
TRANSITION-FAULT TEST GENERATION

A Senior Honors Thesis

by

BRADLEY DOUGLAS COBB

Submitted to the Office of Honors Programs
k Academic Scholarships
Texas ASM University

in partial fu1611ment of the requirements of the

UNIVERSITY UNDERGRADUATE RESEARCH FELLOWS

April 2001

Group: Engineering

TRANSITION-FAULT TEST GEI

A Senior Honors Thesis

by

BRADLEY DOUGLAS COBB

Submitted to the Oflice of Honors Programs
gt Academic Scholarships
Texas ARM University

in partial fulfillment for the designation of

UNIVERSITY UNDERGRADUATE RESEARCH FELLOW

Approved as to style and content by:

. R. Mercer
(ellows Advisor)

Edward A. Funkhouser
(Executive Director)

April 2001

Group: Engineering

ABSTRACT

Transition-Fault Test Generation. (April 2001)

Bradley Douglas Cobb
Department of Electrial Engineering

Texas ASSAM University

Fellows Advisor: Dr. M. R. Mercer
Department of Computer Engineering

After an integrated circuit is manufactured, it must be tested to insure that

it is not defective. Specifically, timing defects are becoming increasingly important

to detect because of the decreasing process geometries and increasing clock rates.

One way to detect these timing defects is to apply test patterns to the integrated

circuit that are generated using the transition-fault model. Unfortunately, industry's

current transition-fault test generation schemes produce test sets that are too large

to store in the memory of the tester. The proposed tnethods of test generation

utilize stuck-at-fault tests to create transition-fault test sets of a smaller size. Greedy

algorithms are used in the generation of both the stuck-at-fault and transition-fault

tests. In addition, various methods of test set compaction are explorerl to further

reduce the size of the test sets. This research demonstrates an efFective way to generate

compact transition-fault test sets for a benchmark circuit and holds great promise for

application to large commercial circuits.

I would like to thank Dr. M. Ray Mercer, Sooryong Lee, Dr. Mike Grimaila,

and Jennifer Dworak for their contributions and support.

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION .

A. Static and Dynamic Defects

B. Stuck-at Fault and Transition Fault Models

C. Excit, ation and Observation

D. Testers and Automatic Test Pattern Generators

E. Transition Fault Detection

II METHOD

A. Background
B. Transition-Fault Test Generation Method

C. Stuck-at-Fault Test Set Selection

D. Compaction

III RESULTS AND DATA ANALYSIS

A. Transition-Fault Test Generation Method

B. Stuck-at-Fault Test Set Selection

C. Compaction

IV CONCLUSION

7

8

10
10

12

12

12

13

16

REFERENCES 18

VITA 19

LIST OF FIGURES

FIGURE Page

A graphical description of an AND gate

Static and dynamic defects in an AND gate

Results of applying Method 1 and Method 2 13

Results of using different stuck-at-fault tests with Method 2

Results of applying reverse simulation and random simulation

14

14

CHAPTER I

INTRODUCTION

The production of integrated circuits (IC) has recently exploded into a multi-billion

dollar industry whose customers consistently demand faster and more intelligent prod-

ucts. In response to these demands, companies manufacture ICs that are growing

increasingly larger and more complex. As with any mass produced product, a strong

quality control system must be in place to assure that very few, if any, defective parts

are sold. For integrated circuits, this quality control is enforced by automatic test

equipment (ATE) [I]. After the IC has been produced, it is tested by the ATE to

determine whether it is free from defects. The methods in which the ATE tests the

circuit have been the subject of much research in the past and continue to be of great

importance today.

To test an IC, the ATE enters multiple combinations of values into the circuit's

inputs and observes the outputs to make sure they are correct. This is one of the

only possible methods of testing because the ATE does not have access to all of the

interior points in the circuit. The goal of testing is to strategi& ally choose the inputs

to the circuit so as to cause any interior defects of the circuit to nranifest themselves as

erroneous logic values at the circuit's outputs. One way to test for a circuit's defects

is to apply every possible input combination to the circuit and verify the outputs

to completely test its operation. Today's large and complex ICs cannot be tested so

easily [I[. Applying every possible input combination requires 2 raised to the power of

n different combinations to be applied, where n is the number of inputs to the circuit.

Attenrpting to test in this way on a processor like an Intel Pentium III using the

A B C

0 0 0

0 1 0

0 0

I I 1

Fig. 1. A graphical description of an AND gate

fastest ATE available today would take literally thousands of years. Clearly, a testing

method that requires entering far fewer than all of the possible input coinbinations

must be used.

To fully understand the process of testing, one must have a basic knowledge of

what an integrated circuit is. An integrated circuit is made up of snialler building-

block circuits called gates. The inputs to these gates can only take on the values

of 0 or 1 and only produce an output of 0 or 1. The outputs of some gates are

connected to the inputs of other gates in order to give the circuit a specifi function.

A graphical representation of one specific gate, the AND gate, is shown ir. Fig. 1.

This figure also shows the output of the AND gate in response to all of the possible

input combinations.

A. Static and Dynamic Defects

Determining which of the input combinations, or test vectors, to use depends on what

type or cmp aetect you are targetmg. There are two major categories oi detects that

AND gate with a static defect AND gate with a dynamic defect

0+1

Fig. 2. Static and dynamic defects in an AND gate

can occur in a circuit: static defects and dynamic defects. Static defects occur when

the circuit produces an incorrect output for a given input. Fig. 2 shows an AND gate

with a static defect that generates an erroneous output of 0 when when both inputs

are 1. Conversely, dynamic defects occur when the outputs of a circuit do not change

quickly enough in respouse to changing the inputs. Fig. 2 also shows an AND gate

with a dynamic defect. This defect occus when the lower input is changed from 0 to

1, causing the output of the AND gate to remain at 0 for an unacceptable a, mount of

time before changing to the correct value of 1. Testing for static defects has been the

primary concern in the past, but testing for dynamic defects is becoming increasingly

important. As the clock rate of modern circuits gets faster, even tiny defects in the

physical circuit can effect its timing. Therefore, both static and dynamic testing

methods must be employed to efiectively test state-of-the-art circuits.

B. Stuck-at Fault and Transition Fault Models

The most common way to nrodel static defects is by using the stuck-ar fault model

developed by R. D. Eldred [2]. A fault model is the specification of a likely defect in

the circuit. The stuck-at fa. ult model assumes that the only defects that can occur

'
I . ~ ne circuit that c ic onr. ou~ip fiwed I t * 0 ui a 1. Thn eau ut, iud

when two parts of a circuit are either erroneously connected together or not properly

connected at all. For example, such a defect can force a point in the circuit to be

either grounded or pulled to a high voltage regardless of what the circuit's inputs

dictate it to be. Much effort has gone into the development of test vectors that can

detect stuck-at faults in circuits.

Engineers have also developed ways to model dynamic defects. One of the most

popular models is the transition-fault model [3]. The transition-fault model assumes

that the only defects are timing delays at different points in the circuit. Specifically,

transition-fault tests are written to verify that the input and output of every gate

in the circuit can change from 0 to 1 and from 1 to 0 in an acceptable amount of

time. Transition defects introduce unacceptable timing delays that cause the IC to

fail when the inputs are rapidly switched. One of the most common causes of a

transition defect is an unintended narrowing of the circuit's wiring. These nicks,

caused by mishandling or manufacturing error, can affect the resistance of the wiring

and in turn increase the s~itching time constant of a particular gate in the circuit.

The delay introduced into the circuit. at this point will cause the circuit's output to

be invalid for an excessive period of time. Vv'bile this might not present a problem

for fairly static applications, delays in circuits whose inputs and outputs are rapidly

changed and monitored are unacceptable.

C. Excitation and Observation

For a, test vector to be successful, it must accomplish both the tasks of exciting and

observing a fault. To excite a fault means to select, the input vector so that it places

a 0 or a 1 at a point in the circuit. For example, to excite a stuck-at-zero fault at

the outnut of a gate in the circuit. a test vector must, he generated that. attempts tn

place a I at the output of that gate. To observe a fault means to select the input

vector so that it propagates the value at the desired point in the circuit to at least

one of the outputs of that circuit. Extending the above example, the input vector

must also be generated so that it propagates the output of the gate under test to one

of the outputs. Therefore, for a test vector to detect a fault, that vector must be able

to both excite and observe the fault. The process of generating vectors that detect a

fault is quite tedious and is almost always done by Design Automation tools called

Automatic Test Pattern Generators, or ATPGs.

D. Testers and Automatic Test Pattern Generators

Automatic Test Pattern Generators (ATPG) are computer programs designed to cre-

ate a set of test vectors that completely test for faults in a circuit. Once generated,

the test vectors are loaded into the memory of a tester. In order to test leading-edge

circuits, testers must also be state-of-the-art. This n!cans that the memory inside of

a tester is very expensive and often smaller than optinrah As the circuits are pro-

duced, about three seconds of time in the tester is aliotted to test each circuit. The

limitations of tester time and tester memory create a challenge for the engineer to

overcome. The test sets must conform to these limitatiorts by having a small number

of test vectors. Although most stuck-at-fault test sets will fit into a tester's memory,

transition-fault test sets often will not. Also, current ATPGs are very efficient at

generating tests for stuck-at faults, but have more difficulty in generating tests for

transition faults.

E. Transition Fault Detection

There are three conditions that must be met in order to be able to detect a transition

fault. A first test vector must be applied that sets a point in the circuit to a known

value, either 0 or 1. Next, a second test vector must be applied that causes that

same point to change from 0 to 1 (to detect slow-to-rise defects) or from 1 to 0 (to

detect slow-to-fall defects). If a transition defect exists, this change will occur slowly

when the vectors are applied to the circuit in succession, and this delay will propagate

through the circuit. The final condition to meet is that, this delay must propagate all

the way from the point of the defect to one of the outputs where it can be observed.

When choosing pairs of test vectors, the goal is to choose the smallest acceptable

number of pairs that will detect all of the circuit's tiansition faults.

As you can see, one transition-fault test is comprised of two vectors whereas one

stuck-at-fault test is comprised of only one vector. This is one of the major reasons

why transition-fault test sets require more vectors, and therefore more tester memory.

A second reason for this is that the average transition-fault test detects fewer faults

than the average stuck-at-fault test because of the lower probability of exciting a

transition fault. Because the number of stuck-at faults and transition faults is the

same for a circuit (two of each at every gate input and output), it follows that more

transition-fault tests will be required than stuck-at-fault tests. In order to solve this

problem, a new method of automatic test pattern generation must, be utilized to

reduce the number of test vectors needed to test an integrated circuit for transition

defects.

CHAPTER II

METHOD

A. Background

In order to experiment with different methods of transition-fault test generation,

software specifications of either commercial or benchmark circuits must be used. A

software specification of a circuit contains information about the kinds of gates used

and how they are connected together. Because of the proprietary nature and com-

plexity of commercial circuits, benchmark circuits are most often used in the early

stages of testing research. Also, benchmark circuits provide a foundation on which to

compare your research with that of others who use the same set of benchmarks. All

of the experiments performed for this research were applied to a benchmark circuit

known as c432 published by F. Brglez and H. Fujiwara [4]. This relatively small circuit

consists of 432 sites, 864 transition faults, 36 inputs, 7 outputs, and is constructed of

a variety of gates ranging from NAND gates to XOR gates.

Before performing any experiments, it is also beneficial to note the theoretical

lower bound for the number of transition-fault tests needed to test c432 for all of its

transition faults. A previously published work reported a lower bound of 27 tests

needed to completely test c432 for stuck-at-faults [5]. This bound has been extended

to transition-fault tests with one added notion. At best a transition-fault test set

would use the same 27 stuck-at-fault tests as the second vectors of the transition-

fault test and each second vector would be paired with a first vector that perfectly

matches. By a perfect match, I mean that the first vector also excites all of the faults

that are excited and observed by the second vector. While this theoretical bound is

hiP'blv imprnbzbie it narc ribs inc cersroq ac w an~4 reference nnint 4 ephor ira) «b)

reference point is the current commercial practice. The results from a simulation

show that, the current commercial practice detects only 322 of the total 864 transition

faults.

B. Transition-Fault Test Generation Method

In this research, two distinct methods of transition-fault test generation were ana-

lyzed. Both methods involve reusing vectors that were originally generated to com-

pletely detect all of the stuck-at faults in c432. In Method 1, the stuck-at-fault test

vectors are used as the only source for first and second vectors in the transition-fault

test pairs. In Method 2, stuck-at-fault test vectors are still the only vectors used as

second transition-fault vectors, but new first transition-fault vectors are generated.

Let's first see why both Method 1 and Method 2 are guaranteed to produce a complete

transition-fault test set.

The vectors of a complete stuck-at-fault test set are sufficient in themselves to

be used as the only the vectors needed to create a complete transition-fault test set.

To understand this, let's take a simple example related to an arbitrary point A in the

circuit. By definition, there is at least one vector in the stuck-at-fault test set that,

sets point A to 0 and makes it observable at the outputs. Also, ther is at least one

vector in the stuck-at-fault test set that sets point A to 1 and makes it observable at

the outputs. By making one of these stuck-at-fault vectors the first, transition-fault

vector and the other the second transition-fault vector, we can test either the slow-

to-rise or slow-to-fall fault at that point when the vectors are applied in succession.

It is quite easy to see that this process can be repeated until a test is created for both

types of transition faults at every point in the circuit. Therefore, Method 1 is a, valid

method bv which to generate a comnlete transition-fault test. set, .

Method 2 uses the same principles as stated above, but to a lesser extent. Let' s

take another simple example. By definition, there is at least one vector in the stuck-

at-fault test set that sets point A to I and makes it observable at. the outputs. By

generating a new vector that sets point A to 0, we can apply the new vector followed

by the stuck-at-fault vector to the circuit and detect if point A is slow-to-rise. In the

same way, Method 2 can be repeated until a test is created for both types of transition

faults at every point in the circuit. The advantage of Method 2 over Method I is that

it has greater flexibility in selecting the first transition-fault vector. This allows I'or the

first transition-fault vector of each test to be tailored to each second transition-fault

vector.

The Method I tests are generated in the following manner. Each vector of the

stuck-at-fault test set is paired with every other vector in the test set to find which

combination results in the detection of the most transition faults. This best vector

pair is then simulated on c432, and the transition faults that it detects are dropperl

from the objective list. This process of dropping the faults from the objective list

is called fault dropping. Next, each vector is paired again with all of the others to

find the combination that results in the detection of the most as-of-yet-undetected

transition faults. Again, this test is simulated and fault dropping occurs. This process

is repeated until a test is generated for all of the transition faults. The fewer the

number of tests generated, the better the test set.

Now lets look at how the Method 2 tests are generated. First, the stuck-at-

fault vector that detects the most stuck-at-faults is selected for use as the second

transition-fault vector of the initial transition-fault test. A vector to be paired with

the second transition-fault vector is then generated by a modified ATPG program.

This transition-fault test is simulated on c432, and fault dropping removes the de-

tected faults from the objective list. This process repeats until a test, has been written

10

for every transition fault, each time selecting the stuck-at-fault vector that detects

the most stuck-at-faults that correspond to the as-of-yet-undetected transition faults.

C. Stuck-at-Fault Test Set Selection

In addition to the two methods of transition-fault test generation, two methods

of stuck-at-fault test generation were used to provide the pool of vectors for the

transition-fault test generation methods. One set of stuck-at-fault tests was gener-

ated using a standard ATPG algorithm and the second set was generated using a

modified version of the standard ATPG algorithm. This modified ATPG algorithm

will be referred to as the greedy algorithm and was created by another member of

our research group, S. Lee.

D. Compaction

Basic dynamic and static compaction methods were also applied during the experi-

mentation of each method. Dynamic compaction refers to the process of attempting

to reduce the test set size while in the process of generating vectors. Static com-

paction also attempts to reduce the test set size, but unlike dynamic compaction it

is applied after the ATPG has generated a complete set of tests.

The three forms of static compactior. used are called reverse simulation, ran-

dom simulation, and test dominance. Reverse simulation involves simulating the

transition-fault tests again, applying the last tests generated to the circuit first. As

the simulation proceeds, the same process of fault dropping is used. In many cases,

reverse simulation will show that the first tests generated are unnecessary and can

be removed from the test set. Random simulation involves simulating the transition-

fault test sei, ogaiu in a r*udonl Urucl io d' Icosi thai certain lesls dl ywheit' in elle

11

circuit are unnecessary.

The final form of static compaction, called test dominance, involves analyzing

the faults detected by each test and deterministically removing all unnecessary tests.

Applying test dominance is equivalent to simulating the tests in every possible order.

Although it is a bit more complicated than reverse simulation or random simulation,

it guarantees that every unnecessary test will be eliminated. The same could be

achieved by using random simulation indefinately, but the time needed to do this is

excessive.

One form of dynamic compaction is also used. The dynamic compaction is

embedded into the generation of the first transition-fault vector of every test. The

algorithm that creates this vector attempts to generate it in such as way that as many

transition-faults as possible are detected when it is applied with the second transition-

fault vector. This form of dynamic compaction was used in all of experinients in this

research.

12

CHAPTER III

RESULTS AND DATA ANALYSIS

A. Transition-Fault Test Generation Method

Fig. 3 shows a plot of the results from applying both methods to c432. The greedy

method of stuck-at-fault test generation was used to create the stuck-at-fault vectors

for this experiment.

It, is interesting to note that the transition-fault tests do not detect all of the

transition faults. There are some faults that, due to the nature of the circuit, cannot

possibly be tested. Throughout this paper though, the phrase "all of the transition

faults" is used instead of the more lengthy, though more accurate, phrase "all of the

testable transition faults. " For c432, there are 10 of these uudetectable transition

faults out of the total 864 in the circuit.

As you can see, Method 2 requires eight, fewer test: than Method 1 to detect

all of the transition faults. The tradeoff of using Method 2 is that its algorithm is

much more complex. In general though, unless the tradeoff of complexity results in

an unacceptable amount of test generation time, a complex method that produces a

smaller number of tests is superior. By these criteria, Method 2 emerges as the test

generation method of choice.

B. Stuck-at-Fault Test Set Selection

Having chosen Method 2 as the best transition-fault test generation method, the

stuck-at-fault set must be selected that best optimizes Method 2. The results of

using both a traditionally generated stuck-at-fault test set and a greedily generated

sucic-ac-iauis ser are snown m Fig. 4. It &s miportant to note tnat the traurtsonai

ts 900
E

600
E
sl

700
Ol

600

500

c
E 400

1

300
e
E zoo

R
100

6

+ +
+

x +
+

e Method 1

++++
t

~ Method 2
~ \ +s

x Theoretical Lower Bound
e ~+ Commercial Practice

X

X ~

X ~
x ~ e

x ~ 27 tests

47 tests 55 tests ~ ~ +e xx eee
x"xxx eeeigzee xxxxx eaeeeeeeeeeeeeeeeeee ~ e

10 20 30 10 50 60

Number ot Tests Applied

Fig. 3. Results of applying Method 1 and Method 2

stuck-at-fault test set has many more vectors (68) than the greedy stuck-at-fault test

set (36), This means that, the vectors in the greedy set can be thought of as heing

denser. The density of a vector refers to how many faults in the circuit it detects. It

is obvious from these results that the greedy test set, although containing a smaller

number of vectors for Method 2 to utilize, is the better of the two stuck-at-fault test

sets to pair with Method 2.

C. Compaction

The next step in attemoting to produce a smaller test set is to apply different forms

of compaction. As mentioned earlier, both static and dynamic forms of compaction

were explored. The results of applying these static compaction algorithlns to Method

2 are shown in Fig. 3. The data from the random simulation is simply a repre entative

sample from the twenty times this method was applied.

Not surprisingly, these compaction algorithms have no effect on the size of tile

1000 1-

900
o

800

700
sl

lS
600

0
ts
Sl

400

I-
o
Sl

20O
E
Z 100

t ~
I ~

I

I

~ Greedy Stuck-a-fault Set

s Conventional Stuck-at-fault Set

~ s
~ s

~ s
~ s

~ s ~ s ~ Qsj 47 tests 60 tests
~ s sss ~ sssssssssss i """'tttttllllkS

10 30 40 60 70

Number of Tests Applied

Fig. 4. Results of using different stuck-at-fault tests with Methocl 2

900

Ol
soo c

sl
E 7oo
K
e 600

ill
50O

L 0
E 400

sl
300

0
200

41
E

100 z
0

~ ~
, x st

s ~
X

x No Compaction Applied

~ Reverse Simulation

4 Random Simulation

T ~

ass
s ~ ~ ~ 47 tests I

X1XXXXXXXXX J

X
X ~ ~

X s ~ ~ ~ ~ ~ s X 44 ass
X ~ s x

X s
X

Xx X xxx
XXX XXxxx

0 5 10 15 20 25 30 35 40 45 50

Number of Tests Applied

Fig. gt. Results of applying reverse simulation and random simulation

15

transition-fault test set (47). The reason for this is that the stuck-at-fault test set used

is already highly compacted. Because the transition-fault test generation methods use

these highly compacted stuck-at-fault tests, they in turn have a very low probability

of further compaction. Finally, the application of test dominance to Method 2 test

vectors results in the elimination of three tests, or six vectors, from the transition-

fault test set (from 47 to 44). This compaction scheme is more effective than the

others because it searches the test set exaustively for unnecessary tests.

CHAPTER IV

CONCLUSION

There are many ways to generate test sets for transition faults. Some methods are

simple, while others are more complex. The best method is one that generates a very

compact test set and does not execute too slowly when applied to large circuits. The

two proposed methods of test generation both produce a complete transition-fault test

set. Because of the stricter limitations on the vectors, a larger test set is generated by

Method 1. By reducing the limitatious on the vectors by adding customizability to

the first vector of each test, Method 2 succeeds:n generating a, smaller, more effective

test set.

lvlethod 2 was also shown to work more effect~vely when given a dense set of

stuck-at-fault tests from which to select the secoml vector of each transition-fault

test. In addition, applying test dominance compaction to Method 2 succeeded in

reducing the size of the test set even further. This results in a complete transition-

fault test set for the benchmark circuit c432 of fourty-four rests. In comparison, the

proposed methods are far superior to the current conimercial practices. Though these

methods were only tested on c432, their results show great potential for application

to larger commercial circuits. In addition, the static compaction algorithms used in

this research are predicted to be more effective when applied to test sets for larger

circuits.

Future research will be carried out in two major areas. The proposed methods

will be applied to a full range of benchmark circuits to gain a better understanding

of their effectiveness. The proposed methods will al o be extended in various ways

to improve their effectiveness at detecting real del'ects. One approach that will be

implemented consists of generating a test set that detects each trausition fault mul-

tiple times instead of only once. Previous research nn stuck-at faults has shown that

detecting each stuck-at fault multiple times, in different ways, results in fewer defec-

tive circuits escaping undetected [6]. The same benefits will most probably arise from

detecting each transition fault multiple times.

18

REFERENCES

[1] Jon Turino, "Senuconductor device test equipment, " VISI Testing, vol. 76, pp.

229-238, 1986.

[2] R. D. Eldred, "Test routines based on symbolic logic statements, " Journal ACM,

vol. 6, pp. 33-36, 1959.

[3] Barry K. Rosen John A. Waicukauski, Eric Lindenbloom and Vijay S. Iyengar,

"Transition fault simulation, " IEEE Design Ez Test, vol. 76, pp. 32 — 38, April 1987.

[4] F. Brglez and H. Fujiwara, "A neutral netlist of 10 commercial benchmark circuits

and a target translator in fortran, " in Proc. IEEE Int. Symp. on Circ. Syst. .

(ISCAS), June 1985.

[5] Kozo Kinoshita Seiji Kajihara, Irith Pomeranz and Sudhakar M. Reddy, "On

compacting test sets by addition and removal of test vectors. ,
' in Proc. IEEE

VLSI Test Symposium, 1994.

[6] J. Dworak K. M. Butler B. Stewart H. Balachandran B. houchins V. Mathur

J. Park L-C. Wang M R, Grimaila, S. Lee and M, R. Mercer, "Redo-ranrionr

excitation and deternunistic observation — first comnrercial experimenr„" in Proc.

IEEE VLSI Test Symposium, April 1999.

19

VITA

Bradley Douglas Cobb resides at 1108 Austin Avenue in College Station, TX

where he is an undergraduate student in electrical engineering at Texas ARM Univer-

sity. His academic focuses are centered in computer engineering and include: design

of digital systems, automatic test pattern generation, and communications. He is the

recipient of the Engineering Scholars Program Corporate Scholarship and holds an

office in Eta Kappa Nu, the electrical engineering honors society.

Previously, Mr. Cobb has worked in the areas of digital signal processing, fiber-

optic sensing, and microcontroller marketing at: Texas Instruments, Stafford, TX;

Input Output, Staiford, TX; and Halliburton, Houston, TX. He has oiie publication

entitled "On the superiority of DO-RE-ME/MPG-D over stuck-at-based defective

part level prediction. "

