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ABSTRACT 

Analysis of a Typical Midwestern Structure Subjected to Seismic I. oads. (April 2000) 

Jason Frazier Hart 
Department of Civil Engineering 

Texas A&M University 

Fellows Advisor: Dr. Mary Beth D. Hueste 
Department of Civil Engineering 

The extent of damage and casualties in Midwest cities such as St. Louis during 

an earthquake caused by the New Madrid fitult system will be due in part to the 

perforinance of buildings. Dynamic nonlinear analysis of a reinforced concrete building 

not designed for seismic loads is one method used to assess an existing building's ability 

to withstand an earthquake. Many researchers have studied the earthquake resistance of 

structures, and often analytical studies have used recorded ground motions such as the 

1940 El Centm, California, earthquake. Reports trom past experimental studies and 

observations of damage caused by seismic events have been valuable for evaluating the 

performance of specific components of a building and overall performance of buildings 

subjected to this type of ground motion. This research study differs Irom previous 

research in that it focuses on the Midwest United States and uses synthetic ground 

motions developed specifically for an earthquake that would occur in this region. 

Research of the performance of a five-story, reinforced concrete, moment kame building 

in the Midwest United States is discussed m this thesis. In order to estimate the 

performance of a typical building in this region, the building was designed based on 



codes Irom the mid-1980's, prior to the seismic design standards of today requiring a 

ductile structural system. 

The study building's performance is evaluated using the dynamic nonlinear 

analysis computer program DRAIN-2DM. Dynamic analysis of the structure is 

performed using synthetic ground motions for the Midwest produced by Y. K. Wen of 

the Mid-America Earthquake Center. The analyses of the building were performed 

using twenty ground motion records. Ten ground motions are for earthquakes with 2 

percent probabilities of exceedance in 50 years, and ten are for 10 percent probabilities 

of exceedance in 50 years. Results of the analyses are discussed in this thesis and are 

used to estimate the damage to the structure. 
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CHAPTER I 

INTRODUCTION 

The evaluation of a building by dynamic nonlinear response analysis is one 

method used to determine the structural performance during an earthquake. This study 

uses this analytical approach for the specific case of a building in St. Louis in 

combination with a ground motion typical of those in the Midwest region. Synthetic 

ground motions that have recently been produced are expected to yield a better estimate 

of ground shaking for evaluating the seismic performance of a St. Louis building than 

those recorded during California earthquakes. 

At the start of this study, an attempt was tnade to obtain design drawings of a St. 

Louis building built in the early 1980's, prior to St. Louis being assigned to seismic zone 

two of the Building Officials and Code Administrators (BOCA) Basic/Nationa! Code 

(Building officials 1987). Design drawings for a typical building fiom this time period 

could not be obtained. Designing a building according to the codes used by designers 

during the early 1980's was judged to be an equal alternative case study structure. 

Engineers with design experience in the St. Louis region provided a starting point for the 

design of the study building by responding to questionnaires. The subjects of the 

questions ranged from the typical number of stories in an office building to types of floor 

systems commonly used in the region. Once the overall size and structural system of the 

reinforced concrete office building were determined, the detailed design of the building 

This thesis follows the style and format of the Journal of Structural Engineering. 



was performed using the ninth edition of the BOCA code released in 1984 and the 1983 

American Concrete Institute (ACI) Building Code Requirements for Reinforced 

Concrete (Building code 1983). This design using these codes is representative of 

similar buildings designed while the ninth edition of the BOCA code was used. 

Analysis of the study building was performed using DRAIN-2DM, a dynamic 

nonlinear analysis cotnputer program that has been used widely for this type of research. 

The program was developed at the University of California-Berkeley, and this version, 

which features reinforced concrete beam and slab models, was enhanced at the 

University of Michigan. The slab model of DRAIN-2DM is particularly beneficial to 

this research because it is capable of predicting punching shear, a failure mode that is 

&equently found in buildings with flat-slab floor systems damaged by earthquakes 

(Hueste and Wight, 1997). 



CHAPTER II 

REVIEW OF PREVIOUS RESEARCH 

A wide variety of research that is applicable to this study is available in the 

literature. Two components of the study that received focus when examining reports 

documenting previous research were dynamic nonlinear analysis using DRAIN-2DM 

and the behavior of reinforced concrete structural members subjected to seismic loads. 

This literature review provided insight into the behavior of the study building and data 

that could be compared to this study' s results. 

DYNAMIC NONLINEAR ANALYSIS USING DRAIN-2DM 

The dynamic nonlinear analysis of a reinforced concrete building using DRAIN- 

2DM has been documented in numerous structural engineering journals. Studying the 

publications of previous researchers yielded an efficient procedure for this study of a 

building specific to St. Louis, Missouri. Many articles were consulted throughout this 

research, and several were important in developing a procedure for the analysis of the 

study building. 

A four-story reinforced concrete building was studied by Hueste and Wight 

(1997 and 1999). This building, located in Northridge, California, was damaged during 

the 1994 Northridge Earthquake. The most prevalent form of damage to this building 

was punching shear failures at the slab-column connections. Their research focused on 

post-calculating the damage with several analysis techniques, including dynamic 

nonlinear analysis. One aspect of Hueste and Wight's research that was consulted is the 

method used to model slab members with the two-dimensional analysis computer 



program DRAIN-2DM The model of a slab member used in the analysis of the St. 

Louis study building was developed by Hueste and Wight and is capable of predicting a 

punching shear failure. The model also accounts for the loss of stiffness in a slab 

member following a punching shear failure. 

Shooshtari and Saatcioglu (1998) modified DRAIN-2D to include models for 

inelastic flexure, axial force-moment (P-M) interaction, anchorage slip, and shear. This 

version is called DRAIN-RC. Though DRAIN-RC is not used in this study, Shooshtari 

and Saatcioglu's conclusions are beneficial. They found that for a ductile, moment 

Irame building, the results of an analysis that include P-M interaction and shear models 

did not significantly differ Irom an analysis that did not include the models, Analysis 

with the anchorage slip model predicted building drift values that were twice as large as 

those predicted by analysis without the model. The anchorage slip model developed by 

Shooshtari and Saatcioglu is not included in this study, but reinforcement that is 

anchored into a support was checked to ensure that it has sufficient length to be 

developed. If the reinforcement cannot be developed, its capacity to carry tensile force 

is reduced in the analysis. 

REINFORCED CONCRETE BEHAVIOR UNDER SEISMIC LOADING 

Reinforced concrete slab behavior during earthquake loads has Irequently been 

studied by leading structural engineering researchers. This research has provided 

empirical and mathematical models of the behavior of slab members under lateral 

loading. A review of this research provides a background for this study. 



The design of the study building includes shear capitals at interior slab-column 

connections. Research of the behavior of slab-column connections with shear capitals 

was conducted by Wey and Durrani (1992). This research provided experimental data 

for the connections that can be compared to results obtained Irom the study building. 

Moment-rotation plots provided by Wey and Durrani are especially valuable because 

they document the inelastic behavior that test speciinens experienced. In addition, the 

data kom Wey and Durrani's research contributed to the development of the slab 

element used in DRAIN-2DM (Hueste and Wight 1997). The conclusions of this 

research provide methods of design that result in proper performance at slab-column 

connections during earthquakes. One notable conclusion of this study is that the length 

of a shear capital does not significantly increase in the initial stiffness of a slab-column 

connection, but an increase in depth does pmvide a significant increase in initial 

stiAness. 

The general earthquake resistance of reinforced concrete slab-column 

connections was studied by Durrani and Wight (1987). This study provides a correlation 

between inter-story drift and connection response. The study docmnents that the 

reinforcement in the slab is expected to yield at an inter-story drift of 1. 5 percent. Inter- 

story drift less than two percent is not expected to cause damage due to a shear failure. 

Durrani and Wight found that in the case of a slab with unequal amounts of top and 

bottom reinforcing steel and subjected to cyclic loading, bond deterioration and bar slip 

problems will be inore significant for the bottom steel. 



Pan and Moehle (1992) studied the effect of gravity load on building drift during 

an earthquake. Four interior slab-column connections were modeled at 60 percent of full 

scale for their study. Biaxial and uniaxial lateral loads were applied to the specimens. 

The study concluded that biaxial loading reduces the allowable drift capacity of slab- 

column connections. The research described in this thesis does not include biaxial 

lateral loading, and the response to an earthquake that causes the building members to be 

loaded in a biaxial manner may be more severe than that reported in this thesis. Pan and 

Moehle also concluded that the magnitude of the gravity load shear carried by the slab is 

a primary variable affecting the behavior of reinforced concrete slab members. Like 

Durrani and Wight (1987), the study recommends that inter-story drift values not exceed 

1. 5 percent. The data and conclusions of this research were important contributions to 

the development of the punching shear model for the slab element used in DRAIN-2DM 

(Hueste and Wight 1997). 



CHAPTER III 

NEW MADRID SEISMIC ZONE 

The largest series of earthquakes known to have occurred in North America is the 

series known as the New Madrid Earthquakes. The epicenters of these earthquakes were 

near the town of New Madrid, Missouri. The New Madrid Earthquakes consist of three 

major earthquakes and 203 damaging allershocks that took place in the winter of 1811- 

12. The body-wave magnitudes of the three large earthquakes were 7. 35, 7. 2, and 7. 5. 

Body-wave magnitudes for the afiershocks are estimated to have been between 5. 0 and 

6. 7 (Nuttli 1982). Due to the low population in this region in the early nineteenth 

century, there were few casualties. A similar earthquake today would be catastrophic. In 

1975, there were 12. 6 million people living in the damage threshold of the New Madrid 

Earthquakes. The damage threshold is any area where the Modified Mercalli intensity is 

VII or greater (7vicKeown 1982). While earthquake research for the Western United 

States has been conducted for decades, regional seismic monitoring in the Midwest did 

not begin until 1974 (McKeown and Pakiser 1982). In order to appreciate the 

importance of earthquakes in the Midwest, it is helpful to examine the history of 

Midwest earthquakes and the difFerences between Midwest and Western United States 

earthquakes. 

HISTORY OF MIDWESTERN UNITED STATES EARTHQUAKES 

Prior to the New Madrid Earthquakes, five earthquakes are known to have 

occurred in the region. These five earthquakes took place between 1776 and 1804, but 

few facts concerning these earthquakes are known. On December 16, 1811, the first of 



the series of New Madrid Earthquakes was felt over an area of 5, 000, 000 tun' and 

caused damage to structures within a 600-km radius. The Modified Mercalli intensity of 

this earthquake is estimated as either X or XI. Table l is a Modified Mercalli intensity 

index, which shows the type of response that corresponds to a particular intensity. 

TABLE 1. Modified Mercalli Intensity index [United (1999)] 

Index 
Value 

IX 

XII 

Description 

Nat felt except by a very few under especially fltvorable couditioos 

Felt only by a law persoos at rest, especially oa upper fleors of 
buildings Ddicately suspended objects may swing 

Felt quite noticeably by persons indoors, espeaally on upper floors 

of buildings. Many people do uot recogaize it as an esnhquake. 

Standing motor cars amy rock slightly. Vibrations similar to the 

passing of s truck Duratiaa estimated. 

Felt iadoors by many, outdoors by few during the day. At mgbt, 

some awakmerl Dishes, windows, doors disturbed; walls make 

cradring souml Sensatieu like heavy truck striking building 

Standing motor cars rocked noticeably, 

Felt by nearly everyone; many a~ Some dishes, wiadows 

broken. Unstable objects overturned. pendulum clocks may stop. 

Felt by sfl, many liigbtened Some heavy grrniture moved; a few 

instaocm of fldlm plaster. Damage slight. 

Damage rusligible in buildirqts of good design and coustructiao; 

slight to moderate in well-built structures; coouderablc damage in 

poorly built or badly dmdgned structures; some chimneys broken 

Damage dight inspeciafly dedgucd ructures; considuable damage ia 

ordinary substantial buildings with partial collapse. Damage great in 

poorly built structureu Fsfl of chimneys, factory sucks, columns, 

moaumeuts, walls Heavy urniture overtunuxl 

Damage considerable in specially desigorxl structures; well-designed 

frame structures thrown out of plumb. Damage great in substaetial 

buildings, with partial collapse. Buildings shifled off foundations. 

Some wdl-built woodea structures deslroyed; most masonry and kame 

structures destmyed with fouadations. Rails beat. 

Few, if any (masonry) structures remain steading. Bridges destroyed. 

Rails bent grratly. 

Damage total. Lines of sight and level are distorted. Objects thrown 

into the sir. 



The second of the three New Madrid Earthquakes took place on January 23, 

1812. Like the first earthquake, this earthquake was of a Modified Mercalli intensity of 

X or XI, and was felt over a 5, 000, 000 km area. The third earthquake, with a Modified 

Mercalli intensity of XII, occurred on February 7, 1812, and was the largest of the series. 

It was felt over an area greater than 5, 000, 000 km (Nuttli 1982). Though these 

earthquakes are large, only recently have buildings been designed for these earthquakes 

because the recurrence interval is estimated to be at least 600 years (McKeown 1982). 

If the New Madrid Earthquakes were the only earthquakes to have occurred in 

the Midwest, it could be reasoned that the ratio of earthquake recurrence ratio to building 

life is so high that buildings should not include the stringent seismic design criteria that 

Western United States buildings require. While many design professionals are aware of 

the New Madrid Earthquakes, they may not be aware that twenty damaging earthquakes 

with Modified Mercalli intensities VI or greater have occurred in the New Madrid 

Seisinic Zone (NMSZ) since 1812. These twenty earthquakes alone would make the 

region the most seismically active area in the Central and Eastern United States (Nuttli 

1982). More details about these twenty earthquakes are shown in Table 2. 

The New Madrid Seismic Zone began to receive national attention in the mid- 

1970's. Until 1973, most investigations of the NMSZ were made by students and 

faculty at St. Louis University with limited financial resources (McKeown and Pakiser 

1982). In 1974, the Central Mississippi Valley Seismic Network (CMVSN) began 

monitoring seismic activity in the region. CMVSN was sponsored by the United States 

Geological Survey (USGS) and operated by St. Louis University. Memphis State 
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University later joined St. Louis University in operating the network (Shedlock and 

Johnston 1994). The Nuclear Regulatory Commission (NRC) sponsored an 

investigation into the potential seismic hazards to nuclear power plants in 1976 

(McKeown and Pakiser 1982). 

TABLE 2. Damaging Earthquakes in the NMSZ Since 1812 [Adapted from 
Nuttii (1 982)] 

Date 

Juo. 9, 1838 

Jaa. 4, 1843 

Oct. 8, 1857 

Aug. 17, 1865 

Apr. 12, 1883 

Oct. 31, 1895 

Apr. 29, 1899 

Nov. 4, 1903 

Aug. 21, 1905 

May 26, 1909 

Jul. 18, 1909 

Sep. 27, 1909 

Nov. 26, 1922 

Oct. 28, 1923 

Apr. 26, 1925 

May 7, 1927 

Dec. 16, 1931 

Aug. 14, 1965 

Nov. 9, 1968 

Mar. 24, 1976 

Epicenter 
Latitude 

38. 5'N 

35. 5'N 

38. 7'N 

35. 5'N 

37. 0'N 

37. 0'N 

38. 8'N 

36. 9'N 

36. 8'N 

42. 5 'N 

40. 2'N 

39. 5'N 

37. 5'N 

35. 5'N 

38. 3'N 

35. 7'N 

34. 1'N 

37. 1'N 

38. 0'N 

35. 6'N 

Epicenter 
Longitude 

89'W 

90. 5'W 

89. 2'W 

90. 5'W 

89. 2'W 

89. 4'W 

87. 0'W 

89. 3'W 

89. 6'W 

89. 0'W 

90. 0'W 

87. 4'W 

88. 5'W 

90. 4'W 

87. 6'W 

90. 6'W 

89. 8'W 

89. 2'W 

88. 5'W 

90. 5'W 

Current 
Nearest 

Cdy 

Mount Vernon, IL 

Harrisburg, AR 

Mourn Veraoo. IL 

Harrisburg, AR 

Sikuson, Mo 

Sikeston, Mo 

Vinceaaes, IN 

Sikeston, Mo 

Sikeston, MO 

Beloit, WI 

Spriogtield, IL 

Terre Haute, IN 

Paducsb, RY 

Hsmsburg, AR 

Evansville, tN 

Jonesboro, AR 

Oxford, MS 

Sikestou, Mo 

Mount Veroce, IL 

Hams burg, AR 

Modified 

Mercagi 
Intensity 

VII 

vi-vn 

vl-vn 

vl-vn 

Body- 
Wsue 

Magnitude 

5. 7 

6. 0 

5. 4 

5. 3 

4. 0 

6. 2 

5. 0 

5. 3 

5. 0 

5. 3 

5. 3 

5. 3 

5. 0 

5. 3 

5. 0 

5. 3 

5. 0 

3. 8 

5. 5 

5. 0 

Felt 
Area 
(km') 

500, 000 

1. 500, 000 

200, 000 

250, 000 

Not Available 

2, 500, 000 

100, 000 

340, 000 

325, 000 

800, 000 

100, 000 

250, 000 

130, 000 

120, 000 

250, 000 

300, 000 

220, 000 

700 

1, 600, 000 

280, 000 

Distance 
from St. 

Louis (km1 

340 

200 

270 

200 

440 

180 

260 

340 

230 

320 

510 

200 

160 

340 

Further attention was brought to the New Madrid Seismic Zone following the 

Lorna Prieta, California, earthquake in 1989. This earthquake led the United States 

Congress to order the USGS to prepare a plan for intensified study of the NMSZ. The 

National Earthquake Hazards Reduction Program (NEHRP) designated the NMSZ as a 
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priority research area in 1990. The NMSZ research program consists of four 

components: tectonic &amework studies, seisinicity and deforination monitoring and 

modeling, improved seismic hazard and risk assessment, and cooperative hazard 

mitigation studies (Shedlock and Johnston 1994). This research has led to knowledge 

specific to NMSZ earthquakes, rather than the attempt to characterize NMSZ 

earthquakes using earthquake data Irom other regions. 

CHARACTERISTICS OF NMSZ EARTHQUAKES 

The New Madrid Seismic Zone is a clustered pattern of potential hypocenters 

between 5 km and 15 km deep. The NMSZ has been active since the Cretaceous period. 

It is possible that it was active as long ago as the Holocene. During NMSZ earthquakes, 

liquefaction of the soil can occur. In the NMSZ, liquefaction will occur locally at a 

Modified Mercalli intensity of VIII, and widespread liquefaction can be expected at an 

intensity greater than IX (Wheeler, Rhea, and Tarr 1994). Liquefaction was one of the 

damaging problems created by the New Madrid Earthquakes of 1811-12. 

Several interesting differences exist between NMSZ earthquakes and those that 

occur in the Western United States. The inost iinportant difference is that the crust in the 

Midwest region attenuates energy 25'/6 as effectively as crust in the Western United 

States. This means that seismic wave ainplitudes will travel much farther in the 

Midwest. The crust in NMSZ also reflects seismic waves in some locations. It has been 

determined that these reflections lead to a focusing effect near Memphis, Tennessee, and 

St. Louis. Seismic amplitudes can be up to 1000'lo greater near these cities due to the 
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focusing efFect. This corresponds to an increase of at least three Modified Mercalli 

intensity units (Shedlock and Johnston 1994). 

Another significant difFerence between NMSZ earthquakes and Western 

earthquakes is the recurrence interval. The recurrence interval for large NMSZ 

earthquakes, such as the New Madrid Earthquakes in 1811-12, is 600 years, while the 

corresponding recurrence interval for the Western United States is 100 years. This 

results in the probability of exceeding a particular ground motion in NMSZ being 

smaller than that of the West by a factor of two to three. Tectonic movement occurs in 

the Western United States at a rate of two to three cm per year, while inovement in the 

NMSZ is 0. 008 min per year. Like the West, the NMSZ has a large number of faults. 

Most taults in the NMSZ are less than 15 km long (McKeown 1982). 

It is clear that a future earthquake — — whether large or small — - is likely to occur in 

the NMSZ. In addition, it is realized that this earthquake will have the unique 

characteristics of earthquakes of the NMSZ. Any estiination of a current or future 

building's performance must take these two issues into account. 
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CHAPTER IV 

SYNTHETIC GROUND MOTIONS FOR THE MIDWEST 

Cn'ound accelerations, or ground motions, are the sources of the damage 

generated by earthquakes. A ground motion, in conjunction with the mass of the 

building, can lead to a dramatic increase in the forces within components of a building. 

The ground acceleration usually required to damage weak construction is ten percent of 

gravitational acceleration (g). Between O. lg and 0. 2g, most people will have tmuble 

keeping their footing, and sickness symptoms may result. A Modified Mercalli intensity 

of VII and IX correspond to ground accelerations of O. lg to 0. 2g and 0. 5g, respectively 

(Arnold 1998). The peak acceleration of a ground motion record often will not cause the 

most damage in a structure. These high accelerations o&en correspond to high 

&equencies that are out of the range of the natural &equencies of most buildings. Many 

times a ground motion with a moderate peak acceleration and a long duration will cause 

severe damage (Singh 2000). Because a building's response may not depend solely on 

the magnitude of ground acceleration, a set of moderate and severe earthquake ground 

motion records are used in this research. 

Accurately predicting the response of a Midwest United States building to an 

earthquake requires ground motions &oin this region. No recorded data &om large 

NMSZ earthquakes are available, but synthetic ground motions are available. Y. K. Wen 

has used statistics and geoscience techniques to formulate synthetic ground motions for 

Memphis, Tennessee; Carbondale, Illinois; and St. Louis, Missouri, as part of a project 

for the Mid-America Earthquake Center (Wen and Wu 2000). 
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Ground motions for the city of St. Louis, Missouri, were used in this research. 

Ground motions are available for a representative soil for St. Louis and for bedrock. 

Because soil can affect the ground motion of an earthquake by amplifying the 

accelerations, it is an important parameter. The representative soil ground motions were 

chosen, and the composition of this soil is shown in Figure l. 

Ground Suratce 

Modified Loess 

5. 7 m 

Glscl O. pl IIVI td 

Density = 2. 1 stern' 

10. 0 m 

Minissippisn Limestone 
Density = 2. 6 stern' 

94 8. 3 m 

Bed Rock 
Density = 2. 8 stern 

FIG. 1. Representative Soil for St. Louis [Adapted from Wen and Wu 
(2000)J 
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Ten ground motion records are available for each of two probability of 

exceedance levels: two and ten percent in 50 years. The report accompanying the 

ground motion records instructs the user to find the response of the structure being 

studied for each of the ten ground motion records of a probability of exceedance interval. 

The actual two percent or ten percent in 50 years response of the structure is the median 

response within the set of ten. This means that the within a set of ten ground motion 

records, the records with the fifth- and sixth-largest responses give the best estimates of 

the actual building response for the corresponding probability of exceedance level (Wen 

and Wu 2000). Details of each ground motion record used in the study are shown in 

Table 3 and Table 4. Plots of the ground motion records are shown in Appendix A. 

TABLE 3. Two Percent Probability of Exceedance in 50 Years Ground 
Motion Records Set PNen and Wu t2000)] 

Ground 

Mogon 
Record 

102 ols 

102 02s 

102 03s 

102 04s 

102 05s 

102 06s 

102 07s 

102 08s 

102 09s 

102 los 

Peak Ground 
Acceleration 

(36 of g) 

23 

25 

83 

25 

19 

24 

24 

24 

25 

54 

Duration 

(seconds) 

70 

70 

10 

45 

55 

40 

70 

35 

35 

20 

Body- 
Wave 

Magnitude 

8. 0 

8. 0 

5. 4 

7. 1 

8. 0 

6. 8 

8. 0 

8. 0 

8. 0 

5. 9 

Focal 
Depth 
(km) 

17. 4 

9. 10 

2. 10 

5. 50 

17. 4 

5. 80 

33. 9 

9. 10 

9. 10 

4. 40 

Epicentral Distance 
from St. Louis 

(lun) 

267. 0 

229. 5 

28. 70 

253. 1 

254. 3 

224. 8 

196. 3 

260. 7 

280. 5 

47. 70 
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TABLE 4. Ten Percent Probablity of Exceedance in 50 Years Ground 
Motion Records Set PNen and Wu (2000)] 

Ground 
Motion 
Record 

110 Ols 

110 02s 

110 03s 

IIO 04s 

110 OSs 

110 06s 

110 07s 

110 08s 

110 09s 

110 105 

Peak Ground 
Acceleration 

(56 of g) 
13 

10 

9. 0 

13 

10 

12 

8. 0 

Durtrtlon 

(seconds) 

25 

40 

40 

25 

20 

30 

40 

25 

30 

40 

Body- 
Wave 

Magnitude 

6. 0 

6. 9 

7. 2 

6. 3 

5. 5 

6. 2 

6. 9 

6. 2 

6. 2 

6. 9 

Focal 
Depth 
(km) 

2. 70 

9. 30 

4. 40 

9. 80 

2. 90 

7. 70 

1. 70 

27. 6 

6. 50 

2. 70 

Epicentral Distance 
from St. Louis 

(km) 

76. 40 

201. 5 

237. 5 

252. 2 

123. 1 

207. 6 

193. 7 

174. 5 

221. 3 

237. 2 
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CHAPTER V 

DESIGN OF STUDY BUILDING 

The objective of this study is to model the performance of a typical reinforced 

concrete (RC) office building in St. Louis during an earthquake. The building is a 

moment frame system and is not specially designed for ductile behavior. Elevator and 

stairwell shafts were omitted to sitnplify design and analysis. The floor system is a flat- 

plate slab with perimeter beams designed to resist lateral loads. 

Exterior dimensions for the building were chosen based on the responses of 

practicing engineers to a questionnaire. A copy of this questionnaire is provided as 

Appendix B. The building is 140 feet long by 112 feet wide, and each bay is 28 feet 

between the centerlines of the columns. Practicing engineers reconunended a five-story 

office building as a typical height RC structure to the Midwest region. The first story is 

15 feet high, and the heights of the remaining four stories are 13 feet. After the type of 

structural system and exterior dimensions were determined based on input fiom 

practicing engineers, the 1984 BOCA code was used to compute the design loads for the 

building. 

1984 BOCA DESIGN LOADS 

Design loads for buildings are discussed in chapter nine of the 1984 BOCA code 

(Building officials 1984). The code requires that a 20-pounds-per-square-foot (psf) 

partition load be applied to each floor in addition to the weight of the structural 

members. The weight of exterior cladding is taken into account as a 15-psf load applied 

to each perimeter beam based on a vertical tributary area. The live load for this office 



building is 50 psf on each floor and 12 psf on the roof. The snow load for the study 

building is 12 psf, but it was determined that the snow load did not control in any of the 

ACI 318-83 factored load combinations. The wind load was applied as a uniform load 

distributed vertically on the windward and leeward sides of the building and horizontally 

on the building's roof. On the windward side, the pressure is 9. 6 psf onto the building. 

The pressure applied to the roof is 12 psf upward, and the leeward wall suction pressure 

is 6. 0 psf. 

St. Louis was a part of seismic zone one of the 1984 BOCA code. Seismic loads 

were applied as a percentage of the base shear at each floor of the building. The code 

specifies that the base shear for the building is calculated as follows: 

V = ZKC1V (Eq. 1) 

where Z = Seismic zone factor = 0. 25 

K = Structural system factor = 1. 00 

C = Coefficient based on fundamental period ofbuilding = 0. 063 

W = Weight of Structure = 13, 330 kips. 

The base shear calculated using equation one for the study building is 210 kips. This is 

1. 6 percent of the building's structural weight. Many buildings that are in use today 

have been designed by assuming that the perimeter trames resist seismic design loads, 

and this approach was used for the study building. Because the building's perimeter 
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trames were designed to resist the full seismic design loads, half of each floor's portion 

of the base shear was applied to each of the two exterior frames. The equation given in 

the 1984 BOCA code for the distribution of the base shear to each floor is shown below. 

F, = «Vw~h 

~rfrr 
(Eq. 2) 

where F, = Portion ofbase shear at a given floor level 

V = Base shear, as calculated using equation 1 

w„, wr = Weight ofa given floor level 

h„, h; = Height of a given floor level. 

The loads at each floor level of the two exterior trames are shown in Table 5. An elastic 

structural analysis was performed for each load case, and the factored load combinations 

of ACI 318-83 were used to compute design forces. Factored load combinations that 

include seismic loads controlled the negative moment reinforcement design for the 

perimeter beams. 

TABLE 5. Portion of Base Shear Distributed to Each Floor 

Floor 

Level 
Floor 

Weight 
Floor 

Height 
Fx 

2nd 

31'd 

4th 

5th 

Roof 

ki s 
2764 
2748 

2748 
2748 

2325 

15 

28 

41 

54 

67 

ki s 
8. 14 
15. 1 

22. 1 

29. 1 

30. 6 
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DESIGN OF STRUCTURAL MEMBERS 

ACI 318-83 was used as the guide for design of the building's structural 

members. Concrete for this building has a compressive strength (f, ') of 4, 000 psi, and 

the steel reinforcement has a yield strength (fr) of 60, 000 psi. The Direct Design Method 

for two-way slab design, described in chapter thirteen of ACI 318-83, was used in the 

design of the floor and roof slab systems. The two-way slab is 11 inches thick at every 

floor level and at the roof level. The perimeter beams are 16 inches wide by 24 inches 

deep for the second through fifth floors, and the roof perimeter beams are 22 inches 

deep. Columns are 20 inches square. Shear capitals of 4-inch thickness are used at all 

interior slab-column connections, including those of the roof. An elevation view is 

shown in Figure 2, and a floor plan is shown in Figure 3. Table 6, Table 7, and Table 8 

show the quantities of reinforcement in the beams, two-way slabs, and columns, 

respectively. Figure 4 and Figure 5 show important details of the steel reinforcement 

within the slabs and beams, respectively. 

FIG. 2. Elevation View of Exterior Frame of Study Building 
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4 @ 28 fl. = 112 fl. 

Perimeter Beams: 16 in. wide x 24 in. deep, typical 

1 
I ~, 
L. J ~~J f ~ t 

L~J 

L5. : . , '~ t 

t 

Shear Capital: 3 ff. x 3 ff. x 15 in. , typical 
5@28 fl. 
140 (f. 

, ~ LR:: W ~ 

Column: 20 in. x 20 in. , typical 

~ ~ 

FIG. 3. Plan View of Study Building 

TABLE 6. Reinforcement in Perimeter Beams 

Floor 
Level 

2ad-3rd 

Roof 

Beam 
Width 

(in. ) 

16 

16 

16 

16 

Beam 
Depth 

(in. 1 

24 

24 

24 

22 

Po¹. INeg 
Moment 

Rattlforcement 

Poslllve 

Negative 

Posltlve 

Negative 

Positive 

Negative 

Positive 

Negative 

Num. Dr 
Bars' 

Bar 
Slee 

¹8 
¹8 
¹8 
¹8 
¹8 
¹8 

e Number of bars required where magnitude of moment is maximum. Some bars are cut off within beams. 
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TABLE 7. Reinforcement in Two-way Slab Members 

Floor 

Level 

2nd-5th 

Span Support Strip 

Column 

Middle 

Column 

Middle 

Column 

Middle 

Column 

Middle 

Column 

Middle 

Column 

Middle 

Strip 

Width 
(ft. ) 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

14 

14 

14 
14 
14 
14 
14 
14 
14 
14 
14 
14 
14 

Pcs. /Nag. 

Moment 
Reinforcement 

Posl 1 I ve 
Negative 
Positive 

Netnnive 
Poslhve 

Negative 
Positive 
Negative 
Positive 

Negative 
Positive 

Negative 

Positive 

Negative 
Pensive 

Negative 
Positive 

Negative 
Positive 

Negative 
Positive 

Negruive 

Positive 
Negative 

Num. of 

Bars' 

66 
70 
17 
17 
66 
100 
17 
17 
30 
92 
17 

17 

46 

54 
34 
17 
46 
70 
17 
17 
20 
64 
17 
17 

Bar 

Spacing* 
(in ) 

2. 0 
1. 7 
9. 4 
9. 4 
2. 0 
12 
9. 4 
9. 4 
3. 9 
1. 3 
9. 4 
9. 4 
3. 2 

2. 6 
4. 4 
9. 4 
3. 2 
1. 9 
9. 4 
9. 4 
5. 5 
2. 1 

9. 4 
9. 4 

e ¹4 bars used for all tvvo-vvay slab reinforcement 

TABLE 8. Reinforcement in Columns 

Column 

rype 

Story 

Level 

1st-5th 

Column 

Width 

(in. ) 

20 

Num. d 
Bars 

Bar 

S I an 

Cross 

Section 

20 

20 

3rd-5th 20 
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All negative moment reinforcement is fully developed 

50% of positive 

moment reinforcement 

embedded 6 inches at 

extenor support 

reinforcement embedded 

9 inches at interior support 

FIG. 4. Details of Slab Reinforcement for Study Building [Adapted from 
ACI 318-83 (1983)] 

All negative moment reinforcement is fully developed. 

2 bars of positive 

moment reinforcement 

futlyMeveloped at the 

exterior support 

2 bars of positive 

moment reinforcement 

continuous at the 

interior supports 

FIG. 5. Details of Beam Reinforcement for Study Building [Adapted from 
ACI 3$8-83 (1983)) 

LIMITATIONS OF STUDY BASED ON BUILDING DESIGN 

Though the goal of the study was to obtain a building that is inost typical of those 

in St. Louis, there are numerous possibilities of designs for this type of building. In 

order to clearly define the extent to which these results can be applied, design details that 

can affect the performance of a building under seismic loading are discussed in this 

section. 
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One feature of the study building that aflects its seismic performance is the long 

span of each bay. Surveys of practicing engineers indicate that a typical center-to-center 

of columns span length is 28 feet. The clear span between columns of this building is 26 

feet, 4 inches. Such a long span results in a thick floor slab in order to control deflection 

(Building code 1983). This reduces the building's susceptibility to punching shear 

failure near its interior slab-column connections. A building with smaller spans may 

have a thin slab, and its performance during an earthquake will not match the study 

building' s performance. 

The size of individual reinforcing bars also affects the performance of a building 

during an earthquake. When exposed to the cyclic loads of an earthquake, the perimeter 

beam and slab members may be forced to bend at the supports in a direction opposite to 

that for which they are designed. Positive moment reinforcement at the support will be 

forced to carry this new load. When compared to the quantity of negative moment 

reinforcement, the quantity of positive reinforcement at the support is small. In addition, 

ACI 318-83 allows the bottom reinforcing bars in beams and slabs to be cut at fixed 

distances Irom the support. These fixed distances do not depend on bar size. In this 

study, it is assumed that this steel reinforcement can develop a tensile force in the 

following manner (Aycardi, Mander, and Reinhorn 1994): 

Ft = lmrb~m~l Az fy 
llfmmlopm&1/ 

(Eq 3) 

where F, = Tensile force 
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l ~ ~ = Embedment length of a reinforcing bar 

ls (, p ppzf Development length of a reinforcing bar (Building code 1999) 

3, = Area of steel reinforcement 

The proportional relationship of embedment length and development length results in the 

size of the reinforcing bar greatly affecting the moment capacity of a member at the 

support. In the study building, ¹4 reinforcing steel bars are used in the slab, and ¹8 bars 

are used in the beams. Before applying this study's results to another building, the size 

of the reinforcing bars relative to the embedment provided should be examined for that 

building. 
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CHAPTER VI 

DYNAMIC ANALYSIS USING DRAIN-ZDM 

DRAIN-2DM calculates the forces that the study building experiences during a 

ground motion by performing a dynamic time-history analysis of the structure. The 

program is capable of modeling the behavior of the structural members of the building in 

the elastic and inelastic ranges. This means that the building's performance will be 

accurately modeled after permanent deformation has taken place. Inelastic, or nonlinear, 

behavior is common in buildings that are subjected to seismic loads, and using a 

dynamic nonlinear analysis computer program is the standard for this field of research. 

Over the duration of an earthquake, the ground experiences varying magnitudes 

of acceleration. A collection of these accelerations with their corresponding time of 

occurrence forms the ground motion record. The behavior of the building during this 

ground motion record can be calculated by solving the differential equation of motion 

shown below. 

/W(u) + KJ(v) + IKJ(u) = -(Wo (Eq. 4) 

where (Mj = Mass matrix 

(aj = Acceleration vector 

(Cj = Damping matrix 

(v) = Velocity vector 

(K) = Structural stiffness matrix 
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ju) = Displacement vector 

as = Ground acceleration. 

DRAIN-2DM uses the Newmark integration method to solve the differential equation of 

motion at each time step (Kansan and Powell 1973). Time steps for this numerical 

integration can be smaller than the increment of time used in the ground motion record. 

A time step of 0. 002 seconds was used for each analysis in this study. The Newmark 

integration method assumes a constant acceleration within each time step, and the user 

must input a Newmark integration factor that specifies how the program will determine 

the acceleration. In this study, a Newmark integration of 0. 5 was used. This value 

corresponds to an average acceleration during the time step. 

A reinforced concrete building is expected to provide between two percent and 

five percent critical damping when it suffers light to moderate damage during an 

earthquake (Response 1988). Parameters that incorporate damping were included in the 

model. These parameters were selected based on critical damping of two percent and 

estiinated values of the natural periods of the first and second modes of vibration. The 

resulting critical damping in the DRAIN-2DM model was calculated as 5. 0 percent using 

the logarithmic decrement of roof displacement amplitude plotted on a time scale 

(Richart, Woods, and Hall 1970). This amount of damping is reasonable, and the 

damping parameters were not adjusted further. 

ELEMENTS IN DRAIN-2DM 

One of DRAIN-2DM's features as an analysis tool is the set of elements that 

model reinforced concrete columns, beams, and slabs. These elements were developed 
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to duplicate behavior observed in experitnental research, and each element models 

behavior in the elastic and inelastic ranges. At beam-column and slab-column 

connections, DRAIN-2DM is capable of modeling rigid connections (Kansan and 

Powell 1973). This capability yields more accurate results for concrete structures 

because significant rotation does not occur within the joint of a concrete beam-column or 

slab-column connection. Rather, rotation will occur at a point outside the joint. The 

rigid end zones used to define the joint region in the model are shown for a beam- 

column connection and slab-column connection in Figure 6. 

Node 

Column 

I 
Rigid Ends 

Column 

Node 
I 

Rigid Ends 
I 

Beam 

Shear 
Capital 

I 

I 

Slab 
I 

Beam-Column Connection Slab-Column Connection 

FIG. 6. Rigid End Zones for DRAIN-2DM Model [Adapted from Hueste and 
Wight (1997)] 

Reinforced concrete beam-column elements (Element 2) were used for all 

columns in the model of the study building. RC beam-column elements require stiflness 

parameters and yield interaction surfaces to describe the members. Stiflness parameters 

include cross-sectional area, Young's modulus of elasticity, strain hardening modulus, 
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and moment of inertia. The post-yield stiffness used in this study is two percent of the 

initial elastic stiffness. Flexural stiffitess is assumed to be concentrated at the member 

ends. After the stiffness parameters are set, values are input into the DRAIN-2DM 

program so that a yield interaction surface is defined for use in determining when 

inelastic stiffness takes place. Figure 7 shows a yield interaction surface for a reinforced 

concrete bean-column element. Axial force (P) and moment (M) values must be input 

for points A, B, C, D, E, and F. Output Irom a DRAIN-2DM analysis provides the axial 

force, shear force, bending moment, displacements, and rotation at each end of a column 

for a set of time steps defined by the user (Kansan and Powell 1973). When the axial 

force and moment at a given time step reach the yield interaction surface, flexural 

yielding occurs. The bilinear relationship used to model the elastic and inelastic 

behavior at the member ends is shown in Figure 8. 

Axial Force (P) 
A 

Moment (M) 

FIG. 7. Yield Interaction Surface for Reinforced Concrete Beam-Column 
Elements [Adapted from Soubra, Wight, and Naaman (1992)] 
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Moment (M) 

Both Components 

Elastic-Perfectly Plastic 
Component 

Elastic Component 

I 
» 

» 
I 

I 

Rotation (8) 

FIG. 8. Bilinear Moment-Rotation Relationship for Reinforced Concrete 
Beam-Column Elements [Adapted from Soubra, Wight, and Naaman (1992)] 

Perimeter beams within the study building are modeled with DRAIN-2DM's 

reinforced concrete beam element (Element 8). The input of stiffhess parameters is 

identical to that of RC beam-column elements. RC beam elements require the input of 

the positive and negative yield moments and yield curvatures at each end of the element. 

In this study, the moment capacity of the beam without a strength reduction factor was 

selected as a reasonable estimate of the yield moment capacity. As discussed in Chapter 

V, only the steel reinforcement that can be developed according to»t CI 318-99 was used 

in the moment capacity calculation. Yield curvature was calculated as follows: 

g = M» 
EI 

(Eq. 5) 

where $ = Yield curvature 

M» = Yield moment 



3i 

E = Young's modulus for concrete 

I = Moment of inertia for beam cross-section. 

The moment of inertia used in the model of the study building assumes that the member 

is cracked. For beams, the cracked moment of inertia value is the gross moment of 

inertia multiplied by a factor of 0. 35. The corresponding factors for column and slab 

members are 0. 70 and 0. 25, respectively (Building code 1999). Additional parameters 

input for RC beam elements are the locations of inelastic flexural springs, or plastic 

hinges (Raflaelle and Wight 1992). Plastic hinge locations are input by the user as an 

instruction to the program to monitor a particular location for inelastic rotation. In this 

study, inelastic flexural springs are assigned to RC beam elements at the point where the 

beam ineets the face of the column. These inelastic flexural spring locations are shown 

as part of the idealized beam element in Figure 9. The general form of the hysteretic 

model in a reinforced concrete beam element that deforms beyond the elastic region 

during cyclic loading is shown in Figure 10. This model describes the moinent-rotation 

behavior for the inelastic flexural springs based on input parameters defined by the user. 

The parameters used in this study were a pinching factor of 0. 75 and an unloading 

stiflhess factor of 0. 30. No strength reduction was used for the hysteretic model. 



32 

Inelastic Flexural Springs 

Elastic Element 

Rigid Zones 

FIG. 9. Idealized Reinforced Concrete Beam Element [Adapted from 
Raffaelle and Wight (1992)] 

Moment (M) 

r 
r r r 

I 
I 

r 
r 

Rotation (8) 

r r I 

FIG. 10. Generalized Model for the Hysteretic Behavior of the Reinforced 
Concrete Beam Element [Adapted from Raffaelle and Wight (1992)J 
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The study building's two-way slab floor and roof system are modeled with 

reinforced concrete slab elements (Element 11). The input and model behavior of a RC 

slab element is similar to those of a RC beam element. The primary difference between 

the two elements is that the RC slab element is capable of predicting a punching shear 

failure near a slab-column connection (Hueste and Wight 1997). In a building, a 

punching shear failure is a rupture of the slab along a perimeter around a column. A 

segmented linear model is used for predicting punching shear failure. The two 

parameters for this model are gravity shear ratio (Vs/V, ) and critical rotation (6 ). The 

gravity shear ratio is the ratio of the shear at a slab-column connection due to gravity 

loads and the unreduced vertical shear strength of the critical section around the column, 

described in Section 11. 12. 1. 2 of ACI 318-99. Because the interior slab-column 

connections for the study building include shear capitals, the gravity shear ratio must be 

calculated for the critical sections around the column and the shear capital. The 

maximum value of the gravity shear ratio is input into the program. The critical rotation 

(0 ) for the model shown in Figure 11 was determined as the average negative rotation 

that occurs in a slab element when the building's lateral drift is 1. 25 percent based on 

recommendations by Hueste and Wight (1999). This value was determined by 

conducting a static pushover analysis until a 1. 25 percent average building drift was 

reached. A triangular distribution of lateral forces over the building was assumed based 

on the distribution I'rom the code static force procedure (Building officials 1984). If a 

slab element rotates to a value beyond the model boundary shown in Figure 11 for that 

element's gravity shear ratio, a punching shear failure is predicted. Aller a punching 
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shear failure is predicted, the moment capacity for the slab element is reduced to ten 

percent of the moment at which the failure occurred. This moment capacity reduction 

takes place over a period of nine time steps and has the effect of reducing the rotational 

stiflhess of the inelastic flexural spring at that members end. 

1. 0 
Gravity 
Shear 0. 8 
Ratio 
(Vsm ) 0. 6 

0. 4 

0. 2 

0. 0 
0 0 0„ 40 

Rotation 

FIG. 11. Punching Shear Failure Model Using Gravity Shear Ratio Versus 
Member End Rotation [Adapted from Hueste and Wight (1997)] 

BUILDING MODEL 

Only the forces resulting trom the effect of dead loads were applied to the 

DRAIN-2DM building model prior to subjecting the model to a particular ground 

motion record Lumped masses based on the seismic dead load were assigned to the 

nodes in the model. For the analysis, an exterior Irame and two interior Irames along the 

short direction of the building are tied together with rigid truss-type elements. This 

model takes advantage of the building's symmetry so that only half of the building is 

analyzed. The model is shown in Figure 12. The truss-type elements used to connect 
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the &ames are rigid and transmit only axial force and displacement between &ames. 

These elements are denoted by dashed lines in Figure 12. All vertical members in 

Figure 12 are modeled as reinforced concrete beam-column elements (Element 2). 

Horizontal members of the exterior &arne shown in Figttre 12 are modeled as reinforced 

concrete beam elements (Element 8). Horizontal members of the two interior &ames 

shown in Figure 12 are modeled as reinforced concrete slab elements (Element 11). 

Exterior Frame Interior Frame Interior Frame 

FIG. 12. Model of Study Building Used in DRAIN-2DM Analysis 
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CHAPTER VII 

RESULTS 

A dynamic time-history analysis was performed for each ground motion in the 

two percent and ten percent probability of exceedance in 50 years ground motion record 

sets described in Chapter IV. In addition, a dynamic time-history analysis using a portion 

of the ground motion record Irom the 1940 El Centro, California, earthquake was 

conducted for this study. Plots of these ground motion records are shown in Appendix A. 

Output Irom DRAIN-2DM included the displacements, rotations, forces, and moments 

for all structural members. In addition, the program produced numerical codes 

describing the behavior of the beam-column and slab-column inelastic flexural springs. 

These codes indicate behavior within the elastic and inelastic ranges, including the 

location on the hysteretic model for Elements 8 and 11. 

BUILDING RESPONSE FOR SYNTHETIC GROUND MOTION RECORDS 

The response of the study building varied greatly between the two percent 

probability of exceedance in 50 years ground motion set and the ten percent probability 

of exceedance in 50 years ground motion set. During six of the ten ground tnotion 

records in the two percent probability of exceedance set, the building collapsed. The 

median response, which is the best estimate of the two percent probability of exceedance 

in 50 years response, was the collapse of the building. The median response is the 

average of the responses of the building that cause the fifth- and sixth-largest base shear 

and building drift values. The 102 07s and 102 10s ground motion records determined 

the median response for the two percent probability of exceedance in 50 years set. 
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Shear failure in the first-story columns was the mechanism of collapse for the 

median response of the two percent probability of exceedance in 50 years ground motion 

record set. This failure occurred within two seconds of the start of the ground motion. 

This rapid collapse necessitated examining various modes of failure for the building 

model in order to determine the actual failure mechanism Modes of failure examined 

were beam shear failure, column shear failure, and slab punching shear failure. In the 

cases of beam shear failure and column shear fiulure, the shear strength (V„) of each 

member was compared to the shear force within the member at a particular time step. If 

the force in the member exceeded the member's strength, a failure was judged to have 

occurred. Beam shear strength was calculated as follows (Building code 1999): 

V, =Ajg 
s 

(Eq. 6) 

V, =2f, 'b+ (Eq. 7) 

V„= V, + V, (Eq g) 

where V, 

A„ 

Shear strength of shear reinforcement, psi 

Area of shear reinforcement, inches 2 

Distance from exteme compression fiber of beam to centroid 
of longitudinal tension reinforcement, inches 

Spacing of shear reinforcement in direction of longitudinal 
tension reinforcement, inches 

Shear strength of concrete, psi 
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b = Web width, inches 

The shear strength of columns is calculated using the same procedure, except that the 

following equation is used rather than Equation 7 for the calculation of shear strength of 

concrete (Building code 1999): 

V, = 3. 5f, "' b~(J + NJ(5003$)' (Eq 9) 

where: N„= Axial force at time step being examined, lbr. 

As = Gross area of column cross section, inches . 

Slab members were checked for punching shear failures by the model incorporated into 

the DRAIN-2DM program This model is described in Chapter VI. The time steps at 

which these three types of failure occurred were determined, and the flulure mechanism 

that occurred first during the ground motion record was judged to be the actual mode of 

failure. For the study building's median response to the two percent probability of 

exceedance in 50 years ground motion records set, shear failure in the first-story 

columns caused the building to collapse. A description of the building's responses to the 

ten ground motion records of the two probability of exceedance in 50 years set is shown 

in Table 9. In this table, building drift is the horizontal roof displacement expressed as a 

percentage of the building height. Inter-story drift is the relative horizontal displacement 

of one floor expressed as a percentage of the story height. 

The median response of the building to the ten percent probability of exceedance 

in 50 years set of ground motion records was completely elastic behavior by the 
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building's structural members. While this is an encouraging result, it is noted that a ten 

percent probability of exceedance in 50 years ground motion is the equivalent of a small 

earthquake. The fifth- and sixth-largest responses to the ground motion records of the 

ten percent probability of exceedance in 50 years set that determined the median 

response were the 110 09s and 110 Ols records, respectively. The body-wave 

magnitudes of these two ground motion records are 6. 0 and 6. 2, respectively. These 

values of body-wave magnitude are similar to those of the 20 earthquakes that have 

occurred in the NMSZ since 1812. Detailed descriptions of the responses by the study 

building to the ground motion records of the ten percent probability of exceedance in 50 

years set are shown in Table 10. 

TABLE 9. Response of Study Building to Ground Motion Records of the 
Two Percent Probability of Exceedance in 50 Years Set 

Ground 

Motion 

Label 

Peak 

Ground 

Acceleration 
('Ys of g) 

Ground 

Motion 

Duration 

(sec) 

Base 
Shear 

Base 
Shear 

(kips) (% of W ) 

Maximum 

Building 

DriR 

('/o) 

Inter-story Drift 

Max. Min. 

('/o) ('/o) 
102 Ols 

102 02s 

102 03s 
102 04s 

102 05s 

102 06s 
102 07s 
102 08s 
102 09s 
102 10s 

23 
25 

83 

25 

19 

24 

24 

24 

25 
54 

70 
70 

10 

45 

55 

40 

70 
35 

35 

20 

685 
624 

10. 0 

9. 1 

0. 54 

0. 55 

0. 80 0. 29 
0. 76 0. 25 -- — — — — — — — — — — -COLLAPSE — — — — — — — — — —— 

464 6. 8 0. 33 0. 48 0. 25 
— — — — — — — — — — — — COLl. APSE — — — — — — — — — —— 

719 10. 5 0. 55 0. 80 0. 26 
— — — — — — — — — — - — -COLLAPSE- — — — — — — — — — —- 
— — — — — — — — — — -- — -COLLAPSE- — — — — — — — — — — —- 
— — — — — — — — — — — — — — -COLLAPSE- — — — — -- — -- — —— 
— — — — — — — — — -- — — -COLLAPSE- — — — — — — — — — - — —- 

"W = Weight of one exterior frame and lwo interior frames. 
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TABLE 10. Response of Study Building to Ground Motion Records of the 
Ten Percent Probability of Exceedance in 50 Years Set 

Ground 

Motion 

Label 

Peak 

Ground 

Acceleration 

(% of g) 

Ground 

Motion 

Duration 

(sec) 

Base 
Shear 

(kips) 

Base 
Shear 

('I ofW) 

Maximum 

Building 

Drift 

(%) 

Max. Min. 

(%) (%) 

Inter-story Drift 

110 Ols 

110 02s 
110 03s 
110 04s 
110 05s 
110 06s 
110 07s 
110 08s 
110 09s 
110 10s 

13 

10 
9 
11 

13 

11 

10 
12 

11 

8 

25 

40 
40 
25 

20 
30 
40 
25 

30 
40 

347 
148 

588 

118 
437 
1000 

146 

902 
294 

145 

5. 1 

2. 2 

8. 6 

1. 7 

6. 4 
14. 6 
2. 1 

13. 2 
4. 3 

2. 1 

0. 51 

0. 11 

0. 43 
0. 06 
0. 32 
1. 37 
0. 11 

0. 77 

0. 21 

0. 11 

0. 37 
0. 16 
0. 64 

0. 09 
0. 47 
2. 76 
0. 16 
1. 24 
0. 32 

0. 16 

0. 10 
0. 07 
0. 17 

0, 08 
0. 13 

0. 35 
0. 08 
0. 26 
0. 09 
0. 09 

'W = Weight of one exterior frame and two interior frames. 

No punching shear failures occurred in the building during the ground motions of 

the ten percent probability of exceedance in 50 years set. As discussed in Chapter VI, 

part of the basis for DRAIN-2DM's prediction of a punching shear failure is the gravity 

shear ratio. This is the ratio of the shear that results from the application of gravity loads 

and the shear strength along the perimeter of a critical section around the column defined 

in section 11. 12. 1. 2 of ACI 318-99. The gravity shear ratio of the second through fifth 

floors' two-way slab system is 0. 27. The gravity shear ratio of the roof s two-way slab 

system is 0. 28. Punching shear failure usually becomes a concern when the gravity 

shear ratio is 0. 40 or greater for building drifts of 1. 0 to 1. 5 percent (Hueste and Wight, 

1997). Because of the low gravity shear ratio in each slab and the fact that the building 

drift only exceeds 1. 0 percent during one ground motion record, DRAIN-2DM's 



41 

prediction of no punching shear failure during a low-magnitude ground motion is 

consistent with expectations for this building. 

BUILDING RESPONSE DURING THE 110 06s GROUND MOTION RECORD 

The building has an inelastic response to several ground motions between the 

median responses of the two categories. For some ground motion records in the two 

percent probability of exceedance set during which the building responded below the 

corresponding median level (collapse) and ground motion records in the ten percent 

probability of exceedance set during which the building responded above the median 

level (elastic behavior), inelastic behavior occuretL An exact probability of exceedance 

in 50 years for these ground motion records is not available, but it can be reasoned that 

the probability of exceedance is between two percent and ten percent. The most 

datnaging building response to the gmund motion records that did not cause collapse 

occurred during the 110 06s ground motion record. For this ground motion, the 

maximum building drift was 1. 37 percent. During the 110 06 ground motion record, the 

maximum base shear experienced by the building was 1000 kips. The perimeter beams 

of the study building were designed to resist seismic loads, but the analysis shows that 

72 percent of the base shear was distributed to the two interior Irames in the model. The 

remaining 28 percent was distributed to the exterior frame. However, the high 

percentage of base shear distributed to the interior trames did not seem to be detrimental 

to the structure for this ground motion. Detailed results of the response of the model to 

the 110 06s ground motion record are shown in Table 11. The building drift is plotted 

versus time in Figure 13. 
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TABLE 11. Response of Study Building to the l10 06s Ground Motion 
Record 

Story 

5th 

4th 

3rd 

2nd 

1st 

Maximum 

Inter-story 

Drift 

(%) 
0. 35 

0. 67 
1. 13 
1. 94 

2. 76 

Time of 

Max. I-S 

Drift 

(seconds) 
0. 61 

0. 63 

0. 71 

1. 31 

1. 18 

Maximum 

Story 

Shear 

(kips) 
254. 8 

521. 2 

724. 1 

841. 9 
1000 

Time of 

Max. Story 

Shear 

(seconds) 
0. 60 
0. 58 
0. 66 
0. 78 
0. 97 

1. 50 

1. 25 

1. 00 

0. 75 

g 0. 50 

0. 25 
~ o'. oo 

-0. 25 

-0. 50 

-0. 75 
-1. 00 
-1. 25 

-1. 50 

0 lo 15 

Time (seconds) 

20 25 30 

FIG. 13. Building Drift (%) During the l10 06s Ground Motion Record 

In response to the 110 06s ground motion, the perimeter beams of the building 

experienced inelastic rotation at 21 locations on the exterior kame. On the interior 

kame, the slab elements rotated inelastically at three locations. The locations of 
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inelastic rotations within the beam, slab, and column elements due to the 110 06s ground 

motion record are shown in Figure 14. As previously discussed, inelastic rotations in the 

slab members did not reach the level required to cause punching shear failures. 

Exterior Frame 
(Columns and Beams) O Plastic 

Hinge 
Intenor Frames 

(Columns and Slabs) 

FIG. 14. Locations of Inelastic Rotation in Column, Beam, and Slab 
Members During the 110 06s Ground Motion Record 

The exterior trame of Figure 14 shows the locations of inelastic rotation in the 

perimeter beams and columns. As the beam members rotate inelasticafly, their stiffitess 

degrades in the inelastic range of behavior. This is demonstrated in Figures 15 and 16, 

in which moment is plotted versus rotation for second-floor beams for the inelastic 

flexural springs located at each end. The plots contain moment and rotation data for the 

duration of the 110 06s ground motion record. Figure 15 shows this behavior at the 

exterior column connection of the second-floor, first-span beam. Figure 16 shows the 

behavior of the same beam at the column face of the first interior column. Both 

locations of the beam exhibit linearly elastic behavior at the beginning of the ground 



motion, demonstrated by the moment-rotation plot either passing through the origin or 

having a slope that passes through the origin. 

It is shown in Figure 14 that inelastic rotation occurred in the slab members of 

the interior &ames during the 110 06s ground motion record. Unlike the second-floor 

beam members of the exterior &arne at the beam-column connections, all second-floor 

slab members did not mtate inelastically at the slab-column connections. Figure 17 

shows the moment-rotation diagram for the second-floor, flrst-span slab interior column 

connection. Figure 18 shows the moment-rotation diagratn for the second-floor, fourth- 

span slab interior column connection. The moment-rotation diagram for the second- 

floor, fourth-span slab exterior column connection is shown in Figure 19. Comparing 

Figure 17 to Figure 18 and Figure 19 demonstrates the difference between the linear 

behavior that results &om elastic rotation and the nonlinear behavior of inelastic rotation. 

12000 

9000 

6000 

3000 
u c 

0 
C 

-3000 
I 

-0000 
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-12000 

-0. 025 -0. 020 -0. 015 -0. 010 -0. 005 0. 000 0. 005 0. 010 O. OI5 0. 020 0. 025 

Rotation (radians) 

FiG. 15. Moment-Rotation Diagram for Second-Floor Beam at Exterior 
Column End of the First Span During the 110 06s Ground Motion Record 
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FIG. 16. Moment-Rotation Diagram for Second-Floor Beam at Interior 
Column End of First Span During the l10 06 Ground Motion Record 
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FIG. 17. Moment-Rotation Diagram for Second-Floor Slab at Interior 
Column End of First Span During the l10 06s Ground Motion Record 
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FIG. 18. Moment-Rotation Diagram for Second-Floor Slab at Interior 
Column End of Fourth Span During the l10 06s Ground Motion Record 
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FIG. 19. Moment-Rotation Diagram for Second-Floor Slab at Exterior 
Column End of Fourth Span During the l10 06s Ground Motion Record 



BUILDING RESPONSE DURING THE EL CENTRO EARTHQUAKE GROUND 

MOTION RECORD 

A ten-second portion &om the 1940 El Centro, California, earthquake was used 

in an analysis of the study building. Using a ground motion record &om a West Coast 

earthquake provided interesting results and a reference point for comparison to other 

studies of buildings that have used this ground motion record. The peak ground 

acceleration of this ground motion record is 0. 35g. The maximum base shear 

experienced by the study building during the El Centro ground motion record was 978. 0 

kips. The distribution of the base shear between the exterior &arne and the two interior 

&ames was identical to that of the 110 06s ground motion record. The distribution of the 

base shear to the exterior &arne was 28 percent, and the interior &ames experienced 72 

percent of the base shear. Details of the study building's response are shown in Table 

12, and the building drift is plotted versus time in Figure 20. 

TABLE 12. Response of Study Building to the El Centro Earthquake 
Ground Motion Record 

Story 

5th 

4th 

3rd 

2nd 

1st 

Maximum 

Inter-story 

Drift 

(58) 
0. 60 
0. 92 
1. 25 

0. 99 
1. 25 

Time of 

Max. I-S 

Drift 

(seconds) 
2. 23 

5. 61 

5. 61 

5. 32 

5. 41 

Maximum 

Story 

Shear 

(kips) 

564. 4 
700. 0 
783. 8 

806. 7 

978. 0 

Time of 

Max. Story 

Shear 

(seconds) 
2. 49 
2. 24 
5. 59 
5. 30 
5. 40 
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FIG. 20. Building Drift (%) During the El Centro Earthquake Ground 
Motion Record 

During the El Centro ground motion record, no slab members behaved in an 

inelastic manner. The perimeter beams of the exterior 1'tame did rotate inelastically. The 

locations of these rotations are shown in Figure 21. The hinging pattern shown in Figure 

21 is desirable in that inelastic activity occurs in the beam tnembers only and not in the 

tnore critical column members. The moment-rotation diagram for the ends of beam 

members during the El Centro ground motion record show more cyclic behavior than the 

moment-rotation diagrams trom the 110 06s ground motion record. This increased 

cyclic behavior is caused by the large acceleration magnitudes of the El Centro ground 

motion. Examples of the cyclic behavior of the perimeter beams for the El Centro 

ground motion record are shown in Figure 22 and Figure 23. Figure 22 shows moment 

versus rotation for the perimeter beam end at the exterior column in the first span of the 
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second floor. Figure 23 shows moment versus rotation at the interior column of the first 

span of the second floor perimeter beams. 

FIG. 21. Locations of Inelastic Rotation in Perimeter Beam Members of Exterior Frame During the El Centro Earthquake Ground Motion Record 
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FIG. 22. Moment-Rotation Diagram for Second Floor Perimeter Beam at Exterior Column End of First Span During the EI Centro Earthquake 
Ground Motion Record 
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FIG. 23. Moment-Rotation Diagram for Second Floor Perimeter Beam at 
Interior Column End of First Span During the EI Centro Earthquake Ground 
Motion Record 
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CHAPTER VIII 

CONCLUSION 

The most disturbing conclusion from this study is that a typical reinforced 

concrete office building similar to the study building in St. Louis will be severely 

damaged in a low probability, New Madrid Seismic Zone earthquake. During the 

shaking produced by the two percent probability of exceedance in 50 years ground 

motion record, the building collapsed within seconds. The magnitude of this ground 

motion record is similar to the magnitudes of the three large New Madrid Earthquakes of 

1811-12, and it is concluded that the recurrence of such an earthquake would result in 

the collapse of St. Louis buildings that are similar to the study building. 

During small, higher-probability earthquakes, a building like the study building 

should perform in a satisfactory manner. The structural members of the study building 

showed elastic behavior when subjected to a ground motion with a ten percent 

probability of exceedance in 50 years. This is an encouraging result because twenty 

earthquakes of magnitudes sinular to that of a ten percent in probability of exceedance in 

50 years ground motion record have occurred since 1812. It is likely that this type of 

earthquake will be experienced by buildings that currently exist in St. Louis. 

For earthquakes with probabilities between the two percent and ten percent 

probabilities of exceedance in 50 years, definite conclusions cannot be drawn, During 

some ground motions between these exceedance probabilities, the building will 

experience damage at its beam-column and slab-column connections without collapse. 

Punching shear failure was not exhibited in the response of the building to these ground 
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motion records. One reason that punching shear was not an issue in the study building 

was the fact that the two-way slab was thick in order to control deflections. Reinforced 

concrete buildings in St. Louis with shorter spans and thinner two-way slab systems may 

behave in a different inanner than the study building. 

RECOMMENDATIONS FOR FUTURE RESEARCH 

Future research that tests the responses of various types of buildings in St. Louis 

will increase to the ability of experts to predict the damage due to the next NMSZ 

earthquake. Examining the dynamic response of Midwestern steel, wood, masonry, and 

composite structures provides information that can be useful to engineers, geoscientists, 

and disaster response planners in preparing for future seismic events. 

More research on the response of reinforced concrete structures during a NMSZ 

earthquake is also necessary. This thesis has documented aspects of the building design 

that could vary within reinforced concrete buildings, such as the length of spans between 

columns and the size of steel reinforceinent within the two-way slab system These 

variations can change the response of a building during an earthquake. Because of these 

variations, more studies that analyze reinforced concrete buildings with different 

structural details are needed before predictions concerning the behavior of a majority of 

buildings can be made. The nonlinear dynamic analysis computer program DRAIN- 

2DM can be enhanced by adding a model that determines whether a reinforced concrete 

column shear failure occurs. This addition would be of benefit to future studies of 

reinforced concrete structures. 
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APPENDIX A 

GROUND MOTION RECORDS USED FOR ANALYSIS 
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FIG. A1. Two Percent Probability of Exceedance in 50 Years, Representative Soil, 
Record No. 1 [Adapted from Wen and Wu (2000)] 
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FIG. A2. Two Percent Probability of Exceedance in 50 Years, Representative Soil, 
Record No. 2 [Adapted from Wen and Wu (2000)) 
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FIG. A13. Ten Percent Probability of Exceedance in 50 Years, Representative Soil, 
Record No. 3 [Adapted from Wen and Wu (2000)] 
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APPENDIX B 

QUESTIONNAIRE SENT TO PRACTICING ENGINEERS 

Dear Sir or Madam: 

As the basis for my senior thesis, I am modeling the effect of the ground motion 

record trom an earthquake similar to the New Madrid earthquakes in the early nineteenth 

century on a typical reinforced concrete I'rame structure in St. Louis or Memphis built 

before 1990. 

Originally, my objective was to obtain design drawings of an existing building to 

serve as the modeled structure, but I have been unable to obtain these drawings. As an 

alternative, I will design a trame structure similar to the one shown below: 

Elevation view: 



Plan View: 

Because I would like to obtain results for the Midwest region, it is important that 

I design this structure to be typical of those found in St. Louis or Memphis. In order to 

do this, I need recommendations and connnents Irom an engineer who has designed 

structures in these cities. It would help me tremendously if you would answer the 

following questions and provide any other comments you feel would be helpful about 

designing this building or the project as a whole. Thank you for your time and help. 

Sincerely, 

Jason Hart 
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1) Is a flat slab floor appropriate? 

la) If so, would a flat slab with perimeter moment trames be most typical? 

lb) What would be a typical thickness of a flat slab in St. Louis or Memphis? 

lc) If slab-to-column systems are cominon, should capitals and/or dmp panels be 
used? 

2) Is a one-way slab common in St. Louis or Memphis? 

3) Are shear walls so common in St. Louis or Memphis that they should be included in 
this model? 

4) Are pan joists so common in St. Louis or Memphis that they should be included in 
this model? 

5) Is there a number of stories for buildings that is exceedingly common in St. Louis or 
Memphis, or will a five-story building as shown be typical? 

6) What would you recommend as the typical story height for buildings in St. Louis or 
Memphis? 
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7) Is the dominant design philosophy in the region that the external trames resist all 
lateral load in the moment fame snncture, or are the interior 

fi 

ame also designed to 
carry a portion of the lateral load? 

8) In pre-1990 reinforced concrete structures in the St. Louis/ Memphis region, is 
discontinuous bottom reinforcement common at interior beam-column cormections? 

9) What would you reconunend as a typical span between columns for a structure in St. 
Louis or Memphis? 
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