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ABSTRACT 

Suitability of Shape Memory Alloys for Vibration Isolation with 

Application to Launch Vehicle P ayloads. (December 2001) 

John Jeramy Maycs. B. S. , Texas AED~f University 

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas 

This work details an investigation into the suitability of Shape Memory Alloys 

for the task of vibration isolation based on the similarities between the Shape Memory 

Alloy pseudoelastic behavior and the softening response of isolators whose response 

is similar to a buckling elastomer. In this work, a simplified material model for the 

prediction of thc non-linear, hysteretic nature of the pseudoelastic force-displacement 

relationship is dcvcloped. This material model is coupled with the numerical simula- 

tion of a dynamic system whose restoring force is provided by Shape Memory Alloys, 

providing an efficie software tool for the modelling of such systems. A thorough 

experimental investigation is also presented in which the behavior of a prototype 

Shape Memory Alloy-based isolation device is explored. Xumerous quasi-static tests 

are performed, as well as a comprehensive series of dynamic tests on the prototype 

device. Results of these tests are compared with the predictions of the numeric sim- 

ulation. From this comparison, several important conclusions are drawn concerning 

thc applicatiorr of Shape Memory Alloys to vibrating systems. The most important 

conclusion is that in order for the non-linearity and hysteresis present in Shape Mem- 

ory Alloys to be «fi'ective in reducing the transmissibility of a dynamic system, there 

nrust bc. large amplitude dellections in the system. 
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CHAPTER I 

IiUTRODUCTIOX 

Technology has advanced significantly in recent years, enabling significant increases in 

the performance of many types of devices while also allowing those devices to become 

smaller in size and mass. The advances in the dcsigri and manufacture of spacecraft, 

is one area where the effect of advancirig technology can be seen most clearly. Dumas 

notes that recent advances iri technology have contributed significant improvemcrits 

ixi performance while at the same tiiric yielding reductions in size and mass, resulting 

in spacecraft that are more powerful arid less expensive [I]. Casani also discusses the 

effect of advariciiig technology, noting the trend toward smaller spacecraft with very 

specific missioris and clusters of small spacecraft whose combined abilities replace that 

of a much larger single craft [2]. Sirree one of the major costs of a spacecraft program 

is thc cost iiivolvcd with launch of the spacecraft into orbit [3], it is generally accepted 

that, the smaller aud lighter a spacecraft can be made, the less it will cost to put iiito 

orbit and the more cost efiicient the spacecraft program will be. Along these lines, 

many of the newest, technologies have bccn focused on efforts to develop methods to 

reduce the size and weight of spacecraft. However, a significant portion of the mass of 

a spacecraft is related to thc supporting structure snd not the actual components of 

thc spacecraft. One of the primary rcasoiis for the supporting structure in a spacecraft 

is that it aids in xriitigating the harsh loading environment enconntercd during launch. 

Tliereforc, it would be possible to significantly reduce the complexity and mass of the 

spacecraft, strncturc if tlic vibration loading experienced by the payload during launch 

could be reduced. Iii sdditiori to reduction in the spacecraft mass, significarit vibration 

The joiirnal morlel is IEEE Transactioiis ou Autoriiatic Conti'Ol. 



isolation would also result in a reduction in part count and an increase in both the 

reliability and service lifettme of a spacecraft [4]. Umvanted vibrations also aff'ect 

the components of a spacecraft while on orbit and significant reductions in vibration 

loading for these components can result in increases in performance and the useful 

life of a spacecraft. 

Since there is obvious and significant benefit to improved vibration isolation 

of spacecraft and their components, much effort has been directed at developing 

vibration isolation systems. There are two main types of vibration isolation devices 

currently under development for space systems, whole spacecraft isolation systems and 

component isolation systems. Whole spacecraft systems are designed to replace the 

fitting that mates the launch vehicle and the payload. In this manner, these devices 

can de designed so that they will inhibit transmission of vibration loads from the 

typically harsh environment of the launch vehicle to the sensitive payload. Component 

isolation systems are generally employed on orbit snd are designed so that they will 

isolate a, sensitive piece, of equipment from the environment of the spacecraft. In some 

cases, they can be need to isolate a particulary noisy, but required, piece of equipment 

from the rest of the craft. 

A. Recent Work in Spacecraft Vibration Isolation 

Much of the work in the area of whole-spacecraft launch vibration isolation has cen- 

tered around the use of conventional methods such as viscous dsmpers and the con- 

pling of these conventional systems with active systems. The work of Edherg, et, al, 

describes a series of isolation devices used to couple the payload to the launch ve- 

hicle, incorporating hydraulic dsmpers v:ith either mechanical or pneumatic springs. 

Thcsc systems can be»tilised either passively or actively (with feedback control) and 



have demonstrated significant reduction in transmitted acceleration, with the active 

system reducing transmission ro nearly zero [5, 6]. Wilke, et al, have developed a 

replacement payload attach fitting (PAF) with integrated passive hydranlic darnphrg 

that is a one-for-one replacement for current PAF designs [7]. In another work by 

Wilke, et al, and in the work of Johnson, et al, the successful inrplernentation of 

this hydraulic based passive vibration isolation for an entire spacecraft is discussed. 

This design, known as the SoftRide system, was successfully tested on two separate 

launches, providing a significant reduction in broadband structure-born vibrations, 

especially in the targeted low frequency range [8, 9]. 

Work has also been done in the area of component isolation, where thc main 

goal is to isolate the vibrating components of spacecraft while on orbit. Component 

isolation has centered mainly on active methods, or active systems coupled with 

passive systems for redundancy and better performance, and has been onc of the 

first areas to see thc introduction of smart structures and smart materials for use in 

vibration isolation of space systems. One example of an active system is the work 

of Yu, et al, which uses a high temperature super-conducting magnet as the soft 

link between thc vibrating system and the isolated system [10]. Another example 

is the hybrid system presented by Cobb, et al, which uses active voice coil systems 

coupled v:ith passive viscous damping [11]. In addition to vibration isolation, this 

system can also be utilized for precision pointing of spacecraft conrponents such as 

communication antennas. A similar system utilizing piezoelectric actuators in place 

of voice coils systems was also investigated by Wada, et al [12]. Advances of these 

designs have bccn realized in the form of a piezoelectric based system for component 

isolation as rlescribed in thc work of Anderson, et al [18]. This system is scheduled to 

fly on the PICOsat spacecraft. and bc tested to determine its on orbit pcrfornrance. Of 

particular interest, to this current work is the work nf Yin and Rcgclbrugge [14], whose 



investigation into thc use of springs made from shape memory alloy for isolation of a 

spacecraft component. They have investigated passive isolation characteristics of the 

springs, both on orbit and during launch, snd exploited thc. shape nremory etfect Lo 

maintain proper alignment of the protected equipmcnt. A key result from their work 

is the ability to regain and maintain proper alignnrent of the protected equipment 

through exploitation of the shape mexnory effect of shape memory alloys. 

B. Application of Shape Memory Alloys to Vibration Isolation 

In addition to the work of Yiu and Regelbrugge mentioned above, the application of 

Shape Memory Alloys (SMA) to more standard isolation problems such as machinery 

and civil structures has beers investigated and has shov;n much promise. %Volens, et, 

al, have investigated the damping capacity of SMA wires through extensive experi- 

mentation and have found that SMA wires can have up to 20 times more damping 

capacity, per unit volume, compared to typical elastomers [15]. I'osdick and Ketema 

have pcrforrnc&1 a study of a single degree of frccdom (SDOF) lumped mass oscilla- 

tor with an SMA wire attached in parallel as a passive vibration damper and have 

shown that the hysteresis inherent in SMA to be most etfective at low frequency [16]. 

Matsuzaki, et. al, have also investigated the effect of introducing SMA elements into 

a dynamic system. Their study showed that the effect of introducing prrestrained 

SMA wires into a spring-mass system resulted in effective damping and suppression 

of disturbed motion [17]. Similar work by Turner has shown that the resporrsc of 

composite beams with embedded SMA wires subjected to random base excitation 

can be tailored by changing the temperature of the SMA wires [18]. The work of 

Graesser and Cozzarelli discussed the application of SMAs to the isolation of str»c- 

tures such as buiklings, showing that SMAs may bc suitable to damping the motions 



induced by earthquakes [19]. The work of Wilde, et al, has built on the previous work 

of Graesser arid Cozzsrelli, applvirig SMA base isolation devices to highway bridges 

and achieving favorable results corriparcd to the response of conventional base isola- 

tion dcviccs [20]. A study of the use of SMAs in passive structural damping is also 

presciitcd iri thc work of Thoiiisori, ct al, where three different quasi-static morlels of 

hysteresis were introduced and cornparcd with experiments [21]. The work of Feng 

and Li has discussed the behavior of systems with solid SMA bars, showing a decrease 

iri both the resonant frequency and resonant amplitude of a dynamic system when 

coxnpared with other materials such as steel [22]. 

C. Objective of Tliis Work 

The objective of this research is to investigate the feasibility of utilizing the pscu- 

doelastic shape meinory alloy for the task of whole-spacecraft vibration isolatioii. 

It is believed that replacing current isolation devices with SMA based di:vices will 

result in. lower iiiass, lower complexity and lower cost with equal or. better perfor- 

inancc. Vibration isolation is inost often accomplished by joining two structures with 

a "soft link, " a dcvicc or iriaterial with a low stiffness, with the goal of decreasing 

the force arid rriotiori trarisfcrrcd from one structure to the other [23]. However, a 

sriiall stiffricss will gcncrally lead to large displacements when the loads involved are 

large, and this result is oftcii unacceptable. Through the use of a device with de- 

creasing stiffness, similar to an elastomer under buckling loads, ir, is possible to avoid 

large displaceineiits v bile still achieving good isolation performance [24]. The basis 

for this v'ork lies in the similarities between the force-displacemciit relation. of the 

buckling elastomer and the force-displacement relation of the pseudoclastic SMA, as 

discussed below. While tlie goal of this proposal is to rleinonsrrate thc cffcctiveness 



of the decreased stiffness during pseudoelastic transformation for reducing vibration 

transmissibility, it is felt that the hysteresis prcscnt in the loading behavior of SIVIA 

will also be beneficial in the frequency ranges of concern and will have a minimal 

negative impact on transmissibility at higher frequencies. 

In order to determine the snitsbility of SMA for vibration isolation, accurate 

material level modelling of a system v:hich includes structural members composed 

of SMA must be achieved. This modelling must be able to accurately predict thc 

dynamic response of sn SMA isolator and must Incorporate a physically based rnate- 

rial model for the behavior of shape memory alloys. Finally, correlation between this 

system model and actual experimental results must bc achieved in order to validate 

the model. The remainder of this work will adhere to the following outline. First, an 

overview of shape memory alloys and the pscudoelastic effect will be presented. Fol- 

lowing this, the development of a simplified material model for SMA pseudoelasticity 

which is suitable for dynamic analysis will be discussed. Next will be a discussion 

of the numerical solution of the dynannc system and the integration of thc nraterial 

model into this solution. After this section, the experiment designed to verify the nu- 

merical simulation will be discussed followed by results from a series of experiments 

conducterl to determine the effect of pscudoelastic SMA on s dynamic systcrn. After 

this will be a, correlation between thc model and experiments followed by a direction 

for future work, including ideas gained from thc current work. Finally, conclusions 

drawn from this work will be presented. 



CHAPTER II 

SHAPE ME'5'IORY ALLOY ItIATERIAL RESPONSE 

In this chapter, an introduction to the mechanical behavior of SMA is presented 

along with a discussion of the significant work in the areas of Sit'IA applications 

and modelling of SMA behavior. Finally, the similarities between the pseudoelastic 

behavior of SMAs and the behavior of s, class of traditional vibration isolation devices 

are discussed. 

A, Shape Memory Alloys 

Shape memory alloys are a class of metals that have gained increasing recognition in 

previous years. These alloys exhibit a solid-to-solid phase transition characterized by 

a change in the crystallographic structure of the material. The driving force behind 

this phase change is a difference in the chemical free energy of the two phases, which 

in turn is dependent on both the temperature and the stress state of the material [25]. 

This phase change is referred to as martensitic phase transformation and is completely 

reversible and diffusionless in nature [26]. Thc nrartensitic phase transformation oc- 

curs between the parent phase, austenite, (A), and the martensitic phase, (M), of 

which there are several crystallographic variants [27]. During this transformation, thc 

crystal structure of the material changes from a cubic arrangement (austenite) to a 

rnonoclinic arrangement (martensite) [28]. At, thc zero stress state, the martensitic 

transformation is characterized by the temperatures at which the transitions occurs. 

These temperatures are referred to as Martensite Start (Itf"), Martensite Finish 

(M'~), Austenite Start (zl"), and Austenite Finish (d'J). This change in structure 

is the basis for pseudoelasticiiy, one-way shape memory ctfcct (0%%'SME), anrl two- 

way shape memory effect (TWSiiIE). which are thc kcy behaviors of SX'IAs. Since 



the focus of this v'ork will be on pseudoelasticity, the reader is referred to the litera- 

ture for further reading on OXVSk~IE and TWSME, which are commonly exploited in 

applications where the SMA is used as an actuator [29, 30, 31, 32, 33]. 

The behavior of pseudoelastic SMAs is more cornplcx thar& many common rna- 

rerials as the stress-strain relationship is non-finear, hysteretic and exhibits large 

reversible strains due to the martensitic phase transformation. Pseudoelasticity is 

defined as being a martensitic phase transformation which is induced by a purely me- 

charrical loading applied rvhen the material is in the austenite phase (temperatures 

above A") followed bv a reverse transformation to austenite upon unloading. This 

loading causes the transformation of austenite into martensite with the variants re- 

aligned irrto a single crystallographic orientation. This reorientation, or detwinning, 

results in large strains that can be completely recovered upon unloading [34]. Fig- 

urc la illustrates the relationship between stress, temperature, and phase in SMAs, 

and Figure 1b shows the pseudoelastic loading response that corresponds to the load- 

ing path denoted in Figure la. 

B. Ivlodelling of Vibration Isolation with SlvIA 

Thc nature of the Pseudoelastic Effect, as discussed above and illustrated in Figure lb, 

would Indicate great potential in the application of SlvIAs to vibration isolation, espe- 

cially in situations where the complexity of a device should be minimized. To date, a 

great deal of v ork has been accomplished in an effort, to accnrately model, on a consti- 

tutive level, thc behavior of SMAs. The root behavior of SMAs, the crystallographic 

transformation that occnrs as a result of changes in temperature and stress, is non- 

trivial to model constit&rtively and many different methods have been employerl in an 

attcnrpt to acc&rrstely model SlvIAs. Graesser and Cozzarelli, in their work mentionerl 
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earlier [19], introduced a rriodificd niodel for hysteretic behavior by Ozdemir [35] to 

model pseiirloelastic behavior of SivIAs, using ideas from viscoplasticity [36]. Feng 

and Li presented s, modified plasticity rriodcl which was used to model the hysteretic 

rcsporisc of thc shape incrnory riiaterial [22]. Fosdick and Ketema have considered rate 

dependeiicy by including "averaged" thermal effects based on the dyriairiics of single- 

crystal phase boundaries [37] in their work, also mentioned earlier [16]. Other work 

on constitutive modelling of SMAs includes phenomenological models by Lagoudas, 

et al [38], Lagoudas arid Bo [39], Brinson [40], I. iang and Rogers [41], Tanaka [42] and 

Sato and Tanaka [43], inicromechanical models for polycrystalline SMAs by Patoor, 

et al [44] and Falk[45] arid empirical models based on system identification (ID) by 

Preisach [46], Mayergoyz [47], Banks, et al [48. , 49], Webb [50] arid Webb, et al[51). 

Although these models are fairly accurate, they are computationally intciisive and/or 

hard to iriiplmricnt uiider dynainic loading conditions. Additionally, the nature of the 

Pscudoclastic Effec as it cars be applied to vibration isolation thxough thc utilization 

of SMA spriiigs has not beeii addressed by the above publications. 

Motivated by the need to model the dynamic response of a system with SMA 

compoiicnts, it, bccariic ncccssary to clevelop a computationally efficient model for 

SMA pseudoelasticity wliich woukl capture the essence of pseudoclastic behavior and 

alloiv for a timely calculation of the system response. To realize the goal of designing 

and siinulating a sinaxt structure for vibration isolation using SMAs, it is necessary 

to have structural models that can (a) incorporate a physically based constitutive 

response of SMAs and (b) can be used for prediction of dynaiiiic response of smart 

structures. Most of the models available in the litcraturc do not serve this dual 

puiposc well. In this worlc, the hysteresis and softening stiffness exhibited during 

pscudoclasticity is prcdictcd through the use of a physically basixl iiniterial model 

foi SMA pscudoclssticity. It should be noted that at the structural assenibly-level, 
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the force-displacement relationship is more useful than the actual material state. 

Thcrcforc, pscudoclastic force-displacement response has beeu modellerl and will bc 

explained in thc following chapter. The model as presented here is equally applicable 

to the prcdiction of arsy non-linear, hysteretic system whether it be in terms of stress- 

strain, force-displaccurcnt, or any. otlrer terms suitable to the problem at Irand. 

C. Similarities Between Traditional Isolators and the Pseudoelastic Behavior of 

SMAs 

When a shape memory alloy is loaded while in the austenitic phase, it initially behaves 

as if it were elastic in nature, similar to the initially stifl' response of a traditional 

isolation device. This initial elastic response would support, thc static loads placed on 

the isolator. As the stress continues to increase, a point is reached where the material 

begins to transform into the martensite phase. This transformation is characterized 

by a decrease in the stiffness of the material and would correspond to the softening of 

a, traditional isolator. . This transformation region would also be the ideal operating 

region of the isolation since loading in this region would be attenuated due to the 

softer response of the device. If the load continues to increase, thc entirety of the 

material is transformed into rnartensite. After this stress induced rnartensite (SD'I) 

transformation is complete, the materials will again begin to deform elastically, with 

a stiffness greater than that present during the transformation but not necessarily 

equal to the initial stiffness. If the SMA is again compared to a. traditional isolation 

device, this area of the pseudoelastic behavior would correspond to an increased stiff- 

ness designed to limit total deflection. If the loading is now reversed, it will unloarl 

elastically until it reaches a point at with the stress is low enough to permit the trans- 

formation back into the parent austenrte phase. As the stress contirrues to decrease, 
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the material transforms completely back to its austenite phase and then continues tn 

unloacl elastically until the zero stress point is reached. During this unloading pro- 

cess, it is possible for the material to recover sll of the induced strain, returning to 

its undeformed, initial condition at zero stress. In addition to the change in material 

properties and large recoverable strain during pseudoclastic transformation, there is 

some hysteresis which is an indicator of energy dissipation during the austenite to 

martensite and martensite to austenite transformations. This energy dissipation is 

proportional to the degree of transformation completed during a loading cycle for both 

complete and incomplete, or partial, transformations. These partial transformations 

are also rcfcrred to as tninor loop hysteresis cycles [52]. 
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CHAPTER III 

SIMPLIFIED SHAPE MEMORY ALLOY MATERIAL I!IODEL 

In this chapier, a simplified material model for pscudoelastic SMAs is developed and 

implemented. This model is capable of accurately predicting the behavior of SMAs at 

temperatures above the austenite finish temperature (A'r), the temperature at which 

the reverse transformation from martensite to austenite is complete. Additionally, 

this model is displacement driven and is dependent on the loading history to correctly 

predict the forward and reverse transformation behavior and the minor loop behavior 

of SMAs. The basis of the model is the assumption that the relationship between 

force snd displacement in an SMA at, temperatures above A'1 can be accurately 

represented by a series of linear segments whose form is determined by the extent of 

transformation experienced. The development of this model will be srldressed in the 

following three sections. The first section will deal with the determination of rrraterial 

response in force-displacement space from thc minimum amount of required physical 

data. The second section will deal with prcdiction of major loop resporrsc, and the 

third section will deal with prediction of zninor loop behavior of SMAs. 

A. Determination of Material Force-Displacernent Response 

To begin to adequately determine the response of SAfA material, one must be able 

to predict at what loading conditions the transformation between thc austenite ancl 

martensite phases will begin and end. Additionally, this information must bc available 

at all temperatures in which this model is to be valid (T ) A'~ ). Thc model pre- 

sented in this paper is rlependent upon orrly a few material parameters which can be 

gathered from relatively simple thermomechanical tests and s calorimetric analysis. 

From a typical pseudoelastic force-displaccnrcnt i, cst, shown in Fignre 2, performed at 
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a tciiipcratuxcgreater than A'~, thc stiffncss of austenite (K~) and martensite (KM) 

as well as the maximum value of trsnsforiiiation displacement, (&I, ', ", „, . ) can be obtained. 

Thxough thc. use of a Diffcrcntial Scanniiig Calorimeter (DSC), the temperatures at 

which transformation occurs under zero stress can be determined. Figure 3 shows a 

DSC plot. for. the S&IA inaterial used in this work and is typical of most DSC results 

for SlvIA material. The inforination provided by the DSC measurement, is thc change 

in heat flow as a functioii of the change in temperature. Since the martensitic phase 

traiisfoxmation is endothermic or exothermic depending on direction, the tempera- 

&ures at which the transformations start. and cnd can be estimated from the results 

of the DSC test. The results from the DSC data can be coupled with the results 

frorri thc pscudoclastic tests to provide all the necessary material information for thc 

simplifie inodcl. 

For reprcscntatioii of force-displacement pseudoelasticity of an SivIA componciit, 

a force-teinperaturc phase diagram describing the relationship between force, displace- 

inent arid phase can bc constructed by one DSC measurement and one pseudoclastic 

respoiise test, as shown iii Figure 4. The assumption is made that the lines niarking 

tire transforiiiatioii bouiuiaries are parallel, which strictly speaking is not necessarily 

correct but for thc purpose of this model does allow for s simplified representation of 

the pseudoelastic respoiise. In this case, the zero stress transformation temperatures 

and the slope of the transformation boundaries are chosen based on the pseudoelas&ic 

response and the DSC tests, but iiiodificd slightly so that the pseudoelastic forcc- 

displacmneiit relationship is prcscrvcd for the component. Another simplification is 

in thc sclcction of thc transition points between elastic loarling snd transformation. 

Duc to thc noir-uniforin stress state and polycrystalline nature of SivIA compo&&cuts, 

sonic areas of &hc inst&. rial will begin t, o &ransform befoxe others, resultiiig in the 

sinootli transitions scen in Figure '2. However, the simplifie&i model presented here 
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requires specific transition points (points 1-4 in Figures 4 and 5) at which to begin 

arid eiid the forward and reverse transformation. Therefore, points are chosen so 

that the pseudoelastic force displacement relationship is preserved. Once the sim- 

plifications are made and the appropriate constarits are chosen, the simplified model 

utilizes the force-temperature phase diagram (Figure 4) to create a piecewisc linear 

representation of the pseudoelastic respoiisc of the SMA shown in Figure 2. From 

the force-temperature diagram and given that the temperature of the SMA is known 

and constant, it is possible to calculate the forces at which the forward and reverse 

transformations begin and end from Equation 3. 1 where f' is the force, C is thc slope 

of the transformation boundary in the force-teiiiperature plane, T is the temperature, 

and T' is the zero-stress transition temperature determined from the DSO results for 

the respective transition. 

f' = C(T — Ti) (3. 1) 

Additionally, the constitutive rclatioii for SMA can be modified to yield Equation 3. 2, 

where K„ is the rcspcctivc stiffness of either austenite, martensitc or a mixture of the 

two phases, if is the total applied displacement and 6" is the transformation dis- 

placcrncnt of the SMA. Transformation displacement for a force-displacement model 

is similar to the transformation strain for a, stress-strairi model. 

f = K„(6 — b") 

Given that the material state is assumed to be known at thc beginning and end of 

transformation for both forward and reverse transformation. one can calculate the 

displacement at which transforination ivill occur. Using this data, , one can construct, 

the following f'cree-displacerncnt diagrarii as shown in Figure 5 nsing oiily the material 

parameters mentioned above. For this simplified model of pseudoclastic loading, the 
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transitions delineating the beginning and end of forward and reverse transformation 

are dependent only upon i. he ambient l, emperature and the material parameters, in- 

cluding the zero load transition temperatures, the transformation displacement and 

the stiffness of the two phases. For the beginning of the austenite to martcnsite, or 

forward, transformation (point 1 on Figure 5), the corresponding force and displace- 

rncnt are calculated from Equations 3. 3 and 3. 4. 

fM. C(T — M") (3, 3) 

C(T — M") 
(3. 4) 

A 

For the end of the forward transformation (point 2), the corresponding force and 

displacernent are calculated from Equations 3. 5 and 3. 6. 

f qqy = C(T — May) 

6, C(T — M'y) 
Mf K ar 

(3. 5) 

(3 5) 

For the beginning of the martensite to austenite, or reverse, transformatiorr (point 3), 

thc corresponding force and displacement are calculated from Equations 3. 7 and 3. 8. 

fg, . = C(T — A") 
C(T — A") 

da. 

(3. 7) 

(3 g) 

For thc end of the reverse transformation (point 4), the corresponding force and 

displacement are calculated from Equations 3. 9 and 3. 10. 

fag C(T — A'y) 

C(2' — A'y) 
6a f Jn 

(3. 9) 

(3. 10) 

Assuming piecew&se linear response and combining all of this information together 
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will result in completely determining the force-displacement response of an Sh'fA for 

a full loading induced transformation cycle, as shown schematically in Figure 5. 

B. Major Loop Loading 

To correctly predict the force-displacement response of an SMA, the loading path for 

full transformation, or the major loop, must be modelled. For the shnplified material 

model, this is accomplished by assuming that both the transformation displacement, 

6'", and the force, f, vary linearly during transformation and that the force corre- 

sponds to displacement in a linear manner when transformation is not occurring. As 

a result, the SMA material can be modelled as a series of straight lines in force- 

displaccrnent space, where the intersection of these lines correspond to the transition 

between elastic loading and transformation for forward and reverse transformation. 

This can be illnstrsted schematically, as shown in Figure 5. For elastic loading in 

thc austenite region (4 ~ 1) prior to the beginning of forward transformation, the 

transformation displacement remains zero and the force is directly related to the 

displacement. This is explicitly stated in Equations 3. 11 snd 3. 12. 

6'" =O (3. 11) 

&sam K 6 

For forward transformation, the region between points 1 and 2, the transformation 

displacement varies linearly between zero and the maximum value of transformation. 

displacement, 6" . Additionally. the force level also varies linearly between the force 

levels corresponding to the beginning snd end of transformation. Mathematically this 
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is shown below in Equations 3. 13 and 3. 14. 

'"'"' 
bMf — hMs 

its 
f " =- f rr. + — (fMf — fM. ) 

(3. 13) 

(3. 14) 

At strain leveLs above the martensite finish level, the region after point 2, the force 

again relates linearly to the displacement and the transformation displacement re- 

mains at a constant value equal to 6"„. This relation remains trne even after thc 

onset of unloading until the beginning of reverse transformation begins (point 3) as 

shown in Equations 3. 15 and 3. 16. 

hn = tl", (3. 15) 

f = fMf + KM(5 — 6Mf) (3. P3) 

After the beginning of rcversc transformation (point 3) and before the transformation 

to austenite cornplctcs (point 4), thc transformation displacement again varies lin- 

early, this time bctwecn 6" and zero. Likewise, the force varies linearly between the 

value at thc start of reverse transformation and the value at thc cnd of transformation. 

This is shown in Equations 3. 17 and 3. 18. 

As 4Af 

f ' = fAf+ -, „(fA. — fAf) 
SMA (P' 

At, s 

(3. 17) 

(3. 18) 

At the conclusion of reverse trsnsforrrratiorb thc transformation strain is again zero 

and lhe force again varies linearly with the displacenrent, as show in Equations 3. 11 

and 3. 12. 



23 

C. ), 'Hnor Loop Loading 

To accurately model SMAs for a particular application, it becomes necessary to model 

the minor loop loading cycles. Minor loop loading cycles are those loading cycles that 

do not result in complete transformation from austenite to martensite and back to 

austenite. From inspection of Fignre 6, which illustrates a minor loop displaccnrent 

loading path, it becomes clear that in order to model this behavior. some modifications 

must be made to the equations above to account for this incomplete transformation. 

As a result of the simplicity of this model, the modifications are easy to implement. 

The first issue that must be dealt with is the dependence of the current material 

behavior on the history of loading of the material. This can be accomplished by 

storing the maximum and minimum values of force, displacement, and transformation 

displacement for the previous loading cycle. The second issue to be dealt with is the 

modification of the points in force-displaccrnent space that initiate the beginning of 

forward and reverse transforruation. Thc third issue relates to the stiffness of the 

material. As the material transforms between austenite and martensitc, thc stiffness 

of the material changes betwccn the stiffness of each phase. The stiffness at any given 

point during transformation is calculated using a rule of mixtures on the compliance 

of the individual phases. 

Figure 7 depicts a minor loop case. XVhen loading from zero force in thc austenite 

phase, the equations are the same as for the initial elastic loading and the forward 

transformation. However, for a minor loop loading path, the loading is reversed prior 

to completion of forward transformation at point. B. At this point, the maxirnurn 

values of force, displacement, snd transformation displacement are recorded, as they 

wil] be used in subsequent calculations. As unloading begins from point 8 to 3, ini- 

tially there is no transformation so that, the uuloarling occurs elastically, but at a 
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st, iff'ness that is neither the austenite stiffness nor martensite stiffness. Unloading oc- 

c»rs elastically froiii thc maxiinum transformation point, and the slope is deteriuincd 

by the maxirnurn degree of transformation obtained. For this portion of thc force- 

displacenient relation, the unloading stiffness, KR, and tlie force arc calculated as 

strown in Equations 3. 19 and 3. 20 where If~&, ftt, and Iftt are the values of transforma- 

tioxi displacement, force and displacement recorded when the loading patt& changed 

dircctioris. 

fSMA 

KM KA 
al 

~at, (KA — KM) + KM 

fit + Kit(8 — tea) 

(3. 19) 

(3. 20) 

Thc transformation strain remains constant for this section of the loading path, since 

the unloading is clastic and no transformation occurs. As the material continues to 

unload, the path it is following will eventually intersect the line for major loop reverse 

transforination (point 3), where reverse traiisformation begins tor ininor loop loading 

paths. Due to the incomplete forward transforniation. this point, is differen from the 

(fA„ tlAs) pair denoting point 3 in Figure 5 and is defined by Equatioiis 3. 21 and 3. 22. 

jmlnar 
As 

minor 
As 

Pr 4. + -, „" (5As — 5nf) Str 

5tr 
f ~ + =„" (fA — fAy) 

Smas 

(3. 21) 

(3. 22) 

As this point is reached, reverse transformation begins arid the following equations will 

determine the values of transfoririation displacement snd force from point 3 onwards. 

5 7l Ill TI 0 
7' 

5tr tr 5tr As 
Isa* max 47077707 

Af 
Ptr 

f sMA f + (f'70'Inal' f ) 
mar 

(3. 23) 

(3. 24) 

As thc material coiitinues to unload, the force will decrease and the transformation 
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displaccnient will go to zero as the material approaches point 4 where reverse trans- 

formation ceases. At this point, rhe material will be mitirely in austenite again arid 

will uriload elastically to zero load. Row, if the material does not unload mitirely 

into austenite but again changes the loading direction and begins ro load again, the 

force, displacement, and transformstioii displacement at this point must. again be 

recorded. This point is shown ss point F in Figures 6 and 7. As thc inaterial begins 

to load from point F to l, it again loads elastically at. a stiffness dctcriniiied by the 

minimum degree to which transforrnatiori had progressed. The stiffncss and force 

level are given in Equations 3. 25 and 3. 26 where If&, f~, and 6F are thc values of 

transformation displacement, force and displacement recorded when the loading path 

changed directions. 

fcM&A 
tt 

~t, . ' (KA — KM)+ Err 
fs'~A — fF + Ivy(6 — Ifs) 

(3. 25) 

(3. 26) 

From this point, the material loads elastically uiitil this loading path intcrsccts with 

the forward transformation path for rriajor loop loading (point l). This point is 

calculated in a similar manner to that used in the cele»latiori of the beginning of 

reverse transformation snd is agaiii based on the intersection of the major loop loading 

path and the minor loop loading path. Tire formulas defining this point are given in 

Equations 3. 27 and 3. 28. 

Q 
I lit Il Ot' 

Itr 7 

777 I II Ol 

Irr 7 

ytr 
~st. , + —, „' (uttra — 4r*) 

57'Ital 

fvr. + =„(fary — ftc ) 8 

(3 27) 

(3. 28) 

Froin this point. force and trarisfoimation displacement t'or forward transformation 

are calculated in a nianrit r similar to that iised in thc calculation of force snd triuis- 



formation displacement for the reverse transformation. The equations are as follows: 

/sMA 

6 6'. 
'ii1cx r rmwi. oi' 

vtuf "Ms 
err 

/iiiiiinr + (f fmiiiiii') 

7AGX 

(3. 29) 

(3, 30) 

The continuation of loading along this path will result in complete transformation to 

martensite as described in the major loop section. A change in loading direction prior 

to complete transformation will result in additional minor loops and the preceding 

equations are applicable. 

D. Characterization of SMA Tubular Springs 

In order to calibrate the simplified pseudoelssticity rrrodel presented here, data from a 

thermal scan of the SMA material and a pseudoelastic compression test of the tubular 

springs are required. The thermal scan was performed nsing a. Perkin Elmer Pyris 1 

Difi'erential Scanning Calorimeter (DSC) and measures the tcurperatures st the begin- 

ning and end of forward and reverse phase transformation at zero load. The thermal 

scan data is presented in I igure 3. The mechanical test was performed on an MTS 

servo-hydraulic load frame with a TestStar llm controller under displacement con- 

trol, where the tube was loaded transverse to the longitudinal axis in increments np 

to approxhnately seventy percent reduction in diameter. Various loading rates were 

used ranging from 0. 016 mm/s to 0. 3 mm/s. Thcsc loading rates all yielded the same 

results, and no change in the temperature of thc SHIA material was noterl, implying 

that the isothermal assumption of the simplified nraterial model is sn acceptable sim- 

plification for this case. Experimentally rletermined force-deflection behavior for rhe 

SMA pseudoelastic spring, along with the outpnt f' or thc spring model as rslibrated 

for use in this work, is shown in Figure 8. In order to calibrate the model for the 



Sit'fA spring, it was necessary to implement the assumptions listed earlier concerning 

the beginning and end of transformation for both force displacciiicnt space and force 

temperature space. From the experimental data, it is evident that, the slope of the 

transformation regions in force temperature space are riot parallel. However for this 

work a median value of 6 iV/ C v:as chosen. Additionally, it is obvious that for this 

component there is not a single point marking the beginning or ending of any of the 

transformation regions so it was again necessary to choose a point that would allow 

for the best representation of the force displacement response. As a result of these 

assumptions, it was then necessary to modify the zero load transformation temper- 

atures slightly from the values measured during the DSC tests. The values used to 

calibrate the model are shov:n in Table I and, as showii in Figure 8, they do provide 

a good representation of the experimental data. 
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Table I. Experimentally Determined Parameters for SMA Material Model 

M'r = 12 'C 

M" = 18 'C 

Ks — 40 KrU/rrl, 

Klr = 150 K/U/rn 

A" = 18'C 

A'f = 22 'C C' 

T = 25'C 

3 rl'!m 

0 /U/m 



CI-IAPTER IV 

DEVELOPMENT OF SMA VIBRATION EXPERIMENT 

While the work presented thus far can be applied to any system whose spring force 

can be generalized as nonlinear and hysteretic, the. pxpprlnlcntal work condnctcd has 

focused specifically on rhe investigation into the use of thin-walled SivIA tubes, com- 

pressed transverse to the longitudinal axis, as vibration isolators. The decision to 

utilize SMA tubes for this investigation was based on their ability to recover corn- 

pletely after nearly seventy percent compression at relatively low force lcvcls, their 

ease of incorporation into a vibration test design, artd their ready availability. The 

tubes were acquired from Shape Memory Applications, Inc. and werc manufactured 

from binary NiTi with an outer diameter of approximately fimm and an inside diam- 

eter of approximately 5. 95mm. The tubes were supplied in approximately one-half 

meter length and subsequently cut to 10mm lengths. 

An experiment was created for the express purpose of determining the effect of 

pseudoelastic SMAs used in a, dynamic system to replace the spring in a traditional 

spring-mass system. SMA thin walled tubes, used as compression springs, were used 

to connect the mass to a base subjected to a given excitation level. Since the SMA 

tubes would only fnnction in compression, the experiment was designed such that 

the SMAs could be preloadcd so that they would always operate in compression. 

The amount of compression was chosen such that the SMA would operate in the 

hysteretic region of the pseudoelsstic response. A schematic of the SHIA spring-mass 

system as dasigned is shown in Figure 9. Thc system is excited by motion of the 

base plate, whose motion is denoted by y. The experiment was designed so that the 

SHIA springs operated in pairs to provide resistance to both tension and compression 

for the system as a whole. while always being compressed on an individual basis 



Fig. 9. Schematic of SHIA Spring-Mass Isolation System as Designc&1 



to some extent. This is shoivn in Figure 10. In Figure 10a, the SMA spring-mass 

system is shown in the unloaded configuration. In this configuration, thc springs 

above and below the plate, labelled y, would be in con&pression. In Figure 10b, the 

system is in compressioii, as denoted by the &notion of the plate and the notation 

y ) yc. In this &oiffiguration, the springs above and below the plate are still in 

compression. However, the springs above the plate are compressed &nore with respect 

to the unloaded configuration and the springs below the plate are compressed less 

with respect to the unloaded configuration. In Figure 10c, the system is in tension, 

again denoted by thc motion of the plate and the notation y ( ys. The springs above 

and below the plate are again in compression. However, now the springs below the 

plate are compressed more with respect to the unloaded configuration and the springs 

above the plate are coiiipressed less with respect to the unloaded configuration. The 

initial compression of thc springs is referred to as thc pre-compression and is given as a 

percentage of the initial undeformed length of' thc springs. This pre-conipression will 

dictate the point, about which the springs will operate in the transitioii region of the 

pseudoelastic response. Variations in the amount of pre-compression will affect l&oth 

the stiffness of the system and the energy absorbed by the hysteresis of the SMAs. 

Mechanical drawings for this experiment are included in Appendix A. An assenibly 

scene created froin the mechanical drawings of the experiment is shown in Figurc 11. 

Figure 12 sh&nvs s, detail drawing. of how tlic SivIA tube springs are mounted in thc 

experiment. Duc to the pre-compression, the small depression will prevent, the tube 

fi'oni nioving arourul during testing, while. thc radius of the depression is chosen so 

that it, will maintain a, single point of contact boundary conditio&i at all but the inost 

extreine cleformations. 
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Fig. 10. Various Schematics of SMA Sprh~g-Mass Isolation System 

a. ) Schematic of SMA Spring-Mass Isola, tion System in thc brrslvaded State 

b) Schematic, of SMA Sprhig-Mass Isolation System in Compression 

c) Schematic of SMA Spring-Mass Isolation System in. Tension 
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CHAPTER, V 

DEVELOPMENT OF NUMERICAL SIMULATION OF A VII3RA PING SYSTEIv1 

WITH SMA SPRINGS 

A computationally efficient simplified rnatcrial model for pscudoelasticity in SMAs 

was dcvcloped in the previous chapter. That model is now used to solve the coupled 

structural response of a dynamic systcin involving SMAs. The simplified inaterial 

model is integrated into the numerical solution of a single degree of freedom spring 

mass system where the restoring force of the springs is provided by the pseudoelastic 

response of SMA coinponents. 

A. Analysis of the Single Degree of Frecdoin Dynamic Systcin 

A schematic of the SMA spring-mass system along with a free-body diagram of the 

mass being isolated is shown in Figurc 13. Note that the system described in Figure 13 

is equivalent to the one described previously and shown iii Figure 9. The system is 

excited by the motion of the supporting structure, denoted by y. From thc free body 

diagrain in Figure 13b, the. equation of motion for thc system can be determined ss 

shown in Equation o. l, where rn is the mass to be isolated, r is the acceleration of 

thc isolated mass, and Pv'. , snd Ari refer to the number of springs on the upper or 

lower sides of the mass, respectively. The forces exerted by the SMA springs, fs'rr' 

and f; ", arc determined by the displacement of the springs, 6„and 6u aild the 

displacement, history of the springs as discussed previously. These displsccriients are 

functions of x and y as shov n in Equation 5. 2. It should be noted that due to the 

non-linear nature of the force. -displacement relatioriship for these springs, both the 



upper springs and lower springs must bc inodelled independently of each other. 

Al ysAIAI5 (t)I ar assis(5 (1)] (5. 1) 

(5 2) 

Excitation. of the system is introduced through sinusoidal motion of the base of the 

device whose magnitude is deterrniried by the desired loading to be placed on the 

structure. Loading magnitude, u, is specified as a fraction of the acceleration due to 

gravity, g. Loading frequency is specified in cycles per second, denoted as f. Thc 

acceleration due to gravity is taken as 9. 81 m/s2. The magnitude of displacement 

necessary to achieve a required acceleration at a given frequency is deteriniiied by the 

relationship shown in Equation 5. 3, givers that the motion is sinusoidal and periodic. 

Qg 

(2x f)i (5. 3) 

The transmissibility, ZR, of the systcni, a measure of thc force or motiori transmitted 

through the system, is defined as thc magnitude of the output motion divided by 

the rriagnitude of the input motion. This is shown niathematically iii Equation 5. 4. 

For a linear system, the transmissibility can be dcrivecl analytically as shown in 

Equation 5. 5. 

(5 4) 

1 

1 — ( — ')' (5. 5) 

With both the dynamic system and the response of the SMA springs rlefincd, it is 

nov; possible to model thc system as depicted in Figure 13 arid described l&y Equa- 

tion 5. 1. The following section describes thc numerical implciiientation iiscd to solve 

Equation 5 1. 
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Fig. 13. a) Schematic of SMA Spring-Mass Isolation System. b) Free Body Diagram 

of SMA Spring-Mass Isolation System 
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B. Numerical Implemerrtation of Solution to SDOF System with SMA Components 

The simulation of the dynamic system was developed in the MATLAB environ- 

ment [53]. After successful implementation, thc. simulation was converted to C++ 

in order to address deficicncies in the execntion efficien. Time history response of 

the system was calculated using a Newmark integration method with time step and 

weighting factors chosen to ensure stability of both the integration and the material 

model describing the spring behavior [54, 55]. Thc time integration is accomplished 

by a constant-average acceleration variant of thc Newrnark method. For t — t the 

Newmark method is defined by Equations 5. 6 and 5. 7 for which thc constant-average 

acceleration method (trapexoidal rule) is obtained if rr = 
z 

and 9 = ~. 

x, esr x„+ Atx„h — (Dt) ((1 — 7)i„+7x„~r) 
1 

2 
(5. 6) 

x. „~r = x„+ At((1 — rr)x„+ ox„~r) 

Thc. sclcction of this second order implicit method was governed by the highly non- 

linear nature of the differential eqnstion describing the system. For s, linear system, 

this schrxne conserves the total energy of the system, allowing the high-frequency 

resporrsc to be simulated without any numerical damping and is unconditionally sta- 

ble. Therefore, this same srhernc is usecl to solve thc non-linear, hystcretic SMA 

spring-mass system based on the understanding that, unconditional stability holds 

for certain non-linear systems. Howcvcr, no proof of stability for this rypc of non- 

linear systcnrs is available. For a detailed discussion on time-integration schemes, 

thc reader is referred to the work of Hughes [56]. Final implementation of this code 

allows for calculation of both tiurc history of the mass motion at a given frequencv 

and amplitude snd the transmissibility of the system when subjected to a given am- 

plitude excitation over s range of frequencies. Thc calculation of rransnrissibility is 

performed by analyzing the results of a series nf time history calculations over the 
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frequency range of interest with transmissibility at each excitation frequency being 

calcnlated acr ording to Fquation o. 4. 

A flowchart depicting thc calculation of time history for a given frequency is 

prcscnted in Figure 14. As shown, the parameters governing the system such as 

mass, number of springs, excitation level and frequency, and initial conditions along 

with the material parameters for the simplified material model are input first. Next 

thc system is initialized according to the initial conditions, and the calculation of time 

history is begun. For a given tirnestep, the position of the mass is first estimated from 

the previous position. With this estimation and the position of the base, which is 

given, the displacement of the springs can be calculated. The force exerted by the 

spring arul the transformation displacement src then calculated using the simplified 

SlvIA pseudoelastic model based on the spring displacement and loading history of 

the springs. Loading history is always considered from the last valid timestep, not, the 

last position estimate at thc current timestcp. In this manner, it is assnrcd that the 

material model always produce- an accnratc prediction of the force produced by the 

SMAs, which in turn is necessary for accurate prediction of position at the current, 

timcstep. After force snd transformation displacement are calculated, a new estimate 

of the position of the nrass is calculated and compared to the previous estimation. 

If the two estimations are within the given tolerance, the estimation is consiclered 

correct and the calcnlations proceed for the next, timestep. It should be noted that 

the transformation displacement is not userl in the calculation of position, however it 

is uscrl to monitor the degrcc of transformation completed and, as such, is required 

for accurate calculation of the force exerted by the SMA. After calculation of the final 

timcstcp, the simulation routiue ends and the time history data is available for analysis 

to determine transmissibility, motion of thc nrass or force-displacement response of 

tlm SivlA springs. As rncrrtioned earlier, this numerical solution was prototyped in 
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MATLAB snd then converted to C++. Appendix B contains the source eerie f' or the 

MATLAB implementation, which has been included instead of the C++ code since 

it is more platform independent and does not require the custom graphics libraries 

used in the C++ code. Figure 15 shows several screen captures of the C++ code 

during operation. 

C. Validation of Numerical Integration 

Figure 16 shows the displaccrrretrt, response of a linear spring-mass system identical 

to that shown in Equation 5. 1, except that the spring force has a linear relationship 

Io displacement. This is accomplished by prevcrrting the model for pseudoelastic 

behavior to begin phase transformation so that thc system behaves as if it were linear 

elastic with a stiffness equal to that of the austcnite phase. This system was solved 

using the Newmark integration method, as shown above, and these results are shown 

along with the analytical solution for this linearizcd system. Comparison is shown in 

Figure 16 for s, system having m = Ikg, Kz = 401V/rn, iV~ — W„= I, a — I, and 

a forcing freqnency equal to one and a half times the natural frequency, which for 

this system is 45 Hz. Figure 17 shows the transmissibility of this linear spring-mass 

system for a, range. of frequencies, calculated using the above mentioned Nmvmark 

method, as well as thc analytical expression for transmissibility (see Equation 5. 5j. 

From both Figurc 16 and Figure 17, it can be sccrt that the Newmark method agrees 

well with thc analytical solutions for the given linear system. 
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D. Investigation into the System Response of the Prototype SMA Based Isolation 

Device 

After development of the experiment and of the numerical simulation, an investigation 

was stsrtecl to determine the system response of thc experimental system. An initial 

numerical investigation was completed to rletenninc the efIect of the SMA springs 

operating irr opposition to each other. Thc behavior predicted was then verified by 

quasi-static mechanical testing of the prototype device. 

1. Nurncrical Prediction of System Response 

In order to investigate the system response, a simple simulat&on based on the previ- 

ously discussed simplified model for pseudoelssticity was performed. In this simula- 

tion, two springs were modelled as they would operate in the prototype as shown in 

Figure 10. Figure 18 shows the response of the individual springs after being pre- 

compressed to 2 mm and subjected to a + 1 mm displacement. As shown in the 

figure, the upper spring first begins to unload ss the lower spring begins to load, just 

as the system was designed, As the direction of the displacement changes, the upper 

spring begins to losel as the lower spring unloads. Since the material is non-linear and 

hysteretic, the changes in the force are not equal for equal changes in displacement. 

This results in the hysteretic system response shown in Figure 18. 

Further study was undertaken to determine the effect, of changes in thc pre- 

compression and amplitude of motion on the system response. These results are 

prescrrted in Figures 19 and 20. As shown in Figure 19, changing the pre compression 

level can have dramatic changes in the system response and it appears that values 

of between 1. 5 mrn and 2 ram produce the best systcrn response for this level of 

displacerncnt amplitude. It slrould be noted that the irregularities in the response 
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scen for pre-compression levels of 1 mm and 2. 5 mm are due to one of the springs 

entering an elastic region and thus undergoing a large change in the stiff'ness, resulting 

in large changes in the force for small changes in thc displacement. Figure 20 shows 

the elfect of changing the amplitude of displacement for a constant pre-conipression 

of — 2 irrm. These figirres show that as the displacerrients increase thc hysteresis of the 

system response increases, resulting in more energy being absorbed by the system. 

2. Experimental Investigation of Systeiri Response 

Following this modelling effort, several experiments were performed to dcterrnine 

if the actual systerii response would be similar to the systerii response predicted 

by the numerical simulation. Figure 21 shows the force-displacement response of 

the experimental systein with four SMA spring tubes tested quasi-statically, and 

Figure 22 shov, 's the resporise for the system with six spring tubes. Both tests were 

performed on the MTS cquipnient described earlier. Figure 28 presents a comparison 

of thc experimental data prescntcd in Figure 21 and data collected from the numerical 

simulation. As shown, these two data sets are in close agrcenient with each other. 

However, it was necessary to increase the pre-coinpression input into the simulation by 

50% over the value measured during the expcririientation. After careful evaluation, it 

has been determined that the most likely cause of this discrepancy is due to inaccurate 

measuremerit of the pre-compression of the experiment or as a result of the simplified 

morlel not, bcirig capable to reprcscnt the gradual onset of transformation. 

E Simulation Results Based on Proposed Experiments 

Based on the cxpeiiinentsl design discussed in the previous chapter, an irivestigation 

into the anticipated system perfonnance wss conducted as detailed below. The pur- 



60 

40 

Precompression =-1mm 
Precompression =-1. 5mm 
Precompression =-2mm 
Precompression =-2. 5mm 

20 

Z 

C3 
0 

O 
u 

I / 
I 

— 20 

— 40 

— 60 -0. 8 -0. 6 -0. 4 -0. 2 0 0. 2 0. 4 0. 6 0. 8 1 

Displacement (mm) 

Fig. 19. System Response for Various Levels of Pre-Conrpression at, a Displacement 

Amplitude of 2 1 mm 



50 

80 

60 

Amplitude =0. 5mm 
Amplitude =0. 75mm 
Amplitude =1mm 

— — Amplitude =1. 5mm 

40 

20 

ta 0 O 
to 

LL 

-20 

/ 
/ 

/ 

/ 

— 40 

-60 

-80 -1. 5 -0. 5 0 0. 5 

Displacement (mm) 
1. 5 

Fig'. 20. System Response for Various Amplitudes of Displacement at a 

Pre-compression Level of — 2 mm 



150 — 0. 2 mm Amplitude 
0. 4 mm Amplitude 

100 

50 

O 
tn 0 

O 
LL 

— 50 

-100 

150 -0. 5 -0. 4 -0. 3 -0. 2 -0. 1 0 0. 1 0. 2 0. 3 0 4 0. 5 
Displacement (mm) 

Fig. 2l. Quasi-Static Evaluation of the Force vs. Displacement Response of the Ex- 

perimental System with Four SMA Tuhc Springs I 001 (00) 



150 — 0. 2 mm Amplitude 
0. 4 mm Amplitude 

100 

50 

I 
C 

. * 

O 0 

O 
U 

-50 

-100 

l 

si ae 

150 -05 -04 -03 -02 -01 0 01 02 03 04 05 
Displacement (mm) 

Fig. 22. Quasi-Static Evaluation of the Force vs. Displacement Response of thc Ex- 

perimental System with Six Tuhe Sprirtgs ~O--O3 
(OOO) 



53 

60 — Experimental Data 
Modelled Data 

40 

20 

ct 
&0 0 

O 
LL 

-20 

-40 

60 -0. 25 -0. 2 -0. 15 -0. 1 -0. 05 0 0. 05 0. 1 0. 15 0. 2 0. 25 
Displacement (mm) 

Fig. 23. Comparison of Experimental and 'l'heoretical Force vs. Displacement Re- 

sponse of Experimental System with Four SMA Tube Springs (OO3 
t OO) 



pose of this investigatiorr was to determine what performance might be expected out 

of this system snd in wlmt, configuration the system nught perform best, 

Figure 24 shov. s the effect of varying the amplitude of base excitation on trans- 

rrrissibility of the SMA spring-mass system. These results are shown for a mass of 

1 kg, an SMA spring configuration of two upper. SrM'IA springs and two lower SMA 

springs, and a prc-compression of 1 mm for all thc springs. At lower amplitude of 

base excitation, the SMA spring-mass system exhibits resonance at a frequency of 

approxima, tely 66 Hz, similar to the transmissibility of a linear system which is shown 

in Figure 24 by the line labelled "analytical. " This can be explained by looking at the 

force-displacement diagram for one of thc SlvIA springs, as shown in Figurc 25. For. an 

excitation amplitude of 0. 1 g, it is observed that after a few loading cycles thc SMA 

spring repeatedly loads and unloads along a path having a stiffness of approximately 

43 KN/m, giving a combined total stiffness of approximately 172 KN/rrn For a mass 

of 1 kyar, this equates to a natural fiequency of approximately 66 ff z. As the excitation 

arrq&litude increases, the decrease in stiff'ness and hysteresis of the SMA's pseudoe- 

lasticity begins to contribute to a reduction in the resonant amplitude of the system. 

Figurc 26 gives the force-displacement history for an excitation amplitude equal to 

2. 0 g at the natural frequency. A wider hysteresis loop is observed due to increased 

phase transformation, which is a result of higher excitation amplitude, and results in 

a lower transmissibility (see Figure 24). F'igure 27 shows the system response (dis- 

placement history) for 0. 1 g excitation amplitude at resonance, and Figure 28 shows 

the system respouse for 3. 0 g excitation amplitude at resonance. Thcsc two figures 

illustrate the reduction in trarrsuaissibility resulting from an irrcrease in the loading 

on the system. From these results, tt can bc sur&nised that the greatest benefit of 

SivIA pseudoelasticity can bc gained for this system under higher loading levels and 

near the resonant frequency of the systcrn. It is also important to understand that 



10 
0. 1g 
0. 5g 

— — 1. 0g — — 2. 0g 
3. 0g 
analytical 

/ 

I l 

/7 
, / 

I; 
/' 

// 

/// 

// '. . . . 
// / '/ 

l 

jt 

1/1 

0 
0 50 100 150 

Frequency, f (Hz) 

Eig. 24. Transmissibility of SMA Spring-Mass System with Different Amplitude of 

Base Excitation for 1 kg Mass 



— 10 

-15 

-20 

42 -25 

10 
O 
O 
m -30 
O) 

CL 
CO 

— 35 

— 40 

45 -1. 4 — 1. 3 — 1. 2 — 1. 1 -1 -0. 9 — 0. 8 

Spring Displacement, 5 (mm) 
-0. 7 -0. 6 

Fig. 25. Vorce-Displacement Response for an SIMBA Spring for the System with 1 kg 

Ivfass and 0. 1 y Excitation Amplitude 



-10 

-15 

25 

0) 
D — 30 
L 0 

LL 

O) 
— -35 
C!. 
03 

— 40 

-45 

50 -1. 5 -1. 4 -1. 3 -1. 2 -1. 1 -1 -0. 9 -0. 8 -0 7 -0. 6 -0. 5 

Spring Displacement, 6 (mm) 

Fig. 26. Force-Displacernent Response for an SMA Spring for the System with 1 kg 

Mass and 2. 0 g Excitation Amplitude 



58 

0. 4 

0. 3 

0. 2 

E o1 E 

ID 
0 

4) 
O 
Gj 
CL 
M — 0 1 

Cl 

-0 2 

— 0. 3 

X 

Y 
I i 

i h 

I 

I I 

r 

r 
t I I' ll I 

fh. 'rgnJQ~M&fhrh, 'ikg ~o. w&+in fl4&'n, 'A~ 15Irryth 

I 

I 

I 

I I III I 

I 

h li 

1 

0. 4 
0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 

Time (sec) 

Fig. 27. System Response at Resonance for 1 kg fvfass and 0. 1 g Excitation 



0. 6 

0. 4 

0. 2 

E 
E 

0 I: 
0) 
E 
0) 
O 
Is — 0. 2 
C1. 
N 

CI 

-0. 4 

-0. 6 

-0. 8 
0 0. 05 0. 1 0. 15 

Time (sec) 
0. 2 0. 25 0. 3 

Fig. 28. System Response at Resonance for 1 ky Mass and 3. 0 y Excitation 



60 

in order to lower the transmissibility at, resonance, thc SMA sprirrgs should undergo 

large amphtude rlisplaccmcnt that will result iu phase transformation. This will allow 

the system to operate with a lowcrcd effective spring stiffness, rlue to the pseudoc- 

lastic effect, and will allow the inherent hysteresis present in the S), 'IAs to provide 

errergy dissipation. In other worrls, SHIA force-displaccrnent response should be ss 

close as possible to the major loop behavior discussed earlier in order to have the 

most eff'ective vibration isolation. However, it should be noted that at frequencies 

much greater than resonance where, in general, the amplitude of vibration is less, the 

SMAs function more like a linear spring with no damping'. At these high frequencies 

the system dynamics allow for significant reductions in transmissibility, as shown in 

Figure 29, since the hysteretic damping is not present to adversely affect the trans- 

missibility at these conditions This is beneficial because it allows the SMA vibration 

isolation device to have off-peak transmissibility similar to a system with no damping 

while near the resonant frequency the device's hysteresis rvill act to reduce resonant 

amplitude. 'I'he effect, is that damping is available only when needed and the system 

damping is not detrimental to off-peak transmissibility as seen in traditional dampcrs. 
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CHAPTER VI 

EXPERIMENTAL RESULTS 

During the course of this work, several scrics of experiments were undertaken. These 

iricluded both standard mechanical tests to calibrate the simplified pseudoelastic 

rnodcl as mentioned earlier and vibration testiiig to irivcstigatc thc effec of pseu- 

doelastic components on the response of a dynaniic syst&rn. The iricchanical tests 

werc conducted using the facilities of the Material Testing Laboratory in the De. — 

partment, of Aerospace Engineering at Texas A&M University. The vibration testing 

was conducted at the Air Force Research Laboratory under the supervision of Dr. 

Benjamin Kyle Henderson at Kirtland Air Force Base, New Mexico. 

A. Vibration Testing of SMA Based Isolation Device 

Iii order to determine what elfect thc usc of ps&aidoelastic SMA springs would have on 

a dyriarnic system. the experimeiital systeiri as described previously was subjected to 

a series of experiments on a vibration shaker table at the Air Force Research Labors; 

tory. The excitation during the testing was provided by a VTS-100 electroinagnetic 

shake& and accompanying power ampliher controlled by a Hewlett-Packard 35665A 

Dynariiic Signal Analyzer. Dynamic excitation v as measured using two PCB 336C04 

accelcrometers, with one located or& the shaker table arid thc other located on thc 

SMA spring-mass system. Coiistant accelcratiori amplitude frequency swccps werc 

used as the input waveform and were controlled via a fcc&ll&ack loop using the ac- 

cclcrometer on the, shaker table as the input source. Output accclcratioii was aLso 

incasured by the signal analyzer mid thc i. atio of thc niagnitudc of thc output to thc 

iripnt accelerations was processed to crcatc a frequency doinain transfer function for 

tile systclil. Tile, sllakel' coiifigui'ation v ith the SMA spring-&nasa systcni attached is 



shown in Figure 30. Figure 31 shows the experiment attached to the shaker. assenrbly 

as tested at the Air Force Research Laboratory, and Figurc 32 shows thc cntirc shaker 

assembly rvith the experimerrt attached. 

Fmring the experiments, several of the parameters were varied to determine their 

elfcct on the behavior of the system. The number of SMA compression springs, the 

mass being isolated and the loading input into the system were all varied follov:ing 

the test matrix presented in Table ll. Also of interest was determining the effect of 

changes in the pre. -compression of the SMA springs on the dynamic response of the 

system. Of specific interest was whether it would be possible to modify the system 

response by adjusting the degree of transformation achieved in the SMA springs. 

Since the amplitude of motion for this series of tests was relatively small compared 

to the urulcforrned length of the SMA springs, the degree of transformation wss most 

influence by the amount of pre-compression placed on the springs. After setting the 

prc-corrrpression, the SMA springs would operate in small minor loop hysteresis cycles 

about that point without much deviation. naturally, hacl the loading amplitude been 

greater, this would not, necessarily be true. However, for this system it was possible 

to nranipulate the degree of transformation of the SMA springs by adjusting the pre- 

compression. As noted in Table II, two different amounts of pre-compression were 

tested, 20% and 26% reduction in length compared to the original undcforrncd length. 

Length, when referring to pre-compression, refers to the transverse axis of the SMA 

tube, not, the longitudinal axis. Testing of Cases 1 — 8 were all performed at 20% prc 

compression lcvcls. Cases 9 and 10 were performed at 26% pre-compression levels 

and ihe results of this series of tests were then compared to the corresporrding results 

from Cases 1 and 6. 
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Fig. Sl. Pu. ture of SMA Spnng-ivfass laolation Experunent Attached to Shaker 'table 
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Table II. Test Matrix for SMA Spring-Mass System 

Case Mass 

Number (kg) 

0. 5 

Xumber 

of Springs 

Pre-Conrpression 

of SMA Springs 

20% 26% 1/4 I/2 3/4 1 

Loading 

(g's) 

10 

1. 0 

1. 2 

1. 5 

0. 5 

0. 6 

1. 0 

0. 5 

0. 5 



B. Results From Vibration Testing of SlVIA Based Isolation Dcvicc 

Results from this series of experiments are shown in Figures 33 — 40. Figures 33 37 

show the results for two pair of SMA springs, or four total, and Figures 38 — 40 show 

the results for three pair of SMA springs, or six total. 

1. Effect of Changes in Loading on System Response 

For Figures 33, 34, 35. , 36 and 37, where four SMA springs were used, the mass is 

increased for each successive figure. It should be noted that between testing for Case 

2 (Fignre 34) and Case 3 (Figure 35), the experiment was reassembled and as a result 

the same level of pre-compression was not achieved for all of the cases where four SMA 

springs were used. This is evident by comparing Figure 34 and Figure 35, where the 

increase in mass should result in a decrease in resonant frequency and does not. 

However, if Cases 1 and 2 and Cases 3, 4, and 5 are taken as individual series of tests, 

then an increase in mass results in a lower resonance frequency, as expected from a 

simplified linear analysis. Also shown by these experiments is, for a corrstant mass, an 

additional decrease in resonant frequency as the loading on the system increases. This 

reduction in frequency can be as much as 25% (Figure 37) but is usually in thc range 

of 5% — 10% (Figures 35 and 36). Accompanying the reduction in resonant frcqucncy, 

there is also a consistent reduction in the magnitude of the resonant peak on the order 

of 30% (Figures 35, 36 and 37). These reductions can be attribnted to the non-linear, 

hysteretic behavior of the SMA springs and would not be seen in a similar linear 

systcrrn The same trends as discussed above are seen in Figures 38, 30 and 40 for 

the experimental system with six Sh'IA springs. Agairt there is the expected decrease 

in. rcsorrant frequency for increasing mass. Similar to thc results from the system using 

four springs, there is also a reduction in resonant frequency as the loading applied to 
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the system increases. From Figures38, 39 and 40 it can be seen that this reduction 

in resonant frequency is also on the order of 5'yo — 10'. Accompanying this reduction 

in resonant frequency is a reduction in the resonant amplitude as scen before. For 

Figure 40, this reduction is approximately 10'. However, for Figures 38 and 39 the 

reduction in resonant amplitude is much greater, on the order of 30Fo — 35Fo. 

2. Effect of Changes in SMA Spring Pre-Compression on System Response 

Referring to Figure 8, it is evident that changes in spring displacement will result 

in changes in the stiffness of the spring. However, given the non-linear, hysteretic 

behavior of the pseudoelastic response of SMAs, it was unclear what effect this would 

have on the response of the system. Therefore, experiments were conducted in which 

the pre-compression of the SMA springs was changed while all other system parame- 

ters were held constant. The results of these tests are presented in Figures 41, 42, 43 

and 44. Figures 41 and 42 show the effect of higher pre-compression for a four spring 

system under 1/4 g and 1/2 g loading conditions, respectively. As shown, increasing 

the pre-compression results in an increase of resonant frequency by approximately 

10'Po — 12ci'o. Figures 43 and 44 show the similar results for a six spring system under 

the same loading conditions. However for this case, the increase in resonant frequency 

is approximately 35% — 40/o for the same increase in pre-compression. As shown, the 

effect of increasing the prc-compression was an increase in the system stiffness for all 

cases, with a substantially larger increase seen in the six spring system as compared to 

thc four spring system clue to the additional stiffness provided by the greater number 

of springs. 
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CHAPTER VII 

COMPARISON OF EXPERIMENTAL RESULTS AND THEORY 

Iri this section, theoretical predictions of the system response of the SMA-based iso- 

lation system will be compared with results obtained from the experimental analysis 

of the system. 

A study of the experimental results and the results predicted from the inaterial 

model and simulation presented in this work indicate that there is significant agree- 

ment between the two and the effect of the pre-compression is shown to drastically 

effect the response of the system. Based on the results presented in the previous 

chapter, the pre-compression can greatly shift the resonant frequency of 4he system. 

This is shown in the comparison of Cases 9 arid 10 and Cases 6 and 11. It is also 

shown in the difference in resonant frequency for Case 2 and Case 3, albeit inadver- 

tently. Inadequacies in the experimental design prevented absolute certainty as to the 

amount of pre-compression. Although every effort was made to ensure the correct 

amouiit of pre-compression had been applied to the system, it is evident that even 

the slightest change in the pre-coinpression will alter the systeiri response greatly. 

In comparing experimental and theoretical results, it wss found that a correlation 

could be made if the pre-compression value given to the numerical simulation was set 

equal to 2. 25 mm, or roughly 37. 57o of the total transverse displacement of the tube. 

The amount of pre-compression for Cases 9 and 10 was also adjusted, to 2. 3 mm, in 

order to agree with experiment. Presented in Figures 45 through 48 are the results 

of the numerical simulation for Cases 9 and 10 and Cases 2, 7, and 8, along with the 

experimental results for the respective cases. For all cases, the resonant ainplitude of 

the experimental data is less than that for the mnnerical siriiulation. Additionally, 

for every case there is a good correlatiori betiveen the resonant fiequency predicted 
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by the simulation and the resonant frequency measured during the experiment. For 

Figure 45, the effect of changes in pre-compression is seen to have dramatic effect in 

both the experiment and the numerical simulation. For both the experimental data 

and the simulation results, relatively small increases in the pre-compression are shown 

to increase the resonant frequency greatly. This is an important result as it shows 

that SMA based isolation devices lend themselves well to being developed as tuneable 

isolation devices capable of providing isolation for various conditions and loads. 

At frequencies much greater than thc resonarrt frequency, the modelled and ex- 

perimentally obtained values for transmissibility agree very well. From simulation in 

this region, it seems that the SMA springs are functioning linearly, that is without 

transformation. This should prove beneficial as it would prevent the inherent damp- 

ing present during transformation from degracling the performance of the isolator. 

Finally, the same trends of decreasing resonant amplitude for increasing loading are 

seen in both the simulation data and the experimental data. Since simulation of 

this regiorr indicates that the reduction in amplitude is due to larger deformations of 

the SMA springs which results in more energy being absorbed by the isolation device. 

Combined with the observations of nearly linear behavior at frequencies much greater 

than the resonant frequency, this observation is very important because it indicates 

that the SMA isolation device will be capable of providing sufficient darrrping at res- 

onance where high damping is beneficial and will provide minimal damping at higher 

frequencies where damping degrades isolation performance. 
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CHAPTER VIII 

DISCUSSION OF RESULTS AND FUTURE WVORK 

This chapter will discuss several of the issues that have arisen as a result of this work 

and will provide directions for future work in this area. Additionally, suggestions 

on how to improve the correlation of these results, through modification of both the 

experiment and theory, wifi be presented where appropriate. 

A. Comments on the Differences Observed Between Experimental Results and Ex- 

pected Performance 

It is evident that the amount of pre-compression imposed on the SMA springs has a 

large and direct effect on the system response. It. is also evident that the design of 

the experiment used in this work allows for poor accuracy and a lack of repeatability 

with respect to specifying the prc-compression. After comparing thc cxperhnental 

results with the results frotn the numerical simulation, it is bclicvcd that much better 

agreement between the two could be obtained if the pre-compression in the springs was 

known precisely and either specified exactly for the cxperixnent, or at the very least, 

accurately measured during experimentation for use in the simulation. Additionally, 

a redesign of the experiment would ensure that there would be no possible contact 

between any of the moving parts, thereby ensuring that the SMA spring response is 

being measured correctly. Based on these reasons, it is felt that, a redesign of the 

experiment would provide thc best results. 

Possible alternatives to the current design include a design where the springs work 

in tension and compression, thus eliminating the whole necessity of pre-compression. 

In this case, the mass being isolated would provide thc force to transition the SMA 

material into the pseudoelastic region where the input vibration would cause oscil- 



lations about the static displacement. point. Another option is to develop a new 

configuration entirely, eliminating the tubes from the experiment, and replacing them 

with a differen type of spring device such as a helical spring or leaf spring made from 

SMA material. 

With regards to the model, there are a few areas that can be addressed in an 

effort to improve agreement with experimental results. The numerical formulation is 

idealized and does not take into account any friction between the different parts of 

the experiment. This area may be addressed rather easily and could provide imme- 

diate benefit. The addition of any friction elements would also allow for numerical 

investigation into the effects of additional damping in the system. 

B. Future Work 

While this investigation has provided a solid foundation with which to investigate the 

application of pseudoelastic SMA for use as vibration isolators, much work has yet. to 

be done. The chief among these is a furthering of the experimental work presented 

here. A comprehensive investigation into different spring designs and into which 

designs provide the most efficient implementation of the damping available in the 

SMA pseudoelastic effect would contribute greatly to thc understanding of the impact 

of SMA based components on dynamic systems. Additionally, an investigation into 

the performance of various shape memory alloys and thc cffcct of varying compositions 

should be undertaken. 

In the area of computational prcdiction of system response, there are several 

items that can also be addresserl, Accounting for the non-isothermal nature of the 

SMA phase transition might result in more accurate rnodclling of the system, even 

though no change in temperature was detected during cithcr thc quasi-static or dy- 
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namic testing presented in this work, While a change in temperature is often asso- 

ciated with rapid stress induced phase transition in SMAs, the lack of temperature 

change noted in this work is attributed to thc large amount of highly conductive sur- 

face area in contact with other conductive surfaces in the experiment and the lirnitcd 

amount of material undergoing complete transformation due to the tubular shape of 

the SMA spring devices. 

A redesign of thc experiment should be implemented to address the following 

areas, SMA tube spring failure and better exploitation of the SMA pseudoelastic 

response. Several of the SMA tube springs experienced structural failure during 

testing attributed to stress concentrations resulting from the geometric boundary 

conditions on the tubes that were further exacerbated by inconsistencies or flaws in 

the material. A full finite element analysis of the experiment would help to redesign 

the current experiment to avoid these issues. Additionally, various other SMA element 

configurations should be investigated in an effort to achieve a response similar to 

the one dimensional pseudoelastic behavior of SMA, such that more exploitation 

of the decrease in component stiffness during pseudoelastic transformation could be 

made. Furtherrnorc, full finite element analysis of both the SMA tube spring and the 

experimental setup would be able to assist in the redesign suggested earlier. This 

effort should have the goal of determining if there are any dynamic modes or other 

interactions present due to geometric constraints that can be avoided by simple design 

changes. Finally, it may be possible to implement a solution to the dynamic system, 

perhaps using a finite element solution method, that uses a more sophisticated SlvfA 

material model to provide a more accurate dynamic response of both the SMAs and 

the system. 
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CHAPTER IX 

CONCLUSIONS 

This work has presented several achievements with regard to establishing the suit- 

ability of pseudoelastic SMAs as vibration isolation devices. The development of a 

simplified material inodel for the predication of the non-linear, hysteretic behavior 

associated with SMAs has been developed and presented in terms of modelling the 

force-displacement relationship of a pseudoelastic SMA spring. Additionally, this 

iriaterial model has been integrated with the mimerical solution of a dynamic sys- 

tem where it provides the non-linear, hysteretic and history dependent response of 

the SMA springs used to provide the restoring force to an SHIA based spring mass 

system. This connection provides the basis for a flexible software tool that can be 

used to model SMA based isolation systems of various configurations under diverse 

loading conditions. This software has been utilized to study the theoretical behavior 

of an SMA based vibration isolation device. 

In addition to thc theoretical work summarized here, an experimental effort has 

been undertaken to expand the understanding and knowledge of a dynamic system 

based on Si&IAs. This effort iricluded the design and testing of a prototype of an SMA 

based isolation device using tubular shaped SMA isolators. Numerous quasi-static 

tests were used to characterize thc. SMA tubes used as springs and to explore the 

response of the entire isolation systein. Results of this testing, and the associated 

modelling, have shown that large amplitude deflections are ncccssary in order for 

thc SMA isolators to exhibit the non-linear, hysteretic behavior which inherent in 

SMA pseudoelasticity. Vibration testing of this device has provided insight into the 

behavior of SMAs under dynamic loadiiig. Reductions iii resoriant amplitude arid fre- 

queiicv were noted as the loading amplitude iiicreased arid this bi havior is attributed 
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to the pseudoelastir. behavior of the SMAs. These larger amplitudes of displacement 

at higher loading levels allow for larger minor loop pscudoelastic transformation of 

the isolators which results in an increase in the energy dissipated by the isolation 

device. Additionally, it has been shown that at frequencies much greater than the 

resonant, frequency, the hysteretic behavior is less pronounced due to lower displace- 

ment amplitudes. This allows the system to have much lower transmissibility since 

the damping is not present. 

Correlation between the numerical simulation and the experiments has also been 

made and while there were differences between the experimental results and the the- 

oretical results, sufficient correlation was made to validate both the numerical sim- 

ulation and the premise of using SMAs as vibration isolation devices. Additionally, 

much insight has bccn gained into how to model the effect of SMA pseudoelasticity 

on dynamic systems and how best to experimentally verify these effects. 

While this study has by no means finished the investigation of the applicability 

of SMAs to vibration isolation, it has provided a strong foundation for this work 

to progress. Through this work, experimental experience has been developed with 

relation to the implementation of SMAs in dynamic systems. Additionally, tools 

have been developed to aid in the theoretical modelling of a variety of applications 

involving SMAs. Finally, direction has been provided for future work, specifically in 

the areas of improving the experimental setup and nurncrical simulation. As shown 

in this work, SMAs have the potential to be successfully applied to thc many different 

areas of vibration isolation. 
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APPENDIX A 

lvIECHANICAL DRAWINGS FOR SlvIA VIBRATION ISOLATION PROTOTYPE 

The following pages contain the mechanical drawings used in the manufacturing of 

the prototype SlvIA based vibration isolation device as described earlier in this work. 



Fig. 49. Drawing for Experiment Base 



Fig. 50. Drnwirrg for Experimcrrt Side Support 



Fig. 51. Drav ing for ExperiInent Excitation Plate 
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Fig. 52. Drawing for Experiment Mass 



APPENDIX B 

MATLAB CODE FOR VIBRATION ISOLATION SIMULATION 

The following pages contain the MATI AB code for the simplified material model 

discussed in Chapter III and the numerical simulation discussed in Chapter V, which 

together allow for the simulation of dynamic systems with integral SMA components. 

Simplified Material Model Code 

The following code is the implementation of the simplifred material model for SMA 

pseudoelasticity as discussed in Chapter III. 

function [force, ts, h data] 
smasimtube(value, rate, tslast, m data, h data) 
% Simple SMA model for tubes (compression only) 
% displacement mode, revision 1 
% 5 Feb 2001 
% JJ Mayes 

/ takes in strain and outputs stress 

/. using linear relationship between transformation strain 
and strain 

% using linear relationship between stress and strain 
% calculates stiffness using above relationships 

% Works for major and minor loops 

% Inputs 

% value: current value of strain 
/ rate: current rate of strain 
/ tslast: last value of transformation strain 

% m data(1): 
% m data(2): 
% m data(3): 
% m data(4): 
/ m data(5): 
% m data(6): 
% m data(7): 

first elastic stiffness 
second elastic stiffness 
maximum of transformation strain 
displacement at forward transformation start 
displacement at forward transformation finish 
displacement at reverse transformation start 
displacement at reverse transformation finrsh 
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% m data(8): force at forward transformation start 
% m data(9): force at forward transformation finish 
% m data(10): force at reverse transformation start 
% m data(11): force at reverse transformation finish 
% m data(12): 1/m data(3) 

/ h data(1): 
/ h data(2): 
/ h data(3): 
/ h data(4): 
/ h data(5): 
/ h data(6): 

previous 
previous 
previous 
previous 
previous 
previous 

minimum 
maximum 
minimum 
maximum 
minimum 
maximum 

value of 
value of 
value of 
value of 
value of 
value of 

transformation strain 
transformation strain 
displacement 
displacement 
force 
force 

/ Outputs 

% out: the output value of force 

% ts: the current value of transformation strain 

% calculate the transition points for stress and strain 
% based on previous cycle's maximum and minimum values 
% transition points 1 and 3 are the only ones that change 

if transformation strain is not 0 or max then the points 
% need to be changed 

etpi=m data(4)+h data(1)+m data(12)+(m data(5)-m data(4)); %Ms 
stpi=m data(8)+h data(1)+m data(12)+(m data(9)-m data(8)); 
etp3=m data(7)+h data(2)+m data(12)+(m data(6)-m data(7)); /As 
stp3=m data(11)+h data(2)+m data(12)+(m data(10) — m data(11)); 

calculate transformation strain, stress and slope 
if (value+rate)&=0 % for loading 

if abs(value)&=etp1 
ts=tslast; 

force = sign(value)+(h data(5)+(abs(value)-h data(3))+. . . 
m data(1)+m data(2)/(h data(1)+m data(12)+. . . 
(m data(1) — m data(2))+m data(2))); 

elseif abs(value)&etp1 & abs(value)&~ data(5) ts~ data(3)+(abs(value)-m data(4))/(m data(5)-m data(4)); 
if ts&h data(1) 

ts=h data(1); 
end 

force=sign(value) +(m data(8) +(m data(9) -m data(8)) +. . . 
(ts/m data(3))); 

elseif abs(value)&m data(5) 
ts = m data(3); 

force=sign(value)+(m data(9)+(abs(value)-m data(5))+m data(2)); 
else 
error('Out of range Value, SMA subroutine: Forward Transformation' ) 
end 
h data(6)=abs(force); 
h data(4)=abs(value); 
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h data(2)=ts; 
end 

if (value+rate)&0 
'/ for unloading 
if abs(value)&=etp3 
ts = tslast; 

force=sign(value)+(h data(6)+(abs(value)-h data(4))+. . . 
m data(1)em data(2)/(h data(2)em data(12)e. . . 
(m data(1)-m data(2))+m data(2))); 

elseif abs(value)&etp3 it abs(value)&~ data(7) 
ts=m data(3)e(abs(value)-m data(7))/(m data(6) — m data(7)); 
if ts&h data(2) 

ts=h data(2); 
Bnd 
force=sign(value)+(m data(11)+(m data(10)-m data(11))e. . . 
(ts/m data(3))); 

elseif abs(value)&m data(7) 
ts = 0; 
force=value*m data(1); 

else 
error('Out of range Value, SMA subroutine: Reverse Transformation' ) 
end 
h data(5)=abs(force); 
h data(3)=abs(value); 
h data(1)=ts; 

end 

if (value&=0) 
force=0; 
end 

return 

Numerical Simulation Code 

The following codes are components of the implementation of the numerical simula; 

tion as discussed in Chapter V. 

Main program 

Thc following code is the main program and calls the system model to obtain a time 

history of the behavior of the dynamic system for an individual loading lcvcl and 

frequency. It then takes this data and calculates the transmissibility for thc given 
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corrditions and saves the time history and transmissibility data in the files specified. 

% Main Program for Vibration Isolation Simulation 
/ Calls system model for specified mass, tube count, 
/ g loading and frequency values specrfied below 

mass values = [1. 2]; 
tube values = [2]; 
gload values = [. 1]; 
freq values = [50:10:200] 

for i = 1:length(mass values) 
for j = 1:length(tube values) 
for k = 1:length(gload values) 

for I = 1:length(freq values) 

data = model(mass values(i), tube values(j), 
gload values(k), freq values(l)); 

filename = strcat('datahm', . . . 
num2str(mass values(i)), 't', 
num2str(tube values(j)), 'g', num2str(k), 'f', . . . 
num2str(freq values(1))); 

save(filename, 'data'); 

n =length(data); 
trans(l) = (norm(data(:, 2))/sqrt(n)) / 
(norm(data(:, 5) ) /sqrt (n) ); 
clear data filename 

end 
filename = strcat('datahtrans m', . . . 
num2str(mass values(i)), 't', . . 
num2str(tube values(j)), . . . 
'g', num2str(k)); 

m = mass values(i); 
t = tube values(j); 
g = gload values(k); 
f = freq values; 
save(filename, 'm', 't', 'g', 'f', 'trans'); 

clear trans filename m t f 
fprintf('finished with mass '/g, tube '/g', . 

and gload '/gran', mass values(i), . . . 
tube values(j), gload values(k)) 
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end 
end 

end 

System Model 

The following code is the system model and is called by the main program for a given 

frequency and amplitude. This code calls thc Newmark integration subroutine for 

each time step to determine the dynamic response as a function of time. 

function data=model(mass, tubecount, gload, freq) 
X Nodel for isolator with tubes using smasimtube 
X John Nayes 
X 4 Nay 2001 

'/'/X/X/////////XX//X/X/XX/XX/ 

'/'/'/'/'/'/X/'/'/'/'/'/'/'/%%%%%X/%'/'/'/'/% 

'/%/X'/%%%/%/'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/X 

'/%//'/'/XXX'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/'/X 

% Enter the maximum time of the simulation (sec): 
Time= 1; X seconds 
% stability and accuracy parameters for newmark scheme 
alpha = 1/2; 
gamma = 1/2; 

errorfactor = ie-8; 
% time step 
tau = 1e-3; %seconds 

%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

'/'/'/'/'/X/XX'/X/XXXX'/%%%%/%%/XXX 

vibrationload = gload; % g 
/freq = 50; / Hz 

% Enter the maximum applied displacement: 
ymax= (12s32. 2svibrationload)/((freqe2epi) 2); /, inches 
/ enter 1 to initialize for gravity and 0 for no initialization 
init for g = 0; 

/////%%///////%/X//%//////// 

'/%/%%%%%%/%/%%'/%%'/'/'/%%/'/'/'/'/% 

% Enter number of tubes in each direction: 
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number top = tubecount; 
number bot = tubecount; 

Dia zero = 0. 236 % inches, undeformed diameter of tubes 
Disp initial = -0. 08; 

% Enter the mass of the payload 
%mass=i; % lbf 

/%%%%%%%%'/'/%/'/%/'/'/%%%%'/'/'/'/'/% 

'/'/%%%'/'/%/'/'/%%/'/'/'/'/%%'/'/'/'/%%'/% 

% Naterial data presented here is for use with SMASIMTUBE. M 

% Enter the initial temperature in degK: 
%T = 100; 

/ Properties: 
%C=1;% (slope in S-T space) 

%MA=222 % First elastic stiffness 
/MM=870 % Second elastic stiffness 
%Tnoload=[84 90 91 97. 5]; % [Nof, Mos, Aos, Aof] 
%etmax=0. 115 % max uniaxial transformation strain 

C=1; 
NA=100; 
MM=100; 
Tnoload=[84 91 90 97. 5]; 
T=10000; 
etmax=0. 00010; 

'/%/'/'/'/%%/%%'/%%%%%'/'/'/'/%%%/%// 

'/'/'/'/'/%%%%%%'/%%%/'/%%%%%%%/%%/ 

//%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%'/%%%%%%%%%%%%%%%%%%% 

% Initialize data for integration and material properties 
0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ / 0/ 0/ D/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ 0/ D/ 0/ 0/ D/ 0/ 0/ D/ 0/ 0/ D/ 0/ 0/ 0/ 0/ 0/ 0/ / 0/ 0/ D/ 0/ 0/ 0/ 0/ D/ D/ / / / 
%fprintf('initializing constants, etc. Nn'); 

% set up values for system and 
% initial values of response and Material Parameters. 

% simulation data is data needed by integration subroutine 
simulation data = [freq ymax number top number bot mass. . . 

alpha gamma errorfactor T biasload Disp initial Disp initial]; 
% consists of: 
%0 [frequency of excitation, amplitude of excitation, 
% number of tubes for tension, number of tubes for compression, 
% alpha constant, gamma constant, errorfactor constant 
% ambient temperature] 

% set up values of position values and material parameters 



'/ for initial time step t=0 
data(1, 1:23) = 0; 
t=o; 

y 
0/ 

0/ 

D/ 

D/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

dls 
0/ 

4/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

y 
0/ 

0/ 

0/ 

0/ 

0/ 

0/ 

data for time steps will be stored in the following 
arrays with the following format: 
[time position velocity acceleration y displacement 
displacementi forcei transformation straini 
minimum transformation straini 
maximum transformation straini minimum total displacementi. . . 
maximum total displacementi minimum force1 
maximum force1 displacement2 force2 transformation strain2 
minimum transformation strain2 
maximum transformation strain2 minimum total displacement2. . . 
maximum total displacement2 minimum force2 maximum force2] 

time = data(:, 1) 
position of mass = data(:, 2) 
velocity of mass = data(:, 3) 
acceleration of mass = data(:, 4) 
position of base = data(:, 5) 

placement of tube top = data(:, 6) 
value of force top = data(:, 7) 
transformation strain top = data(:, 8) 
minimum previous transformation strain top = data(:, 9) 
maximum previous transformation strain top = data(:, 10) 
minimum previous total displacement top = data(:, 11) 
maximum previous total displacement top = data(:, 12) 
minimum previous total force top = data(:, 13) 
maxrmum previous total force top = data(:, 14) 

displacement of tube2 = data(:, 15) 
value of force2 = data(:, 16) 
transformation strain2 = data(:, 17) 
minimum previous transformation strain2 = data(:, 18) 
maximum previous transformation strain2 = data(:, 19) 
minimum previous total displacement2 = data(:, 20) 
maximum previous total displacement2 = data(:, 21) 
minimum previous total force2 = data(:, 22) 
maximum previous total forcei = data(:, 23) 

straintp = [(Ce(T-Tnoload(2)))/NA (Ce(T-Tnoload(1)))/MN+etmax 
(C+(T-Tnoload(3)))/MN+etmax (Ce(T-Tnoload(4)))/MA]; 
stresstp = [Ce(T-Tnoload(2)) C+(T-Tnoload(1)) Ce(T-Tnoload(3)) 
C*(T-Tnoload(4))]; 
m data = [NA MM etmax straintp stresstp 1/etmax]; 



'/ Initialize tube data based on undeformed length and intial length 

maxcount=100; 
for i=i:maxcount 

strainO(i)= 0+(i-1)+Disp initial/(maxcount — 1); 
end 

for i=2:length(strain0) 
dstrain(i)=strainO(i)-strainO(i-1); 

end 
h data = [0 0 0 0 0 0]; 
tstrainlast=O; 

for i=i:(length(strainO)) 
[sigsim(i), tstrain(i), h data] = smasimtube(strainO(i), 
dstrain(i), tstrainlast, m data, h data); 

tstrainlast=tstrain(i); 
end 

data(1, 6)=Disp initial; 
data(1, 7)=sigsim(end); 
data(1, 8)=tstrain(end); 
data(1, 9:14)=h data; 
data(1, 15:23)=data(1, 6:14); 
'/ initialize tubes based on mass to be isolated (account for gravity) 
if init for g == 1 

sum force = number top*data(1, 7)-number botedata(1, 16) 

init data top=data(1, 6:14); 
init data hot=data(1, 15:23); 

delta = -0. 00001; 
init x = 0; 

while (biasloademass &= -sum force) 
init data top(1)=init data top(1)+delta; 
init data bot(1)=init data bot(1)-delta; 
[init data top(2), init data top(3), init data top(4:9)] 
smasimtube(init data top(1), delta, . . . 

init data top(3), m data, init data top(4:9)); 

[init data bot(2), init data bot(3), init data bot(4:9)] 
smasimtube(init data bot(1), — delta, . . . 

init data bot(3), m data, init data bot(4:9)); 
init x=init x+delta; 
sum force = number top+init data top(2) — . . . 



number bot+init data bot(2) 
end 

data(1, 6:14) = init data top; 
data(1, 15:23) = init data bot; 
data(1, 2) = init x; 

simulation data(11) = Disp initial+init x; 
simulation data(12) = Disp initial — init x; 

end 

/'/'/'/'/'/'/'/'/'/'/'/%%'/%%%/%%/%'/'/%/'/% 

'/%/'/'/'/'/'/'/%/'/%%'/'/%/'/%%%%'/'/%%'/% 

%fprintf('beginning integrationhn'); 

while t & Time 
tau2=tau; 
[dataout, convergeflag] = nmstep simple(t+tau2, 
tau2, simulation data, data, m data); 
t=t+tau2; 
data(end+1, :) = dataout; 
end 

return; 

Newmark Integration Routine 

The following code is the Newmark integration subroutine and is called by the sys- 

tem model. This code calls the sitnplified SMA pseudoelasticity model, described in 

Chapter III, in order to determine the force displacement response of the SMAs at the 

given timestep. This information is then used in the calculation of the mass position 

and returned to the system model. 

function [dataout, convergeflag] = nmstep simple(t, . . . 
tau, data s, data h, m data); 

/, Newmark integration subroutine for simple model 
with variable time step 

/ data s = [freq ymax number tension number compres mass alpha. . . 
% gamma errorfactor temperature biasload disp initial]; 
% data h = [time position velocity acceleration y displacement. . . 
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'/, displacement1 force1 transformation strain1 
/, minimum transformation strain1 
/ maximum transformation strain1 minimum total displacement1. . 
'/, maximum total displacementl minrmum force1 maximum force1. . . 
'/. displacement2 force2 transformation strain2 
'/, minimum transformation strain2 
'/. maximum transformation strain2 minimum total displacement2. . 
'/, maximum total displacement2 minimum force2 maximum force2]; 
'/ m data = material properties defined in input section 
'/, dataout = current timestep data 
'/. convergeflag = tells main program if integration converged 
/ retrieve simulation data from passing array 

frequency = data s(1); 
amplitude = data s(2); 
num top = data s(3); 
num bot = data s(4); 
mass = data s(5); 
alpha = data s(6); 
gamma = data s(7); 
errorfactor = data s(8); 
temperature = data s(9); 
bias = data s(10); 
dispO top = data s(11); 
dispO bot = data s(12); 

'/ constants 
'/gconst = 32. 2; '/ ft/s 2; accel of gravity 

'/, retrieve time history of material 
x = data h(end, 2); 
xp = data h(end, 3); 
xpp = data h(end, 4); 

tube top = data h(end, 9:14); 
tube bot = data h(end, 18:23); 

tslast top = data h(end, 8); 
tslast bot = data h(end, 17); 

displast top = data h(end, 6); '/(x-y) 
displast bot = data h(end, 15); '/(x — y) 

% create newmark veighting factors 
ai = alphaetau; 

a2 = (1-alpha)etau; 
a3 = 2/(gammaetauetau); 
a4 = 2/(gamma+tau); 
a5 = 1/gamma-1; 



err = 1; 
xold = x; 
tmp1 = a3; 
tmp2 = (a3+x+a4*xp+a5+xpp) 
tmp3 = xp+a2expp; 

%//%////%///%/%%%%///////%/// 

///////////////////////////// 
i=O; 
convergeflag = 1; 

while (err & abs(xoldeerrorfactor)) 
i=i+1; 

if i&20 
convergeflag = 0; 
dataout = []; 

return 
end 

y = amplitude+sin(frequency+t+2+pi); %original forcing function 

%dispi = dispO+x-y; %tube 1 displacement 
%disp2 = dispO+y-x; %tube 2 displacement 

disp top = dispO top-x+y; %tube 1 displacement 
disp bot = dispO bot-y+x; %tube 2 displacement 

[F top, tsc top, tube top c] = smasimtube(disp top, . . . 
disp top-displast top, tslast top, m data, tube top); 

[F bot, tsc bot, tube bot c] = smasimtube(disp bot, . . . 
disp bot-displast bot, tslast bot, m data, tube bot); 

M = mass; 
K=0; 

F = num topeF top-num boteF bot-massebias; 

Khat = K + Metmp1; 
Fhat = F + M+tmp2; 

xold=x; 

x = Fhat/Khat; 

err = abs(x-xold); 
end 
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xpp = a3ex — tmp2; 
xp = tmp3 + a1expp; 

dataout = [t x xp xpp y disp top F top tsc top tube top c. . 
disp bot F bot tsc bor tube bot c]; 

return; 

Plotting Routine 

The following code allows the user to plot the various data gathered in the previous 

sections in an automated manner if the user does not wish to do so manually. 

'/ Program to graph the data gathered running the 
'/ vibration isolation simulation. 

mass values = [1. 2]; 
tube values = l2]; 
gload values = [. 1]; 
freq values = [50r10:200] 

transdata = zeros(length(freq values), length(gload values), 
length(tube values), length(mass values)); 
for i = 1:length(mass values) 
for j = 1:length(tube values) 
for k = 1:length(gload values) 

filename = strcat('dataKtrans m' 

num2str(mass values(i)), 't', . . . 
num2str(tube values(j)), . . . 

'g', num2str(k)); 
load(filename) 

transdata(:, k, j, i) = trans; 

clear m t g f trans filename 
end 

end 
end 

clear i, j, k 

'/, plot trans vs f for given m and t 
for i = 1:length(mass values) 
for j = 1:length(tube values) 



figure 
plot(freq values, transdata(:, 1, j, i), . . . 
freq values, transdata(:, 2, j, i), . . . 

freq values, transdata(:, 3, j, i), . . . 
freq values, transdata(:, 4, j, i)) 

xlabel('frequency') 
ylabel('transmittance') 
titstr = 
strcat('effect of change in loading for mass 

num2str(mass values(i)), 'kg and tubes = 
num2str(tube values(j))); 

title(titstr); 
end 

end 

% plot trans vs f for given m and gload) 
for i = 1:length(mass values) 
for j = 1:length(gload values) 

figure 
plot(freq values, transdata(:, j, i, i), freq values, . . . 
transdata(:, j, 2, i), freq values, transdata(:, j, 3, i)) 
xlabel('frequency') 
ylabel('transmittance') 
titstr = 
strcat('effect of change in tube count for mass = 

num2str(mass values(i)), 'kg and gload = 
num2str(gload values(j))); 

tit, le(titstr); 
end 

end 

% plot trans vs f for given tube and gload) 
for 1 = 1:length(tube values) 
for j = 1:length(gload values) 

figure 
plot(freq values, transdata(:, j, i, l), freq values, . . 
transdata(:, j, i, 2), freq values, transdata(:, j, i, 3)) 

xlabel('frequency') 
ylabel('transmittance') 
titstr = 
strcat('effect of change in mass for tube count 

num2str(tube values(i)), ' and gload = 
num2str(gload values(j))); 

title(titstr); 



end 
end 
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