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ABSTRACT

Shear Deflection of Composite Wood Beams
(May 1992)
Thomas David Skaggs, B.S., Texas A&M University
Chair of Advisory Committee: Dr. Donald A. Bender

Deflection of beams is comprised of two parts: 1) bending and 2) shear deflection. The
shear component is usually ignored for most structural engineering applications; however,
if the beam’s construction material is lumber the shear contribution can be a significant
portion of the total deflection. Calculating shear deflection for homogeneous beams is a
routine mechanics of materials problem; however, when the beams are non-homogeneous,
such as glued-laminated timber beams (glulam), or have non-rectangular shapes such as

I-beams, it becomes more difficult to characterize deflection.

The primary objective of this research was to develop an algorithm to predict shear stress
and deflection for layered composite wood beams. The shear stress model was developed
using energy methods and Castigliano’s theorem, The deflection model was compared
to theoretical results for homogeneous beams and other published shear deflection models
with close agreement being observed between the methods. The model was also
compared to actual full sized glulam beam test data. Good agreement was achieved
between predicted values and the actual measured values. A sensitivity analysis was
performed in this research on step size for the numerical integration and on the effect of
shear modulus (G) on the shear deflection.

The shear deflection model compared favorably to published models, and it has the
capability of predicting shear stress in a composite beams, which is unique to this model.
The advantage that this composite shear deflection model has over other published
composite models is that it can calculate shear deflection for more general shapes than



previously published models.  This model can calculate shear deflection for both
composite glulam beams and composite I-beams. Several published models are limited

to a deterministic value for G; whereas, this model allows G to be a random variable.
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CHAPTER 1

INTRODUCTION

PROBLEM STATEMENT

There can be many limit states of a structural design, but one of the most important is
deflection. For example, if a door header has excessive deflection the door will not shut
properly. Floor systems are another design controlled by deflection. A floor with
excessive deflection can cause discomfort by having a "bouncy feeling”; thus, users may
lose confidence in the design. Similarly, a design that is sensitive to deflection, but is
often used in the construction industry, is flat roofs. Accumulation of water can occur
on flat roof systems, causing deflection due to the weight of the water, which leads to
even more ponding. This is commonly referred to as the "P-delta” effect. In these types
of designs, the deflection can be attributed to beams, which are the most common
structural member.

Deflection of beams is comprised of two parts: 1) bending and 2) shear deflection. Shear

deflection is ignored in many structural engineering applicati This is a

assumption for steel structures because the total deflection is usually dominated by the

bending component, except for very short, deep beams. The U.S. engineering practice
accounts for shear deflection of wood members in a more subtle fashion. The expected
deflection is commonly calculated using equations that only take bending into account.
Design values for (E) in the National Design Specification (NDS) (1986) are reduced by
about 3.4%, according to American Society for Testing and Materials (ASTM) D 245
(1991b) and ASTM D 2915 (1991c¢), to indirectly account for shear deflections within
span-to-depth (L/d) ratios of 15 to 25. The Commission of the European Communities
in Eurocode 5 (1987), as cited by Chui (1991), approach this problem in a more direct

References in this thesis follow the format established in Wood and Fiber
Science.



manner. The true bending E is published as the design E, and the code specifies that
shear deflection must be included in the total deflection prediction.

Shear deflection is related to the shear modulus (G) of the beam, which can also be
referred to as modulus of rigidity. The relationship of E and G for a homogeneous,

isotropic material is given by Gere and Timoshenko (1984) as follows:

._E a.n
2(1+v)

where:
shear modulus,
modulus of elasticity and

E
v Poisson’s Ratio.

Poisson’s Ratio for steel is assumed to be 0.3 in the elastic range (Salmon and Johnson,
1990). This yields a ratio of E/G of 2.6; however, the ratio of E/G for wood is generally
assumed to range from 11 to 16 (USDA, 1987). It should be noted that Equation 1.1 is
invalid for wood because of its orthotropic characteristics. This characteristic explains
why there is such a large discrepancy between the E/G ratio of steel and wood. This
large ratio for wood indi the shear p of the total deflection can be more
significant for a wood beam than for a steel beam. Hence, shear deflection should be
accounted for in cerfain situations.

The current practice for calculating deflection of wood beams is to use flexural equations
found in many textbooks. These equations are derived for bending only, but since the
design E is reduced to account for shear deflection, they give reasonably accurate
predictions for L/d ratios ranging from 15 to 25. However, if the L/d ratio is less than
15, the predicted deflection will be less than the actual deflecti Modified eq

can be used (Hoyle and Woeste, 1989) that take shear deflection into account; however,

they are valid only for homogeneous materials.



Simple methods of predicting shear stress and deflection are needed for composite layered
wood beams. The finite element approach is effective for predicting shear in beams;
however, it is computationally intensive and requires detailed material property data for
each element, or cell. Transformed section approaches have been developed for layered
beams with homogeneous laminations; however, these methods do not fully account for

lengthwise variability of the lamination elastic properties. A general, versatile method

1 A

and

is needed to predict shear in beams for the purposes of ing design prc

assessing the need for research on localized elastic properties of wood (particularly shear
modulus).

RESEARCH OBJECTIVES

The specific objectives of this research are:

L. Develop an algorithm to predict shear stress and deflection for layered composite
wood beams.

2. Compare the shear deflection algorithm with published methods. Comparisons
will be made under the assumptions of homogeneous beams, and layered beams
with homogenous properties within each lamination.

3. Experimentally validate the shear deflection algorithm using test data on glulam
beams.

4. Integrate the shear deflection algorithm into an existing glued-laminated timber
beam (glulam) model (Hernandez, 1991) and perform sensitivity analyses on
parameters such as E/G ratios, step size for numerical integration, and beam
layups.

5. Compare shear deflection predicti from the algorithm with those using
approximate methods recommended for design purposes.



CHAPTER I
LITERATURE REVIEW
PREDICTION OF SHEAR DEFLECTION

Many mechanics of materials textbooks address the deflection of homogeneous beams
with rectangular shaped cross sections. However, cross sections with irregular shapes or
containing nonhomogeneous materials are often "beyond the scope of the textbook". The
basis for many of the deflection equations for homogeneous materials are energy methods.
The strain energy due to bending and shear can be found in several textbooks (e.g. Boresi
and Sidebottom, 1985) as follows:

”=fff(2—15 (oxf + 515&)’) av @D

where:

internal energy of the stressed volume,
modulus of elasticity,

bending stress at any point in the beam,
shear modulus and

shear stress at any point in the beam.

< Qgcn o
I O

Castigliano’s th shown in Equation 2.2, then can be applied to Equation 2.1 to find
the deflection of the member. This also is a common mechanics problem covered by
many textbooks such as Boresi and Sidebottom (1985).

1Y)
8§ = — 2.2
el F, 2.2)
where:
& = deflection at point { and
F = concentrated load located at point i.



To find deflection, Equation 2.1 is integrated across the width and depth, and the partial
derivatives are taken with respect to F,. Equation 2.3 (Boresi and Sidebottom, 1985)
represents the final form after these operations have been performed.

L
f ﬂﬂdx 2.3
) EI aF, GA F,

where:

bending moment as a function of x,

moment of inertia,

form factor as a function of beam geometry,
shear as a function of x and

area of the cross section.

E Rl <
LI T T

The two terms, k and A, result from algebraic cancellations. The k factor values can be
derived for different cross sections. For a rectangular cross section, & equals 1.20, and
for I-beams, k is approximated as 1.00; however, only the area of the I-beam’s web is
used for A (Boresi and Sidebottom, 1985). This general method to calculate deflection

has a large range of applications; however, it is limited to homogeneous materials.

Wangaard (1964) studied the elastic deflection of small-scale composite beams. These
composite beams were 1" x 1" x 16" with wood cores that were 90% of the inner portion
of the cross section. The wood cores were covered with fiberglass reinforced plastic
faces on the outermost fibers, about the axis of bending. The first model examined by
Wangaard predicted deflection using the usual elastic formulas that are derived from the
first term of Equation 2.3 which only accounts for bending. The transformed section
method (see Gere and Timoshenko, 1984) was used to calculate E, and it was found to
under-predict deflection in all cases. The second model included the second term of
Equation 2.3 which accounts for shear deflection. This model used G of the wood core,
k equal to 1.00 and the average of the gross (wood and fiberglass) cross sectional area and
the wood core area for A. The accuracy of this model was increased by including the
shear term. This method is limited to cross sections that are symmetric about the neutral



axis, referred to as balanced layups, and ignores the variability of material properties (£
and G) along the length of the beam.

Biblis (1965) examined the deflection of small scale solid wood beams of varying span-to-
depth (L/d) ratios. Several wood species were studied for the 0.65" x 0.65" test
specimens. An equation was used that could be derived from Equation 2.3 to predict
deflection for simply supported homogeneous beams with & equal to 1.20. This method
is limited to homogeneous simply supported beams. An important finding was the shear
component could account for over 40% of the total deflection at a L/d ratio of 8 for
Douglas-fir lumber. This is significant because this species grouping is commonly used

in glulam beams.

Orosz (1970) used energy methods to calculate shear deflection of wood beams. He
reduced the second integral in Equation 2.3 to multiplication of the area of the shear
diagram with the ordinate of the desired point of shear deflection. It was also noted that
k changes as the shape of the beam changes. The form factor (k) was derived for an I-
beam with the flange and webs having different lumber properties. It can be applied to
glulam beams, but is limited to a cross section that is symmetric about the neutral axis,
and only allows two different lumber grades. A possible extension of this method would
be to derive a k factor for a multi-layer composite beam that has different wood
properties; however, this would be mathematically complex for a general multi-layered
beam, would still be limited to balanced layups, and would ignore variability of the
material properties along the length of the beam.

Mansour and Gopu (1990) presented a method to predict the deflection of long-span pitch-
cambered glulam beams, using Equation 2.3 with a transformed section analysis. They
T d a method to calculate k for unbalanced layered beams. Monte Carlo simulation
was performed to randomly assign E values along the length and depth of the beam;
however, the variation of E/G was ignored, and was limited to 16. The simulated beam
was then analyzed using a finite element method. They concluded that simple equations




for homogeneous beams provide a good prediction of total deflection as long as the shear
component was taken into account. This is significant since simple deflection equations

used in design ignore E variability.

Swift and Heller (1974) present a Quasi-Newton method to predict deflection and shear
stress distribution in layered beams. Their method analyzed glulam beams with different
percentages of high quality wood (E = 1.8 x 10° psi) and low quality wood (E = 0.8 x
10 psi). They noted that a large portion of weaker wood in the cross section caused the
shear deflection to predominate for short beams. Their method would allow for
unbalanced layups; however, it would not allow for variation along the length of the

laminates.

Baird and Ozelton (1984) used the shear portion of Equation 2.3 with a factor to account
for tapered glulam beams, and presented a method to approximate k for different shapes,
such as I-beams. They suggested a simplified approximate approach for calculating the
deflection of I-beams that defines the 4 term in Equation 2.3 to be equal to the area of
the web, and the form factor equal to unity. They also presented a simplified version of
Equation 2.3, which they reduced to tabular form for solid sawn lumber. Although these
tables are adequate for solid sawn lumber, they are not applicable to composite cross
sections.

Since composite cross sections often utilize the stiffer materials on the outer portion of
the cross section and the less stiff materials for the core, it is intuitive to use the method
of transformed ions to calculate the bending stresses and deflections. Hilson et al.

(1990, 1988) and Pellicane and Hilson (1985) applied this method to calculating shear
deflection. They presented a finite difference equation that for bending and

shear as follows:



5'1:)5[M+ “’l”ﬂ]m] 2.4

where:
R = total bending and shear deflection at A4,
M; = bending moment at i,
m; = bending moment at i due to unit load at 4,
\4 = shear force at i,
v = shear force at i due to unit load at A4,
EL = bending properties of transformed section at i,
GA; = shear properties of transformed section at i,
k = form factor taken as 1.20,
Ax = finite interval between sections in each element and
n = number of longitudinal elements.
This equation is similar to Equation 2.3 with the integrals being replaced by ions

and the partial derivatives being replaced by m; and v;, which are the bending moment and
shear force, respectively, from a unit load applied at midspan. However, this equation
is not exact for composite cross sections with varying E because it does not account for
the changes in the shear stresses across the various laminations. They suggested using
the transformed area of the cross section with the k& factor equal to 1.20 for a rectangular
cross section, but these two terms are based on the assumption of a rectangular cross
section, not a transformed non-rectangular cross section.

CHARACTERIZATION OF ELASTIC CONSTANTS

Being able to predict the behavior of wood under various loads is an important task.
Gaining a better und ding of its ck istics could infl desi to use this
* material for more complex structures. Many models can predict the theoretical stresses
and strains of wood systems, but these models require input in the form of elastic

constants that are not completely characterized for every wood species grouping. The
easiest property to obtain and the most studied is E. The next most studied is G and the



last, and probably least studied would be the Poisson’s ratios (v) about the three principal
planes of the wood. These principal axes are referred to as longitudinal (L), radial (R)
and tangential (7) (see Bodig and Jayne, 1982).

Some earlier work on the relationships of E and G was done by Doyle and Markwardt
(1966). They tested full sized southern pine dimension lumber for a variety of structural
grades. Modulus of elasticity was measured flatwise in bending and G was measured
using a torsional technique. They regressed E and G and showed that the coefficient of
correlation (r) varied from —0.342 to +0.228 depending on the lumber grade, and the
E/G ratios ranged from 8.1 to 13.4 with the average being 11.6. Doyle and Markwardt
(1967) followed this study with another series of tests for southern pine dimension
lumber. The E was measured in tension and G again was measured in torsion. The
results from these tests were similar to their previous test results. The r values for £
versus G ranged from —0.147 to +0.554, and the E/G ratio ranged from 11.1 to 15.1
with an average of 12.8. They stated that G appeared to be less affected by grade or
quality of the material than E. Doyle (1968) tested another sample of No. 2 dense kiln-
dried southern pine dimension lumber. He observed that G did not correlate with flatwise
E for his series of tests and the average E/G ratio was recorded as 13.5. These three
studies helped determine the E/G ratio of 12 for southern pine lumber, published in the
Wood Handbook (USDA, 1987); however the poor 7 values suggest that a deterministic
number may' not best represent the E/G ratio.

Palka and Barrett (1985) presented a report to the ASTM task group investigating the
validity of Table 2 in ASTM D 2915-74. This testing consisted of a sample of Canadian
Spruce 2" x 4" and 2" x 8" structural lumber specimens. The test was performed under
third point bending with the lumber being loaded edge-wise. The total deflection at

idspan and deflecti lative to load heads were measured giving an indication of
gross-E, with shear deflection included, and true-E, without shear deflection, respectively.
The true-E/G ratio can be determined from the two E values. They stated that there was
a large amount of variability in the true-E/G ratio for the two samples and that the
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average value was considerably larger than the reported value of true-E/G of 16. They
concluded that true-E/G is dependent on the test method and lumber quality. The table
that instigated this investigation has since been replaced by a footnote (ASTM, 1991c¢) that
states, "Limited data indicate that the E/G ratio for individual pieces of lumber can vary
significantly from E/G = 16 depending on the number, size and location of knots present,

the slope of grain in the piece and the span over which deflections are measured."

Gunnerson, et al. (1973) subjected flat plates to a two-way bending moment, caused by
a triangular load configuration. They found they could simplify the calculations of E by
reducing the flat plate to an equivalent simple beam with point loads; however, correction
factors were required to take into account the two-way bending moment, It was
concluded that the plate testing method is a good procedure for determining elastic
parameters of wood. The disadvantage of this procedure is that the plates are time
consuming to prepare. This method works best for plywood, particleboard and
fiberboard, but is ill-suited for structural lumber.

Bodig and Goodman (1973) used plate bending and plate twisting tests on small scale
clear wood specimens to predict the elastic constants of the wood. These specimens
consisted of several softwood and hardwood species. The plates were manufactured to
0.3" x 6.5" x 12.5" with six different plate orientations (LR, RL, LT, TL, TR, RT) to
measure E and » about the different axes. The plates were then cut down to the
dimensions 0.3 x 6.5" x 6.5" to measure G by a plate twisting test. The authors
developed power-type regression equations that related the elastic constants from their
results. They found a significant differences between the regression lines for softwood
and hardwood species. In addition to the elastic parameters, they correlated the elastic
constants to the density of the material. This resulted in a coefficient of variation on the
order of 20 percent for the elastic properties versus density regressions. Power curves

were statistically significant for most of the relationships; h , the regression was

not significant for Gy, versus E, and G versus E, for the softwood species. This study
highlights the problem of trying to predict G by using E. Their study showed that
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predicting G and E independently using specific gravity yielded r values for the
regressions with statistical significance, indicating that E/G is not a constant and should

be treated as two independent stochastic variables.

Goodman and Bodig (1978) presented a review of li e and a y on the
problem of modeling elastic behaviors of wood. They commented on the problem of

modeling knots and associated grain deviations. Much of the data used to characterize
the elastic parameters of wood are collected from clearwood specimens; however, knots
cause the analysis to become exceedingly complex. The grain deviations around the knots
cause the principle axes (L,R and T) to be rotated, thus making the modeling procedure
very difficult. It was concluded that compression along the ring and grain of wood (ie.
knots and grain deviations) is not completely understood and further refinements of theory
are needed. They also theorized that the assumptions of orthotropic symmetry in the
radial direction is most often the cause for deviation between theoretical and experimental
measurements. They suggested that a possible method to model lumber is an orthotropic
finite element model; however, the tensor transformations for grain deviations and knots
may not be a valid technique.

Ebrahimi and Sliker (1981) measured G in small scale specimens in tension. The
specimens were 0.25" x 4" x 32", and were instrumented with a strain gage rosette that
consisted of free-filament strain gages. These gages had to be specially fabricated because
errors caused by reinforcing occur when measuring materials having an E less than one
million psi, as in wood at large angles to the grain direction. Most of the stiffness of
commercial strain gages comes from the plastic or paper backing instead of the strain
sensitive wire or foil. The individual strain gages were oriented 45 degrees apart and the
angle of grain to angle of applied stress varied between 20, 35, 50 and 65 degrees. The.
G values recorded from the tensile specimens were compared to flat plates 0.5" x 14" x'
14" prepared ding to the procedure outlined in ASTM D 3044-76 (1991d), Standard
Test Method for Shear Modulus of Plywood. Shear moduli varied within +10% of the
G measured from the plate test at a load to grain angle of 20 degrees. The advantage of
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this test method is that the specimens can be removed from structural lumber and are
relatively easy to fabricate, as compared to plate testing. The disadvantages of this test
method are: having to "hand-make" the strain gage rosettes, orienting the grain angle of
the specimen when it is fabricated and limiting specimens to clearwood and straight-

grained.

Zhang and Sliker (1991) tested small scale specimens in tension and compression to
measure G and compared them to the G measured from plate testing in accordance with
ASTM D 3044-76 (1991d). Two sets of off-axis specimens were used, with one set for
loading in tension and the other in compression. The tension specimens were 0.5" x
1.25" x 11" and the compression specimens were 1.25" x 1.25" x 7". Free-filament
strain gages were manufactured manually and were placed in rosettes as described
previously (Ebrahimi and Sliker, 1981). The load to grain angles for both specimens
were 0, 10, 20 and 45 degrees. The tension specimens compared more closely to the flat
plate testing than the specimens, b the pression load heads induced
shear distortion. They also confirmed Ebrahimi and Sliker’s (1981) earlier finding that
the best prediction of G in tension was at a load to grain angle of between 20 and 30

degrees. This method, although promising, is limited to straight-grained woods.

Davalos et al. (1991) computed G from a torsional test for small scale southern pine
glulam beams, Shear modulus was measured about two planes, Gy and Gy, and a
difference between the mean values of approximately 7 percent was found. They stated
that this is statistically significant, but it can probably be ignored in practical engineering

alad

applications; therefi can be as se isotropic. They then compared

Saint-Venant’s solution for homogeneous, elastic, isotropic, rectangular sections to
Navier’s solution for isotropic circular cylinders (Hsu, 1984). The rectangular sections
were 1.0" x 1.0", 1" x 0.5", 1.5" x 0.5" and 2.0" x 0.5" and the circular sections had
a diameter of 1.0". The different depth-to-width ratios of the rectangular cross sections
had no effect on the computed G. These values were close to the G values computed
from the circular cross section. These findings simplify the measurement of G, because
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specimens do not have to be removed from a piece of structural lumber with a certain
grain orientation. Their findings also simplify the modeling of composite wood beams
by suggesting that Gy is equivalent to G;r. This allows a composite beam to be modeled
with respect to G without regard to the orientation of the growth rings.

Bradtmueller et al. (1991) subjected oriented strandboard (OSB) to a quarter-point and
five-point loading schemes. These samples of OSB had thicknesses of 3/8", 23/32" and
1-1/8". The quarter-point loaded beams had two linear variable differential transducers
(LVDT) located at midspan. One LVDT measured the deflection relative to the load
head, and the other measured total midspan deflection. The five-point loaded beam had
3 reactions and two load heads placed symmetrically along the length of the beam. Two
LVDTs were located adjacent to the load heads to measure deflection of that section of
the beam. Using the deflections from both testing apparatuses, E and G could be solved
for simultaneously. The sensitivity of the different parameters was analyzed and an
important finding was that a small error in calculating E magnified the error in G. This
is caused by E being considerably larger than G; therefore, causing the equations to be
slightly ill-conditioned. They also found that these measurements were sensitive to
dimension measurements especially depth and span. They noted that experimental results
of G were lower than expected and theorized that this was caused by the low shear
stiffness in the core which corresponded to the highest shear stresses.

Chui (1991) used a vibrati hnique to simul ly evaluate E and G. His findings
revealed that the common assumption of E/G equal to 16 for Douglas-fir (USDA, 1987)
may not be valid. Chui’s data indicated E/G is a random variable, not a deterministic
value; furthermore, it was suggested to use E/G of 20 for clearwood and 30 for lower
quality lumber that contains knots. This is meaningful since the beam combinations found
in the American Institute of Timber Construction (AITC) 117 - Manufacturing (1988)
often specify that 50% of the inner core of glulam beams can be made with low quality
lumber.



CHAPTER III

MODEL DEVELOPMENT

The use of composite beams such as glulam and I-beams with lower quality wood in their
cores and webs, respectively, have made the problem of calculating deflections due to
shear more complex. Varying E and G across the cross section and along the length for
multi-layered beams increases the difficulty of calculating shear deformation. Researchers
(Mansour and Gopu, 1990, and Orosz, 1970) have p d methods to calculate & for
composite beams, for use in the traditional shear deflection equation (Equation 2.3);

however, a more versatile method is needed to facilitate studies of spatial variation of
Eand G.

SHEAR STRESS DERIVATION FOR COMPOSITE BEAMS

An intuitive start to deriving an equation for shear deflection that considers a composite
cross section would be to critically examine Equation 2.3; however, only the second term
of this equation needs to be modified. The derivation of Equation 2.3 assumes the shear
stress is equal to the classic shear stress used in many applications. This equation can be
found in Gere and Timoshenko (1984).

P 3.1

where:

shear stress at any point in the cross section,
shear force,

first moment of the area,

moment of inertia and

base of the cross section.

o

TNRQ
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Although, this simple equation is not directly applicable to layered beams, the theory of
deriving Equation 3.1 can be extended to layered beams. Finding the shear stress
distribution in a homogeneous beam is straightforward; however, as material properties
vary, as in a composite beam, so do the shear stress distributions. Once the shear
stresses are derived for a relatively simple composite beam, it is an easy extension to
cover more complex composite beams, such as glued-laminated timber beams (glulam)
or I-beams. Finally, after the shear stress distribution is characterized for a composite
beam, shear deflection can be found by applying the theory of complementary virtual

work.

Figure 3.1(a) illustrates a simple composite beam that is stressed by arbitrary loads P, Q
and w. Figure 3.1(b) represents the cross section of this beam with width b and height
h. The outer laminations of this composite beam have modulus of elasticity of E, and the
inner laminations have modulus of elasticity of E,. It is assumed that E, is greater than
E,, an assumption that would be generally true for glulam beams. Composite beams are
often analyzed using the transformed-section method, because the usual elastic beam
formulas can be used with slight modification. Figure 3.1(c) illustrates the transformed

cross section.
[
: %I %
”‘g dxll %,
L Section A-A Transformed—Section
'

Y (@) (b) )

Figure 3.1: Simple composite beam.

This method transforms the composite cross section to a homogeneous material with a
modulus of elasticity of Ex, where Ex is an arbitrary constant, The width of the i*
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lamination is adjusted by the ratio of its corresponding E; to the Ex. Equation
3.2 demonstrates this transformation.

E
by, = F‘ b, 3.2)
where:
i = adjusted width of the * lamination,
E, = modulus of elasticity of the /* lamination,
Ex = transformed modulus of elasticity and
b, = width of the  lamination.

The elastic flexural formulas then can be used with slight modification. The bending
stress in the cross section is represented by:

My 3.3)

bi = T'

1|ty

.

where:

normal bending stress in the /* lamination,

bending moment applied at the cross section,

distance from the neutral axis to the point in question and
moment of inertia of the transformed cross section.

~exg

An element of the original simple composite beam, Figure 3.1(a), is removed and
examined in greater detail in Figure 3.2(a). This cut has length dx and cross sectional
properties identical to the original beam shown in Figure 3.1(b). The element is subjected
to a moment M on the left side and an opposing moment on the right side M + dM. The
bending stress is superimposed on Figure 3.2(a). Note the discontinuity in the stress
distribution corresponding to the different values of E, with the slope becoming steeper
as E increases. Both of these properties are characterized by Equation 3.3. The shaded
area in Figure 3.2(a) is now examined in greater detail in Figure 3.2(b). ‘
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Figure 3.2: Stresses, forces and moments on the composite cross section.

The bending stresses are resolved into component forces F in Figure 3.2(b). The shear
V acting parallel to the line OP can be found using simple statics as follows:

):;, =0=Fy +Fp -F - F -V, 3.4
where:
Fy, = resultant bending force on the right side in the i* lamination,
Fy = resultant bending force on the left side in the  lamination and
Vor = shear force acting paraliel to line OP.

Rearranging terms to solve for V!

Vop = Fy + Fy - F, - F, 35

The bending stress (Equation 3.3) can be integrated over each area A4;; thus, yielding the
resultant component forces over their respective areas. These resultant forces can then
be substituted into Equation 3.5 to form Equation 3.6. Figure 3.2(c) is a section removed
from 3.2(a) illustrating the infinitesimal area d4;. The area of integration 4; must be

T d as the modulus of elasticity ch ;




18

Vop = E (M+am)y a, +f§ Med)y gy
wE L LE L .
_ﬂﬂ%ﬁﬁm%
A E. ] 4 E. I
where: A4, = area of integration of the /* lamination and
Equation 3.6 can be simplified as shown in Equation 3.7,
_ E amy E, amy
Va,—ZfETdAI+£ETdA2 a7
N

The shear stress 7, can be found by dividing the shear force acting parallel to line OP

by the area that it acts over as follows:

VOP
= OF 3.8)
Tor = mp
where:
dx = length of cut in the simple composite beam and
Top = shear stress acting parallel to the line OP.
Equation 3.9 is the result when Equation 3.7 is substituted into Equation 3.8.
E aM 1 E aM 1
=— == — [ydd, + = — — 3.9)
Tor E,dzl,b!.’ '+E,dxl,b;!;yt“’ 69

Equation 3.9 can be simplified by noting the shear force V is the derivative of the moment
dM/dx, and the area integral is commonly known as the first moment of the area Q.



Equation 3.10 gives the shear stress in the simple composite beam acting parallel to line
OP.

Vi
o EYe K Yo, .10
E Ib E,  Lb
where: Q; = first moment of the area of the /* lamination.

Equation 3.10 can be expanded to the general case for any number of laminations, shown
by Equation 3.11. This is the general form of the equation for shear stress at any point
\, along the depth of the beam.

A
vy EG, 3.1
¢, = %t
* E,Ib
where: 7, = shear stress at any point A along the length and depth of the beam.

A similar form of this equation can be found in Allen and Haisler (1985) in the advanced
beam section.

SHEAR DEFLECTION DERIVATION FOR COMPOSITE BEAMS

Once a general equation for shear stress is derived, the internal energy can be found by
substituting Equation 3.11 into the second part of Equation 2.1, yielding Equation 3.12.

1 14 A )
v.=55 Il (mT (?:; E.O,]’ dedydx @.12)

Applying Castigliano’s Theorem (Equation 2.2) to Equation 3. 12 results in Equation 3.13.



20

4 3 2
| 4 av
Y E Y &dydx (3.13)
o (m ‘Q‘] aF, “¥

Integrating across the base yields:

L 2
-1 v (3.14)
S G { [.. E,ok] o, Y&

n|5%nl=~

Equation 3.14 can be integrated numerically by expressing it in the form of Equation
3.15. The integrals are replaced with summations and the partial derivatives are replaced
by v, which is the shear component of a unit load applied at midspan. The shear
modulus, G;

i

, is placed inside the summations so it can vary along the length and depth
of the beam. The Ex is removed from inside the summations because it is constant across

the beam length and depth.

J 2
s 7y, \newty ; E.Q, 3.15)

1 Ay ( Ax

s =1 Ziv
OB |& B A b6

(]

where:
&,y = shear deflection at point x,
Ex = transformed modulus of elasticity,
ncutx = number of intervals along the x-axis,
\A = shear force at i,
v = shear force at i due to unit load at x,
I, = moment of inertia of the transformed cross section at i,
ncuty = number of intervals along the y-axis and
Ey = modulus of elasticity of the #* lamination at i,
O, = first moment of the area of the #* lamination,

actual width of the /* lamination,
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G; = shear modulus of the j* lamination at i,

Ax = width of intervals along the x-axis,

Ay = width of intervals along the y-axis.
SUMMARY

An equation was derived to calculate the shear stress at any point along the length and
depth of a composite beam. This equation then was extended using energy methods,
resulting in an equation that characterized the deflection from any arbitrary flexural
loading condition. Assumptions and limitations to the developed equations are discussed

next.
Assumptions
The assumptions that led to the derivation of Equations 3.11 and 3.15 are as follows:

1. The shear force on the beam acts parallel to the shear stresses.
2. The shear stresses act uniformly across the width of the beam.

3. The material is linear elastic homogeneous and is only subjected to small
displacements.

4. Deformations are about the plane of bending (i.e. no lateral-torsional buckling).
Limitations

A limitation of the model is that the shear stress formula (Equation 3.11) is limited to
beams that are deeper than they are wide. When b=h, the true maximum shear stresses:
can be significantly larger (13% for a homogeneous beam) than what Equation 3.11°
predicts (Gere and Timoshenko, 1984). This underprediction of shear stress would also.'
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cause an error in the amount of shear deflection predicted by Equation 3.15 for a
composite beam.
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CHAPTER IV

MODEL VERIFICATION

Verification of a model is simply to determine if the model performs as intended. There
are numerous techniques that can be used to verify the shear deflection model for
composite beams developed in Chapter III (Equation 3.15). One possible comparison
would be to use a finite element (FE) method to characterize the deflection caused by a

L.

certain loading condition. The problem with this

is the input p s, i.e.
material properties, are neither completely characterized for every wood species grouping
nor understood in the general area surrounding naturally occurring strength reducing flaws
(e.g. knots and grain deviations). If a discrepancy is found between the FE model and
Equation 3.15 it is not known if the error is with the material property assumption or with
the shear deflection model. The verification approach used here is to compare Equation
3.15 with other energy methods. By comparing the shear deflection model with different
energy method models, a measure of confidence can be obtained if the models compare

favorably.

MODEL COMPARISON

Symmetric Two-Point Loaded Homogeneous Rectangular Beam

4

The first comparison d is for a h lar beam that is simply

supported, and is loaded by two symmetrically placed loads. This case scenario is fairly

simple; therefore, the exact theoretical solution was obtained by using energy methods.

The predicted deflection from Equation 3.15 was then compared to the exact solution. -
The two-point loading was selected because it is a more general loading case than a single
concentrated load located at midspan. Figure 4.1 is a graphical representation of this case

scenario with the shear (V) and M) di plotted b h the beam sct

diagram. The beam is loaded with symmetric two-point loads P/2, located at a distance
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a from the ends of the beam. A fictitious concentrated load Q is applied at midspan so
deflection could be found at that point. The width and depth of the beam are b and 4,
respectively. Two local coordinate systems are defined (x; and x,) to simplify
characterizing the V and M equations that are used in the deflection calculations.

b

e-—- 0

; N
e U

L/2 L/2 Cross—Section

M(x)
Figure 4.1:  Shear and moment di for a homog beam.

The moment and shear equations and the corresponding partial derivatives must be broken
into four separate equations because of discontinuities, and is written as follows:
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Equation 4.1 is the energy method procedure with the shear and moment equations
substituted into Equation 2.3 to find the midspan deflection. The virtual load Q applied
at the midspan is a fictitious load and is equal to zero; therefore, it was excluded from
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the deflection calculations; although, the partial derivatives associated with Q must be
included.

17 Pxox k
5=_f D + =
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where:
P = sum of the two symmetrically placed loads,
a = distance from the two-point load to the end of the beam and
L = distance between the beam reactions.

After integration and algebraic simplification, the final deflection equation for a simply

supported two-point loaded homc beam is exp d as follows:
8 =L (312 4q2) 4 K2 @
48EI 2G4
As before, the first term rep the bending p of deflection and the second
term rep the shear p

The following beam dimensions are assumed for this verification: L = 456 in., a = 180°
in., b = 5.125in., and £ = 24 in. Other assumptions include: the beam is homogeneous
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with E = 2.0 x 10° psi, G = (E/16) and P = 1000 Ibs. The form factor (k) was equal
to 1.20 since the cross section was rectangular. The bending term from Equation 2.4 and
the composite shear deflection equation (Equation 3.15) were encoded in a FORTRAN
routine (sece Appendix A). Additional parameters needed for the algorithm were ncutx =
76 with a Ax = 6 in. and ncuty = 16 with a Ay = 1.5 in.

Table 4.1 displays the results of the two methods. The two models compared favorably
for both bending and shear. Both bending deflection and shear deflection predicted from
the model were consistent to four significant digits. The small error could be minimized
even more if ncuzx is increased; however, the error is less than three hundredths of a
percent. This error is insignificant since the variability of all material properties prevent
the actual deflection from being calculated to this much accuracy. The numbers were

carried out to six significant digits for comparison reasons, not to imply false accuracy.

Table 4.1: Results from the symmetric two-point loaded homogenous rectangular
beam test scenario.

Method bending deflection shear deflection total deflection
(in) (in) (in)
Exact Solution” 0.156 951 0.007 024 0.163 975
Finite difference’ 0.156 997 0.007 024 0.164 021
error (%) 0.029 0.0 0.028
“ Calculated using Equation 4.2

* FORTRAN algorithm using Equations 2.4 and 3.15 (see Appendix A)
Uniformly Loaded Homogeneous Rectangular Beam

Beams are often subjected to uniform and concentrated loads in design applications.
Hence, it is important to predict total deflection for both types of loading conditions. The
shear distribution and moment distributions for a uniformly loaded beam are one—degree‘
higher poly jals than for conc d loads. Since shear and bending deflections are
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related to their respective distributions, the numerical integration of Equation 3.15 could
be erroneous for higher-order loading such as uniform loading; therefore, a homogeneous

uniformly loaded beam is analyzed as the second beam test case.

The exact theoretical equations for bending and shear deflection were derived for a
homogeneous, uniformly loaded beam using energy methods similar to the procedure for
developing Equation 4.2. Equation 4.3 represents the final results of this procedure.

s wl* | kwlL? @.3)

5 - 2 WL

384 EI 8GA

where w = a uniform load.

The uniform load, w, for this test case was taken as 10 1bs/in. All other parameters for
the FORTRAN algorithm were identical to the two-point loading scenario discussed
previously. Table 4.2 presents the results from this case scenario. The bending
deflection predictions were consistent to three significant digits and the shear deflection

predictions were consistent to four significant digits.

Table 4.2:  Results from the uniformly loaded homogeneous rectangular beam test

scenario.
Method bending deflection shear deflection total deflection
(in) (in) (in)
Exact Solution” 0.476 784 0.020 286 0.497 070
Finite difference’ 0.476 850 0.020 286 0.497 136
error (%) 0.014 0.0 0.013

" Calculated using Equation 4.3
* FORTRAN algorithm using Equations 2.4 and 3.15 (see Appendix A)
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Although the deflection calculation lost one significant digit from the two-point loading
case, the error between the model and the exact predicted results decreased. From a

practical standpoint this error is insignificant; however, better accuracy could be achieved

by inc ing ncutx and d ing Ax. The shear deflection model performed well for

both rectangular homogeneous case studies. The two different loading conditions did not

have a significant effect on the accuracies of the shear deflection model.

Homogeneous I-Beam

In the next case study, the cross section of the beam is altered. A cross section that is
popular for structural members is the I-beam. This is an efficient section in terms of
bending and deflection because the majority of the material is located at a farther distance
from the neutral axis than a solid section with the same amount of material. Figure 4.2

illustrates the cross sectional di ions of a c ially produced wood I-beam.

1.5"
0.375" 11"
1.5"
Figure 4.2: Cross sectional di jons of a ially produced wood I-

beam.

The length of the beam was assumed to be 252 in. and was loaded at third points (@ =
84 in.) with P = 500 lbs, The material properties for this homogeneous beam were
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assumed as E = 2.0 x 10° psi and G = (E/16), The FORTRAN algorithm had additional
parameters of ncutx = 42 with a Ax = 6 in. and ncuty = 28 with a Ay = 0.5 in. To
assure accuracy of the model, cuts along the y-axis must be made at discontinuities in the
cross sections, such as changes in E and changes in the width of the member; therefore,
more intervals were required along the y-axis for the I-beam than the rectangular beam
because of the cross sectional geometry. The shear deflection model was compared with
Equation 4.2 with a modified & factor. Using the Orosz (1970) method to calculate k for
an I-beam (see Appendix B), it was found that k = 2.134 718. Table 4.3 presents the
results from this case study. The shear and bending deflection models both compare well
to the model using Equation 4.2 and the Orosz k factor.

Table 4.3: Results from homogeneous I-beam test scenario.

Method bending deflection shear deflection total deflection
(in) (in) (in)
Theoretical Soln." 0.231 627 0.032 978 0.264 605
Finite difference’ 0.231 633 0.032 978 0.264 611
error (%) 0.003 0.0 0.002

" Calculated using Equation 4.2 and k = 2.134 718 (Orosz, 1970) (see Appendix B)
* FORTRAN algorithm using Equations 2.4 and 3.15 (see Appendix A)

Composite I-Beam

A variation on the homogeneous I-beam that improves its efficiency even more is
producing it from two different materials. Since I-beams are often used in designs where
deflection or bending stress are the limiting factors, such as floors and ceilings,
manufacturers make the flanges out of high quality, stiff material; thus, increasing the
strength and stiffness of the beam. I-beams can be made with lower quality material in.
the web since longer spans usually are not governed by shear failures. Predicting bending
deflection for a composite beam simply requires using the homogeneous equation with
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slight modification. The cross section is transformed to a homogeneous material and the
moment of inertia is calculated for the transformed cross section. The E value used in
the deflection equation is the E for the transformed homogeneous material. The shear
deflection is also similar to the homogeneous case. Orosz’s (1970) method was used to
calculate & for a composite I-beam (see Appendix B). The cross section for this method
is transformed to the E of the web with the area of the transformed cross section being
substituted for 4. The value for G is assumed to be E,/16. This case study assumes
the same parameters as the homogeneous I-beam with the only differences being that the
E of the flange is assumed to be 3.0 x 10° psi and the E of the web is assumed to be 1.0
x 10° psi. The form factor was calculated as 4.621 403. Table 4.4 displays a comparison
between the shear deflection model and Equation 4.2 with the modified & factor.

Table 4.4:  Results from composite I-beam test scenario.

Method bending deflection shear deflection total deflection
(in) (in) (in)
Theoretical Soln.” 0.169 776 0.063 704 0.233 480
Finite difference’ 0.169 781 0.063 704 0.233 485
error (%) 0.003 0.0 0.002

* Calculated using Equation 4.2 and k = 4.621 403 (Orosz, 1970) (see Appendix B)
* FORTRAN algorithm using Equations 2.4 and 3.15 (see Appendix A)

Once again, the shear deflection model performed well, compared to the theoretical
deflection, for a composite I-beam. An interesting observation between the difference in
the homogeneous I-beam and the composite I-beam should be pointed out. Producing an
I-beam that has a flange 50% stiffer than the h case only reduced bending
deflection by 36%; however, decreasing the E of the webs by 50% nearly doubled the
shear deflection. This confirms intuition, because the maximum shear stress in the beam
is located at the neutral axis which is made from the less stiff material.
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Composite Glulam Beam

The final case study is for a composite glued-laminated timber (glulam) beam. Many of
the beams specified by AITC 117-Manufacturing (1988) are not symmetrically balanced
about the neutral axis. Figure 4.3 represents a layup for a 24F-V4 beam that Hernandez
(1991) used in his research. This is one of many beam combinations specified by AITC.

5.125"

I

- L2D o

16@1.5"

LI
G
Lty

o2 4

L1
302-24]

Figure 4.3: 16 lamination 24F-V4 glulam beam layup.

Glulam beam manufacturers, like I-beam manufacturers, want to optimize the material
placed in a glulam beam to best utilize their lumber resource and still maintain strength
and stiffness design values. They achieve the same goal by placing the higher quality
wood farthest from the neutral axis and the lower quality material in the core. The 24F-
V4 beam contains 50% of the abundant lumber graded L3 and only one lamination of the
scarce, high quality lumber graded as 302-24. This high quality zone in the bottom of
Figure 4.3 is referred to as the tension lamination and is located on the tension face of
the beam. This lumber grade limits the gth reducing ch: istics to small knots
and small grain deviati This unbalanced layup ch the position of the neutral
axis, so it is not necessarily in the middle of the cross section. Table 4.5 list the E
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values assumed for the five lumber grades for the test case scenario. These values were
taken from Hemnandez’s (1991) data. These values correspond to the median E values for
their respective grades.

Table 4.5:  Modulus of elasticity values d for the 24F-V4 glulam beam.
Lumber Grade Modulus of Elasticity”

Mpsi)

302-24 2.996

L1 2.710

L2D 2.557

L2 2.205

13 1.985

“ Median E values (Hernandez, 1991)

The deflection of the glulam beam was calculated similarly to the I-beam. The theoretical
deflection was calculated using Equation 4.2 with several modified parameters. The
dimensions of the beam were identical to the rectangular homogeneous loading case with
P = 1000 lbs. The cross section was transformed to the average of the E values for the
16 different laminations. The moment of inertia was calculated for the transformed cross
section, The & factor was calculated using 2 method that was developed by Mansour and
Gopu (1990) to be 1.272 750 (see Appendix C). The shear modulus was assumed to be
equal to E,,,,/16 and the A term was equal to the gross cross sectional area, which is also
equal to the transformed cross sectional area. This modified equation was compared to
the shear deflection model and the results are displayed in Table 4.6.
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Table 4.6: Results from composite glulam beam test scenario.
A

Method bending deflection shear deflection total deflection
(in) (in) (in)
Theoretical Soln.” 0.127 039 0.006 712 0.133 751
Finite difference’ 0.127 076 0.006 722 0.133 798
error (%) 0.029 0.149 0.035

* Calculated using Equation 4.2 and k = 1.272 750 (Mansour and Gopu, 1990) (see Appendix C)
 FORTRAN algorithm using Equations 2.4 and 3.15 (see Appendix A)

The bending deflection error was consistent with the other test case scenarios. The shear
deflection error was larger; however, the error for the shear deflection model is less than
two-tenths of a percent which is practically insignificant. In this case, the error term was
reduced by increasing the number of intervals along the y-axis. By increasing ncuty to
48, the error in the prediction was reduced to 0.045%. This error in the prediction was
caused by the unsymmetric cross section. The centroid does not correspond to one of the
increments; therefore, the discontinuity at the centroid was skipped. It would be most
favorable for an increment to correspond to the centroid; however, this is infeasible for
all beam layups. Although the accuracy increased as the number of increments increased,
the error in the original prediction was small and had little effect on the total deflection
prediction.

SUMMARY

The shear deflection model developed in Chapter III (Equation 3.15) was verified for a
variety of beam scenarios and compared to classical methods. The error in the prediction
associated with the shear deflection model was negligible for rectangular homogeneous
beams loaded by either two-point symmetric loading or uniform loading, as well as for
homogeneous and composite I-beams loaded with symmetric two-point loading. The error
between the theoretical shear deflection and the shear deflection model for a composite
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glulam beam loaded with a two-point symmetric load was found to be less than two-tenths
of a percent. The error term can be further reduced if the number of intervals along the
y-axis is increased for the numerical integration.

The shear deflection model was verified through comparison with existing published shear
deflection models. This model is more flexible because it can be used for either
rectangular or non-rectangular shaped beams; whereas, other beam models are limited to

either composite glulam beams or I-beams.
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CHAPTER V

MODEL VALIDATION

Validation of a model is to determine whether the model accurately represents the "real-
world" system which it is intended to characterize. The composite shear deflection model
(Equation 3.15) was validated with a set of data collected by Hernandez (1991). Lumber
data were used as input to the deflection model which back-solved for glulam beam
apparent E. The results were compared to actual glulam beam E’s measured in the
laboratory.

EXPERIMENTAL PROCEDURE

Hemandez’s (1991) and Hernandez et al.’s (in press) work on a probabilistic glulam beam
model (called PROLAM) was done concurrently with an extensive research program
undertaken by the American Institute of Timber Construction (AITC) that tested full size
glulam beams. This research program was conducted for a variety of reasons, including
validation of glulam beam models. Before the beams were fabricated, the laminating

stock was run gh a conti stress grading ine to obtain E profiles for each

piece of lumber. These pieces then were stamped with an identification number so they
could be identified in the glulam beam after fabrication. A group of thirty 16-lamination
24F-V4 Douglas-fir glulam beams were tested for this research program. The 24 in.-deep
beams were manufactured to a length of 40 ft. using nominal 2 x 6 in. Douglas-fir
laminating lumber. After fabrication, the beams were planed to a final width of 5.125
in. These beams were destructively tested at the U.S. Forest Products Laboratory under
symmetric two-point loading. The beams spanned 38 ft. between the reactions with a
distance of 8 ft. between the load-heads. The beams were restrained from buckling out
of plane. During testing, the apparent E was measured for each beam.
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The E profiles recorded from the continuous lumber tester (CLT) data were averaged for
each two-foot lumber segment. Beam maps were constructed using the two-foot average
Er. Cross sectional profiles were then taken at a one foot interval and matrices of
numbers were recorded in data files. The dimension of the matrices were 39 by 16,
representing 39 one foot intervals and 16 laminations. One beam map could not be

constructed due to a data collection problem; therefore, the sample size was 29.

ADJUSTMENT OF LUMBER E VALUES - METHOD 1

Model development

A FORTRAN program (Appendix D) was written to analyze the array of CLT data. The

program first transformed the array of Egr to two foot static bending modulus of
elasticity, Eg, using the following equation (Hernandez, 1991).

Eg = 1.3224%E,, - 02344 6.0
where:
Eg = two-ft static bending E and
Eqy = raw CLT-E values averaged over a two-ft segment.

It should be noted that Equation 5.1 is an empirical regression model developed from an
independent lumber sample. The Ec ¢ used to develop Equation 5.1 was collected at a

different time and a different CLT machine than the lumber profiles collected for this
research; however, the CLT machines were calibrated approximately the same. This test

scenario was conducted to analyze the robustness of Equation 5.1. This program
simulates loading the beams with a symmetrically placed two-point load with an arbitrary
load at the same location where the actual beams were loaded. The deflections of the
beams were estimated using the first term of Equation 2.4 and Equation 3.15. After the:
deflection was found, the beam apparent E was backed-solved for using the classic
deflection (bending deflection only) equation for symmetric two-point loading.
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Test Results

The first case scenario assumed an E/G ratio of 16, which is the traditional value for
Douglas-fir lumber found in the Wood Handbook (USDA, 1987). Figure 5.1 illustrates
a graph of the measured E versus predicted E.
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Figure 5.1: Predicted E versus measured E for 24F-V4 Douglas-fir beams (E/G
= 16).

The predicted E was higher than the measured E for all 29 beams. The error ranged from
3.18 t0 17.38% with an age of 8.28%. Appendix E ins the data for the actuat
and predicted E values for the test beams. A paired t-test (Walpole and Myers, 1978)
was performed on the null hypothesis that the two means were equal. The t-test statistic
was calculated as 13.46 which is greater than the critical t value of 1.70 at a significance
level of 5 percent and 28 degrees of freedom; thus, rejecting the null hypothesis.

In The next case scenario, E/G ratio was altered. Chui (1991) suggested that an E/G ratio
for low quality wood ranged from 25 to 30 and an E/G ratio of 20 was more reasonable
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for straight-grained wood. Since the lumber graded L3 consisted of relatively low quality
lumber, an E/G ratio of 30 was assumed and the other lumber grades were assumed to
have an E/G ratio of 20. Figure 5.2 illustrates the data from this test.
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Figure 5.2: Predicted E versus d E for 24F-V4 Douglas-fir beams (E/G

0 for all laminations except L3 where E/G = 30).

The error for this test ranged from —0.43 to 13.14% with an average of 4.42%. The t-
statistic was calculated as 7.32 for the two means. Once again a statistically difference

was found between the means.

ADJUSTMENT OF LUMBER E VALUES - METHOD 2

A possible source of error is the transformation between Ecyr to Es. This regression
equation was developed for a different sample of lumber (Richburg, 1989) than the
sample used to fabricate the glulam beams. A CLT is a machine that subjects lumber to
a concentrated load at midspan with a span of 48 in. The lumber is forced to undergo a
fixed deflection and the load required to cause this defl

1 q

is conti y
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as the specimen is fed through the machine. Then the E is inferred from the continually

measured load. The regression equation (Equation 5.1) that forms the Eq ;. to Eg

takes two factors into account: span and shear. The equation transforms from a span of
48 in. to a span of 24 in., and the Eq;; data include shear deflection; whereas, the E; is
calculated from pure bending deflection. Since Equation 5.1 is an empirical relationship
and it was developed from a different lumber data set, it is not necessarily valid for the
lumber sample used to fabricate the glulam beams.

A transformation that should be analyzed uses a regression equation developed at
approximately the same time that the E-profiles were collected for the laminating lumber.
This regression equation was developed by Galligan (Bender, 1990) for the CLT machine
in which the E-profiles were obtained. It relates Eg, to long-span static bending modulus
of elasticity (E,s) as follows:

Ey = 1227+Eq, - 0191 (5.2)

where: E;g = long-span static bending E.

This equation cannot directly parallel Equation 5.1, because it transforms to Eg, not Eg.
An equation was developed (see Appendix F) that transforms the E data from long-span
to short-span. This equation can be written as follows:

E; = 1.142+E;; - 0219 (5.3)

Equations 5.2 and 5.3 were substituted into the FORTRAN code in place of Equation 5.1,
and the same analysis was repeated. The paired t-test statistic for E/G = 16 was
calculated as 9.37. This again indicates significant difference between the two means at
a 5% level of confidence. This scenario overpredicted E in all cases with the range of
error from 0.62 to 15.03%, with an average of 8.93%. In the next study, the E/G ratio ‘
was assumed to be equal to 20 for all lumber grades except L3 where it was assumed to
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be 30. The paired t-test statistic equaled 3.37 indicating statistical significance between
the two mean values, and the errors ranged from —2.96 to 10.79% with an average of
2.11%.

ADJUSTMENT OF LUMBER E VALUES - METHOD 3

Equation 5.3 was developed on a two-ft shear-free bending test in which data indicate (see
Appendix F) that the average two-ft E; for lumber is larger than E;g; however, Kline, et
al. (1986) suggest that the average of the short span segments should be close to the E 5.
This could possibly indicate that the procedure for measuring Eg used in Equations 5.1
and 5.3 gives higher results than expected due 1o an unexplained experimental
phenomenon. Therefore, the next case scenario only uses Equation 5.2 which transforms
Eqpto Es. The results for this test case were the most favorable. At an E/G ratio of
16, the paired t-test statistic was calculated as 2.76 which is the closest to the critical
value of 1.70 at a 5% level of confidence for all case scenarios. The percent error ranged
from —3.09 to 10.22% with an average of 1.71%. The mean of the predicted E was only
33 800 psi higher than the mean of the actual measured E. The next test varied the E/G
ratio as before. This yielded a t-statistic of —3.40 and the errors ranged from —6.447
to 6.237% with an average of ~1.91%. Although there was statistical significant
difference between the actual and the predicted E values, there was no practical difference
for an E/G ratio of 16 with Equation 5.2 used as the E transformation equation.

Figure 5.3 illustrates three different empirical cumulative distribution functions (CDF).
The middle CDF represents the actual data. The CDF on the right represents the
predicted E for the test case scenario of E/G = 16 and using Equation 5.2 as the
transformation equation. The CDF on the left side of the predicted CDF is for an E/G
ratio that equals 20 for all lumber samples except L3 in which E/G = 30.
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Figure 5.3: Empirical cumulative distribution function for various case scenarios.

SUMMARY

Close agreement was found between actual and predicted beam apparent E. Less than two
percent difference was observed between the two mean values. Although a paired t-test
indicated significant differences between the means, the variability of the predicted and
the actual E’s were small; thus, making it easy to reject the null hypothesis that the two
means were identical. The ion equation that relates Ec;y to Eg appears to be in
error. The regression equation relating Eq; and E;s gave the best results for all cases
studied. This could be b the regression equation was developed at approximately
the same time the lumber profiles were collected from the CLT machine. Equations 5.1
and 5.3 were developed with independent lumber ples, and they consistently
overpredict Eg. It appears the calibration equation for the CLT machine varies over time
and from hine to hine; therefore, it is ded to periodically collect test
data that relate Ecir and Eps. A possible source of error could be the way that shear
stress is modeled. It has been shown by numerous researchers (Doyle and Markwardt,
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1966;1967, Palka and Barrett, 1985 and Chui, 1991) that G is a random variable;
however, for this model it was assumed to be a constant ratio to E throughout the

lamination for lack of a better procedure to model G.
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CHAPTER VI
MODEL IMPLEMENTATION

The shear deflection model developed in Chapter III (Equation 3.15) was verified for a
variety of test case scenarios in Chapter IV. The deflections predicted with the model
compared well both to theory and to published shear deflection models (Orosz, 1970 and
Mansour and Gopu, 1990). The model compared closely to actual test data in Chapter
V, with an error of less than two percent between the averages of actual and predicted E
was observed. Since the model compared favorably to existing deflection methods and
to actual test data, it was implemented into a probabilistic glulam beam model developed
by Hernandez et al. (in press), called PROLAM.

EXISTING GLULAM MODEL: PROLAM

PROLAM is a stochastic model that simulates glulam beam performance. This model
simulates glulam beam fabrication and generates random values of E and tensile strength
(T) for each two-foot lumber segment in the beam. These E and T values are spatially
correlated along the lengths of the individual pieces of lumber. The simulated pieces of
lumber are joined together with finger joints that also are assigned E and T values. This
model predicts the strength of the beam in bending, referred to as modulus of rupture
(MOR), using a transformed section analysis. The E for the beam is calculated using a
finite difference approximate method developed by Hilson et al. (1990, 1988) and
Pellicane and Hilson (1985), represented by Equation 2.4.

PROLAM was validated with the 30 beams discussed in Chapter V for MOR; however,
the simulated E values were approximately 14% high (Hernandez et al., in press). Since‘
Equation 2.4 only approximates the shear deflection for composite beams a more accurate
model was implemented into PROLAM (Equation 3.15).
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PROLAM Refinements

PROLAM has a subroutine that calculates the transformed section at specific increments,
Ax, then it repeats the transformed section at each finger joint location in the tension zone
of the beam. The original deflection model developed by Hilson et al. (1990, 1988) and
Pellicane and Hilson (1985) was placed in this subroutine. The composite shear deflection
model is more complex; therefore, when it was substituted into PROLAM, it was placed
in a separate subroutine. Another addition to PROLAM was allowing the E/G ratio to
vary for the different lumber grades. Although this is not completely stochastic, the E/G
ratio can vary across the cross section instead of being held to a constant ratio of E/G.

SENSITIVITY ANALYSES

Several sensitivity analyses were analyzed using PROLAM with the composite shear
deflection model implemented. The beams simulated were identical to the validation
beams discussed in Chapter V. The sensitivity in the numerical integration was studied
as well as the effect of different shear deflection models. The sensitivity of E/G also was
studied.

Effect of Length Increment Size

The number of increments along the length of the beam were chosen to be 500, 250, 100,
50, 38, 25 and 10 resulting in increment sizes of 0.912, 1.824, 4.560, 9.120, 12.00,
18.24 and 45.60 in., respectively. A total of 1000 beams were simulated with the same
random number seed for the seven computer runs as a variance reduction technique (Law
and Kelton, 1991). Average beam E’s for the various beam simulations are summarized
in Table 6.1.
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Table 6.1:  Effect of length increment on apparent modulus of elasticity.

ncutx Ax apparent E* error*
(in) (Mpsi) (%)
500 0.912 2.330 _—
250 1.824 2.331 0.043
100 4.560 2.332 0.086
50 9.120 2.335 0.215
38 12.00 2.333 0.129
25 18.24 2.343 0.558
10 45.60 2.334 0.172

* Predicted using PROLAM
* Assumes ncutx = 500 is basis for comparison

For numerical integration, the accuracy increases as the number of increments becomes
larger, to a certain point where round off error begins to dominate (Chapra and Canale,
1988); therefore, it was judged to use ncutx = 500 as the basis for the comparisons. The
errors for all cases studied were less than one percent. Although the error was small for
10 increments, this would be a poor number to choose because Ax is larger than the two-
ft lumber property cells; therefore, a very low E segment could be skipped. Furthermore,
this analysis does not take into account the effect that acutx has on MOR, only E. The
error is small for all the test cases; therefore, E is fairly insensitive to the number of
increments along the length of the beam. An increment of Ax = 12 in. was selected to
further analyze the validation beams.

Effect of Depth Increment Size

A similar sensitivity analysis was: performed for the number of increments in the y-
direction. The number of intervals, ncuzy, was set at 160, 48 and 16 resulting in
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increment sizes of 0.150, 0.500 and 1.500, respectively. The results from this sensitivity
analysis are given in Table 6.2.

Table 6.2: Effect of depth increment size on apparent modulus of elasticity.

ncuty Ay apparent E’ error*
(in) (Mpsi) (%)

160 0.150 2.333 —_—
48 0.500 2.333 0.0
16 1.500 2.333 0.0

" Predicted using PROLAM
! Assumes ncuty = 160 is basis for comparison

There was no effect on the average apparent E for the 1000 simulated beams from the
number of increments in the y-direction, therefore, it is recommended to use ncuty equal
to the number of laminations. No difference was observed because PROLAM calculates
apparent E from total deflection; therefore, the shear deflection did not affect the total
deflection enough for significant differences to be observed.

Effect of Shear Deflection

In the next sensitivity analysis, the effect the shear deflection model has on the average
apparent E is studied. Figure 6.1 is the fitted three-parameter lognormal probability
distribution function (PDF) of the apparent E for the different shear deflection prediction
methods.
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Figure 6.1: Comparison between different shear prediction methods.

Once again, the random number seed was held constant and E/G was equal to 16 for the
three different simulations. As expected, the PDF for no shear deflection was furthest
to the right of the three PDF’s. By adding an approximate shear deflection model
(Hilson, et al. 1988) to PROLAM, the PDF was shifted to the left. By adding the more
accurate composite shear deflection model, the PDF was shifted even further to the left.
The statistical calculations for the three test scenarios are summarized in Table 6.3. The
fitted PDF’s were plotted instead of the histograms to make the plot readable and
differences between the methods could be observed easier. A sample size of 1000 beams
was used in this case study.
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Table 6.3:  Effect of shear deflection model on apparent modulus of elasticity.

Shear Deflection Model Modulus of Elasticity™
Average covt
(Mpsi) (%)
no shear deflection 2.484 4.0
Hilson et al. 2.374 3.9
composite 2.333 4.0
" Predicted using PROLAM

* Coefficient of variation

The ratio of the apparent E with shear deflection included to the apparent E without shear
deflection is 0.94. This is very similar to the 0.95 factor found in ASTM D3737 (ASTM,
1991e) that reduces the calculated E values for glulam beams. This standard specifically
states that the 0.95 factor accounts for shear deflection.

Effect of E/G Ratio

The effect of the E/G ratio on PROLAM using the composite beam analysis is presented
next. As discussed in Chapter V, a computer simulation was performed with an E/G =
20 for all lJumber grades except L3, where E/G = 30. Figure 6.2 illustrates the PDF for
this computer simulation with the PDF from the previous case study for the composite
shear deflection model overlaid on the plot.
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Figure 6.2: Effect of different E/G ratios on apparent E.

Figure 6.2 indicates that the E/G for the individual lumber grades has a pronounced effect
on the apparent E predicted by PROLAM. The average E was 2.234 Mpsi with a
coefficient of variation (COV) of 4.0%. This COV was identical to the case where E/G
was equal to 16; however, the mean was reduced by approximately 100 000 psi.

Effect of L/d on Design Equations for Deflection

PROLAM was developed as a tool to analyze different case scenarios without having to
destructively test glulam beams. An L/d ratio of 20 gives beam E corresponding to the
book value used by designers. A case study was conducted using PROLAM for three
different loading scenarios: 1) two-point loading (load span equal to 20% of total span),
2) a uniform loading and 3) single-point loading at the midspan. These simulations were
performed with an E/G = 16 and then repeated for an E/G = 20 for all lumber grades
except L3 where E/G = 30, The E for the first run at L/d = 20 was used as the design
E for the beam layup, which in this case was a 24F-V4 Douglas-fir beam. The
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deflections for the three different loading cases, and the two E/G studies were calculated
at L/d ratios of 8, 10, 12.5, 15, 20, 25, 30 and 35 using the common design equations
given as Equations 6.1, 6.2 and 6.3, The sample size was 1000 beams for all loading
scenarios and the Ax was set equal to 6 in. The actual deflection of the beams were
estimated by taking the average apparent E from PROLAM and back-solving for
deflection using the appropriate beam equation. The deflection equation for two-point is
as follows:

_ _Pa
48EI

BL* - 4a?) ©.1)

Equation 6.2 is the deflection equation for uniformly loaded members.

PR 2.0 o ©6.2)
384 EI
Equation 6.3 represents the deflection equation for a single rated load at midsg
5 6.3)
48EI

Figures 6.3, 6.4 and 6.5 represent the error in the predicted deflection for the various L/d
ratios for the three loading conditions.
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Figure 6.5: Error in predicted deflections for different L/d ratios for a
concentrated load at midspan.

The effect that E/G ratio has on the error of the prediction can be seen in Figures 6.3,
6.4 and 6.5. The graphs all have similar characteristics. For long spans (L/d greater
than 20) where deflection could control the design, the deflections using Equations 6.1,
6.2 and 6.3 are larger than the actual deflections predicted by PROLAM. For wood
beams with an L/d ratio in the range of 15 to 25, Equation 6.1, 6.2 and 6.3 are
commonly considered sufficiently accurate (Hoyle and Woeste, 1989). However, the
results shown in Figures 6.3, 6.4 and 6.5 indicate errors of approximately 10% for L/d
of 15, which may not be acceptable.

SUMMARY
The composite shear deflection model developed in Chapter IIT was implemented in an

existing glued-laminated timber beam model called PROLAM. The sensitivity that
several parameters had on the apparent E predicted from PROLAM were analyzed. The
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number of increments along the length and depth of the beam had little effect on the
apparent E predicted by PROLAM. Recommended values for Ax are whole numbers
which correspond to the locations of point loads. A Ax of either 12 in. or 6 in. was
chosen for all the case studies performed. The recommended number for ncuty is the
same as the number of laminations in the beam.

The E/G ratio had a significant effect on the apparent £ predictions, therefore the E/G
ratio is an important parameter and future research is needed to better characterize the
shear modulus. The common engineering design practice of ignoring shear deflection for
L/d ratios of 15 to 25 can lead to significant error, depending on the loading condition
and the E/G ratio.
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CHAPTER VI
SUMMARY AND CONCLUSIONS
SUMMARY

Beam deflection due to flexure is comprised of two components: 1) bending and 2) shear
deflection. Shear deflection for many structural materials is ignored; however, wood has
a relatively low shear stiffness as mﬁpared to bending stiffness. Shear deflection for
wood beams can exceed the bending deflection under certain situations; therefore, it
should be considered. This problem is reasonably straightforward for solid sawn lumber;
however, it becomes more complex for composite beams such as glued-laminated timber
beams and I-beams.

There are several possible methods to develop a shear deflection model for composite
beams. A popular method that often is used in beam hanics is the finite el (FE)

hod; h , this i
wood nor characterized for the multitude of wood species groupings. Using a FE method
for wood can create a false sense of accuracy since these methods are only as accurate

input that is neither completely understood for

q

as the input parameters. Hence, a method was derived that was less computationally

rigorous, and requires less input p s,

The shear deflection equation developed here was based on energy methods and an
extension of basic mechanics of materials. During development of the shear deflection
model, an intermediate step was the development of an equation that characterizes the
shear stress distribution for composite beams. A possible application of the shear stress
equation would be to use it in a probabilistic model to predict shear strength of composite
beams. Although several hers have developed methods to predict shear deflection,
they are not general enough to handle composite glulam beams, I-beams and nonprismatic‘
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shapes. Another advantage of the composite shear deflection model is its ability to

analyze G as a stochastic variable.

The composite shear deflection finite difference model was verified by comparing it to
both theory and to published shear deflection models. The model performed well in all
cases studied. The model was also compared to a set of actual glulam beams that were
fabricated by AITC and tested by the U.S. Forest Products Laboratory. The comparison
was made between the predicted apparent E of the beam by using individual E profiles
of lumber that comprises the glulam beam to actual measured beam E. The difference
in the actual beam E and predicted E was less than two percent. A paired t-test indicated
a statistically significant difference between predicted and observed means; however, the
low variability in the E data made it easy to reject the null hypothesis that the two average
E’s were identical. The difference between predicted and actual E was believed

PP

to be caused by a regression equation that related Eqy to Es, not the composite shear
deflection model.

The composite shear deflection model was incorporated into an existing glulam beam
mode} and sensitivity studies were performed. It was found that the number of increments
along the length and depth for the finite difference model had little effect on the prediction
capabilities of the model. It is recommended that the number of increments in the y-
direction (beam depth) be equal to the number of laminations for a glulam beam. It is
recommended that the number of i in the x-direction (beam length) be chosen
so an increment will correspond to the location of a d load for greater

accuracy. It is also recommended that the number of increments along the length of the
beam be at least 25.

A sensitivity analysis was performed to determine the effect of the E/G ratio. This ratio
is often assumed to be 16 for Douglas-fir lumber; , several h indi
_ Gisarandom variable, not perfectly correlated to E. A significant effect was seen when

' the E/G ratio was set equal to 20 for all lumber grades except L3, which it was set equal
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to 30, for the 24F-V4 beam combination. This affected the apparent beam E by
approximately 100 000 psi.

An important finding was that the common engineering design practice of ignoring shear
deflection for L/d ratios between 15 to 25 can lead to significant errors.
Underconservative errors of approximately 10% were observed for a composite glulam
beam at an L/d ratio of 15 for a concentrated load at midspan. This case was assuming
the E/G ratio equaled 20 for all lumber grades except L3, where it was assumed to be
equal to 30.

CONCLUSIONS

The following conclusions were made as a result of this research:

1. Shear deflection is significant for wood beams, especially for composite beams.

2. A finite difference solution to predict shear deflection for composite beams gives
excellent results as compared to theory as well as other shear deflection models.

3. A finite difference solution that includes shear deflection to predict apparent E for
composite glulam beams gives reasonable results as compared to actual test data.

4. The regression equation relating Er and Eg has a significant impact on the
models prediction capability; therefore, it should be periodically updated.

5. The E/G ratio has a significant effect on the shear deflection predictions. More
research is needed to ch ize | d shear modul

6. The number of increments along the length and depth of the beam for the finite
difference model has little effect on the models prediction capability. It is
recommended to use a Ax = 12 in. and a Ay equal to the number of laminations
of the beam.

7. The common engineering design practice of ignoring shear deflection for L/d
ratios between 15 and 25 can lead to significant errors for composite glulam
beams.
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8. Average two-ft static bending E measured was higher than long-span E. The two-
ft E was collected under "third-point” loading with the shear-free E being collected
between the load heads. The long-span E was collected at an L/d ratio equal to
100 to minimize the effects of shear deflection. More research is needed to
characterize the relationship between short-span and long-span E.

RECOMMENDATIONS FOR FURTHER RESEARCH

The following areas were identified as candidates for further research:

1. Study the spatial variation of G, as well as its relationship to other material
properties.

2. Develop a stochastic model that accurately and independently predicts G.

3. Investigate the apparent discrepancy between two-ft static bending shear-free E and
long-span E.

4. Incorporate the composite shear stress equation into PROLAM to predict design
shear stresses.

5. Validate the shear deflection model for composite I-beams using actual test data.

6. Develop a probabilistic model similar to PROLAM for wood I-beams.
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This program calculates the deflection for a composite beam
with varying widths and shapes. For more information see:

Hilson, B.0.,P.J. Pellicane, L.R.J. Whale and 1. Smith.
1988. Towards optimal design of glued-laminated timber
beams. In Proc. international conference on timber
engineering, ed. R.Y. Itani, [1:186-193. Seattle, WA:
Forest Products Research Society.

skaggs, 1.D. mz Shear deflection of composite wood
Department of Agricultural Engineering,
y. College Station, TX.

nns m umver

Written by: Thomas D. Skaggs
November 1991

fonenonnannenNNnoNnNNOONOONNONNNNNANBNNNADDNNANBAOANAD

VARIABLE LIST

addupm = used to sum deflection due to bending

used to sum deflection due to shear

idth of the i-th lamination

total deflection due to bending and shear

delta = increment for model along the length of the beam

depth = depth of beam

e(i) = modulus of elasticity of the i-th lamination

e15 = arbitrary value for E to transform the cross section
to (1.5e6 psi)

itran = moment of inertia calculeted for the transformed
cross section

‘ddupy
beiy
def

\beam = length of the beam

midspa istarm:e from the end to the center of the beam

(3 al moment at the x-section being checked
mxunit heorennl moment ceused by a unit load at midspan
neutx number of cuts elong the length of the

am
ncuty = number of cuts per lamination in the y-direction
nlams = number of laminations in the cross section

p = arbitrary load used to calculate deflection from &
ymmetric two-paint (oad

q = first moment of inertia

r = reaction for one side for uniform loading
t = thickness of the laminations

tcut = thickness of the cut in the y-direction
tload = type of load on

1 = miform
2 = symmetric 2-point loading
v = theoretical shear at tha x-section being checked
vxunit = theoretical r caused by a unit load at midspan
“ = -rhltr-r{D:dnd used to calculate deflection from a
orm

x = location where cross section is being checked

XX = location where cross section is being checked
= distance from end of beam to first load for

symmetric 2-pt loading

x2 = distance from end of beam to second load for

symmetric 2-pt loading

ybar = distance from bottom of beam to centroid

TEMPORARY TERMS

to calculate ybar and itran
variable used to calculate ybar

e = temporary term used
ay = temporary summation
suma = temporary sumimation
on
on

sumq = temporary summati
sumy = temporary summeti

varisble used to calculate deflection

program de

real itran, MEO) €(50), 1beam, midspn, mx, mxunit
(ml(-m 'ils'deflut.llp status=told')

opm (unit=20,ile='deflect.out',status=s'unknown’ }




¢c-> format statements

10 format ity
N Sl Viwwkkwnnny D T

+ 12,('.........., 8 MUSt be <= to Ly2  <tewmawwe)

20 formst (/,/./,

+ 12x,'=========>  Distributed Loading  <=mmmmmzez?)

30 format
+

Symmetric 2-pt Loading <s=s======')

40 format

50 format (12x, Length of Composite Beam (ft)
+ 12x," Thickness of laminations (in)

60  format (12x,’ Uniform Load of (lb/in)

70 format (12x,' Concentrated load of (lb)
+ 12x, loca(ed at a d|stame of (ft)
+ 12x, from ends of be

80  farmat (12x,

110 format (12x,*' lam b

‘ <in) (Mpsi)
a5/,

1(C)'5x, 6.3, 6x, £6.3"

--z,ax,fs.z,su,v

192, 1(1)'5x,6.3,6x,

Flexural Deflection (in)

Shear Deflection (in) f
Modified Deflection

Lehotal Deflection im T 9,60

neuty = 1
€-> read input from DEFLECT.INP
read (10,*) tload
if (tload.eq.1) read(10,*) w
if (tload.eq.2) read(10,*) p
read (10,%) nlams,t, [bean, x1,delta
read (10,%) (b(i),eti), i=1,nlems)
if (tload.eq.2) then
if (x1.gt.lbeam/2.0) then
write (20,10)

if (tload.eq.1) write (20,20)
if (tload.eq.2) write (20,30)
write (20,40)
write (20,50) lbean,t
if (tlnad eq.1) write (20,60)
if (tload.eq.2) write (20,70) PIZ.,x1
write (20,40)
write (zn,m
write (20,40)
depth

suma = 0,
ay =0,

¢-> calculate distance to the centroid
do 200 i=

depth = depth+t
a = b(i)*t*e(i)/e15
suma = Suma‘ta

200 ay = -yu'(dgpn. t/2.)

c-> calculate I for the transformed cross section
do 210 i=1,nlams
depth = depthet
a = bli)*t*e(i)/el:
210 itran = |trln'l"t’l/12 +a*(ybar-depth+t/2.)**2
lbeam = Lbeam*12,
midspn = Lbeam/2.
x1 = x1*12.
= Lbeam-x1
rl = w*lbeany2.



ncutx = int(lbeam/delta)
addupm = 0.0
= 0.0

addupy
c-> calculate thearetical shear and moment distributions
do

ncu!x
x = eal (i-1)
i Octe. mldspn) then
mown
vxunit = 0.
else

mxunit = 0.5*(Lbeam-x)
viunit = -0.5

vm = rl‘l - vi‘l“xIZ.

x
mx = p/2.*x1
= 0.0

=
q =00

e-> calcu;:(a shear deﬂecncn (skaggs, 1992)

teut
do 220 k=1,ncuty
depth = depth+tcut
q = b(l)‘tcut'(ybar-depzhouur/z.)
sumg = sung + e(j)*q/els
220 sumy = sumy + tcut*sumg*sumg/(e(j)*b(j))
addupv = addupv+(delta*sumy*16.*vx*vxunit)/
(itran*itran)
c-> cnlcuhte bending deflection (Hilson et al.,1988)
240 = addupmtmx*mxunit*delta/(e15%itran)
def = -addupm
c-> write output to DEFLECT.OUT
write (20,110)b(1),e(1)/1.e6
write (20, IZO)(I,h(i) e(1)/1.e6,1=2,nlams-1)
e (20,130)nlams, b(nlams),: e(nlamé)/1.e6
e (20,40)
write (20,80)
write (20,40)
write (20,150)
write (20,40)
write (20,140) addupm, addupv
write (20,160) def
write (20,40)
write (20,80)
close (unit=10)
close (unit=20)
500 stop
end
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Al: 'This worksheet calculates k for the shear deflection equati

A2: 'It was originally derived for an I-beam, but possible applh:atlon:
*could be a glulam beam with 2 different lumber grades. It should

1be noted that it is only valid for a beam that 1& sylmtrl: about

*the neutral axis.

‘Ref: Orosz, 1. 1970. Simplified method for calculating shear

S. Forest Products Laboratory, Madison, Wi.

BI5: Wp =

C15: (3/8)/(3*2.25)
E15: “A =

F15: 24.375

B16 =

820. (sT"S/Z $T3487/2)/$P°2

deflections of beams. U.S.D.A. Forest Service Research Note FPL-210,

68

n;: (( ST"S)'(U(|D'$BE|’A)02/3)¢$1"3‘(|I(3'$EEYI)+2/3) $T/(2*$BETA)+B/ (30*3BETA) )/SP
1wk =
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This program calculates the form factor used to calculste
shear deflection for rectangular composite beams.
Adapted from:

Mensour M.H. and V.K.A. Gopu. 1990. Statistical analysis
of pitch-cambered beam deflections due to MOE variability.
In Proc. international conference on timber engineering,
ed. H. Sugiyama, 1:170-175. Tokyo, Japan: Forest

Products Research Society.

Written by: Thomas D. Skaggs
November 1991

annnnnnnnanono

VARIABLE LIST

stran = area of the transformed section

b(i) = transformed width of the i-th lamination

base = width of the cross section

c(i) = term used to calculate k, Equation 11 (Mansour

and Gopu, 1990)

modulus of elasticity of the i-th lamination

average E for the cross section

itran = moment of inertia calculsted for the transformed
cross section

k = form factor used to calculate shear deflection

for composite rectangular beems.

nutber of laminations in the cross section

thickness of the laminations

distance from the bottom fiber of the cross

section to the top fibers of the i-th Lamination

distance from battom of beam to centroid

TEMPORARY TERMS

81 temporary term used to calculate k
b2 temporary term used to calculste k
3 temporary term used to calculete k
suml = temporary summation variable

sun2 = temporary sumation variable

ANNNONONANNNORADODOADBNNNONNDD

program mansour

real b(50),c(50), y(51) e(Sﬂ),llrln,k
open (mit=|o ﬂl = *mansour . inp! 13
open (unit=20,file='mansour.out

c-> format statements

10  format

20 format I

30 format (12x,' { Thickness of laminations (in) : f6 3!
+ 12x,'| Width of laminations (in) T *f6.3¢

40
50

,15x£6.3, |1x'l')
(T 12x $6.3,11x,' %)

233

'Asx'l‘.l. of L

nm (Npsi) M,
| Traneforned 1 crrgy l-,,
| Form factor (n Iy

+
c~> read input 1rom MANSOUR. INP
read(10,*) nlams,t, base
read(10,7) (e(i),i=1,nlams)
sumt = 0.0
y(1) = 0.0
c-> calculate average E for cross section
do i=1,ntams
suml = sumite(i)

70
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200 y(i+1) = trreal(i)
ebar = suml/real(nlams
> trar\sform the width of the i-th lemination
i=1,nlams
210 b(i) ='baseve(i)/ebar
suml = 0.0
ran = 0.0
c-> calculate distance to the centroid
do 220 i=1,nlams
suml = iul\‘l + bCD*(y i+ 1D v+ 1) -y Yy())
220 atren = atran + b(i)*(y(i+1)-y(i))
ybar = 0 5'sun1/utran
suml =

sum2 = 0
c-> calculate 1 for the trensformed cross section
230 i

sun‘l + b(i)*(yCie1)-y(i))**3/12,
sum2 *ui;gl)‘w{iﬂ) YDy Ci+ sy (i) -2 ybar ) *2
/4

suml +

c-> calculate k using Eq. 10 & 11 (Mansour and Gopu, 1990)
250 i=1,nlams

c(i) = 0.0
da 240 1,nlams
240 €i) = eC1)+b(jI*((y(]+1)-ybar)**2- (y(j)-ybar)**2)

c(l) e(i)/bCi)
((yCi+1)-ybar)-(y(i)-ybar))*((y(i+1)-ybar)**2+¢c(i))**2
((y(i+1)-ybar)**3-(y(i)-ybar)**3)*((y(i+1)-ybar)**2+c(i))
(Cy(i+1)-ybar)**5-(y(i)-ybar)**5)
um! sum1+b(i)*(y(i+1)-y(i))/(4.*itran*itran)
250 sum2 = sum2+b(i)*(al-2.*b2/3.4¢3/5.)
k = suml*sum2
ite output to MANSOUR.OUT
write (20,10)
write (20,20)
write (20,30) t,base
write (20,20)
write (ZU LD)
e (20,
write (20 SD) e(1)/1.e6
write (20,6037, e(i)/1.e6,i=2,nlams-1)
write (20,70) nl.avs,e(nlums)/h
write (20,20)
write (20,40)
write (20,80) ebar/1.e6,1tran,k
write (20,20)
write (20,40)
close (unit=10)
close (unit=20)
stop
end
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This program calculates the apparent MOE values given the
clt beam profiles.

References:

Hilson, B.0.,P.J. Pellicane, L.R.J. Whale and I. Smith.
1988. fouards optinal desigh of glued-laninated tinber
beams. In Proc, international conference on timbel
engineering, ed. RoY. 1tani, 115186-193. Seattle, WAt
Forest Products Research Society.

skaggs, T.D. 1992, shear deflection of composite wood
beams. M.S. Thesis, Department of Agricultural Engineering,
Texas A&M unlvarsiry, College Station, TX.

Written by: Thomas D. Skaggs
November 1991

aennnnnnnannonnnone

VARIABLE LIST
bold special screen lunc(voﬂ, turns bold on

character statement for

CLT-E data read in then tr-minrmed to static

bending E for the i-th segment and the j-th lam

difference between actual and pndicted E

actual measured E for the i-th beam

percent error in prediction

data file name for the i-th beam

predicted E for the i-th beam

number of beams to analyze

summation terms for statistical calculations

summation terms for statistical calculations

paired t-test statistic

average for the respective variable

riance for the respective variable

comment
data(i, j)
diff

e(i)
error
infile(i)

(EERREE]

enhnnononnnnnononnnna

program beame
real data(40,16) ,e(30), pe(30)
character*7 infi Le(30)
nbeam = 29
suve = 0.
sume2 = 0.
sumpe = 0.
sunpe2 = 0.
sund = 0.
sund2 = 0.
c-> format statements
10 format (a7,2x,15.3)
20 fnnllt (/101,'mf\le'h\,Z(sx'newE‘) Bx,'diff 1 7x,
r1/,23x, 'actual 7, prediazx, 1% /)
30 fnrn-t (Sx n1Z 4(5x,7.3))
open (10, ﬁle- beame. inp',status="'old')
(20 file='beame.out’,status='new’)
c-> reud dntn § len-nu

=1
100 l‘nd (10 10) infile(i), e(i)
close (
urlte (ZI! 20)

,hbeam
(‘|1 ﬂlrln"tn(ii),lutm'ﬂld’)
¢-> read data fron 'Infllo(

10 md m ') (dstaci, j),j=1,16)
close(11)
c-> transform CLT-E to Static Bending (Skaggs, 1992)
do 120 i=1,39
do 120 j=1,16
c 120 data(i, J
c

Oeé*(1.3224*data(i, j)-0.2344)
datati,)

227*data(i,j2-0.191




c 120
120

data(i, j)=1.0e6*(1.162*data(i
)=1.0e6*(1.227*data(i

data(i,
call trforn(data, boe)

petii) =

diff =

error =

sume =

sume2 = sume2 + eCii)ve(ii)
sumpe = sumpe + pe(ii)

sumpe2 = sumpe2 + pe(n)-pem)
sumd = sund + diff

sund2 FEEdi FF

und2 + di
130 write (20,30 Tnfilecii. e(if), peciiy, diff, error
¢-> calculate statistical parameters

ebar = sume/real(nbeam)

evar = ((resl(nbeam)*sume2)-(sume*sume))/
(real(nbeam)*(real(nbeam)-1.))

pevar = ((real(nbeam)*sunpe2)-(sumpe*sumpe))/
+

(real(nbeam)*(real(nbeam)-1.))
dvar = ((real{nbeam)*sund2)- (sumd*sund))/
(real{nbeam)*(real (nbeam)-1.))

.
c-> calculate test statistic for paired t-test

= dbary: sqn(avar/reaunbemn
write (20,40) ebar ,pebar, dbar, evar , pevar,
format (/13x,‘man'3(5x 2.3, / Mx 'var'!(sx 7.3

40

write (20,50) t
50 format (/,10x,'t-test statistic : 'f8.3)

close (20)

stop

end

SUBROUTINE: TRFORM

VARIABLE LIST

nonNnNnNoAnNONNNnoNnONNNNONNODAORAENNNNNONDNDADNOON

addupm = used to sum deflection due to bending
addupv = used to sum deflection due to shear
bmoe = apparent E of the beam

i) = width of the i-th lamination
= total deflection due to bending and shear

delta = increment for numerical integration along the

length of the beam

depth = depth of beam

el

i,j) = static bendlnn E for the i-th segment end j-th
t

5 = -rbllr;z value for E to transform the cross section
(1.

psi)
gmod( )= E/G ratio for the j-th lamination

9
i1

= gross moment of inertia
5 = moment of inertia calculated for the transformed
cross section

lbeam = length of the beam

idspn = distance from the end to the center of the beam

m = theoretical moment at the x-section being checked
mxunit = theoretical moment ceused by & unit loed at midspan

ncuty = number of cuts per lamination in the y-direction

nlams = pumber of laminations in the cross sect!

P = arbitrary load used to calculate deﬂection from &
symmetric two-point load

q = first moment of inertia

i = reaction for one side for uniform Loading

t = thickness of the Leminations

tecut = thickness of the cut in the y-direction

VK = theoretical shear at the x-section being checked

wxunit = theoreticel shear caused by & unit Load at midspan

x = location where cross section is being checked

XX = location where cross section is being checked

x1 = distance from end of beam to first Load for

symetric 2-pt loading

4



x2 = distance from end of beam ta second load for
symmetric 2-pt loading
ybar = distance from bottom of beem to centroid

TEMPORARY TERMS

8 = temporary term used to calculate ybar and i15

By = temporary summation variable used to calculate ybar

suma = temporary summation variable used to calculate ybar

sumq = temporary summation variable used to calculate
shear deflection

sumy = temporary summation varieble used to calculate
shear deflection

nnnononneonnoa

subroutine trform(e, bmoe)

real e(40,16),gmod¢16), 115, Lbeam, midspn, mx,munit, ig

lize varisbles

gmod /4+20.,8*30.,4%20./
1568

e-> i

ig
do 240 i=1,38
c-> calculate theoretical shear and moment distributions
x = delta*real(i-1)
if (x.le.midspn) then
= 0.5%x

mx ® p/2.*xx

X = p/2.

if (x.gt.x2) vx = -p/2.
endif
depth = 0.

= 0.
c-> calculate distance to the centroid
do 200 j=1,ntams
depth = depth+t
e = *t*e(i, J)/el5
suta = sumeta
200 ay = ay+a*(depth-t/2.)
= ay/sume

g'p:n =0,

5 =0.
e-> calculate I for the transformed cross section
j=1,nlams

t
a = base*t¥e(i, j)/e15
210 i15 = i15+a*t*t/12.4a*(ybar-depthet/2.)%*2
depth .
q .
sumq

=

=

sumy =

c-> calculate she:

soococo
oooo

© deflection (Skeggs, 1992)
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do 220 j=1,nl
teut = t/reol(ncuty)
do 220 k=1,ncuty
depth = dcpthn:ut
q = base*tcut*(ybar-depth+tcut/2.)
sung = sumq + e(i, j)*q/elS
220 sumy = sumy + tcut*sumg*sumg*gmod(j)/(e(i, j)*base)
addupy = addupv+sumy*vx*vxunit*delta/(i15*i15)
¢-> calculate bending deflection (Hilson et al.,1988)
jupm = addupmmx*mxunit*delta/(e15*115)

addupv+ac
> L-ncksolve for apparent MOE Eq. 4.2 (Skaggs, 1992)
= P*X1*((3.0%beam* Lbeam) - (4.0¥X1¥X1))/
. (1.0e6%48.0%def*ig)

return
end
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AITC Project 8704R: Phase I1 Douglas-fir Glulam Beams

E/G = 16
Using Equation 5.1 for the E-trensformation

Beam 10 Actual E Pred E diff error
(Mpsi) (Mpsi) (Mpsi) [¢3)
B1 2.143
B2 1.943
B3 1.958
B4 2.085
85 2.216
B6 2.136
B7 2.034
B8 2.09%
B9 2.127
B10 2.072
R1 1.906
R2 .072
R3 2.056
R& 2.105
RS 2.082
R6 1.843
R7 2.0564
R8 2.057
R9 2.203
R10 2.038
™
T2 5.548
3 -
T4 11,142
75 13.716
16 482
17 847
T8 9.796
™ 6.745
o 1.956 17.382
avg 2.0632 8.2817
sd 0.0843 0.0818 0.0677 3.4799
COv(%) 4.0881 3.6649

paired t-test statistic =

13.466
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AITC Project B704R: Phase IT Dougles-fir Glulam Beams

E/G = 20 for all lams except L3 where E/G = 30
Using Equation 5.1 for the E-transformation

Beam 1D Actual E Pred E diff error
(Mpsi) (Mpsi) (Mpsi) [£3]
81 2.168 0.025 1.167
B2 2.033 0.090 4.632
B3 2.039 0.081 4.137
B4 2.110 0.025 1.199
B85 2.227 0.011 0.496
B6 2.127 -0.009 -0.421
B7 2.080 0.046 2.262
B8 2.085 -0.009 -0.430
B9 2.160 0.033 1.551
810 2.091 0.019 0.917
R1 2.048 0.144 7.563
R2 2.195 0.123 5.936
R3 2.252 0.196 9.533
R4 2.169 0.064 3.040
R5 2.231 0.149 7.157
R& 2.015 0.1 9.333
R7 2.100 0.046 2.240
R8 2.120 0.063 3.063
RS 2.306 0.103 675
R10 2.126 0.088 4.318
m 2.146 0.124 6.133
T; 2.200 0.037 1.1
T P - s
T4 .295 0.150 6.993
™ 2.251 0.195 9.486
6 8} 0.095 4.578
17 2.113 0.101 5.020
18 2.183 0.121 5.868
b 2.181 . 061 2.877
110 2.213 0.257 13.139
avg 2.1529 0.0897 4.4197
sd 0.0767 0.0660 B
cov(Xx) 4.0881 3.5622

paired t-test statistic = 7.318



ALTC Project 8704R: Phase Il Douglas-fir Glulam Beams

E/G = 16
Using Equations 5.2 & 5.3 for the E-transformation

Beam ID Actual E Pred E diff error
(Mpsi) (Hpsi) (Mpsi) (%)

81 2.202 0.059 2.753
B2 2.050 0.107 5.507
83 2.056 0.098 5.005
B4 2.136 0.051 2,446
B5 2.268 0.052 2.347
Bé 2.154 0.018 0.843
87 2.103 0.069 3.392
B8 2.107 0.013 0.621
89 2.193 0.066 3.103
810 2.1% 0.042 2.027
R1 2.065 0.161 B.456
R2 2.2332 0.160 7.722
R3 2.297 0.241 1n.722
Ré4 2.203 0.098 4.656
RS 2.2712 0.190 9.126
R6 2.028 0,185 10.038
R7 2.124 0.07¢ 3.408
R8 2.146 0.089 4.327
(34 2.358 0.155 .036
R10 2.154 0.116 5.692
T 217 0.155 7.666
72 2.238 0.075 3.467
13 - - ===

T4 2.344 0.199 9.277
5 2.296 0,240 11.673
T6 2.204 0.129 6.217
7 2.139 0.127 6.312
8 2.218 0.156 7.565
% 2.216 0. 4.528
T10 2.250 0.294 15,031
avg 2.1843 0.1211 5.9297
sd 0.0867 0.0696 3.4993

cov(x) 3.9682

paired t-test statistic = 9.369
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AITC Project 8704R: Phase Il Douglas-fir Giulam Beams

E/G = 20 for ali lams except L3 where E/6 = 30
Using Equations 5.2 & 5.3 for the E-transformation

Beam 1D

Actual E Pred E diff error
(Mpsi) (Mpsi) (Mpsi) [£3
2.143 2.121 -0.022 -1.027
1.943 1.97% .036 1.853
1.958 1.985 0.027 1.379
2.085 2.060 -0.025 -1.199
2.216 2.183 -0.033 -1.489
2.136 2.078 -0.058 -2.715
2.034 2.028 -0.006 -0.295
2.094 2.032 -0.062 -2.961
2.127 2.113 -0.0%4 -0.658
2.072 2.040 -0.032 -1.544
1.904 1.995 0.091 6.779
2.072 2.150 0.078 3.764
2.056 2.210 0.154 7.490
2.105 2.123 0.018 0.855
2.082 2.188 0.106 5.091
1.843 1.959 0.116 6.29%
2.054 2.050 ~0.004 -0.195
2.057 2.0 0.014 0.681
2.203 2.268 0.065 2.951
2.038 2.077 0.039 1.91%4
2.022 2.097 0.075 3.709
2.163 2.156 -0.007 -0.32%
2.056 - .- .ne
2.145 2.256 0.111 5.175
2.056 2.210 0.154 490
2.075 2.123 0.048 2.313
2.012 2.064 0.052 2.584
2.062 2.138 0.076 3.686
2.120 2.135 0.015 0.708
1.956 2.167 0.211 10.787
2.0632 2.1054 0.0422 2.1068
0.0843 0.0812 0.0675 3.3373
4.,0881 3.8551
paired t-test statistic = 3.367
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AITC Project B704R: Phase II Douglas-fir Glulam Beams

E/G = 16
Using Equation 5.2 for the E-trensformation

Beam 1D Actual E Pred E diff error
(Mpsi) (Mpsi) (Mpsi) )

2.113

paired t-test statistic = 2.762
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AITC Project B704R: Phase II Douglas-fir Glulam Beams

E/G = 20 for all lams except L3 where E/G = 30
Using Equation 5.2 for the E-transformation

Beam ID Actual E Pred E diff error
(Hpsi) (Mpsi) (Mpsi) [£5)
Bl 2.143 -4.993
B2 1.943 -1.647
B3 1.958 -2.094
B4 085 -4.892
B5 -5.641
B& -6.461
87 -3.
&8 -6.447
BY -4.607
B10 -5.164
rR1 1.103
R2 -0.483
R3 2.821
R& -3.230
RS 0.624
R& 2.821
R7 ~3.944
R8 -3.160
(34 -1.725
R10 -1.963
T -0.297
12 -4.485
13 ---
Th 0.420
5 2.821
6 -1.783
17 -1.292
T8 -0.582
19 -3.349
M0 0.122 6.237
avg 2.0226  -0.0408  -1.9060
sd 0.0711 0.0646 3.1220
Cov(X) 3.5174

paired t-test statistic = -3,398
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APPENDIX F

COMPARISON OF LOCALIZED SHEAR-FREE E AND LONG-SPAN E
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OVERVIEW OF EXPERIMENTAL DESIGN

Lumber was sampled in the summer of 1991 from one laminator located in the pacific
northwest United States. This laminator supplied 32 pieces of 16 ft. 2 x 6 Douglas fir
lumber visually graded as L1. The lumber was selected by regrading machine stress rated
(MSR) laminating lumber. If the lumber qualified for L1, every fifth piece was selected
until 32 pieces had been collected.

The following information was recorded for each of the 32 pieces: moisture content,
dimension, short-span modulus of elasticity (E) on 5 adjacent two-ft long segments and
long-span modulus of elasticity Es.

TESTING EQUIPMENT
Two-ft Modulus of Elasticity Equipment

All specimens were nondestructively tested in bending to determine Es. The bending test
machine used was originally designed and fabricated for Taylor’s (1988) localized lumber
properties research. This equipment performs a bending test using “third-point” loading
conditions. Third-point loading is defined as a static bending test with two equal and
symmetrically placed loads applied to a simply supported test specimen. The theoretical
shear-free, flatwise bending E, between the loads, was calculated from the force and
deflection data collected during the testing procedure.

A computerized data acquisition and control system was also used that was designed for
Taylor’s (1988) research. This system allows continuous measurement of the force
exerted on the test i and the relative deflection b the two load heads.

The load was measured by a load cell dt the hydraulic ram and the test
frame to an accuracy of + 0.1 lbs. The deflection was measured using a linear variable
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displacement transducer (LVDT) mounted to the middle of the load head mechanism.
This LVDT measured the relative deflection between the two loads for the test specimen.
The deflection data was recorded to an accuracy of + 0.001 in.

The signals from the load cell and the LVDT were cc d to a data acquisition system
(DAS) installed in a Compaq Portable II computer. These data later were used to
calculate Es. The DAS also automatically controlled the hydraulic operation and retracted
the load head at a predetermined load.

Long-Span Modulus of Elasticity Equipment

All of the test specimens were subjected to another nondestructive bending test to
determine long-span E. Long-span E is based on a static, flatwise bending test with a
simply supported center point concentrated load and a span-to-depth (L/d) ratio of
approximately 100 to minimize the effects of shear deflection. The reactions provide
unrestrained support at both ends of the test specimen; however, the support at one end
was allowed to tilt to match the twist of the lumber. Preload and final weights of 8.80
and 51.10 Ibs were used.

TESTING PROCEDURE

The lumber was assigned identification numbers at the laminator’s plant then the test
specimens were shipped to the Agricultural Engineering R h Lab y at Texas
A&M University where all tests were conducted. All test were performed in accordance
with AITC T116 Modulus of Elasticity of E-Rated Lumber by Static Loading (AITC,
1990), ASTM D198 Standard Methods of Static Tests of Timbers in Structural Sizes
(ASTM, 1991a) and ASTM D4761 Standard Test Methods for Mechanical Properties of
Lumber and Wood-Based Structural Material (ASTM, 1991f).
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The lumber was “stickered” to allow it to condition to an equilibrium moisture content
of approximately 12%. The moisture content was measured with a resistance-type
moisture meter. These measurements then were converted to dry-basis moisture content
using calibration data from oven tests. Moisture content was measured in three locations:
midspan and 36 in. from each end. The moisture meter readings were measured to the
nearest 0.1% (wet-basis).

Five two-ft segments were marked and numbered for each test specimen. The dimensions
of each specimen were measured at approximately the same location the moisture samples
were collected. The dimensions were measured using digital calipers. The thickness was
measured to the nearest 0.001 in. and the width was rounded to the nearest 0.01 in. This
was required because E is more sensitive to errors in thickness than it is to width

measurements.

Each specimen was tested in flatwise bending to determine Ej at the five segments. These
measurements were repeated for both sides of the specimens. The theoretical shear-free
E between the load heads was determined by the following equation. This equation is
valid only for "third point" loading.

3
g -2 _L €.
Ap 36 bh®
where:
E, = two-ft static bending modulus of elasticity,
P = total conc d load on sp
Ay = deflection of the neutral axis of the beam relative to the load heads,
L = total test span of the specimen,
b = width of the specimen and
h = thickness of the specimen.

The short-span bending test used a span of 6 ft. with a distance between load heads of 2
ft. Force and deflection data were sampled by the DAS at a rate of S Hz between the
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range of 150 lbs and 400 lbs. Linear regression was used to determine the P/A, term.

The average dimensions for the lumber were substituted for b and h.

The long-span E was measured for all specimens on both sides. The long-span E is
calculated by the following equation.

3
E,-L L F.2)
A7 4 bh®
where:
E;s = long-span static bending modulus of elasticity and
Ar = total midspan deflection.

The long-span bending test used a span of 12.5 ft. Deflection data was measured
manually with a dial indicator to the accuracy of 0.001 in, A preload of 8.80 lbs was
applied at midspan and the deflection was measured underneath the load. A final load of
51.10 Ibs was then placed at midspan and the total deflection was recorded instantly to
minimize the result of load creep. The difference between the two deflections was
substituted for Ar and P was equal to the difference between the final load and the preload
(42.30 lbs).

EXPERIMENTAL RESULTS

The lumber was allowed to condition to its equilibrium moisture content inside a
controlled environment. The average dry-basis moisture content for the sample was
11.77% with a standard deviation of 0.59% at the time testing began. The width and
thickness were measured for the sample. The average width and standard deviation was
5.504 in. and 0.009 in., respectively. The thick averaged 1.502 with a standard
deviation of 0.002 in. The average of the five two-ft modulus of elasticities were
compared to the long-span E measurements. Table F.1 contains the data from testing
side-A and Table F.2 contains data from testing side-B.
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Table F.1:  Comparison of localized shear-free E and long-span E - Side-A

Board Modulus of Elasticity
D seg 1 seg 2 seg 3 seg 4 seg § avg" L-span*
number (Mpsi)
1 3.127 3.268 3.227 3.163 3.170 3.191 2.9
2 2.831 2.511 2.537 2.535 2.488 2.581 2.32
3 2.213 2177 2.441 2.254 2.158 2.248 2.18
4 2.226 2.130 2.082 2.012 1.946 2.079 1.93
5 1.780 1.793 1.886 1.855 1.850 1.833 1.82
6 1.837 1.896 1.841 1.870 1.735 1.836 1.79
7 2.164 2.233 2.254 2.248 2.208 2.221 2.19
8 1777 1.821 1.884 1.799 1.755 1.807 1.80
9 2.248 2.261 2.292 2.174 2.221 2.239 2.16
10 2.036 2.192 2.186 2.363 2.488 2.253 2.14
11 2.639 2.708 2.573 2.840 2.824 2.717 2.42
12 1.331 1.503 1.480 1.417 1.459 1.438 1.47
13 1.683 1.798 1.790 1.767 1.728 1.753 1.76
14 2.406 2.485 2.459 2.546 2.608 2.501 2.31
15 2.108 2.219 2.346 2.236 2.430 2.268 2.15
16 2.632 2.634 2.566 2.687 2.774 2.659 2.44
17 2.801 2.860 2.832 2711 2.533 2.748 2.63
18 1.842 1.978 1.875 2.049 2.061 1.961 1.95
19 1.817 1.778 1.782 1775 1.809 1.793 1.80
20 2.347 2.531 2.591 2.547 2.446 2.492 2.39
21 2.669 2.674 2.487 2.169 2.252 2.450 2.31
22 2.521 2.2717 2.592 2.625 2.526 2.508 2.34
23 1.843 1.939 2.062 2.145 2.166 2.031 1.08
24 2.908 2.812 2.827 2.853 2.706 2.821 271
25 2.518 2.572 2.385 2.247 2.188 2382 2.36
26 1.610 1.795 1.886 1.895 2.020 1.841 1.82
27 2.183 2.193 2.128 2.035 1.892 2.087 1.99
28 1.545 1.630 1.709 1.826 1.872 1.716 1.70
29 1.931 1.910 1.880 1.901 1.820 1.888 1.86
30 1.993 1.909 1.935 1.979 1.927 1.948 191
31 1.441 1.381 1.336 1.376 1.378 1.383 138
32 1.772 1.823 1.700 1.674 1.724 1.739 172
avg  2.1691  2.0565
sd 0.4276* 0.3982
COV(%) 19.11 19.36

* Average of the five 2-ft segments
* Long-span E measured at a L/d ratio of 100
# Sample standard deviation of all 2-ft segments



Table F.2:  Comparison of localized shear-free E and long-span E - Side-B

Board Modulus of Elasticity
D seg 1 seg2 seg 3 seg 4 seg S avg L-span*
number (Mpsi)
1 3.028 3.141 3.194 3.210 3.228 3.160 2.98
2 2.562 2.367 2.385 2.353 2,329 2.399 2.31
3 2.137 2.106 2.366 2.203 2.192 2.201 217
4 2.059 1.992 1.945 1.901 1.824 1.944 1.92
5 1.831 1.915 2.035 1.893 1.832 1.901 1.81
6 1.808 1.867 1.809 1.837 1.73§ 1.811 L7
7 2.145 2.197 2.271 2.184 2.140 2.187 2.17
8 1.802 1.796 1.862 1.796 1.768 1.805 1.80
9 2.230 2.250 2.288 2.159 2.203 2.226 2.18
10 1.998 2.117 2.088 2.291 2.436 2.186 2.13
i1 2.700 2.705 2.615 2913 2.917 2.770 2.45
12 1.397 1.507 1.471 1.481 1.584 1.488 1.45
13 1.650 1.731 1.762 1749 1.733 1.725 1.78
14 2.415 2.488 2.418 2.493 2.616 2.486 2.34
15 2.008 2.125 2.206 2.137 2.339 2.163 2.13
16 2.470 2.521 2.515 2.567 2.566 2.528 2.46
17 2.708 2.815 2.865 2.783 2.640 2.762 2.64
18 1916 2.049 1.899 2.104 2,122 2.018 1.95
19 1.823 1.789 1.772 1.762 1.799 1.789 1.81
20 2.276 2.436 2.474 2.562 2.529 2.455 2.37
21 2.605 2.591 2.406 2.140 2.230 2.394 231
22 2.391 2.186 2.463 2.493 2.425 2.392 2.32
23 2.094 2.025 2.136 2.422 2.308 2.197 2.01
24 2.877 2.848 2.847 2.819 2.670 2.812 27
25 2.535 2.736 2.520 2.332 2.272 2.479 2.36
26 1.664 1.850 1.930 1.973 2.042 1.892 1.83
27 2.147 2.194 2.098 2.000 1.840 2.056 2.00
28 1.525 1.613 1.695 1.761 1.825 1.684 1.70
29 1.975 1.940 1.909 1.943 1.837 1.921 1.85
30 2.104 2.023 1.945 1.979 2.003 2.011 1.91
31 1.431 1.389 1.317 1.386 1.368 1.378 1.37
32 1.809 1.838 1.782 1.685 1.769 1.777 1.72
avg 2.1562 2.0851
sd 0.4103* 0.3592
COV(%) 19.03 17.23

* Average of the five 2-ft segments
* Long-span E measured at a L/d ratio of 100
¢ Sample standard deviation of all 2-ft segments
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An interesting point should be noted about the data. The ratio of E4 to the average E,
is 0.96. This is very similar to Taylor’s (1988) findings. Taylor found the ratio to be
0.95 and 0.96 for 302-24 and L1 lumber grades, respectively.

There was little difference between the sides being tested; therefore, all data were grouped
together for a regression analysis excluding one side of one specimen that had an
extremely low long-span E and was considered an outlier; therefore, the sample size was
equal to 63. Figure F.1 illustrates the plot of Eg versus E, g

35
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Figure F.1: E; versus E,; test data.

The regression equation relating these two values was found as:

Eg = L142%E,; - 0219 F.3)

Ani ing point about Equation F.3 should be noted. Kline et al. (1986) did a similar
experiment except their short-span segments were 30 in. instead of 24 in. Their data
indicate that the average of the Es is close to Eig (no more than 0.63% difference);



however using the regression equation developed from this research, any E, greater than
1.54 Mpsi yield an average E; that is greater than Es. This indicates the average two-ft
E is higher than the long-span E for practically the whole data set of L1 laminating
lumber. It is believed that a possible source of error could be caused by a crushing from
the load heads for the 2-ft E measurements. A specimen with two million psi E would
only take 0.006 in. of crushing to cause a 5% error in the measurement. To put this
localized crushing in perspective, 0.006 in. is about 1.5 times greater than the thickness
of a piece of paper. This is one possible explanation for the experimental error. This
experimental error is significant because AITC has adopted this procedure for collecting
lumber property data.

SUMMARY

Data were collected on 32 pieces of 16 ft. 2 x 6 Douglas-fir laminating lumber. The
lumber was subjected to several nondestructive test including Eg and E;5. The test data
indicate that the average E; value collected during this research does not equal E;s which

is counterintuitive.
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