
REAL-TIME RENDERING OF PHYSICALLY-BASED CLOUD SIMULATIONS

FOR UNIVERSITY UNDERGRADUATE

RESEARCH FELLOWS

A Senior Honors Thesis

by

KEVIN MICHAEL WALKINGTON

Submitted to the Office of Honors Programs

Ec Academic Scholarships
Texas A&M University

in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

April 2004

Major. Computer Science

REAL-TIME RENDERING OF PHYSICALLY-BASED CLOUD SIMULATIONS

FOR UNIVERSITY UNDERGRADUATE

RESEARCH FELLOWS

A Senior Honors Thesis

KEVIN MICHAEL WALKINGTON

Submitted to the Office of Honors Programs
& Academic Scholarships

Texas A&M University

in partial fulfillment of the requirements of the

UNIVERSITY UNDERGRADUATE
RESEARCH FELLOWS

Approved as to style and content by:

ohn eyser
(Fellows Advisor)

Edward A. Funkhouser
(Executive Director)

April 2004

Malor Computer Science

ABSTRACT

Real-Time Rendering of Physically-Based Cloud Simulations

for University Undergraduate Research Fellows. (April 2004)

Kevin Michael Walkington
Department of Computer Science

Texas A8rM Umversity

Fellows Advisor: Dr. John Keyser
Department of Computer Science

Computers today employ simulations of physical phenomena such as wind and fire and

other physical properties in many common applications, including programs meant for

training and entertainment. We focus particularly on the reahstic simulation of cloud

formation and existence on current commercially-available computers. One of the

challenges associated with this simulation is its display onto a computer screen, often

referred to as rendering. We will present a bnef overview of existing cloud rendering

techniques and compare their effectiveness to rendering a simulation as it occurs. We

will then suggest our rendering method which rehes upon the use of three-dimensional

textures and modified Gaussian transfer functions for the self-shadowing properties

associated with clouds. We will analyze these results, focusing on frame rates and visual

appearance, and then conclude by suggesting further work on this topic.

ACKNOWLEDGMENTS

I would like to extend my greatest thanks to my advisor, John Keyser, for his support

and guidance on this pro]ect. I would also like to thank Derek Overby and everyone in

the Computer Graphics Research Group for their ideas and suggestions. I must also

thank my peers, and especially my fellow Undergraduate Research Fellows, who have

been working on similar projects and theses for their support. I give thanks to my

friends who have been there in my time of need. And finally, I thank my parents, my

sister, and the rest of my family for their continuing behefs m my abilities, their

affection, and everything they have done and continue to do to encourage my progress

through life.

TABLE OF CONTENTS

ABSTRACT

Page

ACKNOWLEDGMENTS iv

TABLE OF CONTENTS.

LIST OF FIGURES.

LIST OF TABLES . .

SECTION

. V i i

. . V111

I INTRODUCTION.

2 PREVIOUS WORK

2. 1 Gardner's Texture-Mapped Elhpsoids . .
2. 2 Shells and Metaballs.

2. 3 SkyWorks.
2. 4 A Noise Method for User-Defined Clouds . . .

. 4
5

7

. 8

3 REAL-WORLD CLOUDS 10

3. 1 Non-Solid Formations . .
3. 2 Shading.
3. 3 Lighting

4 RESOURCE BASIS.

4. 1 Data Storage.
4. 2 Gaussian Transfer Functions and Self-Shadowing . . .
4. 3 Levels-of-Detail .

10
12
12

14

14
. . . . 16

20

5 IMPLEMENTATION . . 23

5. 1 A Cloud Rendering Program.
5. 2 Implementation Issues.

23
25

6 RESULTS. .

Page

. 27

7 FUTURE WORK 31

7. 1 Voxel Processing . .
7. 2 Alternative LOD Schemas .

7. 3 Sharhng Languages .
7. 4 Extensions to Current System . .

8 SUMMARY AND CONCLUSIONS. .

31
33
34
35

37

REFERENCES. 38

APPENDIX A

APPENDIX B

. . 40

. . 41

VITA . . . 43

LIST OF FIGURES

FIGURE Page

Cloud constructed by ellipsoids

Description of Dobashi sphere method

Final rendered clouds using Dobashi sphere method.

SkyWorks scene.

Noise-based cloud . .

Cumulous clouds . .

Light scattenng through cloud . . 13

Shading model apphed at varying light distances. 20

Screenshot of cloud rendering framework 27

10 Initial cloud rendenng .

Final rendered image with LOD model applied

. 28

30

12 Billboard impostors. 34

13 Shading language used for shadow-mapping. . 35

14 Self-shadowing with light positioned along positive axes 4 1

15 LOD model applied to rendenng system . . 41

16 Underside of cloud with respect to light source . . 42

LIST OF TABLES

TABLE Page

1 Memory growth per cloud volume texture 15

2 Mathematical symbols and vanables used in equations. 17

3 Frame rates at varying shces through volume texture. 29

I INTRODUCTION

A major area of on-going research within the field of computer graphics is the

simulation' of real-life phenomena and the rendering involved. Examples of these

phenomena include water, plant life, fire, etc. There are typically two distinct forms of

rendenng these simulations. One method is to produce the most realistic and best fitting

model to the data provided by the simulation. This type forgoes speed to produce highly

accurate and detailed renderings of the phenomena being simulated. The other type is

Just the opposite, trying to produce a visually acceptable simulation in real-time.

Visually acceptable means to that with a certain degree of error in the picture produced,

the image appears to represent the data accordingly with minimal artifacts, particularly

when close to the viewer if using an LOD, or level-of-detail, approach. Real-time

imphes that the images created are being displayed at a rate that is consistent with the

rate at which the human eye can accept rapid prol ection of images such that no 3agged

motion can be seen — typically this is at least 24 to 32 fps (frames, or images, per

second).

Cloud rendering, in particular, has seen httle advancement in the simulation area.

For the most part, cloud rendenng is thought of as a process that can be added in by hand

after the majority of the rendering of a computer-generated scene has been done. This

commonly occurs though either the use of skyboxes, polygonal forms that surround the

This thesis follows the style and format ofIEEE Trattsacttons ott Visualtzattott and Computer Graphics

' Here we refer io simulation as a model existing in a computer-generated world that behaves similarly to a

real-hfe counterpart based upon some irue-life model or collection of data

upper part of a computer-generated world that simply have textures applied to the faces

to give the impression of a sky„or other post-rendering techniques — in the worst case

merely "painting" in the clouds. Other techniques, such as the SkyWorks prolect [9, 10],

involve actual rendering of spheres with vanous hght models in conjunction with

projection of textures at the appropriate time and positioning to fool the viewer that

clouds as actual objects in three dimensional space are fully being rendered. The

downfall ofboth of these procedures is that rendering follows no physically based model

so while the images may appear accurate and acceptable to the eye, they are merely

forced representations lacking a real-world structure that simulations supply.

Recently here at Texas A&M Umversity, Derek Overby researched for his

Master's Thesis a physically-based simulation of cloud formation [13]. This simulation

reacts to temperature, volume, pressure differences and water vapor parameters to

generate clouds in a simulated environment. The simulation, however, is lacking in key

areas. In particular, the clouds rendered do not appear as clouds but conglomerations of

gray and white. The simulation also can only generate these images at the rate of

roughly I frame per second on voxelized grids of size 25x50x25. Generation of real-

time images that appear acceptable as clouds to the viewer will require converting the

data given by either this simulation or another existing one to another format that is

easier and quicker to render.

Having a real-time, reahstic looking, physically-based simulation of clouds could

prove to be an essential aid to vanous apphcattons of graphics. Weather forecasting and

simulation programs are obvious beneficianes to this type of research. Another common

application is flight simulation. Realistic rendering of clouds in real-time that are not

programmed can bring a whole new level of detail to these types of simulation.

Furthermore, advancement of rendering simulations of this type could bring

advancements to other areas of graphical representation, bringing computer-generated

images that much closer to actually looking realistic.

In this document we will first examine in Section 2 some of the previous work

conducted on the topic of rendering clouds m general and also simulations of clouds. In

Section 3 we will take a closer look at clouds in the real world and the complexities

associated with rendenng certain elements visible in the natural world on the computer.

For Section 4 we discuss Gaussian transfer functions, volumetnc textures, and other

resources we plan to use in our model. We will discuss our implementation of a

rendenng program for clouds and implementation issues in Section 5. We will display

our results and discuss them in Section 6. We will explain fully several options for

future work in Section 7. And in Section 8 we will finally present a summary and our

conclusions.

II

. ILJ

n

11

III. =

1

1

L

„T

J

I

By using the graphics hardware, the user can manually defined particular

constants to be passed in to the rendering system, and the output is a nice approximation

to a cloud of the type defined by the constants. An example of the output of this system

can be seen in Figure 5.

This work just goes to show that methods exists to render clouds in real-time

which are not based upon physical data and do simplify the rendenng problem for

people who wish to construct a cloud from scratch. For additional information regarding

these methods should reference work by David S. Ebert who speciahzes in volumetnc

visualization and procedural techniques [5].

10

3 REAL-WORLD CLOUDS

To more accurately model clouds, we must base a system upon the real world.

Hence, we look at the complexities associated with the appearance of clouds in the real

world in this section. We focus on the nature of clouds as non-solid formations in

Section 3. 1. After that, we discuss the shading of clouds in Section 3. 2 — in particular

the self-shadowing nature of cloud formations. And in Section 3. 3, we examine light

scattering

3. 1 Non-Solid Formations

Clouds by their very nature are not solid formations. They are vaporous obIects

which gradually change form over time The forms can be anything from long thin

clouds, stratus formations, to large puffy forms, cumulous formations. And on the

boundanes, minute fine detail blurs the edges of what appears to be a visually solid

formation. As seen in Figure 6, the cumulous clouds shown have very unique shapes

and seem to blur together to form larger less-continuous clouds with the fine detail on

the edges.

The lack of rigid structure making up the clouds causes much concern for

someone attempting to reconstruct them in a computer system. Take a cube for

example. In order to reconstruct it, all that is required is a central position, the width of

one side, and a normal of one of the faces. From there, the location of the 8 vertices and,

in fact, every point on the surface can be determined. Even for a curved structure such

12

3. 2 Shading

As can be seen in the clouds in Figure 6, clouds are not always of one color.

This may be an obvious notion; however, when trying to render these formations on the

computer, every minute detail needs to be addressed to maintain accuracy. In fact, a

large majority of the appearance of clouds comes as a result of their self-shadowing

property. Self-shadowing refers to how, despite clouds being thought of as continuous

forms, they are composed of individual vapor particles which block some light from

penetrating the entire form. The high number of vapor particles and low density causes

significant shading to affect the appearance.

To accurately model this self-shadowing effect, a method for determining the

degree of hght penetration at particular points within the cloud and the percentage of

light let through the cloud needs to exist. We will discuss a method we have used for

this later.

3. 3 Lighting

In respect to lighting of clouds, the shading is a result of hght diffusion through

the cloud as discussed above. What we have not discussed with respect to light diffusion

is the scattenng effect that occurs which illuminates a greater portion of the cloud.

Light scattenng refers to simply the reflection of a ray of hght from a source.

Since clouds are formations resulting from condensation of water vapors in the

atmosphere [4], it makes since that these vapors will cause some disruption of a ray of

light entenng into the formation. See Figure 7 for an example of scattenng.

. unara'.
List sou
Ylct$10l!LB

'PIWPOI t i KrtE, ad g

Figure 7: Light scattering through cloud. Image taken from [4].

When determining scattering in a cloud on a computer, we must consider the

degree of complexity of the scattenng. Typically, there are two forms: single and

multiple scattenng. Single scattenng refers to the effect of dealing with only a single

scatter of a hght ray from a source to a viewer, while multiple scattering mcludes

multiple scattenng from a single source [13]. In the real world, there exist an infinite

number of reflections which occur, so for a computer, modehng this exactly would not

be practical. Moreover, a single scattenng would handle only partially the effect, so we

need to choose a medium in between. For this, we will employ an approximation to be

discussed in Section 5.

4 RESOURCE BASIS

We discuss in this section the mathematical and computational basis for our

implementation. This refers to data storage for the clouds in Section 4. 1 and the

functions and equations used in lighting and shading in Section 4. 2. We finish this

section with a brief discussion on levels-of-detail and one particular method we have

implemented in Section 4. 3. In each subsection we discuss our reasons for the choices

of whichever bases we choose.

4. 1 Data Storage

In Section 2 we mentioned briefly the choice of data storage for particular

implementations and began highlighting their advantages or disadvantages. We will

expand upon that discussion here.

Many of the previous methods made use of noise data to construct clouds while

others rehed on particles. In our implementation, we assume that the data will be

coming from a grid-like structure in space, often referred to as a volumetnc gnd. This

assumption is based upon the fact that the simulation we have to work with is in this

format. For shading and other parts of the algorithm we develop a class which defines a

particular point within the grid, referred to as a voxel or volume element [7].

Our assumption of the arrangement of the data requires that we design our

rendenng algorithm around it to remove the need for conversion which would add an

15

extra costly step. For this, a simple and effective tool exists to aid us: volumetric

textures.

Volumetric textures have been around since the mid-eighties and have seen wide-

spread use in the medical imaging fields. They are similar to 2D textures but have extra

information specifying the depth field, or the extra third-dimension. Essentially,

volumetric textures allow us to specify the color and opacities of individual points within

a volume rather than trying to specify the details of the volume or part of the volume as a

whole. It now becomes self-evident that volumetric textures can make rendenng

volumes that lack continuity or strongly defined boundaries easy, such as clouds.

Size of Cloud Volume

32

Storage Memory Required

128 KB

64 1024 KB = 1 MB

128 8192 KB = 8 MB

256 64 MB

Table 1: Memory growth per cloud volume texture.

The question now is why have volumetric textures not been used extensively in

rendering clouds or in any other real-time rendering context? The answer is simple:

often times, specifying colors and opacities at individual points within a large gnd

become costly in terms of memory. If one assumes that a single byte is used for each

color and one byte for the opacity component (red, blue, green, and alpha respectively or

4 bytes), the memory growth in Table I appears. Years ago this would not have been

16

acceptable; however, with recent hardware improvements and the reduced cost of

memory, it is not uncommon to see computers with over a gigabyte of main memory and

128 MB or more of memory of the video card, the location where a volumetric texture

would reside.

Typically, volumetric textures have also been considered to be quite slow for

their use. Recent improvements in the technology on video cards and the greater use of

procedural noise textures have improved the speed of using volumetric textures. As can

be seen, the use of volumetric textures is not without its costs but we believe that now

they can be though of as a viable use for consumer applications and hardware.

We will make use of the volumetric textures to define the cloud volume as it will

be displayed. One might be concerned of updatmg the volume to reflect changes to the

clouds or their appearance. We have found that with direct manipulation of the cloud

texture, we can actually perform quick updates. It should be noted that we are not

concerned with updating the appearance of the cloud on every step but rather whenever

the simulation updates which may be every 4 or 5 seconds or more greatly reducing the

need for expediency.

4. 2 Gaussian Transfer Functions and Self-Shadowing

In order for our rendering process to display clouds that appear to be real, a test

condition to be discussed later, they must be shaded as if they are being viewed in the

real world. As we have decided upon volumetric textures for the volume, we examine

hghting and shading work by Joe Kniss [10, 11], which can be directly applied toward

our rendering method with some slight modification.

To add self-shadowing to our basic rendering method, which consists only of

rendenng a single volumetnc texture at this moment, we will use the Gaussian transfer

functions in [11] used on semi-transparent volumes modified ever so slightly to reduce

overall number of computations.

Transfer functions are simply mathematical functions that apply some color or

intensity values to particular ranges of numerical data. Gaussian transfer functions vary

slightly in that there is an assumption on the initial range of the data and that there is a

preferred range that the function will map data to. In particular we are concerned with

the one-dimensional transfer function associated with intensity of light.

Bx

Pz

oavg

taaccam

Light intensity at volume element K

Blur at volume element K

Density line integral at volume element K

Opacity at volume element K

Angle between hght vector and difference vector

Real-world volume element coordinates expressed as vector

Difference vector, originating at K going toward light source

Light vector, real-world coordinates as vector form

Average opacities of nearby volume element opacities

Accumulated opacities

Table 2: Mathematical symbols and variables used in equations.

In Table 2, we define the necessary vanables to make sense of the Gaussian

intensity transfer functions. The intensity is a measurement of how much a portion of

the color of the light source (red, green, or blue) is applied to the color of the current

volume element. This measurement is spht up into two parts as seen in equation 1. The

direction portion refers to the amount of hght that is directly applied based upon the

incident hght vector. The indirect portion refers to the hght apphed from the scattering

nature of clouds.

dv ect indrreci

The K subscript of many of the equations refers to imphes that a particular

equation must be apphed for each voxel at the K'th step along the hght ray through the

volume. We use this notation rather than integrals to directly refer to when discussing

our implementation in the next section.

(2)

The blur shown in equation 2 is a vanance applied almost directly from [11] to

offset the amount of indirect light such that there is only a shght alteration to the

19

appearance of the cloud. It is calculated from the angle between the light source vector,

or its location in vector form, and the vector from the current voxel to the light source.

accam ~ +K avg
(3)

For each volume elements, we keep an accumulation of alpha terms, or rather a

weighted accumulation of the amount of light. This accumulation can be seen in

equation 3, which determines the amount of hght that has passed through the volume

element. The numbers in front of the current alpha value are again offsets to lower the

amount of the current alpha term contribution to the complete alpha accumulation. We

have found the given numbers to produce adequate shading which can be seen in our

final results.

In calculating the accumulation and the intensities we also use averages as it

considers that each contributmg nearby volume element will scatter some light to the

current voxel, as represented by u, „g. And since we can assume no decay in the ray Irom

the light source itself, we can apply a portion of the fragments of hght to the total light

the current voxel receives.

If one refers to [11] there are noticeably shght differences in the variable used.

Rather than using the view vector to perform many of the lighting calculations, we

21

result of using what are often referred to as levels-of-detail, or LOD. Levels-of-detail

refers to changing the complexity of the object, effect, or scene being rendered based

upon ihstance from the viewer.

The concept comes from the observation that when viewing objects up close our

eyes notice a larger amount of detail on the objects, however, when viewed far away, the

objects may appear simply as specks, or on a computer screen, a single pixel. It should

become readily apparent that implementing any sort of LOD schema mto a rendering

program would prove to be beneficial.

For our implementation we have added an effective yet simple LOD schema

which allows for large improvements in frame rates while not sacrificing visual quahty.

The schema we have chosen is based upon our use of volumetric textures and involves

adjusting the number of view-plane slices through the volume.

The basic pnnciple of this schema concerns itself with how volumetric textures

are rendered. In order to view them, planes must be shced through the volume to be

texture mapped to. These slices are treated exactly the same as any partially transparent

polygons in any particular 3D rendering API. As such, the shces have a certain degree

of transparency and as more slices are placed behind one another, the more blendmg of

these slices occur decreasing frame rates (as more calculations are involved to determine

the final color to be rendered for a particular pixel).

To cut down on the number of calculations, thus improving the frame rate, a

volume can be rendered using fewer slices. The downside from lowering the number of

shces comes when each volumetric texture coordinate does not map to a slice, or rather

22

there are fewer slices cutting through the volume than are required to accurately display

each portion of the given texture map. Up close, such artifacts may not be noticeable,

however at a distance; we can find that the volume of fewer shces does not noticeably

change appearance enabling the frame rates to go higher without a loss in visual quality.

We have in fact found that for a 32x32x32 cloud volume, as few as 20 slices can

accurately display a cloud at a reasonably far distance without any loss in quahty. Up

close anywhere from 170 to 200 slices may be required to display all of the voxel data of

the cloud texture.

23

5 IMPLEMENTATION

In Section 4 we discussed many of the topics we would use in our

implementation of a cloud rendering program. In this section, we will actually focus on

the implementation itself. Section 5. 1 deals specifically with details of the

implementation and the applicauon of material covered in Section 4. And Section 5. 2

covers particular implementation issues relevant to the results discussed m Section 6.

5. 1 A Cloud Rendering Program

We present here a method for rendering a cloud on current commercially-

available computer hardware The method described here is essentially a breakdown of

the single cloud renderer from start to finish. We will discuss the details of particular

parts of the rendering process as they occur. It should be noted that this rendering

context only takes mto account rendering one cloud at a time focused on a fixed

location. The rendering context also uses data Irom a file to define the cloud rather than

having the simulation running at the same time. We will describe the reasons for these

constraints later in Section 5. 2.

Initially, we must first load the cloud from the file into our system. We have a

data structure set up to represent each voxel. As data is loaded, the location of the hght

source is given and many of the voxel specific calculahons not dealing with the

accumulation or the actual calculation of light intensities are performed. These

24

calculations include constructing vectors, finding the blur angle, and finding p' as

described in Section 4. 2

Once the data is loaded we must apply our shadowing model. Pseudocode for

how we perform this is given m Appendix A. At this point, we have performed step 1 in

the algonthm and must now go to step 2, or determining the list of the nearby voxels.

The reasoning behind doing this is for the scattering effect of hght through clouds. If a

voxel is thought of as a region of space of a small size, it is theoretically possible to have

light coming in from any direction. We must then consider all surrounding voxels, or

rather those which share vertices with the current voxel. This implies that there are 26

possible voxels which can contribute light. We only add voxels to the near-voxel list

which have distances to the light source smaller than the current voxel, and for only one

light source this can be at most 13 (tf hght comes m to the voxel directly through an a

vertex to the center, a true 45 degree angle).

We next must sort the voxels based upon their distance to the light source. In

reahty, we do not sort the voxels but rather a list of the indices of the voxels, or where

they appear in the volume. We construct this list in the previous step to reduce wastful

looping through the volume. For the sorting, we use randomized quicksort as descnbed

m [3]. This algonthm runs in 0(n log n) time. It is possible to achieve even faster run

times, even 0(n), but we wait and discuss this in Section 7.

Once the indices are sorted, we process this list in ascending order. For each

voxel we process, we require the use of the average accumulation of alpha terms of the

nearby voxels. If there are no nearby voxels which receive hght first, we instead use the

25

intensity of the hght itself. The calculated intensity, based upon the calculations

performed in step 1, gets apphed to the texture red, green, and blue values as a

percentage of 255 and the actual hght intensity for each of those respective colors. This

results m the actual shading of the voxel. Once the shading has been applied, we use the

equations in Section 4. 2 to store the accumulated alpha term for the voxel and move to

the next one. Our shading algorithm works since we are only processing voxels based

upon voxels which have been previously processed.

Once the self-shadowing has finished, we actually render the texture. This

process is described in full in [15] and demonstrated by a demo source code program

provided by ATI [1]. As such, we do not focus on the details. The only addition which

can be made to our rendenng context is determining the number of slices for our LOD

schema; we render other oblects normally afterward.

Pnor to rendering the cloud texture, we determine the number of slices to render

it with. We use a number of slices in multiples of 10 based upon the distance the center

of the cloud is from the viewer. This is a simple distance calculation combined with a

scahng factor and a multiply using test conditions to prevent the number from becoming

too large or too small. Results of implementing this process can be seen in Section 6.

5. 2 Implementation Issues

As discussed in Section 5. 1, our rendenng context only handles a single cloud

loaded from a file rather than a simulation and viewed only at the ongin. We will

discuss the loading from a file first and then the rendering issues second,

26

The main reason a file is used in place of an actual simulation is because of time

constraints. To properly develop a system which would simulate cloud formation and

process rendering at the same time would require programming a multithreaded

application and spending considerably more time on the project than what was available.

We did have at our disposal a simulation which was used to obtain the test cloud data,

but addition of this simulation to the rendering context we created would prove to be

much more complicated for the time given and for other reasons explained next.

The other large implementation issue is with the volume rendenng itself.

Currently, our implementation is limited by having the view always focused on the

center of the cloud texture. As we have focused pnmarily on the appearance of the

texture, this is alright, however, we would like to be able to extend beyond this

capabihty and currently the mathematics behind the model space transformations do not

readily allow this conversion. It is possible, but extending our system to encompass this

capability is again dependent upon time and beyond our reach at this point.

29

With the shading model in place, we began moving toward implementing a

system using levels-of-detail. Our slice model proved to be quite effective yielding

frame rates as can be seen in Table 3.

Visible Shces

200

Approx. Minimum
Frame Rate (fpsi

27

170 95

140 200

20 320

Table 3. Frame rates at varying shces through volume texture.

For testing, we specify two condidons for success. The first condition is that the

rendenng must occur at interactive rates. We define interactive rates as typically above

15 fps and preferably at least 24 fps. Since our frame rates are well above a single frame

per second and generally fall into the range of more than 30 fps, we have not only

achieved real-time but also display of the cloud at a rate where motion through the scene

appears to be constant and without jitters. This frame rate is possible because of our

asymptotic runtime.

The runtime of this renderer is very easy to calculate as the main bottleneck in

performance hes within the self-shadowing component. There we must first process the

voxels. We perform this operation only once per voxel giving O(n) The second step is

to sort the voxels, which we have already stated as having O(n log n) runtime. Next we

build the nearby voxel lists which agam occurs once for each voxel, or O(n). And

31

7 FUTURE WORK

In this section we describe possibilities for future work on real-time rendering of

clouds. Section 7. 1 descnbes how we would apply alternate sorting algorithms or

possibly using various other methods for choosing an order to process voxels to shade

our clouds. We suggest alternative LOD schemas use to use in Section 7. 2 and the

complexities associated with implementing these schemas. In Section 7. 3 we discuss the

future possible use of shading languages to mcrease rendenng speed and quality. Finally

in Section 7. 4 we discuss more obvious extensions to our rendering system that would

give an applicable use to the system.

7. 1 Voxel Processing

In Section 5. 1 we mentioned the possibility of improving the speed of sorting of

the voxels to be used for processing, and we there mentioned the possibihty of achieving

0(n) runtime. We suggest one possible method for improved sorting and another

method which removes sorting altogether.

Given that our cloud is being rendered on a known domain of [-1, 1] along each

axis, we know that the real-world coordmates of each voxel are relatively close to one

another. Furthermore, we know that the distance for each voxel to the hght source must

be nearly as close. Given this knowledge, we can determine a point at which the

decimal portion of the light distances no longer matters and fix the length. We thus have

a series of floating point values all with same length and within a few units of each

32

other. By this property, we can possibly devise a vanation of radix sort [3] to run in

O(n) time. A linear sorting would then allow us to use the same processing method but

instead our self-shadowing code portion would run in O(n) total time versus O(n log n)

time, a significant improvement in performance.

We can also apply self-shadowing essentially without sorting. This method is

spoken of in Kniss's work [12]. The basic principle is that for each light source a plane

exists with normal pointing in the same direction as the light vector to be applied to the

cloud. In fact, such a plane exists for every point t along the incident hght ray. In the

same manner by which shces are cut through the texture to render it, a plane can be used

to make a cut through the cloud volume to create a hst of voxels to be calculated next.

Intuitively, there is loss of precision when using the above method as the voxels on the

outer edges of the plane will have their shading calculated by an inaccurate light

distance, but the advantage lies in that there is no need for sorting of the voxels

removing a costly step, and when the light source hes at an infinitely far distance such as

the sun, the loss of precision essentially does not matter. Another error exists in this

method in that the hght scattenng would be dependent upon the voxels processed in the

plane prior to the current plane being processed. What this means is that if the light was

being determined by nearby voxels which when using this method would he m the

current plane, then this method would not even factor those voxels into the hght

scattering equations. There is minimal error in this as the light scattering is already an

average so it is not of that much concern. Furthermore, ad)ustments can be made to the

light scattenng equations to counteract the error induced

33

7. 2 Alternative LOD Schemas

In Section 4. 3 we discussed the LOD schema we used in our system, however,

other schemas exist which can be used instead or on top of our current schema to further

increase frame rates requiring only minor alteration to our self-shadowing algonthm.

We discuss two such methods in this section to give an idea of the many possibilities.

One LOD schema would be to induce approximations at certain computanonal

step for varying distances. Up close, the system would use the computational methods

as descnbed in this paper. At distances, we could possibly treat many of the voxels as if

having the same distance to the light source or multiply through by approximated

constants instead of performing all of the calculations.

It should become clear from the above paragraph and work mentioned in this

paper that another method would be to use smaller volumetric textures or even smaller

voxel gnds when performing computations. If textures of sizes of 2" on each side would

still be used, lowering the size of k by 1 would yield an 8 fold speed increase roughly.

This would most definitely improve rendering speeds considerably. The difficult part m

applying such an improvement relies upon achieving this improvement without

noticeably changing the appearance of the cloud from far away. Essentially, several

factors used in the computation of the self-shadowing would have to be adjusted to

account for the loss of voxel data or texture space that represents the cloud.

36

but the transition to this framework is not entirely simple. We would like to perform this

transition among using other potential improvements to be discussed in the section.

In order to perform the transition and receive the rendering capability of our

single cloud system, one possible direction to head in would be to use the method of

rendenng to a texture. The idea is that for each cloud we would compress the rendered

image into a smgle 2D plane and store that as a texture, complete with alpha values. We

would then use this texture much in the same way as billboard impostors [9, 10],

rendering planes ahgned toward the viewer, although there does exist a problem if

oblects actually are within the cloud itself. We could theoretically use a procedure

similar to [9, 10] or rather just render that particular cloud as a full volumetric texture as

we would be doing if we directly ported volumetnc textures to our framework.

Many other extensions to our framework exist that would be nice to apply to

receive clouds which are that much more realistic. Such extensions would possibly

include shafts of light, shadow casting by clouds onto real objects or other clouds,

having clouds affected by multiple hghts or even hghtning, and even forms of

precipitation. Each of these areas can easily be its own extensive project and research

does continue on many of them currently.

37

8 SUMMARY AND CONCLUSIONS

In this paper we have presented a method for real-time rendering of cloud

simulations showing our current rendering context which handles a single cloud

structured so as to be updated by a simulator. We have discussed previous rendering

methods and examined real-world clouds and their complexities as how they apply to

rendenng on a computer screen. We have discussed at length volumetric textures and

operations on them and have shown how certain transfer functions can be apphed to

achieve a self-shadowing context. Our results have been presented and we have

examined the vanous possibilities for future work.

We conclude that our system, while infant in nature, does show potential for use

in a simulation environment and that acceptable results are feasible to obtain in real-time

on commercially available computer hardware. It then becomes possible to apply our

system to a larger scale framework and use our rendering method in either more useful

simulations, such as for basic fhght or training, and even possibly in entertainment.

38

REFERENCES

[I] "ATI Developer: Source Code,
" ATI Technologies Inc,

http: //www. ati. corn/developer/sdk/RADEONSDK/Html/Samples/OpenGL/,

[21 Feb. 2004].

[2] Cg Toolkit User's Manual, ver. I 1, p. 152, Santa Clara, CA: nVidia Corp. , 2002.

[3] T. Cormen et al. , Introduction to Algorithms, 2nd ed. , Cambndge, MA: MIT
Press, 2001.

[4] Y. Dobashi et al. , "A Simple, Efficient Method for Realistic Animation of
Clouds,

" Proc. of SIGGRAPH '00, pp. 19 — 28, 2000.

[5] D. S. Ebert, "Volumetric Modeling with Implicit Functions: A Cloud is Born, "
Visual Proc, of SIGGRAPH '97, p. 147, 1997.

[6] P. Elinas and W. Suterzlinger, "Real-time rendering of 3D clouds, " Journal of
Graphics Tools, 5(4), pp. 33-45, 2000.

[7] J. Foley et al. , Introduction to Computer Graphics, p. 382, Reading, MA;
Addison Wesley, 1994.

[8] G. Y. Gardner, "Visual Simulation of Clouds, "
pp. 297-303, Proc. of SIGGRAPH

'85, 1985.

[9] M. J. Harris and A. Lastra, "Real-Time Cloud Rendenng, " Computer Graphics
Forum (Eurographics '01 Proc. j, 20(3]:C — 76 — C — 84, 2001.

[10] M J. Hams, "SkyWorks Cloud Rendenng Engine, " Dept. of Computer Scrence,

Univ, of North Carolina, http: //www. cs. unc. edu/-hamsm/SkyWorks/,

[28 Oct. 2003].

[11] J. Kniss et al. , "Gaussian Transfer Functions for Multi-Field Volume

Visualization, " Proc. IEEE Visualization 2003, pp. 497-504, 2003.

[12] J. Kniss et al. , "A Model for Volume Lighting and Modeling, " IEEE Trans. on

Visi&alization and Computer Graphics, vol. 9, issue 2, pp. 150-162, Apr -June

2003.

[13] D R Overby, Interactive Physically-Bused Cloi&d Simulation, master's thesis,
Texas A&M Univ. , College Station, TX, 2002.

[14] L Schpok et al. , "A Real-Time Cloud Modehng, Rendermg, and Animation

System,
" Proc. of 2003 ACM SIGGRAPII/Eurographics Symp. on Computer

Antmation, pp. 160-166, 2003

[15] JL Shen, "Volume Rendenng, " Dept. of Computer Science and Eng. , Ohio State
Univ. , http: //www. cis. ohio-state. edu/-hwshen/788/VR. ppt, [15 Feb. 2004].

SUPPLEMENTAL SOURCES CONSULTED

M. Woo et al. , OpenGL Programming Guide, 3rd ed. , Reading, MA: Addison

Wesley, 1999.

40

APPENDIX A — SELF-SHADOWING PSEUDOCODE

1. Calculate data for each voxel (distance to light,

relative density approximation, voxel angle,

etc.)

2. Create a list of voxels near to each voxel that

are closer to the light source.

3. Sort voxels by ascending distance to light

source; store indices in array L.

4. for i := 0 to size(L) — 1

a. Calculate and store opacity of voxel i.
b. Calculate and store color of voxel i (using

opacity)

c. Accumulate opacity terms.

43

VITA

Kevin Michael Walkington
1306 Rona St.

Weatherford, TX 76086
(817) 596-9797

Kevin Michael Walkington is an undergraduate at Texas A&M University

pursuing his Bachelor's Degree in Computer Science with a Minor in Mathematics.

This degree will be awarded in May of 2004, at which time he will graduate with

University Honors, Foundation Honors, and Undergraduate Research Fellows

designations. During his undergraduate career he has held the distinction as being a

Lechner Scholar, an SBC Scholar, and a member of the Engineering Scholars Program.

He has membership in numerous honors societies, including National Society of

Collegiate Scholars, Golden Key Society, Phi Eta Sigma, Phi Kappa Phi, and Upsilon Pi

Epsilon, and other societies including Percussion Studio. During his research, he

worked with a previous Texas A&M student, Derek Overby, and gave presentations to

both his peer Fellows and their advisors as well as a presentation at Student Research

Week After graduation, he plans to return in the fall to Texas A&M University to

pursue his Master's Degree in Computer Science.

