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ABSTRACT

Optimal Motion Planning with Constraints for
Mobile Robot Navigation. (April 2003)
Roger Allan Pearce
Department of Computer Science
Texas A&M University

Fellows Advisor: Dr. Nancy M. Amato
Department of Computer Science

Motion planning is the process of planning a sequence of motions to move an
object from one configuration to another. Recently, randomized techniques known as
PRMs have shown great potential for solving motion planning problems in compli-
cated high-dimensional space. Motion Planning, or path planning for robots, becomes
increasing difficult as the dimension of the planning space increases with the robot’s
degrees of frecdom (dof). While the running time of deterministic motion planning
algorithms grows exponentially with an increase in dof, PRMs can produce solutions
in times that do not depend on the dof but only the difficulty of the problem. PRMs
randomly generate collision free configurations in a robot’s Configuration-space (C-
space), representing feasible positions and orientations for the robot. Nearby con-
figurations are linked together by so called local planners, and these connections are
edges in a roadmap, a graph containing representative discrete paths the robot may
travel.

We present methods to extract optimal paths from roadmap-based motion plan-
ners. Our system uses Markov-like states and flexible goal states so that general
optimization criteria including collision detection, kinematic/dynamic constraints, or

minimum clearance can be used in various applications. Our algorithm is an aug-



mented version of Dijkstra’s shortest path algorithm. We present simulation results
maximizing minimum path clearance, minimizing localization cffort, and enforcing

kinematic/dynamic constraints.
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CHAPTER 1

INTRODUCTION
Automatic motion planning has been used in many arcas such as robotics and computer
aided design (CAD) to find paths in the presence of obstacles. Though originating in
robotics, motion planning techniques have also been adapted to other areas such as
autonomous transportation systems for automobiles or aircraft, military unmanned
vehicles that operate in the air or underwater, and computer animations in the en-
tertainment industry.

In these applications, paths must be found quickly in large search spaces. Roadmap—
based planncrs are ideal for such scenarios [1]. A roadmap containing representative
paths is computed during a preprocessing step, and paths can be quickly extracted
from the roadmap during query processing. Recently, a class of roadmap-based plan-
ning methods, called probabilistic roadmap methods (PRMs) [1], have proven to be
very successful in efficiently solving high~dimensional problems in complex environ-
ments. In PRMs, the roadmap is a graph representing the connectivity of the free
configuration space where the nodes are sampled robot configurations and the edges
are paths connecting nodes that are computed by a simple and deterministic local
planner.

The strength of roadmap-based planners is that the roadmap approximates the
connectivity of the planning space. While roadmap-based planners are extremely
effective in providing feasible solution paths for arbitrary queries, generally no guar-
antees can be provided regarding the quality of the paths. In particular, paths ex-

tracted from roadmaps seldom provide optimal solutions because they are restricted

The journal model is IEEE Transactions on Automatic Control.



to the nodes and edges in the roadmaps. In many cases, this is not a concern hecause
the problem of interest is simply finding a feasible path. For this reason, optimizing
paths has received little attention for roadmap-based planners.

Tn this research project, we consider the problem of extracting an optimal path
from among all paths contained in the roadmap. There are two main issues that are
of concern. First, roadmaps contain many possible routes connccting two different
nodes. Depending on the graph search algorithm and the criteria applied, different
paths connecting the same start and goal nodes can be found. Second, a path ex-
tracted from a roadmap is composed of many short line segments and its quality
is likely lower than a “smoothed” path obtained by exhaustive numerical optimiza-
tion. These two properties are inherent in roadmap based methods. We call the first
a macroscopic property because the chosen search method can result in large-scale
changes in the path. We rcfer to the second as a microscopic property because typi-
cally there are no topological differences between the extracted path and the optimal
path.

A number of techniques have been proposed to improve the solution paths ex-
tracted from roadmaps (the microscopic property). Common approaches arc to post
process the path by converting the path to a curve, moving existing nodes, or adding
additional nodes to the suboptimal path [2, 3].

In this rescarch project, we focus on the macroscopic property and provide a
method to quickly compute an optimal path from among all paths contained in the
roadmap. Our method is based on an augmented version of Dijkstra’s shortest path
algorithm which enables one to consider more general optimization criteria and re-
Jaxed definitions of the goal state.

The results in this thesis will appear in ICRA 2003, the IEEE International

Conference on Robotics and Automation [4]. This work builds on our previous work



on mobile robot navigation and localization {3, 6].



CHAPTER II

PRELIMINARY AND RELATED WORK

A. Roadmap-based Motion Planning

At the heart of our path optimization techniques is roadmap-based motion planning.
These motion planning methods model the robot(s) in Configuration Space ( C-space),
a multi-dimensional space where the dimensions represent the dof of the robot. This
configuration consists of all the information required to describe the robot’s position
and oricntation in the real world. For example, a cube moving in 3d space will need
a six dimensional configuration < x,y, z, roll, pitch, yaw >, and a Mobile Robot or
car will need a three dimensional configuration < x,y, orientation >.

Many roadmap-based motion planners focus on randomly creating roadmaps to
solve complicated high-dimensional problems. These roadmaps consist of randomly
created vertices representing a single configuration of the robot. These vertices are
connected together by edges representing collision free paths between two vertices.
Many random and heuristic methods have been developed to create roadmap edges
and the end result is a graph consisting of vertices and edges representing a small
discrete set of collision-free space in the robot’s cnvironment. Figure 1 describes how

many roadmap-based motion planning methods work.

B. Path Optimization

Previous research shows that applying common optimization techniques to robotics is
not straightforward because the collision—free requirement renders it difficult to solve
optimization constraints analytically or numerically [7, 8]. In particular, discontinuity

of the search space makes it difficult to find the optimal path. Figure 2(a) shows a



Given: an environment (descriptions of moveable
object A and obstacles B), and start and goal positions
of A

Find: a valid path (continuous sequence of valid
configurations of A) from start to goal

,.\_/obstaclos

Roadmap Construction (Pr ing)

*11. Randomly generate rabet canfigurations (nodes)
 discard nedss that ars in collision (collion chock)

2. Connect pairs of nades 1o fomn roadmap
- simple, deterministic locaf pianner (e. g., gtraightling)
- discard paths that are i collision (calision chech)

Query processing
1. Connect stait and gaal o roadmap

2. Find path in roadmap between stan and goa!
- regenerate plans for edges in madmap

Fig. 1. Overview of roadmap-based motion planning.

path extracted from a roadmap (p;) and paths generated by general optimization
techniques (p1, ps, ps). Figure 2(b) shows two regions separated by an obstacle. To
solve two—point boundary—value optimization problems, an initial guess of the solution
must be given [9]. If the initial guess is py, then the solution cannot be improved
beyond ps without understanding the discontinuity of the search space. However, the
suboptimal path ps can be transformed to the optimal p;.

Recently, two different approaches have been developed to obtain optimal paths
in robotics applications; one is based on improving existing paths, the other applies

optimal control techniques to motion planning.



P2
start =Pl roadmap
1
0 goal goal
——m
start
>P3 2

(a) (b

Fig. 2. Optimizing path with initial guesses
1. Improving Paths

Most recent methods for motion planning are explicitly /implicitly based on roadmaps.
Several methods consider the prablem of optimizing or improving an existing path, for
example, grids [10], visibility graphs [11, 3], PRMs [12], and growing control points
in barycentric coordinates [13].

In [13], the optimal path of a nonholonomic robot is found by iteratively growing
the computed region of optimal control points from the goal configuration using a
cost-to—go function. To find optimal motions for human figures, [10] uses Dijkstra’s
shortest path algorithm in grids with edge weights reflecting the clearance and rota-
tion of the body parts. For 2D environments with polygonal obstacles, [3] computes a
roadmap from the visibility graph and optimizes a B-spline based path for kinematic
constraints and driving torque.

All of the approaches above use deterministic roadmaps. Probabilistic roadmaps
encoding physical constraints have been studied in {12] where the roadmap is cus-

tomized for various applications, and paths are improved by iterative refinement in



the query step.

2. Finding Optimal Paths

Optimal paths can be obtained by modifying general optimization or optimal control
techniques for motion planning. Because the methods are not based on roadmaps,
collision checking needs to be geometrically and/or mathematically formulated, and
is relatively complex and incfficient.

In [8], the constraints of the optimization problem are extended to AND and
OR logic, which are referred to as generalized constraints and deal with polygonal
obstacles. Modification of genetic algorithms was attempted in [14] to improve the
path using using Gram-Schmidt orthogonalization. To optimally coordinate multiple
robots with specified trajectorics, [7] used MILP (mixed integer linear programming)
where the collision between two robots is formulated by a & function.

Tt is difficult to apply these techniques to paths extracted from roadmaps due to

the discontinuities in the search space (sce Figure 2).

C. Dijkstra’s Algorithm

Our optimization method is based on Dijkstra’s shortest path algorithm. Dijkstra’s
algorithm searches for a shortest path in a weighted directed graph (V,E) where
all edge weights are nonnegative. Figure 3 shows the pseudo code for Dijkstra’s
algorithm where dist[v] stores the shortest distance from start to v and P@Q) contains
the uncxplored vertices sorted by dist. The shortest path from start to goal is
computed in the pseudo code in Figure 4 where Dijkstra’s algorithm is used as a
subroutine. The key to computing the correct solution is the relazation in lines 8 9

of Figure 3 which repeatedly decreases an upper bound on the weight of the vertices



in PQ when a new lower—weighted path is found.

DLIKSTRA(V, E, start, goal)
for each v € V'

dist[y] « o
dist[start] «+ 0
PQ + PriorityQueue of V ordered by dist
while (PQ) # §)

u ¢~ PQ.dequeue

for cach v € PQ adjacent to v

if (dist[v] > (distjy] + weight(u,v))
dist[v] « dist[v] + weight(u,v)

0. parent[v] + u
1.  PQureorder

ol e R

Fig. 3. Pscudo code for Dijkstra’s algorithm

SHORTESTPATH(V, E, start, goal)
1. parent + DIJKSTRA(V, E, start, goal)
2. path < B, wu < goal
3. while (suffix of path # start)
4. append u to path
5 w4 parent[u]
6. reverse path

Fig. 4. Pseudo code for shortest path algorithm

Dijkstra’s algorithm is widely used in many areas where the path cost needs to
be minimized, for example in wireless network applications [15] where the edge cost

is an estimation of the required transmission power and the propagation delay.



CHAPTER III

ISSUES IN ROBOT PATH OPTIMIZATION
In this section, we discuss useful properties and requirements for computing opti-
mal paths in robotics that have not been addressed in previous work. These issues
motivate our augmentation of Dijkstra’s algorithm for computing optimal paths in
roadmaps. We start with a gencral cost function which is commonly used in the
optimization of physical systems, and then discuss its limitations for robotics appli-

cations.

A. Standard Cost Function

The optimization of certain values for a physical system that moves from an initial
state at time 0 to a final state at time Ty, while subject to constraints, is described by
the problem of minimizing a cost function. The standard cost function J in optimal

control theory [9] is described by

Ty
J= [ ol ue)at + hix(T))) (3.1)

where z(t) is the state at time ¢ and u(t) is the control input at time ¢. The necessary
condition at the final time T} is described by h(x(T})).

This form of the cost function has been used in [13] and optimizes the path
of a car like robot by subdividing configuration space and linearly interpolating.
In general, an optimal path satisfying Equation 3.1 with initial and final boundary

conditions can be computed using several numerical methods [9].
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B. Non-Markov optimization criteria

Compared to our work, previous work with roadmap-based methods lacks two impor-
tant properties needed for real applications. The first is the need for non-Markovian
states, i.e., states which depend on information from a range of previous states.

For example, to maximize clearance, it is clear that a cost function g will contain

the reciprocal of clearance if the optimizer minimizes J. We denote the reciprocal

of the clearance as ci(;(!))' If we let g(z(t), u(t)) = m in Equation 3.1, then

the resulting path will maximize the accumnulated from the start to goal. In

cl(z o)l
most cases, the objective is to optimize the path for maximum safety and the proper
criterion is maximizing the minimum path clearance, not maximizing the accumulated

clearance. This requires a modified cost function

I = [ gt u®)ae + hatr) + ﬁ 32)

where t, € [0,Ty] such that cl(z(t»)) is minimum, and maximizing cl(z(t,,)) is
equivalent to minimizing m The term cl(z(t,,)) is non-Markov, and we force

the state to be Markov.

C. Goal sets — flexible final states

The second issue that has not been addressed in previous work is a flexible definition
of the final necessary condition. Describing the final condition at Ty using an equality
condition changes Equation 3.1 to
-
J= o gz(t), u(t)dt

h(x(Ty)) =0

(3:3)
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where the prdblem is now minimizing .J with h(z(Ty)) = 0 satisfied. This is identical
to one of the boundary conditions of the optimal control formulation where Ty is free
and %(I}) is moving on the surface, 2(x(t)) = 0. Ina graph search based path planner
such as Dijkstra’s algorithm, it is difficult to find a node that satisfies h(z(T7)) = 0
unless some of the nodes are generated exactly on the surface where h(z(t)) = 0. So,

we modify the surface to be more inclusive by using an inequality condition.

T = [y glw(t), u(t))ds
(3.4)
hz(Ty)) < ¢
The final necessary condition h(z(Ty)) < ¢y is used to terminate the graph search if
any node satisfying h(z(Ty)) < c; is reached. We call this set of nodes a goal set, and

its size is determined by the constant cy. Note that Dijkstra’s algorithm requires two

cost functions corresponding to g and h in Equation 3.4.
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CHAPTER 1V

SYSTEM DESCRIPTION
Qur path optimization system is based on the probabilistic roadmap method (PRMs)
and Dijkstra’s shortest path algorithm. To address the issucs mentioned in the pre-
vious section, we design an augmented version of Dijkstra’s algorithm and cost com-

putation.

A.  Problem Formulation

Before explaining the details of our framework, we reformat the mathematical descrip-
tion (in Equation 3.4) to a pseudo-code friendly version. Figure 5 describes our path
optimization problem of minimizing the cost of a given path p. Opcrators start(e;)
and end(e;) denote the start and end vertex of edge e;, respectively, and the cost
functions cost, and cost;, denote the functions g and h in Equation 3.4, respectively.
Start is a node in the roadmap, and the final condition specified by a constant ¢y
is internally transformed to a goal set, goals.;, that will terminate the search when
reached. In Section D, pseudo code is used to describe this in detail.

Note that we do not use the approach of iterative improvement of J, such as
hill climbing and steepest descent. Like dynamic programming methods in optimal

control, we compute the solution in one shot using Dijkstra’s algorithm.

B. Markov-like Optimization

Ideal Markov Function. The issue of maximizing minimum clearance was intro-
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Given environment, start and ¢y,
find a path p = {e),es,...} such that
minimize cost(p)
where cost(p) = ¥ cost,(e;) under the constraints

start(e,) = start
clearance(e;) >0, i=1...n
others (e.g., time, energy, ...)
and p = {ey,e3,...,e5} by the final condition

end(es} € goalse

where goalse = {end(e;)) | costr(end(e;)) < cy}

Fig. 5. Path optimization problem
duced in Section ITI, and the cost function including a non-Markovian state is

J= gy gla(t),u(n)dt + hz(Ty)) +
(4.1)
(2 (tm)), b € [0,7)]

where m{z(i,,)) is a general non-Markovian cost function. In Equation 3.2, m(z(t,,))

1

was )

with t,, the time when the clearance is lowest. This formulation is not
tractable for common optimization solvers. Our approach to this problem is to modify

g(z, u) or costy(e;) in Figure 5 so that m(z(t,,)) is eliminated in the cost function.

Discretization. Since we are using a graph scarch algorithm which is similar to

dynamic programming in classic optimization theory, Equation 4.1 can be represented



by a discretized version

T =S EV gloi,w) + hlz,) +mizi,),

im € {0,1,...,Nf} (4.2)
zi = a(Ti-1, Uj-1)
where Ny is the total number of time steps, in is the time step corresponding to ¢,

and a is a discrete time state update equation of the system dynamics.

Using Previous State. Now, we replace g(z;, ;) with g, 21, %) so that
both previons and current states are used for computing the cost. The previous state
is obtained by using parent data structure in the search tree of Dijkstra’s algorithm.
The vertex corresponding to z;_; can be quickly obtained from the parent data struc-
ture and the vertex corresponding to z;. We note that this is similar to converting
a continuous time state & to a discrete time state composed of x;, z;—; and At us-
ing Taylor’s series expansion. Many optimization values such as turning angle can
be computed from & (or &;, ;-1 and At if in discrete time). In this case, using
g{ws, wi-1, ;) in Dijkstra’s algorithm can be regarded as applying a standard discrete
time optimization to a graph search technique. This does not exhaust the possible

applications of our optimizer.

Markov-like Cost Function. An example of an optimization value that can-
not be computed from i is minimum clearance, which will be computed from z;
and z;_;. There are other optimization values such as localization success ratio that
can be formulated using z; and z;—;. So, our motivation for using g(zz, zi1,w;) is
not from discretizing g(=, &,7%), but to extend the ability of the graph search based
path optimizer using current and previous states. We call this approach Markov-like
because x;_; is not Markov in a strict sense but z; and x;_, can be denoted by a

compound state x;. The general cost function is
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J =S5V g, w) + Mzn,) + m(zs,),

im € {1,2,...,N
{ 1} (43)

New State Update Equation. We added xz;_; to the cost function with the
intention of eliminating m(z;,, ), and the state equation a(z;.1,u;—;) needs to be
changed accordingly. The idea is that x; should contain the entire history of the
non—Markovian property. For example, to maximize the minimum path clearance, an
element in x; will indicate the minimum clearance from start to time step . Now, we

denote the minimum clearance state by x¢' and add it to x;.

<N,
J =S5 sk w) + hizn,),
z; oZi-1, Uiz1)
- (4.4)
‘1;5‘ a(‘l (Iz'zflfl)

xi=lo 2 ol

The state equation o returns =§ that is lower than z¢, only if ci(z,), the
clearance of x;, is smaller than zZ,. Otherwise, 2§ must equal z¢, because the
clearance of the current state is not smaller than the minimum clearance discovered

50 far (see Figure 11). It is clear that o must contain a Boolean operator.

el(z;)  if elz) < 2
e, a8 ,) = ' Vo (45)
T, otherwise
New Cost Function. Next, we focus on ¢%(z¢, 2t ;) which is a part of g{x;, u;)

and corresponds to the state z¢. It compares the difference between z¢ and zfl,,

and should return a nonzero positive value if z¢ < z,. Otherwise, it returns zero



so that J does not increase. So, we have

g, 2t =

e (e, -2 i af <, (4.6)

i

0 otherwise

where ¢ is a constant. This technique for minimum clearance can be applied to other
non-Markovian optimization values with the superscript < ¢hanged in Equations 4.4,

4.5 and 4.6.

C. Flexible Final Condition

We apply the modified final condition shown in Equation 3.4 to our new cost function

in Equation 4.4, which is the final form of the cost function that we seek.

T = YEV g(x, us),
x; = a(xX;, %i-1) 4.7)

h(fo‘ un,) < ¢

D. Augmented Dijkstra’s Algorithm

AucmEeNTED DIJKSTRA(V, B, start,cy)
for {each v € V) dist[v] < o0
dist[start] < 0
P(Q) + PriorityQueuc of V ordered by dist
while (PQ # )
u + PQ.dequeue
for each v € P} adjacent to u
if (distfv] > (dist[v] + weight(u,v, parent{u)))
dist[v] « dist[v] + weight(u, v, parent[u])
parent[v] ¢ u
if (costa(v] < ¢f) return
PQ.rcorder

CEe®aS e e e

=@

Fig. 6. The augmented Dijkstra’s algorithm



17

Dijkstra's algorithm is augmented to reflect the changes in Equation 4.7, and its
pseudo code is shown in Figure 6. To usc Markov-like states, the weight function
that corresponds to cost, in Figure 5 is changed so that three adjacent vertices are

used. The cost function cost,, checks if a node is in the goal set using ¢;.



CHAPTER V

SYSTEM EVALUATION
In this chapter we provide some robotic examples that benefit from the path op-
timization methods described. The following cxample utilizes our roadmap-based
mobile robot system described in [16, 6, 17]. It uses feature based localization and
sonar range sensors. A T-shaped environment and roadmap are shown in Figure 7

where five nodes in the goal set are marked.

> obstacle

| —> roadmap edges

> goal set

start
node < 3¢

searched edges of
of Dijkstra’s algorithm

Fig. 7. Environment, roadmap and path searching.

In the following, we first describe various optimization criter and then we present

some simulation results.



A.  Optimization Criteria

"The diagram shown in Figure 8 has two components, Dijkstra’s algorithm and weight
computation. In this section, we will show that various optimization values are com-

puted by using different weight computations in the common framework. In the

diagram shown in Figure 8, we compute the shortest distance path by using

cost(e;) = length(e;)

| start, goal ~\ edge ej

e Dijkstra’s

Optimal Path Algorithm | w -~
cost{e;)

Fig. 8. Diagram of shortest path computation.

1. Minimizing Travel Time

The path extracted from a roadmap consists of a series of translations and rotations
{unless converted to a curve). For ease of presentation, we assume that the rotation

time can be approximated by a constant value and the translation time is proportional

Weight
Function

to the length of the edge. In Figure 8, travel time is minimized by using

cost(e;) = ¢; - lengthle;) + ¢

where ¢; and ¢; are constants.
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2. Avoiding Localization Failure

In this case, we assume that the robot’s sensors have range limits and always fail
to localize if no feature exists within the range. The locations of all features in the

environment are assumed to be known. In Figure 8, we use
cost(e;) = c3 - fi{visibility of e;) (5.3)

where ‘visibility of e;’ determines if the robot can successfully scan one or more
feature(s) on the edge e;. The function fi(e;) converts the visibility of edge ¢; into
a scalar as shown in Figure 9(a). Note that the optimal path can traverse a region

with no features if necessary.

infinity

1 2 3 4 0 10 infinity
features turning radius(m)

(@) (b)

Fig. 9. Cost functions, (a) for features and (b) for turning radius.

3. Kinematic Constraints

If the robot has constraints on its turning radius, two adjacent edges €; and e;_, are
needed to compute the required turning radius to obtain the cost of e;. The weight

function now uses two edges (or three vertices) as shown in the pseudo code in Figure
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6. In Figure 10, which reflects the modified weight. computation, we use
cost(e;) = ¢y - fo(turn radius of ¢;_1 and e;) (5.4)

where f, is an appropriate linear or nonlincar function.

edges ¢, €¢i-1
Augmented ges v

s ) 7 ™S ]
Dijkstra’s Weight

y

- i e | Function
Optimal Path Algorithm
cost(ej)

Fig. 10. Weight function with two adjacent edges.

Figure 9(b) shows an example of a nonlinear function that maximizes turning ra-
dius (region A) and prohibits e; from being used if it viclates the kinematic constraint

of a turning radius of less than 10 meters (region B).

4. Maximizing Minimum Clearance

As discussed in Section B, the minimum clearance z® is a non-increasing variable and
is shown as a solid linc in Figure 11, To implement this in the augmented Dijkstra’s
algorithm framework, we add the new variable as auxiliary data as in Figure 12.
The data is maintained according to the rule shown in Equation 4.5. The edge cost

computation equivalent to Equation 4.6 is described by

¢s v (g — clle; if el(e;) < Clyin
ost(eg = | 5 (e o) it lle) o5
0 otherwise

where cly, is the auxiliary data and cl(e;) is the clearance of edge ¢;. Initially, clpn,

is set to the clearance of the start node.
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Fig. 11. Cost function for edge clearance

B. Combination of Criteria

Combining various costs into one function results in the optimization for multiple

values, and is useful in many applications. The combined edge cost is expressed by

cost{e;) = Y_ w; - cost; (5.6)
i

where w; is an appropriate weight and cost; is cost(e;) in Equations 5.1-5.5.

C. Simulation Results

Simulation results for maximizing minimum clearance and allowing a flexible final
condition arc presented.
1. Maximizing Minimum Clearance

Three different possible routes exist in the environment using the roadmap shown

in Figure 13(a) from the start to goal area in Figure 13(c). Paths going through
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N edge e;_; data
Augmented | edges ¢i, €i—1
e Dijkstra’s j .~ —~a | Weight

Optimal Path Algorithm | =~ | Function

cost(ei)

Fig. 12. Weighting with two adjacent edges and related data.

corridor A or C in Figure 13(c) are obtained by maximizing the minimum clearance
or minimizing path length, respectively. Figure 13(c) shows the path going through
corridor B; this is the result of combining the two conditions depicted in Equations
5.1 and 5.5.
cost(e;) = 0.03 length(e;)+
0.97 (clopin — cl(e:))  if clle;) < clmin

0 otherwise

Search tree edges of Dijkstra’ algorithm arc illustrated in Figure 13(b) by arrows
representing the direction of the search from the start node.

Several simulations in the same environment arc presented in Table 14 using an-
other parameter, turning radius. Then, the cost(e;) is computed using three constant
weights costgst, costy and costy,. Costy, is the cost for turning radius and penalizes
the edge with a sharp turn. The fourth row shows that the smoothest path is obtained
by going though region B, which is shown in Figure 13(c). The fifth and sixth rows

show that different combinations of weight constants can result in the similar paths.
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Fig. 13. Maximizing clearance and combination of criteria
2. Flexible Final Condition and Dynamic Constraints

A mobile platform and robotic arm with 3 links in an environment composed of three
walls is illustrated in Figure 15. The wall in the middle has a passage, and each
node’s position in the roadmap (Figure 15(a)) indicates the mobile platform’s center
of mass. The start configuration is shown in Figure 15(b}, and the final condition is
that the end effector of the robotic arm should touch the wall opposite to the start
position, and the mobile platform must come to a stop. The optimization criterion

is time required. We use bang-bang control logic (move at full speed until the end



Route | costys | costy | costy
A 0 1 0
B 0.03 0.97 0
C 1 0 0
B 0 0 1
B 0.08 0.84 | 0.08
B 0.03 032 | 0.65

Fig. 14. Simulations with different. parameters

effector touches the wall, and apply the brake as hard as possible) to compute the
minimum time of each path in Dijkstra’s algorithm. We assume that the mass of the
robot is small cnough that it does not exceed the maximum deceleration rate and
collide with the goal wall.

Depending on the weight (including payload) of the robot, final configurations
will vary. In this case, we do not nced to compute the optimal final configuration
s0 long as possible goal configurations (shown in Figure 15(c)) arc in the roadmap.
Three different simulations show different final configurations in the paths with three

different mass values.



(b)

Fig. 15. Mobile platform with robotic arm. (a) Roadmap, (b) start position, and (c)
" three different configurations in the goal set.
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CHAPTER VI

APPLICATION: CAMPUS NAVIGATOR
There are a number of applications of motion planning research. Onec application
currently under development in the Parasol Lab is a campus path planner. This
program will allow users to find their way across the Texas A&M University campus.
Essentially, the campus navigator is similar to applications such as Yahoo! Map and
MapQuest in that it provides users with directions (text and/or an image of the route)
to get from one location on campus to another.

However, the campus navigator goes beyond the simple point-to-point route plan-
ning of these existing map programs. The campus navigator is designed to allow much
more sophisticated queries tailored to the specific needs of the user. For instance, the
campus navigator takes transportation mode changes into consideration. The user
can specify if she will be walking, riding a bike, driving a car, or willing to take the
bus.

As an example, consider a user wishing to find a route to get from a building on
main campus to a building on west campus. There are a number of ways to accomplish
this. One could simply walk to west campus. Using the campus navigator system,
the user can find which bus(es) to take, where and when they stop, saving time and
cffort. The system will take into account driving conditions (i.e., closed streets due to
construction), parking lots based on permit restrictions, and handicapped accessibility

to provide the best path for the user.

A. Components of the Campus Navigator

Currently, the campus navigator is under development. A prototype of the system

is expected to be ready by the end of the Spring 2003 semester. The next sections
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describe the four fundamental components of the campus navigator system.

1. Overview of Campus Navigator

Before delving into each of these components, an overview of the system as a whole
is in order. The user will interact with the system through a set of web pages. These
pages allow the user to specify the start location and destination. The user’s selection
is sent to a program, query, that searches a preconstructed graph of campus (created
via the roadmap editor). This graph, which is stored in a database, contains all the
data needed by query to select a route that meets the user’s request.

The path resulting from query’s search of the graph is sent to Vizmo++, a
visualization tool developed within the Parasol research group [18]. Using a 3D
model of campus and the path, Vizmo++ creates a JPEG image that depicts the
route through campus. This JPEG image is sent back to the user’s browser. In
addition to the image, a textual description of the route is provided. Figure 16 shows

how all the components of our Campus Navigator system interact.

9=

Server Respense

Clieat Server

Fig. 16. Overview of Campus Navigator system.



29

2. The Campus Graph

The fundamental component of the campus navigalor is a graph. As with many
motion planning problems, this application is built upon the idea of finding a path
through a graph. All the various constraints are expressed through properties of the
vertices and weights on the edges of this graph. Vertices are used to represent physical
places on campus such as buildings and parking lots. The cdges of the graph are used
to represent streets and walking paths through campus.

For this application, the graph is stored in a database. The current implemen-
tation employs the open source MySQL database management system. There are a
number of reasons for storing the graph in a database. First, it allows concurrent
access to the graph from the various components of the system. Initial designs called
for the graph to be stored in a file, which is a customary storage medium for graphs.

Second, the database simplifies the sharing of data between the campus navigator
system components. As an example, the roadmap editor, query, and the web interface
need to access building names. The roadmap editor uses the names to allow vertices to
be associated with buildings. Query employs building names when generating textual
directions, and the web interface needs the names to give the user a list of buildings to
choose from (for specifying start and/or destination). Each of these components are
currently implemented in disparate languages. The database provided the simplest

medium through which all three pieces could access the same data.

3. The Roadmap Editor

Currently, the campus graph is constructed manually. This is somewhat ironic as
much of the work in motion planning is aimed at automatically creating a roadmap.

Automatic construction of the campus graph is not realistic as most autogeneration
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techniques rely on randomly gencrating vertices and connecting those vertices with
edges. Random placement of vertices is not appropriate for this application, as ver-
tices need to be tied to specific points on campus. For instance, a vertex needs to be
associated with each building and parking lot.

To ease the construction of this large graph, a roadmap editor is currently under
development. This program allows the campus graph to be built over an image of the
campus. The user of this program can place vertices at each of the buildings, parking
lots, intersections, etc. on campus by simply clicking on the building, parking lot, or
intersection in the image. Then edges can be added for the streets and walking paths
between these vertices. All of this information is stored in the centralized database.

Even if the campus graph could be generated randomly, all the properties of the
vertices and edges of the graph would have to be manually specified. For instance,
for a vertex representing a parking lot, someone must specify which permits (student,
faculty/staff, etc.) are allowed to park in the lot. This is the second role of the
roadmap editor. Tt allows this information to be entered for all the parts of the

graph.

4. Campus Graph Query

The query program is responsible for finding routes through the graph that mecct the
user’s request. This application employs Dijkstra’s algorithm to find the optimal path
through campus. This portion of Campus Navigator builds on the Path Optimization
research presented in the previous chapters. Running as a service, the web interface

will send requests to query and receive the computed path for Vizmo++ to display.



5. Campus Path Visualization Via Vizmo++

Vizmo-++ is responsible for generating a picture of campus with the path overlayed
[18]. After the user selects the start and goal points and query generates a path file,
Vizmo++ opens up a 3D model of the campns and the path file to begin creating the
snapshot. The camera then zooms onto the path and creates the image. This image

is sent back to the web server to be displayed on the user’s browser.

6. User Web Interface

Users of the campus navigator will interface with it via a set of web pages. Users
will select the start and destination via selection boxes populated by data from the
database. From the user selections; the web pages determine the vertices that cor-
respond to- the selected locations. These so-called start and goal vertices are given
to guery which finds the route. The web pages receive an image of the route from
an image generated by Vizmo+-+. Figure 17 is a screenshot from a prototype of the

Jampus Navigator web interface.
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Fig. 17. Prototype of Campus Navigator interface

Initially, the web interface will provide simply a two dimensional map of campus
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with the path overlayed. Similar to MapQuest and other programs, the campus
navigator web interface allows users to zoom in and out on the returned campus
path. Ultimately, it is envisioned that users would be able to generate a movie,
allowing the user to "fly-through” a 3D model of campus along the path generated
by query.

The campus navigator is an interesting and useful application of motion planning
research. Exploiting the techniques developed to plan the paths of robots, the campus
navigator aims to guide people around the large campus of Texas A&M University.
Tt is envisioned that this application would potentially be useful for cities. By taking
into consideration all the various modes of transportation such as buses and subways,
the campus navigator could be extended to a city navigator, allowing residents and

visitors to efficiently navigate the city.
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CHAPTER VII

SUMMARY AND CONCLUSIONS

A framework for extracting an optimal path in a roadmap for motion planning has
been created. Our framework combines the mathematical flexibility of general op-
timization techniques and computational efficiency of roadmap-bascd methods. We
designed an augmented Dijkstra’s shortest path algorithm that uses Markov-like state
and goal sets. Using PRMs, the path can be efficiently optimized in a large spacce
for several values including kinematic/dynamic constraints and minimum clearance.
Simulation results were presented to illustrate the feasibility of our approach.

Application to the Campus Navigator was presented to demonstrate the many
areas where path planning and optimization can be used. In this example, we harness
the power and flexibility of graph search algorithms to allow customizable queries on
a hand-made roadmap. The framework we created in the Campus Navigator can be

extended to larger City Navigators.

A, Future Work

Future work consists of experimenting with robots with high degrees of freedom,
explicit formulation of dynamic constraints, and hardware experiments using mobile
robots. Also, planning paths for multiple robots sharing a roadmap will be considered
in the future. Using many idcas presented in this thesis, in particular Flexible Goal
Conditions, we may extract optimal paths and meeting or coordination points for

multiple robots,
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