.50)]. The calibration of Cm2 was found to be phenomenologically

similar to the Sc = 7 calibration, but lower in magnitude (see �gure 4.49).

Using the parameters from the Sc = 7 calibration along with the high Schmidt

number Cm2 calibration, the model was able to also reproduce the evolution of

�(z = 0) measured in the experiment (see �gure 4.50).



268

5.2 Future Work

The future implications for this work are listed below.

1. The measurements of the equivalent product thickness P=h and the molecular

mixing parameters �(z = 0) and � from the Sc � 103 experiments have yet

to reach their respective late-time asymptotic values by Reh � 3000. A larger

facility, approximately 70 cm in height, could achieve Reh > 12000, and likely

observe late-time, entrainment-limited dynamics.

2. A second method of measuring the degree of mixing in a high Schmidt number

mixing layer may be achieved by using the existing laser system in conjunction

with a �uorescing dye. Calibrated planar-laser induced �uorescence techniques

may be applied directly to the water channel experiments to measure instan-

taneous dye concentrations, which in turn may be related to the local volume

fraction of the �uid containing the dye. However, this technique is not free

of resolution requirements. The Batchelor scale in the large Schmidt number

experiments is approximately �B � 0:15 �m at Reh � 12000, which must be

resolved by the optical measurement system. In addition, such techniques are

more sensitive to experimental errors associated with the index of refraction

di¤erence between the salt and fresh water, as opposed to the reacting �ow

measurements presented in § 2.4. Thus, care must be taken to account for

index of refraction di¤erences.

3. The DNS of the water channel experiment was limited to the Sc = 7 case, and

a DNS of the large Schmidt number case will not be feasible in the immediate

future. However, relatively recent subgrid-scale models have been shown to

capture the physics of Schmidt number-dependent subgrid-scale mixing (Pullin
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2000; Burton 2008). These appear to be the only approaches presently available

for simulating the high Schmidt number experiments. Subgrid-scale models for

active scalars, as in Rayleigh�Taylor mixing layers, may be calibrated using the

experimental results in § 2.

4. A small di¤erence in the degree of molecular mixing on the centerplane of the

mixing layer was observed between the DNS and Sc = 7 water channel ex-

periment. Great care has been taken to implement experimentally-measured

initial conditions; however, a complete understanding of the onset of secondary

instabilities and turbulent dynamics with respect to the spectral content of the

initial conditions is not fully understood. To obtain better agreement between

the DNS and experiment, a more thorough understanding of the e¤ects of initial

spectral content on the time or Reynolds number at which nonlinear dynamics

become signi�cant is needed.

5. A DNS of the Sc = 7 water channel experiment was used to calibrate model

parameters for a variety of transport equations in § 4.3. It was shown that some

of the parameters exhibited low- and moderate-Reynolds number dependence.

As this was the �rst work to calibrate the transport equations directly from

a DNS, it remains to be seen how other physical parameters a¤ect either the

model calibrations or their late-time values. As an extension to this work,

DNS with di¤erent Atwood numbers, Schmidt numbers, and initial conditions

should be performed to fully-understand the Reynolds number dynamics and

applicability of RANS-type models to Rayleigh�Taylor mixing.

6. As a second-order extension to the transport budget analysis and model cal-

ibration, additional closures and transport equations could be examined. An

advanced formulation of the Reynolds stress tensor (algebraic or nonlinear)
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should produce better agreement with the anisotropy observed within the mix-

ing layer. Given an improved model for the Reynolds stress tensor, a form of

the generalized gradient-di¤usion hypothesis might yield even better correlation

between the DNS and the model for the turbulent �uxes. With respect to the

unresolved pressure transport closure, a derivation and analysis of the pressure

transport equation may yield insight into closure models that could capture the

complex physics of p0w00. Finally, the full Reynolds stress transport equations

should be considered for analysis and modeling due to the ability of such models

to capture anisotropic and low Reynolds number e¤ects.
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APPENDIX A

REACTING FLOW EXPERIMENTAL PROCEDURES

The standard operating procedures for the reacting �ow experiments are listed

below.

1. Flush any old water out of the water tanks and water channel.

2. Fill each 500 gallon tank with water at the same temperature.

3. Using a steel tape measure, measure the depth of the water in the lighter �uid

tank. The total volume of the tank can then be calculated by volume = depth

� (diameter=2)2, where the diameter of the tank is 52 inches. This information

will be needed to calculate the proper amount of chemical indicator to add.

4. Turn on the sump pumps.

5. Add 100�125 ml of sodium thiosulfate (Na2S2O3) at 2:0 N (�normal�or molar)

to the each 500 gallon tank to dechlorinate the water.

6. Put pH meter probe in tap water and let rest for 30 minutes.

7. Calibrate pH meter using standard reference bu¤er solutions at pH = 4, 7, and

10. These bu¤er solutions may be purchased from any chemical vendor, such

as VWR.

8. Using any standard handheld thermocouple probe (a K-type digital thermocou-

ple probe is available within the lab), check each tank to ensure that the water

temperature is the same to within �0:2 �C.
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9. Measure out approximately 1:5 L of salt (NaCl) in a beaker and add to heavy

�uid tank by dissolving 200 ml of salt at a time within a gallon jug of water.

Shake continuously until all 200 ml of salt is dissolved and then pour contents

into heavy �uid tank. Repeat until all 1:5 L of salt have been added to heavy

�uid tank.

10. Starting with a concentrated solution (30�40% w/w) of sodium hydroxide

(NaOH), which can be purchased from any major chemical supplier such as

VWR, pour the concentrated solution into heavy �uid tank and let mix until a

�nal pH1 = 11:5� 0:05 is achieved.

11. Starting with a concentrated solution (30�40% w/w) of hydrochloric acid (HCl),

which can be purchased from any major chemical supplier such as VWR, pour

the concentrated solution into lighter �uid tank and let mix until a �nal pH2 =

7� 0:05 is achieved.

12. Measure the density of the �uid in each tank using the following sub-steps.

12a. Con�rm calibration of electronic balance by measuring calibration masses (avail-

able from MEEN department equipment room). Electronic balance should read

same value of mass as listed in the ScaleCalibration.m (see DVD of Matlab

analysis scripts for the reacting �ow experiments).

12b. Use a 10 ml pipette to siphon 50+ ml of �uid from each tank. Note that, to

prevent contamination of �uid samples used to calculate the density of each

�uid, a di¤erent pipette must be used for each tank.

12c. Measure mass of empty class A 50 ml �ask.

12d. Place 50�55 ml of �uid in a class A 50 ml �ask.
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12e. Remove �uid from �ask as necessary until only 50 ml exactly remains.

12f. Measure mass of �uid and �ask and record.

12g. Add �uid to �ask and then remove �uid until exactly 50 ml remains.

12h. Repeat steps 12d�12g until approximately 10�12measurements have been record-

ed for each �uid.

12i. Calculate density of each �uid, where the density of the �uid is given by average

of the 10�12 mass measurements recorded minus the mass of the �ask, divided

by the volume of �uid within a sample (50 ml). If density di¤erence is less than

desired, add more salt (approximately 200 ml) to heavy �uid as was done in

step 9 and repeat measurement of heavy �uid density as listed in steps.

13. Turn on water channel backlighting.

14. Use hose to �ll water channel with water.

15. Remove any bubbles trapped under the splitter plate, on the endscreen, and

between the back wall and translucent velum either by hand or with a hose.

16. Calculate volume of concentrated phenolphthalein (C20H14O4) to add to light

�uid tank, where

Vconcentrate [In]concentrate = Vtank [In]tank :

For a 1% phenolphthalein solution (purchased from VWR), [In]concentrate =

0:031415 mol/L. The volume of the tank is calculated in step 3. The desired

concentration of indicator in the lighter �uid tank is [In]tank = 6 � 10�6. De-
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pending upon the exact volume of the tank, typically Vconcentrate � 350 ml of

phenolphthalein will need to be added to the lighter �uid tank.

17. Using a 50 ml graduated cylinder, add phenolphthalein in 50 ml increments to a

1000 ml graduated cylinder until the total volume of phenolphthalein calculated

in step 25 has been added to the 1000 ml cylinder.

18. Pour the phenolphthalein concentrate into the lighter �uid tank and let the

sump pumps mix the tank.

19. Set up camera (Canon Powershot A80), tripod, and light �lter (Hoya HMC

green �lter) as shown in instructional video.

20. Place reference ruler within water channel and capture reference image. This

information will be required to calculate the pixel spacing for the image analysis

scripts, speci�cally within MSetImageProp.m.

21. Check �nal pH and temperature of each �uid tank using the pH probe and

handheld thermocouple probe and record.

22. To eliminate any possible electrical interference with the experiment, diagnos-

tics, and backlighting, turn all unnecessary electronics o¤, i.e. sump pumps, air

conditioning, lights, etc. with the exception of the background lighting and the

camera system.

23. Set camera to ISO 100, shutter speed 1=60 s, aperture f=7:1, high-speed, con-

tinuous capture mode (see instructional video or camera manual).

24. Start recording images to capture baseline, background images. Record for

approximately 1 minute.
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25. Turn on heavy and light �uid pumps and open exit plenum valves.

26. Set �uid velocities for each stream to Um = 5 cm/s, adjust rotameters as neces-

sary to eliminate shear between the top and bottom streams, and record mean

advective velocity.

27. Let experiment run. The camera will record images of mixing layer.

28. Run the experiment until each 500 gallon water tank has been emptied.

29. Upon completion of the experiment, turn o¤ the water pumps, place water hose

in upper portion of the entrance plenum, and turn on the water to �ush any

residual chemicals out of the water channel.

30. After approximately 5 minutes, place the water hose in the lower portion of

the entrance plenum to �ush any remaining residual chemicals out of the lower

portion of the channel.

31. Re�ll each 500 gallon water tank with fresh water.

32. After �ushing the water channel with the water hose, rinse all top plates and

bottles that have come into contact with the acidic or alkaline �uids.

33. Once each 500 gallon water tank is half-way �lled, turn the sump pumps back

on to �ush in residual chemicals from the sump pumps.

34. Upon �lling the 500 gallon water tanks, turn on the main water pumps and

�ush the entire system with the fresh water.
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APPENDIX B

FOURIER ANALYSIS OF DATA

Given a set of data points along a line u(x), it is possible to decompose u(x) into

a Fourier series and calculate its energy density spectrum. The Fourier series can be

written as

u(x) =
X
k

û(k) eikx ; (B.1)

where û(k) is the amplitude of each wavenumber and k � 2�=� is the wavenumber

for each wave. The amplitude of each wave û(k) is complex, and thus contains both

amplitude and phase information. An alternate expression for the original trace is

u(x) =
X
k

Re [û(k)] cos (kx) + Im [û(k)] sin (kx) (B.2)

or

u(x) =
X
k

jû(k)j cos [kx+ ' (k)] ; (B.3)

where

'(k) = tan�1
�
Im [û(k)]

Re [û(k)]

�
(B.4)

is the phase angle of the wave.

The amplitude of each wave û(k) is calculated by taking the Fourier transform

û(k) =
1

L

Z L

�L
u(x) e�ikx dx : (B.5)
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The energy of each mode is calculated

Êu(k) =
û(k) û�(k)

2
; (B.6)

where û�(k) is the complex conjugate of û(k). The total energy in u(x) can be

calculated by summing the energy over all wavenumbers

u02

2
=
X
k

Êu(k) : (B.7)

The energy density spectrum is calculated from the energy spectrum by normalizing

Êu(k) by the width of each wavenumber bin

Eu(k) =
Êu(k)

�k
: (B.8)

The energy density spectrum has the property

u02

2
=

Z 1

0

Eu(k) dk : (B.9)

The total energy of u(x) can be computed by the following means:

Variance of original trace E = u02

2
= 1

4L

R L
�L [u(x)� �u]

2 dx

Summation of Êu(k) E =
X
k

Êu(k)

Integration of Eu(k) E =
R1
0
Eu(k) dk

(B.10)
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All methods should result in the same value of total energy E to within the error

limits of the numerical integration scheme used.

In two-dimensional space, a �eld of values u(x; y) may be written in terms of a

two-dimensional Fourier series

u(x; y) =
X
kx;ky

û(kx; ky) e
i(kxx+kyy) ; (B.11)

where û(kx; ky) is the amplitude of a wave. The magnitude of the wavevector is

jkj =
q
k2x + k

2
y (B.12)

and the wavelength is

� =
2�

jkj: (B.13)

The wave is traveling in a direction � from the x-axis, such that

�(kx; ky) = tan
�1
�
ky
kx

�
: (B.14)

The �eld u(x; y) may also be expressed in an alternative manner

u(x; y) =
X
kx;ky

û(kx; ky)

0BBBBBBB@

cos (kx x) cos (ky y)

� sin (kx x) sin (ky y)

+i cos (kx x) sin (ky y)

+i sin (kx x) cos (ky y)

1CCCCCCCA
(B.15)
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or

u(x; y) =
X
kx;ky

Re [û (kx; ky)] cos (kx x) cos (ky y) (B.16)

�Re [û (kx; ky)] sin (kx x) sin (ky y)

� Im [û (kx; ky)] cos (kx x) sin (ky y)

� Im [û (kx; ky)] sin (kx x) cos (ky y) :

The phase of each wave is

'(kx; ky) = tan
�1
�
Im [û(kx; ky)]

Re [û(kx; ky)]

�
: (B.17)

The complex-valued amplitudes for each mode are calculated by taking the two-

dimensional Fourier transform of u(x; y),

û(kx; ky) =
1

LxLy

Z Lx

0

Z Ly

0

u(x; y) e�i(kxx+kyy) dy dx : (B.18)

The energy in each mode is given by

Ê(kx; ky) =
û(kx; ky) û

�(kx; ky)

2
; (B.19)

where û�(kx; ky) is the complex conjugate of û(kx; ky). The total energy in u(x; y)

can be calculated by summing the energy over all wavenumbers

u02

2
=
X
kx;ky

Êu(kx; ky) : (B.20)
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The energy density spectrum is calculated from the energy spectrum by normalizing

Êu(kx; ky) by the area of each wavenumber bin

Eu(kx; ky) =
Êu(kx; ky)

�kx�ky
: (B.21)

Once normalized, the energy density spectrum has the property

u02

2
=

Z 1

0

Z 1

0

Eu(kx; ky) dky dkx : (B.22)

Typically, the two-dimensional spectra can be reduced to one-dimensional form

by summing the energy content Ê(kx; ky) within azimuthal rings of constant k =p
k2x + k

2
y and width �k, where �k can be speci�ed as desired. Typically, for the

case Lx = Ly, the wavenumber bin width is chosen to be �k = �kx = �ky. Summing

the azimuthal energy content in Ê(kx; ky) gives

Ê(k) =
X
kx;ky

Ê(kx; ky) �

�q
k2x + k

2
y � k �

�k

2

�
�

�q
k2x + k

2
y < k +

�k

2

�
; (B.23)

where

�(x) =

8><>: 1 x = 1 (boolean true)

0 x = 0 (boolean false)
: (B.24)

The one-dimensional energy density spectrum is calculated by normalizing Ê(k) by

�k,

E(k) =
Ê(k)

�k
: (B.25)
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Similar to the one-dimensional energy density spectrum in the previous section and

the two-dimensional energy density spectrum, the total energy in u(x) is

u02

2
=

Z 1

0

Eu(k) dk : (B.26)

The code in MFFT and MFFT2D (written to compute Fourier transforms and prop-

erly format output for this work) accounts for two issues that arise from using Matlab

proprietary fft and fft2 algorithms. The �rst issue deals with the proper normaliza-

tion of the amplitudes returned by fft and fft2. In MFFT, the Fourier coe¢ cients

calculated by fft are scaled by 2=Nx, where Nx is the total number of data points in

the original trace. The factor of two arises from the fact that the Fourier coe¢ cients

are symmetric about k = 0. Thus, û(k)eikx = û(�k)ei(�k)x. The negative wavenum-

ber portion of the spectrum is ignored due to this symmetry; however, to enforce the

fact that û(k) is in fact the amplitude of each Fourier mode, the factor of two must be

used. In two dimensions, the Fourier coe¢ cients are normalized by 1=(NxNy), where

Nx and Ny are the number of points in the x- and y-directions, respectively. The

factor of 2 is not used in two dimensions as the symmetric portion is retained in this

case, by choice.

The Fourier coe¢ cients returned by Matlab are each associated with a particular

wavenumber. However, the wavenumber axis of the coe¢ cients returned by fft do

not follow a monotonic pattern, such as k = 2�m=�, where the mode number m is

mmonotonic = f�Nk + 1 ::: � 1 0 1 ::: Nk � 1g ; (B.27)
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where Nk is the Nyquist mode number

Nk =
Nx
2
: (B.28)

Instead, the Fourier coe¢ cients are arranged according to the following mode number

array (Trefethen 2000)

mMatlab = f0 1 ::: Nk � 1 0 �Nk + 1 ::: � 1g : (B.29)

Note that the zeroth mode is repeated. While it is trivial to avoid adding Eu(k = 0) to

the total energy content with one-dimensional spectra, more caution must be exercised

in two dimensions.

Similarly, in two-dimensions, the two-dimensional array of Fourier coe¢ cients

generated by fft2 has mode numbers

mx;Matlab = f0 1 ::: Nk;x � 1 0 �Nk;x + 1 ::: � 1g

my;Matlab = f0 1 ::: Nk;y � 1 0 �Nk;y + 1 ::: � 1g :
(B.30)

Now the issue of double counting energy values exists when calculating

u02

2
=
X
kx;ky

Êu(kx; ky) : (B.31)

The two dimensional array of Fourier coe¢ cients is organized as shown in �gure B.

The blue regions represent Fourier coe¢ cients that are repeated values.
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Schematic representation of the two-dimensional matrix returned by fft2.

MFFT rearranges the output from Matlab so that

m = f1 ::: Nk � 1 �Nk � 1 :::� 1 0g : (B.32)

For one-dimensional spectra, the aliased portion of symmetric values can be neglected

by truncating the output arrays (as shown above) by the following code:

Nk = round(length(u_hat) / 2);

u_hat(Nk+1 : length(u_hat)) = [];

k(Nk+1 : length(k)) = [];

Similarly, MFFT2D reformats the output from Matlab so that the axes of the �nal

two-dimensional array are

mx = f�Nk;x + 1 ::: � 1 0 1 ::: Nk;x � 1g

my = f�Nk;y + 1 ::: � 1 0 1 ::: Nk;y � 1g
(B.33)

and no amplitudes or energy values are repeated.
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APPENDIX C

NEUTRALIZATION CHEMISTRY

In aqueous solutions, the concentration of hydrogen and hydroxide ions satisfy

the reversible reaction

H2O
 H+ +OH� (C.1)

with equilibrium constant

Kw = [H
+][OH�] = 1� 10�14 : (C.2)

A mixture of two �uids with volume fractions f1, f2 and hydrogen ions concentrations

pH1, pH2, will reach a new equilibrium value pHmix as determined by conservation of

mass and equilibrium constraints. The initial, unmixed ion concentrations are given

by

a0 = f1 [H
+]1 + f2 [H

+]2 ; (C.3)

b0 = f1 [OH
�]1 + f2 [OH

�]2 ; (C.4)

which may not necessarily satisfy the equilibrium constraint in (C.2). Upon mixing,

a0 and b0 will decrease by an amount x, giving �nal concentrations amix = a0�x and

bmix = b0 � x. The new equilibrium concentrations amix and bmix must then satisfy

the equilibrium constraint (C.2), where

Kw = [H+][OH�] (C.5)

= (a0 � x)(b0 � x)

= a0 b0 � x(a0 + b0) + x2 :
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The change in ion concentrations, x, can be calculated by solving the quadratic

equation in (C.5), giving

x =
(a0 + b0)�

p
(a0 + b0)2 � 4(a0 b0 �Kw)

2
(C.6)

where the negative root provides the physical solution. Accordingly, the �nal pH of

the mixture is given by pHmix = � log10(a0 � x).
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APPENDIX D

DNS INITIAL CONDITIONS

Many numerical simulations of Rayleigh�Taylor mixing have been performed to

study the growth of turbulent mixing layers at various Atwood numbers. As much

of this work has been focused on examining the late-time turbulent growth regime of

a mixing layer, far less e¤ort has been given to simulations representing physical ex-

periments. As a result, most three-dimensional simulations are initialized with small

ad hoc, isotropic perturbations to the initial interface separating the heavy and light

�uids. Few simulations have used experimentally-measured initial conditions and, to

date, no direct numerical simulation of a turbulent Rayleigh�Taylor experiment has

been performed. Table D.1 lists an abbreviated list of pertinent Rayleigh�Taylor sim-

ulations and their respective numerical techniques and initial conditions used. The

DNS presented in this work di¤ers from all other numerical simulations in Table D.1

as the initial conditions implemented here come from measured initial perturbations

in the water channel (Mueschke et al. 2006). An overview of the initial conditions

and implementation methods is presented here.

The initial density �eld in the DNS is modeled as

�(x; y; z) =
�1 + �2
2

+
�1 � �2
2

erf

�
z + �(x; y)

"

�
; (D.1)

where �(x; y) is the two-dimensional interfacial perturbation, " = �=2 = 0:15 cm is

the half-width of the initially-di¤use interfacial thickness separating the heavier and

lighter �uid, and erf(�) is the error function. The initial interfacial perturbation �(x; y)

is de�ned as the local vertical displacement of the point at which � = (�1 + �2)=2
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Researcher
Numerical

Technique
Interfacial Velocity

Youngs (1991) MILES Isotropic

Youngs (1994) MILES Isotropic

Linden et al. (1994) MILES

Dalziel et al. (1999) MILES Isotropic
Anisotropic;

Measured

Cook and Dimotakis (2001); DNS Isotropic

Cook and Zhou (2002);

Cabot et al. (2004)
DNS Isotropic

Cook et al. (2004) LES Isotropic

Cabot and Cook (2006) DNS Isotropic

Ristorcelli and Clark (2004) DNS Isotropic

Ramaprabhu and Andrews (2004b) MILES
Isotropic;

Measured

Ramaprabhu and Andrews (2004b) MILES
Isotropic;

Measured

Dimonte et al. (2004)

MILES;

Euler PPM;

DNS

Isotropic

Current Work DNS
Anisotropic;

Measured

Anisotropic;

Measured

Table D.1 Table of selected three-dimensional Rayleigh�Taylor simulations.
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from the centerplane (z = 0) and has the same units as z and ". While the interfacial

perturbation �(x; y) is used to de�ne the initial density �eld, the DNS does not directly

track or evolve a numerical interface between the two �uid components.

The initial interfacial perturbations have been parameterized from measurements

from a set of water channel experiments (Mueschke et al. 2006). To facilitate a com-

parison of experimental measurements and DNS data, a stochastic representation of

the experimental initial perturbations is used to seed the initial conditions of the DNS.

Spectra of interfacial perturbations from the experiment in the x- and y-directions,

�̂(kx) and �̂(ky) respectively, are used to formulate the initial interfacial perturbation

�(x; y) =
kmaxX

kx=kmin

�̂(kx) e
ikxx +

kmaxX
ky=kmin

�̂(ky) e
ikyy ; (D.2)

where kx = 2�=�x and ky = 2�=�y are the wavenumbers in the x- and y-directions.

The perturbation amplitudes in the x- and y-directions,
����̂(kx)��� and ����̂(ky)���, are taken

from the experimentally-measured spectra shown in �gure D.2:

����̂(ki)��� =q4�k E�(ki) ; i = x; y : (D.3)

Phases for each mode were chosen from a uniform distribution of random values

between �� and �.

This initialization method is novel in that experimentally-measured perturba-

tions have been used in both the x- and y-directions, and no assumption of isotropy

has been made. While separate interfacial perturbation spectra are applied in the x-

and y-directions, this method is still comparable to the commonly used methods of

initialization using azimuthally-averaged (i.e. isotropic) energy spectra (Youngs 1994;
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Cook & Dimotakis 2001; Ramaprabhu & Andrews 2004b; Dimonte et al. 2004). In

wavenumber space, the current initialization of the interfacial perturbations limits

�uctuations to those modes aligned with the x- and y-axes only. This di¤ers from

isotropic initializations where azimuthal rings of radius k =
p
k2x + k

2
y are populated

with energetic modes.

The initial velocity �uctuations present in the mixing layer at the onset of the

instability were measured using particle-image velocimetry (PIV) (Mueschke et al.

2006). An initial velocity �eld can then be constructed based on the initial vertical

velocity variance spectrum at the centerplane (z = 0), shown in �gure D.3. To ap-

ply the initial centerplane vertical velocity �uctuations to the entire computational

domain, a velocity �eld must be parameterized based upon Ew(kx). This is accom-

plished by de�ning a velocity potential �eld similar to that used in the linear stability

analysis of Kelvin�Helmholtz and Rayleigh�Taylor instabilities (Drazin & Reid 2004).

The velocity potential in �uid r = 1; 2 is

�r(x; t = 0) =
kmaxX

kx=kmin

ŵ(kx)

kx
eikxx�kxjzj : (D.4)

The initial velocity �eld is the sum of the gradient of the potential �eld and a term

proportional to the density gradient

ui(x; t = 0) =
@�r
@xi

� D
�

@�

@xi
; i = x; y; z ; (D.5)

whereD = �=Sc is the species mass di¤usivity, � is the kinematic viscosity and Sc = 7

is the Schmidt number (see Table 3.1). The density gradient term in (D.5) accounts

for the velocity �eld that exists due to the initial density gradient between the top
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Figure D.1 Initial interfacial (top) and centerplane vertical velocity (bottom) pertur-

bation isosurfaces.

and bottom �uids, as r � u 6= 0 when Dr� 6= 0 (Joseph 1990; Sandoval 1995).

A visualization of the initial interfacial and vertical velocity perturbations is

shown in �gure D.1. As noted in Table D.1, the initial perturbations are anisotropic.

In addition, there are no velocity perturbations in the y-direction. Thus, any three-

dimensional turbulent structures that develop are due to the interfacial perturbations

in the y-direction.
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In developing the formulation of the initial conditions shown in (D.2) and (D.4),

several issues arise which must be considered. First, the measurement of the initial

interfacial perturbations in the x-direction �̂(kx) must be inferred from the density

�uctuation measurements on the centerplane �̂(kx). The density variance spectrum

�̂(kx) is not explicitly equivalent to the spectrum of interfacial perturbations �̂(kx);

however, a relationship between �̂(kx) and �̂(kx) does exist. This relationship relies

upon Eq. (D.1) as an adequate model for the initial density �eld and " assumed to

be a constant. This parameterization assumes that di¤usion occurs only in the z-

direction, which is valid in this case where �̂(k)� � = 2�=k. Also, when measuring

the density �uctuations at a distance x = 0:5 cm from the splitter plate, the hot and

cold water streams have been in contact for the same amount of time and, thus, an

approximation of a constant " is plausible.

To relate E�(kx) to E�(kx) in the x-direction using (D.1), the �uctuating density

�eld on the centerplane can be expressed as a sum of Fourier modes

�(x; z = 0)0 = �(x; z = 0)� �1 + �2
2

=
kmaxX

kx=kmin

�̂(kx) e
ikxx : (D.6)

Substituting (D.6) into (D.1) evaluated at z = 0 gives

kmaxX
kx=kmin

�̂(kx) e
ikxx =

��

2
erf

�
�(x)

"

�
; (D.7)

where �� � �1 � �2, and the interfacial perturbation �(x; y) has been restricted to

the x-axis. Solving for �(x) then gives

�(x) = " erf�1

"
2

��

kmaxX
kx=kmin

�̂(kx) e
ikxx

#
: (D.8)



312

The interfacial perturbation spectrum, E�(kx) can be computed by taking the one-

dimensional Fourier transform of the reconstructed interfacial perturbation �(x) in

(D.8). While this procedure is required to correctly implement the interfacial pertur-

bation in the x-direction, the calculated spectrum E�(kx) exhibits negligible di¤er-

ences from the measured spectrum E�(kx).

Another issue which must be examined arises because the numerical grid of the

DNS is capable of supporting only a �nite number of waves, where the total bandwidth

is bounded by the total domain size

kmin =
2�

Lx
;
2�

Ly
(D.9)

and the grid resolution (Nyquist limit)

kmax =
�

�x
;
�

�y
: (D.10)

In general, the set of discrete wavenumbers supported by the numerical grid does not

match the speci�c wavenumbers at which the experimentally-measured energy spectra

are reported. Thus, a strategy is required to apply the experimentally-measured

energy values to the discrete wavenumbers supported in the DNS.

Two means of implementing the initial energy spectra have been investigated.

The most straight-forward method is to interpolate the energy from the experimental

spectrum at each wavenumber supported by the numerical grid. This method, in

the limit of su¢ cient numerical resolution, will give matching energy values for the
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experimental and DNS spectra,

Z kmax

kmin

Eexp(k) dk =

Z kmax

kmin

EDNS(k) dk : (D.11)

However, a problem exists when using the interpolation method to implement

initial conditions when detailed long wavelength information must be included, which

is the case here. While a numerical grid might have a large enough domain to support

the desired longer wavelengths, due to the discrete nature of the waves supported, the

simulation spectrum may not fully resolve the shape of the experimental spectrum

at these longer wavelengths. Energy values in the longer wavelengths, as a result of

the interpolation procedure, were very sensitive to the exact domain size. To reduce

this sensitivity of the DNS results on the choice of domain size, an alternate strat-

egy of implementing the experimental spectra was investigated. The initial spectra

were formulated based upon a local integration over individual wavepackets of the

experimental spectrum, such that

EDNS(k) =
1

�k

Z k+�k
2

k��k
2

Eexp(k) dk ; (D.12)

where �k = 2�=Lx. While the numerical grid resolution of the longer wavelengths

remains the same, variations in the experimental spectral energy content can be

captured more robustly. While the interpolation method may use a dramatically

di¤erent value of long wavelength energy depending upon the exact size of the domain

(see bandwidth de�nition again), the method of local wavepacket integration should

yield more consistent results for minor changes in the domain size.

To examine the sensitivity of the DNS to the implementation of the longer wave-

length perturbations, two separate DNS with resolution 1152� 720� 1280 were per-
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Figure D.2 Initial interfacial perturbation spectra in the x- and y-directions.
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Figure D.3 Initial vertical velocity perturbation spectra at the centerplane of the mix-

ing layer in the x-direction.
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Figure D.4 Comparison of the mixing layer growth rates for di¤erent intialization

methods.
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Figure D.5 Comparison of centerplane velocity variances and molecular mixing para-

meter � for di¤erent initialization methods.
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formed using the spectra shown in �gures D.2 and D.3. The growth of the mixing

layer for each DNS is shown in �gure D.4, where the di¤erence in the growth rates are

negligible. In addition to a comparison of growth rates, the evolution of the center-

plane velocity variances and � are shown in �gure D.5 for both DNS. While di¤erences

in w02 and � are perceptible, such a small di¤erence remains negligible with respect

to the analysis of presented in § 3�4.
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APPENDIX E

TABLES OF SELECTED DATA

� Reh (approximate) �(z = 0)

0:016 22:5 0:951

0:061 31:8 0:856

0:166 55:9 0:609

0:204 68:4 0:482

0:255 89:2 0:499

0:334 124 0:427

0:342 119 0:364

0:400 158 0:480

0:473 197 0:478

0:552 270 0:438

0:694 377 0:566

0:865 649 0:583

0:924 665 0:605

1:363 1673 0:604

Table E.1 Molecular mixing parameters from Pr = 7 experiments.
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� Reh �(z = 0)

0:1 33:1 0:096

0:2 64:6 0:114

0:3 113 0:128

0:4 180 0:144

0:5 265 0:162

0:6 367 0:176

0:7 487 0:194

0:8 621 0:213

0:9 769 0:234

1:0 930 0:252

1:1 1104 0:276

1:2 1290 0:300

1:3 1491 0:333

1:4 1708 0:367

1:5 1946 0:388

1:6 2210 0:428

1:7 2504 0:440

1:8 2480 0:470

Table E.2 Molecular mixing parameters from Sc � 103 experiments.
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� Reh �m �k �� �m2 ��

0 6:6 0:309 4:000 > 10 0:081 0:081

0:0339 7:4 0:164 0:140 0:116 0:046 0:058

0:0685 8:5 0:135 0:084 0:094 0:039 0:055

0:1031 10:2 0:164 0:068 0:100 0:041 0:060

0:2058 20:8 0:130 0:065 0:149 0:056 0:078

0:2878 38:9 0:107 0:081 0:222 0:065 0:110

0:4051 83:0 0:089 0:107 0:296 0:064 0:219

0:5034 137 0:084 0:106 0:238 0:061 0:231

0:5955 203 0:078 0:096 0:170 0:055 0:166

0:6928 289 0:071 0:077 0:124 0:054 0:131

0:7988 404 0:063 0:077 0:102 0:054 0:107

0:9005 537 0:063 0:072 0:098 0:055 0:090

1:0078 708 0:066 0:069 0:095 0:058 0:102

1:0978 863 0:069 0:075 0:094 0:064 0:097

1:1946 1055 0:073 0:083 0:094 0:074 0:098

1:3042 1273 0:078 0:098 0:102 0:089 0:161

1:4079 1492 0:094 0:110 0:113 0:104 0:198

1:5206 1712 0:090 0:107 0:149 0:166 0:181

Table E.3 Turbulent Schmidt numbers calculated from DNS.
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� Reh C�0 C�2 Cm2 C�0 C�2 C�3

0 6:6 > 10 1:063 0:010 0:565 0:005 29:79

0:0339 7:4 0:381 1:170 0:102 1:280 0:045 7:485

0:0685 8:5 0:617 1:819 0:168 1:545 0:150 4:670

0:1031 10:2 0:761 2:205 0:184 1:680 0:325 3:990

0:2058 20:8 0:986 2:422 0:147 1:785 0:920 5:985

0:2878 38:9 1:094 2:437 0:141 1:890 1:670 8:090

0:4051 83:0 1:255 2:544 0:178 2:185 3:465 12:38

0:5034 137 1:459 2:664 0:242 2:510 4:925 13:98

0:5955 203 1:649 2:739 0:310 2:980 5:770 14:16

0:6928 289 1:698 2:796 0:376 3:440 6:220 14:72

0:7988 404 1:614 2:773 0:403 3:505 6:610 16:74

0:9005 537 1:523 2:770 0:407 3:260 7:280 18:58

1:0078 708 1:447 2:656 0:416 2:970 8:435 20:47

1:0978 863 1:425 2:647 0:429 2:810 9:380 21:86

1:1946 1055 1:422 2:585 0:449 2:670 10:49 22:88

1:3042 1273 1:435 2:435 0:482 2:590 11:62 23:16

1:4079 1492 1:437 2:320 0:512 2:140 12:43 23:33

1:5206 1712 1:425 2:262 0:539 2:130 13:08 23:84

Table E.4 Scale-similarity parameters calculated from DNS.
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APPENDIX F

NOMENCLATURE

A Atwood number

a(t;C�) Model amplitude coe¢ cient for model parameter C�

B0 Dimensionless measure of density variance

B2 Dimensionless density variance for immiscible two-�uid case

bij Reynolds stress anisotropy tensor

C Normalized concentration of colored indicator, [InIV ]=[In]2

C�(k) Normalized cumulative energy spectra of scalar �

C�0;C�2 Scale-similarity parameters for �0 transport equation

Cm2 Scale-similarity parameter for gm002
1 transport equation

Cpu; C
�
pu Scale-similarity parameters for pressure transport closures

C�0; C�2; C�3 Scale-similarity parameters for f�00 transport equation
C� Turbulent viscosity parameter

D Mass di¤usivity

D� Turbulent destruction of scalar �

DNS Direct numerical simulation

E 0 Reynolds-averaged turbulent kinetic energyfE 00 Favre-averaged turbulent kinetic energy

E(z; t) Exact (DNS) pro�le of unclosed quantity

E�(k) Variance spectrum for scalar �

F �d Flux of � due to molecular di¤usion

F �t Flux of � due to turbulent di¤usion
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F �p Flux of � due to pressure �uctuations

fr Volume fraction of �uid r = 1; 2

f 021 Variance of volume fraction �uctuations

f 50%2 f2 value at which 50% of indicator exists in colored form for

speci�ed pH1=pH2 combination

�fm1 Mean mixed �uid composition

g Gravity

H Height of the water channel, 32 cm

hb Width of mixing layer on bubble side of mixing layer

hs Width of mixing layer on spike side of mixing layer

I Intensity of light measured

I0 Intensity of background lighting

In Short-hand notation for phenolphthalein indicator

InIV Colored form of chemical indicator

[In]2 Free-stream concentration of phenolphthalein

K1; K2; K3 Equilibrium constants for indicator dissociation

Kf1 Kurtosis of volume fraction �uctuations

Kw Equilibrium constant for dissociation of water

K� Kurtosis of scalar �

k Wavenumber k = 2�=� (implicitly de�ned as 1D wavevector

for experiments)

k� Wavenumber of most unstable wavelength

Lx; Ly; Lz Domain size

M Molar concentration, moles per liter

M(z; t) Pro�le of modeled quantity
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mr Mass fraction of �uid r = 1; 2gm002
1 Mass fraction variance

N� Number of turbulent structures in DNS of scalar �

P=D Production-to-dissipation ratio

PDF Probability density function

PE Potential energy

P �b Production of � by buoyancy forces

P �s Production of � by shearing forces

P �t Production of � by turbulent forces

P �c Production of � by mean �eld curvature e¤ects

P �m Production of � by mean �eld gradient e¤ects

P (f1) Probability density function of volume fraction �uctuations

pH Local concentration of hydrogen ions

pH1 pH of top (heavy) �uid stream

pH2 pH of bottom (light) �uid stream

P=h Integral product thickness for Rayleigh�Taylor mixing layer

P=� Integral product thickness for shear-driven mixing layer

Pr Prandtl number, �=�

Reh Integral-scale Reynolds number for Rayleigh�Taylor mixing layer

Re� Integral-scale Reynolds number for shear-driven mixing layer

Re� Taylor�Reynolds number

R
ŵ00m00

1

Turbulent mass �ux correlation coe¢ cient

r Velocity ratio for shear-driven mixing layer

r(t;C�) Model correlation coe¢ cient for model parameter C�

Sc Schmidt number, �=D
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Sij Strain rate tensor

S� Skewness of scalar �

T Temperature

T � Turbulent transport of �

t Time

Um Mean advection velocity

w� Absolute uncertainty in quantity �

x Downstream distance

z Vertical height

� Dimensionless growth parameter

�InIV Fraction of dissociation for colored form of indicator

�maxInIV
Maximum value of �InIV realized at pH = 11:3

� Thermal di¤usivity

�T Temperature di¤erence

�� Density di¤erence, �1 � �2
�x;�y;�z Grid spacing

� Vorticity width of shear-driven mixing layer

�vis Visual width of shear-driven mixing layer

" Molar absorptivity coe¢ cient (In § 2)

" Half-width of the initially-di¤use interfacial thickness separating

the heavier and lighter �uid (in Appendix D)

�0, e�00 Reynolds- and Favre-averaged dissipation rate of fE 00
� Initial interfacial perturbation

� Self-similarity variable

�B Batchelor scale
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�K Kolmogorov scale

� Global molecular mixing parameter

� Molecular mixing parameter

� Wavelength

�max Most unstable wavelength

��;x; ��;y Dominant wavelength in x- and y-directions of scalar �

� Dynamic viscosity

� Kinematic viscosity

�t Turbulent viscosity

�
fE00 Pressure dilatation of fE 00

� Density

�1 Density of heavier �uid

�2 Density of lighter �uid

�02 Density variance

�̂(k; t) Fourier transform of density �uctuations

� Light absorption

�ij Viscous stress tensor

�� Turbulent Schmidt number for scalar �

� Dimensionless time

� IC Dimensionless initial conditions time for model

' Chemical reaction equivalence ratio

'In Reaction equivalence ratio for indicator reaction

'n Reaction equivalence ratio for neutralization reaction

� Global molecular mixing parameter based on chemical product

formation
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f�00 Mass fraction variance dissipation rate

[�] Square brackets denote molar concentration, moles per liter
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APPENDIX G

EXPERIMENTAL FIGURE DATA FILES

Figure Associated Figure Data File

2.3 Figure2.3_PlotData.dat

2.4 (top)
Figure2.4a_PlotData1.dat, Figure2.4a_PlotData2.dat,

Figure2.4a_PlotData3.dat, Figure2.4a_PlotData4.dat

2.4 (bottom)
Figure2.4b_PlotData1.dat, Figure2.4b_PlotData2.dat,

Figure2.4b_PlotData3.dat

2.5 Figure2.5_PlotData.dat

2.7 (top-left) Figure2.7a_PlotData.dat

2.7 (top-right) Figure2.7b_PlotData.dat

2.7 (bottom-left) Figure2.7c_PlotData.dat

2.7 (bottom-right) Figure2.7d_PlotData.dat

2.8 (top-left) Figure2.8a_PlotData.dat

2.8 (top-right) Figure2.8b_PlotData.dat

2.8 (bottom-left) Figure2.8c_PlotData.dat

2.8 (bottom-right) Figure2.8d_PlotData.dat

2.9 Figure2.9_PlotData.dat

2.10 Figure2.10_PlotData.dat

Table G.1 Figure data �les.
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Figure Associated Figure Data File

2.11
Figure2.11_PlotData1.dat, Figure2.11_PlotData2.dat

Figure2.11_PlotData3.dat

2.13 Figure2.13_PlotData.dat

2.14 (left) Figure2.14a_PlotData1.dat, Figure2.14a_PlotData2.dat

2.14 (right) Figure2.14b_PlotData.dat

2.16 (left) Figure2.16a_PlotData.dat

2.16 (right) Figure2.16b_PlotData.dat

2.17 Figure2.17_PlotData.dat

2.18
Figure2.18_PlotData1.dat, Figure2.18_PlotData2.dat

Figure2.18_PlotData3.dat

2.19

Figure2.19_PlotData1.dat, Figure2.19_PlotData2.dat

Figure2.19_PlotData3.dat, Figure2.19_PlotData4.dat

Figure2.19_PlotData5.dat

2.21 Figure2.21_PlotData.dat

2.22 (left) Figure2.22a_PlotData.dat

2.22 (right) Figure2.22b_PlotData.dat

2.23

Figure2.23_PlotData1.dat, Figure2.23_PlotData2.dat

Figure2.23_PlotData3.dat, Figure2.23_PlotData4.dat

Figure2.23_PlotData5.dat, Figure2.23_PlotData6.dat

Figure2.23_PlotData7.dat

Table G.2 Figure data �les.
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Figure Associated Figure Data File

2.24

Figure2.24_PlotData1.dat, Figure2.24_PlotData2.dat

Figure2.24_PlotData3.dat, Figure2.24_PlotData4.dat

Figure2.24_PlotData5.dat, Figure2.24_PlotData6.dat

Figure2.24_PlotData7.dat

2.25 (left)

Figure2.25a_PlotData1.dat, Figure2.25a_PlotData2.dat

Figure2.25a_PlotData3.dat, Figure2.25a_PlotData4.dat

Figure2.25a_PlotData5.dat, Figure2.25a_PlotData6.dat

Figure2.25a_PlotData7.dat

2.25 (right)

Figure2.25b_PlotData1.dat, Figure2.25b_PlotData2.dat

Figure2.25b_PlotData3.dat, Figure2.25b_PlotData4.dat

Figure2.25b_PlotData5.dat, Figure2.25b_PlotData6.dat

Figure2.25b_PlotData7.dat

2.26
Figure2.26_PlotData1.dat, Figure2.26_PlotData2.dat

Figure2.26_PlotData3.dat

2.27 Figure2.27_PlotData.dat

2.28
Figure2.28_PlotData1.dat, Figure2.28_PlotData2.dat

Figure2.28_PlotData3.dat

2.29 (left) Figure2.29a_PlotData.dat

2.29 (right) Figure2.29b_PlotData.dat

Table G.3 Figure data �les.
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