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ABSTRACT 

Optimal Motion Planning with Constraints for 

Mobile Robot Navigation. (April 2003) 

Roger Allan Pearce 
Department of Computer Science 

Texas Aft M Univcrsitv 

Fellows Advisor: Dr. Nancy IVI. Amato 
Department of Computer Science 

Motion planning is the process of planning a sequence of motions to move an 

object from one configuration to another. Recently, randomized techniques kno&vn as 

PffMs have shown great potential for solving motion planning problems in compli- 

cated high-dimensional space. Motion Planning, or path planning for robots, becomes 

increasing difficult as the dimension of the. planning space increases with the robot's 

degrees of freedom (dof). AVhile thc. running time of deter&ninistic motion planning 

algorithms grows exponentially with an increase in dof, PRMs can produce solutions 

in ti&nes that do not depend on the dof but only the diffi&culty of the problem. PRMs 

randomly generate collision free configurations in a robot's Cor&figuration-space (C- 

space), representing feasible positions and orientations for the robot, . Nearby con- 

ligurations are linked together by so called local planners, and these connections are 

edges in a roadmap, s, graph containing representative discrete paths the robot may 

travel. 

4'&&&: p&escnt methods to extract optimal paths fr&&rn &oadmap- based motion plan- 

ners. O&n system uses Markov — like states and IIexihlc goal states so that general 

optimization criteria including collision detection, kinematic/dynamic constraints, or 

minimum clearance can be used in various applications. Ou& algorithm is an aug- 



mented version of Dijkstra's shortest path algorithm. We present, simulation results 

maximizing minimnrn path clearance, minimizing localization effor, and enforcing 

kinematic/dynamic constraints. 
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CHAPTER I 

INTRODUCTION 

Automatic motion planning has been used in many areas such as robotics an&i computer 

aided design (CAD) to fin& paths in the presence of obstacles. Though originating in 

robotics, &notion planning techniques have also been adapted i, o other areas such as 

autonomous transportation systems for automobiles or aircraft, inilitary unmanned 

vehicles that operate in thc air or underwater, and computer animations in the en- 

tertaininent industry. 

In these applications, paths rmist be found quickly in large search spaces. Roadmap- 

based planners are ideal for such scenarios [1]. A roadmap containing representative 

paths is computed during a preprocessing step, and paths can bc quickly extracted 

froin the roadmap during query processing. Recently, a class of roadmap — based plan- 

ning methods, called probabilistic roadmap methods (PRMs) [1], have proven to be 

very successful in efficiently solving high — dimensional probleriis in complex enviroii- 

ments. In PRMs, the roadmap is a graph representing the conncctivity of the free 

configuration space where thc nodes are sampled robot configurations an&1 the edges 

are paths connecting nodes that are computed by a simple and deterministic local 

planner. 

The strength of road&nap — based planners is that, the roadmap approximates the 

conncctivity of the planning space. 1Vhile roadmap — based planners are extremely 

effectiv in providing feasible solution paths for arbitrary queries, generally no guar- 

antees can be provided regarding the quality of the paths. In particular, paths ex- 

tracted from roa&lmaps seldom provide optimal solutions because they are restricted 

The journal inodel is IEEE Trans&ictions or& Automatic Control. 



to the nodes and edges in the roa&lrnaps. In many cases, this is not, a concern because 

thc problem of interest is simply finding a feasible path. For this reason, optimizing 

paths has rcccived little attention for roadrnap — based planners. 

In this research project, we consider the problem of extracting an optimal path 

from among all paths contained in the roadmap. There. arc two main issues that arc 

of concern. First, roadmaps contain many possible routes connecting two diff'erent 

nodes. Depending on the graph search algorithm and the criteria applied, different 

paths connecting thc same start and goal nodes can be found. Second, a path ex- 

tracted from a roadmap is composed of many short line segments and its quality 

is likely lower than a "smoothed" path obtained by exhaustive numerical optimiza- 

&, ion. These two properties are inhcrcnt in roadmap based methods. We call the first 

a macroscopic p&nperty because the chosen search method can result in large — scale 

changes in the path. We rcfcr lo the second as a micros&ripic property because typi- 

cally there are no topological differences between the extracted path and the optirrml 

path. 

A number of techniques have b'&. cn proposed to improve the solution paths ex- 

tracted from road&naps (the microscopic property). Common approaches arc to post 

process the path by converting the path to a curve, moving existing nodes, or adding 

additional nodes to the suboptirnal path [2, 3]. 

In this research project, we focus on thc macroscopic property and provide a 

method to quickly compute an optimal path from among all paths contained in the 

roadmap. Our method is based on an augmented version of Dijkstra's shortest path 

algorithm which enables one to consider &nore general optimization criteria and re- 

laxed definitions of the goal state. 

The results in this thesis will appear in ICRA 2008, the IEEE International 

Conference or& Robotics and Automation ]4]. This work builds on our previous work 



on mobile robot navigation and localization [o. , 6). 



CHAPTER II 

PRELIMINARY AND RELATED WORK 

A. Roadmap based Motion Planning 

At the heart of our path optimization techniques is roadmap — based motion planning. 

These motion planning methods model the robot(s) in Configuration Space ( C-sp«ce), 

a multi-dimensional space where the dimensions represent the dof of thc robot. This 

configurat, ion consists of all the information required to describe the robot's position 

and orientation in the real world. For example, a cube moving in 3d space will need 

a six dimensional configuration ( z, y, z, roll, pitch, , yam &, and a Mobile Robot or 

car will need a three dimensional configuration (:r„y, ori&. r&tatton &. 

Many roadmap — based motion planners focus on randomly creating roadrnaps to 

solve complicated high-dimensional problems. These roadmaps consist of randomly 

created vertices representing a single confignration of thc robot. . These vertices are 

connected together by edges representing collision free paths between two vertices. 

Many random and heuristic methods have been developed to create road&nap edges 

ansi the en&i result, is a graph consisting of vertices and edges representing a small 

discrete set of collision-free space in the robot's environment. Figure I clescribes how 

many roadmap — based motion planning methods work. 

B. Path Optimization 

Previous research shows that applying common optimization techniques to robotics is 

not straightforward because the collision — free requirement, renders it difficult l. o solve 

opi itnization constraints analytically or numerically [7, 8]. In particular, discontinuity 

of ihc search space makes it drfficult to find the optimal path. Figure 2(a) shows a 



Given: an environment (descriptions of moveable 
object A and obstacles B), and start and goal positions 
of A 

Find: a valid path (continuous sequence of valid 

configurations of A) from start to goal 

C-space 
gos . ~ 

c-gttgh 

Roadma Construction Pre- rocessin 
1 Randomly generate robot configoralions (nodes) 

- discard nodes that are in cogision (cogimon check) 

2 Connect pairs of nodes to form roadmap 
- simple, deterministic focelpfanner (e g, arhiohilme) 

discard paths that are m cogrsron (col&sion check) 

t Co neet start and goalie roadmap 

2 Find path in roadmap between sart and goa! 
- regenerate pl ~ ns for edges in roadmap 

Fig. 1. Overview of roadmap — based motion planning. 

pal, h extracted from a roadrnap (pg) and paths generated by general optimization 

techniques (pi, pi, pd). Figure 2(b) shows two regions separated by an obstacle. To 

solve two — point boundary — value optimization problems, an initial guess of the solution 

roust l&c given [9]. If thc initial guess is pd, then the solution cannot be improved 

beyond pg without understanding thc discontinuity of thc search space. However, the 

buboptirnal path pz can k&c transformed to thc optimal pi. 

Recently, two different approaches have been developed to obtain optimal paths 

in robotics applical. ions; one is based on improving existing paths, the other applies 

optimal control tech(&iqucs to motion planning. 
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. — — ~J22 

- roadmap 

0. '" '-"" '"""'""':::::. 
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start 

r2 

(a) (b) 

Fig. 2. Optimizing path with initial guesses 

1. Improving Paths 

lv1ost recent methods for motion planning arc explicitly/implicitly based on roadrnaps. 

Several methods consider the problem of optimizing or irrq&roving an existing path, for 

example, grids [10], visibility graphs [11, 3], PRMs [12], and growing control points 

in barycentric coordinates [13]. 

In [13], the optimal path of a nonholonomic robot is found bv iteratively growing 

thc computed region of optimal control points from the goal configuration using a 

cost — to — go function. To find optimal motions for human figures, [10] uses Dijkstra's 

shortest path algorithm in grids with cdgc weights reflecting the clearance and rota- 

tion of the body parts. For 2D environments with polygonal obstacles, [3] computes a 

roadmap from the visibility graph and optimizcs a B — spline based path for kinematic 

constraints and driving torque. 

All of the approaches above use deterministic roadmaps. Probabilistic roadmaps 

encoding physical constraints have. bccn studied in [12] where the roadmap is cus- 

tomized for various applications, and paths are improved by iterative refinement in 



the query step. 

2. Finding Optimal Paths 

Optimal paths can be obtainc&1 by modifying f enrnal optimization or optimal control 

techniques for motion planning. Because the methods are not based on roadmaps, 

collision checking needs to be geometrically and/or mathematically formulated, and 

is relatively complex and inclficient. 

In [8], l. he constraints of thc optimization problem are extended to A'. v'D and 

OR logic, which are referred to as generalized constraints and deal with polygonal 

obstacles. Modification of genetic algorithms was atterrrpted in [14] to improve the 

path using using Gram — Schmidt orthogonalization. To optimally coordinate multiple 

robots with specified trajectories, [7] used &XIILP (&nixed integer linear programming) 

&vhere the collision between two robots is formulated by a &I function. 

It is difficult to apply these techniques to paths extracted from roadrnaps due to 

the discontinuities ir& the search space (scc Figure 2). 

C. Dijkstra's Algorithm 

Onr optimization method is based on Dijkstra's shortest path algorithm. Dijkstra's 

algorithm searches for a shortest path in a weighted directed graph (V, E) where 

all edge weights are nonnegativc. Figure 3 shows thc pseudo code fo& Dijkstra's 

algorithm &vhcuc dist[a] stores the shortest distance from start to v and PQ contains 

the unexplored vertices sorted by dist. Thc. shortest path from start to goal is 

computed in the pseudo code in I'igure 4 where Dijkstra's algorithm is used as a 

subroutine. Thc key to computing l. he correct solution is the relazatior& in lrnes 8 9 

of Figure. 3 which repeatedly decreases an upper bonnd on the weight of thc vertices 



in PQ when a new lower — weighted path is found. 

DI JKSTRA(V, E, start, , goal) 
1. for each v E V 
2. dist[v] & 

— oc 
3. dist[start] & 

— 0 

4. PQ & 
— Prioritygueue of V ordered by dist 

while (PQ g 0) 
6. u & 

— PQ. dcqueue 
7. for each v E PQ adjacent to u 

8. if (dist[v] ) (dist[v] + weight(u, u)) 
9. di st[v] & 

— dist[v] + weight(a, v) 
10. parent[v] & 

— u 
11. PQ. reorder 

Fig. 3. Pseudo code for Dijkstra. 's algorithm 

SHQRTEs TPATH(V, E, star t, goal) 
1. parent & 

— DI JKSTRA(V, E, start, goal) 
2. path & 

— 0, u & 
— goal 

3. while (suffix of path g start) 
4. append u to path 
5. ~r, & 

— parent[u] 
6. reverse path 

Fig. 4. Pseudo code for shortest path algorithm 

Dijkstra's algorithm is widely used in many areas where the path cost needs to 

I&c minimized, for example in wireless network applications [15] where the edge cost 

is an estimation of thc required transmission power and the propagation delay. 



CHAPTER. III 

ISSUES IN ROBOT PATH OPTIMIZATION 

In this section, we discuss useful properties and requirerrients for computing opti- 

mal paths in robotics that have not been addressed in previous woik. These issues 

rnotivatc our augmentation of Dijkstra's algorithm for computing optimal paths in 

roadrnaps. AVe start with a, general cost function which is commonly used in the 

optimizatioii of physical systems, an&i then discuss its limitations for robotics appli- 

cations. 

A. Standard Cost Function 

The optimization of certain values for a physical system that rnovcs from an initial 

state at time 0 to a final state at time T~, while suk& ject to constraints, is described by 

thc problem of minimizing a cost function. The standard cost function, J in optimal 

control theory [9] is described by 

J — j ' p(in(t), u(t))dt + h(x(Ty)) 

where &n(t) is the state at time t, and u(t) is the control input at time t. The, necessary 

condition at thc final time T~ is described by h(x(T~)). 

This form of the cost function has been used in [13] an&1 optimizes the path 

of a car like robot bv subdividing configuration space and linearly interpolating. 

In general, ail optimal path satisfying Equation 3. 1 with initial and final boundary 

conditions can bc computed using several numerical methods [9]. 
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B. Non — Markov optimization criteria 

Compare&I to o»r rvork, pm ious work with roadmap — based methods lacks two irnpor- 

tant properties needed for real applications. The first is the need for non-I&Iarkovian 

states, i. e. , states which depend on information from a range of previous states. 

For example, to maximize clearance, it is clear that a cost function g will contain 

the reciprocal of clearance if the optirnizcr rrrinimizes J. We denote the reciprocal 

of the clearance as g', . If we let g(x(t), u(t)) — 
r 'Iril in Equation 3. 1, then 

the resulting path will maximize the accurrnilsterl ii'ifll from the start to goal. In 

most cases, the objective is to optimize the path for maximum safety and thc proper 

criterion is maximizing thr; minimum path clearance, not maximizing the accumulated 

clearance. This requires a modified cost function 

/' Tf 1 J = 
/ 

y(x(t), u(t))dt+ h(x(Tt)) + (3 2) 

where t E (0, Ttj such that cl(x(t )) is minimum, and maximizing cl(x(t, „)) is 

eqnivalcnt to minimizing, g, i', IF The term cl(x(t )) is non — Markov, and we force 

the state to be Markov. 

C. Goal sets — flexible final states 

The second issue that has not been addressed in previous work is a flcxil&lc definitio 

of the final necessary condition. Describing the final condition at Tt using an equality 

conditiori changes Equation 3. 1 to 

J = J;, g(x(t). u(t))dt 
(3. 3) 

h(x(Tt)) = 0 
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where the prqblem is now minirnixing, J with 6(x(T~)) = 0 satisfied. This is identical 

to one of the boundary conditions of the optimal control formulation where Ty is free 

and x(Ty) is moving on the surface, h(x(t)) = 0. In a graph search based path planner 

snch as Dijkstra's algorithm, it is difficult to find a node that satisfies h(x(T~)) = 0 

unless some of the nodes are generated exactly on the surface where h(x(t)) = 0. So, 

we modify the surface to be more inclusive by using an inequality comlition. 

J: fj) g(x(t) n(t))dt 

h(x (Ty) ) & ci 
(3. 4) 

The final necessary condition h(x(Ty)) & cy is used to terrninatc the graph search if 

any node satisfying h(x(T&)) & cJ is reached. AVe call this set of nodes a goal set, and 

its sine is dctcrmined by the constant c1. Note that, Dijkstra's algorithm requires two 

cost functions correspornling to g and h in Equation 3. 4. 
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CHAPTER IV 

SYSTE&UI DESCRIPTION 

Our path optimization system is based on thc probabilistic roadmap method (PRMs) 

and Dijkstra's shortest path algorithm. To address the issues mentioned in the pre- 

vious section, we design an augmcntcd version of Dijkstra's algorithm and cost com- 

putation. 

A. Problem Formulation 

Before explaining the details of our framework, we reformat the mathematical descrip- 

tion (in Equatioii 3. 4) to a pseudo — code friendly version. Figuic fi& describes our path 

optimization problein of ininiinizing the cost of a given path p. Operators start(e, ) 

and end(e, ) denote the start and end vertex of edge e„respectively, and thc cost 

functions cost~ and costi, dcnotc t. he functions «and h in Equation 3. 4, rcspcctively. 

Start is a node in the roadmap, and the final conrlition specified by a constant cl 

is intc&rnally transformed to a goal set. goal, , „, that will terminate the search when 

reached. In Section D, pseudo code is used to describe this in detail. 

Note that we do not use the approach of iterative improvement of J, such as 

hill cliinbing and steepest descent. Like dynainic piogramming methods in optimal 

control, we compute the solution in one shot using Dijkstra's algorit, hm. 

B. Markov -like Optimization 

Ideal Markov Function. The issue of maximizing minimum clearance was intro- 



Given environment, start ansi ct, 

find a path p = (e~. , ez, . . . ) such that 

minimize r oat(p) 

where cost(p) = g cost, (e, ) under the constraints 

start(e, ) = sta~t 

clearance(e, ) ) 0, i = 1. . . n 

others (e. g. , time, energy, . . . ) 

and p = ten ez, . . . , et) by the final condition 

end(et) E goal„r 

where goal, « — — (end(e, )) ~ 
costs(end(e, )) & ct) 

Fig. 5. Path optimization problem 

duced in Section III, and the cost function including a non — X'Iarkovian state is 

J — J~ g(x(t), u(t'))dt + h(x(Tt)) + 

t. „, C [O, Tt] 
(4. 1) 

where m(x(t, „)) is a general non — Markovian cost function. In Equation 3. 2, m(x(t„„)) 

was 
q i', ll 

with t the tirrze when the clearance is lowest. This formulation is not 

tractable for cornrnon optimization solvers. Onr approach to this problcrn is to modify 

g(x, u) or costs(e, ) in Figure 5 so that m(x(t„„)) is eliminated in the cost function. 

Discretization. Since we are using a graph search algorithm which is similar to 

dynamic prograrnrning in classic optiruizatiou theory, Equation 4. 1 can be represented 
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by a discretized version 

J = g, ':, v' g(x„u, ) + h(xr, , ) + m(x, ), 

i E r0, 1, . . . , Ã1) 

T, =Q(x r, u r) 

(4. 2) 

where &VJ is the total number of time steps, i is the time step corresponding to t 

and &r is a discrete time state update equation of the system dynamics. 

Using Previous State. Now, we replace g(x„u, ) with g(x„x, „u, ) so that 

both previons and cnrrenr, states are nse&1 for computing thc cost, . The previous state 

is obtained by using parent data structure in the search tree of Dijkstra's algorithm. 

Thc. vrrtcx corresponding to x, r can be quickly obtained from the parent data struc- 

ture and the. vertex corresporrding to x, ;. '&Vc note that this is similar to converting 

a continuous time state x to a discrete time state composed of x„x, , r and At us- 

ing Taylor's series expansion. Many optimization values such as turning angle can 

be computed from x (or x„x, r and At if in discrete time). In this case, using, 

g(:r:„x, , r, u, ) in Dijkstra's algorithm can 1&e regarded as applying a standard discrete 

time optimization to a graph search technique. This does not exhaust thc possible 

applications of our optimizer. 

Markov — like Cost Function. An example of an optimization value that can- 

not be computed frorrr:i is minimum clcarancc, which will be computed from x, 

and x, r. There are other optimization values such as localization su&. cess ratio that 

can bc forrnulatcd using x, and x, r. So, our motivation for using g(x„x, r, u, ) is 

nor, from discretizing g(x, r, , u), lmt to cxtcnd thc ability of the graplr search based 

path optirnizcr usirrg current sr&&i previous states. '&Ve call this approach Markov — like 

because x, r is not iviarkov in a strict, sense E&nt:r;; an&1 x& r can E&c dcnotcd by a 

compound state x, . The general cost function is 
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J = g, ':& ' g(x, , u, ) + I&(x&v, )+m(x, „), 

i C (1, 2, . . . , Xf) 
(4. 3) 

xx — & 

New State Update Equation. We added x, & 
to the cost function with the 

intention of elin&inating m(x, , ), and the state equation a(x, &, u, &) needs to be 

changed accordingly. The idea is that x; should contain the entire history of the 

non — Markovian property. For example, to maxirnizc the minimum path clearance, an 

element in x, will indicate the minimum clearance from start, to time step i. Now, wc 

denote the rninirrmm clearance state by x, "' and add it to x, . 

I — Q & g(x~, &t, ) + h(x&v&), 

a(x& n«, , ) 

x, ' u"(x* x &) 

[x xc&, . cl )T 

(4. 4) 

The state equation a" returns x, ' that is lower than x, ", only if cl(x, , ), the 

clearance of:r:„ is smaller than x, , ", . Otherwise, x, " must e&p&al x, ", because the 

clearance of thc current state is not smaller than the minimum clearance discovered 

so far (see Figure 11). It is clear that a" must contain a Boolean operator. 

cl(x, ) if cl(x, ) ( x, ", 
x, ", otherwise 

(4 5) 

New Cost Function. 'Next, wc focus on g" (x, ", x, ", ) which is a part of g(x, „«, ) 

and corresponds to the state x". It compares the differenc between x, " and x, ", , 
and should return a nonzero positive value if x" 

, ( x, ", . Otherwise, it returns zero 



so that J does not increase. So, we have 

cl (ais xd ) 

l (x" — x, ") ii x, "' ( x' (4. 6) 

otherwise 

whcrc « is a constant. This technique for minimum clearance can be applied to other 

non — lvlarkovian optimization values with the superscript " changed in Equations 4. 4, 

4. 5 and 4. 6. 

C. Flexible Final Condition 

We apply thc modified final condition shown in Equation 3. 4 to our ncw cost function 

in Equation 4. 4, which is the final form of thc cost function that we seek. 

d = P, :i g(x„u), 

x, — a(x„u, , ) 

h(xa . u, v ) ( «t 

D. Augmented Dijkstra's Algorithm 

AvoMENrEn DIJKSTRA(V, E, start, ct) 
1. for (each v E V) dist[v] e- oo 

2. di st[start] l — 0 
3. PQ e- Priority64ueuc of V ordered by dist 
4. while (PQ g f)) 

5. u e- PQ. dequcue 
6. for each v E PQ adjacent to u 

7. if (dist[v] ) (dist[v] + u)eight(u, v, parcnt[u])) 
8. di st[v] e- dist[v] + iveight(u, v, parent[u]) 
9. pnrent[v] e- u 

10. if (costs [v] & ct) return 
11. PQ. reorder 

Fig. 6. Thc augmented Dijkstra's algorithm 
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Dijkstra's algorithm is augmented to reflec thc changes in Equation 4. 7, and its 

pseudo code is shoxvn in Figure 6. To usc Markov — like states, the tceight function 

that corresponds to costv in Figure 5 is changed so that thrcc adjacent vertices are 

used. The cost function costs checks if a node is in the goal set using cy. 
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CHAPTER V 

SYSTEivi EVALUATION 

In this chapt. er we provide some robotic examples that benefit from the path op- 

timization methods described. The following example utilizes our roadrnap — based 

mobile robot system described in (16, 6, 17]. It uses feature based localization and 

sonar range sensors. A T — shaped environment, an&i roadinap are shown in Figure 7 

where five nodes in the goal sei. are marked. ~ obstacle 

roadmap edges 

start 
node 

ei — 1 e t 

goal set 

searched edges of 
of Dijkstra's algorithm 

Fig. 7. Environinent, roadmap and path searching. 

In thc following, we first describe various optimization criter and then we present 

some simulation results. 
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A. Optimization Criteria 

The diagram shown in Figure 8 has tv'o components, Dijkstra's algorithm and weight, 

computation. In this section, we will show that various optimization values are com- 

puted by using different weight computations in the corn&non framework. In the 

diagram shown in Figure 8, we compute the shortest distance, path by usirig 

r:ost (c, ) — Iengt h (e, ) 

startgoal, 

Dijks&ra*s 

0 t'mal path 
Algorithm 

edge et 

cost(et ) 

Weight 
Function 

Fig. 8. Diagram of shortest path computation. 

1. 1VIinimizing Travel Time 

Thc path extracted from a roadmap consists of a series of translations and rotations 

(unless converted to a curve). For ease of presentation, we assume that, thc rotation 

time can be approximated by a constant value and the translation time is proportional 

to the length of the edge. In Figure 8, travel time is minimized by using 

cost(e;) = ci length(et) + rz (o 2) 

where ci and cz are constants. 
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2. Avoiding Localization Failure 

In this case, we assume that thc rok&ot's sensors have range limits and always fail 

to localize if no feature exists within the range. The locations of all features in the 

environment are assumed to be known. In Figure 8, we use 

cost(e, ) = cs fr(visibility of c;) (8 3) 

where 'visibility of e, ' determines if the robot can successfnlly scan one or more 

feature(s) on the edge e, . The function f, (e, ) converts the visibility of edge c, into 

a scalar as shown in Figure 9(a). Note that the optimal path can traverse a region 

with no fcaturcs if necessary. 

10 infinity 
B 

1 2 3 4 
features 

(a) 

10 
0 

10 infinity 
turning radius(m) 
(b) 

Fig. 9. Cost, functions, (a) for featnrcs and (b) for t, urning radius. 

3. Kinematic Constraints 

If the robot has constraints on its turning radius, two adjacent edges c, and e, , arc 

neo&lcd Io cornpuic thc required turning radius to obtain the cost of e, , The weight 

function now uses two edges (or three vcrticcs) as shown in thc pseudo code in Figure 
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6. In Figure 10, which refiects the modified weight computation, we use 

cost(e, ) = c4 fz(turn radius of e, r and e, ) (5 4) 

where fz is an appropriate linear or nonlinear function. 

Optimal Path 

Augmented 
Dijkstra's 

Algorithm 

edges ei. ei — I 

cost(e t ) 

Weight 
Function 

I' ig. 10. Q'eight function with two adjacent edges. 

Figure 9(b) shows an example of a nonlinear function thai, maximizes turning ra- 

dius (region A) and prohibits e, from being used if it violates the kinematic constraint 

of a turning radius of less than 10 meters (region B), 

4. 'Maximizing Minirnurn Clearance 

As discussed in Section B, the minimum clearance z"z is a non — increasing variable and 

is shown as a solid linc in Figure 11. To implement this in the augmented Dijkstra's 

algorithm framework, we add the new variable as auxiliary data as in Figure 12. 

The data is maintained according to the rule shown in Fquation 1. 5. The edge cost 

compui. ation equivalent to Equation 4. 6 is described by 

cost(e, ) = cs (ct, „n, — cl(e, )) if cl(e, ) ( cl, „ 
otherwise 

(o. 5) 

where cl, „ is thc auxiliary data and cl(e, ) is the clearance of edge e, ;. Initially, cl, „„, 
is sct to ihc clearance of the start nocle. 
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eM ~ge . . -, 

minimum 
path clearance 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

cost(e;) 

start goal 

Fig. 11. Cost function for edge clearance 

B. Con&binai, ion of Criteria 

Combining various costs into one function resnlts in thc optimization for multiple 

values, and is useful in many applications. The combined edge cost is expressed by 

cost(e, ) = g ub cost~ 
z 

(5. 6) 

where m, is an appropriate weight and cost, is cost(c, ) in Equations 5, 1- 5. 5. 

C. Simulation Results 

Simulation results for maximizing minimum clearance and allowing a flexible final 

condition arc presented. 

lvfaximizing Minimum Clearance 

Three different possible routes exist in the environment using the roadrnap shown 

in Figure 13(a) from the start, to goal area in Figure 13(c). Paths going through 



Auxiliary data 

start, cf 
edge el f data 

Optimal Path 

Augmented 
Dijkstra' s 

Algorithm 

edges ei, e'-1 

cost(e;) 

Weight 
Function 

Fig. 12. Weighting with two adjacent edges and related data. 

corridor A or C in Figure 13(c) are obtained by maximizing the minimum clearance 

or minimizing path length, respectively. Figurc 13(c) shows thc path going through 

corridor B; this is the result of combining the tivo conditions depicted in Equations 

5. 1 and fi. o. 

cost(c, ) = 0, 03 tcngttr(c, )+ 

0. 97 (cl, „„, — cl(e, )) if cl, (r. , ) & cl, „ 
other wise 

Serirch tree edges ot' Dijkstra' algorithm arc illustrated in Figure 13(b) by arrows 

representing the clirection of the search frorri the start node. . 

Several simulations in the same environment arc presented in Table 14 using an- 

other pararncter, turning radius. Then, the cost(r, ) is computed usirig three constant 

weights costs, , , r, cost, i and cost, „. Costrr is the cost for turning radius arid penalizes 

the edge with a sharp turn. The fourth row shows that the smoothest path is obtained 

by going though region B, which is shown in Figure 13(c). The fifth and sixth rows 

show that, ditferent combinatioris of weight constants can result in thc similar paths. 



environment 

roadmap 

search tree 

optimal path 

(b) (c) 

Fig. 13, Maximizing clearance and combination of criteria 

2. Flcxiblc Final Condition and Dvnamic Constraints 

A mobile platform and robotic arm with 3 links in an environment, composed of three 

walls is illustrated in Figure 15. The wall in the middle has a passage, and each 

node's position in the roadrnap (Figure 15(a)) indicates the mobile platform's center 

of mass. The start configuration is shown in F'igure 15(b), and the final condition is 

that the end effector of the robotic arm should touch the wall opposite to the start 

position, and the mobile plal. form must come l. o a stop. Thc optimization criterion 

is time required. We use bang — bang control logic (move at full speed until the end 
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Route COStdtn cost~( cost« 

0. 03 0. 97 

B 0. 08 0. 84 0. 08 

0. 03 0. 32 

Fig. 14. Srmulations with different pararrtctcrs 

effector touches the wall, and apply thc brake as hard as possible) to cornputc the 

minimum time of each path in Dijkstra's algorithm. KVc assume that the mass of the 

robot is small enough that it does not exceed the maximum deceleration rate and 

collide with the, goal wall. 

Depending on the weight, (including payload) of the robot, final configurations 

will vary. In this case, we do not nccd to compute the optimal final configuratio 

so long as possible goal configurations (shown in Figure 15(c)) arc in the roadmap. 

Three different simulations show different final configurations in the paths with three 

different mass values. 



Vip, . t5. Mohile platform with robo?. io arm, (aj Boadmap, (bj start, position, an(1 (nj 

throe j?lffcrcnt oonf1gln'at. tons ln t1M goa? sot. 
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CHAPTER VI 

APPLICATION: CAlvIPUS NAVIGATOR 

There are a nurriber of applications of motion planning research. Onc application 

currently under development in the Parasol Lab is a campus path planner. This 

prograni will allow users to find their ivay across the Texas A&M Lniversity campus. 

Essentially, thc campus navigator is similar to applications such as Yahoo! Ivlap and 

lvfapOuest in that, it provides users ivith directions (text and/or an image of the route) 

to get from one. location on cainpus to another. 

However, the campus navigator goes beyond the simple point-to-point route plan- 

ning of thcsc existing map programs. The campus navigator is designed to allow much 

more sophisticated queries tailored to the specific needs of the user. For instance, the 

campus navigator takes transportatioii mode changes into consideration. The user 

can specify if she will be walking, riding a bike, driving a car, or willing to take the 

bus. 

As an exariiplc, consider a user wishing to find a route to get from a building on 

main campus to a building on west carry&us. There. arc a number of ways to accomplish 

this. One could simply walk to west campus. Using thc cainpus navigator system, 

the user can find ivhich bus(es) to take, where and when they stop, saving time and 

effor. The system will take into account driving conditions (i. e. , close&1 streets due to 

construction), parking lots basc&l on per&nit restrictioiis, and handicapped accessibility 

to provide the best path for the user. 

A. Coinponents of the Campus Navigator 

Currently, the carry&us iiavigator is under development. A prototype of the systciii 

is expected to be ready by the end of thc Spring 2003 semester. The next sections 
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describe the four fundamental components of the campus navigator system. 

1. Overview of Campus Navigator 

Before delving into each of these components, an overview of the system as a rvholc 

is in order. The user will interact with the system through a set of web pages. These 

pages allow the user to specify the start location and destination. Thc user's selection 

is sent to a program, query, that searches a preconstructed graph of carnpras (created 

via the roadmap editor). This graph, which is stored in a database, contains all thc 

data needed by query to select a route that meets the user's request. 

The path resulting from query's search of thc graph is sent to Vizmo++, a 

visualization tool developed within the Parasol research group (18). Using a 8D 

model of campus and the path, Vizmo++ creates a JPEG image that depicts the 

route through campus. This JPEG image is sent back to the user's browser. In 

addition to the image, a textual descripl, ion ol' the route is provided. Figure 16 shows 

how all the corrrponents of our Campus Navigator systnn interact. 

Fig. 16. Overview of Canqrus Navigator system. 
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2. The Campus Graph 

The fundamental component of the carrq&us navigator is a graph. As with many 

motion planning problems, this application is built upon thc idea of finding a path 

through a graph. All the various constraints are expressed through properties of the 

vertices and weights on the edges of this graph. Vc&ticcs are used to represent physical 

places on campus such as buiklings and parking lots. The edges of the graph are used 

to represent streets and walking paths through campus. 

For this application, the graph is stored in a database. Thc current implemen- 

tation employs the open source 'vIySQL database management systeiii. There are a 

number of reasons for storing the graph in a database. First, it allows concurrent 

access to the graph from the various components of the system. Initial designs called 

for the graph to be stored in a fil. , which is a customary storage medium for graphs. 

Second, the database simplifies thc sharing of data between the campus navigator 

systein components. As an example, thc road&nap editor, query, and the wcb interface 

need to access building names. The roadmap editor uses the names to allow vertices to 

be associated with buildings. Query cinploys building names when generating textual 

directions, and the web interface needs the narncs to give the user a list of buildings to 

choose from (for specifying start and/or destination). Each of these components are 

currently implernentcd in disparate languages. The database provided the simplest 

medium through which all three pieces could access the same data. 

3. The Roadmap Fditor 

Currently, thc cainpus graph is constructed rrianuallv. This is somewhat ironic as 

much of the work in motion planning is aimed at automatically creating a r&&a&i&nap. 

Automatic construction of the campus graph is not realistic as most autogeneration 
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techniques &ely on randomly generating vertices and connecting those vertices with 

edges. Rando&n placement of vertices is not appropriate for this application, as ver- 

tices need to be tied to specific points on campus. For instance. , a vertex needs to bc 

associated with each building and parking lot. 

To ease the construction of this large graph, a roa&finap editor is currently under 

development. This program allows the campus graph to bc built over an image of the 

campus. The user of this program can place vertices at ea«h of the buildings, parking 

lots, intersections, etc. on campus by simply clicking on the building, parking lot, or 

intersection in the, irnagc. Then edges can be a&fled for the streets and walking paths 

between these vertices. All of i. his information is stored in the centralized database. 

Even if the campus graph could be generated randomly, all the properties of the 

vertices an&I edges of the graph would have to be manually specified. For instance, 

for a vertex representing a parking lot, sornconc must specify which permits (student, 

faculty/stalf, etc. ) are allowed to park in the lot, . This is the second role of the 

roadmap editor. It allows this information to be entered for all the parts of the 

graph. 

4. Campus Graph Query 

The query progra&n is responsible for finding routes through the graph that mcct the 

user's request. This application employs Dijkstra's algorithm to find the optimal path 

through campus. This portion of Carr&pus Navigator builds on the Path Optimization 

research presented in the previous chapters. Running as a service, the web interface 

will send requests to query and receive the computed path for Vizmo++ to display. 



Calnpus path Visualization Via Viz)no++ 

Vlzlno++ ls lesponslMP, fol' gel'IPI'sting a ptctul'c of cMnpus frith fhP. path ovcl'laved 

t181. After the user selects t, hc sf;arf, and goal points and query gcn(frat»a a path flic, 

Vizmo++ opens up a 3D model of the (alnpus slid thc path file to begin cr(sting f:hc 

snapshot. Thc earners f, hen zoon)a or)to the path and cr( ates f;he image. This imag» 

is sent back to thc web server to be displayed on thc us»res brolvscr. 

6. User Vrcb Intn face 

Us(lrs of thc canlpus navigator will int»rfacc with if via a, sct of wcb pages. Users 

will select the start and dcstirlation via selection boxes populated by data from the 

data4f lac. Plein tbc us»I' s('. lect, lens, tbe wp4 pages clpfprlrnlre thc v(', rf lees that. col'- 

I'cspolul to t4». sclcctc(l. Ioceltlons. These so-callPd start Mld goal vcl'flees, 'll'c glvcn 

to (lucry Ivhi(lh finds I'4» I'Out('. . Th('. wc4 pages rccPlve an lnlagc of 14» refit('. fl'onl 

an i)nag» generated by Vizmo++. I'igurp 17 is a, scrcenshot from a prototype of the 

Calnpus X'avigator lveb interfac». 

t te e 

I If 

i eltt 

eet t fe e, e t. I 

It f I f« te I I 

„, "tf@„;:, , !;, , -;:„t, ", 's, :„), 

Fig. 17. Prototype of Campus (Iavfgator infcrface 

Initially, the lvcb interface will provide simply a two dimension'll )nap of campus 



with the path overlayed. Similar to Ivlapguest and other programs, the campus 

navigator web interface allows users to xoo&n in and out on the returned campus 

path. Ultimately, it is envisioned that users would l&e able to generate a movie, 

allowing the user to "fly-through" a 3D model of campus along the path generated 

by query. 

The campus navigator is an interesting and useful application of motion planning 

research, Exploiting the techniques developed to plan the paths of robots, the campus 

navigator aims to guide people around the large campus of Texas A&%1 University. 

It is envisioned that this application would potentially be useful for cities. By taking 

into consideration all the various modes of transportation such as buses and subways, 

the campus navigator could be extended to a city navigator, allowing residents and 

visitors to efhciently navigate the city. 



CHAPTER VH 

SUMIvIARY AND CONCLUSIONS 

A framework for extracting an optimal path in a roadmap for motion planning has 

liccn created. Our fraiiicwork combines the inathematical flexibility of general op- 

tiinization techniques arid computational efficien of roadmap — based methods. We 

designed an augmented Dijkstra's shortest path algorithin that uses lvlarkov — like state 

and goal sets. Using PAMs, the path can be efficiently optiinized in a large space 

for several values including kinematic/dynamic constraints and minimum clearance. 

Siinulation results ivere presented to illustrate thc feasibility of our approach. 

Application to the Canipus Navigator ivas presented to demonstrate the many 

areas where path planning and optimization can be used. In this example, wc harness 

the power and flcxibility of graph search algorithms to allow customizable queries on 

a hand-made roadmap. Thc framework we created in the Campus Navigator can be 

exten&lcd to larger City Navigators. 

A. Future Work 

Future work consists of exprrimenting with robots with high degrees of freedom, 

explicit formulation of dynamic constraints, and hardware experiments using mobile 

robots. Also, planning paths for multiple robots sharing a roadmap will k&c considered 

in the future. Using many ideas presented in this thesis, in particular Flexible Goal 

Conditions, we may extract optiinal paths and meeting or coordination points for 

rrniltiplc robots. 
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