
ON-LINE IMPLEMENTATION OF AN ADAPTIVE SPEED FILTER.

AND ITS EXPERIMENTAL DEMONSTRATION

A Thesis

by

ANIS MOHAMED ABDUL

Submitted to the Office of Graduate Studies of
Texas AkM University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2001

Major Subject: Mechanical Engineering

ON-LINE IMPLEMENTATION OF AN ADAPTIVE SPEED FILTER

AND ITS EXPERJlvIENTAL DEMONSTRATION

A Thesis

by

ANIS MOHAMED ABDUL

Submitted to Texas ASSAM University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Alexan G. Parlos
(Ch

'
of Committee)

eza ngari
(Member)

Jo Howze
(Member)

John Weese
(Head of Department)

December 2001

Major Subject: Mechanical Engineering

ABSTRACT

On-line Implementation of an Adaptive Speed Filter

and Its Experimental Demonstration. (Deceinber 2001)

Anis Mohamed Abdul, B. S. , Anna University, Chennai, India

Chair of Advisory Committee: Dr. Alexander G. Parlos

Sensorless speed estimation in induction machines is important for numerous

applications like speed control and fault detection, Sensors are expensive and they

are not reliable enough to be used in rugged industrial environments. In this work, a

previously developed neural network speed filter is implemented for on-line induction

motor speed estimation.

The speed filter is constructed using a combination of five neural networks. A

neural networks framework developed in this work is used to construct the speed filter.

The filter uses the three motor terminal voltages, the line currents, and the RMS of

on-line current as inputs to estimate the speed. The data are preprocessed by a set

of LabVIEW modules before they are sent to the nmiral networks. The preprocessed

data are used by the neural networks to compute the induction motor speed. The

output from the neural networks is then scaled to obtain the motor speed estimate.

The filter is implemented and tested using both off-line and on-line collected

data. The filter is also tested with unbalanced power supply and faulty motors to

study its generalization capability. The filter had an average estimation error between

0. 1% to 0. 3% for the data collected off-line. For the data obtained from on-line setup,

the average estimation at steady state is 0. 15%

This research demonstrates the feasibility of using adaptive file-based software

sensors instead of hardware sensors thereby significantly reducing implementation

costs and improving overall system robust, ness. The neural networks framework de-

veloped in this work adds flexibility and scalability in further improving the developed

induction motor speed filter.

To My Parents

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to Dr. Alexander G. Parlos for

his guidance and support without which this work would not have been possible. I

would like to thank my committee members Dr. Reza Langari and Dr. Jo W. Howze

for their interest in this project. My thanks are due Dr. Raj M. Bharadwaj for his

help throughout this work.

I would also like to extend my thanks to friends Vijaya Mallikarjun, Pierce and

Aninda Bhattacharya for their support and help during the course of this project.

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION TO INDUCTION SPEED ESTIMATION

A

B

C

D

E

G.
H.

Introduction .
An Overview of Estimation Problems.
1. Stnoothing

2. Filtering
3. Prediction

Introduction to Neural Networks. . .

Overview of Induction Motor Speed Estimation

Objectives . .

Proposed Approach

Research Contribution

Organization of the Thesis

II OVERVIEW OF SPEED FILTER DESIGN

A

B

Speed Filter Development

1. Problem Statement
2. Neural Networks Implementation

3. Speed Filter Description
4. Neural Network Training

Chapter Summary

9
9

10
13
14

16

III ON-LINE IMPLEMENTATION OF SPEED FILTER 17

A

B

C

Neural Networks Architecture of the Speed Filter
Neural Network Framework

1. Neural Networks Implementation Framework De-

velopment . .
2. Control Script
3. Neural Network Process Flow .

Components of the On-line Speed Filter
1. Data Collection Module . .
2. Data Preprocessing Module

3. Speed Filter Module . .

4. Data Postprocessing Module

17
19

20

20

23

24

24

26

30
30

vut

CHAPTER Page

D. Chapter Summary

IV EXPERIMENTAL DEMONSTRATION OF THE SPEED FILTER 34

A. Speed Filter Tests with Off-Line Data Collection. . . .
1. Experimental Setups Used in Off-Line Motor Data

Collection and Speed Filter Tests

a. Small Machine Setup
b. Large Machine Setup

2. Speed Filter Results with OII-Line Data Collection

a. Small Machine Test Results

B. Speed Filter with On-line Data Collection

1. Experimental Setup Used in On-line Data Collec-

tion and Speed Filter Tests
2. Speed Filter Results with On-line Data Collection

C. Chapter Summary

V SUMMARY AND CONCLUSIONS

A. Summary of Research .

B. Conclusion . .

C. Recommendation of Future Research Work

REFERENCES .

34

35

35

35
36
36
49

52

54

56

58

58

59

60

VITA 63

LIST OF TABLES

TABLE Page

I Speed Estimation Errors: Healthy Small Machines; OII-line Dai, a . . 50

II Speed Estimation Errors: Faulty Small Machines; Off-line Data . . 51

III Speed Estimation Errors: Healthy Large Machines; Off-line Data . . 51

IV Speed Estimation Errors: Small Machines; Data from On-line Setup . 57

LIST OF FIGURES

FIGURE Ps. ge

Types of State Estimation Problem.

Block Diagram of the State Filter. 10

Block Diagram of I;he Neural Network Speed Filter. 15

Neural Network Architectures of the Current Predictors.

Neural Network Architecture of the Speed Predictor.

Neural Network Architecture of the Speed Update.

19

20

Inputs and Outputs of Neural Network Framework Implementa-

tion of the Speed Filter. 21

Process Control Flow of the Neural Networks Framework. 25

Components of the Speed Filter. 26

10 Block Diagram of Preprocessing for Balanced Power Supply or
Motor Stator . 28

Block Diagram of Preprocessing for Unbalanced Power Supply or

Motor Stator. 29

12 Motor Load-based Filter Selection Scheme. 31

Speed Filter Module. 32

14 top: Speed Signal from Generator; middle: De-noised Speed Sig-

nal; bottom: Harmonic Speed Estimate . 37

Speed Filter Response for 3 hp Healthy Motor; 0% — 70% Load Range. 38

16 Speed Filter Response for 3 hp Healthy Motor; 70% — 120% Load

Range.

x1

FIGURE Page

17 Speed Filter Response for 3 hp Healthy Motor: 0% — 70% Load

Range, with 0. 5% Unbalanced Power Supply. 40

18 Speed Filter Response for 3 hp klealthy Motor; 70% — 120% Load

Range, with 0. 5% Unbalanced Power Supply. 41

19 Speed Fili, er Response for 3 hp Healthy Motor; 0% — 120% Load

Range, with 0. 5% Unbalanced Power Supply. 42

20 Speed Filter Response for 3 hp Healthy Motor; 0% — 70% Load

Range, with 4. 5% Unbalanced Power Supply.

21 Speed Filter Response for 3 hp Healthy Motor, 70% — 120% Load

Range, with 5. 4% Unbalanced Power Supply. 44

22 Speed Filter Response for 3 hp Motor with 3 Broken Rotor Bars;
0% — 70% Load Range. 45

23 Speed Filter Response for 3 hp Motor with 4 Broken Rotor Bars;
0% — 70% Load Range.

Speed Filter Response for Healthy 500 hp Motor; 100% — 50%
Load Range.

46

47

25 Speed Filter Response for Healthy 800 hp Motor; 100% — 50%
Load Range. 48

On-line Experimental Setup Used for On-line Speed Filter Test;s. . . 53

Online Speed Filter Response for Healthy 3 hp Motor without

Tuning; 30% Load. 55

28 Online Speed Filter Response for Healthy 3 hp Motor with Tuning;

30% Load. 5

CHAPTER I

INTRODUCTION TO INDUCTION SPEED ESTIMATION

A. Introduction

Induct;ion motors represent some of the most widely used prime-movers in industry.

In particular, squirrel cage induction motors are used to drive complex and vital

components in power plants and process industries. Failure of such motors could

result in unscheduled downtime, loss of productivity, causing heavy financial losses.

Hence, there is a clear need to preempt such failures. Online monitoring and early

detection of faults has become necessary to improve reliability and avoid catastrophic

failures [3]. Most fault diagnosis schemes are based either on the inspection of the

motor current spectrum and the detection of some speed dependent harmonics or the

measurement of vibral;ion levels [4, 5). These schemes require an accurate knowledge

of the motor speed for effective condition monitoring and fault detection. In the

majority of industrial setups, like power plants and process industries, induction

motors do not have any speed sensors. Further, the motors operate under both

balanced and unbalanced power supply conditions.

Control of electrical motor drives is another application that requires the speed

and/or position signal. Field-oriented or vector-controlled techniques have inade pos-

sible the development of high dynamic performance induction motor drives. However,

to obtain optimum dynamic performance, speed and/or position transducers are re-

quired. Speed sensors, like tacho-generator, encoders and Hall effect sensor, would

increase the cost of induction motor drives [I). Moreover, the failure probability of a

sensor is generally higher than t, hat of the motor. This reduces the intrinsic mechan-

The journal model is IEEE 7?anssctions on Automatic Control.

ical robustness of L, he induction motor. To avoid the prol&lems associated with L, he

introduction of a speed sensor for induction motor control, sensorless speed control is

fast emerging as a viable alternative.

Therefore, an effective sensorless speed estimation meLhod is desirable not only

for online condition monitoring of induction motors, but also for sensorless speed

control applications. For the remainder of this thesis, a squirrel cage induction motor

will be referred to simply as induction motor or induction machine.

B. An Overview of Estimation Problems

Est, imation is the process of calculating the state(s) of a dynamic system using ob-

servations collected from the system, and a pre-specified or identified mathematical

model of the system. The states of the system are nothing but variables that com-

pletely specify the behavior of the system.

Estimation can be further classified into different categories. The notation used

in this thesis for the state estimate, z(t~t), denotes its value at a discrete time t up

to and including all the measurements till the discrete Lime instant t.

The categorization of the estimation problem is done based on the time instant

for which a value of the state estimate, x(t~t), of the state, x(t), is desired and the

time instant until which the measurements, y(t), are available and/or used [2]. The

different categories are presented below.

1. Smoothing

Smoothing refers Lo the estimation of an unmeasurable or unmeasured variable of

interest at Lime step (t), based on measurements up to and including time step (t+ A),

Snootting

t
r) . 'y)t)

t
lt- rl

ltlt-). I
gtonlotlon

DSOOLSS SPBll Of ~f dntn

Fig. 1. Types of State Estimation Problem.

2. Filtering

Filtering refers to the esi, imation of an unmeasurable or unmeasured variable of in-

terest at current time step t, based on measurements available up to and including

the current time step t.

3. Prediction

Prediction refers to the estimation of a variable of interest at a future time step

t0, based on the measurements available up to and including the current time step

(t — A), A) 0. Predictions that, aim to estimate the value of a variable of interest, at

a time step (t + 1) using measurements up to and including time step 1 are referred

as single-step-ahead predict, ions. When the prediction aims to estimate the value of

s variable at a time step (L+ 1) using measurements up to and including time step

(I — p+ 1). , p) 0 it is referred as multi-step-ahead prediction.

The aforementioned three types of state estimation problems are depicted in

Figure 1.

C. Introduction to Neural Networks

Neural networks are an inforination-processing paradigm inspired by the way the

densely interconnected, parallel structure of the mammalian brain processes informa-

tion (14]. Neural networks are also referred to as connectionist architectures, parallel

distributed processing and neuromorphic systems.

Neural network computing is composed of a large number of highly intercon-

nected processing elements that are analogous to neurons and are tied together with

weighted connections that are analogous to synapses that connect neurons. Learn-

ing typically occurs by example through training, or exposure to a truthed set of

input/output data where the training algorithm iteratively adjusts the connection

weights (synapses). These connection weights store the knowledge necessary to solve

specific problems.

There are multitudes of different types of neural networks. Some of the more

popular include the multilayer perceptron which is generally trained with the back-

propagation of error algorithm, learning vector quantization, radial basis function,

Hopfield, and Kohonen, to name a few. Some neural networks are classified as feed-

forward while others as recurrent (i. e. , implement feedback) depending on how data

is processed through the network. Another way of classifying neural network types is

by their method of learning (or training), as some neural networks employ supervised

training while others are referred to as unsupervised or self-organizing. Supervised

training is analogous to a student guided by an instructor. Unsupervised algorithms

essentially perform clustering of the data into similar groups based on the measured

attributes or features serving as inputs to the algorithms. This is analogous to a

student who derives the lesson totally on his or her own. Neural networks can be

implemented in software or in specialized hardware [14].

It can be seen from the above text that neural networks are trained by adap-

tation using a cost criterion, and are believed to be good at interpolation and some

extrapolation. This trait makes them a valuable tool for non-linear curve fitting [2].

D. Overview of Induction Motor Speed Estimation

Induction motor speed estimation is discussed in a variety of prior literature, with

most addressing it from the motor control perspective. The methods discussed in the

literature can be classified into two broad categories [I], namely those that estimate

speed using an induction motor model reference strategy, and those that estimate

speed by analyzing the harmonics of the stator current waveform. Some of the meth-

ods used in speed estimation are summarized below:

~ Motor model-based speed estimation methods use a model of the induction

motor whose speed is to be estimated. Three main types of algorithms have

been proposed in the literature for induction motor speed estimation: extended

estimators for rotor speed estimation [7, 8), linear regression approach [9] and

model reference adaptive systems [10]. The limitation of the model-based speed

estimation is its dependence on machine parameters. Thus, the knowledge of

electrical and mechanical characteristics is needed. These parameters are not

generally known or widely available. Moreover, many of the schemes discussed

assume linear machine models and time-invariant parameters. This results in

poor speed estimation.

~ Speed estimation using harmonic analysis of the stator current is another tech-

nique discussed in 4he literature. This method relies on the detection of specific

harmonics that are induced in the stator current due to the rotor slots. Dur-

ing the operation of an induction motor, the rotor-slot, MMF harmonic will

interact with the fundamental component of the air-gap flux because of the

stator current. Several attempts at extracting the rotor slot harmonic for speed

estimation have been reported in 4he literature [11]. The limitation of these

methods is tha4 the FFT-based signal processing used is computationally bur-

densome for on-line or real-time implementation. Also, for certain rotor-stator

slot combinations, the speed harmonic may not be readily detectable.

~ Neural networks-based speed estimation techniques have been proposed in

[12, 13]. In [12], a neural networks-based speed estimator for vector controlled

induction motors is discussed. Rotor speed estimation is done using an 8-16-1

neural network. The neural network is trained with sampled currents, reference

voltages and a sampled speed signal. The main limitation with this approach is

that the availability of a measured speed signal to train the network is assumed.

However, this could be feasible if the manufacturers of motor/drive develop the

speed estimators and embed them in the hardware [1].

E. Objectives

From the preceding sections, it can be scen that there is a strong motivation to use a

neural networks-based speed filter for induction motor speed estimation. Bharadwaj

[I] developed a neural network-based speed filter that has been used to estimate

speed of induction motors. The filte developed in [I] was initially tested in an off-

line environment, in which the input data is processed as a batch. Thc objective of

this work is to implement the filter developed in [1] in an experimental setup; i. e.

on-linc, and study its performance . Also, for implementing different neural network

based entities, such as dill, ers and predictors, it is desirable that a scalable neural

networks framework is developed and used in this research.

The objectives of this work can be listed as follows:

1. Development of a neural networks framework using the C programming lan-

guage that can be used to construct and implement complex estimators that

use different combinations of feed forward and recurrent neural networks.

2. On-line implementation of the neural networks based speed filter developed in

[1] using LabVIEW and the aforementioned neural networks framework.

F. Proposed Approach

For implementing the speed filter, we propose to develop a framework using the C

programming language that can be integrated with a data acquisition and a data pro-

cessing environment like LabVIEW. Once this framework is tested for accuracy, the

speed filter developed in [1] will be constructed and implemented in an experimental

setup. After integration with the data collection and data preprocessing modules,

the system will be tested with the case studies used in [1]. Following a benchmarking

of the speed filter with the ofi'-line case studies, on-line testing will commence. Once

the performance of the un-tuned filter is recorded, the filter networks will be tuned

using the data collected from the experimental setup.

G. Research Contribution

The main research contribution of this work is in demonstrating the on-line imple-

mentation feasibility of a recently developed speed filter and in evaluating the efficacy

of the speed filter when implemented in a machine other than the one used to train

it. This is an important step towards the goal of implementing similar speed filters in

actual industrial setups. An additional'contribution of this work is the development,

of a neural networks framework. The framework is designed to simplify the process of

constructing estimators that use different combinations of feed forward or recurrent

neural networks. The framework will provide a robust environment to build and test

neural networks wit'h minimal coding effort.

IL Organization of the Thesis

In Chapter H, the development of the speed filter by Hharadwaj is presented [I].

In Chapter III, details of the neural networks framework and the LabVIEW

environment are presented. The procedure involved in implementing the speed filter

is also presented in this chapter.

In Chapter IV, the experimental results obtained using the speed filter are pre-

sented. The results presented in this chapter include both online and off-line case

studies.

A summary of this thesis, the conclusions of this research aiid direct, iona for

future work are presented in Chapter V

CHAPTER H

OVERVIEW OF SPEED FILTER DESIGN

This chapter summarizes the design of the speed Alter developed in [I]. The following

sections provides brief information regarding the design of the speed filter using neural

networks, training of the neural networks, data collection, and data processing.

A. Speed Filter Development

In this section the state filtering problem is formulated and the neural network ap-

proach is presented.

1. Problem Statement

Consider the following representation in the discrete-time nonlinear state space form,

also known as the noise representation,

x(t + 1) = f(x(t), u(t)) + w(t),

(2. 1)

y(t) = h(x(t)) + v(t),

where t = 1, 2, . . . is the discrete time instant, y(t) is the n x 1 output vector of the

nonlinear state-space model; u(t) is the m x I input vector; x(t) is the state vector

of the model, f and h are vector-valuecl unknown nonlinear functions; w(t) is the

process noise; and v(t), is the measurement noise. It is assumed that w(t) and v(t)

are independent processes.

The objective of the state liltering problem is to estimate, x(t), for the state

System

Delay
u(t+1)

u(t)

x(t(t)

)t(1+ 1) 1)—

Predictor
%(t+1 1)

x(t+1(t+1)
Update

Delay

Fig. 2. Block Diagram of the State Filter.

variable x(t). In this case, the state to be filtered is the speed of the induction motor.

The notation x(tit) is used to mean the s4ate estimate at time t, follotving the update

resulting from the measurements u(t) and y(t), at time t.

2. Neural Networks lmplemen(, ation

The problem formula4ed in the preceding subsection is solved by employing neural

networks to approximate the nonlinear functions f(.) and h(). The inputs u(t),

the outputs y(t) and 4he state x(t) are assumed available through measurements or

compu4ations. A block diagram depicting the s(, ructure is presented in Figure 2.

The nonlinear equations (2. 1) can be rewritten in the innouattons form as shown

below:

11

y(t+ 1[t) = hi„„(x(t[t — I), u(t), C(t)), (2 3)

where f, „„() and hi„„(.) are nonlinear functions related to f(.) and h().

The "innovations" function, C(t) is defined as P(t) — P(t[t — I), where P(t) and

P(t[t — I) are nv x I vectors and are defined as follows:

g(t) = [y(t), y(t — I), . . . , y(t — nv)], (2. 4)

P(t]t — I) = [y(t]t — I), y(t — 1]t — 2), . . . , y(t — n„]t — n„— I)]. (2. 5)

The aforementioned equations 2. 5 can be written in a prediction-update form.

In the prediction-update form of the state filter, the prediction step obtains a future

estimate of the state x(t + 1]t) using measurements up to snd including time step

t. In the update step, the predicted state value, x(t + 1]t), is updated to account

for the stochastic and/or modelling inaccuracies present in the prediction step. The

innovations term in the filter account for the stochastic effects and system modelling

uncertainties unpredictable in the prediction step. Since the updated state value

already has been compensated by the innovations term, use of both P(t) and P(t[t — I)

in obtaining the state/output prediction is not necessary. In this filter I'ormulation,

the most recent value of P(t) is used instead of P(t[t — I). The nonlinear functions

fi„, (-) and h, „„, „(.) of the predictor can be approximated using neural networks as

discussed further in [I].

The prediction and the update step equations using neural networks as approxi-

mators of the non linearities are non linear functions is presented below.

Step I — Prediction Step:

The state and output predictor values are obtained using the following equations:

N (I+ l[t) = ftv ((t[t), . u(t), INN(t[t — I)),

yp, , ~(t+ l]t) = h»(x»(tlt): u(t) &NN(tlt — 1))

where x»(t+ l[t) and y»(t+ 1]t) are the neural state and output predictions, and

where P»(t]t — 1) is the vector containing the present and past output predictor

responses.

Step 8 — Update Step:

The state prediction is updated using

x (t+1]t+1) =K „(x (t+1]t), P(t+1), E(t+1)), (2. 7)

where the vectors g(.), P~~(t + 1[t), E() are defined as

P(t + 1) = [y(t + 1), y(t), . . . , y(t — rt„+ 1)]", (2. 8)

&~~(t+ lit) — = [yNN(t+ lit), —, y»(t — nv+ lit — nv)]', (29)

E(t+1) = X(t+1) — yNN(t+ l]t). , (2. 10)

E(t + 1) = [e(t + 1), e(t), . . . , e(t — n, + 1)], (2. 11)

and where e is a n, x 1 vector and is defined as,

e(t+1) = — y(t+1) — yNN(t+ lit): (2. 12)

is the innovations term as defined in the standard Kalman Filter. The nonlinear

functions represented by f»(.), hrr~(.), ancl K»() are the neural networks ap-

13

proximations in the filter equations]1].

3. Speed Filter Description

The above formulation of the state filtering problem and its solution is applied to the

problem of induction motor speed filtering.

Information about the induction motor such as nuinber of pole pairs, p; slip

at rated load, f, lrorrsol; no load slip, f„~. , are used in the filter development. The

measurements include the motor currents and voltages. Rotor slot harmonic analysis

is used to extract the target speed estimate for the neural network training [11].

The output predictor, the second of equations (2. 6), consists of three feed for-

ward multi-layered perceptron (FMLP) neural networks that predict the three motor

currents f, (t + 1]t), Is(t + 1~t) and 1, (t + 1]t), respectively. The state predictor, the

first of equations (2. 6) is modelled by a single FMLP neural network that predicts

the induction motor speed i3ivrr(t + 1~t).

The predictor equations (2. 6) can be re-written with the currents and speed

substituted as shown below:

aiiviv(t+ 1]t) = fp&(iviviv(t]t), u(t), IivN(t~t — I)),

INN(t + 1]t) = hivrv (i ziv(t]t), u(t), Iz&(t]t — I)),

where Iivrr(t~t — 1) is the vector containing the history of the motor current predictions.

The update network contained in equation (2. 7) is modelled by a FMLP neural

network. This network updates the predicted speed i3rrrr(t + l~t) by taking into

account the stochastic and/or modelling inaccuracies. The update equation (2. 7) is

re-written with the motor speed substituted as

imari~(t + 1]t + 1) = kw~(ag~(t + 1]t), Iiviv(t + 1[t), . Incurs(t + 1), E(t + I)), (2. 14)

where K~s. is the filter gain, and the vectors are defined as

(2. 16)

and where,

e(t + 1) = I(t + 1) — I pic (1 y 1]t),

is the innovations term. It should be noted that the predictor networks are dynamic

FMLPs, whereas the update network is a static FMLP. A block diagram of the neural

network based speed filter is shown in Figure 3.

The training schemes used to train the neural networks are briefly discussed in

the following subsection.

4. Neural Network Training

In the preceding subsection, the neural network solution for the motor speed filtering

problem was presented. The neural networks need to be trained before they can be

implemented in the filter.

Training data set development is one of the most crucial step in neural network

training as the accuracy of the state filter will depend on the accuracy of the values

used to train it. Data collected from experiments v as used to create the training

set. The training set is constructed carefully so ss to be a representative of the filter

Induction
Motor

, V(t+1) I(t+1) i'

INN

Vt
'I(INN(t l t

RMS B s

SN (tl t-1

I(t+1)

t+1 I t) + B(tet)

Neural Net
Current

Predictors

Delay
Bank

INN(t+llt)

Delay
Bank NN(t I t-1

Vt
IRMS(t)

'ENN(t I t)

Neural Net
Speed

Predictor

INN(t+1 I t)

F(t+I Neural Net
A

'ENN(t+I I t Speed
Filter

NN(t+I I t+1)

Neural Network Speed Filter

Fig. 3. Block Diagram of the Neural Network Speed Filter.

operating range. The evaluation (or cross-validation) data set is collected in a similar

manner to the training data set.

The neural networks need to be trained with some target speed signal. In this

study, the actual induction motor speed signal wss not used for training because of the

assumption that the induction motors in industrial setups do not have speed sensor.

The speed signal used for training the neural networks in this study is obtained using

rotor slot harmonic (RSH) analysis of the induction motor current. More information

about the accuracy is discussed in chapter IV.

The networks were trained separately before they are coupled with each other.

The predictor networks are trained before being coupled to the speed update network.

Of the predictor network bank, the line current predictors are trained before the speed

predictor network. Finally, the speed update network is trained.

The network thus trained is applied to the setup from which the training data is

gathered. When the filter needs to be implemented in other induction motors, some

amount of tuning of the weight files is necessary to improve the accuracy of the filter.

B. Chapter Summary

In this chapter, the'details of the neural network induction motor speed filter de-

veloped in [I) were presented. The filter developed was primarily tested for off-line

conditions where the data collection and speed filtering are done separately. The

filter will now be re-written so that it can be implemented on-line where data collec-

tion and data processing is done simultaneously. In the next chapter the dei, ails of

the developed ueural network framework and LabVIEW development and integration

details are presented.

CHAPTER III

ON-LINE IMPLEMENTATIOlii OF SPEED FILTER.

This chapter deals with the on-line development and integration of the neural net-

works based speed filter discussed in t, he preceding chapter. This chapter is divided

into four sections. In the next section, the filter architecture is discussed. In section

B the issues involved in the development of the neural networks framework are de-

scribed. In section C the components of the neural network speed filter are presented.

In the last section, a summary of the chapter is presented.

A. Neural Networks Architecture of the Speed Filter

The neural networks based filter presented in chapter II is made up of five neural

networks that are interconnected. Three 8-5-1 dynamic FMLP neural networks are

used to predict the three line currents, I„J«and I, . The inputs to the predictors are

the three line voltage [Vz(t), Vs(t), V~(t)], latest available speed estimate i5rvs (t[t),

the root-mean-square (RMS) of line current I~ ni«rs(t) and the delayed current pre-

dictions [lrirv q(t[t — I), Js~ n(t[t — 1), Iivri o(t]t — 1)] The outputs of the predictor are

IwivA(t+ 1[t). , Irvw n(t+ 1[t) and Irvyo(t+ 1]t). The structure of the predictor bank

is shown in Figure 4.

The speed predictor is characterized by a 9-7-1 static FMLP network. The speed

predictor uses the three sampled line voltages [Vq(t), Vs(t), Vo(t)], the three current

predictions [Iiviv ~(t[t — I), lrirv s(t]t — 1), Is iv o(t]t — 1)] and the latest available filtered

speed awiv(t]t) to predict the motor speed i5iv~(t + 1[t), Figure 5 depicts the speed

predictor.

The speed update network uses the innovations [«s(t + 1). , es(t + 1). , «o(t+ 1)]

from the current predictions, the line current predictions [Iiv, v s(t + 1]t), I~~ s(t +

U(t)

toNN (tlt)

INN, A(tlt I)

IA|NP(tlt-I)

4N, c(tit- I)

z'

Neural Net

Phase-A

Current

Predictor

(FMLP
8-5-1)

IttN A(1+ I It)

U(t)

ft) NN (tlt)

INN. A(tlt-t)

I~a(tlt-I)

INN'(tlt-I)

z'

Neural Net
Phase-B
Current

Predictor

(FMLP
8-5-1)

INN, n(I+ lit)

U(t)

(ONN (tlt)

INN'(tlt I)

INspitlt-I)

I~c(tlt-I)

za

Neural Net

Phase-C
Current

Predictor

(FMLP
8-5-])

INN, c(I+ lit)

U(t) = [V(t), 1A ttMs(t)]

Fig. 4. Neural 1 network Architectures of the Current Predictors.

JA'A'A (re I)

I ua a(t)i - I)

IA~dI~I-I)

ISr C(t[t)

Neural Net

Speed Predtctor

(FMLP 9-7-])
@Q&+l~t)

U(II

U(t)= [V(t), lA, as(s(o]

Fig. 5. Neural Network Architecture of the Speed Predictor.

l~t), IwIA o(t + l~t)j, the RMS value of the line currents and the predicted speed

aIIvrr(t+ 1~t) from the speed predictor network to generate the filtered speed estimate,

aitvtv(t+ ljt+1). The sPeed uPdate network is characterized by a static 8-16-1 FMLP

network The speed update network is shown in Figure 6.

B. Neural network Framework

As described in the previous section, the speed filter is composed of five couple neural

networks of different architectures. Also. the structure and/or the architecture of

the networks can change in future implementations. Hence a generic neural networks

framework that can be used to construct such en(, ities is needed. The following

subsection discusses the development of such neural nettvorks framework.

20

4(&+tltl

c(t+1)

ius, A(1+ lit)
Irrrr a(t+ I It)
4s, c(t+ 1 lt)

lattMs(t+I)

Qrrrr (t+1 ~t)

Neural Net

Speed Update

Network

(FMLP 8-16-1)

rctrs(t+ lent+ I)

Fig. 6. Neural Network Architecture of the Speed Update.

1. Neural Networks Implementation Framework Development

The implementation framework is developed using the C programming language. The

framework is used for constructing different entities like filters and predict;ors, that

use different combinations of neural networks. The inputs to the framework are the

neural network data, such as the archit, ecture of t;he networks to be constructed and

the weights and biases for each of the networks. The inputs and outputs of the neural

networks framework implementation of the speed filter are shown in Figure 7. A

control script is used to specify the architecture of the entity to be constructed. The

details of this control script are presented in the following subsection.

2. Control Script

The control script contains the following; information:

1. Number of networks

21

Input Data

Ptlter Network

Architecture
Neural Network

f mmework

Ptltercd Speed

r Weights and

Bias Information

Fig. 7. Input;s and Outputs of Neural Network Framework implementation of the

Speed Filter.

2. Number of input channels

3. input data mode

4. Mode of operation of each network

5. Number of layers per network

6. i%umber of nodes per layer per network

7. Weight and Bias filename per network

8. input layer mapping for each network

Each of the input specified in the script is explained below:

Number of networks:

22

This field specifies the total numl&er of networks that are used t, o construct an

entity. In the case of the speed filter, this value is equal 4o five.

Number of mput cbannelsi

This quantity specifies the number of external inputs sent to the filter. This

quantity does not refer to the number of inputs to each of the networks in the filter, but

corresponds to the total number of external input signals sent to the filter. Dependiug

on the input data mode, this corresponds to either the number of channels in the data

acquisition system or to the number of columns in the input data file. In the case of

the speed filter, this is value equal to eight.

Input data mode:

This field specifies the mode of data, input. The data to the network can come

from a file as in the case of an off-line run, or from a data acquisition system as in

the case of an on-line execution.

Mode of operation:

This field is specified for each of the network. A network can execute either in

sta4ic (FMLP) mode or in recurrent (RMLP) mode. A network said to be in RMLP

mode when there are cross-talk between the nodes in the hidden layer. The value of

0 and I correspond to FMLP and RMLP respectively. Since this quantity is specified

for each of the networks, an enti4y can contain different combination of networks

operating in either one of these modes.

Number of layers:

This field is valued for each of the networks. The number of layers of a network

is specified in this field.

Number of nodes per layer:

This field is specified for each of the networks. The number of nodes per layer is

specified in this fielrl. The nuinber of nodes in the outpu4 layer is sbvays set equal to

23

one.

Weight and bzas filename:

The weight and bias file information is specified in this field. One file per network

is specified.

Input layer mapping:

The program requires precise information regarding the mapping of input data

point to the input layer nodes of each of the network. This set of inputs contains

the information regarding the assignment of data to the input layer for each of the

neural network. This field is equal to the number of input nodes per network. The

information provided by this field specifies the source of data (i. e. , measurement

or predictions), delay value of data and/or any arithmetic operation that needs to

be performed between different data (i. e. , an arithmetic operation such as addition

or subtraction can be performed between two data samples and the result of that,

operation can be specified as one of the inputs).

3. Neural Network Process Flow

The control script provides all the information necessary to construct and execute

different combinations of neural networks. The control script is read, and based on

the information regarding the number of layers per network and number of nodes

per network, appropriate amount memory for weights and biases is allocated. The

next step is to load the data points into a bi-directional link-list structure. It can be

seen that there is no need to specify the number of input data samples in the control

script. The link-list, structure is necessary because in the control script no information

is specified regarding the number of data points to be processed. Once all the data

are loaded, the processing through the network is initiated. For every data point

selected, all the networks are processed sequentially. The input layer of a network

24

selected for processing is assigned with appropriate data values based on the mapping

information provided in the control script. The next step is to perform an FMLP or

an R. lvILP forward pass on the network based on the specifications provided in the

control script. The above routine is performed for all of the data points provided.

In special cases, when the mapping of the input layer specifies unavailable data (i. e.

delayed values of an output), the input node is assigned a zero and the processing is

continued till the appropriate data become available. The fiow chart for the execution

described is presented in Figure 8.

C. Components of the On-line Speed Filter

This section describes the components of the on-line speed filter. The data collected

from the induction machine consist of speed signal from speed sensor, three line

voltages, and the three line currents. A series of steps, namely data preprocessing,

speed filtering and data postprocessing are performed on the data collected from the

induction motor to estimate the speed. Figure 9 shows the components of the speed

filter. Each of the step is discussed in detail in the following subsections.

1. Data Collection Module

Data collection is performed in seven channels by a LabVIEW data acquisition system.

The input data consists of three line voltages, three line currents and speed signal

sampled at 3840 Hz. It should be noted that the speed signal is not used in processing

at any t, ime by the speed filter. The speed sensor signal is collected only for comparison

of the speed estimate of the filter. The filter cut-off is set at the Nyqnist I'requency

to prevent signal aliasing. The sampled clata are buffered and are made available to

the filter modules. The sampled measurements are referred to as the Ilarv Data. The

Read Control

Script

Select
Network

For Processing

Allocate
Memory for

Weights And

Biases

Setup Input
Layer

Read Weights
and Biases

Perform
Forward Pass

Cakulation

Read Input
Data points
into Link-list

Strucuhe

All Netw~orks

Processed?
No

No

Processed?

Select Data
Point

to Process

Write Results
and Terminate

Fig. 8. Process Control Flow of the IVeural Networks Framework.

naia
Acquisition

Module

osis
Preprocessmg

Module

Processed
oats

Speed Fillerirlg
Module

Filtered
Scaled
Speed

Oats
Post Processing

Module

Filtered
Actual
Speed

Fig. 9. Components of the Speed Filter.

size of the data scanned varies and it can be controlled by the user depending on the

desired speed of operation of the speed filter.

2. Data Preprocessing Module

Raw data from the data acquisition system must to be preprocessed before it can

be used by the neural networks. The preprocessing consists of three steps namely,

RMS calculation, cropping and scaling. This series of data preprocessing is described

below.

RMS Calculation:

The neural network speed filter requires the RMS of the line current as one of

the inputs. This information is calculated from the raw line currents. A moving

window RMS calculation is performed on the input currents. The window size varies

from 2 cycles to 6 cycles depending on t, he desired speed of filter operation. There

is a trade-off between filter accuracy and speed, as the RMS window is varied. It

should be noted that an even number of cycles is used for the RMS calculation. The

moving distance of the window is sct, at I, but this value can be changed by the user

27

as desired. If the input power supply is balanced, the RMS is calculated from one

of the three line currents selected arbitrarily. But, if the input power supply is not

balanced, then RMS calculation is performed on all the three line currents and the

average of the three is used. Even in the case of a balanced supply, the average RMS

should be used because of the imbalance due to faulty motors.

Cropping and merging of the data:

The data length of the resulting line current RMS calculations is less than the

length of t, he other data signals by an amount equal to the window size used for

the RMS calculations. Thus, the rest of the data must to be cropped to the size of

the RMS array size before they can be merged. The cropping module removes equal

amount of data in the leading and the trailing ends of the currents, voltages and speed

data. The RMS value is inserted as the fifth column after the speed and the three

voltages in the data pool. This operation is performed using a LabVIEW program.

Scaling of the data:

The neural networks used in the speed filter require the input data to be in the

range +0. 5 and — 0. 5. Data beyond the limit of +0. 5 will cause the filter networks

to saturate. Hence, the cropped and merged data is scaled based on some scaling

transformation and associated parameters. The scaling parameters are selected based

the data set present in the network training. In the current implementation, the

scaling developed in [I] is used.

The preprocessing steps for balanced power supply is shown in Figure 10. Figure

11 shows the preprocessing for unbalanced power supply and unbalanced motor stator.

28

Data loreprocessing Module

at Va
Vb
Vc

cs ia
Ib

Ic

Cropping
Module

Scaling
Module

1

Va
Vb
Vc
Irma
la
Ib

Ic

O g
ar
m 0
ar n

rll

Ol

Ol

Ol

Q.

0: Recall
1: Training

Moving
Window RMS

Calculation
Module

Irms

Load Level

Fig. 10. Block Diagram of Preprocessing for Balanced Power Supply or lVIotor Stator

29

Data Preprocessing Module

Va
Vb
Vc

O la

lb

Ic

0: Recall
1: Training

0

Cropping
Module

Average
Moving

Window RMS
Calculation

Module

Irms

Scaling
Module

1

co

Va
Vb
Vc
Irma
la
Ib

Ic

O 0
st 0
lu rt

al
ul
rs
rs
CL

Load Level

Fig. 11. Block Diagram of Preprocessing for Unbalanced Power Supply or Motor Sta-

tor.

30

3. Speed Filter Module

The processed data is passed to the speed filter for calculating the speed information.

The neural network framev;ork is used to construct the speed filter. In this implemen-

tation two filters, one for 0% — 70Fo and another 703o — 120% of full load, are used to

estimate the speed based on the motor load level. The RMS value of the line current

is used to determine the motor loading level. In order to use the appropriate filter

parameters during load changes, the RMS value of the current is monitored. The load

level detected is used to select the appropriate filter based on the load level detected.

Since the RMS is monit;ored continuously, the filter is able to estimate speed during

load variations. The load-based filter selection scheme is presented in Figure 12.

The neural networks framework is compiled as a dynamic link library (DLL) that

can be called by a special LabVIEW routine known as the call library function. This

function passes the data from the preprocessing module to the DLL and retrieves the

filtered speed results from the DLL. The speed filter module is presented in Figure

13.

4. Data Post, processing Module

The speed estimated by the speed filter module does not refiect the actual speed of

the motor. The speed values needs to be un-scaled to indicate the actual speed of

the mot, or. The parameters used for scaling the input data are used in the un-scaling

process. The un-scaled speed is presented in a waveform chart. The data can also be

stored in a file or passed to any other application that requires speed information.

Data
Acquisition

Module

Raw Data

Preprocessing
Module

Processed Data

YES
High Load?

NO

Processed Data Processed Data

High Load
Filter

Low Load
Filter

Filtered Speed

Post
Processing

Module

Fig. 12. Motor Load-based Filter Select, ion Scheme.

Speed Filter Module

Lab ViEW

Filtered Scaled Speed

Load
Selection

Module

DLL Call
Library

Function

Preprocessed
Data Filtered, 'Speed

Speed Filter
DLL

Control Script

Weights and
Biases
(Model)

Fig. 13. Speed Filter Module.

D. Chapter Summary

In this chapter, the development of the neural networks framework as presented. Then

the implementation of the speed filter using the developed neural network frameworks

and the LabVIEW environment wss discussed. In the next chapter, the off-line and

the on-line case studies performed for filter validation and the associated speed esti-

mation results are presented.

34

CHAPTER IV

EXPERIMENTAL DEMONSTRATION OF THE SPEED FILTER

This chapter presents the response of the speed filter to different sets of pre-recorded

data and to data from the experimental setup used especially in this research. This

chapter is divided into two categories, namely, off-line and on-line collection. The

case studies with off-line data results are presented in the first section. In section B,

the implementation of the speed filter with on-line data collection snd the associated

results are presented. The filter implemented used in both off-line and online dat, a

sets is the same. Only the source of data is changed. The last section summarizes

the results of the speed filter experimental demonstrations. One of the application

of the speed filter is in the area of induction motor fault detection. Most of the

fault detection strategies require a motor speed esi;imate. Once the performance of

the speed filter under faulty motor conditions is studied, it, can also be used in fault

detection schemes. Hence, the speed filter is tested with data collected from both

healthy and faulty motors.

A. Speed Filter Tests with Off-Line Data Collection

The neural networks based speed filter is 4ested with dat, a collected from different

tesi, beds. This was done to study the filter performance under different operating

conditions. Off-line data is available for small machines (3 hp) and large machines (500

and 800 hp). As mentioned earlier, the off-line data is collec4ed from both healthy and

faulty motors so tha4 the fil4er performance can be studied. The following subsection

presents the experimental setup used in 4he ofl'-line data collection from small and

large machines.

1. Experimental Setups Used in Off-Line Motor Data Collection and Speed Filter

Tests

s, . Small Machine Setup

The small machine setup consists of a 3 — 4, 4 pole, 3 hp induction motor powered by

supply mains operating at 60 Hz. The motor is connected to two DC generators in

tandem. The first DC generator is used to load the induction motor. The load on the

motor is changed by varying the armature resistance of the DC generator. The second

DC generator is used to measure the speed signal which is used for comparisons with

the speed filter results. An 8 — channel LabVIEW data acquisition system is used to

record i;he three line voltages, the three line currents and the speed signal. All of the

signals are sampled at 3840 Hz.

b. Large Machine Setup

The large machine data are available for a 500 hp and a 800 hp machine. Experiments

were conducted at Public Service Electric and Gas Motor Repair Pacilzty, Sewaren,

New Jersey. The 500 hp, 3 — 4, 6 pole and the 800 hp, 3 — 4i, 8 pole inductions

motors are run directly from mains. The motor was connected to a dynamometer

which was used to load the induction motor. A 13 — channel IOTech data acquisition

system was used to record the three line voltages, the three line currents, encoder

speed signal, and the four vibration signals. The signals were sampled at 40 KHz

sampling frequency. The current and voltage signals are then downsampled to 3840

Hz. The vibration signals are not used by the filter for estimating the induction motor

speed.

36

2. Speed Filter Results with OII-Line Data Collection

This subsection presents the results of the neural network based speed filter operating

on the off-line data collected from small and large machines.

The speed filter structure that is implemented is described in detail in the pre-

ceding chapter. The fili, er components are implemented in LabVIEW. The raw data

collected from the induction motor are downsampled to 960 Hz and the average RMS

of the line current is calculated. The data is then scaled between — 0. 5 to 0. 5 using

the appropriate scaling parameters and is passed to the speed filter. The speed filter,

which is a dynamic link library (DLL) developed in the C programming language,

accepts data from the LabVIEW subsystem and returns the filtered speed back to

the LabVIEW subsystem. Separate weight and bias files are used to estimate the the

speed for the low load and high load region. A parameter passed from LabVIEW

to the DLL indicates the appropriate weight snd bias files i, o be used during speed

estimation. The LabVIEW program is equipped with controls to change the filter pa-

rameters, such as the size of data used for processing, and the RMS window size. For

the small machine tests, two sets of weight files, one for low motor load (0% — 70%)

and another for high motor load (70% — 120%) are used. One set of weight and bias

file 500 hp and another for the 800 hp machines, respectively.

a. Small Machine Test Results

All the results presented are compared with the rotor slot harmonic speed estimate.

This estimate is obtained based on some speed dependent harmonics in the current

signal and is considered as a good estimate of the speed. Another reason for using the

estimate is that the neural networks are trained using the harmonic speed estimate.

This makes furl, her tuning of networks possible without the need of a speed sensor.

37

1780

— 1760
E

1740

ee 1720

1700

1680
0

1780

10 15
time (sec)

— Generator Speed Signal

20 25

-1760
E

1740
rr e e1720

1700

— Oe-noised Generator Speed Si nal

1680
0

1780

-1760
E

1740

ge 1720

1700

1680
0

10 15
time (sec)

10 15
time (sec)

20

— Harmonic Estimate of S eed

20 25

Fig. 14. top: Speed Signal from Generator; middle: De-noised Speed Signal; bottom:

Harmonic Speed Estimate.

Figure 14 shows the harmonic estimate for small machine speed signal. It can be seen

that the estimate is within 3 — 10 rpm of the actual speed. It should be noted that

the rotor slot harmonic speed estimate can done only in off-line conditions because

of computation delays.

The filter estimation errors are calculated for each of (, he case study presented

in this work. The average and maximum error percentage is presented at the end of

each section. The estimation error is calculated as,

(O7RSH tONN) Error =
off(sit

(4. 1)

38

1800

1790

1780

1770

E o.
cr 1760

ro

1750

1740

1730 — Harmonic Speed Estimate
S eed Filter Res onse

1720
0 10

time (sec)
15 20

Fig. 15. Speed Filter Response for 3 hp IIealthy Motor; 0% — 70% Load Range.

where 07tvtv and ornstr correspond to filter speed estimate and harmonic speed esti-

mate, respectively. The response of the speed filter for a healthy motor operating

under low load (0% — 70%) and high load (70%o — 120%) conditions is presented in

figures 15 and 15.

In industrial setups, the 3 — tt power supply is not always balanced. Due to the

supply imbalance, the speed of the machine will be reduced. The filter wss also tested

with data collected from motors with input supply imbalance. Figures 17 and 18 show

the filter response in the low load and high load range under 0. 5% unbalanced power

supply condit, ion.

39

1760

1750

1740

1730

E o.
sr 1720
e
O.
N

1710

1700

1690 — Harmonic Speed Estimate
Speed Filter Response

1680
0 10

time (sec&
15 20

Fig. 16. Speed Filter Response for 3 hp Healthy Motor; 70Fo — 120%% Load Range.

40

1800

1700

1780

1770

1760
E a
sr 7750

g
ro

1740

t 730

1720

1710
— Harmonic Speed Estimate

Speed Filter Response

1700
0 2 4 6 8 10 12 14 16 18

erne &sec)

Fig. 17. Speed Filter Response for 3 hp Healthy Motor; 0% — 70% Load Range, with

0 5% Unbalanced Power Supply.

1760

1750

t 740

1730

E
E
o 1720

K.
ro

1710

1700

1690 — Harmonic Speed Estimate
S ed Filter Response

1660
0 10

time (sec)
15 20 25

Fig. 18. Speed Filter Response for 3 hp Healthy Motor; 70% — 120% Load Range, with

0. 5% Unbalanced Power Supply.

42

1790

1780

1770

1760

E 1750

'0

f1740

1730

1720

1710

1700

— Harmonic Speed Estimate — Speed Filter Res nse

0. 5 1 1. 5 2 2. 5 3 3. 5 4 4. 5 5 5. 5
time tsec) x 10

Fig. 19. Speed Filter Response for 3 hp Healthy Motor; 0%0 — 120% Load Range, with

0. 5% Unbalanced Power Supply.

The response of the speed filter when the load changes from the low load region

to the high load region is presented in Figure 19. The BMS of the motor current is

monitored and appropriate filt, er parameters are used depending on the motor load

level detected.

Figures 20 and 21 show the filter response to 4. 5% unbalanced supply in the

00%a — 70% load range, and 5, 4%a unbalanced supply in the 70% — 120% load range,

respectively. It can be seen that the filter performance does not, degrade significantly.

The filter was also tested with signals collected from motors with broken rotor

1800

1790

1780

1770

E 1760

j 1760

1740

1730

1720

— Harmonic Speed Estimate
Speed Filter Response

1710
0 2 4 6 8 10 12 14 16 18

time tsec)

Fig. 20. Speed Filter Response for 3 hp Healthy Motor; 0% — 70% Load Range, with

4. 5% Unbalanced Power Supply.

44

1760

1750

1740

1730

E o.
sr 1720 e e o.
o&

1710

1700

1690 — Harmonic Speed Estimate
S eed Filter Response

1680
0 2 4 6 8 10 12 14 16 18

time (sec)

Fig. 21. Speed Filter Response for 3 hp Healthy Motor; 70% — 120% Load Range, with

0. 4% Unbalanced Power Supply.

1800

1790

— Harmonic Speed Estimate
— — Speed Filter Res onse

1780

1770

1760

E o.
er 1750

1740 '

1730

1720

1710

1700
0 3

time (sec)

Fig. 22. Speed Filter Response for 3 hp Motor with 3 Broken Rotor Bars; 0% — 70%

Load Range.

bars. Figures 22 and 23 show the filter response with three and four broken rotor

bars, respectively. It should be noted tliat the speed filtering is done with the filter

parameters developed for a healthy motor. Due to this reason, the filter performance

somewhat suffers.

The filter performance for the large machines is presented in Figures 24 and 25.

Figure 24 shows the filter response for the 500 hp motor and Figure 25 shows the

filter response for the 800 hp motor. It can be seen that the filter perfortns reasonably

well in both the cases. All the cases presented in this study used thc RMS value of

the current calculated using 4 cycles of data.

1760

1750

1740

1730

E
CL

cr 1720 e
CL
N

1710

1700

1690
— Harmonic Speed Estimate

S eed Filter Response

1680
0 2 4 6 8 10 12 14 16 18

time (sec)

Fig. 23. Speed Filter Response for 3 hp Motor with 4 Broken Rotor Bars; 0% — 70%

Load Range.

47

1204
— Harmonic Speed Estimate

Speed Filter Res onse

1202

1200

1198
E
E.

I 1196

1194

1192

1190

1188
0 20 40 60 80 100 120 140 160 180

time (sec&

Fig. 24. Speed Filter Response for Healthy 500 hp Motor; 100'Fo — 50% Load Range.

48

725 — Harmonic Speed Estimate
Speed Filter Response

720

E o.

ID e a
rrt

715

710
0 10 20 30 40 50 60 70 60 90 100

time (sec)

Fig. 25. Speed Filter Response for Healthy 800 hp Motor; 100'Fo — 50% Load Range.

49

The maximum and average estimation errors for the above case studies with

healthy small machines are presented in Table I. The average and maximum estima-

tion errors for the case studies with faulty small machines are presented in Table II.

Table III

B. Speed Filter with On-line Data Collection

One of the main objectives of this work is to implement the neural networks based

filter in an online environment. In the preceding section, the results presented are

from data collected at different times from different setups. In order to use the filter

in on-line fault detection schemes, the filter should act on real-time data generating

speed estimates at real-time or close to real-time. This would eliminate the need

for expensive speed sensors, that will render the fault detection schemes financially

unattractive. Moreover, the speed sensors are less robust and are more prone to

failures than the induction motor itself. This would reduce the overall robustness of

the induction motor setup. Lastly, most industrial setups do not have speed sensors

as a standard component and it will be easier to use this filter as an alternative with

minimal cost increase. The above mentioned reasons are the motivation for this work.

The test results with off-line data collection prove the efficacy of the filter in

estimating the speed from the current and voltage signals. In the case studies with

off-line data collection off-line implementation, the speed of execution of the filter is

not a major factor as the program acts on the data as a batch, and the results are

generated once all the data are processed. In an on-line setup, the filter acts on a

small window of data and the estimates of the speed are generated as soon as the data

window is processed. Ideally, the window should be just one data point for each of

the three line currents and the three line voltages. But, the RMS calculation requires

50

Table I. Speed Estimation Errors: Healthy Small Machines; Off-line Data

Case Study Load

Level

Average

Estimation

Error ('Fo)

Average Peak

Estimation Estimation

Error (rpm) Error (rpm)

Peak

Estimation

Error (%)

Healthy

Small m/c

Healthy

Small m/c

Healthy

Small m/c:

0. 5% Unbal.

Healthy

Small m/c;

0. 5'Fo Unbal.

kIealthy

Small m/c;

4. 5% Unbal.

Healthy

Small m/c:

5. 4% Unbal.

Low

(0%-70'Fo)

High

(70%-120%%uo)

Low

(0%-70%)

High

(70%-120%%uo)

Low

(0%-70%)

High

(70%-120%)

0. 26

0. 29

0. 13

0. 16

0. 15

0. 30

4. 65

5. 08

2. 23

2. 67

2. 56

5. 12

14. 79

13. 73

10. 09

10. 30

10. 41

14. 71

0. 83

0. 78

0. 56

0. 60

0. 58

0. 87

51

Table II. Speed Estimation Errors: Faulty Small Machines; OK-line Data

Case Study Load

Level

Average

Estimation

Error (%)

Average

Estimation

Error (rpm)

Peak Peak

Estimation Estimation

Error (rpm) Error (%)

Three Broken

Rotor Bars; Low 0. 15 2. 68 7. 50 0. 15

Small m/c (0%-70%)

Four Broken

Rotor Bars; Low 0. 57 3. 79 10. 09 0. 22

Small m/c (0%-70%)

Table 111. Speed Estimation Errors: Healthy Large Machines; Off-line Data

Case Study Load Average Average Peak Peak

Level Estimation Estimation

Error (%) Error (rpm)

Estimation

Error (rpm)

Estimation

Error (%)

Healthy

Large m/c

(500 hp)

Healthy

Large m/c

(800 hp)

Mix

(50%-100%)

Mix

(50%-100%)

0. 03

0. 09

0. 41

0. 56

2. 21

11. 30

0. 18

1. 59

a minimum of one cycle and hence the minimum window that, can be processed is

equal to one cycle length. The following subsection presents the experimental setup

used in the on-line data collection and speed filter tests.

1. Experimental Setup Used in On-line Data Collection and Speed Filter Tests

This experimental setup consists of a 3 — P, 3 hp, 2 pole induction motor running of

a 3 — P supply mains operating at 60 Hz. The motor is connected to a torque meter

that includes an optical encoder to detect the motor speed. The load of motor include

two rotor disks, a gear box and a centrifugal pump. The rotor disks are perfectly

aligned and the gear box is used to increase or decrease the speed depending on the

specific requirements. The centrifugal pump is connected to a variable area valve and

a variable height water reservoir. By changing the value position from 26Fo open to

100% open and by changing the head applied to the pump by positioning the reservoir

at different heights, the load applied to the induction motor can be varied. In this

setup however, the effect of the valve position and head changes on the motor load

are negligible compared to the static load from the rotor disks and the gear box. This

limitation prevented the filter from being tested online under varying load conditions.

The encoder speed is used in determining the speed filter accuracy. The motor line

currents snd phase voltagef are measured current transformer (CTs) and potential

transformers (PTs), respectively. A 16 — channel LabVIEW data acquisition system is

used to record data from the experimental setup. The data are sampled at 3840 Hz.

The sampled data are sent to the LabVIEW subsystem residing on a Intel Pentium

III based computer. A schematic diagram of the experimental setup used for online

filter testing is shown in Figure 26.

The LabVIEW subsystem provides various means to access the collected data.

In this work, the data was bufl'ered and then read by the LabVIEW filter framework

53

Speed Sensor

Rotor Deck

Output
Valve Control L

Variable
Height Water

Reservoir

Induction Motor Torque
Meter

Gear Box

Centrifugal
Pump

nwe Ue
Saeva sis

m

Sensor
uri Box

iCTs,
PTs)

sa ee sie

Data Aquisition Computer
running labVIEW

Fig. 26. On-line Experimental Setup Used for On-line Speed Filter Tests.

54

program. The amount of data to be scanned and the sampling frequency can be

controlled by the user. Differeni, amounts of data were scanned to test the operating

speed of the speed filter. The results of this on-line implementation are presented in

the following paragraphs.

The filter parameters used in used for this implementation are the same as those

used in the tests with off-line data collection. The filter parameters are later tuned

with data collected from this experimental setup to improve filter performance.

2. Speed Filter Results with On-line Data Collection

Due to the previously described limitations in changing the motor load level, the

motor was operated at a constant load level. The data from the motor are used for

tuning the off-line filter weights. The training requires a harmonic speed estimate as

a target. The harmonic speed estimate was obtained from a FFT-based program that

detects some speed dependent harmonics in the motor current. Since the data does

not contain any transients, the training set was compiled using constant motor load

data collected at different times. Tuning was perfoiined for 100 iterations to obt, ain

the updated speed filter parameters. The results presented here include contain both

un-tuned and tuned speed filter tests. The estimation errors for the tuned and un-

tuned speed filter are presented in Table IV.

Figure 27 shows the response of the un-tuned speed filter. The RMS window

used is 4 cycles, and 3 seconds of data is scanned per iteration.

The filter perforinance after tuning presented in Figure 28. The filter operating

speed can be changed by changing the number of data points scanned at every itera-

tion. It is found that for a data window of 0. 05 sec, 0. 09 seconds are needed to filter

the speed on an average. It can be seen that the alter does not operate in real-time,

but this result is good enough to be used in fault detection schemes, since fault, s do

3600

3590

3580

3570

3560
E

cr 3550

o.
rn

3540

3530

3520

3510

— Denoised Optical Encoder Speed Signal
RSH Estimate
S ed Filter Estimate

3500
0 10 15

time (sec)
20

Fig. 27. Online Speed Filter Response for Healthy 3 hp Motor without Tuning: 30%

Load.

3600

3590

3560

3570

3560
E o.
sr 3550

3540

3530

3520

3510

— Denoised Optical Encoder Speed Signal
— — RSH Estimate

Speed Filter Estimate

3500
0 10

time (sec)
15 20

Fig. 28. Online Speed Filter Response for Healthy 3 hp Motor with Tuning; 30% Load.

not change drastically with time. The errors presented in the Table IV show that the

filter can be tuned effectively with less effort and the performance of the filter can be

improved significantly.

C. Chapter Summary

In this chapter, the speed filter implementation and testing using both for the off-line

and on-line data collection is presented. The speed filter response under unbalanced

power supply conditions and faulty motor scenarios is also presented. In the case of

the faulty motors with broken rotor bars, it is seen that the speed filter perforrltance

Table IV. Speed Estimation Errors: Small Machines: Data from On-line Setup

Case Study Load

Level

Average

Estimation

Error (%)

Average Peak

Estimation Estimation

Error (rpm) Error (%)

Peak

Estimation

Error (rpm)

Healthy

Small m/c;

Before

Tuning

Low

(0%-70%)

1. 18 42. 53 1. 30 46. 76

Healthy

Small m/c;

After

Low

(0%-70%)

0. 01 0. 36 0. 03 1. 29

does not deteriorate drastically. The on-line implementation details, the speed filter

result and the estimation errors under constant load conditions is also presented in

this chapter.

58

CHAPTER V

SUMMARY AND CONCLUSIONS

In this chapter, the research presented in earlier chapters is summarized. The neural

networks framework development, the speed filter components and the filter imple-

mentation details is revisited. Finally, research contribution and suggestions for future

research are presented.

A. Summary of Research

The objective of this work was to develop a generic neural network framework and

to implement the neural networks based speed filter in an online environment. The

framework was developed so that new entities using different combinations of neural

networks could be easily constructed. Different components were developed to process

the raw data from the induction motor setup before it can be used by the neural

networks.

In chapter I, the motivation and background information I' or this work is pre-

sented. A brief note on current techniques for induction motor speed estimation and

neural networks are also presented. Finally, the objective and the procedure of this

work is clearly delineated.

In chapter H, the details of the neural networks based filter and the theory behind

ii, are presented. A brief note on the training of neural nei, works is also presented in

this chapter.

In chapter HI, the neural networks architecture of the speed filter is presented.

The filter is made up of five FMLP neural networks that are coupled to generated

the speed estimate. Three networks predict the three motor currents. One network

aci, s as the speed predictor and predicts thc speed of the motor, and another network

09

updates the predicted speed based on latest available measurements. The details

of the neural network framework design and developmeiit are also presented in this

chapter. It can be seen that the framework is developed so that the design of the

filter can be modified without much coding effort. All of the filter neural network

parameters can be changed using the control script. The different components of the

online speed filter are then discussed.

In chapter IV, the speed filter implementation details using off-line and on-line

data collection are presented. The experimental setup used in off-line data collection

and the response of the speed filter in many case studies are also presented. The

filter wss tested with data collected from faulty machines and unbalanced supply. It

can be seen that the filter performance is reasonable in the presence of unbalanced

power supply, but there is a notable performance loss when faulty machines are used.

The filter's on-line implementation is discussed and the filter results with on-line data

collection are presented. Due to limitations in the experimental setup used for on-line

data collection, on-line filter response during load changes could not be studied. The

filter results before and after tuning are also presented. The filter was tuned with

less than 200 training iterations. This highlights the good generalization capabilities

of the filter.

B. Conclusion

The objectives of this work are to develop a generic neural networks framework and

to implement a previously developed speed filter in an on-line environment. Both

the objectives are met in this study. The neural networks framework is capable of

constructing new entities using different combinations of neural networks. There is

no restriction on the number of neural networks, the number of layers, nodes per layer

60

(except the last layer should always be one), coupling between networks and input

layer mapping. The implemented filter was able to generate speed estimates in the

on-line conditions. The processing speed of the filter is not in real-time due to need

to calmfiate the RMS of the line current and due to speed limitations in hardware.

But, the accomplished processing speed is sufficient for the filter to be used in motor

fault detection schemes, as these algorithms are not very sensitive on real time speed

estimates. Implementation of the speed filter in a digital signal processor (DSP)

environment should speed-up processing, but the inherent limitation imposed by the

calculation on the RMS current remains.

C. Recommendation of Future Research Work

This research shows the feasibility of implementing neural networks based speed filters

on-line. Such filters can be used instead of a speed sensor in limited cases. Some of

the possible topics for future work are:

1. The speed filter processing speed can be improved by using specialized hardware

to generate the RMS of the line current instead of calculating it in the program.

More work can be done in this direction to allow operation of the filter in real-

time.

2. Integration of an adaptation mechanism in speed filter to take care of model

drift is another direction to follow.

3. Improving the training methods would help in better estimates of the speed.

This will have a positive impact on the overall performance of the filter.

REFERENCES

[I] R. . M. Bharadwaj, "Adaptive State Filtering with Neural Networks for Sensorless

Induction Motor Speed Estitnation, " Ph. D. dissertation, Texas AgcM University,

College Station, Texas, Dec 2000.

[2] S. K. Menon, "Adaptive Filtering in Complex Process Systems Using Recurrent

Neural Networks, " Ph. D. Dissertation, Texas A8rM University, College Station,

Texas, 1996

[3] D. J. T. Siyambalapitiya and P. G. McLsren, "Reliability Improvement and Eco-

nomic Benefits of Online Monitoring Systems for Large Induction Machines, "

in IEEE Transactions on Industry Applications, vol. 26, no. 6, pp. 1018 — 1025,

1990.

[4] J. R. Cameron, W. T. Thompson, and A. B. Dow, "Vibrat, ion and Current

Monitoring for Detecting Airgap Eccentricity in Large Inrlucl;ion Motors, " in

IEE Proceedings, Part-B„vol. 133, no. 3, pp. 155-163, 1986.

[5] P. Vas, Paramater Estimation, Condition Monitoring, and Diagnosis of Electrical

Machines, Clarendron Press, Oxford, 1993.

[6) J. Penman and A. Stravrou, "Broken Rotor Bars: Their Effect on Transient

Performance of Induct, ion Machines, " in IEE Proc;Electron. Power Appl. , vol.

143, no. 6, pp. 449-457, 1996.

[7] E. von Westerholt, M. P. -David, and B. de Fornel, "Extended State Estimation

of Nonlinear Modeled Induction Machines, " in Proc. of Power Electron. Spec.

Conf. , 1992, pp. 271 — 278.

[8) Y. -R. Kim, S. -K. Sul, and M. -H. Park, "Speed Sensorless Vector Control of

Induction Mot, or Using Extended Kalman Filter, " in IEEE Transactions on In-

dustry Applications, vol. 30, no. 5, pp. 1125 — 1233, September/October 1994.

[9] M. V. -Reyes and G. C. Verghese, "Subset Selection in Identification, and Appli-

cation to Speed and Parameter Estimation for Induction Machines, " in Proc. of

the Fourth IEEE Conf. Appl. , 1995, pp. 991 — 997.

[10] M. Sumner, B. Conroy, and T. Alexander, "Evaluation of Encoderless Vector

Control Techniques for Induction Motor Drives, " in Proc. of the IEEE Symp. of

Ind. Electron. , July 1995, pp. 315 — 320.

[11] K. D. Hurst and T. G. Habetler, "Sensorless Speed Measurement using Current

Harmonic Spectral Estimation in Induction Machine Drives, " in IEEE T?ansac-

tions on Power Electronics, vol. 11, no. 1, pp. 66 — 73, 1996.

[12] P. Vas, Aritficial-Intelligence-Based Electrical Machines and Drives: Applica-

tion of Fuzzy, Neural, Fuzzy-Neural, and Genetic Algorithm Based Techniques,

Oxford University Press, Oxford, 1999.

[13] A. G. Parlos, S. K. Menon, and A. F. Atiya, "Adaptive State Filtering in Complex

Systems using Recurrent iNeural Networks, " submit;ted to IEEE Transactions on

Neural Networks. 2000.

[14] Anonymous, "What is an Artificial Neural Network?, " in

http://www. emshpnl. gov:2080/proj/neuron/neural/what. htm/, 1997; Date

of Access: August 17, 2001.

VITA

Anis Mohamed Abdul was born in Madursi, Tamilnadu, India. He received his

H. S. degree in mechanical engineering from College of Engin& ering, Guindy, Anna

University, in 1997. He worked as an Assistant Systems Analyst at Tata Consultancy

Services, Madras, India from August 1997 to July 1999. In August 1999, he joined

the master's degree program in Mechanical Engineering at Texas ARM University.

The typist for this thesis was Anis Mohamed Abdul.

