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ABSTRACT

Suitability of Shape Memory Alloys for Vibration Isolation with
Application to Launch Vehicle Payloads. (December 2001)
John Jeramy Mayes, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Dimitris C. Lagoudas

This work details an investigation into the suitability of Shape Memory Alloys
for the task of vibration isolation based on the similarities betwceen the Shape Memory
Alloy pscudoelastic behavior and the softening response of isolators whose response
is similar to a buckling elastomer. In this work, a simplified material model for the
prediction of the non-linear, hysteretic nature of the pseudoelastic force-displacement
relationship is developed. This material model is coupled with the numerical simula-
tion of a dynamic system whose restoring force is provided by Shape Memory Alloys,
providing an efficicnt software tool for the modelling of such systems. A thorough
experimental investigation is also presented in which the behavior of a prototype
Shape Memory Alloy-based isolation device is explored. Numerous quasi-static tests
are performed, as well as a comprehensive series of dynamic tests on the prototype
device. Results of these tests are compared with the predictions of the numeric sim-
ulation. From this comparison, several important conclusions are drawn concerning
the application of Shape Memory Alloys to vibrating systems. The most important
conclusion is that in order for the non-linearity and hysteresis present in Shape Mem-
ory Allays to be cffective in reducing the transmissibility of a dynamic system, there

must be large amplitude deflections in the system.
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CHAPTER 1

INTRODUCTION
Technology has advanced significantly in recent years, enabling significant increases in
the performance of many types of devices while also allowing those devices to become
smaller in size and mass. The advances in the design and manufacture of spacecraft
is one area where the effect of advancing technology can be seen most clearly. Dumas
notes that recent advances in technology have contributed significant improvements
in performance while at the same time yielding reductions in size and mass, resulting
in spacecraft that are more powerful and less expensive [1]. Casani also discusscs the
effect of advancing technology, noting the trend toward smaller spacecraft with very
specific missions and clusters of small spacecraft whose combined abilities replace that
of a much larger single craft [2]. Since one of the major costs of a spacecraft program
is the cost involved with launch of the spacecraft into orbit [3], it is generally accepted
that the smaller and lighter a spacecraft can be made, the less it will cost to put into
orbit and the more cost efficient the spacecraft program will be. Along these lines,
many of the newest technologies have been focused on efforts to develop methods to
reduce the size and weight of spacecraft. However, a significant portion of the mass of
a spacecraft is related to the supporting structure and not the actual components of
the spacecraft. One of the primary rcasons for the supporting structure in a spacecraft
is that it aids in mitigating the harsh loading environment encountercd during launch.
Therefore, it would be possible to significantly reduce the complexity and mass of the
spacceraft structure if the vibration loading experienced by the payload during launch

could be reduced. In addition to reduction in the spacecraft mass, significant vibration

The journal model is IEEE Transactions on Automatic Control.



isolation would also result in a reduction in part count and an increase in both the
reliability and service lifetime of a spacecraft [4]. Unwanted vibrations also affect
the components of a spacecraft while on orbit and significant reductions in vibration
loading for these components can result in increases in performance and the useful
life of a spacecraft,

Since there is obvious and significant benefit to improved vibration isolation
of spacecraft and their components, much effort has been directed at developing
vibration isolation systems. There are two main types of vibration isglamon devices
currently under development for space systems, whole spacecraft isolation systems and
component isolation systems. Whole spacecraft systems are designed to replace the
fitting that mates the launch vehicle and the payload. In this manner, these devices
can de designed so that they will inhibit transmission of vibration loads from the
typically harsh environment of the launch vehicle to the sensitive payload. Component
isolation systems are generally employed on orbit and are designed so that they will
isolatc a sensitive piece of equipment from the environment of the spacecraft. In some
cases, they can be used to isolate a particulary noisy, but required, piece of equipment

from the rest of the craft.

A.  Recent Work in Spacecraft Vibration Isolation

Much of the work in the area of whole-spacecraft launch vibration isolation has cen-
tered around the use of conventional methods such as viscons dampers and the cou-
pling of these conventional systems with active systems. The work of Edberg, et al,
describes a series of isolation devices used to couple the payload to the launch ve-
hicle, incorporating hydraulic dampers with either mechanical or pneumatic springs.

These systems can be utilized either passively or actively (with feedback control) and



have demonstrated significant reduction in transmitted acceleration, with the active
system reducing transmission to nearly zero (5, 6]. Wilke, et al, have developed a
replacement payload attach fitting (PAF) with integrated passive hydraulic damping
that is a one-for-one replacement for current PAF designs [7}. In another work by
Wilke, et al, and in the work of Johnson, et al, the successful implementation of
this hydraulic based passive vibration isolation for an entire spacecraft is discussed.
This design, known as the SoftRide system, was successfully tested on two separate
launches, providing a significant reduction in broadband structure-born vibrations,
especially in the targeted low frequency range [8, 9].

Work has also been done in the area of component isolation, where the main
goal is to isolate the vibrating components of spacecraft while on orbit. Component
isolation has centered mainly on active methods, or active systems coupled with
passive systems for redundancy and better performance, and has been one of the
first areas to see the introduction of smart structures and smart materials for use in
vibration isolation of space systems. One example of an active system is the work
of Yu, et al, which uses a high temperature super-conducting magnet as the soft
link between the vibrating system and the isolated system [10]. Another example
is the hybrid system presented by Cobb, et al, which uses active voice coil systems
coupled with passive viscous damping [11]. In addition to vibration isolation, this
systemn can also be utilized for precision pointing of spacecraft components such as
communication antennas. A similar system utilizing piezoelectric actuators in place
of voice coils systems was also investigated by Wada, et al [12]. Advances of these
designs have been realized in the form of a piezoelectric based system for component
isolation as described in the work of Anderson, et al {13]. This system is scheduled to
fiy on the PICOsat spacecraft and be tested to determine its on orbit performance. Of

particular interest to this current work is the work of Yiu and Regelbrugge [14}, whose



Investigation into the use of springs made from shape memory alloy for isolation of a
spaceeraft component. They have investigated passive isolation characteristics of the
springs, both on orbit and during launch, and exploited the shapc memory effect to
maintain proper alignment of the protected equipment. A key result from their work
is the ability to regain and maintain proper alignment of the protected equipment

through exploitation of the shape memory effect of shape memory alloys.

B. Application of Shape Memory Alloys to Vibration Isolation

In addition to the work of Yiu and Regelbrugge mentioned above, the application of
Shape Memory Alloys (SMA) to more standard isolation problems such as machinery
and civil structures has been investigated and has shown much promise. Wolons, et
al, have investigated the damping capacity of SMA wires through extensive experi-
mentation and have found that SMA wires can have up to 20 times more damping
capacity, per unit volume, compared to typical elastomers [15]. Fosdick and Ketema
have performed a study of a single degree of freedom (SDOF) lumped mass oscilla-
tor with an SMA wire attached in parallel as a passive vibration damper and have
shown that the hysteresis inherent in SMA to be most effective at low frequency [16].
Matsuzaki, et al, have also investigated the effect of introducing SMA elements into
a dynamic system. ‘Their study showed that the effect of introducing pre-strained
SMA wires into a spring-mass system resulted in effective damping and suppression
of disturbed motion [17]. Similar work by Turner has shown that the responsc of
composite beams with embedded SMA wires subjected to random base excitation
can be tailored by changing the temperature of the SMA wires {18]. The work of
Graesser and Cozzarelli discussed the application of SMAs to the isolation of struc-

tures such as buildings, showing that SMAs may be suitable to damping the motions



induced by earthquakes [19]. The work of Wilde, et al, has built on the previous work
of Graesser and Cozzarelli, applying SMA basc isolation devices to highway bridges
and achieving favorable results compared to the response of conventional base isola-
tion deviees [20). A study of the use of SMAs in passive structural damping is also
presented in the work of Thomson, ct al, where three different quasi-static models of
hysteresis were introduced and compared with experiments [21]. The work of Feng
and Li has discussed the behavior of systems with solid SMA bars, showing a decrease
in both the resonant frequency and resonant amplitude of a dynamic system when

compared with other materials such as steel [22].

C.  Objective of This Work

The objective of this research is to investigate the feasibility of utilizing the pscu-
doelastic shape memory alloy for the task of whole-spacecraft vibration isolation.
It is believed that replacing current isolation devices with SMA based devices will
result in lower mass, lower complexity and lower cost with equal or better perfor-
mance. Vibration isolation is most often accomplished by joining two structures with
a “soft link,” a device or material with a low stiffness, with the goal of decreasing
the force and motion transferred from one structure to the other [23]. However, a
small stiffness will gencrally lead to large displacements when the loads involved are
large, and this result is often unacceptable. Through the use of a device with de-
creasing stiffness, similar to an elastomer under buckling loads, it is possible to avoid
large displacements while still achieving good isolation performance [24]. The basis
for this work lies in the similarities between the force-displacement relation of the
buckling elastomer and the force-displacement relation of the pseudoclastic SMA, as

discussed below. While the goal of this proposal is to demonstrate the effectiveness



of the decreased stiffness during pseudoelastic transformation for reducing vibration
transmissibility, it is felt that the hysteresis present in the loading behavior of SMA
will also be beneficial in the frequency ranges of concern and will have a minimal
negative impact on transmissibility at higher frequencies.

In order to determine the suitability of SMA for vibration isolation, accurate
material level modelling of a system which includes structural members composed
of SMA must be achieved. This modelling must be able to accurately predict the
dynamic response of an SMA isolator and must incorporate a physically based mate-
rial model for the behavior of shape memory alloys. Finally, correlation between this
system model and actual experimental results must be achieved in order to validate
the model. The remainder of this work will adhere to the following outline. First, an
overview of shape memory alloys and the pscudoelastic effect will be presented. Fol-
lowing this, the development of a simplified material model for SMA pseudoelasticity
which is suitable for dynamic analysis will be discussed. Next will be a discussion
of the numerical solution of the dynamic system and the integration of the material
model into this solution. After this section, the experiment designed to verify the nu-
merical simulation will be discussed followed by results from a series of experiments
conducted to determine the effect of pscudoelastic SMA on a dynamic system. After
this will be a correlation between the model and experiments followed by a direction
for future work, including ideas gained from the current work. Finally, conclusions

drawn from this work will be presented.



CHAPTER II

SHAPE MEMORY ALLOY MATERIAL RESPONSE
In this chapter, an introduction to the mechanical behavior of SMA is presented
along with a discussion of the significant work in the areas of SMA applications
and modelling of SMA behavior. Finally, the similarities between the pseudoelastic
behavior of SMAs and the behavior of a class of traditional vibration isolation devices

are discussed.

A, Shape Memory Alloys

Shape memory alloys are a class of metals that have gained increasing recognition in
previous years. These alloys exhibit a solid-to-solid phase transition characterized by
a change in the crystallographic structure of the material. The driving force behind
this phase change is a difference in the chemical free energy of the two phases, which
in turn is dependent on both the temperature and the stress state of the material [25].
This phase change is referred to as martensitic phase transformation and is completely
reversible and diffusionless in nature [26]. The martensitic phase transformation oc-
curs between the parent phase, austenite, (4), and the martensitic phase, (M}, of
which there are several crystallographic variants [27]. During this transformation, the
crystal structure of the material changes from a cubic arrangement (austenite) to a
monoclinic arrangement (martensite) [28). At the zcro stress state, the martensitic
transformation is characterized by the temperatures at which the transitions occurs.
These temperatures are referred to as Martensite Start (41°°), Martensite Finish
(MeF), Austenite Start (A%), and Austenite Finish (A°/). This change in structure
is the basis for pseudoelasticity, one-way shape memory cffect (OWSME), and two-

way shape memory effect (I'WSME), which are the key behaviors of SMAs. Since



the focus of this work will be on pseudoelasticity, the reader is referred to the litera-
ture for further reading on OWSME and TWSME, which are commonly exploited in
applications where the SMA is uscd as an actuator 29, 30, 31, 32, 33].

The behavior of pseudoelastic SMAs is more complex than many common ma-
terials as the stress-strain relationship is non-linear, hysteretic and exhibits large
reversible strains due to the martensitic phase transformation. Pseudoelasticity is
defined as being a martensitic phase transformation which is induced by a purely me-
chanical loading applied when the material is in the austenite phase (temperatures
above A”*) followed by a reverse transformation to austenite upon unloading. This
loading causes the transformation of austenite into martensite with the variants re-
aligned into a single crystallographic orientation. This reorientation, or detwinning,
results in large strains that can be completely recovered upon unloading [34]. Fig-
ure la illustrates the relationship between stress, temperature, and phase in SMAs,
and Figure 1b shows the pseudoelastic loading response that corresponds to the load-

ing path denoted in Figure la.

B.  Modelling of Vibration Isolation with SMA

The nature of the Pseudoelastic Effect, as discussed above and illustrated in Figure 1b,
would indicate great potential in the application of SMAs to vibration isolation, espe-
cially in situations where the complexity of a device should be minimized. To date, a
great deal of work has been accomplished in an effort to accurately model, on a consti-
tutive level, the behavior of SMAs. The root behavior of SMAs, the crystallographic
transformation that occurs as a result of changes in temperature and stress, is non-
trivial to model constitutively and many different methods have been employed in an

attempt to accurately model SMAs. Graesser and Cozzarelli, in their work mentioned
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carlicr [19], introduced a modificd model for hysteretic behavior by Ozdemir [35] to
model pseudoelastic behavior of SMAs, using ideas from viscoplasticity [36]. Feng
and Li presented a modified plasticity model which was used to model the hysteretic
response of the shape memory material [22]. Fosdick and Ketema have considered rate
dependency by including “averaged” thermal effects based on the dynamics of single-
crystal phase boundaries [37] in their work, also mentioned earlier [16]. Other work
on constitutive modelling of SMAs includes phenomenological models by Lagoudas,
et al [38], Lagoudas and Bo [39], Brinson [40], Liang and Rogers [41], Tanaka [42] and
Sato and Tanaka [43], micromechanical models for polycrystatline SMAs by Patoor,
et al [44] and Falk[45] and empirical models based on system identification (ID) by
Preisach [46], Mayergoyz [47], Banks, et al [48, 49], Webb [50] and Webb, et al[51].
Although these models are fairly accurate, they are computationally intensive and/or
hard to implernent under dynamic loading conditions. Additionally, the nature of the
Pscudoclastic Effect as it can be applied to vibration isolation through the utilization
of SMA springs has not been addressed by the above publications.

Motivated by the need to model the dynamic response of a system with SMA
conmponents, it became necessary to develop a computationally efficient model for
SMA pseudoelasticity which would capture the essence of pseudoclastic behavior and
allow for a timely calculation of the system response. To realize the goal of designing
and simulating a smart structure for vibration isolation using SMAs, it is necessary
to have structural models that can (a) incorporate a physically based constitutive
response of SMAs and (b) can be used for prediction of dynamic response of smart
structures. Most of the models available in the literaturc do not serve this dual
purpose well. In this work, the hysteresis and softening stiffness exhibited during
pscudoelasticity is predicted through the use of a physically based material model

for SMA pseudoelasticity. It should be noted that at the structural assembly-level,



the force-displacement relationship is more useful than the actual material state.
Thercfore, pseudoelastic force-displacement response has been modelled and will be
cxplained in the following chapter. The model as presented here is equally applicable
to the prediction of any non-linear, hysteretic system whether it be in terms of stress-

strain, force-displacement, or any other terms suitable to the problem at hand.

C. Similarities Between Traditional Isolators and the Pseudoelastic Behavior of

SMAs

When a shape memory alloy is loaded while in the austenitic phase, it initially behaves
as if it were elastic in nature, similar to the initially stiff response of a traditional
isolation device. This initial elastic response would support the static loads placed on
the isolator. As the stress continues to increase, a point is reached where the material
begins to transform into the martensite phase. This transformation is characterized
by a decrease in the stiflness of the material and would correspond to the softening of
a traditional isolator. This transformation region would also be the ideal operating
region of the isolation since loading in this region would be attenuated due to the
softer response of the device. If the load continues to increase, the entirety of the
material is transformed into martensite. After this stress induced martensite (SIM)
transformation is complete, the materials will again begin to deform clastically, with
a stiffness greater than that present during the transformation but not necessarily
equal to the initial stiffness. If the SMA is again compared to a traditional isolation
device, this area of the pseudoelastic behavior would correspond to an increased stiff-
ness designed to limit total deflection. If the loading is now reversed, it will unload
elastically until it reaches a point at with the stress is low enough to permit the trans-

formation back into the parent austenite phase. As the stress continues to decrease,



the material transforms completely back to its austenite phasc and then continues to
unload elastically until the zero stress point is reached. During this unloading pro-
cess, it is possible for the material to recover all of the induced strain, returning to
its undeformed, initial condlition at zero stress. In addition to the change in material
properties and large recoverable strain during pseudoclastic transformation, there is
some hysteresis which is an indicator of energy dissipation during the austenite to
martensite and martensite to austenite transformations. This energy dissipation is
proportional to the degree of transformation completed during a loading cycle for both
complete and incomplete, or partial, transformations. These partial transformations

are also referred to as minor loop hysteresis cycles [52].
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CHAPTER Ii1

SIMPLIFIED SHAPE MEMORY ALLOY MATERIAL MODEL
In this chapter, a simplified material model for pseudoelastic SMAs is developed and
implemented. This model is capable of accurately predicting the behavior of SMAs at
temperatures above the austenite finish temperature (A"f ), the temperature at which
the reverse transformation from martensite to austenite is complete. Additionally,
this model is displacement driven and is dependent on the loading history to correctly
predict the forward and reverse transformation behavior and the minor loop behavior
of SMAs. The basis of the model is the assumption that the relationship between
force and displacement in an SMA at temperatures above A can be accurately
represented by a series of linear segments whose form is determined by the extent of
transformation experienced. The development of this model will be addressed in the
following three sections, The first section will deal with the determination of material
response in force-displacement space from the minimum amount of required physical
data. The second section will deal with prediction of major loop response, and the

third section will deal with prediction of minor loop behavior of SMAs.

A, Determination of Material Force-Displacement Response

To begin to adequately determine the response of SMA material, one must be able
to predict at what loading conditions the transformation between the austenite and
martensite phases will begin and end. Additionally, this information must be available
at all temperatures in which this model is to be valid (T > 4°/ ). The model pre-
sented in this paper is dependent upon only a few material parameters which can be
gathered from relatively simple thermomechanical tests and a calorimetric analysis.

From a typical psendoelastic force-displacement test, shown in Figure 2, performed at
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a temperature greater than A°f, the stiffness of austenite (K 4) and martensite (K )
as well as the maximum value of transformation displacement {67} can be obtained.
Through the use of a Differential Scanning Calorimeter (DSC), the temperatures at
which transformation occurs under zero stress can be determined. Figure 3 shows a
DSC plot for the SMA material used in this work and is typical of most DSC results
for SMA material. The information provided by the DSC measurement is the change
in heat flow as a function of the change in temperature. Since the martensitic phasc
transformation is endothermic or exothermic depending on direction, the tempera-
tures at which the transformations start and end can be estimated from the results
of the DSC test. The results from the DSC data can be coupled with the results
from the pscudoelastic tests to provide all the necessary material information for the
simplificd model.

For representation of force-displacement pseudoelasticity of an SMA component,
a force-temperature phase diagram describing the relationship between force, displace-
ment and phase can be constructed by one DSC measnrement and one pseudoclastic
response test, as shown in Figure 4. The assumption is made that the lines marking
the transformation boundaries are parallel, which strictly speaking is not neccssarily
correct but for the purpose of this model does allow for a simplified representation of
the pseudoelastic response. In this case, the zero stress transformation temperatures
and the slope of the transformation boundaries are chosen based on the pseudoelastic
response and the DSC tests, but modified slightly so that the pseudoelastic force-
displacement relationship is prescrved for the component. Another simplification is
in the sclection of the transition points between elastic loading and transformation.
Duc to the non-uniform stress state and polycrystalline nature of SMA components,
some arcas of the material will begin to transform before others, resulting in the

smooth transitions scen in Figure 2. However, the simplified model presented here



requires specific transition points (points 1-4 in Figures 4 and 5) at which to begin
and end the forward and reverse transformation. Therefore, points are chosen so
that the pseudoelastic force displacement relationship is preserved. Once the sim-
plifications are made and the appropriate constants are chosen, the simplified model
utilizes the force-temperature phase diagram (Figure 4) to create a piecewisc linear
representation of the pseudoelastic response of the SMA shown in Figure 2. From
the force-temperature diagram and given that the temperature of the SMA is known
and constant, it is possible to calculate the forces at which the forward and reverse
transformations begin and end from Equation 3.1 where f* is the force, C is the slope
of the transformation boundary in the force-temperature plane, T is the temperature,
and 7" is the zero-stress transition temperature determined from the DSC results for
the respective transition.

ff=om-T) (3.1)

Additionally, the constitutive rclation for SMA can be modified to vicld Equation 3.2,
where K, is the respeetive stiffness of either austenite, martensite or a mixture of the
two phascs, 6 is the total applied displacement and 6 is the transformation dis-
placement of the SMA. Transformation displacement for a force-displacement model

is similar to the transformation strain for a stress-strain model.
f= Ky(6—67) (32)

Given that the matcrial state is assumed to be known at the beginning and end of
transformation for both forward and reverse transformation, one can calculate the
displacement at which transformation will occur. Using this data, one can construct
the following force-displacement diagram as shown in Figure 5 using ouly the material

parameters mentioned above. For this simplified model of pseudoelastic loading, the
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transitions delineating the beginning and end of forward and reverse transformation
are dependent only upon the ambient temperature and the material parameters, in-
cluding the zerc load transition temperatures, the transformation displacement and
the stiffness of the two phases. For the beginning of the austenite to martcnsite, or
forward, transformation (point 1 on Figure 5), the corresponding force and displace-

ment are calculated from Equations 3.3 and 3.4.

fue = CT— M) (33)
T - M?%)
be = Tt 3.4)

For the end of the forward transformation (point 2), the corresponding force and

displacement are calculated from Equations 3.5 and 3.6.

fuy = O — M%) (35)
_ agof
‘5Mf = C(TK—A?J) (3.6)

For the beginning of the martensite to austenite, or reverse, transformation (point 3),

the corresponding force and displacement are calculated from Equations 3.7 and 3.8.

fas = C(T - A") (3.7)
Oas = C(TK;MA) (2.8)

For the end of the reverse transformation (point 4), the corresponding force and

displacement are calculated from Equations 3.9 and 3.10.
fag = C(T—A) (3.9)

o — 4%

b = g (3.10)

Assuming piecewise linear response and combining all of this information together
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will result in completely determining the force-displacement response of an SMA for

a full loading induced transformation cycle, as shown schematically in Figure 5.

B. Major Loop Loading

To correctly predict the force-displacement response of an SMA, the loading path for
full transformation, or the major loop, must be modelled. For the simplified material
model, this is accomplished by assuming that both the transformation displacement,
8, and the force, f, vary linearly during transformation and that the force corre-
sponds to displacement in a linear manner when transformation is not occurring. As
a result, the SMA material can be modelled as a series of straight lines in force-
displacement space, where the intersection of these lines correspond to the transition
between elastic loading and transformation for forward and reverse transformation.
This can be illustrated schematically, as shown in Figure 5. For elastic loading in
the austenite region (4 — 1) prior to the beginning of forward transformation, the
transtormation displacement remains zero and the force is directly related to the

displacement. This is explicitly stated in Equations 3.11 and 3.12.

o= 0 (3.11)

FIMA = K8 (3.12)

For forward transformation, the region between points 1 and 2, the transformation
displacement varies linearly between zero and the maximum value of transformation
displacement, 8%, Additionally, the force level also varies linearly between the force

levels corresponding to the beginning and end of transformation. Mathematically this



is shown below in Equations 3.13 and 3.14.

0 — 85

5 = f)f,':m(m (3.13)
X Etl‘

JEMA = fags + (s = Fuas) (3.14)
L.

At strain levels above the martensite finish level, the region after point 2, the force
again relates linearly to the displacement and the transformation displacement re-
mains at a constant value equal to d;,,. This relation remains true even after the

onset of unloading until the beginning of reverse transformation begins (point 3) as

shown in Equations 3.15 and 3.16.

P (3.15)
A = farg + Ka(6 — ug) (3.16)

After the beginning of reversc transformation (point 3) and before the transformation
to austenite completes (point 4), the transformation displacement again varies lin-
early, this time between 877, and zero. Likewise, the force varies linearly between the
value at the start of reverse transformation and the value at the end of transformation.

This is shown in Equations 3.17 and 3.18.

Sas— 0
& = b — 5%:(%}“—) (3.17)
. 5“‘
5MA = fAf*"(sT(fAs*fAf) (3.18)

At the conclusion of reverse transformation, the transformation strain is again zero
and the force again varies lincarly with the displacement, as show in Equations 3.11

and 3.12.
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C.  Minor Loop Loading

T'o accurately model SMAs for a particular application, it becomes necessary to model
the minor loop loading cycles. Minor loop loading cycles are those loading cycles that
do not result in complete transformation from austenite to martensite and back to
austenite. From inspection of Figure 6, which illustrates a minor loop displacement
loading path, it becomes clear that in order to model this behavior, some modifications
must be made to the equations above to account for this incomplete transformation.
As a result of the simplicity of this model, the modifications are easy to implement.
The first issue that must be dealt with is the dependence of the current material
behavior on the history of loading of the material. This can be accomplished by
storing the maximum and minimum values of force, displacement and transformation
displacement for the previous loading cycle. The sccond issue to be dealt with is the
modification of the points in force-displacement space that initiate the beginning of
forward and reverse transformation. The third issue relates to the stiffness of the
material. As the material transforms between austenite and martensite, the stiffness
of the material changes between the stiffess of each phase. The stiffness at any given
point during transformation is calculated using a rule of mixtures on the compliance
of the individual phases.

Figure 7 depicts a minor loop case. When loading from zero force in the austenite
phase, the equations are the same as for the initial elastic loading and the forward
transformation. However, for a minor loop loading path, the loading is reversed prior
to completion of forward transformation at point £. At this point, the maximum
values of force, displacement, and transformation displacement are recorded, as they
will be used in subsequent calculations. As unloading begins from point R to 3, ini-

tially there is no transformation so that the unloading occurs elastically, butl at a
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stiffness that is neither the austenite stiffness nor martensite stiffness. Unloading oc-
curs elastically from the maximum transformation point and the slope is determined
by the maximum degree of transformation obtained. For this portion of the force-
displacement relation, the unloading stiffness, Kz, and the force are calculated as
shown in Equations 3.19 and 3.20 where 6}, fr, and g are the values of transforma-

tion displacement, force and displacement recorded when the loading path changed

directions.
Krp = _—KMKA—7 (3.19)
o s (K4 — Kuy) + K
M4 = fn+ Ka(8 — 6g) (3.20)

The transformation strain remains constant for this section of the loading path, since
the unloading is elastic and no transformation occurs. As the material continues to
unload, the path it is following will eventually intersect the line for major loop reverse
transformation (point 3), where reverse transformation begins for minor loop loading
paths. Due to the incomplete forward transformation, this point is different from the

(s, 045) pair denoting point 3 in Figure 5 and is defined by Equations 3.21 and 3.22.

. 5i
grminor = 6’“+6” (8as — 0a5) (3.21)
IR = fack el a0 (3:22)

As this point is reached, reverse transformation begins and the following equations will
determine the values of transformation displacement and force from point 3 onwards.

Frpmor _ §

I G iy p 3.23
s ~ O Sninor 5 (3.23)
fSMA = f4j+ (fmmm fA[) (3‘24)

As the material continues to unload, the force will decrease and the transformation
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displacement will go to zero as the material approaches point 4 where reverse trans-
formation ceascs. At this point, the material will be cntirely in austenite again and
will unload clastically to zero load. Now, if the material does not unload entirely
into austenite but again changes the loading direction and begins to load again, the
force, displacement, and transformation displacement at this point must again be
recorded. This point is shown as point F in Figures 6 and 7. As the material begins
to load from point F to 1, it again loads elastically at a stiffness determined by the
minimum degree to which transformation had progressed. The stiffncss and force
level are given in Equations 3.25 and 3.26 where df, fr, and ép are the values of
transformation displacement, force and displacement recorded when the loading path

changed directions.

KuKa

Kp = p—" " (3.25)
s (K — Kar) + K
JEMA — fp+ Kp(8 — 6F) (3.26)

From this point, the material loads elastically until this loading path intersects with
the forward transformation path for major loop loading (point 1). This point is
calculated in a similar manner to that used in the calculation of the beginning of
reverse transformation and is again based on the intersection of the major loop loading
path and the minor loop loading path. The formulas defining this point are given in
Equations 3.27 and 3.28.

ST = Bage + o,, F {0ty — 8110) (3.27)
L
[T = st+5" (farr — fas) (3.28)

From this point, force and transformation displacement for forward transformation

are caleulated in a manner similar to that used in the calculation of force and trans-
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formation displacement for the reverse transformation. The equations are as follows:

§ — gminer

= Gy s (3.29)
s — 071
) 5t ) .
S = B+ Uy~ BT (3.30)
Ere

The continuation of loading along this path will result in complete transformation to
martensite as described in the major loop section. A change in loading direction prior
to complete transformation will result in additional minor loops and the preceding

equations are applicable.

D. Characterization of SMA Tubular Springs

In order to calibrate the simplified pseudoelasticity model presented here, data from a
thermal scan of the SMA material and a pseudoelastic compression test of the tubular
springs are required. The thermal scan was performed using a Perkin Elmer Pyris 1
Differential Scanning Calorimeter (DSC) and measures the temperatures at the begin-
ning and end of forward and reverse phase transformation at zcro load. The thermal
scan data is presented in Figure 3. The mechanical test was performed on an MTS
servo-hydraulic load frame with a TestStar IIm controller under displacement con-
trol, where the tube was loaded transverse to the longitudinal axis in increments up
to approximately seventy percent reduction in diameter. Various loading rates were
used ranging from 0.016 mm/s to 0.3 mm/s. These loading rates all yielded the same
results, and no change in the temperature of the SMA material was noted, implying
that the isothermal assumption of the simplified material model is an acceptable sim-
plification for this case. Experimentally determined force-deflection behavior for the
SMA pseudoelastic spring, along with the output for the spring model as calibrated

for use in this work, is shown in Figure 8. In order to calibrate the model for the
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SMA spring, it was necessary to implement the assumptions listed earlier concerning
the beginning and end of transformation for hoth force displacoment space and force
temperature space. From the experimental data, it is evident that the slope of the
transformation regions in force temperature space are not parallel. However for this
work a median value of 6 N/°C' was chosen. Additionally, it is obvious that for this
component there is not a single point marking the beginning or ending of any of the
transformation regions so it was again necessary to choose a point that would allow
for the best representation of the force displacement responsc. As a result of these
assumptions, it was then necessary to modify the zero load transformation temper-
atures slightly from the values measured during the DSC tests. The values used to
calibrate the model are shown in Table I and, as shown in Figure 8, they do provide

a good representation of the experimental data.



30

o————r T — T T T T
20} ]
-40| 1
z
i |
s
o -8or
: 1
w
j=2
£ -100f q
o
[7)
-120- 1 E
-1401/] 1
/
_160 L . . ; . . .
-4 -35 -3 -25 -2 -15 -1 -0.5 0

Spring Displacement, § (mm)

Fig. 8. Force vs. Displacement Response of SMA Tube Spring with Response from
Simplified Pseudoelastic Model Showing Major and Minor Loop Response as
Calibrated for This Work

Table 1. Experimentally Determined Parameters for SMA Matcrial Model

Mo = 12°C| K4 = 40 KN/m

Mo — 18°C | Ky = 150 KN/m
A% = 18°C | 6T = 3mm
A = 2°Cc| C = 6 Nfm
T = 25°C
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CHAPTER IV

DEVELOPMENT OF SMA VIBRATION EXPERIMENT

‘While the work presented thus far can be applied to any system whose spring force
can be generalized as nonlinear and hysteretic, the experimental work conducted has
focused specifically on the investigation into the use of thin-walled SMA tubcs, com-
pressed transverse to the longitudinal axis, as vibration isolators. The decision to
utilize SMA tubes for this investigation was based on their ability to recover com-
pletely after nearly seventy percent compression at relatively low force levels, their
ease of incorporation into a vibration test design, and their ready availability. The
tubes were acquired from Shape Memory Applications, Inc. and were manufactured
from binary NiTi with an outer diameter of approximately 6mm and an inside diam-
eter of approximately 5.95mm. The tubes were supplied in approximatcly one-half
meter length and subsequently cut to 10mm lengths.

An experiment was created for the express purpose of determining the effect of
pseudoelastic SMAs nsed in a dynamic system to replace the spring in a traditional
spring-mass system. SMA thin walled tubes, used as compression springs, were used
to connect the mass to a base subjected to a given excitation level. Since the SMA
tubes would only function in compression, the experiment was designed such that
the SMAs could be preloaded so that they would always operate in compression.
The amount of compression was chosen such that the SMA would operate in the
hysteretic region of the pseudoelastic response. A schematic of the SMA spring-mass
system as designed is shown in TFigure 9. The system is excited by motion of the
base plate. whose motion is denoted by y. The cxperiment was designed so that the
SMA springs operated in pairs to provide resistance to both tension and compression

for the system as a whole, while always being compressed on an individual basis
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Fig. 9. Schematic of SMA Spring-Mass Isolation System as Designed
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to some extent. This is shown in Figure 10. In Figure 10a, the SMA spring-mass
system is shown jn the unloaded configuration. In this configuration, the springs
above and below the plate, labelled y, would be in compression. In Figure 10b, the
system is in compression, as denoted by the motion of the plate and the notation
Y > Y. In this configuration, the springs above and below the plate are still in
compression. However, the springs above the plate are compressed more with respect
to the unloaded configuration and the springs below the plate arc compressed less
with respect to the unloaded configuration. In Figure 10c, the system is in tension,
again denoted by the motion of the plate and the notation y < . The springs above
and below the plate are again in compression. However, now the springs below the
plate are compressed more with respect to the unloaded configuration and the springs
above the plate are compressed less with respect to the unloaded configuration. The
initial compression of the springs is referred to as the pre-compression and is given as a
percentage of the initial undeformed length of the springs. This pre-compression will
dictate the point about which the springs will operate in the transition region of the
pseudoelastic response. Variations in the amount of pre-compression will affect both
the stiffness of the system and the energy absorbed by the hysteresis of the SMAs.
Mechanical drawings for this experiment are included in Appendix A. An assembly
scene created from the mechanical drawings of the experiment is shown in Figure 11
Figure 12 shows a detail drawing of how the SMA tube springs are mounted in the
experiment. Due to the pre-compression, the small depression will prevent the tube
fram moving around during testing, while the radius of the depression is chosen so
that it will maintain a single point of contact boundary condition at all but the most

extreme deformations.
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Fig. 10. Various Schematics of SMA Spring-Mass solation System
a) Schematic of SMA Spring-Mass Isolation System in the Unloaded State
b) Schematic of SMA Spring-Mass Isolation System in Compression
¢) Schematic of SMA Spring-Mass Isolation System in Tension



Fig. 11. Assembly of Vibration Isolation Experiment
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CHAPTER V

DEVELOPMENT OF NUMERICAL SIMULATION OF A VIBRATING SYSTEM
WITH SMA SPRINGS

A computationally efficient simplified material model for pseudoelasticity in SMAs

was developed in the previous chapter. That model is now used to solve the coupled

structural response of a dynamic system involving SMAs. The simplified material

model is integrated into the numerical solution of a single degree of freedom spring

mass system where the restoring force of the springs is provided by the pseudoeclastic

response of SMA components.

A, Analysis of the Single Degree of Freedom Dynamic System

A schematic of the SMA spring-mass system along with a free-body diagram of the
mass being isolated is shown in Figure 13. Note that the system described in Figure 13
is equivalent to the one described previously and shown in Figure 9. The system is
excited by the motion of the supporting structure, denoted by . From the free body
diagram in Figure 13b, the equation of motion for the system can be determined as
shown in Equation 5.1, where m is the mass to be isolated, % is the acceleration of
the isolated mass, and N, and N refer to the number of springs on the upper or
lower sides of the mass, respectively. The forces exerted by the SMA springs, f5M4
and f¥M4, are determined by the displacement of the springs, &, and 6, and the
displacement history of the springs as discussed previously. These displaccments are
functions of = and y as shown in Equation 5.2. It should be noted that due to the

non-linear nature of the force-displacement relationship for these springs, both the
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upper springs and lower springs must be modelled independently of each other.

mi = N IR0 = MY AB)] (5.1)

& = ~by=x—-y (5.2)

Excitation of the system is introduced through sinusoidal motion of the base of the
device whose magnitude is determined by the desired loading to be placed on the
structure. Loading magnitude, a, is specified as a fraction of the acceleration due to
gravity, g. Loading frequency is specified in cycles per second, denoted as f. The
acceleration due to gravity is taken as 9.81 m/s*. The magnitude of displacement
necessary to achieve a required acceleration at a given frequency is determined by the
relationship shown in Equation 5.3, given that the motion is sinusoidal and periodic.

ag

V=GR (63)

The transmissibility, IR, of the system, a measure of the force or motion transmitted
through the system, is defined as the magnitude of the output motion divided by
the magnitude of the input motion. This is shown mathematically in Equation 5.4.

For a lincar system, the transmissibility can be derived analytically as shown in

Equation 5.5,

m = % (5.4)
1
- T (5.5)

With both the dynamic system and the response of the SMA springs defined, it is
now possible to model the system as depicted in Figure 13 and described by Equa-
tion 5.1. The following scction describes the numerical implementation used to solve

Equation 5.1
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Fig. 13. a) Schematic of SMA Spring-Mass Isolation System. b) Free Body Diagram
of SMA Spring-Mass Isolation System
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B.  Numerical Implementation of Solution to SDOF System with SMA Components

The simulation of the dynamic system was developed in the MATLAB environ-
ment [53]. After successful implementation, the simulation was converted to C++
in order to address deficiencies in the execution cfficiency. Time history response of
the system was calculated using a Newmark integration method with time step and
weighting factors chosen to ensure stability of both the integration and the material
model describing the spring behavior [54, 55]. The time integration is accomplished
by a constant-average acceleration variant of the Newmark method. For ¢ = ¢, the
Newmark method is defined by Equations 5.6 and 5.7 for which the constant-average
1

acceleration method (trapezoidal rule) is obtained if o = % and v = 3.

Bavt = T At + (B0 =)+ YEus) (56)

Epp1 = Fn o+ AH(L = @)Ep + adp) (5.7)
The sclection of this second order implicit method was governed by the highly non-
linear naturc of the differential equation describing the system. For a linear system,
this scheme conserves the total encrgy of the system, allowing the high-frequency
response to be simulated without any numerical damping and is unconditionally sta-
ble. Therefore, this same scheme is used to solve the non-linear, hysteretic SMA
spring-mass system based on the understanding that unconditional stability holds
for certain non-linear systems. However, no proof of stability for this type of non-
linear systems is available. For a detailed discussion on time-integration schemes,
the reader is referred to the work of Hughes [56]. Final implementation of this code
allows for caleulation of both time history of the mass motion at a given frequency
and amplitude and the transmissibility of the system when subjected to a given am-
plitude excitation over a range of frequencies. The calculation of transmissibility is

performed by analyzing the results of a serjes of time history calculations over the
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frequency range of interest with transmissibility at each excitation frequency being
calenlated according to Equation 5.4.

A flowchart depicting the calculation of time history for a given frequency is
presented in Figure 14, As shown, the parameters governing the system such as
mass, number of springs, excitation level and frequency, and initial conditions along
with the material parameters for the simplified material model are input first. Next
the system is initialized according to the initial conditions, and the calculation of time
history is begun. For a given timestep, the position of the mass is first estimated from
the previous position. With this estimation and the position of the base, which is
given, the displacement of the springs can be calculated. The force exerted by the
spring and the transformation displacement are then calculated using the simplified
SMA pseudoelastic model based on the spring displacement and loading history of
the springs. Loading history is always considered from the last valid timestep, not. the
last position estimate at the current timestep. In this manner, it is assured that the
material model always produces an accurate prediction of the force produced by the
SMAs, which in turn is necessary for accurate prediction of position at the current
timestep. After force and transformation displacement are calculated, a new estimate
of the position of the mass is calculated and compared to the previous estimation.
If the two estimations are within the given tolerance, the estimation is considered
correct and the caleulations proceed for the next timestep. It should be noted that
the transformation displacement is not used in the calculation of position, however it
is used to monitor the degroe of transformation completed and, as such, is required
for accurate calculation of the force exerted by the SMA. After calculation of the final
timestep, the simulation routine ends and the time history data is available for analysis
to determine trapsmissibility, motion of the mass or force-displacement response of

the SMA springs. As mentioned earlier, this numerical solution was prototyped in
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Fig. 14. Flowchart of Algorithm Used to Calculate the Time History of the Dynamic
System
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MATLAB and then converted to C++. Appendix B contains the source code for the
MATLAB implementation, which has been included instead of the C++ code since
it is more platform independent and does not require the custom graphics librarics
used in the C++ code. Figure 15 shows several screen capiures of the C++ code

during operation.

C. Validation of Numerical Integration

Figure 16 shows the displacement response of a linear spring-mass system identical
to that shown in Equation 5.1, except that the spring force has a linear rclationship
to displacement. This is accomplished by preventing the model for pseudoelastic
behavior to begin phase transformation so that the system behaves as if it were linear
elastic with a stiffness equal to that of the austenite phase. This system was solved
using the Newmark integration method, as shown above, and these results are shown
along with the analytical solution for this linearized system. Comparison is shown in
Figure 16 for a system having m = lkg, Ko = 40N/m, N, = N, =1, a = 1, and
a forcing frequency equal to one and a half times the natural frequency, which for
this system is 45 Hz. Figure 17 shows the transmissibility of this linear spring-mass
system for a range of frequencies, calculated using the above mentioned Newmark
method, as well as the analytical expression for transmissibility (see Equation 5.3).
From both Figure 16 and Figure 17, it can be scen that the Newmark method agrees

well with the analytical solutions for the given linear system.
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D. Investigation into the System Response of the Prototype SMA Based Isolation

Device

After development of the experiment and of the numerical simulation, an investigation
was started to determine the system response of the experimental system. An initial
numerical investigation was completed to determinc the effect of the SMA springs
operating in opposition to each other. The behavior predicted was then verified by

quasi-static mechanical testing of the prototype device.

1. Numerical Prediction of System Response

In order to investigate the system response, a simple simulation based on the previ-
ously discussed simplified model for pseudoelasticity was performed. In this simula-
tion, two springs were modelled as they would operate in the prototype as shown in
Figure 10. Figure 18 shows the response of the individual springs after being pre-
compressed to 2 mm and subjected to a £ 1 mm displacement. As shown in the
figure, the upper spring first begins to unload as the lower spring begins to load, just
as the system was designed, As the direction of the displacement changes, the upper
spring begins to load as the lower spring unloads. Since the material is non-linear and
hysteretic, the changes in the force are not equal for cqual changes in displacement.
This results in the hysteretic system rcsponse shown in Figure 18

Further study was undertaken to determine the effect of changes in the pre-
compression and amplitude of motion on the system response. These results are
presented in Figures 19 and 20. As shown in Figure 19, changing the pre-compression
level can have dramatic changes in the systcm response and it appears that values
of between 1.5 mm and 2 mm produce the best system response for this level of

displacement amplitude. It should be noted that the irregularities in the response



47

_80 s . ) . . . . . )
-3 -2.8 -26 -24 -2.2 -2 -1.8 -1.6 -1.4 -1.2 -1
-20 T T T L T T T T T
N e
Z -0t ; 1
<
o P
Q -60 b
w
80 . . . . . L . .
3 -2.8 -2.6 -24 2.2 -2 -18 -1.6 =14 -1.2 -1
50 T T T T T T T T
o ///
L_’_’ /_’//F/_);yslem [ = system response |
S0 ——— .

Dlsplacement (mm)

-0.8 =0. 6 —0.4 -D 2 0.4

O,S

08

Fig. 18. Individual Tube Spring and System Response for Pre-Compression of 30% of

Tube Diameter



43

scen for pre-compression levels of 1 mm and 2.5 mm are due to one of the springs
entering an elastic region and thus undergoing a large change in the stiffness, resulting
in large changes in the force for small changes in the displacement. Figure 20 shows
the effect of changing the amplitude of displacement for a constant pre-compression
of —2 rm. These figures show that as the displacements increase the hysteresis of the

system response increases, resulting in more energy being absorbed by the system.

2. Experimental Investigation of System Response

Following this modelling effort, several experiments were performed to determine
if the actual system response would be similar to the system response predicted
by the mumerical simulation. Figure 21 shows the force-displacement response of
the experimental system with four SMA spring tubes tested quasi-statically, and
Figure 22 shows the response for the system with six spring tubes. Both tests were
performed on the MTS cquipment described earlier. Figure 23 presents a comparison
of the experimental data presented in Figure 21 and data collected from the numerical
simulation. As shown, these two data sets are in close agreement with each other.
However, it was necessary to increase the pre-compression input into the simulation by
50% over the valuc measured during the experimentation. After carcful evaluation, it
has been determined that the most likely cause of this discrepancy is due to inaccurate
measurement of the pre-compression of the experiment or as a result of the simplified

model not being capable to represent the gradual onsct of transformation.

E. Simulation Results Based on Proposed Experiments

Based on the cxperimental design discussed in the previous chapter, an investigation

into the anticipated system performance was conducted as detailed below. The pur-
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pose of this investigation was to determine what performance might be expccted out
of this system and in what configuration the system might perform best.

Figure 24 shows the effect of varying the amplitude of basc excitation on trans-
missibility of the SMA spring-mass system. These results are shown for a mass of
1 kg, an SMA spring configuration of two upper SMA springs and two lower SMA
springs, and a pre-compression of 1 mmn for all the springs. At lower amplitude of
base excitation, the SMA spring-mass system exhibits resonance at a frequency of
approximately 66 Hz, similar to the transmissibility of a linear system which is shown
in Figure 24 by the line labelled “analytical.” This can be explained by looking at the
force-displacement diagram for one of the SMA springs, as shown in Figure 25. For an
excitation amplitude of 0.1 g, it is observed that after a few loading cycles the SMA
spring repeatedly loads and unloads along a path having a stiffness of approximately
43 K N/m, giving a combined total stiffness of approximately 172 KN/m. For a mass
of 1 kg, this equates to a natural frequency of approximately 66 H 2. As the excitation
amplitude increases, the decrease in stiffness and hysteresis of the SMA’s pseudoe-
lasticity begins to contribute to a reduction in the resonant amplitude of the system.
Figure 26 gives the force-displacement history for an excitation amplitude equal ta
2.0 g at the natural frequency. A wider hysteresis loop is observed due to increased
phase transformation, which is a result of higher excitation amplitude, and results in
a lower transmissibility (see Figure 24). Figure 27 shows the system response (dis-
placement history) for 0.1 ¢ cxcitation amplitude at resonance, and Figure 28 shows
the system response for 3.0 g excitation amplitude at resonance. These two figures
illustrate the reduction in transmissibility resulting from an increase in the loading
on the system. From these results, it can be surmised that the greatest benefit of
SMA pseudoelasticity can be gained for this system under higher loading levels and

near the resonant frequency of the system. It is also important to understand that
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in order to lower the transmissibility at resonance, the SMA springs should undergo
large amplitude displacement that will result in phase transformation. This will allow
the systemn to operate with a lowcred effective spring stiffness, due to the pseudoe-
lastic effect, and will allow the inherent hysteresis present in the SMAs to provide
energy dissipation. In other words, SMA force-displacement response should be as
close as possible to the major loop behavior discussed earlier in order to have the
most effective vibration isolation. However, it should be notcd that at frequencies
much greater than resonance where, in general, the amplitude of vibration is less, the
SMAs function more like a linear spring with no damping. At these high frequencies
the system dynamics allow for significant reductions in transmissibility, as shown in
Figure 29, since the hysteretic damping is not present to adversely affect the trans-
missibility at these conditions. This is beneficial because it allows the SMA vibration
isolation device to have off-peak transmissibility similar to a system with no damping
while near the resonant frequency the device’s hysteresis will act to reduce resonant
amplitude. The effect is that damping is available only when needed and the system

damping is not detrimental to off-peak transmissibility as seen in traditional dampers.
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CHAPTER VI

EXPERIMENTAL RESULTS
During the course of this work, several scrics of experiments were undertaken. These
included both standard mechanical tests to calibrate the simplified psendoelastic
model as mentioned earlier and vibration testing to investigate the cffect of pseu-
doelastic components on the response of a dynamic system. The mechanical tests
were conducted using the facilities of the Material Testing Laboratory in the De-
partment of Aerospace Engineering at Texas A&M University. The vibration testing
was conducted at the Air Force Research Laboratory under the supervision of Dr.

Benjamin Kyle Henderson at Kirtland Air Force Base, New Mexico.

A.  Vibration Testing of SMA Based Isolation Device

In order to determine what effect the usce of pseudoelastic SMA springs would have on
a dynamic system, the experimental system as deseribed previously was subjected to
a series of experiments on a vibration shaker table at the Air Force Research Labora-
tory. The excitation during the testing was provided by a VTS-100 electromagnetic
shaker and accompanying power amplifier controlled by a Ilewlett-Packard 35665A
Dynamic Signal Analyzer. Dynamic excitation was measured using two PCB 336C04
accelerometers, with one located on the shaker table and the other located on the
SMA spring-mass system. Constant acceleration amplitude froquency sweeps were
used as the input waveform and were controlled via a feedback loop using the ac-
celerometer on the shaker table as the input source. Output acceleration was also
measured by the signal analyzer and the ratio of the magnitude of the output to the
input accelerations was processed to create a frequency domain transfer function for

the system. The shaker configuration with the SMA spring-mass system attached is



shown in Figure 30. Figure 31 shows the experiment attached to the shaker assembly
as tested at the Air Force Research Laboratory, and Figure 32 shows the entire shaker
assembly with the experiment attached.

During the experiments, several of the parameters were varied to determine their
effect on the behavior of the system. The number of SMA compression springs, the
mass being isolated and the loading input into the system were all varied following
the test matrix presented in Table II. Also of interest was determining the effect of
changes in the pre-compression of the SMA springs on the dynamic response of the
system. Of specific interest was whether it would be possible to modify the system
response by adjusting the degree of transformation achieved in the SMA springs.
Since the amplitude of motion for this series of tests was relatively small compared
to the undeformed length of the SMA springs, the degree of transformation was most
influenced by the amount of pre-compression placed on the springs. After setting the
pre-compression, the SMA springs would operate in small minor loop hysteresis cyeles
about that point without much deviation. Naturally, had the loading amplitude been
greater, this would not necessarily be true. However, for this system it was possible
to manipulate the degree of transformation of the SMA springs by adjusting the pre-
compression. As noted in Table II, two different amounts of pre-compression were
tested, 20% and 26% reduction in length compared to the original undeformed length.
Length, when referring to pre-compression, refers to the transverse axis of the SMA
tube, not the longitudinal axis. Testing of Cases 1-8 were all performed at 20% pre-
compression levels. Cases 9 and 10 were performed at 26% pre-compression levels,
and the results of this series of tests were then compared to the corresponding results

from Cascs 1 and 6.
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31. Picture of SMA Spring-Mass Isolation Experiment Attached to Shaker Table
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Fig. 32. Picture of Shaker Assembly with Experiment Attached



Table II. Test Matrix for SMA Spring-Mass System

Case | Mass | Number | Pre-Compression Loading
Number | (kg) | of Springs | of SMA Springs (g’s)

’—47 6 [20% | 26% 1/4 | 1/2|3/4] 1
1 0.5 v v V2R EA I
2 0.8 v v v v v
3 1.0 v v ViV vilY
4 1.2 v v VIivvY
5 1.5 v v v v v |
6 0.5 v v VvV
7 0.8 v ' v Y v | v
8 1.0 v v v | v v | v
9 0.5 v v v
10 0.5 v v v v

67
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B. Results From Vibration Testing of SMA Based Isclation Device

Results from this series of experiments are shown in Figures 33-40. Figures 33-37
show the results for two pair of SMA springs, or four total, and Figures 38-40 show

the results for three pair of SMA springs, or six total.

1. Effect of Changes in Loading on System Response

For Figures 33, 34, 35, 36 and 37, where four SMA springs were used, the mass is
increased for each successive figure. It should be noted that between testing for Case
2 (Figure 34) and Case 3 (Figure 35), the experiment was reassembled and as a result
the same level of pre-compression was not achieved for all of the cases where four SMA
springs were used. This is evident by comparing Figure 34 and Figure 35, where the
increase in mass should result in a decrease in resonant frequency and does not.
However, if Cases 1 and 2 and Cases 3, 4, and 5 are taken as individual series of tests,
then an increase in mass results in a lower resonance frequency, as expected from a
simplified linear analysis. Also shown by these experiments is, for a constant mass, an
additional decrease in resonant frequency as the loading on the system increases. This
reduction in frequency can be as much as 25% (Figure 37) but is usually in the range
of 5%-10% (Figures 35 and 36). Accompanying the reduction in resonant frequency,
there is also a consistent reduction in the magnitude of the resonant peak on the order
of 30% (Figures 35, 36 and 37). These reductions can be attributed to the non-lincar,
hysteretic behavior of the SMA springs and would not be seen in a similar linear
system.  The same trends as discussed above are seen in Figures 38, 39 and 40 for
the experimental system with six SMA springs. Again there is the expected decrease
in resonant frequency for increasing mass. Similar to the results from the system using

four springs, there is also a reduction in resonant frequency as the loading applied to
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the system increases. From Figures 38, 39 and 40 it can be seen that this reduction
in resonant frequency is also on the order of 5%-10%. Accompanying this reduction
in resonant frequency is a reduction in the resonant amplitude as seen before. For
Figure 40, this reduction is approximately 10%. However, for Figures 38 and 39 the

reduction in resonant amplitude is much greater, on the order of 30%—35%

2. Effect of Changes in SMA Spring Pre-Compression on System Response

Referring to Figure 8, it is evident that changes in spring displacement will result
in changes in the stiffness of the spring. However, given the non-linear, hysteretic
behavior of the pseudoelastic response of SMAs, it was unclear what effect this would
have on the response of the system. Therefore, experiments were conducted in which
the pre-compression of the SMA springs was changed while all other system parame-
ters were held constant. The results of these tests are presented in Figures 41, 42, 43
and 44. Figures 41 and 42 show the effect of higher pre-compression for a four spring
system under 1/4 g and 1/2 g loading conditions, respectively. As shown, increasing
the pre-compression results in an increase of resonant frequency by approximately
10%-12%. Figures 43 and 44 show the similar results for a six spring system under
the same loading conditions. However for this case, the increase in resonant frequency
is approximately 35%—40% for the same increase in pre-compression. As shown, the
effect of increasing the pre-compression was an increase in the system stiffness for all
cases, with a substantially larger increase seen in the six spring system as compared to
the four spring system due to the additional stiffness provided by the greater number

of springs.
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CHAPTER VII

COMPARISON OF EXPERIMENTAL RESULTS AND THEORY
In this section, theoretical predictions of the system response of the SMA-based iso-
lation system will be compared with results obtained from the experimental analysis
of the system.

A study of the experimental results and the results predicted from the material
model and simulation presented in this work indicate that there is significant agree-
ment between the two and the effect of the pre-compression is shown to drastically
effect the response of the system. Based on the results presented in the previous
chapter, the pre-compression can greatly shift the resonant frequency of the system.
This is shown in the comparison of Cases 9 and 10 and Cases 6 and 11. It is also
shown in the difference in resonant frequency for Case 2 and Case 3, albeit inadver-
tently. Inadequacies in the experimental design prevented absolute certainty as to the
amount of pre-compression. Although every effort was made to ensure the correct
amount of pre-compression had been applied to the system, it is evident that even
the slightest change in the pre-compression will alter the system response greatly.

In comparing experimental and theoretical results, it was found that a correlation
could be made if the pre-compression value given to the numerical simulation was set
equal to 2.25 mm, or roughly 37.5% of the total transverse displacement of the tube.
The amount of pre-compression for Cases 9 and 10 was also adjusted, to 2.3 mm, in
order to agree with experiment. Presented in Figures 45 through 48 are the results
of the numerical simulation for Cases 9 and 10 and Cases 2, 7, and 8, along with the
experimental results for the respective cases. For all cases, the resonant amplitude of
the experimental data is less than that for the numerical simulation. Additionally,

for every case there is a good correlation between the resonant frequency predicted
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by the simulation and the resonant frequency measured during the experiment. For
Figure 45, the effect of changes in pre-compression is seen to have dramatic effect in
both the experiment and the numerical simulation. For both the experimental data
and the simulation results, relatively small increases in the pre-compression are shown
to increase the resonant frequency greatly. This is an important result as it shows
that SMA based isolation devices lend themselves well to being developed as tuneable
isolation devices capable of providing isolation for various conditions and loads.

At frequencies much greater than the resonant frequency, the modelled and ex-
perimentally obtained values for transmissibility agree very well. From simulation in
this region, it seems that the SMA springs are functioning linearly, that is without
transformation. This should prove beneficial as it would prevent the inherent damp-
ing present during transformation from degrading the performance of the isolator.
Finally, the same trends of decreasing resonant amplitude for increasing loading are
seen in both the simulation data and the experimental data. Since simulation of
this region indicates that the reduction in amplitude is due to larger deformations of
the SMA springs which results in more energy being absorbed by the isolation device.
Combined with the observations of nearly linear behavior at frequencies much greater
than the resonant frequency, this observation is very important because it indicates
that the SMA isolation device will be capable of providing sufficient damping at res-
onance where high damping is beneficial and will provide minimal damping at higher

frequencies where damping degrades isolation performance.
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CHAPTER VIII

DISCUSSION OF RESULTS AND FUTURE WORK
This chapter will discuss several of the issues that have arisen as a result of this work
and will provide directions for future work in this area. Additionally, suggestions
on how to improve the correlation of these results, through modification of both the

experiment and theory, will be presented where appropriate.

A. Comments on the Differences Observed Between Experimental Results and Ex-

pected Performance

It is evident that the amount of pre-compression imposed on the SMA springs has a
large and direct effect on the system response. It is also evident that the design of
the experiment used in this work allows for poor accuracy and a lack of repeatability
with respect to specifying the pre-compression. After comparing the experimental
results with the results from the numerical simulation, it is believed that much better
agreement between the two could be obtained if the pre-compression in the springs was
known precisely and either specified exactly for the experiment, or at the very least,
accurately measured during experimentation for use in the simulation. Additionally,
a redesign of the experiment would ensure that there would be no possible contact
between any of the moving parts, thereby ensuring that the SMA spring response is
being measured correctly. Based on these reasons, it is felt that a redesign of the
experiment would provide the best results.

Possible alternatives to the current design include a design where the springs work
in tension and compression, thus eliminating the whole necessity of pre-compression.
In this case, the mass being isolated would provide the force to transition the SMA

material into the pseudoelastic region where the input vibration would cause oscil-
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lations about the static displacement point. Another option is to develop a new
configuration entirely, eliminating the tubes from the experiment and replacing them
with a different type of spring device such as a helical spring or leaf spring made from
SMA material.

With regards to the model, there are a few areas that can be addressed in an
effort to improve agreement with experimental results. The numerical formulation is
idealized and does not take into account any friction between the different parts of
the experiment. This area may be addressed rather easily and could provide imme-
diate benefit. The addition of any friction elements would also allow for numerical

investigation into the effects of additional damping in the system.

B. Future Work

While this investigation has provided a solid foundation with which to investigate the
application of pseudoelastic SMA for use as vibration isolators, much work has yet to
be done. The chief among these is a furthering of the experimental work presented
here. A comprehensive investigation into different spring designs and into which
designs provide the most efficient implementation of the damping available in the
SMA pseudoelastic effect would contribute greatly to the understanding of the impact
of SMA based components on dynamic systems. Additionally, an investigation into
the performance of various shape memory alloys and the effect of varying compositions
should be undertaken.

In the area of computational prediction of system response, there are several
items that can also be addressed. Accounting for the non-isothermal nature of the
SMA phase transition might result in more accurate modelling of the system, even

though no change in temperature was detected during cither the quasi-static or dy-
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namic testing presented in this work. While a change in temperature is often asso-
ciated with rapid stress induced phase transition in SMAs, the lack of temperature
change noted in this work is attributed to the large amount of highly conductive sur-
face area in contact with other conductive surfaces in the experiment and the limited
amount of material undergoing complete transformation due to the tubular shape of
the SMA spring devices.

A redesign of the experiment should be implemented to address the following
areas, SMA tube spring failure and better exploitation of the SMA pseudoelastic
response. Several of the SMA tube springs experienced structural failure during
testing attributed to stress concentrations resulting from the geometric boundary
conditions on the tubes that were further exacerbated by inconsistencies or flaws in
the material. A full finite element analysis of the experiment would help to redesign
the current experiment to avoid these issues. Additionally, various other SMA element
configurations should be investigated in an effort to achieve a response similar to
the one dimensional pseudoelastic behavior of SMA, such that more exploitation
of the decrease in component stiffness during pseudoelastic transformation could be
made. Furthermore, full finite element analysis of both the SMA tube spring and the
experimental setup would be able to assist in the redesign suggested earlier. This
effort should have the goal of determining if there are any dynamic modes or other
interactions present due to geometric constraints that can be avoided by simple design
changes. Finally, it may be possible to implement a solution to the dynamic system,
perhaps using a finite element solution method, that uses a more sophisticated SMA
material model to provide a more accurate dynamic response of both the SMAs and

the system.
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CHAPTER IX

CONCLUSIONS

This work has presented several achievements with regard to establishing the suit-
ability of pseudoelastic SMAs as vibration isolation devices. The development of a
simplified material model for the predication of the non-linear, hysteretic behavior
associated with SMAs has been developed and presented in terms of modelling the
force-displacement relationship of a pseudoelastic SMA spring. Additionally, this
material model has been integrated with the numerical solution of a dynamic sys-
tem where it provides the non-linear, hysteretic and history dependent response of
the SMA springs used to provide the restoring force to an SMA based spring mass
system. This connection provides the basis for a flexible software tool that can be
used to model SMA based isolation systems of various configurations under diverse
loading conditions. This software has been utilized to study the theoretical behavior
of an SMA based vibration isolation device.

In addition to the theoretical work summarized here, an experimental effort has
been undertaken to expand the understanding and knowledge of a dynamic system
based on SMAs. This effort included the design and testing of a prototype of an SMA
based isolation device using tubular shaped SMA isolators. Numercus quasi-static
tests were used to characterize the SMA tubes used as springs and to explore the
response of the entire isolation system. Results of this testing, and the associated
modelling, have shown that large amplitude deflections are necessary in order for
the SMA isolators to exhibit the non-linear, hysteretic behavior which inherent in
SMA pseudoelasticity. Vibration testing of this device has provided insight into the
behavior of SMAs under dynamic loading. Reductions in resonant amplitude and fre-

quency were noted as the loading amplitude increased and this behavior is attributed
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to the pseudoelastic behavior of the SMAs. These larger amplitudes of displacement
at higher loading levels allow for larger minor loop pseudoelastic transformation of
the isolators which results in an increase in the encrgy dissipated by the isolation
device. Additionally, it has been shown that at frequencies much greater than the
resonant, frequency, the hysteretic behavior is less pronounced due to lower displace-
ment amplitudes. This allows the system to have much lower transmissibility since
the damping is not present.

Correlation between the numerical simulation and the experiments has also been
made and while there were differences between the experimental results and the the-
oretical results, sufficient correlation was made to validate both the numerical sim-
ulation and the premise of using SMAs as vibration isolation devices. Additionally,
much insight has been gained into how to model the effect of SMA pseudoelasticity
on dynamic systems and how best to experimentally verify these effects.

While this study has by no means finished the investigation of the applicability
of SMAs to vibration isolation, it has provided a strong foundation for this work
to progress. Through this work, experimental experience has been developed with
relation to the implementation of SMAs in dynamic systems, Additionally, tools
have been developed to aid in the theoretical modelling of a variety of applications
involving SMAs. Finally, direction has been provided for future work, specifically in
the areas of improving the experimental setup and numerical simulation. As shown
in this work, SMAs have the potential to be successfully applied to the many different

areas of vibration isolation.
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APPENDIX A

MECHANICAL DRAWINGS FOR SMA VIBRATION ISOLATION PROTOTYPE

The following pages contain the mechanical drawings used in the manufacturing of

the prototype SMA based vibration isolation device as described earlier in this work.



Fig. 49. Drawing for Experiment Base
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Fig. 50. Drawing for Experiment Side Support



Fig. 51. Drawing for Experiment Excitation Plate
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Fig. 52

Drawing for Experiment Mass
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The following pages contain the MATLAB code for the simplified material model

discussed in Chapter IIT and the numerical simulation discussed in Chapter V, which

together allow for the simulation of dynamic systems with integral SMA components.

Simplified Material Model Code

The following code is the implementation of the simplified material model for SMA

pseudoelasticity as discussed in Chapter 111

function [force, ts, h_datal = ...
smasimtube(value, rate, tslast, m_data, h_data)

%
%
%
%

%

3
3
%
3

Simple SMA model for tubes (compression only)
displacement mode, revision 1

5 Feb 2001

JJ Mayes

takes in strain and outputs stress

using linear relationship between transformation strain
and strain

using linear relationship between stress and strain
calculates stiffness using above relationships

Works for major and minor loops
Inputs

value: current value of strain
rate: current rate of strain
tslast: last value of transformation strain

m_data(l): first elastic stiffness

m_data(2): second elastic stiffness

m_data(3): maximum of transformation strain

m_data(4): displacement at forward transformation start
m_data(5): displacement at forward transformation finish
m_data(6): displacement at reverse transformation start
m_data(7): displacement at reverse transformation finish



%
%
A
%
%

%
%
%
%
%
%

%
%
%
%
%
%

%
%

%
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m_data(8): force at forward transformation start
m_data(9): force at forward transformation finish
m_data(10): force at reverse transformation start
m_data(11): force at reverse transformation finish
m_data(12): 1/m_data(3)

h_data(1): previous minimum value of transformation strain
h_data(2): previous maximum value of transformation strain
h_data(3): previous minimum value of displacement
h_data(4): previous maximum value of displacement
h_data(5): previous minimum value of force

h_data(6): previous maximum value of force

Outputs

out: the output value of force

ts: the current value of transformation strain
calculate the transition points for stress and strain
based on previous cycle’s maximum and minimum values
transition points 1 and 3 are the only ones that change

if transformation strain is not O or max then the points
need to be changed

etpl=m_data(4)+h_data(1)*m_data(12)*(m_data(5)-m_data(4)); ¥Ms

_data(8)+h_data(1)*m_data(12)*(m_data(9)-m_data(8));
_data(7)+h_data(2)*m_data(12)*(m_data(6)-m_data(7)); %As
_data(11)+h_data(2)*m_data(12)*(m_data(10)-m_data(11));

calculate transformation strain, stress and slope

if (value*rate)>=0 % for loading

if abs(value)<=etpl
ts=tslast;
force = sign(value)*(h_data(5)+(abs(value)-h_data(3))*...
m_data(l)*m_data(2)/(h_data(1)*m_data(i2)*...
(m_data(1l)-m_data(2))+m_data(2)));
elseif abs(value)>etpl & abs(value)<=m_data(5)
ts=m_data(3) *(abs(value)-n_data(4))/(m_data(5)-m_data(4));
if ts<h_data(1)
ts=h_data(1);
end
force=sign(value)*(m_data(8)+(n_data(9)-m_data(8))*...
(ts/m_data(3)));
elseif abs(value)>m_data(5)
ts = m_data(3);
force=sign(value)*(n_data(9)+(abs(value)-m_data(5))+*n_data(2));
else
error(’Out of range Value, SMA subroutine: Forward Transformation’)
end
h_data(6)=abs(force);
h_data(4)=abs(value);
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h_data(2)=ts;
end

if (value*rate)<0
% for unloading
if abs(value)>=etp3
ts = tslast;
force=sign(value)*(h_data(6)+(abs(value)-h_data(4))*...
m_data(1)*m_data(2)/(h_data(2)*m_data(12)*...
(m_data(1)-m_data(2))+m_data(2)));
elseif abs(value)<etp3 & abs(value)>=m_data(7)
ts=m_data(3)*(abs(value)-n_data(7))/(n_data(6)-m_data(7));
if ts>h_data(2)
ts=h_data(2);
end
force=sign(value)*(m_data(11)+(m_data(10)-m_data(11)}*...
(ts/m_data(3)));
elseif abs(value)<m_data(7)

ts = 0;

force=value*m_data(1l);

else

error(’Out of range Value, SMA subroutine: Reverse Transformation’)
end

h_data(5)=abs(force);

h_data(3)=abs(value);

h_data(1)=ts;

end

if (value>=0)
force=0;

end

return
Numerical Simulation Code
The following codes are components of the implementation of the numerical simula-
tion as discussed in Chapter V.
Main Program
The following code is the main program and calls the system model to obtain a time

history of the behavior of the dynamic system for an individual loading level and

frequency. Tt then takes this data and calculates the transmissibility for the given
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conditions and saves the time history and transmissibility data in the files specified.

% Main Program for Vibration Isclation Simulation
% Calls system model for specified mass, tube count,
% g loading and frequency values specified below

mass_values
tube_values
gload_values = [.1];

freq_values = [50:10:200];

for i = 1:length(mass_values)
for j = 1:length(tube_values)

= 1:length(gload_values)
for 1 = 1:length(freq_values)

data = model(mass_values(i),tube_values(j),...
gload_values(k),freq_values(l));

filename = strcat(’data\m’,...
num2str(mass_values(i)),’t’,...
num2str(tube_values(j)),...

‘g’ ,num2str(k),’f’,...
nun2str(freq_values(1)));

save(filename, ’data’);

n =length(data);

trans(l) = (norm(data(:,2))/sqrt(n)) / ...
(norm(data(:,5))/sqrt(n));

clear data filename

end
filename = strcat(’data\trans_m’,...
num2str(mass_values(i)),’t’, ...
num2str (tube_values(j)),...
g’ ,num2str(k));

m = mass_values(i);
t = tube_values(j);
g = gload_values(k);

f = freq_values;
save(filename,’m’,’t’,"'g’,”£’, "trans’);

clear trans filename m t f
fprintf(’finished with mass %g, tube %g’,...
’ and gload %g\n’,mass_values(i),...
tube_values(j),gload_values(k))
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end
end
end

System Model

The following code is the system model and is called by the main program for a given
frequency and amplitude. This code calls the Newmark integration subroutine for
cach time step to determine the dynamic response as a function of time.

function data=model (mass,tubecount,gload,freq)

% Model for isolator with tubes using smasimtube
% John Mayes

% 4 May 2001

YA AN NN A AN A A
% Data Input Section
Attt e AL AL AL L%

oo ot oo ot e e e
% Simulation Data
Yadotodotodotodotolotofodotsdotstolofatotessdodedodede s
% Enter the maximum time of the simulation (sec):
Time= 1; % seconds
% stability and accuracy parameters for newmark scheme
alpha = 1/2;
gamma = 1/2;
errorfactor = le-8;
% time step
tau = 1e-3; Yseconds

Tt et et A TS AL S LA LA LY,
% Forcing Function Data
YANNAN NN NS NSNS NN S YA YA
biasload = 0; % g
vibrationload = gload; g
%freq = 50; % Hz
% Enter the maximum applied displacement:
ymax= (12%32.2xvibrationload)/((freq¥2+pi)~*2); % inches
% enter 1 to initialize for gravity and O for no initialization
init_for_g =

kA
% Physical Parameters
Yotodotototototadstotototototodododedototetetododedhhi e

% Enter number of tubes in each direction:



number_top = tubecount;

number_bot = tubecount;
Dia_zero = 0.236;% inches, undeformed diameter of tubes
Disp_initial = -0.08;

% Enter the mass of the payload

Ymass=1; % lbf

hshihntotodototohholododotsbolototatstolofototefs

% SMA Tube Data

fodototototstotoda Iotstodoto foto ot bodotodototo o doto s

% Material data presented here is for use with SMASIMTUBE.M
% Enter the initial temperature in degK:
T = 100;

% Properties:
Y, ;% (slope in S-T space)

#MA=222;% First elastic stiffness
#MM=870;% Second elastic stiffness
%Tnoload=[84 90 91 97.5]; ¥ [Mof, Mos, Aos, Aofl
.115;% max uniaxial transformation strain

Tnoload=[84 91 90 97.5];
T=10000;
etmax=0.00010;

ot o T o o e o e e e et ettt I AL LIS Dk
% Initialize data for integration and material properties
tolototototototolodofotnto Frdotototatototototatodotodototeinteteds tbotitetahotototatatotodetolotslsotele
%fprintf(’initializing constants, etc.\n’);

% set up values for system and

% initial values of response and Material Parameters.
% simulation data is data needed by integration subroutine
simulation_data = [freq ymax number_top number_bot mass...
alpha gamma errorfactor T biasload Disp_initial Disp_initiall;
% consists of:
% [frequency of excitationm, amplitude of excitation,
% number of tubes for temsion, number of tubes for compression,
% alpha constant, gamma comstant, errorfactor constant
% ambient temperaturel

% set up values of position values and material parameters

110



%

for initial time step t=0

data(1,1:23) = 0;

t

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

=0;

data for time steps will be stored in the following

arrays with the following format:

{time position velocity acceleration y_displacement ...
displacementl forcel transformation_strainl ...
minimum_transformation_strainl ...
maximum_transformation_strainil minimum_total_displacementl...
maximum_total_displacementl minimum_forcel

111

maximum_forcel displacement2 force2 transformation_strain2 ...

minimum_transformation_strain2
maximum_transformation_strain2 minimum_total displacement2...
maximum_total_displacement2 minimum_force2 maximum_force2]

time = data(:,1)

position of mass = data(:,2)
velocity of mass = data(:,3)
acceleration of mass = data(:,4)
position of base = data(:,5)

o
% displacement of tube_top = data(:,6)

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

value of force_top = data(:,7)
transformation strain_top = data(:,8)
minimum previous transformation strain_top = data(:,9)

maximum previous transformation strain_top = data(:,10)
minimum previous total displacement_top = data(:,11)
maximum previous total displacement_top = data(:,12)

minimum previous total force_top = data(:,13)
maximum previous total force_top = data(:,14)

displacement of tube2 = data(:,15)

value of force2 = data(:,16)

transformation strain2 = data(:,17)

minimum previous transformation strain2 = data(:,18)
maximum previous transformation strain2 = data(:,19)
minimum previous total displacement2 = data(:,20)
maximum previocus total displacement2 = data(:,21)
minimum previous total force2 = data(:,22)

maximum previous total forcel = data(:,23)

straintp = [(C#(T-Tnoload(2)))/MA (C*(T-Tnoload(1)))/MM+etmax ...
(C*+(T-Tnoload(3))) /MM+etmax (C*(T-Tnoload(4)))/MAl;
stresstp = [C*(T-Tnoload(2)) C*(T-Tnoload(1)) Cx(T-Tnoload(3))

C# (T

Tnoload(4))}];

m_data = {MA MM etmax straintp stresstp 1/etmax];
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% Initialize tube data based on undeformed length and intial length

maxcount=100;
for i=l:maxcount

strain0(i)= 0+(i-1)*Disp_initial/(maxcount-1);
end

for i=2:length(strain0)
dstrain(i)=strain0(i)-strain0(i-1);

end

h_data = [0 0 0 0 0 0];

tstrainlast=0;

for i=1:(length(strain0))
[sigsim(i), tstrain(i), h_datal = smasimtube(strain0(i),
dstrain(i), tstrainlast, m_data, h_data);
tstrainlast=tstrain(i);

end

data(l,6)=Disp_initial;
data(l,7)=sigsim(end);
data(1,8)=tstrain(end);
data(1,9:14)=h_data;
data(1,15:23)=data(1,6:14);

% initialize tubes based on mass to be isolated (account for gravity)
if init_for_g ==

sum_force = number_top*data(l,7)-number_bot*data(l,16);

init_data_top=data(1,6:14);
init_data_bot=data(1,15:23);

delta = -0.00001;
init_x = 0;

while (biasload*mass >= -sum_force)
init_data_top(1)=init_data_top(1)+delta;
init_data_bot(1)=init_data_bot(1)-delta;
[init_data_top(2), init_data_top(3), init_data_top(4:9)] = ...
smasimtube(init_data_top(1), delta,...
init_data_top(3), m_data, init_data_top(4:9));

[init_data_bot(2), init_data_bot(3), init_data_bot(4:9)] = ...
smasimtube(init_data_bot(1), -delta,...
init_data_bot(3), m_data, init_data_bot(4:9));
init_x=init_x+delta;
sum_force = number_top*init_data_top(2)-...
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number_bot*init_data_bot(2);
end

data(1,6:14) = init_data_top;
data(1,15:23) = init_data_bot;
data(1,2) = init_x;

simulation_data(11) = Disp_initial+init_x;
simulation_data(12) = Disp_initial-init_x;
end

Io/c/a/-lo/./n/././.In/././-AI.:/.In/.AIuAI././n/-/n/-I.

Begin Integration Routine
'/////////////////////////////.
%fprintf(’beginning integration\n’);

while t < Time

tau2=tau;

[dataout, convergeflag)] = nmstep_simple(t+tau2,.
tau2, simulation_data, data, m_data);

t=t+tau2;

data(end+1,:) = dataout;

end

return;

Newmark Integration Routine

The following code is the Newmark integration subroutine and is called by the sys-
tem model. This code calls the simplified SMA pseudoelasticity model, described in
Chapter 111, in order to determine the force displacement response of the SMAs at the
given timestep. This information is then used in the calculation of the mass position
and returned to the system model.

function [dataout, convergeflag] = nmstep_simple(t,...
tau, data_s, data_h, m_data);
% Newmark integration subroutine for simple model
% with variable time step
% data_s = [freq ymax number_tension number_compres mass alpha...
% gamma errorfactor temperature biasload disp_initial];
% data_h = [time position velocity acceleration y_displacement...



% displacementl forcel transformation_straini ...
% minimum_transformation_strainl
% maximum_transformation_strainil minimum_total_displacementl.. .
% maximum_total_displacementl minimum_forcel maximum_forcel...
% displacement2 force2 transformation_strain2 ..
% minimum_transformation_strain2
% maximum_transformation_strain2 minimum_total_displacement2...
% maximum_total_displacement2 minimum_force2 maximum_force2] ;
% m_data = material properties defined in input section
% dataout = current timestep data
% convergeflag = tells main program if integration converged
% retrieve simulation data from passing array

frequency = data_s(1);

amplitude = data_s(2);

num_top = data_s(3);

num_bot = data_s(4);

mass = data_s(5);

alpha = data_s(6);

gamma = data_s(7);

errorfactor = data_s(8);

temperature = data_s(9);

bias = data_s(10);

dispO_top = data_s(11);

dispO_bot = data_s(12);

% constants
%geonst = 32.2; % £t/s72; accel of gravity

% retrieve time history of material
x = data_h(end,2);
xp = data_h(end,3);
xpp = data_h(end,4);

tube_top = data_h(end,9:14);
tube_bot = data_h(end,18:23);
tslast_top = data_h(end,8);

tslast_bot = data_h(end,17);

displast_top = data_h(end,6); %(x-y)
displast_bot = data_h(end,15); %(x-y)

% create newmark weighting factors
al = alphaxtau;

a2 = (1-alpha)*tau;

a3 = 2/(gammaxtaurtau);
ad = 2/(gamma¥tau);

a5 = 1/gamma-1;
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err = 1;

xold = x;

tmpl = a3;

tmp2 = (a3*x+ad*xp+ab*xpp);
tmp3 = xp+al2+*xpp;

It R LS h LA LSS LA LLALLALLAL
% Begin Integration Routine
N R A R S SRR R ]
i=0;
convergeflag = 1;
while (err > abs(xold*errorfactor))
i=i+1;

if i>20
convergeflag = 0;
dataout = [];

return

end

¥y = amplitude*sin(frequency*t*2+pi); Y%original forcing function

%displ = dispO+x-y; %tube 1 displacement
%disp2 = dispO+y-x; %tube 2 displacement

disp_top = disp0O_top-x+y; %tube 1 displacement
disp_bot = dispO_bot-y+x; %tube 2 displacement

[F_top, tsc_top, tube_top_c] = smasimtube(disp_top,...
disp_top-displast_top, tslast_top, m_data, tube_top);
[F_bot, tsc_bot, tube_bot_c] = smasimtube(disp_bot,...
disp_bot-displast_bot, tslast_bot, m_data, tube_bot);

mass;
0;

]

A=

F = num_top*F_top-num_bot#F_bot-mass¥bias;
Khat = K + Mxtmpl;

Fhat = F + Mitmp2;

xold=x;

x = Fhat/Khat;

err = abs(x-xold);
end
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Xpp = a3*x - tmp2;

Xp = tmp3 + al*xpp;

dataout = [t x xp xpp y disp_top F_top tsc_top tube_top_c...
disp_bot F_bot tsc_bot tube_bot_cl;

return;

Plotting Routine

The following code allows the user to plot the various data gathered in the previous
sections in an automated manner if the user does not wish to do so manually.

% Program to graph the data gathered running the
g grap &
% vibration isolation simulatiom.

mass_values = [1.2];
tube_values = ;
gload_values = H
freq_values = [50:10:200];

transdata = zeros{(length(freq_values),length(gload_values),...
length(tube_values),length(mass_values));
for i = 1:length(mass_values)
for j = 1:length(tube_values)
for k = l:length(gload_values)
filename = strcat(’data\trans_m’,..
num2str(mass_values(i)),’t’,...
num2str (tube_values(j)),...
‘g’ ,num2str(k));
load(filename)

transdata(:,k,j,i) = trans;
clear m t g f trans filename
end
end
end

clear i,j,k

% plot trans vs f for given m and t

for i
for j

1:length(mass_values)
1:1length(tube_values)
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figure
plot(freq_values,transdata(:,1,j,1),
freq_values,transdata(:,2,j,1),
freq_values,transdata(:,3,j,1),
freq_values,transdata(:,4,j,1))
xlabel(’frequency’)
ylabel(’transmittance’)
titstr = ...
strcat("effect of change in loading for mass = ’,...
num2str(mass_values(i)),’kg and tubes = ’,
pum2str (tube_ values(_])))
title(titstr);

end
end

% plot trans vs f for given m and gload)

for i = 1:length(mass_values)
for j = 1:length(gload_values)
figure

plot(freq_values,transdata(:,j,1,i),freq_values,...

transdata(:,j,2, 1) freq_values, transdata( ,3,3,1))

xlabel(’frequency’ 5

ylabel(’transmittance’)

titstr = ..

strcat(’ effect of change in tube count for mass = ’,...
num2str(mass_values(i)),’kg and gload = ’,..
num2str(gload_ values(J)))

title(titstr);

end
end

% plot trans vs f for given tube and gload)

for i = 1:length(tube_values)
for j = 1:length{gload_values)
figure

plot(freq_values,transdata(:,j,i,1),freq_values,...
transdata(:,j,i,2),freq_values,transdata(:,j,1,3))
xlabel(’frequency’)
ylabel(’transmittance’)
titstr = ...
strcat(’effect of change in mass for tube count = ’,...
num2str (tube_values(i)),’ and gload = ’,..
num2str (gload_ values(J)))
title(titstr);



end

end
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