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ABSTRACT 

Transition-Fault Test Generation. (April 2001) 

Bradley Douglas Cobb 
Department of Electrial Engineering 

Texas ASSAM University 

Fellows Advisor: Dr. M. R. Mercer 
Department of Computer Engineering 

After an integrated circuit is manufactured, it must be tested to insure that 

it is not defective. Specifically, timing defects are becoming increasingly important 

to detect because of the decreasing process geometries and increasing clock rates. 

One way to detect these timing defects is to apply test patterns to the integrated 

circuit that are generated using the transition-fault model. Unfortunately, industry's 

current transition-fault test generation schemes produce test sets that are too large 

to store in the memory of the tester. The proposed tnethods of test generation 

utilize stuck-at-fault tests to create transition-fault test sets of a smaller size. Greedy 

algorithms are used in the generation of both the stuck-at-fault and transition-fault 

tests. In addition, various methods of test set compaction are explorerl to further 

reduce the size of the test sets. This research demonstrates an efFective way to generate 

compact transition-fault test sets for a benchmark circuit and holds great promise for 

application to large commercial circuits. 
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CHAPTER I 

INTRODUCTION 

The production of integrated circuits (IC) has recently exploded into a multi-billion 

dollar industry whose customers consistently demand faster and more intelligent prod- 

ucts. In response to these demands, companies manufacture ICs that are growing 

increasingly larger and more complex. As with any mass produced product, a strong 

quality control system must be in place to assure that very few, if any, defective parts 

are sold. For integrated circuits, this quality control is enforced by automatic test 

equipment (ATE) [I]. After the IC has been produced, it is tested by the ATE to 

determine whether it is free from defects. The methods in which the ATE tests the 

circuit have been the subject of much research in the past and continue to be of great 

importance today. 

To test an IC, the ATE enters multiple combinations of values into the circuit's 

inputs and observes the outputs to make sure they are correct. This is one of the 

only possible methods of testing because the ATE does not have access to all of the 

interior points in the circuit. The goal of testing is to strategi& ally choose the inputs 

to the circuit so as to cause any interior defects of the circuit to nranifest themselves as 

erroneous logic values at the circuit's outputs. One way to test for a circuit's defects 

is to apply every possible input combination to the circuit and verify the outputs 

to completely test its operation. Today's large and complex ICs cannot be tested so 

easily [I[. Applying every possible input combination requires 2 raised to the power of 

n different combinations to be applied, where n is the number of inputs to the circuit. 

Attenrpting to test in this way on a processor like an Intel Pentium III using the 
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Fig. 1. A graphical description of an AND gate 

fastest ATE available today would take literally thousands of years. Clearly, a testing 

method that requires entering far fewer than all of the possible input coinbinations 

must be used. 

To fully understand the process of testing, one must have a basic knowledge of 

what an integrated circuit is. An integrated circuit is made up of snialler building- 

block circuits called gates. The inputs to these gates can only take on the values 

of 0 or 1 and only produce an output of 0 or 1. The outputs of some gates are 

connected to the inputs of other gates in order to give the circuit a specifi function. 

A graphical representation of one specific gate, the AND gate, is shown ir. Fig. 1. 

This figure also shows the output of the AND gate in response to all of the possible 

input combinations. 

A. Static and Dynamic Defects 

Determining which of the input combinations, or test vectors, to use depends on what 

type or cmp aetect you are targetmg. There are two major categories oi detects that 
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Fig. 2. Static and dynamic defects in an AND gate 

can occur in a circuit: static defects and dynamic defects. Static defects occur when 

the circuit produces an incorrect output for a given input. Fig. 2 shows an AND gate 

with a static defect that generates an erroneous output of 0 when when both inputs 

are 1. Conversely, dynamic defects occur when the outputs of a circuit do not change 

quickly enough in respouse to changing the inputs. Fig. 2 also shows an AND gate 

with a dynamic defect. This defect occus when the lower input is changed from 0 to 

1, causing the output of the AND gate to remain at 0 for an unacceptable a, mount of 

time before changing to the correct value of 1. Testing for static defects has been the 

primary concern in the past, but testing for dynamic defects is becoming increasingly 

important. As the clock rate of modern circuits gets faster, even tiny defects in the 

physical circuit can effect its timing. Therefore, both static and dynamic testing 

methods must be employed to efiectively test state-of-the-art circuits. 

B. Stuck-at Fault and Transition Fault Models 

The most common way to nrodel static defects is by using the stuck-ar fault model 

developed by R. D. Eldred [2]. A fault model is the specification of a likely defect in 

the circuit. The stuck-at fa. ult model assumes that the only defects that can occur 

' 
I . ~ ne circuit that c ic onr. ou~ip fiwed I t * 0 ui a 1. Thn eau ut, iud 



when two parts of a circuit are either erroneously connected together or not properly 

connected at all. For example, such a defect can force a point in the circuit to be 

either grounded or pulled to a high voltage regardless of what the circuit's inputs 

dictate it to be. Much effort has gone into the development of test vectors that can 

detect stuck-at faults in circuits. 

Engineers have also developed ways to model dynamic defects. One of the most 

popular models is the transition-fault model [3]. The transition-fault model assumes 

that the only defects are timing delays at different points in the circuit. Specifically, 

transition-fault tests are written to verify that the input and output of every gate 

in the circuit can change from 0 to 1 and from 1 to 0 in an acceptable amount of 

time. Transition defects introduce unacceptable timing delays that cause the IC to 

fail when the inputs are rapidly switched. One of the most common causes of a 

transition defect is an unintended narrowing of the circuit's wiring. These nicks, 

caused by mishandling or manufacturing error, can affect the resistance of the wiring 

and in turn increase the s~itching time constant of a particular gate in the circuit. 

The delay introduced into the circuit. at this point will cause the circuit's output to 

be invalid for an excessive period of time. Vv'bile this might not present a problem 

for fairly static applications, delays in circuits whose inputs and outputs are rapidly 

changed and monitored are unacceptable. 

C. Excitation and Observation 

For a, test vector to be successful, it must accomplish both the tasks of exciting and 

observing a fault. To excite a fault means to select, the input vector so that it places 

a 0 or a 1 at a point in the circuit. For example, to excite a stuck-at-zero fault at 

the outnut of a gate in the circuit. a test vector must, he generated that. attempts tn 



place a I at the output of that gate. To observe a fault means to select the input 

vector so that it propagates the value at the desired point in the circuit to at least 

one of the outputs of that circuit. Extending the above example, the input vector 

must also be generated so that it propagates the output of the gate under test to one 

of the outputs. Therefore, for a test vector to detect a fault, that vector must be able 

to both excite and observe the fault. The process of generating vectors that detect a 

fault is quite tedious and is almost always done by Design Automation tools called 

Automatic Test Pattern Generators, or ATPGs. 

D. Testers and Automatic Test Pattern Generators 

Automatic Test Pattern Generators (ATPG) are computer programs designed to cre- 

ate a set of test vectors that completely test for faults in a circuit. Once generated, 

the test vectors are loaded into the memory of a tester. In order to test leading-edge 

circuits, testers must also be state-of-the-art. This n!cans that the memory inside of 

a tester is very expensive and often smaller than optinrah As the circuits are pro- 

duced, about three seconds of time in the tester is aliotted to test each circuit. The 

limitations of tester time and tester memory create a challenge for the engineer to 

overcome. The test sets must conform to these limitatiorts by having a small number 

of test vectors. Although most stuck-at-fault test sets will fit into a tester's memory, 

transition-fault test sets often will not. Also, current ATPGs are very efficient at 

generating tests for stuck-at faults, but have more difficulty in generating tests for 

transition faults. 



E. Transition Fault Detection 

There are three conditions that must be met in order to be able to detect a transition 

fault. A first test vector must be applied that sets a point in the circuit to a known 

value, either 0 or 1. Next, a second test vector must be applied that causes that 

same point to change from 0 to 1 (to detect slow-to-rise defects) or from 1 to 0 (to 

detect slow-to-fall defects). If a transition defect exists, this change will occur slowly 

when the vectors are applied to the circuit in succession, and this delay will propagate 

through the circuit. The final condition to meet is that, this delay must propagate all 

the way from the point of the defect to one of the outputs where it can be observed. 

When choosing pairs of test vectors, the goal is to choose the smallest acceptable 

number of pairs that will detect all of the circuit's tiansition faults. 

As you can see, one transition-fault test is comprised of two vectors whereas one 

stuck-at-fault test is comprised of only one vector. This is one of the major reasons 

why transition-fault test sets require more vectors, and therefore more tester memory. 

A second reason for this is that the average transition-fault test detects fewer faults 

than the average stuck-at-fault test because of the lower probability of exciting a 

transition fault. Because the number of stuck-at faults and transition faults is the 

same for a circuit (two of each at every gate input and output), it follows that more 

transition-fault tests will be required than stuck-at-fault tests. In order to solve this 

problem, a new method of automatic test pattern generation must, be utilized to 

reduce the number of test vectors needed to test an integrated circuit for transition 

defects. 



CHAPTER II 

METHOD 

A. Background 

In order to experiment with different methods of transition-fault test generation, 

software specifications of either commercial or benchmark circuits must be used. A 

software specification of a circuit contains information about the kinds of gates used 

and how they are connected together. Because of the proprietary nature and com- 

plexity of commercial circuits, benchmark circuits are most often used in the early 

stages of testing research. Also, benchmark circuits provide a foundation on which to 

compare your research with that of others who use the same set of benchmarks. All 

of the experiments performed for this research were applied to a benchmark circuit 

known as c432 published by F. Brglez and H. Fujiwara [4]. This relatively small circuit 

consists of 432 sites, 864 transition faults, 36 inputs, 7 outputs, and is constructed of 

a variety of gates ranging from NAND gates to XOR gates. 

Before performing any experiments, it is also beneficial to note the theoretical 

lower bound for the number of transition-fault tests needed to test c432 for all of its 

transition faults. A previously published work reported a lower bound of 27 tests 

needed to completely test c432 for stuck-at-faults [5]. This bound has been extended 

to transition-fault tests with one added notion. At best a transition-fault test set 

would use the same 27 stuck-at-fault tests as the second vectors of the transition- 

fault test and each second vector would be paired with a first vector that perfectly 

matches. By a perfect match, I mean that the first vector also excites all of the faults 

that are excited and observed by the second vector. While this theoretical bound is 

hiP'blv imprnbzbie it narc ribs inc cersroq ac w an~4 reference nnint 4 ephor ira) «b) 



reference point is the current commercial practice. The results from a simulation 

show that, the current commercial practice detects only 322 of the total 864 transition 

faults. 

B. Transition-Fault Test Generation Method 

In this research, two distinct methods of transition-fault test generation were ana- 

lyzed. Both methods involve reusing vectors that were originally generated to com- 

pletely detect all of the stuck-at faults in c432. In Method 1, the stuck-at-fault test 

vectors are used as the only source for first and second vectors in the transition-fault 

test pairs. In Method 2, stuck-at-fault test vectors are still the only vectors used as 

second transition-fault vectors, but new first transition-fault vectors are generated. 

Let's first see why both Method 1 and Method 2 are guaranteed to produce a complete 

transition-fault test set. 

The vectors of a complete stuck-at-fault test set are sufficient in themselves to 

be used as the only the vectors needed to create a complete transition-fault test set. 

To understand this, let's take a simple example related to an arbitrary point A in the 

circuit. By definition, there is at least one vector in the stuck-at-fault test set that, 

sets point A to 0 and makes it observable at the outputs. Also, ther is at least one 

vector in the stuck-at-fault test set that sets point A to 1 and makes it observable at 

the outputs. By making one of these stuck-at-fault vectors the first, transition-fault 

vector and the other the second transition-fault vector, we can test either the slow- 

to-rise or slow-to-fall fault at that point when the vectors are applied in succession. 

It is quite easy to see that this process can be repeated until a test is created for both 

types of transition faults at every point in the circuit. Therefore, Method 1 is a, valid 

method bv which to generate a comnlete transition-fault test. set, . 



Method 2 uses the same principles as stated above, but to a lesser extent. Let' s 

take another simple example. By definition, there is at least one vector in the stuck- 

at-fault test set that sets point A to I and makes it observable at. the outputs. By 

generating a new vector that sets point A to 0, we can apply the new vector followed 

by the stuck-at-fault vector to the circuit and detect if point A is slow-to-rise. In the 

same way, Method 2 can be repeated until a test is created for both types of transition 

faults at every point in the circuit. The advantage of Method 2 over Method I is that 

it has greater flexibility in selecting the first transition-fault vector. This allows I'or the 

first transition-fault vector of each test to be tailored to each second transition-fault 

vector. 

The Method I tests are generated in the following manner. Each vector of the 

stuck-at-fault test set is paired with every other vector in the test set to find which 

combination results in the detection of the most transition faults. This best vector 

pair is then simulated on c432, and the transition faults that it detects are dropperl 

from the objective list. This process of dropping the faults from the objective list 

is called fault dropping. Next, each vector is paired again with all of the others to 

find the combination that results in the detection of the most as-of-yet-undetected 

transition faults. Again, this test is simulated and fault dropping occurs. This process 

is repeated until a test is generated for all of the transition faults. The fewer the 

number of tests generated, the better the test set. 

Now lets look at how the Method 2 tests are generated. First, the stuck-at- 

fault vector that detects the most stuck-at-faults is selected for use as the second 

transition-fault vector of the initial transition-fault test. A vector to be paired with 

the second transition-fault vector is then generated by a modified ATPG program. 

This transition-fault test is simulated on c432, and fault dropping removes the de- 

tected faults from the objective list. This process repeats until a test, has been written 
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for every transition fault, each time selecting the stuck-at-fault vector that detects 

the most stuck-at-faults that correspond to the as-of-yet-undetected transition faults. 

C. Stuck-at-Fault Test Set Selection 

In addition to the two methods of transition-fault test generation, two methods 

of stuck-at-fault test generation were used to provide the pool of vectors for the 

transition-fault test generation methods. One set of stuck-at-fault tests was gener- 

ated using a standard ATPG algorithm and the second set was generated using a 

modified version of the standard ATPG algorithm. This modified ATPG algorithm 

will be referred to as the greedy algorithm and was created by another member of 

our research group, S. Lee. 

D. Compaction 

Basic dynamic and static compaction methods were also applied during the experi- 

mentation of each method. Dynamic compaction refers to the process of attempting 

to reduce the test set size while in the process of generating vectors. Static com- 

paction also attempts to reduce the test set size, but unlike dynamic compaction it 

is applied after the ATPG has generated a complete set of tests. 

The three forms of static compactior. used are called reverse simulation, ran- 

dom simulation, and test dominance. Reverse simulation involves simulating the 

transition-fault tests again, applying the last tests generated to the circuit first. As 

the simulation proceeds, the same process of fault dropping is used. In many cases, 

reverse simulation will show that the first tests generated are unnecessary and can 

be removed from the test set. Random simulation involves simulating the transition- 

fault test sei, ogaiu in a r*udonl Urucl io d' Icosi thai certain lesls dl ywheit' in elle 
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circuit are unnecessary. 

The final form of static compaction, called test dominance, involves analyzing 

the faults detected by each test and deterministically removing all unnecessary tests. 

Applying test dominance is equivalent to simulating the tests in every possible order. 

Although it is a bit more complicated than reverse simulation or random simulation, 

it guarantees that every unnecessary test will be eliminated. The same could be 

achieved by using random simulation indefinately, but the time needed to do this is 

excessive. 

One form of dynamic compaction is also used. The dynamic compaction is 

embedded into the generation of the first transition-fault vector of every test. The 

algorithm that creates this vector attempts to generate it in such as way that as many 

transition-faults as possible are detected when it is applied with the second transition- 

fault vector. This form of dynamic compaction was used in all of experinients in this 

research. 
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CHAPTER III 

RESULTS AND DATA ANALYSIS 

A. Transition-Fault Test Generation Method 

Fig. 3 shows a plot of the results from applying both methods to c432. The greedy 

method of stuck-at-fault test generation was used to create the stuck-at-fault vectors 

for this experiment. 

It, is interesting to note that the transition-fault tests do not detect all of the 

transition faults. There are some faults that, due to the nature of the circuit, cannot 

possibly be tested. Throughout this paper though, the phrase "all of the transition 

faults" is used instead of the more lengthy, though more accurate, phrase "all of the 

testable transition faults. " For c432, there are 10 of these uudetectable transition 

faults out of the total 864 in the circuit. 

As you can see, Method 2 requires eight, fewer test: than Method 1 to detect 

all of the transition faults. The tradeoff of using Method 2 is that its algorithm is 

much more complex. In general though, unless the tradeoff of complexity results in 

an unacceptable amount of test generation time, a complex method that produces a 

smaller number of tests is superior. By these criteria, Method 2 emerges as the test 

generation method of choice. 

B. Stuck-at-Fault Test Set Selection 

Having chosen Method 2 as the best transition-fault test generation method, the 

stuck-at-fault set must be selected that best optimizes Method 2. The results of 

using both a traditionally generated stuck-at-fault test set and a greedily generated 

sucic-ac-iauis ser are snown m Fig. 4. It &s miportant to note tnat the traurtsonai 
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stuck-at-fault test set has many more vectors (68) than the greedy stuck-at-fault test 

set (36), This means that, the vectors in the greedy set can be thought of as heing 

denser. The density of a vector refers to how many faults in the circuit it detects. It 

is obvious from these results that the greedy test set, although containing a smaller 

number of vectors for Method 2 to utilize, is the better of the two stuck-at-fault test 

sets to pair with Method 2. 

C. Compaction 

The next step in attemoting to produce a smaller test set is to apply different forms 

of compaction. As mentioned earlier, both static and dynamic forms of compaction 

were explored. The results of applying these static compaction algorithlns to Method 

2 are shown in Fig. 3. The data from the random simulation is simply a repre entative 

sample from the twenty times this method was applied. 

Not surprisingly, these compaction algorithms have no effect on the size of tile 
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transition-fault test set (47). The reason for this is that the stuck-at-fault test set used 

is already highly compacted. Because the transition-fault test generation methods use 

these highly compacted stuck-at-fault tests, they in turn have a very low probability 

of further compaction. Finally, the application of test dominance to Method 2 test 

vectors results in the elimination of three tests, or six vectors, from the transition- 

fault test set (from 47 to 44). This compaction scheme is more effective than the 

others because it searches the test set exaustively for unnecessary tests. 



CHAPTER IV 

CONCLUSION 

There are many ways to generate test sets for transition faults. Some methods are 

simple, while others are more complex. The best method is one that generates a very 

compact test set and does not execute too slowly when applied to large circuits. The 

two proposed methods of test generation both produce a complete transition-fault test 

set. Because of the stricter limitations on the vectors, a larger test set is generated by 

Method 1. By reducing the limitatious on the vectors by adding customizability to 

the first vector of each test, Method 2 succeeds:n generating a, smaller, more effective 

test set. 

lvlethod 2 was also shown to work more effect~vely when given a dense set of 

stuck-at-fault tests from which to select the secoml vector of each transition-fault 

test. In addition, applying test dominance compaction to Method 2 succeeded in 

reducing the size of the test set even further. This results in a complete transition- 

fault test set for the benchmark circuit c432 of fourty-four rests. In comparison, the 

proposed methods are far superior to the current conimercial practices. Though these 

methods were only tested on c432, their results show great potential for application 

to larger commercial circuits. In addition, the static compaction algorithms used in 

this research are predicted to be more effective when applied to test sets for larger 

circuits. 

Future research will be carried out in two major areas. The proposed methods 

will be applied to a full range of benchmark circuits to gain a better understanding 

of their effectiveness. The proposed methods will al o be extended in various ways 

to improve their effectiveness at detecting real del'ects. One approach that will be 

implemented consists of generating a test set that detects each trausition fault mul- 



tiple times instead of only once. Previous research nn stuck-at faults has shown that 

detecting each stuck-at fault multiple times, in different ways, results in fewer defec- 

tive circuits escaping undetected [6]. The same benefits will most probably arise from 

detecting each transition fault multiple times. 
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