
PARALLEL DETECTION AND ELIMINATION OF STRONGLY CONNECTED

COMPONENTS FOR RADIATION TRANSPORT SWEEPS

A Thesis

by

WILLIAM CLARENCE MCLENDON III

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2001

Major Subject: Computer Science

PARALLEL DETECTION AND ELIMINATION OF STRONGLY CONNECTED

COMPONENTS FOR RADIATION TRANSPORT SWEEPS

A Thesis

by

WILLIAM C. MCLENDON III

Submitted to Texas ASSAM University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

g/

awrence uchwerger
(Chair of Committee)

ancy Amato
(Member)

Marvin Adams
(Member)

Steve Plimpton
(Member)

Jennifer Welch
(Head of Department)

December 2001

Major Subject: Computer Science

ABSTRACT

Parallel Detection and Elimination of Strongly Connected Components for

Radiation Transport Sweeps (December 2001)

William Clarence McLendon III, B. S. , Texas ARM University

Chair of Advisory Committee Dr Lawrence Rauchwerger

Discrete ordinate methods are commonly used to simulate radiation transport

for fire or weapons modeling. The computation proceeds by sweeping the flux across

a grid. A particular cell can not be computed until all the cells immediately upwind

of it are finished. If the directed dependence graph for the grid cells contains a cycle,

then sweeping methods will deadlock. This can happen in unstructured giids and

time-stepped problems where the grid is allowed to deform. We describe a parallel

algorithm to detect and break these cycles present in the directed dependence graphs

of these grids as well as an implementation and experimental results on shared and

distributed memory machines.

ACKNOWLEDGMENTS

I would like to thank my adviser, Lawrence Rauchwerger for the critical help he

has provided during the duration of my master's work. I also thank Nancy Amato,

Marvin Adams, and the rest of the ASCI group at Texas ASM for useful discussions

regarding this work. Also, I wish to thank Bruce Hendrickson, Steve Plimpton, and

Kent Budge at Sandia National Laboratories; without their guidance this work would

not have been accomplished.

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION .

A. Previous Work
B. Outline of Thesis

II THE MODIFIED DCSC ALGORITHM . .

A. Detecting Strongly-Connected Components

B. Eliminating SCCs with ModifiedDCSC

III IMPLEMENTATION

A. Constructing the Directed Dependence Graph
B. Searching Over Many Ordinate Angles Simultaneously

C. Taking Advantage of Paired Ordinates and Load Balancing
D. Storing the DDG

IV EXPERIMENTAL RESULTS

A. Effectiveness of trim() in Elimination of Work

B. Varied Geometries

C. Progressively Deformed Meshes

D. Edge Breaking to Remove SCCs

V CONCLUSION

6
14

17

17
20

20

21

23
26

30
34

REFERENCES

VITA

LIST OF TABLES

TABLE Page

I Characteristics of meshes used in varied mesh experiments. 27

II Execution times for varied meshes on ASCI Red. 27

III Speedups for varied meshes on ASCI Red. 27

IV Mesh characteristics as a function of deformation. 31

V Execution times for deformed meshes on ASCI Red. .

VI Speedups for deformed meshes on ASCI Red. 31

LIST OF FIGURES

FIGURE Page

1 Graph creation from meshes.

2 Algorithm ModifiedDCSC. . .

3 Algorithm trim() in parallel. .

4 Algorithm mark() in parallel.

5 ModifiedDCSC applied to an example graph.

6 Algorithm ModifiedDCSC J3reakSCC.

7 Constructing the DDG from an input mesh.

8 DDG construction from a mesh.

18

19

9 Impact of trim() on a mesh with many SCCs.

10 Impact of trim() on a mesh with few SCCs.

11 Scalability of ModifiedDCSC on HP-V2200 for various meshes. .

12 Scalability of ModifiedDCSC on ASCI Red for various meshes. .

25

25

28

29

13 Scalability of ModifiedDCSC on HP-V2200 for deformed meshes. . . 32

14 Scalability of ModifiedDCSC on ASCI Red for deformed meshes. . . 33

CHAPTER I

INTRODUCTION

Detailed multi-physics simulations are computationally expensive problems and

thus require enormous computational resources, if they are to be executed in practi-

cal time. Such large computational platforms usually consist of distributed parallel

systems which have to execute the codes in fully parallel mode to ensure scalable

performance. In this thesis we will consider a prototypical radiation transport solver

used in an ASCI multi-physics code, such as SnRad [11] from Sandia National Lab-

oratories In this module the transport equations are solved using a sweep method

Sweep methods used in radiation transport discritize the radiation field by angle, and

flux propagation is computed for a set of discrete directions or ordinates. The com-

putation for each angle is performed by sweeping the flux across a grid, i. e. , a finite

element mesh commonly used for fluids or shock hydrodynamics inodeling. Radiation

enters a mesh cell via faces whose outward normals point upwind, and exits through

downwind faces. This implies an order of computation on the grid cells which, for a

single ordinate direction, is represented as a directed dependence graph. Two exam-

ple meshes arid their associated dependence graphs for a particular angle are shown

in Fig. 1.

Each of the (typically several hundred) ordinate directions induces an associated

dependence graph. Sweeping methods will deadlock if any of the dependence graphs

contains a cycle [11], such as the one in the dependence graph for the twisted mesh

shown in figure I-B. Such situations occur frequently in 3-D unstructured grids and

This thesis follows the style and format of the IEEE/ACM Transactions on Net-
Ql 0 cking.

in multi-physics problems where the underlying "object" that was meshed deforms

over time.

To avoid deadlock, cycles in the set of ordinate dependence graphs must be

detected and broken before the sweep can be performed. For example, key edges

from these cycles can be removed eliminating the cycles and the transport sweep

could use data from a previous iteration. This would allow a sweep to execute to

completion without a deadlock. Since the mesh elements (vertices of the dependence

graph) are distributed across processors, we require a scalable parallel algorithm for

cycle detection.

The number of cycles can be exponential in the number of vertices but the number

of strongly connected components (SCCs) is at most linear in the number of vertices

since a vertex is in at most one SCC. Therefore we are interested in finding all SCCs

of a directed graph. A strongly connected component of a directed graph, G = (V, E),
is defined ss a maximal set of vertices, U L: V, such that for every pair of vertices u

and ti in U, we have both u ~ ti and v ~ u [4], where u ~ v means a directed path

exists from u to ti.

I 2 4

5
4

8 9 10
ll

12
7 8 9 10

13
IS

14
16

19

ISO

IS 17
18

(A)

Fig. 1. Graph creation from meshes. (A) An unstructured finite-element mesh (left)
and its associated acyclic dependence graph for the angle shown (right).
(B) A twisted ring of mesh elements that induces a cycle for the shown angle (left), and its
dependence graph for the angle shown (right). A sweeping method will deadlock when it
encounters a cycle such as this.

A. Previous Work

Tarjan's classic serial algorithm for detection of SCCs runs linearly with respect to

the number of edges and uses depth-first search [13]. However, depth-first search is

known to be difficult to parallelize. The special case of lexicographic depth first search

is P-Complete [9; 12], which in practical terms means it is unlikely that a scalable

parallel algorithm exists.

There are some parallel algorithms for detecting SCCs that do not rely on depth

first search. Gazit and Miller have an NC algorithm which can be used for locating

SCCs that uses matrix multiplication [6]. Vishkin and Cole [3] and Amato [1] have

proposed optimizations or extensions of this algorithm, but they still require O(n)

processors and O(log n) time where n is the number of vertices in the graph. An NC

algorithm developed by Kao for planar graphs was developed requiring O(log u) time

and n/logn processors [8]. Another efficient parallel algorithm for planar graphs is

due to David Bader [2]. However our graphs arise from 3D finite element meshes

and are non-planar. There are also some parallel algorithms for related problems in

directed graphs [7; 10], but they are not well suited for our application either due to

their complexity or because they do not directly compute SCCs.

B. Outline of Thesis

This thesis is organized as follows. In Chapter II we present the ModifiedDCSC

algorithm for finding strongly-connected components. We also present a modification

that allows the elimination of them via edge breaking. In Chapter III we describe

our implementation of ModifiedDCSC to detect and eliminate SCCs for radiation

transport sweeps on 3D unstructured meshes. We present optimizations made to the

code specific to the radiation transport problem. Experimental results are presented

in Chapter IV for various tests performed. Finally, conclusions are presented in

Chapter V.

CHAPTERII

THE MODIFIED DCSC ALGORITHM

A. Detecting Strongly-Connected Components

The Divide-and-Conquer Strong Components (DCSC) algorithm of Fleischer et al. [5]

is a divide — and — conquer approach for finding strongly connected components in a di-

rected graph without using depth-first search. The main idea of DCSC is to recursively

partition the directed dependence graph (DDG), G = (V, E), so that all SCCs will

be entirely contained within a partition. The recursion stops when partitions contain

either single vertices or SCCs. The partitioning is based on the following Lemma [5]:

Lemma I Let G = (V, E) be a directed graph, unth v E V a vertex zn G, and let

Pred(G, v) and Succ(G, v) denote the set of predecessors and successors of v m G,

respectively. Then, the unzque SCC containing v in G, denoted SGC(G, v), if one

ezists, is Pred(G, v) ASucc(G, v). Moreover, any SCC of G zs a subset of Pred(G, v),

Succ(G, v), or Rem(G, v) = V — (Pred(G, v) USucc(G, v)).

The DCSC algorithm [5] initiates partitioning with a randomly chosen vertex

v C V, which we refer to as the pivot. The expected serial complexity of DCSC is

shown to be O([V[log [V~) when all vertices in G have constant degree. The meshes

we are interested in have a bounded number of faces and therefore have a bounded

number of edges as well, so this property holds.

The ModifiedDCSC algorithm we propose, outlined in Fig. 2, improves on the

basic algorithm by performing a filtering or trzmming step at the beginning of each

recursive step which reduces the size of the graph that must be processed. In par-

ticular, trimming performs a topological traversal of G, and all vertices visited by

this traversal are removed from G. Recall that a topological traversal begins from all

vertices with in-degree zero, visits vertices after all their ancestors have been visited.

It produces a linear ordering (a topological sort) of the vertices of G such that all

edges are directed left to right. Thus, no vertices on a cycle, or vertices reachable

from a cycle, will be visited by a topological traversal.

Algorithm: ModifiedDCSC(G)

1. IF G is empty THEN return
2. trim() G in forward direction
3. IF G is not empty THEN

4. trim() G in backward direction
5. Select pivot v from the live vertices of G
6. mark Pred(G, v) and Succ(G, v) in G
7. SCC(G, v) = Pred(G, v) tlSucc(G, v)
8. DO in parallel:
9. ModifiedDCSC(Pred(G, v) — SCC(G, v))
10. ModifiedDCSC(Succ(G, v) — SCC(G, v))
11. ModifiedDCSC(Rem(G, v))
12. ENDIF

Fig. 2. Algorithm ModifiedDCSC.

Trimming the graph is performed by the trim() routine in parallel, which is

listed in Figure 3. We can perform this trimming in both the forward direction and

reverse direction of the DDG simultaneously to achieve greater parallel efficiency.

In figure 4 the mark() routine is listed. It represents the DCSC phase of the

ModifiedDCSC algorithm. Prior to the execution of mark(), the pivot vertex v is

selected at random from G. Starting from v, mark() traverses G in breadth-first

order in both forward and backward directions. It finishes when all the predecessors

and successors of v have been visited and colored. A vertex is colored as predecessor or

successor depending upon how it was reached during this traversal. Vertices visited by

following a directed edge in the forward direction are colored as successors. Vertices

visited by following an edge backwards are colored as predecessors.

Algorithm: trim()

INPUT: DDG, G
OUTPUT: DDG, G, with 0 or more vertices removed
1. push all vertices wrtb indegree of 0 into work queue, Q
2. WHILE terminate == false DO

3. WHILE Q is not empty DO

4. pop a vertex o from Q
5. mark o as dead
6. FOR every child u of v DO

7. IF u is local THEN

8. decrement indegree of u by 1
9. IF indegree of u == 0 THEN push u onto Q
10. ELSE (u is on another processor, p,)
11. Send informatxon about u to p,
12. ENDDO

13. ENDDO

14. IF there are messages waiting THEN

15. Receive all incoming messages
16. decrement indegree for every vertex received
17. IF indegree == 0, push vertex onto Q
18. ELSE
19. terminote = Is Terminated()
20. ENDDO

Fig. 3. Algorithm trim() in parallel.

Algorithm: mark

INPUT: DDG, G
OUTPUT: DDG, G, with vertices colored
1. FOR every pivot node, v, DO

2. push {v, forward) and {v, backward) onto Q 3. WHILE terminate == false DO

4. WHILE Q is not empty DO

5. pop {v, dir) from Q
6. IF dir == forward THEN v. forward-msrk = true
7. ELSE
8. v. backward-mark = true
9. IF der == forward THEN

10. FOR every child u of v DO

11. IF u is local THEN

12. IF u. forward-mark == false THEN

13. push {u, forward) onto Q
14. ELSE (u is on processor p;)
15. Send u and dir to p,
16. ELSE (d == backward)
17. FOR every parent u of v DO

18. IF u is local THEN

19. IF u. backward-mark == false THEN

20. push {u, backward) onto Q
21. ELSE (u is on processor p,)
22. Send u and dir to p,
23. ENDDO

24. ENDDO

25. IF there are messages waiting THEN

26. Receive all incoming messages: {v, dtr)
27. IF dtr == forward AND v. forward-mark == false THEN
28. push {v, forward) onto Q
29. ELSE IF v. backward-mark == false THEN

30. push {v, backward) onto Q
31. ELSE

32. terminate = IsTerminated()
33. ENDDO

Fig. 4. Algorithm mark() in parallel

Based on Lemma 1, once G has been colored we can partition it into four regions:

Pred(G, v) — Vertices jrorn tohtch the pivot v can be reached along some path.

Succ(G, v) — Vertices that can be reached along a path from the pivot v.

Rem(G, v) - Vertices that are netther predecessors nor successors of v (the remain-

der). Notice that these vertices will not have been visited by any previous trim()

or mark() yet in any previous recursive step.

SCC(G, v) - Vertices that are both predecessors and successors, the (unique) SCC

containing v. SCC = Pred(G, v) fl Succ(G, v).

These partitions can be considered as independent graphs in terms of cycles.

The vertices in SCC(G, v) are removed from G and Pred(G, v), Succ(G, v), and

Rem(G, v) are recursively searched by ModifiedDCSC for additional SCCs.

In figure 3 line 19 and figure 4 line 32 there are references to a routine called

IsTerrntnated(). This checks to see if the termination condition has been met. For

both trim() and mark() to exit, each routine must meet the following exit conditions:

~ No processor has any remaining work.

~ No processor has any unreceived messages.

Termination detection adds overhead but it is required because we do not know

beforehand how much of the graph will be traversed. The trim and mark routines

may not visit all the nodes in the graph. In fact, unless the graph is acyclic the trim

will be stopped at some point by a SCC.

The listings in figures 3 and 4 show that we loop until no more work remains

locally, then we checks for incoming messages bringing work from an off-processor

source. If additional work is picked up a processor will resume processing locally.

11

Once there is no more local work and there are no messages bring incoming work, we

check to see if the termination condition has been met. These routmes will not exit

unless the termination conditions are satisfied.

We can use different termination detection methods in these routines depending

upon need and the machine architecture. For example, in a shared memory envi-

ronment where all processors can "see" the whole address space, each processor can

directly check the work queue to determine if any work remains globally. However, in

a distributed memory environment each processor can see only its own local address

space, and thus cannot read the status of other processors' work directly. Processors

must explicitly communicate their status in distributed memory so that all processors

can know when to terminate. We used a token-passing scheme in our implementation

and have found it to be adequate.

Figure 5 illustrates the execution of ModifiedDCSC on an example graph shown

in panel A which contains two cycles In Fig. 5-B, the effect of trimming is shown;

vertices in the shaded region are removed by trim() in the forward and backward

directions. In this example the entire graph cannot be 'seen' during the trim due to

the blocking effects of the SCCs on trim(). After trim() terminates, the remaining

graph will enter the DCSC phase of the code.

In the DCSC phase, a pivot vertex, n is selected as shown in Fig. 5-C, (a), as the

shaded vertex. ModifiedDCSC then calls mark() to color the predecessors and

12

successors of v as Pred(G, v) and Succ(G, u), respectively. After mark() finishes a

strongly connected component, SGG(G, v), is reported if found, and its vertices are

removed from G.

The remaining vertices are partitioned according to their colors and considered as

independent sub-graphs since, by Lemma 1 any remaining SCCs are wholly contained

inside these partitions. Figure 5-C, (b), shows the coloring and partitioning of G after

mark() has completed; in Fig. 5-C, (c), the SCC is shown as the nodes meeting

the criteria in lemma 1. Finally, ModifiedDCSC may be recursively applied to thc

remaining sub-graphs of G, Fig 5-C, (d).

This example finishes with a second recursive step, shown in Figure 5-D. Vertices

from the remaining partitions which are removed during trim() are shaded in (a) The

only remainmg vertices after trim() will be on the cycle, thus the pivot node selected

prior to mark() will be part of the cycle. Finally, during mark() the each of the

remaining vertices will be colored as both predecessor and successor, identifying the

SCC. After mark() completes, the SCC is reported and removed from G. Since there

are no longer any vertices left in G, ModifiedDCSC terminates and returns the two

SCCs it found.

Example graph with cycles Graph after TRIM Phase

(shaded nodes are removed by trim)

(A)

Steps of the ModifiedDCSC Algorithm Second recursive step of ModifiedDCSC

(a) (b)

(a)

(c) (d)

(C) (D)

Fig. 5. ModifiedDCSC applied to an example graph.

B. Eliminating SCCs with ModifiedDCSC

We have now seen how ModifiedDCSC detects the SCCs in a graph in parallel. Recall

that the motivation behind development of ModifiedDCSC was to enable radiation

transport sweeps to work on unstructured 3D grids without deadlocking. To accom-

plish this, we must not only detect but also eliminate the SCCs from the DDGs. We

can modify ModifiedDCSC to allow the elimination of SCCs from graphs by remov-

ing, or cutting, certain edges in G. The output of ModifiedDCSC can then include

the list of SCCs found as well as a list of edges in G, which if broken will make G

acyclic.

The listing in figure 6 illustrates the new ModifiedDCSC algorithm with our

SCC elimination steps included. To remove SCCs, we insert an additional step in

ModifiedDCSC after the detection of a SCC. Instead of removing SCG(G, v) from G,

we remove an edge from SCC(G, v) and carry the SCC into the next recursive step

as an additional partition of G.

If the edge broken removes the cycle, then trim() will remove the vertices in the

SCC during the next recursive call to ModifiedDCSC. If removing the edge does not

eliminate the SCC, then the next call to trim() during the next level of recursion

will not fully eliminate the SCC. In this case some more vertrces will be removed

from the SCC and a new strongly connected component, SCC', will remain such

that SCC' C SCC. This can happen for SCCs that are complicated with many

cycles. We can continue removing an edge from the SCC with each recursive call to

ModifiedDCSC until all of the cycles are gone and all vertices are removed by trim().

Often the SCCs contain single-cycles and will be eliminated by the first edge cut since

a simple cycle can be broken by cutting any edge in the cycle.

Due to the divide-and-conquer nature of the DCSC method, removing the strongly

connected components can be performed concurrently with the detection of new SCCs.

This method allows SCC' to be considered as a fourth type of graph. SGC' is re-

cursively searched in the same manner as the other partitions of G. Any SCCs found

within SCC' during subsequent recursive calls are not reported by ModifiedDCSC

because they have already been reported as part of SCC originally.

Edges broken via this process are reported in addition to the original SCCs found.

The transport solver in a multiphysics application, such as SnRad [11], equipped with

the knowledge of the SCCs and a list of edges that can be broken to allow a successful

sweep can now be performed without deadlock by handling the cycles appropriately.

Algorithm: ModifiedDCSC J3reakSCC(G)

1. IF G is empty THEN return
2. trim() G in forvard direction
3. IF G is not empty THEN

4. trim() G in backvard direction
5. Select pivot v from the live vertices of G
6. mark Pred(G, v) and Succ(G, v) in G
7. SCC(G, v) = Pred(G, v) 6 Suoc(G, v)
7a. SCC'(G, v) = SCC(G, v) - I edge
8. DO in parallel:
9. Modif iedDCSCBreakSCC(Pred(G, v) — SCC(G, v))
10. Nodif iedDCSCBreakSCC(Succ(G, v) — SCC(G, v))
11. Nodif iedDCSCBreakSCC(Rem(G, v))
lla. ModifiedDCSC J3reakSCC(SCC'(G, v))
12. ENDIF

Fig. 6. Algortthm ModifiedDCSC J3reakSCC. Simple modification
to ModifiedDCSC allowing SCC elimination by edge removal. Line 7a
selects one edge from each SCC and removes it to create SCC'. Then in
line lla, we recurse on SCC' as a fourth partition.

CHAPTER III

IMPLEMENTATION

Our implementation of ModifiedDCSC is written in the C programming language

and the Message Passing Interface (MPI) communications library. MPI was chosen

because it performs well and it is portable across all parallel machines. This code is

targeted for CPlant and ASCI Red at Sandia National Laboratories, both of which

are massively parallel distributed memory platforms.

Most of the development wss performed on a Hewlett Packard V-Class server at

Texas AkM University. This machine is a 16-processor ccUMA SMP running 200

MHz PA-RISC processors.

Our implementation of ModifiedDCSC is optimized for the detection and elim-

ination of strongly connected components occurring in DDGs resulting from 3D un-

structured grids. Specifically we are interested in grids used by radiation transport

calculations. This specialization allows several optimizations, which will be discussed

in this chapter

A. Constructing the Directed Dependence Graph

The multiphysics code uses a finite element mesh for its computation. We need to

convert this mesh, M, into a directed dependence graph (DDG) for every ordinate

vector. We briefiy illustrated this construction in figure 1.

The method used to determine the orientation of each directed edge for every

vertex is shown by the listing in figure 7. We also show a small example of how two

adjacent mesh cells are changed into a graph with their edge directed according to

an ordinate vector in figure 8.

Algorithm: CreateDDG

INPUT: Finite element mesh M
ordinate vector d.

OUTPUT: DDG, G.
1. FOR every cell, u C M DO

2. Add vertex u to G
3. ENDDO

4. FOR every cell, u C M DO

5. FOR every face, f C u shared with adjacent cell v DO

6. r7 = outward face normal of f
7. IF j d&s THEN

8. Add directed edge uv to G
11. ENDIF

12. ENDDO

13. ENDDO

Fig. 7. Constructing the DDG from an input mesh. The algorithm used to
compute the DDG from the input mesh for each ordinate angle d. s represents an
error tolerance for the dot-product computation.

Fig. 8. DDG construction from a mesh. Construction of a directed dependence graph
from a mesh. Adjacent cells u and v in (a) are represented as vertices u and v in (b).
The shared face f represents an edge connecting u and v in the DDG. Edge uv is directed
according to the relationship between the outward face normal j(f) of u. If the ordinate
vector d makes an angle of less than 90 degrees with d, then the edge is directed as uv (c).
If d is orthogonal to ri then there is no edge uv.

20

B. Searching Over Many Ordinate Angles Simultaneously

Sweeping methods such as those commonly used in radiation transport involve a finite

element grid being swept over a set of discrete ordinate angles. These ordinate angles

can be visualized as starting from many points distributed in 3D space around the

mesh. This 3D volume around the mesh is typically divided into 8 regions, called

octants, which are divided by the x, y, and z axis planes.

A topological traversal of this kind is not fully parallel. It is limited to the

length of the longest critical path between the starting vertices and the last vertex

traversed. During each step along this critical path, available parallelism is limited to

the number of vertices having an indegree of zero. The amount of available parallelism

is dependent upon the characteristics of the input graph.

In our application every ordinate angle produces a DDG which is independent

froin the DDGs of other angles. Searching many DDGs simultaneously allows us to

exploit additional parallelism because there are more vertices available at each step.

The DDGs are distributed in the same manner as the finite element mesh which

they represent. Searching multiple angles simultaneously also allows many additional

starting points for trim() since our angles are spread evenly in 3D around the mesh.

This also increases the parallel efficiency of our implementation by getting more pro-

cessors involved in the computation more quickly. Transport sweeps typically take

advantage of this parallelism as well

C. Taking Advantage of Paired Ordinates and Load Balancing

Another optimization related to radiation transport calculations which we can take

advantage of is ordhnate pairing. We say that two ordinates, di and dz are paired if

21

Recall from Chapter III Section A that an edge in the DDG is constructed for

each cell face by comparing the outward face normal of the cell face to the ordinate

angle. In the case where dt — — — ds, all edges in G(d&) will be directed opposite of

those in G(ds). There are also no additional edges added or removed between dt and

ds as well. This means that an SCC found in G(dq) also exists in G(Q) because the

cycles are preserved with their directed edges simply reversed.

ModifiedDCSC for radiation transport sweeps can take advantage of this fact

by only searching one ordinate angle for every pair given in the input. When the

ordinates are spread out evenly in 3D space and every ordinate is part of a pair. In

that case, ModifiedDCSC only needs to search half of the actual ordinates given and

reports the SCCs for both ordinates in each pair. This decreases the amount of work

ModifiedDCSC is required to do by half, reducing the overall time to solution.

In our application, graphs are statically distributed and are not redistributed.

The ordinate angle's relation to the mesh determines the starting vertex for trim().

We can achteve better performance when the angles are evenly distributed around

the mesh. When selecting an angle from a pair, we pay attention to which octant

the angles are in. We obtain better performance if the angles used are spread evenly
~ 4 over all 8 octants. The selection of angles for ModifiedDCSC is performed to keep

the number of angles in each octant as equivalent as possible.

D. Storing the DDG

There are different ways the DDGs for our problem could be represented in a data

structure. One method is to traverse the mesh directly, computing the edge directions

each time a face boundary is traversed. The second method is to store a DDG for

every ordinate angle directly in a more complete graph data structure, such as an

22

adjacency list representation. Each method has its advantages and disadvantages.

Traversing the mesh directly uses much less memory and hss better memory

reuse than storing the graph. This becomes especially apparent when the input

involves many hundreds of ordinate angles. Only one data structure is stored that

represents the DDGs for all the input angles. This improves locality as well as using

far less memory. There are some significant disadvantages to this approach which

come directly from the recursive partitioning nature of the ModifiedDCSC algorithm.

ModifiedDCSC can traverse an edge many times throughout the course of execution

as the marking step finds the predecessors and successors of each subsequent pivot

node. Computing the edge direction each time this occurs becomes expensive for

problems in which there are many recursive steps performed.

If recomputing the edge direction with each traversal becomes too time consum-

ing we can compute the edges once for every angle and store each one as a separate

DDG. Storing the DDGs for all the angles increases the memory requirements for

ModifiedDCSC. Though in the context of a radiation transport code which stores

flux for every cell, angle and energy group this is not the dominant memory cost.

The advantage of this is mostly in lowering the overall execution time by only com-

puting the expensive dot product once per edge for every angle.

An early implementation of ModifiedDCSC adopted the first scheme in which

we performed the SCC search directly on the mesh. Experiments run on ASCI Red

showed better speedups, reaching 200+ on 256 processors. The execution time, how-

ever was observed to be significantly longer than when we precompute the edge direc-

tion and store the individual graphs. Because of this, in the current implementation

we opt to store the complete graph using an adjacency list representation with ghost

nodes to reduce overall execution time.

23

CHAPTER IV

EXPERIMENTAL RESULTS

We present experimental results obtained on a HP V2200 Exemplar server and on

ASCI Red. The HP is a 16 processor ccUMA SMP machine maintained by the

PARASOL laboratories in the Computer Science department of Texas ASM Univer-

sity. The processors are PA-RISC running at 200MHz. ASCI Red is a 9280 processor

supercomputer maintained at Sandia National Laboratory. ASCI Red uses 333 MHz

Intel Pentiums with a high bandwidth, low latency interconnection network.

We conducted experiments to show the impact of the addition of trim() to the

DCSC algorithm. Experiments were also performed to test the scalability and perfor-

mance of ModifiedDCSC with a variety of meshes as well as progressively deformed

meshes. On both platforms, we use the same MPI distributed memory code without

machine specific modifications.

A. Effectiveness of trim() in Elimination of Work

Our ModifiedDCSC algorithm [5] benefits greatly from the addition of the trim step.

By trimming out nodes that can be easily determined as not part of any SCCs,

the overall problem size is reduced. DCSC benefits from this reduced problem size

because the set of possible vertices from which the pivot is selected is reduced, thus

giving a higher probability of the pivot being part of a SCC.

We ran experiments to show the benefit of trimming the graph to the Modified-

DCSC method. Figure 9 and figure 10 illustrate a comparison of the total number

of recursive steps taken and the amount of work (vertices + edges) at each step by

ModifiedDCSC both with and without trim() enabled.

The mesh used for figure 9 is a deformed brick mesh, d-04, which is a 30 x 30 x 30

24

cell brick mesh with corner nodes deformed to produce cycles. There are many SCCs

of varying complexity and size well distributed throughout the mesh.

Figure 10 is executed on a mesh called s20, which represents the volume around

a submarine hull. This mesh contains roughly 40, 000 cells and has very few cycles.

For s20, we expect that ModifiedDCSC will complete very quickly with few recursive

calls.

We can observe that with trim() disabled, ModifiedDCSC will be called recur-

sively many more times than if trim() is enabled. Also, we see that the percentage

of vertices removed during each recursive step is much more when trim() is enabled,

even in a graph with an artificially large number of SCCs.

The addition of trimming to ModifiedDCSC is a very practical improvement to

the DCSC method. It results in a reduction of the number of iterations to solution

as well as the amount of work per iteration. The raw execution time benefits from

this improvement as well.

25

Effects of TRM on the Recursion amount of DCSC
mesh: d-04, 60 angles checked

I Is+07

ie 07

tu seeos

+ so|06

Q 7ceos

sceos

~ sei06
0
u 4e106
g c
a 3e+06

2eeos

1ceos

0

— DCSC (without tnm) — ModdiedDCSC (with tnm)

2 4 8 16 32 64 128 256

Recursion Level

Fig. 9. Impact of trim() on a mesh with many SCCs.

Effects of TRM on the Recursion amount of DCSC
mesh: s20, 60 angles checked

I 6e+07

-- DCSC(without tnm) — ModifiedDCSC (with uim)

tu I eee07
+)

I 2e+07

Iceor

8e+06 4
O

g 6e+06
o
a

4c+06

2 4 8 16 32 64 128 256 51

Recursion Level

Fig. 10. Impact of trim() on a mesh with few SCCs.

B. Varied Geometries

The meshes listed in Table I are of different geometries, representing several difFerent

physical models we can use to test ModifiedDCSC. Tables II and III show the exe-

cution time and speedup achieved on ASCI Red for these meshes. The data shown

in these tables are the results for a 120 ordinate problem which resulted in an actual

search of 60 angles due to angle pairings.

Figures 11 and 12 show the scalability of ModifiedDCSC on these meshes for

the HP-V2200 and ASCI Red to 16 and 64 processors, respectively. For these and

subsequent speedup curves, we normalized against the single processor run time of

ModifiedDCSC. In our experiments, the single processor ModifiedDCSC was usually

at least as fast as Tarjan's serial algorithm for these problems.

Figure 12 on shows that an increased number of SCCs (b42000, b64000, and

warpcyl) reduces scalability. As we have shown in Chapter IV, Section A, meshes

with few SCCs benefit much more from trim(). Since BFS is not fully parallel, our

parallel efficiency is expected to be better when the number of recursive steps is kept

at a minimum.

27

Table I. Characteristics of meshes used in varied mesh experiments. These meshes
were used to test ModifiedDCSC with some varied geometries.

es escnption

nc wit many,
evenly distributed cycles

arger version o

ize ng es
Checked

ot
SCCs

vg. ize
of SCC

s o ume aroun a su manne u
Few, localized cycles

sp ere2

warpcy

o i sp enca mes .
Few cycles near center

arpe cy in er wit concentnc,
stacked rings, many large cycles.
Elements twisted by 18 degrees.

Table II. Execution times for varied meshes on ASCI Red.
erie es es on e

Execution ime secon s
es

sp ere

warpcy

Table III. Speedups for varied meshes on ASCI Red.
pee up

es

sp ere

warp cy
. 55

5. 5
. 14

4 . 7

28

Scalability of ModifiedDCSC on 16-Procesor HP V-Class
60 Angles Checked for SCCs

f6
~ -8 s20 ~ b42000 ~ b64000
~ - sphere2 ~ warpcyl
— - ideal

Number of Processors

16

Fig. 11. Scalability of ModifiedDCSC on HP-V2200 for various meshes. This graph

shows the scalability of ModifiedDCSC searching the DDGs of several meshes of different

geometries.

Scalability of ModifiedDCSC on ASCI Red
60 Angles Checked (Fixed Size Problem)

32

16

m 8

20
2000

64000
phere

arpcyl
— — ideal

r r r

r
/ r r

r
/

r r r /
r

r r r

2 4 8 16 32

Number of Processors

64

Fig. 12. Scalability of ModifiedDCSC on ASCI Red for various meshes. This graph
shows the scalability of ModifiedDCSC searching the DDGs of several meshes of difFerent
geometries.

30

C. Progressively Deformed Meshes

Multi-physics codes operate on meshes which can be slowly deformed at every time-

step which would require ModifiedDCSC to also be run every time-step before physics

sweeps are attempted. Deformed meshes typically contain more cycles and thus Mod-

ifiedDCSC's performance can be reduced. We simulated these changes by progres-

sively increasing the magnitude of deformation of node positions in the mesh. For this

purpose we generated a 30 x 30 x 30 brick mesh and moved the corner nodes of the

cells randomly. The magnitude of deformation was increased in increments of 10% of

the distance to the nearest corner node in a cell. Table IV shows mesh information

for this test and the increasing number of SCCs as the magnitude of deformation is

increased.

Table IV shows that increasing the displacement of corner nodes corner nodes in

mesh cells causes the number of SCCs to increase as well as the average number of

nodes contained in each SCC. This implies that as a mesh is increasingly deformed,

the connectivity of the resulting DDG is more complex resulting in more SCCs which

are larger and contain multiple internal cycles. The larger number of SCCs in these

meshes also increases the amount of time ModifiedDCSC requires to compute the full

SCC search.

Table V shows the execution time for these meshes, and table VI contains the cor-

responding speedups. These measurements are for 120 ordinate angles, searching 60

angles due to removal of redundant angles due to ordinate pairing. Figures 13 and 14

show measured scalability on the HP V2200 and ASCI Red.

These results confirm our earlier observation of the impact trim() has on the

overall execution of ModifiedDCSC. As the number and density of SCCs increase,

ModifiedDCSC benefits less from trimming, resulting in lower performance.

Table IV. Mesh characteristics as a function of deformation.

Mesh Mesh
Size

X X
X X
X X
X X
X X
X X
X X
X X

De orm 0
Magnitude

s
found

Avg.
Size

Table V. Execution times for deformed meshes on ASCI Red.
e orrne es es on

Execution Time seconds
es

4 4. 5

4 . 7

Table VI. Speedups for deformed meshes on ASCI Red.

pee up
es

4 . 44
4 . 4

7. 5

32

16

4
m

Effects of Mesh Deformation on HP V-2200
60 Angles Checked

-- Ideal ~D 00 ~D 01 ~D 02
~ -QD 03
~D04 ~D 05
~D06

D 07

Number of Processors

16

Fig. 13. Scalabtlity of ModifiedDCSC on HP-V2200 for deformed meshes.

Deformation Test of ModifiedDCSC on ASCI Red
60 Angles Checked (Fixed size problem)

64

32

16
cx

v)

~d 00
+-+ d 01 ~d 02 ~d 03 ~d 04

Ideal

r r
r

r r
r

/

r

r /
/ r r r

r'

r

4 8 16 32 64

Number of Processors

Fig. 14. Scalability of ModifiedDCSC on ASCI Red for deformed meshes.

D. Edge Breaking to Remove SCCs

Recall that in order for a transport sweep to complete we must also give the solver

some information about the SCCs that is useful for it. We decided that we would

like to break certain edges in the DDG to eliminate the SCCs. Recall that the SCC

elimination method we chose to implement involved breaking some edge from each

SCC during each recursive step until the whole SCC is eliminated.

Usually when breaking edges from a graph to eliminate SCCs we wish to choose

the edges to break based on some criteria. Typically this involves attaching some

weight to the edges and trying to maximize or minimize the total weight of cut edges.

In this case the edges we cut correspond to finite element faces and we would like

to minimize the error induced from the cut edges on the transport solver. Minimizing

the flux through the cell faces will result in a smaller error for the solver, so we can

select edges that will minimize this parameter.

35

CHAPTER V

CONCLUSION

We have presented the ModifiedDCSC algorithm and a parallel implementation that

ofFers a scalable method for detecting the strongly-connected components which arise

in sweep calculations for radiation transport.

The addition of the trim step to this algorithm is shown to offer a significant

bonus to the execution of the DCSC algorithm. Aggressive trimming reduced the

amount of recursion required to find the SCCs in our input graphs. We have also

shown that in graphs with few cycles, the addition of trim() allows ModifiedDCSC

to complete the SCC search in nearly linear time.

We studied the sensitivity of this algorithm to various characteristics of the input

meshes. Not surprisingly, scalability is negatively influenced by the number and

density of SCCs of the graph. However, our tests on up to 64 processors of a parallel

machine show the overall scalability is reasonable, even for meshes with an artificially

large number of SCCs. Moreover, the run times for DCSC are very small compared

to actual physics sweeps, making this a useful tool in practice.

ModifiedDCSC can also be easily modified so that it can eliminate SCCs from

graphs by cutting certain edges. Our implementation includes this addition to break

the SCCs in order to provide information to transport sweeps. This will allow them

to sweep an unstructured 3D finite element mesh containing cycles to completion

without a deadlock.

This implementation of ModifiedDCSC is now part of a radiation transport pack-

age in use at Sandia National Laboratories.

REFERENCES

[1] N Amato. "Improved processor bounds for parallel algorithms for weighted di-

rected graphs. " Information Processing Letters, vol. 45, no. 3, pp. 147 — 152,

1993

[2] D. Bader. "A practical parallel algorithm for cycle detection in partitioned di-

graphs. " Technical Report AHPCC-TR-99-013, University of New Mexico,

Albuquerque, NM, 1999.

[3] R. Cole and U. Vishkin. "Faster optimal parallel prefix sums and list ranking. "

Information and Computation, vol. 81, pp. 334 — 352, 1989.

[4] T. H Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

M I. T. Press, Cambridge, MA, 1990

[5] L. Fleischer, B. A. Hendrickson, and A. Pinar. "On identifying strongly connected

components in parallel. " In IPDPS Workshops, pp. 505 — 511, 2000

[6] H. Gazit and G L. Miller. "An improved parallel algorithm that computes the

BFS numbering of a directed graph
" Information Processing Letters, vol 28,

no. 2, pp 61 — 65, 1988.

[7] P Gibbons, R. Karp, V. Ramachandran, D. Soroker, and R E. Tarjan. "Tran-

sitive compaction in parallel via branchings" Journal of Algorithms, vol. 12,

no. 1, pp. 110-125, 1991.

[8] M. Y. Kao and G. E. Shannon. "Linear-processor NC algorithms for planar

directed graphs II: Directed spanning trees. " Technical Report DUKE — TR—

1990 — 02, Duke University, Durham, NC, 1990.

[9] R. M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory 1lfa-

37

chmes, pages 869 — 941. Jan van Leeuwen, ed. , Elsevier Science Publishers

B. V. , 1990.

[10] L. Lovasz. "Computing ears and branchings in parallel. " In Proc. of o0th Annual

IEEE Symposium on Foundations of Computer Science, Portland, Oregon,

pp. 464-467, 1985

[11] S J. Plimpton, B. A. Hendrickson, S P. Burns, and W C McLendon III. "Par-

allel algorithms for radiation transport on unstructured grids". In Supercom-

puting 8000 (SC8000), Dallas, Texas, November 2000.

[12] J. H. Reif. "Depth-first search is inherently sequential. " Information Processmg

Letters, vol. 20, no. 5, pp. 229-234, 1985.

[13] R. E. Tarjan. "Depth first search and hnear graph algorithms". SIAM I Com-

put. , vol. 1, no. 2, pp. 146 — 160, 1972.

38

VITA

William Clarence McLendon III was born March 20, 1976, in Longview, Texas to

William Clarence McLendon Jr. and Sandra Louise McLendon. He graduated with

honors from Longview High School in 1994. He received his B. S. in computer science

with a minor in electrical engineering at Texas A&M University in 1999. He can be

reached via the Department of Computer Science at Texas A&M University / College

Station, TX 77843-3112 snd via electronic mail at mclendonOcs. tamu. edu.

