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ABSTRACT 

A Software Based, 13 kbits/s Real-Time Internet Codec, (August 1996) 

Mare A. Randolph, B. S. , Texas AgrM University 

Chair of Advisory Committee: Dr. Jerry D. Gibson 

Bandwidth usage is a prime concern to many on the Internet, especially for 

users on low bit rate channels. As video conferencing becomes more popular, the need 

for efficient software based compression of video and audio becomes more important. 

This work develops a scalable, real-time, software based speech codec for use on 

desktop computers. The system is based on subband coding, adaptive prediction, 

and Huffman coding, and is capable of bit rates below 13 kbits/s for communications 

quality audio. The quality may be "scaled" up by allocating additional bits to the 

subbands. This coder has been successfully implemented in real — time on a Sun Spare 

10 platform. 



To my parents, for their unfailing encouragement and support. 



ACKNOWLEDGMENTS 

First and foremost, one thousand thank you's are owed to Dr. Jerry Gibson. 

Not only for his excellent guidance, but for also believing in me enough to make this 

all possible through moral and financial' support. He was always there to answer my 

questions, and (thankfully) came to me when I wasn't smart enough to ask him. 

Roderick Maddox, my oflicemate and good friend: one of these days, we will 

actually hit on an idea to make us rich and famous. I can't wait. And we won't hire 

anyone that scuffs their feet! 

Many thanks are due to the members of the Multimedia Communications and 

Networking Lab, especially Stan McClellan for taking the time to explain many as- 

pects of speech coding when I was getting started, and Tom Brown for attempting to 

integrate the coder I developed into a usable tool. 

Lastly, my parents, Beth and Verle Randolph, deserve credit for too many things 

to list. A more perfect pair of parents could not be dreamed of. 

This work is in memory of Jill Randolph and Dr. Carl Erdman. 

This research was supported by the Texas Advanced Technology Program, 
Project No. 999903-017, and by the National Science Foundation Grant No. NCR- 
9318337 under Research Agreement No 25429-5498 with Cornell University. 



TABLE OF CONTENTS 

CHAPTER Page 

I INTRODUCTION 

A. Motivation 

B. Outline 

II SPEECH CODING AND COMPRESSION . . 

A. Background 
1. Bit Rate 
2. Quality 
3. Delay . 
4. Complexity 

B. Justification for choosing ADPCM . 

III ITU-T ADPCM STANDARD 

A. Introduction . 
B. Coder Structure 
C. Predictor . 

D. Quantizer 

1 

3 

4 

6 
6 

8 

8 

9 

10 

10 
12 
14 

16 

IV 

V 

SUBBAND CODING 

A. Introduction . 
B. Quadrature Mirror Filters 
C. Polyphase quadrature mirror filters 
D. Infinite impulse response based QMF 
E. Subband choice 

SYSTEM DESIGN 

A. Overview. 
B. Quadrature Mirror Filter . . 
C. Speech coder 

1. Predictor 
a. Pole-Zero predictor 
b. Pitch predictor 

2. Quantizer . . 

19 

19 
20 

25 

26 

26 

27 

27 

27 

30 
30 

30 
31 
34 



CHAPTER Page 

D. Hulfman coder 
E. Packet loss issues 

VI RESULTS 

A. Overview 

B, Bit Rate 
C. Complexity 
D. Quality . 
E. Delay . . 
F. Summary 

G. Areas for Future Study 

REFERENCES . 

APPENDIX A 

APPENDIX B 

APPENDIX C 

35 
37 

39 

39 
39 
40 

42 

47 

47 

48 

50 

54 

56 

57 

VITA 58 



vu1 

LIST OF TABLES 

TABLE Page 

I Speecb Coders 

II Filterbank output 

III Adaptive quantizer multipliers. 

IV Example Human code 

V Subband Huffman code 

29 

38 

VI Selected subband bit allocations . 40 

VII Time spent filtering 

VIII Total delay time 

41 

47 



LIST OF FIGURES 

FIGURE Page 

Block diagram of the ADPCM encoder 

Block diagram of the ADPCM decoder 13 

Example speech samples 14 

An example uniform eight level quantizer 17 

Quadrature mirror filter pair 20 

A complete two band quadrature mirror filterbank with coding 21 

A four band tree structured QMF with coder 23 

Uncancelled alissing in a QMF 24 

10 

Block diagram of implemented system 

Example pitch redundancy in speech 

Typical pitch predictor structure 

12 Uncoded speech sample 44 

13 Speech sample after suffering packet loss 

14 Speech sample after packet loss with double transmitted low band . . 46 

15 Two-band QMF without coding . 54 



CHAPTER I 

INTRODUCTION 

A. Motivation 

As the general public flocks to the Internet, the underlying network is becoming 

increasingly saturated with traflic. The network has a wide range of uses, including 

the transfer of sound, still 'unages, motion pictures, files, and more recently, the 

World Wide Web and real-time applications. Although some parts of the Internet 

backbone run at DS3 rates (45 Mbits/s) or above, many links are only DS1 (1. 544 

Mbits/s), ISDN (128 kbits/s), or even lower. At these rates, a handful of users, each 

simultaneously requesting what they believe to be a nominal amount of information, 

could saturate the network. Two examples of uncompressed data streams include full 

color video, requiring well in excess of 50 Mbits/s, and toll-quality audio, needing 64 

kbits/s. The most common method of reducing the likelihood of saturation is the use 

of compression. On the Internet, algorithms such as JPEG (Joint Picture Experts 

Group), GIF (Graphical Interchange Format), and MPEG (Motion Picture Experts 

Group) are all very widely accepted and supported compression standards for the 

interchange of image and video data, , even when sent to drastically different computer 

systems. This "cross-platform" ability is becoming increasingly important in the 

rapidly growing heterogeneous computing environment. Unfortunately however, there 

is no such widely accepted format for audio transmission over the Internet. 

Some might argue that available bandwidth on the Internet is continually increas- 

ing, hence the need for data compression and further research is minimal, Although 

it is true bandwidth has increased over time, and is predicted to continue to do so, 

The journal model is IEEE Transactions on Automatic Control. 



history has shown that excess bandwidth is always put to use, either by new ap- 

plications, by an increase in the number of clients served, or by an increase in the 

quality of services provided. Their argument also ignores the growing popularity of 

wireless connections, where bandwidth is usually at a premium and sometimes highly 

variable. Alternately, some channels are fixed at a certain rate, a portion of which 

is dedicated to voice information, and the remainder to video. At any moment, a 

person on one end of a video conferencing system might be silent, so little speech 

data needs to be transmitted during that period. A good conferencing system will be 

able to dynamically lower its speech bit rate and allow the video coder to utilize that 

additional bandwidth in order to obtain the best possible video quality. When the 

speaker resumes, the system transparently takes back the bandwidth and reallocates 

it to voice coding. Any of these items alone justify the continued use and further 

research in the area of compression and efficient coding methods. The transmission 

of speech is no different, as it is, just one of an increasing number of data streams. 

There are currently several incompatible speech compression systems for the 

Internet, including the Unix audio tool Vat, the PC based I-Phone, and the CU- 

SeeMe video conferencing system. These systems suffer from various problems such 

as low audio quality, high bit rates, high complexity, and poor ability to recover from 

packet losses. All of these problems stem from deficiencies in the algorithms being 

llsed. 

The motivation for this work is to develop a speech compression algorithm which 

will provide an acceptable compromise between the issues of quality, bit rate, com- 

plexity, and data loss. Each of these problems have been well researched and are 

complete works of study on their own. Rather than completely developing new theo- 

ries, we shall attempt to adapt several existing algorithms and combine them in such 

a way that the system will have acceptable quality while maintaining a complexity 



level low enough to run in real-time on common workstations and personal computers, 

without using a DSP or other dedicated hardware. 

B. Outline 

First, an overview of speech coding and commonly used terms is presented in Chap- 

ter II, followed by a more detailed description of the ITU-T ADPCM speech standard 

in Chapter III. We will move on to give some details of various subband filter struc- 

tures in Chapter IV, followed by Chapter V detailing the new system and its theory 

of operation. Chapter VI will conclude this work with results and a discussion of 

possible future areas of study. 



CHAPTER II 

SPEECH CODING AND COMPRESSION 

A. Background 

Speech is the most common and widely used method of communications due to its 

natural effectiveness and instant interactivity, allowing the speaker to insure he is 

being understood. This will continue into the foreseeable future as video is combined 

with speech to form multimedia/videoconferencing systems. To increase the eSciency 

of audio transmission, a great deal of research time, money, and effort has gone into 

digital speech coding and compression. 

Although initially developed for military secure communications, commercial en- 

terprise now constitutes the driving force behind digital speech coding. With the 

recent explosion of cellular phone usage, and the expected widespread acceptance 

of personal communications systems (PCS), this research will continue well into the 

future, searching for higher quality and increased bandwidth efliciency. 

The term "speech coding" refers to the method of reducing the amount of infor- 

mation needed to transmit or store a speech signal. There are two ways to achieve 

this reduction: using either lossless or lossy techniques. Lossless refers to coding a 

signal such that no information is thrown away. Although this preserves the exact 

original, there are no known methods of removing most of the redundancy of speech 

in a lossless manner. This is why, for over twenty years, research has concentrated on 

using lossy compression techniques since a great deal of information can be missing 

while keeping the perceptible quality high. 

In the late seventies, speech compression followed two main routes: if high quality 

was desired, a "waveform coder" could be used. If instead, the goal was low bit 



rates, a "vocoder" (a contraction of "voice coder") was used. During this period of 

time, low bit rate and high quality were mutually exclusive terms when referring to 

real-time systems. A waveform coder attempts to preserve the overall shape of the 

tiine domain speech waveform through the use of representative quantized samples. 

The ITU-T Adaptive Differential Pulse Code Modulation (ADPCM) standard is a 

waveform coder. A vocoder, at the opposite extreme, makes no attempt at preserving 

the time domain speech waveform, rather it attempts to artificially model the human 

vocal tract. The most well known vocoder is the U. S. Government Federal Standard 

1015, also known as LPC-10e. 

The pace of coder development increased in the eighties, however. It did not 

take researchers long to begin experimenting with other methods of speech coding, 

usually starting with a vocoder or waveform coder and mutating it. These new coders 

fall into a broad class of what is now called "hybrid" coders. These hybrid coders 

overcame the synthetic sounds of the vocoder, often producing a much more natural 

sounding reproduction of speech while maintaining a lower bit rate. 

Complex techniques were put to use, including taking advantage of the natural 

masking abilities of the human ear (called perceptual masking), and using newly 

available high speed digital signal processing to quantize parameters in blocks (vector 

quantization) rather than individually. 

Speech coders are designed with the following tradeoffs in mind: bit rate, quality, 

delay, and complexity. While one would hope to have the best of all of these attributes, 

it is not generally possible. In order to increase quality, for example, the bit rate 

or complexity must generally go up as well. Lower delay generally means higher 

complexity as well. Other tradeolfs can occur in situations, such as a rate limited 

wireless channel or complexity limitations due to power constraints. These tradeoffs 

are defined and explored in more detail in the following subsections. 



1. Bit Rate 

The bit rate provides an indication of how well the data stream was compressed, 

usually compared to a telephone bandwidth stream which is sampled at 8 kHz with 

an 8 bit logarithmic quantizer (i. e. , 64 kbits/s total). Rates vary from 64 kbits/s 

for long distance and international telephone networks, down to 800 bits/s for some 

secure communications applications, Table I shows the bit rates for many common 

coders. 

It should be noted that the bit rate of a coder does not have to be constant. In 

fact, a great deal of compression can be had by allowing the encoding rates to vary 

according to how well a predictor is performing, or by not transmitting data during 

periods of silence in the conversation. 

2. Quality 

Many people view quality as the most important part of a speech coder because if 

the quality is too low, the consumer may shy away from using the product when it is 

not absolutely necessary. Low quality can be caused by many things, including poor 

speech coding or modeling, channel errors, packet losses, or background noise efFects. 

The most widely used measure of perceptual quality of a speech coder is the 

mean opinion score (MOS), whereby blind tests are performed using a specified set of 

conditions. The "graders" give a rating of 1 to 5, corresponding, in order, to a rating 

of bsd, poor, fair, good, or excellent. The tests typically consist of several different 

talkers and a number of reference coders. MOS scores for some common coders can 

also be seen in Table I. SNR and SEGSNR are popular absolute measurements, 

but they often produce results counter to perceptual results, hence are not nearly as 

widely quoted. 



Table I. S sech Coders 

Year of 

Introduction 

1972 

1976 

Bit Rates 

kbits/s 

2. 4 

Description 

PCM (for PSTN) 

LPC-10e (Fed Std 1015) 

MOS 

4. 4 

2. 7 

1984 32 G. 721 ADPCM (for PSTN) 4. 1 

1987 

1990 

1991 

1991 

1992 

1992 

1993 

24 

16 

4, 15 

13 

4. 8 

16 

1 — 8 

G. 723 ADPCM 

G. 726 ADPCM 

Inmarsat (Satellite) 

GSM (European Cellular) 

CELP (Fed Std 1016) 

G. 728 (Low delay-CELP) 

VSELP (US Cellular) 

/SELF (US CDMA) 

4. 0 

3. 9 

3. 6 

3. 2 

4. 0 

3. 5 

34 

1993 6. 8 VSELP (Japanese Cellular) 3. 3 

1995 G. 729 (new toll-quality) 4. 2 

6. 3 G. 723. 1 (in H. 323 k H. 324) 3. 98 

1995 

1996 2. 4 

Half-Rate GSM 

New low rate Fed std 

ss 3. 4 



3. Delay 

Although delay could be viewed as a component of quality, the design methodology 

and complexity of designing the coder can often be quite different if the system is 

required to have low delay, such as for a real-time system. This is in contrast to an 

application such as offiine storage of speech, where the impact of delay is minimal. 

We will now discuss several important aspects of delay: algorithmic, computation, 

and transmission. 

Most lower bit rate coders operate on blocks of speech rather than on a sample 

by sample basis. This allows them to encode more efficiently, but at a price; it 

takes extra time. The sum of time for accumulating a block (sometimes called a 

frame) plus other inherent data preparation delays make up the algorithmic delay. 

To code a specific frame of speech, some form of processing is required, creating a 

coinputation delay, which is dependent on the implementation of the algorithm on 

a specific processor. Finally, a trsnsniission delay, the time it takes for a block to 

propagate from transmitter to receiver, must be taken into account. The sum of aII 

these component delays form the overall system delay, which must be lower than a 

pre-specified target to be considered usable for a particular application. In real-time 

communications, most speakers find delays larger than about 250 msec to be quite 

disruptive to typical conversation patterns. 

4. Complexity 

The complexity of a speech compression system often dictates where it can be used. 

For example, a system which is too complex will consume too much power, thereby 

making it unusable in a battery powered environment. Highly complex systems also 

generally require components which cost more. 



After a system is designed and simulated on host processors, they are often im- 

plemented on DSP chips, and possibly on VLSI devices if demand is high enough. 

Algorithmic speed and memory requirements are the main driving force behind the 

complexity (and therefore cost) issue since they usually dictate the processing require- 

ments of the DSP. An additional factor in the complexity equation is floating point 

vs. fixed point implementations. Algorithmically, it is often easier to use fioating 

point computations, but the cost and power requirements of floating point DSP chips 

is considerably higher than that of fixed point DSP's. 

B. Justification for choosing ADPCM 

Although there have been tremendous low rate advancements in recent years, they 

all require DSP technology to operate in real time. This is a problem for computer 

users wishing to use speech to communicate over modem channels or over the Internet 

since such schemes would not run on existing CPU's in real-time. 

The ADPCM style coder was chosen for this work because it has acceptable qual- 

ity while maintaining a low complexity level so that it does not requiring additional 

hardware to run on the desired platforms. 
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CHAPTER III 

ITU-T ADPCM STANDARD 

A. Introduction 

The Adaptive Differential Pulse Code Modulation (ADPCM) standard was set by the 

Telephony branch of the International Telecommunications Union (ITU-T) (formally 

the CCITT) in response to the need for an international standard for speech coding 

and compression. The original recommendations, called G. 721 and G. 723, took 64 

kbits/s speech and compressed it to either 40, 32, or 24 kbits/s in a lossy manner. In 

1990, recommendation G. 726 was created, encompassing G. 721, G. 723, and adding a 

new 16 kbits/s compressed rate [1]. 

When the original need for the G. 721 standard was identified, a CCITT Commit- 

tee Study Group was assigned the task of developing a compression algorithm which 

would maintain the performance of standard 64 kbits/s PCM as closely as possible. 

This included many items, but concentrated on having a simple enough scheme to be 

implementable on the hardware available at that time while having minimal encoding 

and decoding delays, allowing for real-time speech communication [2]. 

The system is designed to take voice band signals and compress them for ef- 

ficient transmission over the telephone network. A "tone and transition detector" 

is also included in the design to allow for adequate performance of frequency shift 

keying (FSK) modems when operating on links which are coded with ADPCM. 

This chapter will provide a somewhat detailed description of the ITU-T ADPCM 

standard. Additional information can be obtained from [1] and [3]. 



s(k) +) 

B(z) 
eP) 

s(k) 

s(k) 

A(z) 

Fig. 1. Block diagram of the ADPCM encoder 
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B. Coder Structure 

A block diagram of the ADPCM encoder is shown in Fig. 1. The system is based 

on two major components: an adaptive predictor and an adaptive quantizer. The 

decoder, shown in Fig. 2, is actually a subset of the encoder, simply outputting s(k) 

instead of es(k). 

The basic algorithm is to take a speech sample at time instant k, denoted by 

s(k), and subtract it from the predicted value g(k). The prediction error, called c(k), 

is the difference between the actual and the predicted values. e(k) is then quantized 

to es(k) and transmitted to the receiver. At the same time, this quantized value is 

decoded and added to g(k) to form the reconstructed value s(k). This reconstructed 

sample is related to the original sample by 

s(k) = s(k) + q(k) (3. 1) 

where q(k) is the error introduced by the quantizer, 

q(k) = e, (k) — e(k) (3. 2) 

As can be seen above, if the quantizer were taken out of the system, the error 

introduced by the quantizer would be zero and the reconstructed value would exactly 

match the original speech sample. The receiver can produce an identical reconstruc- 

tion assuming no transmission errors occur. 



Inverse 
&(k) Quantizer 

B(z) 
eP) 

s(k) 

A(z) 

~(k) 

Decoded output 

Fig. 2. Block diagram of the ADPCM decoder 
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Fig. 3. Example speech samples 

C. Predictor 

The predictor section within the ADPCM standard consists of two components, one 

with a short memory, and one with a relatively longer memory, both working together 

to reduce short term redundancies. The predictor is responsible for lowering the 

dynamic range as much as possible so the quantizer can use smaller step sizes to 

more finely quantize the prediction error, thereby increasing the signal to noise ratio. 

The predictor lowers the dynainic range by removing the majority of the corre- 

lation between consecutive samples. As can be seen from Fig. 3, it would be high- 

ly ineflicient to code each sample independent of every other sample. Instead, the 

input stream' is run through two filters which attempt to decorrelate the samples. 

The first one is an infinite impulse response (IIR) filter with two taps, given by 
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A(z) = Q ioiz '. In the time domain, this can be viewed as a weighted linear 

combination of previous reconstructed output samples, as shown in equation 3. 3, 

s, (k) = Qai(k — 1)s(k — i) (3 3) 

where a simplified adaptive gradient algorithm is used to generate the cu terms. 

The second filter is a finite impulse response (FIR), all-zero predictor, B(s) = 

Qf i biz i, which has 6 taps to help improve predictor performance. Its time do- 

main equivalent is given in equation 3. 4 as a weighted linear combination of decoded 

previous prediction errors. 

s„(k) = Qb;(k — 1)e, (k — j) (3. 4) 

Coefficients are also generated from a simplified adaptive gradient algorithm. The 

two predictors outputs are summed together to produce the final prediction: 

g(k) = s, (k) + s (k) (3. 5) 

The dual filter configuration was chosen as a tradeofF between having a very long 

memory (desirable for a high performance predictor) and error propagation in the 

system decoder due to transmission errors [4). The pole predictor has only two taps 

and restricted coefficient values to maintain predictor stability since a single error 

could potentially affect many reconstructed samples. The control of decoder stability 

was the reason the two pole configuration was used. The zero predictor was added to 

increase the predictor memory, and therefore performance, since it does not infinitely 

propagate errors. 
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More extensive details about predictors and stability of coefficients can be found 

in [1] and [5], and a theoretical analysis of the ADPCM algorithm can be found in [6]. 

D. Quantizer 

ADPCM uses a quantizer which is backward adaptive as well, allowing the step size 

of the quantizer to increase and decrease corresponding to changes in the prediction 

error, e(k). Since e(k) can vary drastically depending on the input signal s(k), the 

quantizer is scaled by a quantity A(k), called the step size: 

b;(k) = AS(k — 1)M([es(k)[) (3. 6) 

where M( ) is a time invariant multiplier which is dependent on the magnitude of 

the transmitted symbol, er(k). The damping factor P is used to make the quantizer 

more robust to transmission errors, Commonly, values of P approach, but never 

exceed, one. This means that old step sizes will be forgotten over time. Fig. 4 shows 

the workings of an eight level quantizer in graphical form with the corresponding 

multipliers for each level. An important aspect of these multipliers is the fact they 

allow the step size to increase at a faster rate than decreases occur. This is due to 

research done by Jayant [7] which shows that overload noise in the quantizer causes 

a large drop in signal to noise ratio and is very disconcerting to listeners. 

A Gaussian characteristic for quantizer decision and output levels is used, and 

the step size is adapted based on work done by Jayant, as well as Goodman and 

Wilkinson [8]. 

The inverse quantizer is present in the encoder so the encoding system can du- 

plicate the decoders reconstruction and properly adapt the quantizer and predictor. 

If reconstructed values were not used in the adaption, the decoder would not be 



Out(uu 

eP) 

M(4) = 15 

5 d(k) M(3) = 1. 0 

3 d(k) 
2 
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2 

M(1) = 0. 85 
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e(k) 

M(2) = 1. 0 

M(3) = 1. 0 

Fig. 4. An example uniform eight level quantizer 



18 

able to make the same adaption decisions as the encoder, causing mistracking, and 

correspondingly, a loss in quality. 

As previously alluded to, the ADPCM standard must also allow for the transmis- 

sion of voiceband data. This is done by slowing the rate of quantizer adaption down 

to minimally interfere with the symbols that modems use. The predictor coeflicients 

are also reset to zero when entering this "locked" mode. For more details, see the 

ITU- T G. 726 standard [I]. 



CHAPTER IV 

SUBBAND CODING 

A. Introduction 

Since being introduced in 1976 by Esteban et al. [9) and Crochiere et ul. [10), subband 

coding has developed a wide following, and much attention has been devoted to it by 

the speech coding community. Subband coding consists of breaking the original signal 

into frequency bands, then decimating and coding the individual bands. Although 

subband coding now has applications to images, this discussion will limit itself to 

speech coding aspects only. 

The ideas behind subband coding are quite straight forward: a signal is separated 

into frequency bands, efiectively translated to baseband, and sampled at its Nyquist 

rate. Each band is then coded individually with however many bits per band the 

designer wants, allowing perceptually important bands to be "weighted" with more 

bits. In other words, this approach places bits in frequency bands where they are 

needed the most. Separate bands have other advantages as well. They not only allow 

containment of quantization noise within the band, they also allow each band to be 

adapted independently, proportional to the root mean square (RMS) average speech 

level in their bands. Both abilities lead to perceived quality of the speech being 

improved. 

This improvement in quality only occurred, however, if the proposed infinite 

impulse response (IIR) filters had very sharp transition bands and high stop band 

attenuation since intraband abasing and frequency distortion were present. IIR filters 

have phase distortion problems as well [11). Such problems suggest many areas for 

further research. This chapter will give an overview of the major results of this 
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Filter reepoaee 

0dB 
-3 dB 

Hgz) 

Band 1 

H (z) 

Band 2 

le 
4 

Frettaeaey 

Fig. 5. Quadrature mirror filter pair 

research related to subband filters. Additional details and references can be found 

in [12] and [13]. 

B. Quadrature Mirror Filters 

If the filters used to create these frequency subbands are designed in a certain way, 

Esteban and Galand discovered [14] a full bandwidth signal can be divided into two 

overlapping subbands (illustrated in Fig. 5) such that the overlapped regions have 

special properties. These properties allow two subbands to be sampled at half the 

original sampling rate and still be transparently reconstructed. 

Esteban and Galand named their new subbanding method a quadrature mirror 

filter; the block diagram of which is presented in Fig. 6. The sampled input speech 

signal, s(k), is sent through two filters, Hl(z) and Ha(z), which have the property 

Hs(z) = Hl( — z), or in the time domain, 



x(k) 

s, (k) s, (k) 
h, (k) 2: I ADpCM I:2 

(-I fh, (k) 
ss(k) kgb) 

2: I pdgpcM I:2 (-Ap) 

Fig. 6. A complete two band quadrature mirror filterbank with coding 
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k, (k) is an even tap, linear phase, low-pass finite impulse response (FIR) filter with 

its 3 dB point located at f, /4, where f, is the sampling rate of the input signal, z(k). 

hi(k) completely specifies the QMF structure as the remaining analysis and synthesis 

filters are computed by modulating ki(k) by e~", which is equivalent to multiplying 

by ( — 1)" as shown in equation 4. 1. si(k) and ss(k) are the outputs of the filters, 

containing the lower and upper frequency bands, respectively. They are formed by 

convolving the input sequence with the respective filters: 

z (k) * h„(k) for k even 
s„(k) = 

G for k odd 
(4. 2) 

where the zero (odd) terms correspond to the 2: 1 sub-sampling. The sub-sampling 

introduces aliasing since the sampling rate is now half the original rate and the signal 

bandwidth of each band exceeds f, /4 (violating the Nyquist criteria). The quadrature 

mirror filter structure, however, completely cancels aliasing upon reconstruction— 

assuming no noise is introduced into the system. See Appendix A for a proof of QMF 

aliasing cancellation. If the sub-sampled sequence is coded, the aliasing cancellation 

will be limited to the resolution of the coding scheme. 

To reconstruct the subbands, each band is up-sampled by inserting a zero after 

every sample and running the resulting sequence through the reconstruction filter. 

After the pair of bands is up-sampled, they are combined to form the final output 

stream, i(k), as shown in equation 4. 3. 

k(k) = s, (k) * ki(k) — sz(k) * kz(k) (4. 3) 

There are several drawbacks of Esteban's QMF's, however. Since they are exactly 

symmetric, only a division by two can be made each time, meaning a tree structure 
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Fig. B. Uncancelled aliasing in a QMF 

will need to be used if more bands are desired. As the four band example in Fig. 7 

shows, z(k) can be divided into high and low frequency bands and sub-divided again, 

producing a total of four bands, si(k) through se(k), each with a bandwidth of one 

fourth the original signal. Although this recursive structure is easy to implement, a 

substantial delay is added for each level to the tree due to the large number of taps 

that must be used since Estebans QMF's are FIR based. 

An additional problem is that if any noise is introduced into a band, the aliasing 

for both the "noisy" band and its mirror will not be completely cancelled. Noise can 

be caused not only by bit errors and packet losses, but also by a coarse quantizer. In 

fact, the worst noise in a quadrature mirror filter is caused by allocating zero bits to 

a quantizer, thereby causing that band to not be transmitted. This is the worst case 

for a QMF because the receiver will no longer have a way to cancel the the aliasing 

caused by its mirror, shown in Fig. 8. 

These pr'oblems led researchers to continue investigating the quadrature mirror 

filters for further breakthroughs, which they found in polyphase filterbank structures. 
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C. Polyphase quadrature mirror filters 

First presented by Rothweiler in 1983 [15], polyphase quadrature mirror filters were 

proposed as an improved subband coding filterbank structure. This structure reduces 

both complexity and delay since more than two bands can' be formed directly from 

the original input samples. In addition, filters can typically be shoi'ter since further 

filtering is usually not needed, hence the cascading, uncancelled aliasing is no longer 

a problem. 

Cox pointed out these filters should really be called generalized pseudoquadra- 

ture mirror filters rather than polyphase quadrature mirror filters since (1) they are a 

generalization of the two band quadrature mirror filter concept to multiple bands, (2) 

the filters do not have to be implemented in a polyphase manner [16], and (3) they 

are not true quadrature mirror filters as the aliasing in every band is not completely 

cancelled [17]. Instead, only aliasing from the two nearest neighboring bands is can- 

cefied. These designs assume aliasing from distant bands will be reduced significantly 

due to the stopband attenuation. 

The design methodology for generalized pseudoquadrature mirror filters (abbre- 

viated as GQMF in Cox's paper) begins with the design of a low-pass prototype 

with a bandwidth of one-half the desired subband bandwidth. The actual subband 

filters are created by modulating the low-pass filter with pairs of difFerently phased 

sinusoids, creating the desired number of subbands, The phases of the sinusoids are 

chosen so aliasing from adjacent bands will be cancelled and the overall frequency 

response of the system is as fiat as desired. A totally Sat frequency response is not 

only impossible to design for [18], but is also unnecessary since quantization noise 

normally exceeds the distortion caused by passband ripple on well designed GQM- 

F's. However, before poor GQMF performance is attributed to quantization noise, 



26 

it should be noted quantization noise is often blamed for noise actually caused by 

uncancelled aliasing [19]. 

D. Infinite impulse response based QMF 

More recently, many researchers have returned to IIR filters, this time in GQMF 

environments and with new design tools. IIR filters are attractive because they pro- 

vide smaller transition regions and better stop band attenuation than FIR filters of 

longer length. Many individual IIR filters have been designed to exceed the perfor- 

mance of their FIR counterparts. Unfortunately, there is no unified design method 

and these filters are still a topic of intense research. This is due to the nonlinearity 

and complexity of the IIR filter design problem [20]. 

E. Subband choice 

Generalized pseudoquadrature mirror filters are the obvious choice for use in this 

speech coding project. They provide a method of developing an arbitrary number 

of subbands from a prototype filter with minimal complexity. However, the design 

criteria for the prototype filters are quite stringent, making them very diflicult to 

design [16]. Since the QMF filters, which Johnston spent considerable time design- 

ing [18], are known to minimize the frequency distortion inherent in the overall sys- 

tem, it makes logical sense to use these filters in a tree structure while minimizing 

the problems of tree coders outlined above. One major saving factor is the fact delay 

is not a serious issue since Internet packets have non-deterministic delays. The com- 

plexity issue must be addressed, however, due to the desire for real-time operation on 

generalized CPU's. 
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CHAPTER V 

SYSTEM DESIGN 

A. Overview 

This chapter provides a detailed component description of the speech coder that was 

developed. The system is comprised of three main sections: a filterbank, a speech 

coder, and a Hulfman coder. A block diagram of the encoding system is provided 

in Fig. 9. Speech samples are fed into the filterbank which produces five low rate 

frequency bands, which are then individually coded, Huflman coded, multiplexed, 

and transmitted over the channel. To decode the compressed samples, the receiver 

performs the same operations in the reverse order. 

The chapter will proceed as follows: a description of the quadrature mirror filter 

structure used in this project is presented, followed by details about the predictors 

and quantizer implemented. The chapter closes with a discussion of the Hulfman 

codes that were developed and a highlight of several packet loss issues. 

B. Quadrature Mirror Filter 

As was mentioned earlier, a quadrature mirror filter (QMF) can be used to break a 

signal into bands of specific bandwidth, allowing each to be coded separately. The 

most appealing aspect of using QMF's is the ability to assign a dilferent numbers of 
bits to each band, depending on the the desired quality. Although QMF's can be 

performed in many ways, the ones used in this project consist of two parts: a generic 

filter unit to produce each subbaad and a decimation section. 

The filterbank of QMF's are arranged in a tree structure to produce the subbands. 

The tree structure used in this system is the same as shown in Fig. 7 except that the 
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Table II. Filterbank output 

Band Frequency Bandwidth 

Number Range (Hz) (Hz) 

0-500 500 

500-1000 

1000-2000 

2000-3000 

3000-4000 

500 

1000 

1000 

1000 

low frequency band, st(k), is split one additional time to form a total of 5 subbands, 

summarized in Table II. 

To perform the filtering, a convolution was implemented to produce each subband 

s;(k), 

s, (k) = Q h, (m)s(k — rn) (5. 1) 

for band i, where s(k) is the input speech and h; are the F filter coefficients for band 

i. Appendix B lists the coeflicients used in this implementation. To save computation 

time, the decimation operation was also included in the convolution, actually yielding 

the final filter operation 

IF-r)/s 
ss, (I) = g h;(2m)s(l — 2m) (5. 2) 

so ss, (I) is the decimated version of s;(k), in other words, ss, . (1) = s;(2l). The re- 

construction is performed in a similar manner, using equation 5. 1 after zeros are 
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interleaved into s;(k) to provide up-sampling. 

C. Speech coder 

This section will cover the core speech coding component of the system, comprising 

two main sections, an adaptive predictor and an adaptive quantizer. The system is 

modeled after the ITU-T ADPCM standard with a few simplifications of components 

which were either unneeded or not worth the additional complexity for the marginal 

quality improvement at this low bit rate. 

1. Predictor 

As mentioned in Section C of Chapter III, a predictors job is to remove redundancies 

in the speech waveform. This can be done two ways: by taking advantage of short 

term sample to sample correlation, or by longer term pitch period repetition. Adap- 

tive predictors were chosen since their performance is much better than fixed-tap 

predictors at low bit rates [21]. Detailed below are the two schemes implemented in 

this coder. 

a. Pole-Zero predictor 

The short term predictor, commonly called the pole-zero predictor, is the predictor 

used in the ADPCM standard. It removes sample to sample correlation using weighted 

linear combinations of previous reconstructed samples and prediction errors, given by 

equations 3. 3 and 3. 4. The coellicients for the pole predictor are adapted by the 

gradient algorithm, which produces 

o(k+ 1) = o, a(k) + K(k+ 1)e, (k+ 1) (5. 3) 



with 

g, V(k) 
100+ Vr(k) V(k) 

(5. 4) 

where fr (k) = [ar(k) as(k)] is the vector of pole predictor coefficients and V (k) = 
[s(k) s(k — 1)] is the vector of previous reconstructed samples. g, is a parame- 

ter to optimize system performance and cr, dampens previous predictions for more 

robust transmission over noisy channels. The adaption rule for the zero predictor 

coeflicients is identical, replacing ALL occurrences of a with 6, and letting 6+(k) = 
[g(k) 6s(k) . . 6s(k)], with V (k) = [er(k) eq(k 1). es(k — 5)]. 

Since the IIR predictor has only two poles, the stability can be easily checked 

with the following constraint: 

15 -0. » os 0. 75 
16 

b. Pitch predictor 

Pitch prediction, another method for removing redundancy, was implemented in this 

work. Its job is to remove any correlation that occurs between pitch periods in speech, 

as displayed in Fig. 10. The pitch period of most speakers lie in a range between 55 

and 400 Hz, with males falling in the lower end of the range and females and children 

tending towards the upper end. That frequency range corresponds to looking back 

over a range of 20 to 145 previous samples for speech sampled at 8000 Hz. 

In order to find the pitch period for a frame of speech, one must search over the 

possible samples to find the most likely period. One method to do this is to find the 

maxima of the normalized correlation, given by 



32 

Amplitude 
L samples 

Time (samples) 

Fig. 10. Example pitch redundancy in speech 

(5. 5) 

where L is searched over the expected lag period range mentioned above and ((i(i, j) 
is the auto-covariance, 

N-1 
((i(i, j) = Q s(k — i)s(k — j) (5. 6) 

with 1V representing the number of samples in a frame an s k bein the input g 
sample to be predicted [22]. 

Once the pitch lag I 'is located, the long-term predictor operates as a three tap 
lag filter, given by 

(5. 7) 

where the set (P „P„P, ) are the long-term predictor coefficients. This predictor is 
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Fig. 11. Typical pitch predictor structure 



shown in Fig. 11 along with the short term predictors A(z) and B(z). 
It should be quickly noted the pitch of a speaker almost never remains constant, 

even within a frame of speech. It usually changes slowly, however, and these changes 

can be tracked. One method of tracking changes is by using an adaptive step gradient 

algorithm [23]. This algorithm and the adaptation rule for the long-term predictor 

coeflicients /I„are described in detail in [23] and [24]. 

2. Quantizer 

In order to turn the sampled speech into something which is transmittable with 

a reasonable number of bits, each sample is quantized using either 2, 3, or 4 bits 

(corresponding to 4, 8, or 16 levels), depending on the quality desired by the user. The 

operation of the adaptive quantizer was briefly described in Section D of Chapter III, 

but we will give more detail here on the actual implementation. 

An adaptive uniform quantizer was chosen because of its very Iow complexity and 

high performance, even when compared to nonuniform quantizers. For each speech 

sample, a corresponding output from the quantizer is chosen, as given by the mapping 

from u D(k) ( e(k) ( (n + 1) A(k) to es(k) = (n + 0. 5) . b, (k), where A(k) is the 

step size and n is an integer which varies over the range — L/2 to L/2, L being the 

number of levels for the quantizer. 

The step size is then adapted according to equation 3. 6 with P 1 — 2 . Upper 

and lower limits for the step size are enforced to guarantee the step size does not 

adapt to a value much larger or smaller than is normally needed to represent the 

sample. As Jayant pointed out, the adaptive predictor should expand at a faster 

rate than it decreases [25]. The values of M( ) used in this quantizer are shown in 

Table III. These values are more aggressive than the ones which Jayant suggested, 

as explained in the Hulfman coding section below. 
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Table III. Adaptive uantizer mult ipliers 

L=4 L=16 

M(1) 

M(2) 

M(3) 

M(4) 

M(5) 

M(6) 

M(7) 

M(8) 

0. 92 

1. 60 

0. 90 

0. 95 

1. 25 

1. 75 

0. 90 

0. 90 

0. 95 

0. 97 

1. 20 

1. 60 

2. 50 

D. Huffman coder 

In order to lower the bit rate of the system beyond that of simple quantization, 

a HuiFman code was implemented. HufFman codes are probabilistic based entropy 

codes which represent symbols with predetermined bit patterns. These bit patterns 

are variable length, based on how likely it is for each symbol to be transmitted. A 

symbol that is very likely to be transmitted will be represented with only a few bits, 

while highly unlikely symbols may contain a very high number of bits. 

For example, if four characters (A, B, C, and D) on a keyboard were of equal 

probability to be typed and transmitted across a digital link, it would require two bits 

per character. However, if the likelihood of someone typing 'A' is much higher than 

the chances they would type 'D', some savings can be had. Given the probabilities 

as listed in Table IV for each letter, it is easy to see that one bit will be saved every 

time the character 'A' is typed. This means that, on average, it only takes 1. 75 bits 
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Table IV. Exam le Huffman code 

Symbol Likelihood Bit Bits 

pattern Allocated 

A 

D 

50% = 0. 50 

25% = 0. 25 

12. 5% = 0. 125 

12. 5% = 0. 125 

10 

110 

to transmit each character, as computed below. 

0. 50 1 + 0. 25 2+ 0. 125 3 + 0. 125 3 = 1. 75 

Of course, if the probability of 'A' were to go up even more, the average bit rate 

goes down further. The lower limit to the compressibility of a character set is given 

by 

N 

H = — Qp; logs(p, ) (5. 8) 

where P is called the entropy of the source or character set containing N elements, 

each with a given probability of occurrence, p, . Further examples and details on the 

theory of Huffman codes can be found in [26]. 

The adaptive qusntizer for the coder was designed to expand at a slightly more 

rapid rate and contract at a slower rate than was suggested by Jayant. It was found 

this had minimal effect on quality while greatly increasing the number of samples 

which get quantized to inner levels. With the majority of the samples being quantized 

to two inner levels, a Huffman code based on averaging the quantizer statistics from 
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several speakers was designed. 

As can be seen from Table V, the Hulfman code is integrated into the quantizer 

outputs, so the quantized values do not have to be re-coded with the Hulfman code. 

E. Packet loss issues 

The occurrence of packet loss in speech transmission systems is a major problem. 

Discontinuity of the speech waveform can cause the decoded speech to be very difficult, 

if not impossible, to comprehend. It can also cause predictor mistracking, making 

it even harder to understand what the speaker is saying. Most current Internet 

speech coders simply play silence during the missing packet, which produces large 

discontinuities. Previous research has suggested that replacing the missing speech 

packet with a segment of previously transmitted speech or even possibly random 

noise results in a much less disruptive waveform [27]. Interleaving speech samples 

between packets, so interpolation is possible, has also been proposed [28]. 

We submit a new idea to this field: transmitting the lowest frequency subband 

band twice, once in the packet it is normally transmitted in, and once in the fol- 

lowing packet. The bandwidth required for this second transmission is minimal, 

approximately 3 kbits/sec, compared to the possible improvement in speech conti- 

nuity. If packet loss occurs, the missing packet can be partially reconstructed since 

the low frequency band information (the one with the highest speech content) will be 

contained in the following packet as well. This concept can obviously be extended to 

double transmitting any number of bands, depending on the available bandwidth or 

desired protection. " 
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CHAPTER VI 

RESULTS 

A. Overview 

This chapter describes the results obtained for the developed coder through the four 

perspectives of bit rate, complexity, quality, and delay, showing how each one satisfies 

the desired objectives of a usable real-time system. We will conclude by drawing 

together results from all of the areas. 

B. Bit Rate 

The premier objective of this research was to develop a software only speech coder 

which operates at medium to low bit rates. This is achieved through the use of 

subband coding so a difFerent number of bits can be allocated to each band, producing 

a system which successfully scales from under 12, 5 kbits/s to over 18 kbits/s. The 

bit rate selection, the allocation of bits to each band as listed in Table II, totally 

dictates the resulting quality of the coded speech. This is shown in Table VI where 

the bit allocations used to achieve various average bit rates are listed, along with 

their SNR. For example, the table entry '4 4 3 2 0' means that bands one and two 

are allocated 4 bits for quantization (a 16 level quantizer), band three is allocated 3 

bits (8 levels), band four is allocated 2 bits (4 levels), and band five is allocated 0 bits 

(i. e. , no information in that band will be transmitted). In order to achieve bit, rates 

below 13 kbits/s, band five can not be allocated any bits. Although this degrades 

the crispness, it does not harm comprehension of the speech substantially, nor does 

it usually impede identification of the speaker. 

'The SNR is calculated as outlined in Appendix C. 
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ble e ected s b ban bit a ocati s 
Bits 

Allocated 

per band 

Average 

Bit rate 

(kbits/s) 

Signal to 

Noise Ratio 

(dB) 

Bits 

Allocated 

per band 

Average Signal to 

Bit rate Noise Ratio 

(kbits/s) (dB) 
44422 
44322 
44222 
43222 
42222 
32222 
22222 

20. 6 

19. 6 

17. 5 

17. 0 

16. 0 

14. 9 

13. 8 

17. 2 

16. 8 

15. 8 

13, 3 

7. 5 

6. 5 

44420 
44320 
44220 
43220 
42220 
32220 
22220 

17. 2 

16. 2 

14. 1 

13. 6 

12. 5 

11. 5 

10. 4 

14. 9 

14. 6 

14. 0 

12. 2 

7. 5 

7. 2 

6. 3 

On lower frequency bands, going from a sixteen to an eight level quantizer pe- 
nalized the SNR somewhat, but did not substantially lower the bit rate due to the 
already low sampling rate. This is why most bit allocations listed in Table VI are 
either 2 or 4 bits per band. 

C. Complexity 

A major concern throughout the design process was keeping complexity as low as 
possible. It was initially suspected that a 32 tap subband FIR filters would provide 
a good tradeofF between computational complexity and reconstruction quality. Not 
only was this was found to be true, but a 24 tap filter by Johnston [18] was found 

which provided comparable, and sometimes better, quality for lower complexity. The 
24 tap filter sometimes exceeded the performance of the 32 tap due to it having a 
stop band attenuation of over 60 dB while the 32 tap had 51 dB. The fewer number 



Table VII. Time spent filterin 

Unified Split 

(m sec) 

filter 

(% of total) 

filters 

(msec) (% of total) 
Encode (32 tap) 

Encode (24 tap) 

8. 0 

7. 2 

84% 

80% 4. 1 

76% 

71% 

Decode (32 tap) 

Decode (24 tap) 

13. 7 

9. 6 

89% 

85% 

10. 8 

8. 4 

86% 

81% 

of taps is reflected in the wider transition band, which was found to be inaudible. 

When the program was first designed, a single filter procedure was used for both 

encoding and decoding, producing a "modular" structure which made modifications 

to the filter design easier. However, with the decimation included in the filter proce- 

dure (to save needless multiplication operations), the exact behavior of the procedure 

depended on whether the filter was being used to encode or decode speech. This 

difFerence meant the compiler could not optimize the filter procedure properly since 

it was too generic. 

When it was apparent that the speech coder was using more CPU than anticipat- 

ed, the filter was analyzed and this problem was discovered. To allow the optimizer to 
do a better job, the filter procedure was split into two filter functions, one for encod- 

ing and one for decoding. This resulted in two functions which could be specialized 

for their task, and the compiler optimized them much better, as shown in Table VII. 
In the table, "Unified filter" refers to the case where one filter procedure was used 

for both encoding and decoding and "Split filters" refers to the two specialized filter 

functions which could be optimized to a higher degree. The average amount of time 
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required to process a typical speech packet is presented in both millisecondss and as 

a percentage of the whole encoding or decoding process. Since the filter, when used 

for encoding, operates on decimated speech with balf the number of samples that the 
decoding process does, one would expect it to be twice as fast. Table VII shows that 
the "unified" method does not come close to achieving that expectation. This was 

the premise for trying the "split filters" which, as the table shows, resulted in the 
encoding process indeed being more than twice as fast as decoding. Even after this 

optimization though, it is quite obvious from the table that the vast majority of the 

system complexity remains in producing the subbands. 

D. Quality 

Perhaps the most important aspect of the coder, the quality of the developed system 

is quite scalable and is totally dependent on the desired bit rate. Due to lack of 
resources and proper testing conditions, obtaining meaningful MOS scores for this 

system was not feasible. Therefore, SNR numbers are provided in Table VI as a means 

of comparison between coders. As mentioned before, however, the SNR of a system 

does not always correspond directly to the perceived speech quality. The developed 

system exhibited several cases where this was apparent, most notably the '4 3 2 2 2' 

allocation, which sounds more pleasing than the '4 4 3 2 0' allocation despite the SNR 
calculations favoring the later. 

A surprise came when it wss discovered that using a 16 level quantizer in the 

upper frequency bands was often indistinguishable from using 8 levels. This is at- 
tributed to the aggressive nature of the quantizer expansion multipliers, described in 

Table III. This lead to the choice of the '4 2 2 2 0' and '4 3 2 2 0' allocations as the 

sAs measured on an otherwise idle Sun Spare 10. 



best tradeoffs between quality and bit rate. 

Double transmission of the lowest one or two subbands greatly increases the 

smoothness and understandability of the speech when compared to simply playing 

silence in place of missing packets. Fig. 12 displays the spectrogram of an original, 

uncoded speech sequence. s Darker regions signify higher frequency content in that 

time interval. When a packet of speech is lost, as is shown in Fig. 13, the double 

transmission of the low frequency band enables the coder to still recover the most 

important frequency ranges (Fig. 14). Results vary depending on which portion of a 
speech segment is lost, but the SNR of the replaced packets is typically within 1. 5 dB 
of the originally coded packet, and is 3 dB better than playing silence, 

The pitch predictor was tried but removed because the decimated speech changed 

pitch periods too quickly for the predictor to take advantage of the redundancy. Due 

to the coarseness of the decimation, the pitch period can change every two to three 

samples, which simply isn't enough time for the pitch predictor to adapt, In attempt 

to counteract this problem, identification of the pitch period before decimation was 

performed. This resulted in better speech quality since pitch tracking was now correct, 

but required transmitting the pitch information over the channel, using approximately 

6 kbits/s (6 bits per sample at 1000 samples per second, for the lowest subband). This 

is obviously not an acceptable solution in the context of desiring a low bit rate system. 

The six tap, "zero" predictor was also disabled since preliminary results showed 

that decimation worked against its additional memory, providing little prediction or 

quality benefits. 

sThe utterance displayed is "Oak is strong and also gives shade. " 
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Table VIII. Total dela time 

Encode (32 tap) 

Encode (24 tap) 

Unified filter 

(msec) 

40 

Split filter 

(msec) 

24 

21 

Decode (32 tap) 

Decode (24 tap) 

62 

47 

50 

40 

E. Delay 

Although delay was not a design criteria for the system since packet delivery times 

over the Internet are not guaranteed, it is obviously desirable to have the the delay as 

low as possible. Experimentation summarized in Table VIII shows for typical packets 

of around 1 kbyte, overall system delay (encoding and decoding combined) is quite 

low — averaging welt under 100 msec. This falls well under 250 msec, the amount of 

delay which is commonly considered distracting to normal conversations. 

F. Summary 

A real-time speech coder with several interesting aspects hss been presented. The 

combination of subband coding, adaptive predictors, and Hulfman codes was used 

to achieve a low bit rate with reasonable complexity. Subband coding allows the 

quality, and therefore the bit rate, to be scalable, based on the demands of the user 

or channel. All the components (bit rate, quality, and complexity) are intimately 

connected, driven by the users choice of bit rate, 

The use of subband coding makes it reasonable to transmit a portion of the speech 
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twice, helping maintain continuity of the speech waveform even in the event of packet 

loss. Transmitting the lowest frequency band a second time adds under 3. 5 kbits/s 

and transmitting the lowest two bands adds approximately 5 kbits/s (using a 16 level 

quantizer in the lowest band and a 4 level in the next lowest band). This helps 

counteract the problem of missing segments of speech currently plaguing Internet 

voice systems. 

The work contained herein has lead to the identification of many possible future 

research areas. The system that was developed can be used as a stepping stone toward 

the pursuit of any of the ideas listed below. 

G. Areas for Future Study 

Despite all efforts in this work, the resulting speech coder has a complexity level which 

is still quite high. If the host machine is being used by multiple users, as Sun Spares 

are designed to be, the system which was developed could tax the capabilities of the 

processor. As pointed out in the results section, the filtering operation constitutes the 

vast majority of the complexity of this scheme. A possible way to counteract this issue 

is to replace the floating point filter function with an integer implementation. This 

should operate with much lower processing cost since floating point operations (both 

conversions and multiplies) are typically 'expensive. ' Following this route could result 

in a coder which could be run on lower end machines, including those without Boating 

point processors. To cut complexity even further, time could be spent researching and 

designing the IIR filters needed to replace the FIR filters, while maintaining similar 

quality. 

Although this coder is scalable, whenever a band is left out (allocated zero bits), 

the aliasing for its mirror remains uncancelled, added noise to the reconstructed 
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output. If filters with higher stop band attenuation were designed, the added noise 

due to uncancelled aliasing would be minimal. Since FIR filters already take a large 

amount of processing time, however, increasing their length even further is not a 

realistic option. IIR filters appear to be the natural solution for this problem. 

Turning attention to the predictors, several more research areas have been iden- 

tified. As mentioned in the Quality section of this chapter, the pitch predictor was 

not found to be useful due to the quick changes of the pitch period of the decimated 

speech. If an algorithm of reasonable complexity could be developed to track pitch 

changes in highly decimated speech, the quality of the reconstructed output would 

be much higher. 

Another possible speech coding method worth investigating is the use of line 

spectral pairs (LSP) or frequencies (LSF) to transmit speech parameters to the re- 

ceiver [29]. The additional low bit rate stream could be used to considerably enhance 

the reconstructed speech. 

Lastly, an area which has received attention in the video conferencing market 

(where bandwidth is not at such a premium) is wideband audio. Wideband refers to 

coding 7 kHz of speech rather than the typical "telephone bandwidth" of 3. 5 to 4 kHz. 

Wideband audio sounds much clearer and is much more enjoyable to listen to for long 

periods of time. The scalability of this coder makes it ideal for such an application, 

enabling users or routers to prune oif the upper band if network congestion or a low 

bit rate channel is encountered. 
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APPENDIX A 

PROOF OF QMF ALIAS CANCELATION 

Given a low-pass filter, Hr(z), and high-pass filter, Hz(z), it can be shown that 

G&(z) and Gz(z) can be designed with certain characteristics to perform aliasing 

cancellation (30], As can be seen from Figure 15, the output of the system is given 

by z(k), can be compactly written in the transform domain as 

1 
X(z) = G, (z) — [H, (z)X(z) + H, ( — z)X( — z)] 

1 + Gz(z) — [Hs(z)X(z) + Hz( — z)X(-z)) (A. 1) 

where H„( — z)X(-z) are the aliasing terms caused by the decimation. The aliasing 

terms can be isolated, giving 

1 
X(z) = -X(z) [Ht(z)G, (z) + H, (z)G, (z)] 

1 + -X( — z) [Hq( — z)Gq(z) + Hz( — z)Gz(z)] (A. 2) 

where the first term is the desired signal and the second term is the undesired fre- 

x(k) 

8 (z) 2:1 I:2 G, (z) 

x ) 

If(z) 21 I:2 G (z) 

Fig. 15. Two-band QMF without coding 



55 

quency aliasing. This aliasing can be made to equal zero by carefully choosing the 
filter designs such that 

Hi(-z)Gi(z) + Hs(-z)Gs(z) = 0 (A. 3) 

First, the low and high pass synthesis filters can be chosen to be mirrors of each other, 

Hs(e' ) = H, (e'& + l) 

or equivalently, 

H, (z) = H, ( — z) (A. 4) 

Since Gi(z) must be a lowpass filter, an obvious candidate is 

Gi(z) = Hi(z) (A. 5) 

When equations A. 4 and A, 5 are substituted into A. 3, it is apparent that 

Gs(z) = -Hs( — z) (A. 6) 

which when when applied to equation A. 2, gives 

X(z) = — X(z) [Hi(z)Gi(z) + Hs(z)Gs(z)] 

-X(z) [Hiz(z) — His( z)] 
1 

(A. 7) 

leaving no aliasing in the reconstructed output signal. 
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APPENDIX B 

QMF FILTER COEFFICIENTS 

The QMF coeificients used in this system were produced and verified by John- 

ston (18] to minimize stop band energy and ripple for a given set of constraints, such 

as filter order and width of the transition band. 

Listed below are Johnston's coefficients which were used in the implemented 

system. They represent a compromise between quality and computational complexity. 

Although only the first half of the coefficients for the filter, called 24C, are needed to 

describe it, all coefficients will be listed to demonstrate the symmetry of the filters. 

Continuing with the notation from Figure 5 and equation 4. 1: 

A, (k) = ( 
0. 0003833096, 
0. 0014464610, 

-0. 0256153300, 
0. 4731289000, 
0. 0442397600, 
0. 0064858790, 

-0. 0013929110, -0. 0013738610, 
-0. 0190199300, 0. 0038915220, 
-0. 0982978300, 0. 1160355000, 
0. 1160355000, -0. 0982978300, 
0. 0038915220, -0. 0190199300, 

-0. 0013738610, -0. 0013929110, 

0. 0064858790, 
0. 0442397600, 
0. 4731289000, 

-0. 0256153300, 
0. 0014464610, 
0. 0003833096 

h, (k) = ( 
0. 0003833096, 
0. 0014464610, 

-0. 0256153300, 
0. 4731289000, 
0. 0442397600, 
0. 0064858790, 

0. 0013929110, -0. 0013738610, 
0. 0190199300, 0. 0038915220, 
0. 0982978300, 0. 1160355000, 

-0. 116035SOOO, -0. 0982978300, 
-0, 0038915220, -0. 0190199300, 
0. 0013738610, -0. 0013929110, 

-0. 0064858790, 
-0, 0442397600, 
-0. 4731289000, 
0, 0256153300, 

-0. 0014464610, 
-0. 0003833096 



APPENDIX C 

SNR CALCULATIONS 

The signal to noise ratio (SNR) calculations used in this research are computed as 

shown below, with s(k) representing the original, uncoded speech samples and i (k) 

representing the final reconstructed output sequence of N samples. 
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