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ABSTRACT 

On-line Implementation of an Adaptive Speed Filter 

and Its Experimental Demonstration. (Deceinber 2001) 

Anis Mohamed Abdul, B. S. , Anna University, Chennai, India 

Chair of Advisory Committee: Dr. Alexander G. Parlos 

Sensorless speed estimation in induction machines is important for numerous 

applications like speed control and fault detection, Sensors are expensive and they 

are not reliable enough to be used in rugged industrial environments. In this work, a 

previously developed neural network speed filter is implemented for on-line induction 

motor speed estimation. 

The speed filter is constructed using a combination of five neural networks. A 

neural networks framework developed in this work is used to construct the speed filter. 

The filter uses the three motor terminal voltages, the line currents, and the RMS of 

on-line current as inputs to estimate the speed. The data are preprocessed by a set 

of LabVIEW modules before they are sent to the nmiral networks. The preprocessed 

data are used by the neural networks to compute the induction motor speed. The 

output from the neural networks is then scaled to obtain the motor speed estimate. 

The filter is implemented and tested using both off-line and on-line collected 

data. The filter is also tested with unbalanced power supply and faulty motors to 

study its generalization capability. The filter had an average estimation error between 

0. 1% to 0. 3% for the data collected off-line. For the data obtained from on-line setup, 

the average estimation at steady state is 0. 15% 

This research demonstrates the feasibility of using adaptive file-based software 

sensors instead of hardware sensors thereby significantly reducing implementation 



costs and improving overall system robust, ness. The neural networks framework de- 

veloped in this work adds flexibility and scalability in further improving the developed 

induction motor speed filter. 
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CHAPTER I 

INTRODUCTION TO INDUCTION SPEED ESTIMATION 

A. Introduction 

Induct;ion motors represent some of the most widely used prime-movers in industry. 

In particular, squirrel cage induction motors are used to drive complex and vital 

components in power plants and process industries. Failure of such motors could 

result in unscheduled downtime, loss of productivity, causing heavy financial losses. 

Hence, there is a clear need to preempt such failures. Online monitoring and early 

detection of faults has become necessary to improve reliability and avoid catastrophic 

failures [3]. Most fault diagnosis schemes are based either on the inspection of the 

motor current spectrum and the detection of some speed dependent harmonics or the 

measurement of vibral;ion levels [4, 5). These schemes require an accurate knowledge 

of the motor speed for effective condition monitoring and fault detection. In the 

majority of industrial setups, like power plants and process industries, induction 

motors do not have any speed sensors. Further, the motors operate under both 

balanced and unbalanced power supply conditions. 

Control of electrical motor drives is another application that requires the speed 

and/or position signal. Field-oriented or vector-controlled techniques have inade pos- 

sible the development of high dynamic performance induction motor drives. However, 

to obtain optimum dynamic performance, speed and/or position transducers are re- 

quired. Speed sensors, like tacho-generator, encoders and Hall effect sensor, would 

increase the cost of induction motor drives [I). Moreover, the failure probability of a 

sensor is generally higher than t, hat of the motor. This reduces the intrinsic mechan- 

The journal model is IEEE 7?anssctions on Automatic Control. 



ical robustness of L, he induction motor. To avoid the prol&lems associated with L, he 

introduction of a speed sensor for induction motor control, sensorless speed control is 

fast emerging as a viable alternative. 

Therefore, an effective sensorless speed estimation meLhod is desirable not only 

for online condition monitoring of induction motors, but also for sensorless speed 

control applications. For the remainder of this thesis, a squirrel cage induction motor 

will be referred to simply as induction motor or induction machine. 

B. An Overview of Estimation Problems 

Est, imation is the process of calculating the state(s) of a dynamic system using ob- 

servations collected from the system, and a pre-specified or identified mathematical 

model of the system. The states of the system are nothing but variables that com- 

pletely specify the behavior of the system. 

Estimation can be further classified into different categories. The notation used 

in this thesis for the state estimate, z(t~t), denotes its value at a discrete time t up 

to and including all the measurements till the discrete Lime instant t. 

The categorization of the estimation problem is done based on the time instant 

for which a value of the state estimate, x(t~t), of the state, x(t), is desired and the 

time instant until which the measurements, y(t), are available and/or used [2]. The 

different categories are presented below. 

1. Smoothing 

Smoothing refers Lo the estimation of an unmeasurable or unmeasured variable of 

interest at Lime step (t), based on measurements up to and including time step (t+ A), 
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Fig. 1. Types of State Estimation Problem. 

2. Filtering 

Filtering refers to the esi, imation of an unmeasurable or unmeasured variable of in- 

terest at current time step t, based on measurements available up to and including 

the current time step t. 

3. Prediction 

Prediction refers to the estimation of a variable of interest at a future time step 

t0, based on the measurements available up to and including the current time step 

(t — A), A ) 0. Predictions that, aim to estimate the value of a variable of interest, at 

a time step (t + 1) using measurements up to and including time step 1 are referred 

as single-step-ahead predict, ions. When the prediction aims to estimate the value of 

s variable at a time step (L+ 1) using measurements up to and including time step 



(I — p+ 1). , p ) 0 it is referred as multi-step-ahead prediction. 

The aforementioned three types of state estimation problems are depicted in 

Figure 1. 

C. Introduction to Neural Networks 

Neural networks are an inforination-processing paradigm inspired by the way the 

densely interconnected, parallel structure of the mammalian brain processes informa- 

tion (14]. Neural networks are also referred to as connectionist architectures, parallel 

distributed processing and neuromorphic systems. 

Neural network computing is composed of a large number of highly intercon- 

nected processing elements that are analogous to neurons and are tied together with 

weighted connections that are analogous to synapses that connect neurons. Learn- 

ing typically occurs by example through training, or exposure to a truthed set of 

input/output data where the training algorithm iteratively adjusts the connection 

weights (synapses). These connection weights store the knowledge necessary to solve 

specific problems. 

There are multitudes of different types of neural networks. Some of the more 

popular include the multilayer perceptron which is generally trained with the back- 

propagation of error algorithm, learning vector quantization, radial basis function, 

Hopfield, and Kohonen, to name a few. Some neural networks are classified as feed- 

forward while others as recurrent (i. e. , implement feedback) depending on how data 

is processed through the network. Another way of classifying neural network types is 

by their method of learning (or training), as some neural networks employ supervised 

training while others are referred to as unsupervised or self-organizing. Supervised 

training is analogous to a student guided by an instructor. Unsupervised algorithms 



essentially perform clustering of the data into similar groups based on the measured 

attributes or features serving as inputs to the algorithms. This is analogous to a 

student who derives the lesson totally on his or her own. Neural networks can be 

implemented in software or in specialized hardware [14]. 

It can be seen from the above text that neural networks are trained by adap- 

tation using a cost criterion, and are believed to be good at interpolation and some 

extrapolation. This trait makes them a valuable tool for non-linear curve fitting [2]. 

D. Overview of Induction Motor Speed Estimation 

Induction motor speed estimation is discussed in a variety of prior literature, with 

most addressing it from the motor control perspective. The methods discussed in the 

literature can be classified into two broad categories [I], namely those that estimate 

speed using an induction motor model reference strategy, and those that estimate 

speed by analyzing the harmonics of the stator current waveform. Some of the meth- 

ods used in speed estimation are summarized below: 

~ Motor model-based speed estimation methods use a model of the induction 

motor whose speed is to be estimated. Three main types of algorithms have 

been proposed in the literature for induction motor speed estimation: extended 

estimators for rotor speed estimation [7, 8), linear regression approach [9] and 

model reference adaptive systems [10]. The limitation of the model-based speed 

estimation is its dependence on machine parameters. Thus, the knowledge of 

electrical and mechanical characteristics is needed. These parameters are not 

generally known or widely available. Moreover, many of the schemes discussed 

assume linear machine models and time-invariant parameters. This results in 

poor speed estimation. 



~ Speed estimation using harmonic analysis of the stator current is another tech- 

nique discussed in 4he literature. This method relies on the detection of specific 

harmonics that are induced in the stator current due to the rotor slots. Dur- 

ing the operation of an induction motor, the rotor-slot, MMF harmonic will 

interact with the fundamental component of the air-gap flux because of the 

stator current. Several attempts at extracting the rotor slot harmonic for speed 

estimation have been reported in 4he literature [11]. The limitation of these 

methods is tha4 the FFT-based signal processing used is computationally bur- 

densome for on-line or real-time implementation. Also, for certain rotor-stator 

slot combinations, the speed harmonic may not be readily detectable. 

~ Neural networks-based speed estimation techniques have been proposed in 

[12, 13]. In [12], a neural networks-based speed estimator for vector controlled 

induction motors is discussed. Rotor speed estimation is done using an 8-16-1 

neural network. The neural network is trained with sampled currents, reference 

voltages and a sampled speed signal. The main limitation with this approach is 

that the availability of a measured speed signal to train the network is assumed. 

However, this could be feasible if the manufacturers of motor/drive develop the 

speed estimators and embed them in the hardware [1]. 

E. Objectives 

From the preceding sections, it can be scen that there is a strong motivation to use a 

neural networks-based speed filter for induction motor speed estimation. Bharadwaj 

[I] developed a neural network-based speed filter that has been used to estimate 

speed of induction motors. The filte developed in [I] was initially tested in an off- 

line environment, in which the input data is processed as a batch. Thc objective of 



this work is to implement the filter developed in [1] in an experimental setup; i. e. 

on-linc, and study its performance . Also, for implementing different neural network 

based entities, such as dill, ers and predictors, it is desirable that a scalable neural 

networks framework is developed and used in this research. 

The objectives of this work can be listed as follows: 

1. Development of a neural networks framework using the C programming lan- 

guage that can be used to construct and implement complex estimators that 

use different combinations of feed forward and recurrent neural networks. 

2. On-line implementation of the neural networks based speed filter developed in 

[1] using LabVIEW and the aforementioned neural networks framework. 

F. Proposed Approach 

For implementing the speed filter, we propose to develop a framework using the C 

programming language that can be integrated with a data acquisition and a data pro- 

cessing environment like LabVIEW. Once this framework is tested for accuracy, the 

speed filter developed in [1] will be constructed and implemented in an experimental 

setup. After integration with the data collection and data preprocessing modules, 

the system will be tested with the case studies used in [1]. Following a benchmarking 

of the speed filter with the ofi'-line case studies, on-line testing will commence. Once 

the performance of the un-tuned filter is recorded, the filter networks will be tuned 

using the data collected from the experimental setup. 

G. Research Contribution 

The main research contribution of this work is in demonstrating the on-line imple- 

mentation feasibility of a recently developed speed filter and in evaluating the efficacy 



of the speed filter when implemented in a machine other than the one used to train 

it. This is an important step towards the goal of implementing similar speed filters in 

actual industrial setups. An additional'contribution of this work is the development, 

of a neural networks framework. The framework is designed to simplify the process of 

constructing estimators that use different combinations of feed forward or recurrent 

neural networks. The framework will provide a robust environment to build and test 

neural networks wit'h minimal coding effort. 

IL Organization of the Thesis 

In Chapter H, the development of the speed filter by Hharadwaj is presented [I]. 

In Chapter III, details of the neural networks framework and the LabVIEW 

environment are presented. The procedure involved in implementing the speed filter 

is also presented in this chapter. 

In Chapter IV, the experimental results obtained using the speed filter are pre- 

sented. The results presented in this chapter include both online and off-line case 

studies. 

A summary of this thesis, the conclusions of this research aiid direct, iona for 

future work are presented in Chapter V 



CHAPTER H 

OVERVIEW OF SPEED FILTER DESIGN 

This chapter summarizes the design of the speed Alter developed in [I]. The following 

sections provides brief information regarding the design of the speed filter using neural 

networks, training of the neural networks, data collection, and data processing. 

A. Speed Filter Development 

In this section the state filtering problem is formulated and the neural network ap- 

proach is presented. 

1. Problem Statement 

Consider the following representation in the discrete-time nonlinear state space form, 

also known as the noise representation, 

x(t + 1) = f(x(t), u(t)) + w(t), 

(2. 1) 

y(t) = h(x(t)) + v(t), 

where t = 1, 2, . . . is the discrete time instant, y(t) is the n x 1 output vector of the 

nonlinear state-space model; u(t) is the m x I input vector; x(t) is the state vector 

of the model, f and h are vector-valuecl unknown nonlinear functions; w(t) is the 

process noise; and v(t), is the measurement noise. It is assumed that w(t) and v(t) 

are independent processes. 

The objective of the state liltering problem is to estimate, x(t), for the state 
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Fig. 2. Block Diagram of the State Filter. 

variable x(t). In this case, the state to be filtered is the speed of the induction motor. 

The notation x(tit) is used to mean the s4ate estimate at time t, follotving the update 

resulting from the measurements u(t) and y(t), at time t. 

2. Neural Networks lmplemen(, ation 

The problem formula4ed in the preceding subsection is solved by employing neural 

networks to approximate the nonlinear functions f(. ) and h(). The inputs u(t), 

the outputs y(t) and 4he state x(t) are assumed available through measurements or 

compu4ations. A block diagram depicting the s(, ructure is presented in Figure 2. 

The nonlinear equations (2. 1) can be rewritten in the innouattons form as shown 

below: 
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y(t+ 1[t) = hi„„(x(t[t — I), u(t), C(t)), (2 3) 

where f, „„( ) and hi„„(. ) are nonlinear functions related to f(. ) and h( ). 

The "innovations" function, C(t) is defined as P(t) — P(t[t — I), where P(t) and 

P(t[t — I) are nv x I vectors and are defined as follows: 

g(t) = [y(t), y(t — I), . . . , y(t — nv)], (2. 4) 

P(t]t — I) = [y(t]t — I), y(t — 1]t — 2), . . . , y(t — n„]t — n„— I)]. (2. 5) 

The aforementioned equations 2. 5 can be written in a prediction-update form. 

In the prediction-update form of the state filter, the prediction step obtains a future 

estimate of the state x(t + 1]t) using measurements up to snd including time step 

t. In the update step, the predicted state value, x(t + 1]t), is updated to account 

for the stochastic and/or modelling inaccuracies present in the prediction step. The 

innovations term in the filter account for the stochastic effects and system modelling 

uncertainties unpredictable in the prediction step. Since the updated state value 

already has been compensated by the innovations term, use of both P(t) and P(t[t — I) 

in obtaining the state/output prediction is not necessary. In this filter I'ormulation, 

the most recent value of P(t) is used instead of P(t[t — I). The nonlinear functions 

fi„, (-) and h, „„, „(. ) of the predictor can be approximated using neural networks as 

discussed further in [I]. 

The prediction and the update step equations using neural networks as approxi- 

mators of the non linearities are non linear functions is presented below. 

Step I — Prediction Step: 

The state and output predictor values are obtained using the following equations: 

N (I+ l[t) = ftv ( (t[t), . u(t), INN(t[t — I)), 



yp, , ~(t+ l]t) = h»(x»(tlt): u(t) &NN(tlt — 1)) 

where x»(t+ l[t) and y»(t+ 1]t) are the neural state and output predictions, and 

where P»(t]t — 1) is the vector containing the present and past output predictor 

responses. 

Step 8 — Update Step: 

The state prediction is updated using 

x (t+1]t+1) =K „(x (t+1]t), P(t+1), E(t+1)), (2. 7) 

where the vectors g(. ), P~~(t + 1[t), E( ) are defined as 

P(t + 1) = [y(t + 1), y(t), . . . , y(t — rt„+ 1)]", (2. 8) 

&~~(t+ lit) — = [yNN(t+ lit), —, y»(t — nv+ lit — nv)]', (29) 

E(t+1) = X(t+1) — yNN(t+ l]t). , (2. 10) 

E(t + 1) = [e(t + 1), e(t), . . . , e(t — n, + 1)], (2. 11) 

and where e is a n, x 1 vector and is defined as, 

e(t+1) = — y(t+1) — yNN(t+ lit): (2. 12) 

is the innovations term as defined in the standard Kalman Filter. The nonlinear 

functions represented by f»(. ), hrr~(. ), ancl K»( ) are the neural networks ap- 
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proximations in the filter equations ]1]. 

3. Speed Filter Description 

The above formulation of the state filtering problem and its solution is applied to the 

problem of induction motor speed filtering. 

Information about the induction motor such as nuinber of pole pairs, p; slip 

at rated load, f, lrorrsol; no load slip, f„~. , are used in the filter development. The 

measurements include the motor currents and voltages. Rotor slot harmonic analysis 

is used to extract the target speed estimate for the neural network training [11]. 

The output predictor, the second of equations (2. 6), consists of three feed for- 

ward multi-layered perceptron (FMLP) neural networks that predict the three motor 

currents f, (t + 1]t), Is(t + 1~t) and 1, (t + 1]t), respectively. The state predictor, the 

first of equations (2. 6) is modelled by a single FMLP neural network that predicts 

the induction motor speed i3ivrr(t + 1~t). 

The predictor equations (2. 6) can be re-written with the currents and speed 

substituted as shown below: 

aiiviv(t+ 1]t) = fp&(iviviv(t]t), u(t), IivN(t~t — I)), 

INN(t + 1]t) = hivrv (i ziv(t]t), u(t), Iz&(t]t — I)), 

where Iivrr(t~t — 1) is the vector containing the history of the motor current predictions. 

The update network contained in equation (2. 7) is modelled by a FMLP neural 

network. This network updates the predicted speed i3rrrr(t + l~t) by taking into 

account the stochastic and/or modelling inaccuracies. The update equation (2. 7) is 

re-written with the motor speed substituted as 



imari~(t + 1]t + 1) = kw~(ag~(t + 1]t), Iiviv(t + 1[t), . Incurs(t + 1), E(t + I)), (2. 14) 

where K~s. is the filter gain, and the vectors are defined as 

(2. 16) 

and where, 

e(t + 1) = I(t + 1) — I pic (1 y 1]t), 

is the innovations term. It should be noted that the predictor networks are dynamic 

FMLPs, whereas the update network is a static FMLP. A block diagram of the neural 

network based speed filter is shown in Figure 3. 

The training schemes used to train the neural networks are briefly discussed in 

the following subsection. 

4. Neural Network Training 

In the preceding subsection, the neural network solution for the motor speed filtering 

problem was presented. The neural networks need to be trained before they can be 

implemented in the filter. 

Training data set development is one of the most crucial step in neural network 

training as the accuracy of the state filter will depend on the accuracy of the values 

used to train it. Data collected from experiments v as used to create the training 

set. The training set is constructed carefully so ss to be a representative of the filter 
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Fig. 3. Block Diagram of the Neural Network Speed Filter. 



operating range. The evaluation (or cross-validation) data set is collected in a similar 

manner to the training data set. 

The neural networks need to be trained with some target speed signal. In this 

study, the actual induction motor speed signal wss not used for training because of the 

assumption that the induction motors in industrial setups do not have speed sensor. 

The speed signal used for training the neural networks in this study is obtained using 

rotor slot harmonic (RSH) analysis of the induction motor current. More information 

about the accuracy is discussed in chapter IV. 

The networks were trained separately before they are coupled with each other. 

The predictor networks are trained before being coupled to the speed update network. 

Of the predictor network bank, the line current predictors are trained before the speed 

predictor network. Finally, the speed update network is trained. 

The network thus trained is applied to the setup from which the training data is 

gathered. When the filter needs to be implemented in other induction motors, some 

amount of tuning of the weight files is necessary to improve the accuracy of the filter. 

B. Chapter Summary 

In this chapter, the'details of the neural network induction motor speed filter de- 

veloped in [I) were presented. The filter developed was primarily tested for off-line 

conditions where the data collection and speed filtering are done separately. The 

filter will now be re-written so that it can be implemented on-line where data collec- 

tion and data processing is done simultaneously. In the next chapter the dei, ails of 

the developed ueural network framework and LabVIEW development and integration 

details are presented. 



CHAPTER III 

ON-LINE IMPLEMENTATIOlii OF SPEED FILTER. 

This chapter deals with the on-line development and integration of the neural net- 

works based speed filter discussed in t, he preceding chapter. This chapter is divided 

into four sections. In the next section, the filter architecture is discussed. In section 

B the issues involved in the development of the neural networks framework are de- 

scribed. In section C the components of the neural network speed filter are presented. 

In the last section, a summary of the chapter is presented. 

A. Neural Networks Architecture of the Speed Filter 

The neural networks based filter presented in chapter II is made up of five neural 

networks that are interconnected. Three 8-5-1 dynamic FMLP neural networks are 

used to predict the three line currents, I„J«and I, . The inputs to the predictors are 

the three line voltage [Vz(t), Vs(t), V~(t)], latest available speed estimate i5rvs (t[t), 

the root-mean-square (RMS) of line current I~ ni«rs(t) and the delayed current pre- 

dictions [lrirv q(t[t — I), Js~ n(t[t — 1), Iivri o(t]t — 1)] The outputs of the predictor are 

IwivA(t+ 1[t). , Irvw n(t+ 1[t) and Irvyo(t+ 1]t). The structure of the predictor bank 

is shown in Figure 4. 

The speed predictor is characterized by a 9-7-1 static FMLP network. The speed 

predictor uses the three sampled line voltages [Vq(t), Vs(t), Vo(t)], the three current 

predictions [Iiviv ~(t[t — I), lrirv s(t]t — 1), Is iv o(t]t — 1)] and the latest available filtered 

speed awiv(t]t) to predict the motor speed i5iv~(t + 1[t), Figure 5 depicts the speed 

predictor. 

The speed update network uses the innovations [«s(t + 1). , es(t + 1). , «o(t+ 1)] 

from the current predictions, the line current predictions [Iiv, v s(t + 1]t), I~~ s(t + 
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l~t), IwIA o(t + l~t)j, the RMS value of the line currents and the predicted speed 

aIIvrr(t+ 1~t) from the speed predictor network to generate the filtered speed estimate, 

aitvtv(t+ ljt+1). The sPeed uPdate network is characterized by a static 8-16-1 FMLP 

network The speed update network is shown in Figure 6. 

B. Neural network Framework 

As described in the previous section, the speed filter is composed of five couple neural 

networks of different architectures. Also. the structure and/or the architecture of 

the networks can change in future implementations. Hence a generic neural networks 

framework that can be used to construct such en(, ities is needed. The following 

subsection discusses the development of such neural nettvorks framework. 
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1. Neural Networks Implementation Framework Development 

The implementation framework is developed using the C programming language. The 

framework is used for constructing different entities like filters and predict;ors, that 

use different combinations of neural networks. The inputs to the framework are the 

neural network data, such as the archit, ecture of t;he networks to be constructed and 

the weights and biases for each of the networks. The inputs and outputs of the neural 

networks framework implementation of the speed filter are shown in Figure 7. A 

control script is used to specify the architecture of the entity to be constructed. The 

details of this control script are presented in the following subsection. 

2. Control Script 

The control script contains the following; information: 

1. Number of networks 
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2. Number of input channels 

3. input data mode 

4. Mode of operation of each network 

5. Number of layers per network 

6. i%umber of nodes per layer per network 

7. Weight and Bias filename per network 

8. input layer mapping for each network 

Each of the input specified in the script is explained below: 

Number of networks: 



22 

This field specifies the total numl&er of networks that are used t, o construct an 

entity. In the case of the speed filter, this value is equal 4o five. 

Number of mput cbannelsi 

This quantity specifies the number of external inputs sent to the filter. This 

quantity does not refer to the number of inputs to each of the networks in the filter, but 

corresponds to the total number of external input signals sent to the filter. Dependiug 

on the input data mode, this corresponds to either the number of channels in the data 

acquisition system or to the number of columns in the input data file. In the case of 

the speed filter, this is value equal to eight. 

Input data mode: 

This field specifies the mode of data, input. The data to the network can come 

from a file as in the case of an off-line run, or from a data acquisition system as in 

the case of an on-line execution. 

Mode of operation: 

This field is specified for each of the network. A network can execute either in 

sta4ic (FMLP) mode or in recurrent (RMLP) mode. A network said to be in RMLP 

mode when there are cross-talk between the nodes in the hidden layer. The value of 

0 and I correspond to FMLP and RMLP respectively. Since this quantity is specified 

for each of the networks, an enti4y can contain different combination of networks 

operating in either one of these modes. 

Number of layers: 

This field is valued for each of the networks. The number of layers of a network 

is specified in this field. 

Number of nodes per layer: 

This field is specified for each of the networks. The number of nodes per layer is 

specified in this fielrl. The nuinber of nodes in the outpu4 layer is sbvays set equal to 
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one. 

Weight and bzas filename: 

The weight and bias file information is specified in this field. One file per network 

is specified. 

Input layer mapping: 

The program requires precise information regarding the mapping of input data 

point to the input layer nodes of each of the network. This set of inputs contains 

the information regarding the assignment of data to the input layer for each of the 

neural network. This field is equal to the number of input nodes per network. The 

information provided by this field specifies the source of data (i. e. , measurement 

or predictions), delay value of data and/or any arithmetic operation that needs to 

be performed between different data (i. e. , an arithmetic operation such as addition 

or subtraction can be performed between two data samples and the result of that, 

operation can be specified as one of the inputs). 

3. Neural Network Process Flow 

The control script provides all the information necessary to construct and execute 

different combinations of neural networks. The control script is read, and based on 

the information regarding the number of layers per network and number of nodes 

per network, appropriate amount memory for weights and biases is allocated. The 

next step is to load the data points into a bi-directional link-list structure. It can be 

seen that there is no need to specify the number of input data samples in the control 

script. The link-list, structure is necessary because in the control script no information 

is specified regarding the number of data points to be processed. Once all the data 

are loaded, the processing through the network is initiated. For every data point 

selected, all the networks are processed sequentially. The input layer of a network 
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selected for processing is assigned with appropriate data values based on the mapping 

information provided in the control script. The next step is to perform an FMLP or 

an R. lvILP forward pass on the network based on the specifications provided in the 

control script. The above routine is performed for all of the data points provided. 

In special cases, when the mapping of the input layer specifies unavailable data (i. e. 

delayed values of an output), the input node is assigned a zero and the processing is 

continued till the appropriate data become available. The fiow chart for the execution 

described is presented in Figure 8. 

C. Components of the On-line Speed Filter 

This section describes the components of the on-line speed filter. The data collected 

from the induction machine consist of speed signal from speed sensor, three line 

voltages, and the three line currents. A series of steps, namely data preprocessing, 

speed filtering and data postprocessing are performed on the data collected from the 

induction motor to estimate the speed. Figure 9 shows the components of the speed 

filter. Each of the step is discussed in detail in the following subsections. 

1. Data Collection Module 

Data collection is performed in seven channels by a LabVIEW data acquisition system. 

The input data consists of three line voltages, three line currents and speed signal 

sampled at 3840 Hz. It should be noted that the speed signal is not used in processing 

at any t, ime by the speed filter. The speed sensor signal is collected only for comparison 

of the speed estimate of the filter. The filter cut-off is set at the Nyqnist I'requency 

to prevent signal aliasing. The sampled clata are buffered and are made available to 

the filter modules. The sampled measurements are referred to as the Ilarv Data. The 
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size of the data scanned varies and it can be controlled by the user depending on the 

desired speed of operation of the speed filter. 

2. Data Preprocessing Module 

Raw data from the data acquisition system must to be preprocessed before it can 

be used by the neural networks. The preprocessing consists of three steps namely, 

RMS calculation, cropping and scaling. This series of data preprocessing is described 

below. 

RMS Calculation: 

The neural network speed filter requires the RMS of the line current as one of 

the inputs. This information is calculated from the raw line currents. A moving 

window RMS calculation is performed on the input currents. The window size varies 

from 2 cycles to 6 cycles depending on t, he desired speed of filter operation. There 

is a trade-off between filter accuracy and speed, as the RMS window is varied. It 

should be noted that an even number of cycles is used for the RMS calculation. The 

moving distance of the window is sct, at I, but this value can be changed by the user 
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as desired. If the input power supply is balanced, the RMS is calculated from one 

of the three line currents selected arbitrarily. But, if the input power supply is not 

balanced, then RMS calculation is performed on all the three line currents and the 

average of the three is used. Even in the case of a balanced supply, the average RMS 

should be used because of the imbalance due to faulty motors. 

Cropping and merging of the data: 

The data length of the resulting line current RMS calculations is less than the 

length of t, he other data signals by an amount equal to the window size used for 

the RMS calculations. Thus, the rest of the data must to be cropped to the size of 

the RMS array size before they can be merged. The cropping module removes equal 

amount of data in the leading and the trailing ends of the currents, voltages and speed 

data. The RMS value is inserted as the fifth column after the speed and the three 

voltages in the data pool. This operation is performed using a LabVIEW program. 

Scaling of the data: 

The neural networks used in the speed filter require the input data to be in the 

range +0. 5 and — 0. 5. Data beyond the limit of +0. 5 will cause the filter networks 

to saturate. Hence, the cropped and merged data is scaled based on some scaling 

transformation and associated parameters. The scaling parameters are selected based 

the data set present in the network training. In the current implementation, the 

scaling developed in [I] is used. 

The preprocessing steps for balanced power supply is shown in Figure 10. Figure 

11 shows the preprocessing for unbalanced power supply and unbalanced motor stator. 
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3. Speed Filter Module 

The processed data is passed to the speed filter for calculating the speed information. 

The neural network framev;ork is used to construct the speed filter. In this implemen- 

tation two filters, one for 0% — 70Fo and another 703o — 120% of full load, are used to 

estimate the speed based on the motor load level. The RMS value of the line current 

is used to determine the motor loading level. In order to use the appropriate filter 

parameters during load changes, the RMS value of the current is monitored. The load 

level detected is used to select the appropriate filter based on the load level detected. 

Since the RMS is monit;ored continuously, the filter is able to estimate speed during 

load variations. The load-based filter selection scheme is presented in Figure 12. 

The neural networks framework is compiled as a dynamic link library (DLL) that 

can be called by a special LabVIEW routine known as the call library function. This 

function passes the data from the preprocessing module to the DLL and retrieves the 

filtered speed results from the DLL. The speed filter module is presented in Figure 

13. 

4. Data Post, processing Module 

The speed estimated by the speed filter module does not refiect the actual speed of 

the motor. The speed values needs to be un-scaled to indicate the actual speed of 

the mot, or. The parameters used for scaling the input data are used in the un-scaling 

process. The un-scaled speed is presented in a waveform chart. The data can also be 

stored in a file or passed to any other application that requires speed information. 
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D. Chapter Summary 

In this chapter, the development of the neural networks framework as presented. Then 

the implementation of the speed filter using the developed neural network frameworks 

and the LabVIEW environment wss discussed. In the next chapter, the off-line and 

the on-line case studies performed for filter validation and the associated speed esti- 

mation results are presented. 
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CHAPTER IV 

EXPERIMENTAL DEMONSTRATION OF THE SPEED FILTER 

This chapter presents the response of the speed filter to different sets of pre-recorded 

data and to data from the experimental setup used especially in this research. This 

chapter is divided into two categories, namely, off-line and on-line collection. The 

case studies with off-line data results are presented in the first section. In section B, 

the implementation of the speed filter with on-line data collection snd the associated 

results are presented. The filter implemented used in both off-line and online dat, a 

sets is the same. Only the source of data is changed. The last section summarizes 

the results of the speed filter experimental demonstrations. One of the application 

of the speed filter is in the area of induction motor fault detection. Most of the 

fault detection strategies require a motor speed esi;imate. Once the performance of 

the speed filter under faulty motor conditions is studied, it, can also be used in fault 

detection schemes. Hence, the speed filter is tested with data collected from both 

healthy and faulty motors. 

A. Speed Filter Tests with Off-Line Data Collection 

The neural networks based speed filter is 4ested with dat, a collected from different 

tesi, beds. This was done to study the filter performance under different operating 

conditions. Off-line data is available for small machines (3 hp) and large machines (500 

and 800 hp). As mentioned earlier, the off-line data is collec4ed from both healthy and 

faulty motors so tha4 the fil4er performance can be studied. The following subsection 

presents the experimental setup used in 4he ofl'-line data collection from small and 

large machines. 



1. Experimental Setups Used in Off-Line Motor Data Collection and Speed Filter 

Tests 

s, . Small Machine Setup 

The small machine setup consists of a 3 — 4, 4 pole, 3 hp induction motor powered by 

supply mains operating at 60 Hz. The motor is connected to two DC generators in 

tandem. The first DC generator is used to load the induction motor. The load on the 

motor is changed by varying the armature resistance of the DC generator. The second 

DC generator is used to measure the speed signal which is used for comparisons with 

the speed filter results. An 8 — channel LabVIEW data acquisition system is used to 

record i;he three line voltages, the three line currents and the speed signal. All of the 

signals are sampled at 3840 Hz. 

b. Large Machine Setup 

The large machine data are available for a 500 hp and a 800 hp machine. Experiments 

were conducted at Public Service Electric and Gas Motor Repair Pacilzty, Sewaren, 

New Jersey. The 500 hp, 3 — 4, 6 pole and the 800 hp, 3 — 4i, 8 pole inductions 

motors are run directly from mains. The motor was connected to a dynamometer 

which was used to load the induction motor. A 13 — channel IOTech data acquisition 

system was used to record the three line voltages, the three line currents, encoder 

speed signal, and the four vibration signals. The signals were sampled at 40 KHz 

sampling frequency. The current and voltage signals are then downsampled to 3840 

Hz. The vibration signals are not used by the filter for estimating the induction motor 

speed. 
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2. Speed Filter Results with OII-Line Data Collection 

This subsection presents the results of the neural network based speed filter operating 

on the off-line data collected from small and large machines. 

The speed filter structure that is implemented is described in detail in the pre- 

ceding chapter. The fili, er components are implemented in LabVIEW. The raw data 

collected from the induction motor are downsampled to 960 Hz and the average RMS 

of the line current is calculated. The data is then scaled between — 0. 5 to 0. 5 using 

the appropriate scaling parameters and is passed to the speed filter. The speed filter, 

which is a dynamic link library (DLL) developed in the C programming language, 

accepts data from the LabVIEW subsystem and returns the filtered speed back to 

the LabVIEW subsystem. Separate weight and bias files are used to estimate the the 

speed for the low load and high load region. A parameter passed from LabVIEW 

to the DLL indicates the appropriate weight snd bias files i, o be used during speed 

estimation. The LabVIEW program is equipped with controls to change the filter pa- 

rameters, such as the size of data used for processing, and the RMS window size. For 

the small machine tests, two sets of weight files, one for low motor load (0% — 70%) 

and another for high motor load (70% — 120%) are used. One set of weight and bias 

file 500 hp and another for the 800 hp machines, respectively. 

a. Small Machine Test Results 

All the results presented are compared with the rotor slot harmonic speed estimate. 

This estimate is obtained based on some speed dependent harmonics in the current 

signal and is considered as a good estimate of the speed. Another reason for using the 

estimate is that the neural networks are trained using the harmonic speed estimate. 

This makes furl, her tuning of networks possible without the need of a speed sensor. 
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Fig. 14. top: Speed Signal from Generator; middle: De-noised Speed Signal; bottom: 

Harmonic Speed Estimate. 

Figure 14 shows the harmonic estimate for small machine speed signal. It can be seen 

that the estimate is within 3 — 10 rpm of the actual speed. It should be noted that 

the rotor slot harmonic speed estimate can done only in off-line conditions because 

of computation delays. 

The filter estimation errors are calculated for each of (, he case study presented 

in this work. The average and maximum error percentage is presented at the end of 

each section. The estimation error is calculated as, 

(O7RSH tONN) Error = 
off(sit 

(4. 1) 
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Fig. 15. Speed Filter Response for 3 hp IIealthy Motor; 0% — 70% Load Range. 

where 07tvtv and ornstr correspond to filter speed estimate and harmonic speed esti- 

mate, respectively. The response of the speed filter for a healthy motor operating 

under low load (0% — 70%) and high load (70%o — 120%) conditions is presented in 

figures 15 and 15. 

In industrial setups, the 3 — tt power supply is not always balanced. Due to the 

supply imbalance, the speed of the machine will be reduced. The filter wss also tested 

with data collected from motors with input supply imbalance. Figures 17 and 18 show 

the filter response in the low load and high load range under 0. 5% unbalanced power 

supply condit, ion. 
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0. 5% Unbalanced Power Supply. 

The response of the speed filter when the load changes from the low load region 

to the high load region is presented in Figure 19. The BMS of the motor current is 

monitored and appropriate filt, er parameters are used depending on the motor load 

level detected. 

Figures 20 and 21 show the filter response to 4. 5% unbalanced supply in the 

00%a — 70% load range, and 5, 4%a unbalanced supply in the 70% — 120% load range, 

respectively. It can be seen that the filter performance does not, degrade significantly. 

The filter was also tested with signals collected from motors with broken rotor 
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Load Range. 

bars. Figures 22 and 23 show the filter response with three and four broken rotor 

bars, respectively. It should be noted tliat the speed filtering is done with the filter 

parameters developed for a healthy motor. Due to this reason, the filter performance 

somewhat suffers. 

The filter performance for the large machines is presented in Figures 24 and 25. 

Figure 24 shows the filter response for the 500 hp motor and Figure 25 shows the 

filter response for the 800 hp motor. It can be seen that the filter perfortns reasonably 

well in both the cases. All the cases presented in this study used thc RMS value of 

the current calculated using 4 cycles of data. 



1760 

1750 

1740 

1730 

E 
CL 

cr 1720 e 
CL 
N 

1710 

1700 

1690 
— Harmonic Speed Estimate 

S eed Filter Response 

1680 
0 2 4 6 8 10 12 14 16 18 

time (sec) 

Fig. 23. Speed Filter Response for 3 hp Motor with 4 Broken Rotor Bars; 0% — 70% 

Load Range. 



47 

1204 
— Harmonic Speed Estimate 

Speed Filter Res onse 

1202 

1200 

1198 
E 
E. 

I 1196 

1194 

1192 

1190 

1188 
0 20 40 60 80 100 120 140 160 180 

time (sec& 

Fig. 24. Speed Filter Response for Healthy 500 hp Motor; 100'Fo — 50% Load Range. 



48 

725 — Harmonic Speed Estimate 
Speed Filter Response 

720 

E o. 

ID e a 
rrt 

715 

710 
0 10 20 30 40 50 60 70 60 90 100 

time (sec) 

Fig. 25. Speed Filter Response for Healthy 800 hp Motor; 100'Fo — 50% Load Range. 



49 

The maximum and average estimation errors for the above case studies with 

healthy small machines are presented in Table I. The average and maximum estima- 

tion errors for the case studies with faulty small machines are presented in Table II. 

Table III 

B. Speed Filter with On-line Data Collection 

One of the main objectives of this work is to implement the neural networks based 

filter in an online environment. In the preceding section, the results presented are 

from data collected at different times from different setups. In order to use the filter 

in on-line fault detection schemes, the filter should act on real-time data generating 

speed estimates at real-time or close to real-time. This would eliminate the need 

for expensive speed sensors, that will render the fault detection schemes financially 

unattractive. Moreover, the speed sensors are less robust and are more prone to 

failures than the induction motor itself. This would reduce the overall robustness of 

the induction motor setup. Lastly, most industrial setups do not have speed sensors 

as a standard component and it will be easier to use this filter as an alternative with 

minimal cost increase. The above mentioned reasons are the motivation for this work. 

The test results with off-line data collection prove the efficacy of the filter in 

estimating the speed from the current and voltage signals. In the case studies with 

off-line data collection off-line implementation, the speed of execution of the filter is 

not a major factor as the program acts on the data as a batch, and the results are 

generated once all the data are processed. In an on-line setup, the filter acts on a 

small window of data and the estimates of the speed are generated as soon as the data 

window is processed. Ideally, the window should be just one data point for each of 

the three line currents and the three line voltages. But, the RMS calculation requires 
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Table I. Speed Estimation Errors: Healthy Small Machines; Off-line Data 

Case Study Load 

Level 

Average 

Estimation 

Error ('Fo) 

Average Peak 

Estimation Estimation 

Error (rpm) Error (rpm) 

Peak 

Estimation 

Error (%) 

Healthy 

Small m/c 

Healthy 

Small m/c 

Healthy 

Small m/c: 

0. 5% Unbal. 

Healthy 

Small m/c; 

0. 5'Fo Unbal. 

kIealthy 

Small m/c; 

4. 5% Unbal. 

Healthy 

Small m/c: 

5. 4% Unbal. 

Low 

(0%-70'Fo) 

High 

(70%-120%%uo) 

Low 

(0%-70%) 

High 

(70%-120%%uo) 

Low 

(0%-70%) 

High 

(70%-120%) 

0. 26 

0. 29 

0. 13 

0. 16 

0. 15 

0. 30 

4. 65 

5. 08 

2. 23 

2. 67 

2. 56 

5. 12 

14. 79 

13. 73 

10. 09 

10. 30 

10. 41 

14. 71 

0. 83 

0. 78 

0. 56 

0. 60 

0. 58 

0. 87 
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Table II. Speed Estimation Errors: Faulty Small Machines; OK-line Data 

Case Study Load 

Level 

Average 

Estimation 

Error (%) 

Average 

Estimation 

Error (rpm) 

Peak Peak 

Estimation Estimation 

Error (rpm) Error (%) 

Three Broken 

Rotor Bars; Low 0. 15 2. 68 7. 50 0. 15 

Small m/c (0%-70%) 

Four Broken 

Rotor Bars; Low 0. 57 3. 79 10. 09 0. 22 

Small m/c (0%-70%) 

Table 111. Speed Estimation Errors: Healthy Large Machines; Off-line Data 

Case Study Load Average Average Peak Peak 

Level Estimation Estimation 

Error (%) Error (rpm) 

Estimation 

Error (rpm) 

Estimation 

Error (%) 

Healthy 

Large m/c 

(500 hp) 

Healthy 

Large m/c 

(800 hp) 

Mix 

(50%-100%) 

Mix 

(50%-100%) 

0. 03 

0. 09 

0. 41 

0. 56 

2. 21 

11. 30 

0. 18 

1. 59 



a minimum of one cycle and hence the minimum window that, can be processed is 

equal to one cycle length. The following subsection presents the experimental setup 

used in the on-line data collection and speed filter tests. 

1. Experimental Setup Used in On-line Data Collection and Speed Filter Tests 

This experimental setup consists of a 3 — P, 3 hp, 2 pole induction motor running of 

a 3 — P supply mains operating at 60 Hz. The motor is connected to a torque meter 

that includes an optical encoder to detect the motor speed. The load of motor include 

two rotor disks, a gear box and a centrifugal pump. The rotor disks are perfectly 

aligned and the gear box is used to increase or decrease the speed depending on the 

specific requirements. The centrifugal pump is connected to a variable area valve and 

a variable height water reservoir. By changing the value position from 26Fo open to 

100% open and by changing the head applied to the pump by positioning the reservoir 

at different heights, the load applied to the induction motor can be varied. In this 

setup however, the effect of the valve position and head changes on the motor load 

are negligible compared to the static load from the rotor disks and the gear box. This 

limitation prevented the filter from being tested online under varying load conditions. 

The encoder speed is used in determining the speed filter accuracy. The motor line 

currents snd phase voltagef are measured current transformer (CTs) and potential 

transformers (PTs), respectively. A 16 — channel LabVIEW data acquisition system is 

used to record data from the experimental setup. The data are sampled at 3840 Hz. 

The sampled data are sent to the LabVIEW subsystem residing on a Intel Pentium 

III based computer. A schematic diagram of the experimental setup used for online 

filter testing is shown in Figure 26. 

The LabVIEW subsystem provides various means to access the collected data. 

In this work, the data was bufl'ered and then read by the LabVIEW filter framework 
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Fig. 26. On-line Experimental Setup Used for On-line Speed Filter Tests. 
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program. The amount of data to be scanned and the sampling frequency can be 

controlled by the user. Differeni, amounts of data were scanned to test the operating 

speed of the speed filter. The results of this on-line implementation are presented in 

the following paragraphs. 

The filter parameters used in used for this implementation are the same as those 

used in the tests with off-line data collection. The filter parameters are later tuned 

with data collected from this experimental setup to improve filter performance. 

2. Speed Filter Results with On-line Data Collection 

Due to the previously described limitations in changing the motor load level, the 

motor was operated at a constant load level. The data from the motor are used for 

tuning the off-line filter weights. The training requires a harmonic speed estimate as 

a target. The harmonic speed estimate was obtained from a FFT-based program that 

detects some speed dependent harmonics in the motor current. Since the data does 

not contain any transients, the training set was compiled using constant motor load 

data collected at different times. Tuning was perfoiined for 100 iterations to obt, ain 

the updated speed filter parameters. The results presented here include contain both 

un-tuned and tuned speed filter tests. The estimation errors for the tuned and un- 

tuned speed filter are presented in Table IV. 

Figure 27 shows the response of the un-tuned speed filter. The RMS window 

used is 4 cycles, and 3 seconds of data is scanned per iteration. 

The filter perforinance after tuning presented in Figure 28. The filter operating 

speed can be changed by changing the number of data points scanned at every itera- 

tion. It is found that for a data window of 0. 05 sec, 0. 09 seconds are needed to filter 

the speed on an average. It can be seen that the alter does not operate in real-time, 

but this result is good enough to be used in fault detection schemes, since fault, s do 
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Fig. 27. Online Speed Filter Response for Healthy 3 hp Motor without Tuning: 30% 
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Fig. 28. Online Speed Filter Response for Healthy 3 hp Motor with Tuning; 30% Load. 

not change drastically with time. The errors presented in the Table IV show that the 

filter can be tuned effectively with less effort and the performance of the filter can be 

improved significantly. 

C. Chapter Summary 

In this chapter, the speed filter implementation and testing using both for the off-line 

and on-line data collection is presented. The speed filter response under unbalanced 

power supply conditions and faulty motor scenarios is also presented. In the case of 

the faulty motors with broken rotor bars, it is seen that the speed filter perforrltance 



Table IV. Speed Estimation Errors: Small Machines: Data from On-line Setup 

Case Study Load 

Level 

Average 

Estimation 

Error (%) 

Average Peak 

Estimation Estimation 

Error (rpm) Error (%) 

Peak 

Estimation 

Error (rpm) 

Healthy 

Small m/c; 

Before 

Tuning 

Low 

(0%-70%) 

1. 18 42. 53 1. 30 46. 76 

Healthy 

Small m/c; 

After 

Low 

(0%-70%) 

0. 01 0. 36 0. 03 1. 29 

does not deteriorate drastically. The on-line implementation details, the speed filter 

result and the estimation errors under constant load conditions is also presented in 

this chapter. 



58 

CHAPTER V 

SUMMARY AND CONCLUSIONS 

In this chapter, the research presented in earlier chapters is summarized. The neural 

networks framework development, the speed filter components and the filter imple- 

mentation details is revisited. Finally, research contribution and suggestions for future 

research are presented. 

A. Summary of Research 

The objective of this work was to develop a generic neural network framework and 

to implement the neural networks based speed filter in an online environment. The 

framework was developed so that new entities using different combinations of neural 

networks could be easily constructed. Different components were developed to process 

the raw data from the induction motor setup before it can be used by the neural 

networks. 

In chapter I, the motivation and background information I' or this work is pre- 

sented. A brief note on current techniques for induction motor speed estimation and 

neural networks are also presented. Finally, the objective and the procedure of this 

work is clearly delineated. 

In chapter H, the details of the neural networks based filter and the theory behind 

ii, are presented. A brief note on the training of neural nei, works is also presented in 

this chapter. 

In chapter HI, the neural networks architecture of the speed filter is presented. 

The filter is made up of five FMLP neural networks that are coupled to generated 

the speed estimate. Three networks predict the three motor currents. One network 

aci, s as the speed predictor and predicts thc speed of the motor, and another network 
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updates the predicted speed based on latest available measurements. The details 

of the neural network framework design and developmeiit are also presented in this 

chapter. It can be seen that the framework is developed so that the design of the 

filter can be modified without much coding effort. All of the filter neural network 

parameters can be changed using the control script. The different components of the 

online speed filter are then discussed. 

In chapter IV, the speed filter implementation details using off-line and on-line 

data collection are presented. The experimental setup used in off-line data collection 

and the response of the speed filter in many case studies are also presented. The 

filter wss tested with data collected from faulty machines and unbalanced supply. It 

can be seen that the filter performance is reasonable in the presence of unbalanced 

power supply, but there is a notable performance loss when faulty machines are used. 

The filter's on-line implementation is discussed and the filter results with on-line data 

collection are presented. Due to limitations in the experimental setup used for on-line 

data collection, on-line filter response during load changes could not be studied. The 

filter results before and after tuning are also presented. The filter was tuned with 

less than 200 training iterations. This highlights the good generalization capabilities 

of the filter. 

B. Conclusion 

The objectives of this work are to develop a generic neural networks framework and 

to implement a previously developed speed filter in an on-line environment. Both 

the objectives are met in this study. The neural networks framework is capable of 

constructing new entities using different combinations of neural networks. There is 

no restriction on the number of neural networks, the number of layers, nodes per layer 
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(except the last layer should always be one), coupling between networks and input 

layer mapping. The implemented filter was able to generate speed estimates in the 

on-line conditions. The processing speed of the filter is not in real-time due to need 

to calmfiate the RMS of the line current and due to speed limitations in hardware. 

But, the accomplished processing speed is sufficient for the filter to be used in motor 

fault detection schemes, as these algorithms are not very sensitive on real time speed 

estimates. Implementation of the speed filter in a digital signal processor (DSP) 

environment should speed-up processing, but the inherent limitation imposed by the 

calculation on the RMS current remains. 

C. Recommendation of Future Research Work 

This research shows the feasibility of implementing neural networks based speed filters 

on-line. Such filters can be used instead of a speed sensor in limited cases. Some of 

the possible topics for future work are: 

1. The speed filter processing speed can be improved by using specialized hardware 

to generate the RMS of the line current instead of calculating it in the program. 

More work can be done in this direction to allow operation of the filter in real- 

time. 

2. Integration of an adaptation mechanism in speed filter to take care of model 

drift is another direction to follow. 

3. Improving the training methods would help in better estimates of the speed. 

This will have a positive impact on the overall performance of the filter. 
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