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ABSTRACT 

Kinetic Studies of Isoprene Reactions with 

Hydroxyl and Chlorine Radicals. 

(August 2000) 

Inseon Suh, B. S. Seoul Women's University 

Chair of Advisory Committee: Dr. Renyi Zhang 

Kinetic studies of the isoprene oxidation reactions initiated by the hydroxyl 

radical OH and the chlorine atom Cl have been investigated using a fast-flow reactor in 

conjunction with chemical ionization mass spectrometry (CIMS) and using laser 

photolysis/laser induced fluorescence (LP/LIF) detection. Both the CIMS and LP/LIF 

techniques were employed to invesflgate the reaction of isoprene with OH. The rate 

constants for the OH-isoprene reaction were measured in a pressure range of 70 to 112 

Torr using the CIMS approach, with values of (9. 7 + 1. 0) x 10 " to (10. 5 + 1. 1) x 10 " 

cm molecule ' s ' at 298 + 2 K. The LP/LIF method was used to measure the pressure 

dependent rate constants in a pressure range of 0. 5 to 20 Torr. A low pressure limiting 

termolecular rate constant, g = (6. 98 + 2. 2) x 10 cm molecules s' and a high 

pressure limiting rate constant, k~ = (1. 04 + 0. 04) x 10' cm molecules ' s ' at 295 K 

were obtained by fitting the measured rate constants according to the Troe expression. 

The CIMS approach allowed monitoring of the OH-isoprene adducts directly. The 

observed bimolecular rate constant for the reaction between the OH-isoprene adduct and 

Oz was determined to be (2. 8 + 0. 7) x 10 ' cm molecule ' s ' at 75. 5 Torr. 



In addition, the reaction of isoprene initiated by Cl atom has been studied, using 

the CIMS method. The reaction of isoprene with Cl proceeds via both the Cl addition to 

isoprene and hydrogen abstraction to form HC1. The pressure independent rate constant 

of (4. 0 + 0. 3) x 10' cm molecule' s' for the Cl-isoprene reaction was obtained in a 

pressure range of 5 to 10 Torr. The branching ratio of (17, 7 2 3. 2)'/o for the reaction of 

Cl with isoprene was derived by monitoring the formation of HCl in accordance with the 

consumed Cl concentrations. Furthermore, the overall rate constant for the reaction 

between the Cl-isoprene adduct and Os was determined as (1. 0 + 0, 3) x 10' cm 

molecule ' s ', by modeling the reaction system in the experiments. 

Hence, in this work we have developed experimental techniques for the isoprene 

oxidation reactions with the OH radicals and Cl atoms, which should provide insight for 

understanding of the photochemical oxidation of isoprene in the atmosphere. 
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CHAPTER I 

INTRODUCTION 

1-1. Statement of the Problem 

Human activities are directly connected to the chemical processes in the 

troposphere, since many chemical species are emitted into the atmosphere from multiple 

sources. Primary air pollutants such as oxides of nitrogen (NO„), and volatile organic 

compounds (VOCs), including hydrocarbons, are emitted into the urban and regional 

atmosphere from anthropogenic sources. For example, NO„ is produced &om power 

plants, industry, and from automobiles, and VOCs are emitted from automobiles. In 

addition, some of the most important chemical compounds including VOCs are produced 

predominantly from vegetation. ' The chemistry of atmospheric VOCs is important for 

understanding chemical processes occurring in the troposphere. ' For example, the 

reactions of VOCs with oxides of nitrogen combined with temperature inversions in the 

troposphere and sunlight result in the formation of urban photochemical smog. This leads 

to the formahon of ozone in rural and urban areas as well as in the global troposphere . 

They also play a role in acid deposition and the greenhouse gas effect. ' 

Atmospheric VOCs are emitted into the troposphere Irom antbropogenic and 

biogenic sources. ' " For example, the annual emission rate of methane is — 155-240 Tg 

yr from biogenic sources and -350-375 Tg yr from anthropogenic sources. " Isoprene 

(2-methayl 1, 3-butadiene), one of the most abundant non-methane hydrocarbons', is 

The style and format of this thesis follow The Journal of Physicai Chemistry. 



emitted from deciduous trees that emit about I '/o of the COz fixed as isoprene, with a 

global averaged production rate of approximately 450 Tg yr'. The isoprene production is 

even higher than that of anthropogenic non-methane hydrocarbons in rural and remote 

areas. ' ' In addition, isoprene has two double bonds, and is highly reactive with 

atmospheric oxidants such as hydroxyl radicals (OH), ozone, NOi (during nighttime), and 

halogen atoms. It significantly influences oxidation levels over large poriions of the 

continental troposphere. 
' 

In the troposphere there are two sources for ozone formation. One is the 

photochemical ozone formation from the atmospheric oxidation of methane, carbon 

monoxide, and other VOCs, and the other is downward ozone transported from the 

stratosphere. ' Ozone is an important source for the formation of the hydroxyl radical 

OH, a key oxidizing species in the troposphere. Photolysis of ozone produces the excited 

oxygen atom 0('D)' at wavelengths less than 290 nm' . The reaction of 0('D) with 

water vapor in the daylight leads to the formation of most OH radicals in the 

troposphere. ' ' The production of OH radical is expected to be higher especially in the 

lower troposphere where the water vapor mixing ratio is high. The other sources of OH 

radicals are the photolysis of nitrous acid (HONO), formaldehyde, and other carbonyl 

compounds during daylight. ' Since isoprene is mainly emitted in the day time from the 

vegetation, the reaction with the OH radical is considered to be the dominant channel for 

the removal of isoprene in the troposphere. Therefore, a precise and complete 

understanding of the isoprene oxidation mechanism initiated by the hydroxyl radical is 

important to understand the urban and regional air quality. ' 

The reaction between isoprene and OH occurs almost entirely by OH addition to the 



&C=C& bonds, yielding four possible OH-isoprene adduct isomers. The OH radical 

addition at the 1- or 4- position of conjugated dienes mainly forms the p-hydroxyalkyl 

radical, which can isomerize to form the thermodynamically favored allylic P(or 6-)- 

hydroxyalkyl radical (HOCH' (CHs)CH=CHimHOCHiC(CHs)=CH H2). In the 

troposphere, the various hydroxyl-substituted allyl-type radicals react exclusively with 

oxygen molecules to form the P(or 5-)-hydroxyalkyl peroxy radicals. In the presence of 

nitric oxide NO, these hydroxyalkyl peroxy radicals form either the hydroxyalkoxy 

radicals and NOi or the hydroxyalkyl nitrate. Figure 1 shows a mechanistic diagram for 

the formation of the OH-isoprene adducts and their corresponding peroxy radicals. The 

dominant tropospheric reaction of the P-hydroxyalkoxy radicals is decomposition, 

leading to the formations of HCHO plus methyl vinyl ketone [CHsC(O)CH=CHi] or 

HCHO plus methacrolein[CHi — — C(CHs)CHO), depending onto which &C=C& bond the 

OH radical adds. ' The minor channel of the P-hydroxyalkoxy radicals formed after 

the OH radical addition to isoprene is isomerization. 

Several studies have been carried out to determine the oxidation reactions of 

isoprene initiated by OH' either in a kinetic or mechanistic way. Laboratory 

experiments using the smog chamber approach have identified and quantified the major 

reaction products, including methacrolein, methyl vinyl ketone, formaldehyde, 3- 

methylfuran and organic nitrates. ' The rate constants for the reaction of isoprene 

with OH have been investigated using both relative rate method " and absolute rate 

measurement. "' The temperature dependent rate constants of isoprene with OH have 

been reported, indicating a weak negative dependence for the OH addition. Most of 

those studies were conducted at 760 Torr, except for the work by Kleindlenst et al. , 
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Figure 1. A mechanistic diagram for the reactions of OH with isoprene and 

the OH-isoprene adduct with 02 



which was perforined at 50 and 200 Torr. The latter authors conclude that there is no 

significant pressure dependence for this reaction over this pressure range. The high- 

pressure limit rate constant of 1. 01 x 10 ' cm' molecule ' 
s 

' has been recommended at 

298K and 760 Torr. Although the addition reaction such as OH addition to isoprene is 

expected to show a pressure dependence, the reaction m the low pressure region has not 

been well known. Recently, Stevens et al. reported the rate constant of isoprene with 

OH, with a value of 1. 09 x 10 ' cm molecule' s' at 2 Torr of helium, suggesting that 

the high pressure limit is already reached at this condinon. In addition, Jenkin et al. ' has 

investigated the kinetics of the peroxy radical permutation reactions from the OH- 

initiated oxidation of isoprene. 

At present, direct experimental data concerning the intermediate processes of the 

oxidation reactions of isoprene are very limited. There are few experimental studies 

available on the chemistry of the radical intermediates. The detailed reaction mechanism 

and pathways of the isoprene reaction system have not been clearly identified. Absolute 

or relative rate constants between the reactions of OH-isoprene adduct with Oi and the 

subsequent reactions of the P-hydroxyalkyl peroxy and P-hydroxyalkoxy radicals are 

currently not available. Our understanding of the atmospheric oxidation mechanism of 

isoprene is primarily based on the environmental chamber investigations that identify the 

final products of the reactions. 

In addition, there are some studies to incorporate the results from the laboratory 

studies into computer models to develop atmospheric oxidation mechanisms for 

isoprene. ' ' Clearly, there is a need for an accurate and complete knowledge of the 



ahnospheric chemistry of isoprene in order to understand and elucidate air pollution in 

urban and regional environments. 

In addition to the hydroxyl radical, there are also several other atmospheric 

oxidants, such as ozone, nitrate radical (NOi), halogen atoms and their oxides. The 

oxidation by the OH radical is clearly the most important one among the oxidants, but 

ozone, NOi, halogen atoms and their oxides can also react with isoprene and may in 

some cases make a larger contribution to the oxidation rate than OH radicals. There is 

increasing evidence that the Cl atoms may be important for the tropospheric chemistry in 

the marine boundary layer and in coastal region. Field measurements of the relative 

degradation rates of saturated hydrocarbons show significant deviation from what can be 

explained by the OH radical. ' The high concentration of chlorine and bromine atoms 

have been related to the depletion of surface ozone during the arctic spring. * Chlorine 

atoms are highly reactive with a variety if organic and inorganic compounds. Relatively 

small concentrations can compete with the OH radical, ozone, and NOi in determining 

the lifetime of VOCs, although there is evidence that chlorine atoms cannot be compared 

with OH for the oxidation of organics on a global scale. ' ' Reactive chlorine is produced 

in the atmosphere both as a consequence of direct emission and of multiphase chemical 

processes. There are four major sources of reactive chlorine such as oceanic and 54 

terrestrial biogenic emissions, sea salt production and dechlorination, biomass burning, 

and anthropogenic emissions. The main source of chlorine atoms in the atmosphere may 

come from sea salt reactions, based on a variety of field, modeling and laboratory studies. 

Reactive chlorine compounds, including Cli are generated by the heterogeneous reaction 

of sea salt aerosols with nitrogen oxides' and detected at concentration up to — 150 ppt in 



coastal marine areas. ' and in the Arctic at polar sunrises. ' Clz is expected to photolyze 

rapidly at dawn, providing reactive chlorine atoms. The peak concentration of chlorine 

atoms is estimated to be -10' — 10' molecule cm . ' Especially, reactive chlorine 

atoms can play a significant role in the oxidation of isoprene during early morning in the 

marine boundary layer and coastal regions. The atmospheric oxidation of some VOCs 

can be important at the Cl-atom concentration of 5 x 10 molecule cm, compared to an 

OH concentration of 5 x 10 molecule cm in the early morning hours. ' 

Recent studies have also shown that isoprene is emitted by phytoplankton in 

seawater. It is expected that the interaction of isoprene with chlorine atoms occurs 

rapidly in daylight as well as with OH and Oq and with NOq at nighttime. This indicates 

that the reactions of hydrocarbons with Cl atoms can be an essential oxidation route in 

both the regional and marine atmosphere. 

Several laboratory studies have investigated the kinetics and mechanisms of the 

oxidation reactions of isoprene initiated by Cl atoms. The rate constants have been 

investigated, using both a relative rate method and an absolute rate method ' ' The 

pressure dependence of the Cl-isoprene reaction has been investigated in the pressure 

range of 0. 1 to 760 Torr. ' ' Some of those studies have also identified the reaction 

products ' ', including CO, COq, formyl chloride, formic acid, methyl-glyoxal, and 

hydrogen chloride. Other likely products of the isoprene reactions include 

a, P — unsaturated carbonyls (methyl vinyl ketone and methacrolein) ' ' In addition, the 

branching ratio for the reaction of isoprene with Cl atoms has been investigated in the 

temperature range of 230-320 K. ' At present, however, there are some controversies 

regarding the initial reaction of isoprene with chlorine atoms. For example, Notario et 



al. ' and Bedjanian et al. " report a rate constant of (3. 6 + 0. 2) x10' cm' molecule' s 
' 

for the reaction of isoprene with Cl atom, which is 21 '/o lower than the rate constant 

reported by Ragains and Finlayson-Pitts . There is also a disagreement in the reported 67 

pressure dependence. The work by Notario et al. and Bedjanian et al. ' suggested that 

this reaction is pressure independent in a range of pressure between 0. 3 Torr and 760 

Torr, in contrast to the earlier findings by Ragains and Finlayson-Pitts. 

In this thesis, laboratory experiments are presented to investigate the oxidation 

reaction of isoprene initiated by OH and Cl radicals, using two complementary 

experimental techniques: chemical ionization mass spectrometry (CIMS) and Laser 

Photolysis / Laser Induced Fluorescence (LP/LIF). The results provide insight into the 

atmospheric oxidation mechanism of isoprene. 

1-2. Organization of the Thesis 

The background and current literature are summarized in Chapter I related to the 

oxidation reactions of isoprene initiated by the hydroxyl radical and chlorine atom. In 

Chapter II, experimental methods using chemical ionization mass spectrometry (CIMS) 

for investigating the reaction of isoprene initiated by OH are presented. In Chapter III, the 

fall-off regime for the reaction of isoprene with the OH radical has been investigated 

using Laser Photolysis Laser Induced-Fluorescence (LP/LIF). The reactions of isoprene 

with Cl have also been studied using CIMS and are presented in Chapter IV. The results 

and discussion are presented in each Chapter II, III, and IV. Finally, concluding remarks 

are given in Chapter V. 



CHAPTER II 

OH-ISOPRENE REACTION STUDIED USING CIMS 

In chapter II, we report kinetic studies of isoprene reactions initiated by the 

hydroxyl radical OH, using a fast — flow reactor coupled to chemical ionization mass 

spectrometry (CIMS) detection. The rate constants for the reaction of isoprene with OH 

have been measured in the pressure range of 70 to 120 Torr and at 298 + 2 K. We also 

present direct observaflons of the OH-isoprene adduct based on ion-molecule reactions 

using the CIMS method. The OH-isoprene adduct was used to elucidate the reaction 

mechanism and to extract the rate constant between OH and isoprene. By monitoring the 

temporal evolution of the OH-isoprene adduct in the absence and presence of oxygen 

molecules, an overall rate constant between Oq and OH-isoprene adduct has been 

determined. 

2-1. Experimental Procedure 

Reactor and Flow Conditions 

A fast flow reactor, connected to chemical ionizaflon mass spectrometry (CIMS) 

detection, was used to study the kinetics of reaction between isoprene and hydroxyl 

radicals. The configuration of the experimental setup is shown Figure 2. The flow reactor 

was constructed of precision-bore Pyrex tubing 2. 45 cm in internal diameter and 60 in 

long. The inlet of isoprene is through the movable injector consisting of a 3. 2 mm o. d. 

Pyrex tube which has a fan-shaped Teflon device on the tip of the injector to enhance 



10 

& — 
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Figure 2. Schematic diagram of the fast-flow reactor/CIMS system: DP = 

diffusion pump, IG = ion guide, IO = ion optics, IS = ion source, 
M = multiplier, MD = microwave discharge, MP = mechanical pump, 

QMS = quadrupole mass spectrometer, and TP = turbo molecular pump 
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mixing of the reactants in the flow reactor. To check the flow system the 

chemiluminescence reaction was performed, 
72 

0+ NOq m Oq+NO+ hv 

This reaction visualized the flow pattern of the reactants in the flow reactor. It showed 

the homogeneous mixing of the reactants both in the radial and axial directions. In these 

experiments, oxygen atoms were generated by a microwave discharge and then injected 

into the flow reactor through an upstream side arm inlet and then mixed with NOq added 

through the injector. Under the experimental conditions reported in this work we 

observed homogeneously well-mixed green chemiluminescent glow from the reaction of 

0 with NOi a few centimeter downstream of the tip of the injector. All inner surfaces 

where the flow reactor exposed to OH were coated with a halocarbon wax to reduce the 

wall loss of the OH radicals. A main carrier gas, nitrogen in the range of 1 to 3 STP 1 

min ' flowed into the flow reactor through an entrance port in the rear of the flow reactor. 

Typical flow velocity in the flow reactor ranged from 1400 to 1900 cm s'. The pressure 

in the flow reactor was adjusted between 70 and 120 Torr and all experiments were 

performed at 298 + 2 K. The flow reactor was evacuated by a high capacity mechanical 

pump with 1000 1 min '. Two capacitance manometers of 10 and 1000 Torr full scale 

monitored pressures in the flow reactor. 

The characteristic of the flow in the reactor is determined by the Reynolds 

number Re = 2aup/p, where a is the internal radius of the flow reactor, p the density of 

the gas, u the flow velocity, and p. the viscosity coefficient of the gas. For a turbulent 

flow the range of the Reynolds number is over 2000. A laminar flow is normally 

developed at Re & 2000. The distance for a fully developed laminar flow can be estimated 
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according to the expression of l = 0. 115aRe. Our experimental conditions had typical 

values in a range of 2315 and 3500 for the Reynolds number. The mixing time for OH 

and isoprene can be described by t~;„= az/(5D), 
' 

Ion Sources and the CIMS Detection 

Reactants and products from the flow reactor were introduced into the ion- 

molecule reaction region through an orifice of 10-mm diameter. A mechanical pump was 

used to evacuate this region to a pressure of 1-10 Torr. The CIMS detected the reactants 

and products of the isoprene reactions. A corona discharge at high voltage (-5 kV) 

generated positive or negative reagent ions. For SFs reagent ions, a small amount of SFs 

was added to a He carrier flow (about 2 slpm at STP) and passed through the discharge. 

The Oi+ or HsO' reagent ions were produced by passing the He carrier flow through the 

discharge and then adding a small amount of HzO or Oz downstream. A small portion of 

the ion/gas flow from the ion source was drawn into the next vacuum stage through a 0. 5- 

mm orifice. In our experiments, an electrostatic ion guide recently developed was used 

for efficient detection of CIMS. ' Ions were efficiently transported to another orifice 

guided to the quadrupole mass analyzer. A diffusion pump and a turbomolecular puinp 

evacuated the chamber consisting of the mass spectrometer and the ion guide, 

respectively. We achieved highly efficient ion transportation and preferential ion- 

molecule separation, using the ion guide. This device removes neutral molecules, passing 

two pumping systems. ' Detection sensitivity of the present CIMS system was 

generally in the range of 10 to 10 molecules cm with a S/N ratio of unity for a one 

second integration time, independent of the pressure. Thus it allows us to monitor the 
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intermediates or trace species formed during the isoprene oxidation reactions with high 

detection sensitivity. 

Iso rene and OH Pre aration 

Two sources of isoprene (Aldrich 99. 5'lo) were used in these experiments. First, 

isoprene flowed through a bubbler at the dry ice/acetone temperature along with Nq gas 

and was added into the flow reactor in a range of 0. 1 to 10 cm' min ' at STP. It was 

further diluted in the main nitrogen carrier flow. We calibrated isoprene in the flow 

reactor according to the vapor pressure expression of pure isoprene of log P = 7. 85— 

1511. 41/T and the dilution factor of the isoprene flow. We also volumetrically prepared a 

I to 5'lo isoprene mixture with He in a 2-liter glass bulb. The isoprene mixture was 

introduced into the flow reactor by a 10-sccm flow meter. Calibration of isoprene using 

the two methods agreed within 5'/o. The concentrations of isoprene in the flow reactor 

were regulated in the range of 3 x 10" to 5 x 10' molecule cm, which were at least a 

factor of 10 higher than the OH concentration to ensure the pseudo-first-order kinetic 

assumption. Oz reagent ions were used to detect isoprene as the de-protonated [M- H], 

the parent [M]', or the protonated [M + H]+ isoprene iona, according to the ion-molecule 

reaction 

Oq++ CqHs + CqHs' (CqHq' or CqHs') + products. (2) 

The ion-molecule reaction rate constant for reaction (2) has not been measured yet. 

Figure 3 represents a CIMS calibration of isoprene in the two different methods, 
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The mass spectrometer signals of isoprene were linear in the range of concentrations used 

in this work. 

Hydroxyl radicals were generated in situ according to the fast titration reaction' 

H + NO2 -+ NO + OH (3) 

where the rate constant for the reaction is kr = 1. 3 x 10' cm molecule ' s '. Hydrogen 

atoms were produced by flowing a 3'/o H2/He mixture through a microwave discharge at 

about 0. 5 cm min' at STP. Then an excess 3'/o NO2/ N2 mixture was added to titrate the 

H atoms. OH was detected as the negative ion mode using the SFs reagent ions, 

OH+ SF6 + OH + SFs (4) 

where the rate constant for this reaction is kq = 2 x 10 cm molecule' s' . The 

concentrations of OH radicals were calibrated by two methods. First, we monitored the 

relative signal intensities between OH and NO2 and then calibrated NO2. The OH 

concentration was obtained by using the relation, 

[O@ = 4&oMO2]/(k6402) (5) 

where k6 is the ion-molecule reaction rate constant between NO2 and SF6, with a value 

ofk6= 1, 4x 10' cm molecule' s '. 

NO2+ SF6 + NO2 + SF6 

For ensuring the validation of Equation (5) the OH calibration experiments were 

performed under the condition that the mass spectrometer was operated at low resolution 

to minimize the mass discrimination. This approach is the main method of obtaining the 

concentration of hydroxyl radicals in this experiment. Another way to calibrate OH is to 

convert all of the OH into HNOs followed by HNOs calibration in the mass spectrometer. 

The ion-molecule reaction to detect nitric acid (HNOs) is 
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HNO3+ SFs + HNOi~F + SFs (7) 

where the rate constant is kg= 2 x10 cm molecule' s'. A 60 wt /o HNO3 solution in 

an ice-water bath was used to determine the HNO3 concentration in the flow reactor. 

Both approaches yielded OH concentrations within 50 '/o, We estimated the initial 

concentrations of OH in the flow reactor in the range of 5 x 10 to 7 x 10' molecule cm 

For both OH and isoprene the mass spectrometer signals were found to be linear 

over the range of concentrations used in this work. 

Mass flow meters (Tylan General) were used to monitor all the flows introduced 

into the flow reactor. The following gases were used without further purification: He 

(99. 999/o), Oi (99. 994/0), Hi (99. 999/o), and NOi (99. 5 /o). 

2-2. Results and Discussion 

Iso rene Reaction with OH Radicals 

The kinetic studies of the reaction of isoprene initiated by hydroxyl radicals were 

investigated under the pseudo-first order approximation. It is believed that addition of 

OH to isoprene leads to the formation of the OH-isoprene adduct. The observed first 

order loss rate coefficients (k', s') were derived directly based on the plot of the decay of 

the OH radical signals as a function of the reaction distance in the presence of excess 

isoprene. 

OH + CsHs ~ CcHsOH (g) 
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The Reynolds number, Re, characterizes the nature of the flow. If the Reynolds 

number is less than 2000, the experimental flow is laminar, Turbulence starts to build at 

Re greater than about 2000. Under laboratory conditions ( i. e. the pressure between 70 to 

120 Torr and flow velocities between 1400 and 1900 cm s') the Reynolds number Re 

was calculated to be in the range of 2315 to 3500. When the turbulent flow conditions 

were achieved in the flow reactor, the effect of wall loss of reactants and products would 

be minimal. The apparent rate constants obtained from the observed first-order loss rate 

coefficient are less than 10 'lo different &om the true rate constants. ' Thus we 

obtained the bimolecular rate constant of the OH-isoprene reaction directly &om the 

observed first order rate coefficients under the turbulent flow conditions. In additions, we 

measured that the first-order rate of OH on the flow reactor surface was less than I s'. 

The observed first order loss rate coefficients (k', s') were derived directly based 

on the plot of the decay of the OH radical signals as a function of the reaction distance. 

Figures 4a presents the pseudo-first order decay of OH in the presence of isoprene. The 

slope of the plots of the logarithm of the OH signal vs. reaction time corresponds to the 

observed first-order rate coefficients (k'). The secondary reactions in our experiments 

were not expected to intercede k' because those plots were linear. The experimental 

conditions were 103. 1 Torr and Re = 3436. The initial concentration of OH was estimated 

to be 9. 4 x 10 molecule cm and the isoprene concentrations were varied between 3. 8 x 

10" and 10. 2 x 10" molecule cm . The background signals of OH (17 m/e) in these 

experiments were subtracted from all the points shown in the figures. Figure 4b shows 

the plot of the first-order coefficient as a function of isoprene concentration. The slope of 

the fit to the experimental data provides an effective bimolecular rate constant for the 



reaction of isoprene with OH radicals with a value of (10. 5 + 1. 1) x 10" cm molecule ' 

s '. The linear pseudo-first order decays for OH data in figure 4a and figure 4b indicate 

that the mixing of the reactants in our experiments was effectively achieved. 

The rate constant for the reaction of isoprene with OH was measured at different 

flow reactor pressure, ranging &om 70 to 120 Torr. A summary of the rate constants 

determined near room temperature (298 + 2 K) is in Table 1. Figure 5 shows that the rate 

constant is nearly pressure independent in the pressure range of 70 to 120 Torr. The 

measured rate constant ranged from (9. 7 + 1. 0) x 10" to (10. 5 + 1. 1) x 10" cm 

molecule s . The measured rate constants in Figure 5 agreed well with the previous data u u 

in the literature. ' ' The quoted uncertainty indicated the scatter in the data at the one 

standard deviation level and systematic errors are not included. We estimated about + 15 

% systematic error in the present data, which were from experimental measurements of 

gas flows, temperature and pressure and from the plug flow approximation The kinetic 

studies for the low-pressure region were explored by laser photolysis/laser-induced 

fluorescence (LP/LIF), described in Chapter III. 

Observation of OH-Iso rene Adduct 

We observed directly the OH-isoprene adduct of the reaction between isoprene 

and OH radicals, using the CIMS method. The mass spectrometer only detects the mass 

of ions. It does not differentiate isomers resulting from the reaction of isoprene initiated 

by OH radicals. From the previous mechanistic studies, the addition of OH to the double 
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Table 1. Summary of reaction rate constants for OH plus isoprene determined by using the 

CIMS method 

T P U 

(K) (Torr) (cm s ') 
Re K 

(cm molecule's') 

298+ 2' 

298" 

299' 

29922 

298' 

298 

72. 7 

80. 8 

91. 2 

103. 1 

112. 7 

760 

50, 200 

760 

760 

1561 

1511 

1530 

1498 

1493 

2315 

2493 

2848 

3151 

3436 

(9. 7 + 0. 8) x 10 

(9. 7 + 0. 6) x 10' 

(10. 2 2 0. 9) x 10 " 
(10. 5+ 1. 1) x 10" 

(10. 2 + 0. 9) x 10 

7. 4 x 10" 

(9. 3+ 1. 5) x 10" 

(9. 6 + 0. 4) x 10 

(10. 1 + 0. 3) x 10 

9 7 x 10 

'This work, "Reference, 'Reference, "Reference, ' Reference, 
' Reference 
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bonds of isoprene may result in the formation of four possible isomeric radicals (Figure 

I). According to ab initio calculations the more energetically favorable channels were via 

OH addition to the I- and 4-positions, by as much as 12 kcal mol ', consistent with 

experimental product studies for this reaction system. 27-33 

Because the CIMS is incapable of discriminating the various isomers formed in 

our experiments, we referred to the product Irom the reaction of isoprene with OH as "the 

OH-isoprene adduct" with mass 85 and atomic composition C3HsOH. The positive 

reagent ions of Oz+ or H30+ were used for detection of the adduct by the following ion- 

molecule reaction, 

Oz+ + C3HsOH + CsHsOH + 03 

or 

H30 + C3HsOH + C3HsOH + H30 + H (10) 

The rate constants for those reactions have not been measured yet, but they are likely to 

be exothermic. The positive 03' reagent ions were mainly used for the detection of the 

adduct in this work. 

We took several procedures to positively verify that the signals detected at m/e = 

85 were attributable to the OH-isoprene reaction, rather than to secondary ion-molecule 

reactions. First, we observed that the signal at mass 85 disappeared either when the 

isoprene flow into the reactor was stopped or when the microwave discharge for 
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dissociating the hydrogen molecules was tumed off. These steps confirmed that the signal 

at mass 85 was related to the OH-isoprene reaction. Second, we monitored the evolution 

of the signal at mass 85, when the isoprene was introduced through the movable injector. 

The results are shown in Figure 6. The temporal profile of the OH-isoprene adduct was 

obtained in experimental conditions with P = 75. 5 Torr, Re = 2243 and U = 1452 cm s'. 

The initial concentrations of OH radicals and CqHs were estimated to be of 4. 0 x 10' 

molecule cm and of 7. 5 x 10" molecule cm, respectively. Figures 6 (a) and (b) show 

that the signal of the OH-isoprene adduct rises in accordance with OH disappearance. 

The OH decay (solid curve) in Figure 6(a) corresponds to an effective bimolecular rate of 

9. 3 x 10 " cm molecule ' s '. As is shown in Figure 6(b), OH-isoprene adduct signals 

gradually increase when the reaction distance increase. We have performed numerical 

calculations to simulated the temporal profile of the OH-isoprene adduct with a simple 

model. Table 2 lists the reactions and rate constants used in this simulation. The model 

input included the initial concentrations of OH, isoprene, and all other precursors. 
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Table 2. Summary of the chemical reactions used in computer simulations for the system 

involving OH and isoprene 

Reaction k ( cm molecule' s ') 

CsHs + OH-+ CsHpOH 

OH + NO m HONO 

OH + NOq m HNOq 

NOq + CqHs m products 

OH + HOq m HzO + Oq 

1 0x10' ' 

1. 4 x 10 

2. 9 x 10 

1. 8 x 10 

1. 1 x 10 

Rate constants are from Refs 16 and 20 at 298 K and 76 Torr, except noted otherwise. 'From this 

work. 
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Figure 6. Variation of the OH (a) and OH-isoprene adduct (b) signals as a function 

of reaction time. The solid curves are from model calculations (see text). 
Experimental conditions are: P = 33. 6 Torr, U = 1434 cm s', Re = 983, 
[OH], = 4. 8 x 10' molecule cm', and [CSHs], = 7. 5 x 10" molecule cm' 
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The rate constant of the reaction (8) was varied to fit the observed OH-isoprene adducts 

signals to the calculated temporal profile. The values from both channels are consistent 

within the uncertainty of the experiments. Note that the results of the OH decay and 

adduct growth shown in Figure 6 were corrected separately because either negative or 

positive reagent ions were used for the detection of OH or the adduct, respectively. The 

solid line in Figure 6(b) corresponds a best fit of the observed OH-isoprene adduct 

formation. An effective bimolecular rate constant of 9. 1 x 10" cm' molecule' s 
' was 

inferred. The rate constants of measured from the OH decay and fitting the formation of 

the OH-isoprene adduct are in good agreement for all experimental conditions. Hence, we 

believe the secondary reactions of the OH-isoprene adduct with NO or NOq were not 

important in our reaction system. In addition, heterogeneous loss of the OH-isoprene 

adduct on the surfaces of the flow reactor also appeared to be minimal in our 

experiments. 

OH-Iso rene Adduct Reaction with 0 

We have further examined the temporal evolution of the OH-isoprene adduct in 

the presence of oxygen molecules. As mentioned above, the various hydroxy allylic 

radicals are expected to react solely with Oq to form P(or 5+hydroxyalkyl peroxy 

radicals. 

CsHsOH + Oi -+ C, HsOHOi 

In order to derive a rate constant between the OH-isoprene adduct and Oq, first, 

we monitored the temporal profile of the OH-isoprene adduct without adding Oq when 

the injector was successively pulled upstream to increase the reaction time. A 
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bimolecular rate constant of the OH-isoprene reaction was obtained by fitting the 

measured OH-isoprene adduct data to simulated profile, using the reaction mechanism 

outlined in Table 3, along with estimated concentrations of the reactants. This rate 

constant was included to numerical model for the reaction of the OH-isoprene adduct 

with Oi. The experiment was then repeated under the same conditions with added Os in 

the flow reactor with a known concentration. We obtained the rate constant for the 

reaction of the OH-isoprene adduct with Oi by fitting the solid line passing through the 

measured the OH-isoprene signals. In our study, the potential reaction between H atoms 

and Oi was not important because an excess of NO& was used to completely convert H 

atoms into OH before entering the flow reactor. This was verified from the observation of 

the invariant OH signal when Oi was added into the reactor. 

The temporal evolution of the OH-isoprene adducts with (open squares) and 

without Os (open circles) is shown in Figure 7. The experiments were conducted at 75. 5 

Torr and at various concentration of isoprene and Oi. The initial concentration of OH 

radicals was estimated about 4. 0 x 10' molecule cm . In Figure 7(a), the open squares 

stand for the OH-isoprene signals when the initial concentration of isoprene is 8. 2 x 10" 

molecule cm, with the added Oi concentration of 4. 4 x 10' molecule cm . The 

bimolecular reaction rate for the formation of the OH-isoprene adduct in the absence of 

Oz was obtained by fitting the solid line passing through the measured data (open circles), 

with a value of 9. 1 x 10" cm molecule ' s'. This rate constant and the simulated profile 

for the OH-isoprene adduct in the presence of Oi (short dashed curve) was used to 

determine an effective bimolecular rate constant for the reaction of the OH-isoprene 

adduct and Oi. The fit of the data corresponded to a value of 2. 8 x 10' cm molecule' s 
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'. Figure 7(b) has similar experimental conditions except higher concentration of isoprene 

of 6, 3 x 10' molecule cm and higher Oq concentration of 6. 5 x 10' molecule cm . The 

bimolecular rate constants for the reaction of isoprene with OH (solid curve) and for OH- 

isoprene adduct with Oq (short dashed curve) were determined to be 9. 9 x 10 " and 2. 8 x 

10 ' cm molecule ' s', respectively. As is seen in the Figure, the OH-isoprene adduct 

profile at higher Oq concentration (short dashed curves) indicates less production of the 

OH-isoprene adduct. In the presence of Oq, the production of the OH-isoprene adduct is 

reduced. This occurs because of the direct reaction between the OH-isoprene adduct and 

Oi to form hydroxyalkyl peroxy radicals. OH addition to the terminal position of the 

unsaturated double bond results in allylic resonance, and OH addition to the inner 

position of the unsaturated double bond results in primary radicals. ' ' Addition of Oq to 

the adduct could yield the formation of six peroxy radicals in Figure l. 

The measured rate constant between the OH-isoprene adduct and Oq at 75. 5 Torr 

is (2. 8 + 0. 7) x 10 " cm molecule' s '. This value represents an average of at least ten 

measurements at various isoprene and Oq concentrations. The errors are indicative of the 

scatter in the data at the one standard deviation level. We believe that this rate constant 

corresponds most likely to the overall rate constants between the OH-isoprene adduct and 

Oq, rather than to individual isomeric radicals. For aromatic compounds, such as benzene 

and toluene, the oxidation reaction rate constants of hydroxylcyclohexadienyl and alkyl 

substituted hydroxylcyclohexadienyl with Oq are on the order of 10 ' cm molecule' s' 

, smaller than that of our results. On the contrast, it has been reported that the reaction 

rates between allyl (CqHq) radical and Oi to form the allyl peroxy (CHq=CHCHiOz) are 4 

x10' cm molecule' s' at380Kand50Torr and(622) x 10' cm molecule' s' at 
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296 + 2 K and 740-800 Torr. We estimate a systematic error of about + 50 la for this 

reaction in the present data. The source of errors include uncertainty associated with 

detection and modeling of the OH-isoprene adduct, in addition to experimental 

uncertainties such as in the measurements of gas flows, temperature, and pressure. 
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Table 3. Summary of the chemical reactions used in computer simulations for the system 

involving OH, isoprene, and 0, 

Reaction k(cm molecule ' s') 

CgHg + OHg CgHgOH 

CgHgOH + Oz-+ CsHgOHOz 

OH + OHm H&O& 

OH + HZ' M HgO + HOq 

OH + NO -+ HONO 

OH + NOg -+ HNOg 

NOq + C, Hg m products 

C, HgOHOg + NO-+ C, H, OHO + NO, 

CgHgOHO + Oz ~ HOg + CgHgO& 

CgHgOHO m CHgOH + Oz + products 

CHgOH + Og m HCHO + HOg 

HOg + NO m OH + NOg 

OH + HOg m HgO + Og 

1. 0 x 10' " 

2 8 x10" b 

1. 2 x10' 
1. 8 x 10" 
1. 4 x 10 

2. 9x 10' 

1. 8 x 10' 

9. 0x10" 
7 6 x 10 U 

1. 5 x 10' 

9 8 x 10 ' 

8. 5 x 10 

11 10' 

' Rate constants are from Refs 16 and 24 at 298 K and 76 Torr, except noted otherwise. "From 

this work. 
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Figure 7. Production of the OH-isoprene adduct as a function of the reaction time 

in the absence (open circles) and presence (open squares) of 02. The solid 

and short dashed curves are irom model calculations (see text). [OH]p = 

4. 8 x 10' molecule cm . The initial concentrations of CsHs and 02 are: 

(a) 8. 2 x 10 ' and 4. 4 x 10" molecule cm; and (b) 6. 3 x 10' and 6. 5 x 10' 

molecule cm . The experiments were performed at P = 75. 5 Torr 
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CHAPTER III 

OH-ISOPRENE REACTION STUDIED USING LP/LIF 

For the study of the pressure dependence for the reaction between OH and 

isoprene, the laser photolysis/laser induced fluorescence (LP/LIF) technique was applied. 

The pressure-dependent rate constants for the reaction of isoprene initiated by OH radical 

have been measured in the pressure range of 500 m Torr to 20 Torr. We obtained the low 

pressure limiting rate constant and high pressure limiting constant by fitting our data to 

the Troe expression. ' ' 

3-1. Experimental 

The kinetic experiment was performed using a slow flow reactor with laser- 

photolysis /laser induced fluorescence(LP/LIF) detection, 

Chamber 

The experimental system used in this study consisted of a reactor, a Nd: YAO 

and dye laser and photomultiplier tube. The schematic diagram of this apparatus is given 

in Figure 8. The main chamber was made of stainless steel with perpendicular side arms, 

gas inlets and gas outlet to a high-throughput mechanical vacuum pump. The fused silica 

windows were used for the entrance and exit windows of the laser beam to excite the 

fluorescence at Brewsters's angle. Three different baratron gauges of I, 10, and 
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Figure 8. Schematic diagram of the experiment. DG = delay generator, 
PC = personal computer, PMT = photomultiplier tube, 
W = window placed at Brewster's angle, FM = flow meter, 

SHG = second harmonic generator 
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1000 Torr full scales capacitance (MKS) were used. The baratron inlet was located about 

25cm from the gas inlet. Isoprene (Aldrich, 99'/o) in the bubbler held at -15. 0'C was 

delivered to the reactor using a flow controller (MKS model 1179A). A Welch 1402 

mechanical pump was used to evacuate the reactor. 

Laser 

A Q-switched Nd: YAG laser (Spectra Physics GCR-150-10) with a pulse width 

of 8 ns full width at half maximum (FWHM) was used. A potassium dihydrogen 

phosphate (KD~P) crystal was used to frequency double the 1064 nm output of the Nd: 

YAG laser to 355nm. The power level at 355 nm was maximized by adjusting the 

orientation of the KD*P crystal. The BBO crystal was used to frequency double output of 

the dye laser (LAS, LDL 2051). The dye laser was pumped by the 355 nm second 

harmonic of a Q-switched Nd: YAG laser with a resolution of 0. 07 cm ' FWHM. 

Rhodamine 575 dyes ( Exciton Inc. ) was used in the dye laser. The final UV output had a 

resolution of -0. 14 cm' with a power of about 8 mJ/pulse and reduced 20ltJ/pulse. A 

Molectron power meter measured the laser power. The dye laser was controlled by a PC. 

The scan mode was used to produce the LIF spectra of the hydroxyl radicals. The scan 

mode allowed the wavelength region scanned and the rate at which it was scanned to be 

varied. The manual mode allowed the laser to be set at a fixed wavelength, which could 

be changed manually. 
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OH Radical Generation 

Photolysis and probe laser beams were counter-propagated through the windows 

in order to generate OH radicals and detect them. As a source of OH radicals 

concentrated nitric acid (HNOs) was introduced into the chamber vertically to the laser 

beams, prepared by bubbling a — 5'/o mixture in argon carrier gas. OH radicals were 

generated by the photolysis of concentrated HNOs at 193 nm (ArF excimer laser). The 

photolysis of HNOs results either in OH plus NOs or in 0('D) plus HONG, with 

approximately equal yields. In addition, the reactions of 0('D) with residual water 

vapor from HNOs also form OH radicals. Because 0('D) can affect the reaction of 

isoprene with OH, we evaluated the reaction of 0('D) using a computer model. The 

model included'the collisional deactivation of 0('D) by water and isoprene, the reaction 

of 0('D) with water vapor and the hydrogen abstraction of 0('D) from isoprene. ' ' The 

effects of the 0('D) were considered negligible after approximately 15 its due to effective 

conversion of 0('D) to OH. The secondary reactions between isoprene and N02 or 

HONG &om the photolysis of nitric acid were minor due to an excess of isoprene in the 

system. 

We monitored the hydroxyl radical decay using laser-induced fluorescence. The 

LIF detects the hydroxyl radicals, excited in the (1, 0) vibrationhl band of the OH 

(A Z'c — X II) transition at 285. 1 nm by using the BBO-doubled output of a pulsed dye 

laser(LAS) with Rhodamine 575 pumped at 355nm by a Nd: YAG laser (Spectra Physics 

GCR-150-10). For measuring the hydroxyl radical concentrations, a rotational line 

corresponding to the Q~(1) transitions was used. The fluorescence was collected 
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perpendicularly from the laser beam using two 25mm focusing lenses and detected using 

a photomultiplier tube (PMT). The PMT was a Hamamatsu model (Hamamatsu R374) 

with a UV grade silica casing. The PMT was sensitive from 200 — 900 nm with a gain of 

10 and a rise time of 2 ns. In case of scattering light, BK7 filters that cut off the 

wavelength below 300 nm and visible filters were placed in front of the collection optics 

before the entrance slit of the PMT, which is a band pass filter effectively minimizing the 

scattering light from the photolysis and probe lasers. The fluorescence signals were 

averaged from 25 probe laser shots. A step size was taken between 0. 25 and I lis in over 

100 time steps. The output signal (fluorescence) from the PMT was sent to a 400 MHz 

oscilloscope (Lecroy 9310A) and digitized. The timing between the laser pulses was 

controlled by a digital delay generator (Stanford Research DG535). 

All experiments were performed under slow-flow condition in order to avoid the 

accumulation of photolysis or reaction products. We estimated the initial OH 

concentration of — Sx10 molecules cm . The lowest concentration of isoprene was lO -3 

about 3 orders of magnitude higher than that of OH radicals, which is under pseudo-first- 

order conditions. 

To further validate our approach, we studied the rate constants for the reaction 

between OH and ethane using the similar approach. The reaction of CiH6 with hydroxyl 

radicals was performed at 298K and 10 Torr. Pure ethane (Aldrich, 99+'/o purity) was 

introduced and a 10 Torr capacitance manometer was used to estimate the concentration 

of ethane. The concentrations of ethane were 1 x 10" to 1 x 10' molecules cm, which 

is under pseudo-first order approximation. The decay of OH signals was measured at 10 

Torr total pressure, shown in Figure 9a. No pressure dependence of this reaction was 
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observed and the rate constant of (2. 5 + 0. 2) x10 ' cm molecules 
' 

s 
' was obtained as 

shown in Figure 9b and agreed well with literature value. ' 

3-2. Results and Discussion 

The kinetic studies for the reaction of isoprene initiated OH radicals were 

investigated at pressure between 0. 5 and 20 Torr and at room temperature. All kinetic 

experiments were carried out under the pseudo-first order assumption, which is the 

concentration of isoprene is around 2 order of magnitude higher that that of OH. 

Thermalized OH Radical Pre aration 

The highly rotationally excited hydroxyl radical (OH) was formed from the 

photolysis of HNOi and additional reaction of 0('D) atoms with water in large rotational 

temperatures. ' The rotational relaxation of OH radicals was tested by LIF spectra of the 

Qi and Ri branches of the I m 0 band as a function of the delay time. Rotational 

temperature was estimated by simulation of the spectra including available spectroscopic 

information. Since the rotational temperature was near 700 K at early time and 

decreased significantly with delay time, a delay time offset &15 iis was used to get both 

thermalized OH radicals and a negligible amount of 0('D). Figure 10a represents a series 

of typical pseudo-first order decays of the OH signal as a function of reaction time. A 

linear least squares fit of the OH decays provides the pseudo-first order loss rate. The 

slope of the logarithm of the OH signal as a function of reaction time corresponds to the 

observed first-order rate coefficients ( k' ). The initial concentration of OH was 
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Figure 9a. Logarithm plot of the integrated fluorescence decay as a function of time 

at various concentrations of ethane. P = 10 Torr 
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estimated -5 x 10' molecules cm ' and isoprene concentrations were varied between 0 

and 8. 83 x 10' molecules cm . Secondary reactions are not expected to interfere 

because of no curvature in the OH decay plot which shows that the rotational distribution 

of the OH radical is thermalized and O(iD) has a minor effect on the observed kinetics. 

Figure 10b shows the first-order coefficients as a function of isoprene concentrations. 

The slope of the linear least-square fit to the measured data provides an effective 

bimolecular rate constant for the reaction of isoprene with OH radicals. The rate constant 

of(1. 00+ 0. 05) x 10' cm molecules' s' was obtained at a pressure of 10 Torr. The 

rate constants at varied pressures are summarized in Table 4. In the pressure region of 

500 mTorr to 20 Torr the rate constants vary from 7. 31 x 10" to 1. 03 x 10' cm 

molecules ' s'. 

Table 4. Summary of pressure-dependence rate constants for the reaction of isoprene with 

OH at 295K determined by using LP/LIF 

Pressure 

(Torr) (cm molecule 's') 

20 

10 

0. 5 

(0. 99+ 0. 05) x 10 ' 

(1. 00 + 0. 05) x 10 

(0. 88 + 0. 06) x 10 ' 
(0. 76 + 0. 08) x 10 
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Figure 10a. Logarithm plot of the integrated fluorescence decay as a function of 
time at various concentrations of isoprene, P = 10 Torr 
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Figure 10b. First-order loss rate coefficient k' as a function of isoprene concentration 

at 10 Torr bimolecular rate constants as a function of pressure 
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~Fall FFR 

In order to explain the fall off behavior of the OH addition reaction to isoprene, 

the pressure dependence rate constants can be described by the Troe expression 

— ~ll [MV 0 6/+(FaaRFaiMpRl) j 
g(&+ k, [M]/k, ) 

A least-squares iterative fit of the data to this expression yields a low pressure limiting 

termolecular rate constant ( k, ) of (6. 98 k 2. 2) x 10 cm molecules s' and a high 

pressure limiting rate constant ( k~ ) of (1. 04 + 0. 04) x 10' cm' molecules ' s 
' at 295 K 

as shown in Figure 11. This high-pressure limiting rate constant agrees with the 

recommended high-pressure rate constant. The measured rate constant of (0. 99 2 0. 05) 

x 10' cm molecules ' s' at 20 Torr seems to be near the beginning of the falloff 

regime. The rate constants decrease distinctively as the total pressure is reduced from 20 

Torr to 500 mTorr. The data in Table 4 indicate the lowest pressures accessible in these 

experiments are at the low-pressure termolecular regime. However, a recently reported 

work by Stevens, et al. on the OH-isoprene reaction using LIF detection of the OH 

radical in a flow reactor shows a significant difference from this study at the low-pressure 

termolecular regime. Their rate constant at 300 K in 2 Torr of He was (1. 10 + 0. 05) x 10 

cm molecules ' s', which is slightly higher than the recommended high-pressure rate 

constant. In contrast, our study shows that a rate constant of (0. 88 + 0. 05) x 10 ' cm 

molecules' s ' at 295 K and in I Torr of Ar lies at the falloff regime. McGivern et al. 

have evaluated the rate constant at 298 K in 2 Torr of He for the OH-isoprene reaction, 
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using RRXM/ME calculations to verify the difference between the use of argon and 

helium as buffer gases. The authors used the parameters from the CVTST calculations for 

the RRKlVUME calculations in 2 Torr of helium. Lennard-Jones parameters of e = 69. 0 K 

and tr = 4. 28 A were used to describe the He-adduct interaction. The calculated rate 

constant at 298 K in 2 Torr of He is 0. 86 x 10' cm ' molecules' s', which is 

significantly lower than the rate constant in 2 Torr of He reported by Stevens et al. 

However this calculated value is slightly smaller than the measured rate constant in 2 

Torr of Ar in this work. The measured pressure dependent rate constants in the pressure 

range of 500 m Torr to 20 Torr provide the fall-off regime for the OH addition reaction to 

isoprene. 
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Figure 11. The pressure dependent rate constants were determined. The solid line 

represents a fit of the experimental data 
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CHAPTER IV 

CL-ISOPRENE REACTION STUDIED USING CIMS 

The work described in this chapter includes the study of the oxidation reactions of 

isoprene initiated by Cl atoms, using a fast-flow reactor coupled with chemical ionization 

mass spectrometry (CIMS). This reaction was studied both in the presence and absence of 

Oq in order to explore the degradation pathways. The experimental measurements 

included the bimolecular rate constant and pressure dependence. We also identified the 

intermediates formed &om the oxidation reactions of isoprene initiated by Cl. We directly 

observed the Cl-isoprene adduct in order to extract the rate constant of isoprene reactions 

by Cl atoms. A branching ratio for this reaction was obtained using HC1 formation. The 

increase of the HCl signal intensity corresponded to the fraction of consumed 

concentration of Cl to form HC1 when the varied isoprene was added. By monitoring the 

temporal evolution of the OH-isoprene adduct and Cl-isoprene adduct in the absence and 

presence of oxygen molecules, we also obtained the overall rate constants of the Cl- 

isoprene adduct in the presence of Oq. 

4-1. Experimental 

Reactor and Flow Conditions 

The flow reactor used for the Cl-isoprene reaction was similar to that previous 

discussed to study the OH-isoprene reaction, with some modification. The flow reactor 

was made of precision-bore Pyrex tubing 1. 78 cm in internal diameter and 60 in length. 

The inlet for isoprene is a series of five orifices (2 mm in diameter) located 5-cm apart at 



48 

the downstream end of the flow tube. The hole was enclosed in a Pyrex sleeve, which 

was sealed to the reactor tube. The flow of the reactants was controlled by glass vacuum 

valves with Teflon plugs. The reactant addition orifices were designed to minimize 

disturbance of the viscous flow. All inner surfaces of the flow reactor exposed to Cl were 

coated with a halocarbon wax to reduce the wall loss of Cl atoms. Helium carrier gas in 

the range of 1 to 3 STP 1 min 
' was flowed into the flow reactor through an entrance port 

in the rear of the flow reactor. Typical flow velocity in the flow reactor ranged from 1300 

to 2500 cm s '. The pressure in the flow reactor was regulated between 5 and 10 Torr and 

all experiments were performed at 298 + 2 K. 

As described above, the distance for fully developed laminar flow can be 

estimated according to the expression of i = 0. //5aRe. Our experimental conditions 

had a typical value of 25 for the Reynolds number. The length for the fully developed 

laminar flow was determined to be about 3 cm, which is significantly less than that of the 

flow reactor. The pressure-independent gas-phase diffusion coefficients, pD, of isoprene 

and Cl were 365 and 602 Torr cm s', respectively. Thus Cl and isoprene were 

homogeneously mixed in our experiments. 

Cl Atom Pre aration 

Two different methods were used to in situ generate the chlorine atoms. One way 

is that Cl atoms were introduced into the flow reactor by passing a small flow of (0. 1— 

1) lo Cli / He mixture through a microwave discharge. Another way is that a (0. 1 — 1)'/o 

Hq / He mixture flowed through the microwave discharge and then reacted with an excess 

of Clq downstream, 
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H + Clz w HC1 + Cl (12) 

The kinetic results obtained from those techniques were similar within the uncertainty of 

our present experiments. We proceeded with the former method in the majority of the 

experiments in this study. Cl was detected in the negative ion mode using SFs as the 

reagent ions, following by the ion-molecule reaction, 

Cl + SFs -+ Cl + SFs (13) 

The ion-molecule reaction rate constant for reaction (13) has not been measured yet. The 

Cl concentration was determined using the bromine titration method, 

Cl + Brz m BrC1 + Br (14) 

with an excess of Bri. The bimolecular rate constant for this reaction is 2. 3 x 10 ' exp{- 

(135 + 60))/T) cm molecule ' s'. ' The concentration of Cl atoms was calculated by 

[Cl] = A[Br'] = [BrCl]. Alternatively, we also inferred the chlorine atom concentration 

from the measurement of dissociated fraction of chlorine molecules introduced to the 

flow reactor, according to [CI] ~ 2A[Clq]. A[Cia] is the difference in the chlorine 

concentrations when the microwave discharge was switched off and on. The flow through 

a quartz cell used in the Evenson cavity was coated with a concentrated phosphoric acid 

to enhance the dissociation efficiency of the chlorine molecules. Typically the 

concentration of chlorine atoms in the flow reactor was estimated in the range of (1 to 5 ) 

x10 moleculecm . 
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4-2. Results and Discussion 

Iso rene Reaction with Cl 

The reaction between Cl and isoprene proceeds through two channels. The major 

channel is Cl addition to isoprene resulted in Cl-isoprene adduct formation and the minor 

is hydrogen abstraction to form HCI. 

Cl + CsHs -+ CsHsCI 

Cl + CsHs m CiHp + HCI 

(I sa) 

(15b) 

The kinetic studies of the reacfion of isoprene initiated by chlorine atoms were 

investigated under the pseudo-first order approximation, using isoprene as the excess 

reagent. The observed first order loss rate coefficients ( k, s' ) were derived directly 

based on the plot of the decay of the Cl atoms signal as a function of the reaction 

distance. The bimolecular rate constants were obtained by the fitting of the plot of k' vs. 

the concentration of isoprene. 

Figure 12a presents the pseudo-first order decay of Cl in the presence of isoprene. 

The slope of the plots of the logarithm of Cl signal vs. reaction time represents the 

observed'first-order rate coefficients ( k' ). The secondary reactions in our experiments 

were negligible since those plots were linear. The experimental conditions were at P 

8. 7 Torr and Re = 23. The initial concentration of Cl was estimated as 3. 0 x 10 molecule 

cm and the isoprene concentrations were varied between 4. 6 x 10' and 1. 5 x 10" 

molecule cm . The background signals of Cl (35 m/e) produced in the system were 

subtracted from all the points. 

The effects of axial and radial diffusion of the reactants were estimated by the 

Brown approach. The pressure-independent diffusion coefficients for Cl in helium, D(;sia 
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was 508. 76 torr cm s ' at P = 8 Torr and T = 298 K. The correction due to gas-phase 

diffusion in the axial and radial directions was less than 3 '/o. The bimolecular rate 

constant was obtained directly from the observed first-order loss coefficient for Cl 

because this correction was smaller than the random and systematic errors estimated in 

our experiments. Figure 12b shows the first-order coefficient as a function of isoprene 

concentration. The slope of the linear least squares fit to the experimental data provides 

an effective bimolecular rate constant for the reaction of isoprene with Cl atoms with a 

value of 4. 1 x 10 ' cm molecule s'. Note that in Figure 12a the Cl concentration was 

reduced to approximately 30 'to of it's original value at the highest isoprene 

concentration. Due to the existence of the background signal at m/e = 35 (about 10 to 15 

'/o of the original signal), we did not further increase the final Cl removal. 

We performed similar experiments in the pressure range of 5 to 10 Torr, with 

measured rate constants of (3. 8 + 0. 4), (4. 1 + 0. 2), (4. 0 + 0. 2), and (4. 1 + 0. 3) x 10 ' cm 

molecule ' s ' at 6. 6, 8. 2, 8. 7, and 9. 2 Torr, respectively. Each of the data represents at 

least four individual measurements at various initial concentration of isoprene and Cl. 

The average rate constant over the pressure range of 5 to 10 Torr is (4. 0 + 0. 3) x 10' 

cm molecule' s', where the quoted uncertainty represents the scatter in the data in one 

sigma deviation without including systematic errors. The systematic uncertainty in our 

measured rate constants was estimated within + 105'o, with sources of error in the 

measurement such as gas flows, temperature, detection signal, and pressure and in the 

flow considerations. 
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Figure 12a. Decay of Cl signal as a function of injector distance at various 

concentrations of isoprene. Experimental conditions are: P = 8. 7 
Torr, U = 2301, and Re = 23 
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Our measured rate constant between isoprene and Cl in the pressure range of 5 to 

10 Torr is generally in good agreement with the results presently available in the 

literature. ' The summary of the previous measurements of the rate constants near 

room temperature is shown in Figure 13. Ragains and Finlayson-Pitts measured a rate 

constant of (4. 0 + 0. 4) x10' cm molecule ' s' at 5 Torr, in excellent agreement with the 

results reported in this study. Our value is slightly higher than those reported by Notario 

et al. and Bedjanian et al. ", whose measured rates are (3. 62 0. 4) x10 ' cm molecule' 

s' in the pressure range of 15 to 60 Torr and (3. 4 2 0. 5) x10' cm molecule ' s' in the 

pressure range of 0. 25 to 3. 0 Torr, respectively. The difference between our measured 

rate and those two latter studies, however, is within the quoted uncertainties of the 

respective work. Our results are also in good agreement with those recently measured by 

Canosa-Mas et al whose measured values are (4. 0 + 0. 8) x10' cm molecule ' s ' at 

760 Torr. Note that the largest disagreement for the reaction between Cl and isoprene 

among the various studies occurs at 760 Torr. For example, the values reported by 

Fantechi et al. is about 40 'lo higher than that recently reported by Canosa-Mas et al. 

Our measured rate constant in the pressure range of 5 to 10 Torr is very close to the value 

reported by Canosa-Mas et al. at 760 Torr. 
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B~l' Rati 

In order to obtain the branching ratio for reaction (15) we performed experiments 

to study the HCI formation. This approach is described well by Bedjanian et al. ' Cl 

atoms were generated through microwave discharge of Clq with a carrier gas of He. With 

an excess of isoprene, we monitored the decrease of the signal intensity of Cl with the 

increase of the signal intensity of HCI formed, The concentrations of isoprene were 

varied between 3. 0xl0 and 1. 3x10 molecule cm . The signals of HCI ( 55 m/e) 

formed were measured as F BHCI by using negative reagent iona, SF6. The increase of 

HCI signal intensity (A[HCI]) corresponded to the fraction of consumed Cl concentration, 

(A[CI]), as the concentrations of isoprene were varied. The plot of the increase of HC1 

signals as a function of A[CI] yields the branching-fraction of the product for reaction 

(15). In Figure 14, the slope of the fitted line yields ki~i with a value of (17. 4 + 0. 4)B/6, 

where the uncertainty stands for 2cr standard deviation with an addition of 5'IB systematic 

error. The branching ration we obtained is in excellent agreement with those measured in 

previous studies. 67, 7i 

The Observation of the Cl-Iso rene Adduct 

We monitored the formation of the Cl-isoprene adduct using the CIMS method. 

Bedjanian et al. ' has reported the detection of the Cl-isoprene adduct, using electron 

impact (EI). This approach, however, results in a significant fragmentation for this 

adduct, because EI applied energetic electron of the ionization, prohibiting kinetic 
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Figure 14. Formation of HCl from the reaction of Cl with isoprene. The reaction 

distance was increased by 20 cm at about 42 s and was returned to the 

initial distance at about 80 s 



information to be derived. In order to detect the Cl-isoprene adduct we used Oq' reagent 

ious according to the ion-molecule reaction, 

Oi' + CsHsCI ~ CiHsCI' + Oi (16) 

The rate constant of the above ion-molecule reaction has not been measured yet. 

According to the previous mechanistic studies, the reaction (15) may result in four 

different isomeric radicals in Figure 15. Ab initio calculation indicate that Cl addition to 

the Cl- and C4- positions are the most energetically favorable channels with about 14 

kcal mole ' less than to the C2- and C3- positions. Because the CIMS is incapable of 

discriminating isomers, we refer to the product as the "Cl-isoprene adduct" with 103 m/e 

of CqHsCI. The isomeric effect on the overall rate constants would be negligible in our 

study. 

We took several procedures to verify that the signal of 103 m/e is indeed Pom the 

Cl-isoprene adduct, not from secondary ion-molecule reactions. First, we monitored the 

disappearance of the signal at 103 m/e when the reactants ceased to be introduced into 

the reactor. The adduct signal was observed to increase when the reaction time was 

increased. Figure 16 (a) and (b) show an example of Cl-isoprene formation in 

accordance with the decay of Cl atoms. The experimental conditions were: P=9. 2 Torr, 

Re = 15, U = 1341 cm s', and [CqHs] = 7. 5 x 10" molecule cm . An effective 

bimolecular rate constant was obtained from the disappearance of Cl signals in 16(a) with 

a value of 4. 1 x 10 ' cm molecule' s'. As shown in this figure, there is a gradual 
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increase in the Cl-isoprene adduct signal when the reaction distance increased. In Figure 

16(b), a numerical simulation was used to derive a rate coefficient for the reaction of 

isoprene with Cl. The computer model included the initial concentration of Cl, isoprene, 

and all other precursors. Using the measured branching ratio based on HC1 formation to 

constrain the fitting, the rate constant for reaction 15(a) was varied to fit the observed Cl- 

isoprene adduct formation profile, The solid line in Figure 16(b) represents the best fit to 

the observed formafion of the Cl-isoprene adduct, ~th a value of 3. 4 x 10 10 cm3 

molecule ' s'. Note that the results shown in Figure 16 were performed in separate runs 

between the decay of Cl atoms and the formation of Cl-isoprene adduct, using either 

negative or positive reagent ions, respectively. We estimated an uncertainty of 10 '/o 

associated with fitting the Cl-isoprene adduct formation. On the basis of the product 

studies, we also concluded that the secondary reactions of the Cl-isoprene adduct were 

not important in our experimental system and that heterogeneous loss of this adduct on 

the surfaces of the flow reactor appeared to be minimal in our experiments. This 

approach is similar to the investigation of OH-isoprene adduct as mentioned in Chapter 

Cl-Iso rene Adduct Reaction with 0 

Reaction (17) has been studied by monitoring the temporal profiles of the Cl- 

isoprene adduct in the presence of oxygen molecules, Oi, 

CiHsCI + Or m CrHsCI02 (17) 
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Figure 16. Variation of the Cl(a) and Cl-isoprene adduct(b) signals as a function of 
reaction time. The solid curves are from model calculations (see text). 
Experimental conditions are: P = 9. 6 Torr, U = 1424 cm s', Re = 15, and 

[CqHs], = 2. 8 x 10" molecule cm 
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The procedures to derive a rate constant between the Cl-isoprene adduct and Oq 

involved two steps. First, we measured the signals at mass 103 corresponding to the Cl- 

isoprene adduct, as the reaction time increased in an absence of Oq. Then we repeated the 

same experiment in the presence of oxygen molecules. As described above, fitting the 

experimental data using the simulation varied the bimolecular rate constant for the 

formation of the Cl-isoprene adduct in the absence of Oq. The computer model then 

included this rate constant in addition to the reaction of the Cl-isoprene adduct with Oq. 

The reaction rate between the Cl-isoprene adduct and Oq was then determined by best 

fitting the observed adduct data. In the presence Oq, the reaction rate constants used in 

our computer modeling are represented in Table 5. The relevant kinetic information was 

obtained from the JPL publication. ' 

The temporal evolution of the Cl-isoprene adducts in the presence and absence of 

Oq was presented in Figure 17(a). The production of the Cl-isoprene adduct is diminished 

in the presence of Oi, which is due to the formation of the peroxy radicals from the 

reaction between the Cl-isoprene adduct and Oq. The initial concentration of isoprene and 

Oq were 1. 4 x 10" and 2. 7 x 10' molecule cm, respectively. Figure 17(a) shows the 

bimolecular rate constant of the reaction between isoprene and Cl atoms in terms of the 

formation of the Cl-isoprene adduct by fitting the data with a value of 4. 0 x 10 ' cm 

molecule ' s '. The best fit to the Cl-isoprene adduct in the presence of Oq in Figure 17(b) 
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gives a rate constant for the reaction of the Cl-isoprene adduct with Oi, yielding a value 

of 1. 0 x 10 ' cm molecule ' s '. Figure 18 depicts the production of the Cl-isoprene 

adduct as a function of Or concentraflon in the range of 0 to 8. 9 x 10' molecule cm . 

The initial concentration of isoprene was 2. 7 x 10" molecule cm . As is seen in this 

figure, a lesser production of the Cl-isoprene adduct at a higher concentration of oxygen 

molecules is due to the reaction between the Cl-isoprene adduct and Oi. The best flt to 

the data yields the rate constant of 1. 0 x 10 ' cm molecule ' s'. We performed the 

several experiments, applying different pressures, initial concentrations of isoprene and 

Oi conditions. The average rate constant for the reaction of the Cl-isoprene adduct with 

Or was (1. 0 + 0. 3 ) x 10 ' cm molecule' s ' in the pressure range of 5 to 10 Torr, where 

the quoted uncertainty indicates the scatter in the data at the one standard deviation level. 

We estimated about + 50 'lo systematic error in the present data, which are from the 

uncertainties of modeling of the Cl-isoprene adduct and experimental measurements of 

gas flows, temperature and pressure. 
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Table 5. S~ of the chemical reactions used in computer simulations for the system 

involving Cl, isoprene, and Oq 

Reaction k'(cm molecule s ) 

CsHs + Cl m Crt + HC1 

m CsHsC1 

CsHsC1 + Or m CsHsC10r 

Cl + Os -+ C10r 

Cl + OC10 m C10 + C10 

Cl + C10r -+ Clr + Or 

C10 + C10 

C10 + C10 -+CltOr 

C10 + CIO — & Clr + Or 

-+ C100 + CI 

-+ OclO + Cl 

CIO + OC10 — & City 

Cl + ClqOq m Products 

6. 6 x 10 " 
3. 4 x 10 " 
1. 0 x 10 

7. 7 x 10 

5. 8 x 10" 
2. 3 x 10' 

1. 2 x 10" 
6. 1 x10' 
48x10' 
80 10' 

3. 5 x 10' 
1. 8 x10' 
1. 0x10' 

' Rate constants are from ref 16 at 298 K and 9 Torr, except noted otherwise. 
" From this work. 
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Figure 17. Production of the Cl-isoprene adduct as a function of the reaction time in 

the absence (triangles) and presence (squares) of Ot. The solid curves are 

from model calculations(see text). [CsHs]&, = 1. 4 x 10 molecule cm, n -3 

[Ot], = 2. 7 x 10' molecule cm in (b). The experimental conditions are: 
P = 9. 2 Torr, U = 1341 cm s ', and Re = 15 
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Figure 18. Production of the Cl-isoprene adduct as a function of the reaction time at 

various 02 concentrations ( x 10' molecule cm ): (a) 0 (open circles), 

(b) 0. 9 (solid down triangles), (c) 2. 1 (open up-triangles), (d) 5. 8 (open 

squares), and (e) 8. 9 (solid squares). The solid curves are from model 

calculations (see text). [CsHs], = 2. 7 x 10" molecule cm'. The experiments 

were performed at P = 8. 2 Torr, U = 1563 cm s ', and Re = 14 
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CHAPTER V 

CONCLUSIONS 

We have presented kinetic studies of isoprene reactions initiated by the OH 

radical and the Cl atom, using a fast flow reactor/chemical ionization mass spectrometry 

(CIMS) and laser photolysis/laser induced fluorescence (LP/LIF) detection. The rate 

constants for the OH-isoprene reaction using the CIMS approach were measured at a 

pressure range of 70 to 112 Torr with a value of (9, 7+ 1. 0) x 10" to (10. 5 2 1. 1) x 10 ' 

cm molecule' s' at 298 + 2 K. The LP/LIF method was used to obtain the rate constants 

in the pressure range of 0. 5 to 20 Torr, which shows a fall-off regime for the OH addition 

to isoprene, with a low pressure limiting termolecular rate constant k, = of 7. 5 x 10 

cm molecules s' and a high pressure limiting rate constant ki = of 1. 07 x 10' cm 

molecules ' s ' at 295 K. The rate constant at 0. 5 Torr is (7. 6 + 0. 8 ) x 10" cm 

molecule' s'. The CIMS approach also allowed us to monitor the temporal profile of the 

OH-isoprene adducts. The observed bimolecular rate constant for the reaction between 

the OH-isoprene adduct and Oq was determined to be (2. 8 + 0. 7) x 10' cm molecule ' s 

' at 75. 5 Torr. The atmospheric lifetime of the OH-isoprene adduct can be estimated Irom 

the reaction rate constants measured in this study giving a value of approximately 3 x 10 

s. This implies that the Oq addition to the OH-isoprene adduct is the major reaction 

channel in the atmosphere. 

For the reaction of isoprene with Cl atoms the CIMS method was employed, 

yielding a pressure independent rate constant of (4. 0 + 0. 3) x 10 ' cm molecule' s ' at 

pressure range of 5 to 10 Torr. The branching ratio for this reaction was also studied 



based on HCI formation, giving a value of (17. 7 + 3. 2)%. In addition, we obtained the 

first experimental overall rate constant for the reaction between the Cl-isoprene adduct 

and Oi with a value of (1. 0 + 0. 3) x 10 ' cm molecule' s '. The tropospheric lifetime of 

Cl-isoprene adduct with respect to addition reaction with Oi can be estimated Irom the 

measured rate constants. This lifetime of approximately 2 x 10' s was calculated using 

the rate constant for the reaction between the Cl-isoprene adduct and Oi and assuming an 

average atmospheric concentration of Oi molecules at STP. 

Hence in this work we have developed experimental techniques for the isoprene 

oxidation reactions with the OH radicals and Cl atoms, which should provide insight for 

understanding of the photochemical oxidation of isoprene in the atmosphere. 
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