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ABSTRACT 

Shear Deflection of Composite Wood Beams 

(May 1992) 

Thomas David Skaggs, B. S. , Texas A&M University 

Chair of Advisory Committee: Dr. Donald A. Bender 

Deflection of beams is comprised of two parts: 1) bending and 2) shear deflection. The 

shear component is usually ignored for most structural engineering applications; however, 

if the beam's construction material is lumber the shear contribution can be a significant 

portion of the total deflection. Calculating shear deflection for homogeneous beams is a 

routine mechanics of materials problem; however, when the beams are non-homogeneous, 

such as glued-laminated timber beams (glulam), or have non-rectangular shapes such as 

I-beams, it becomes more difficult to characterize deflection. 

The primary objective of this research was to develop an algorithm to predict shear stress 

and deflection for layered composite wood beams. The shear stress model was developed 

using energy methods and Castigliano's theorem. The deflection model was compared 

to theoretical results for homogeneous beams and other published shear deflection models 

with close agreement being observed between the methods. The model was also 

compared to actual full sized glulam beam test data. Good agreement was achieved 

between predicted values and the actual measured values. A sensitivity analysis was 

performed in this research on step size for the numerical integration and on the effect of 

shear modulus (G) on the shear deflection. 

The shear deflection model compared favorably to published models, and it has the 

capability of predicting shear stress in a composite beams, which is unique to this model. 

The advantage that this composite shear deflection model has over other published 

composite models is that it can calculate shear deflection for more general shapes than 



previously published models. This model can calculate shear deflection for both 

composite glulam beams and composite I-beams. Several published models are limited 

to a deterministic value for G; whereas, this model allows G to be a random variable. 
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CHAPTER I 

INTRODUCTION 

PROBLEM STAT~ 

There can be many limit states of a structural design, but one of the most important is 

deflection. For example, if a door header has excessive deflection the door will not shut 

properly. Floor systems are another design controlled by deflection. A floor with 

excessive deflection can cause discomfort by having a "bouncy feeling"; thus, users may 

lose confidence in the design. Similarly, a design that is sensitive to deflection, but is 

often used in the construction industry, is flat roofs. Accumulation of water can occur 

on flat roof systems, causing deflection due to the weight of the water, which leads to 

even more ponding. This is commonly referred to as the "P-delta" effect. In these types 

of designs, the deflection can be attributed to beams, which are the most common 

structural member. 

Deflection of beams is comprised of two parts: 1) bending and 2) shear deflection. Shear 

deflection is ignored in many structural engineering applications. This is a reasonable 

assumption for steel structures because the total deflection is usually dominated by the 

bending component, except for very short, deep beams. The U. S. engineering practice 

accounts for shear deflection of wood members in a more subtle fashion. The expected 

deflection is commonly calculated using equations that only take bending into account. 

Design values for (E) in the National Design Specification (NDS) (1986) are reduced by 

about 3. 4%, according to American Society for Testing and Materials (ASTM) D 245 

(1991b) and ASTM D 2915 (1991c), to indirectly account for shear deflections within 

span-to-depth (L/d) ratios of 15 to 25. The Commission of the European Communities 

in Eurocode 5 (1987), as cited by Chui (1991), approach this problem in a more direct 

References in this thesis follow the format established in W~~B~Fi gr 
$gii 



manner. The true bending E is published as the design E, and the code specifies that 

shear deflection must be included in the total deflection prediction. 

Shear deflection is related to the shear modulus (G) of the beam, which can also be 

referred to as modulus of rigidity. The relationship of E and G for a homogeneous, 

isotropic material is given by Gere and Timoshenko (1984) as follows: 

E 
2(1+v) 

(1. 1) 

where: 
G 
E 
u 

shear modulus, 
modulus of elasticity and 
Poisson's Ratio. 

Poisson's Ratio for steel is assumed to be 0. 3 in the elastic range (Salmon and Johnson, 

1990). This yields a ratio of E/G of 2. 6; however, the ratio of E/G for wood is generally 

assumed to range from 11 to 16 (USDA, 1987). It should be noted that Equation 1. 1 is 

invalid for wood because of its orthotropic characteristics. This characteristic explains 

why there is such a large discrepancy between the E/G ratio of steel and wood. This 

large ratio for wood indicates the shear component of the total deflection can be more 

significant for a wood beam than for a steel beam. Hence, shear deflection should be 

accounted for in certain situations. 

The current practice for calculating deflection of wood beams is to use flexural equations 

found in many textbooks. These equations are derived for bending only, but since the 

design E is reduced to account for shear deflection, they give reasonably accurate 

predictions for L/d ratios ranging from 15 to 25. However, if the L/d ratio is less than 

15, the predicted deflection will be less than the actual deflection. Modified equations 

can be used (Hoyle and Woeste, 1989) that take shear deflection into account; however, 

they are valid only for homogeneous materials. 



Siinple methods of predicting shear stress and deflecflon are needed for composite layered 

wood beams. The finite element approach is effective for predicting shear in beams; 

however, it is computationally intensive and requires detailed material property data for 

each element, or cell. Transformed section approaches have been developed for layered 

beams with homogeneous laminations; however, these methods do not fully account for 

lengthwise variability of the lamination elastic properties. A general, versatile method 

is needed to predict shear in beams for the purposes of evaluating design procedures and 

assessing the need for research on localized elastic properties of wood particularly shear 

modulus). 

RESEARCH OBJECTIVES 

The specific objectives of this research are: 

1. Develop an algorithm to predict shear stress and deflection for layered composite 
wood beams. 

2. Compare the shear deflection algorithm with published methods. Comparisons 

will be made under the assumptions of homogeneous beams, and layered beams 

with homogenous properties within each lamination. 

3. Experimentally validate the shear deflection algorithm using test data on glulam 

beams. 

Integrate the shear deflection algorithm into an existing glued-laminated timber 

beam (glulam) model (Hernandez, 1991) and perform sensitivity analyses on 

parameters such as E/G ratios, step size for numerical integration, and beam 

layups. 

5. Compare shear deflection predictions from the algorithm with those using 

approximate methods recommended for design purposes. 



CHAPTER II 

LITERATURE REVIEW 

PREDICTION OF SHEAR DEFLECTION 

Many mechanics of materials textbooks address the deflection of homogeneous beams 

with rectangular shaped cross sections. However, cross sections with irregular shapes or 

containing nonhomogeneous materials are often "beyond the scope of the textbook", The 

basis for many of the deflection equations for homogeneous materials are energy methods. 

The strain energy due to bending and shear can be found in several textbooks (e. g. Boresi 

and Sidebottom, 1985) as follows: 

v = fffr ' 
I 
— )* ~ — '( F)dv (2E 2G 

(2. 1) 

where 
U 
E 

internal energy of the stressed volume, 
modulus of elasticity, 

= bending stress at any point in the beam, 
shear modulus and 

= shear stress at any point in the beam. 

Castigliano's theorem, shown in Equation 2. 2, then can be applied to Equation 2. 1 to find 

the deflection of the member. This also is a common mechanics problem covered by 

many textbooks such as Boresi and Sidebottom (1985). 

5 av 
BF i 

(2. 2) 

where: 

8; 

F; 

= deflection at point i and 
= concentrated load located at point i. 



To find deflection, Equation 2. 1 is integrated across the width and depth, and the partial 

derivatives are taken with respect to F, . Equation 2. 3 (Boresi and Sidebottom, 1985) 

represents the final form after these operations have been performed. 

(2. 3) 

where: 
M 
I 
k 
V 
A 

bending moment as a function of x, 
moment of inertia, 
form factor as a function of beam geometry, 
shear as a function of x and 
area of the cross section. 

The two terms, k and A, result from algebraic cancellations. The k factor values can be 

derived for different cross sections. For a rectangular cross section, k equals 1. 20, and 

for I-beams, k is approximated as 1. 00; however, only the area of the I-beam's web is 

used for A (Boresi and Sidebottom, 1985). This general method to calculate deflection 

has a large range of applications; however, it is liinited to homogeneous materials. 

Wangaard (1964) studied the elastic deflection of small-scale composite beams. These 

composite beams were 1" x 1" x 16" with wood cores that were 90% of the inner portion 

of the cross section. The wood cores were covered with fiberglass reinforced plastic 

faces on the outermost fibers, about the axis of bending. The first model examined by 

Wangaard predicted deflection using the usual elastic formulas that are derived froin the 

first term of Equation 2. 3 which only accounts for bending. The transformed section 

method (see Gere and Timoshenko, 1984) was used to calculate E, and it was found to 

under-predict deflection in all cases. The second model included the second term of 

Equation 2. 3 which accounts for shear deflection. This model used G of the wood core, 

k equal to 1. 00 and the average of the gross (wood and fiberglass) cross sectional area and 

the wood core area for A. The accuracy of this model was increased by including the 

shear term. This method is limited to cross sections that are symmetric about the neutral 



axis, referred to as balanced layups, and ignores the variability of material properties (E 

and G) along the length of the beam. 

Biblis (1965) examined the deflection of small scale solid wood beams of varying span-to- 

depth (L/d) ratios. Several wood species were studied for the 0. 65" x 0. 65" test 

specimens. An equation was used that could be derived from Equation 2. 3 to predict 

deflection for simply supported homogeneous beams with k equal to 1. 20. This method 

is limited to homogeneous simply supported beams. An important finding was the shear 

component could account for over 40% of the total deflection at a Lld ratio of 8 for 

Douglas-fir lumber. This is significant because this species grouping is commonly used 

in glulam beams. 

Orosz (1970) used energy methods to calculate shear deflection of wood beams. He 

reduced the second integral in Equation 2. 3 to multiplication of the area of the shear 

diagrain with the ordinate of the desired point of shear deflection. It was also noted that 

k changes as the shape of the beam changes. The form factor (k) was derived for an I- 

beam with the flange and webs having different lumber properties. It can be applied to 

glulam beams, but is limited to a cross section that is symmetric about the neutral axis, 

and only allows two different lumber grades. A possible extension of this method would 

be to derive a k factor for a multi-layer composite beam that has different wood 

properties; however, this would be mathematically complex for a general multi-layered 

beam, would still be limited to balanced layups, and would ignore variability of the 

material properties along the length of the beam. 

Mansour and Gopu (1990) presented a method to predict the deflection of long-span pitch- 

cambered glulam beams, using Equation 2. 3 with a transformed section analysis. They 

presented a method to calculate k for unbalanced layered beams. Monte Carlo simulation 

was performed to randomly assign E values along the length and depth of the beam; 

however, the variation of E/G was ignored, and was limited to 16. The simulated beam 

was then analyzed using a finite element method. They concluded that simple equations 



for homogeneous beams provide a good prediction of total deflection as long as the shear 

component was taken into account. This is significant since simple deflection equations 

used in design ignore E variability. 

Swift and Heller (1974) present a Quasi-Newton method to predict deflection and shear 

stress distribution in layered beams, Their method analyzed glulam beams with different 

percentages of high quality wood (E = 1. 8 x 10' psi) and low quality wood (E = 0. 8 x 

1(y' psi). They noted that a large portion of weaker wood in the cross secuon caused the 

shear deflection to predominate for short beams. Their method would allow for 

unbalanced layups; however, it would not allow for variation along the length of the 

laminate s. 

Baird and Ozelton (1984) used the shear portion of Equation 2. 3 with a factor to account 

for tapered glulam beams, and presented a method to approximate k for different shapes, 

such as I-beams. They suggested a simplified approximate approach for calculating the 

deflection of I-beams that defines the A term in Equation 2. 3 to be equal to the area of 

the web, and the form factor equal to unity. They also presented a simplified version of 

Equation 2. 3, which they reduced to tabular form for solid sawn lumber. Although these 

tables are adequate for solid sawn lumber, they are not applicable to composite cross 

sections. 

Since composite cross sections often utilize the stiffer materials on the outer portion of 

the cross section and the less stiff materials for the core, it is intuitive to use the method 

of transformed sections to calculate the bending stresses and deflections. Hilson et al. 

(1990, 1988) and Pellicane and Hilson (1985) applied this method to calculating shear 

deflection. They presented a finite difference equation that accounts for bending and 

shear as follows: 



where: 

4 
M; 
m, - 

V, 

V; 

EI; 
GA; 
k 

n 

total bending and shear deflection at A, 
bending moment at i, 
bending moment at i due to unit load at A, 
shear force at i, 
shear force at i due to unit load at A, 
bending properties of transformed section at i, 
shear properties of transformed section at i, 
form factor taken as 1. 20, 
finite interval between sections in each element and 
number of longitudinal elements. 

This equation is similar to Equation 2. 3 with the integrals being replaced by summations, 

and the partial derivatives being replaced by m, and vi, which are the bending moment and 

shear force, respectively, from a unit load applied at midspan. However, this equation 

is not exact for composite cross sections with varying E because it does not account for 

the changes in the shear stresses across the various laminations. They suggested using 

the transformed area of the cross section with the k factor equal to 1. 20 for a rectangular 

cross section, but these two terms are based on the assumption of a rectangular cross 

section, not a transformed non-rectangular cross section. 

CHARACTERIZATION OF ELASTIC CONSTANTS 

Being able to predict the behavior of wood under various loads is an important task. 

Gaining a better understanding of its characteristics could influence designers to use this 

material for more complex structures. Many models can predict the theoretical stresses 

and strains of wood systems, but these models require input in the form of elastic 

constants that are not completely characterized for every wood species grouping. The 

easiest property to obtain and the most studied is E. The next most studied is G and the 



last, and probably least studied would be the Poisson's ratios (u) about the three principal 

planes of the wood. These principal axes are referred to as longitudinal (L), radial (R) 

and tangential (7) (see Bodig and Jayne, 1982). 

Some earlier work on the relationships of E and G was done by Doyle and Markwardt 

(1966). They tested full sized southern pine dimension lumber for a variety of structural 

grades. Modulus of elasticity was measured flatwise in bending and G was measured 

using a torsional technique. They regressed E and G and showed that the coefficient of 

correlation (r) varied from — 0. 342 to +0. 228 depending on the lumber grade, and the 

E/G ratios ranged from 8. 1 to 13. 4 with the average being 11. 6. Doyle and Markwardt 

(1967) followed this study with another series of tests for southern pine dimension 

lumber. The E was measured in tension and G again was measured in torsion. The 

results from these tests were similar to their previous test results. The r values for E 

versus G ranged from — 0. 147 to +0. 554, and the E/G ratio ranged from 11. 1 to 15. 1 

with an average of 12. 8. They stated that G appeared to be less affected by grade or 

quality of the material than E. Doyle (1968) tested another sample of No. 2 dense kiln- 

dried southern pine dimension lumber. He observed that G did not correlate with flatwise 

E for his series of tests and the average E/G ratio was recorded as 13. 5. These three 

studies helped determine the E/G ratio of 12 for southern pine lumber, published in the 

Wood Handbook (USDA, 1987); however the poor r values suggest that a deterministic 

number may' not best represent the E/G ratio. 

Palka and Barrett (1985) presented a report to the ASTM task group investigating the 

validity of Table 2 in ASTM D 2915-74. This testing consisted of a sample of Canadian 

Spruce 2" x 4" and 2" x 8" structural lumber specimens. The test was performed under 

third point bending with the lumber being loaded edge-wise. The total deflection at 

midspan and deflection relative to load heads were measured giving an indication of 

gross-E, with shear deflection included, and true-E, without shear deflection, respectively. 

The true-E/G ratio can be determined from the two E values. They stated that there was 

a large amount of variability in the true-E/G ratio for the two samples and that the 



10 

average value was considerably larger than the reported value of true-E/G of 16. They 

concluded that true-E/G is dependent on the test method and lumber quality. The table 

that instigated this investigation has since been replaced by a footnote (ASTM, 1991c) that 

states, "Limited data indicate that the E/G ratio for individual pieces of lumber can vary 

significantly from E/G = 16 depending on the number, size and locaflon of knots present, 

the slope of grain in the piece and the span over which deflections are measured. " 

Gunnerson, et al. (1973) subjected flat plates to a two-way bending moment, caused by 

a triangular load configuration. They found they could simplify the calculations of E by 

reducing the flat plate to an equivalent simple beam with point loads; however, correction 

factors were required to take into account the two-way bending moment. It was 

concluded that the plate testing method is a good procedure for determining elastic 

parameters of wood. The disadvantage of this procedure is that the plates are time 

consuming to prepare. This method works best for plywood, particleboard and 

fiberboard, but is ill-suited for structural lumber. 

Bodig and Goodman (1973) used plate bending and plate twisting tests on small scale 

clear wood specimens to predict the elastic constants of the wood. These specimens 

consisted of several softwood and hardwood species. The plates were manufactured to 

0. 3' x 6. 5" x 12. 5" with six different plate orientations (LR, RL, LT, TL, TR, R7) to 

measure E and v about the different axes. The plates were then cut down to the 

dimensions 0. 3 x 6. 5" x 6. 5" to measure G by a plate twisting test. The authors 

developed power-type regression equations that related the elastic constants from their 

results. They found a significant differences between the regression lines for softwood 

and hardwood species. In addition to the elastic parameters, they correlated the elastic 

consumts to the density of the materiaL This resulted in a coefficient of variation on the 

order of 20 percent for the elastic properties versus density regressions. Power curves 

were statistically significant for most of the relationships; however, the regression was 

not significant for G~ versus Ei and G„~ versus Q for the softwood species. This study 

highlights the problem of trying to predict G by using E. Their study showed that 
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predicting G and E independently using specific gravity yielded r values for the 

regressions with statistical significance, indicating that E/G is not a constant and should 

be treated as two independent stochastic variables. 

Goodman and Bodig (1978) presented a review of literature and a commentary on the 

problem of modeling elastic behaviors of wood. They commented on the problem of 

modeling knots and associated grain deviations. Much of the data used to characterize 

the elastic parameters of wood are collected from clearwood specimens; however, knots 

cause the analysis to become exceedingly complex. The grain deviations around the knots 

cause the principle axes (L, R and I) to be rotated, thus making the modeling procedure 

very difficult. It was concluded that compression along the ring and grain of wood (ie. 

knots and grain deviations) is not completely understood and further refinements of theory 

are needed. They also theorized that the assumptions of orthotropic symmetry in the 

radial direction is most often the cause for deviation between theoretical and experimental 

measurements. They suggested that a possible method to model lumber is an orthotropic 

finite element model; however, the tensor transformations for grain deviations and knots 

may not be a valid technique. 

Ebrahimi and Sliker (1981) measured G in small scale specimens in tension. The 

specimens were 0. 25" x 4" x 32", and were instrumented with a strain gage rosette that 

consisted of free-filament strain gages. These gages had to be specially fabricated because 

errors caused by reinforcing occur when measuring materials having an E less than one 

million psi, as in wood at large angles to the grain direction. Most of the stiffness of 

commercial strain gages comes from the plastic or paper backing instead of the strain 

sensitive wire or foil. The individual strain gages were oriented 45 degrees apart and the 

angle of grain to angle of applied stress varied between 20, 35, 50 and 65 degrees. The. 

G values recorded from the tensile specimens were compared to flat plates 0. 5" x 14" x 

14" prepared according to the procedure outlined in ASTM D 3044-76 (1991d), Standard 

Test Method for Shear Modulus of Plywood. Shear moduli varied within +10% of the 

G measured from the plate test at a load to grain angle of 20 degrees. The advantage of 
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this test method is that the specimens can be removed from structural lumber and are 

relatively easy to fabricate, as compared to plate testing. The disadvantages of this test 

method are: having to "hand-make" the strain gage rosettes, orienting the grain angle of 

the specimen when it is fabricated and limiting specimens to clearwood and straight- 

grained. 

Zhang and Sliker (1991) tested small scale specimens in tension and compression to 

measure G and compared them to the G measured from plate testing in accordance with 

ASTM D 3044-76 (1991d). Two sets of off-axis specimens were used, with one set for 

loading in tension and the other in compression. The tension specimens were 0. 5" x 

1. 25" x 11" and the compression specimens were 1. 25" x 1. 25" x 7". Free-filament 

strain gages were manufactured manually and were placed in rosettes as described 

previously (Ebrahimi and Sliker, 1981). The load to grain angles for both specimens 

were 0, 10, 20 and 45 degrees. The tension specimens compared more closely to the flat 

plate testing than the compression specimens, because the compression load heads induced 

shear distortion. They also confirmed Ebrahimi and Sliker's (1981) earlier finding that 

the best prediction of G in tension was at a load to grain angle of between 20 and 30 

degrees. This method, although promising, is limited to straight-grained woods. 

Davalos et al. (1991) computed G from a torsional test for small scale southern pine 

glulam beams. Shear modulus was measured about two planes, Gta and G„r, and a 

difference between the mean values of approximately 7 percent was found. They stated 

that this is statistically significant, but it can probably be ignored in practical engineering 

applications; therefore, can be modeled as transverse isotropic. They then compared 

Saint-Venant's solution for homogeneous, elastic, isotropic, rectangular sections to 

Navier's solution for isotropic circular cylinders (Hsu, 1984). The rectangular sections 

were 1. 0" x 1. 0", 1" x 0. 5", 1. 5" x 0. 5" and 2. 0" x 0. 5" and the circular sections had 

a diameter of 1. 0". The different depth-to-width ratios of the rectangular cross sections 

had no effect on the computed G. These values were close to the G values computed 

from the circular cross section. These findings simplify the measurement of G, because 
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specimens do not have to be removed from a piece of structural lumber with a certain 

grain orientation. Their findings also simplify the modeling of composite wood beams 

by suggesting that G« is equivalent to G„, . This allows a composite beam to be modeled 

with respect to G without regard to the orientation of the growth rings. 

Bradtmueller et al. (1991) subjected oriented strandboard (OSB) to a quarter-point and 

five-point loading schemes. These samples of OSB had thicknesses of 3/8", 23/32" and 

1-1/8". The quarter-point loaded beams had two linear variable differential transducers 

(LVDT) located at midspan. One LVDT measured the deflection relative to the load 

head, and the other measured total midspan deflection. The five-point loaded beam had 

3 reactions and two load heads placed symmetrically along the length of the beam. Two 

LVDTs were located adjacent to the load heads to measure deflection of that section of 

the beam. Using the deflections from both testing apparatuses, E and G could be solved 

for simultaneously. The sensitivity of the different parameters was analyzed and an 

important finding was that a small error in calculating E magnified the error in G. This 

is caused by E being considerably larger than G; therefore, causing the equations to be 

slightly ill-conditioned. They also found that these measurements were sensitive to 

dimension measurements especially depth and span. They noted that experimental results 

of G were lower than expected and theorized that this was caused by the low shear 

sflffness in the core which corresponded to the highest shear stresses. 

Chui (1991) used a vibration technique to simultaneously evaluate E and G. His findings 

revealed that the common assumption of E/G equal to 16 for Douglas-fir (USDA, 1987) 

may not be valid. Chui's data indicated E/G is a random variable, not a deterministic 

value; furthermore, it was suggested to use E/G of 20 for clearwood and 30 for lower 

quality lumber that contains knots. This is meaningful since the beam combinations found 

in the American Institute of Timber Construction (AITC) 117 - Manidacturing (1988) 

often specify that 50% of the inner core of glulam beams can be made with low quality 

lumber. 
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CHAPTER HI 

MODEL DEVELOPMENT 

The use of composite beams such as glulam and I-beams with lower quality wood in their 

cores and webs, respectively, have made the problem of calculating deflections due to 

shear more complex. Varying E and G across the cross section and along the length for 

multi-layered beams increases the difficulty of calculating shear deformation. Researchers 

(Mansour and Gopu, 1990, and Orosz, 1970) have presented methods to calculate k for 

composite beams, for use in the traditional shear deflection equation (Equation 2. 3); 

however, a more versatile inethod is needed to facilitate studies of spatial variation of 

E and G. 

SHEAR STRESS DERIVATION FOR COMPOSITE BEAMS 

An intuitive start to deriving an equation for shear deflection that considers a composite 

cross section would be to critically examine Equation 2. 3; however, only the second term 

of this equation needs to be modified. The derivation of Equation 2. 3 assumes the shear 

stress is equal to the classic shear stress used in many applications. This equation can be 

found in Gere and Timoshenko (1984). 

VQ 
'C 

Ib 
(3. 1) 

where: 
T 

V 

Q 
I 
b 

shear stress at any point in the cross section, 
shear force, 
first moment of the area, 
moment of inertia and 
base of the cross section. 
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Although, this simple equation is not directly applicable to layered beams, the theory of 

deriving Equation 3. 1 can be extended to layered beams. Finding the shear stress 

distribution in a homogeneous beam is straightforward; however, as material properties 

vary, as in a composite beam, so do the shear stress distributions. Once the shear 

stresses are derived for a relatively simple composite beam, it is an easy extension to 

cover more complex composite beams, such as glued-laminated timber beams (glulam) 

or I-beams. Finally, after the shear stress distribution is characterized for a composite 

beam, shear deflection can be found by applying the theory of complementary virtual 

work. 

Figure 3. 1(a) illustrates a simple composite beam that is stressed by arbitrary loads P, Q 

and w. Figure 3. 1(b) represents the cross section of this beam with width b and height 

h. The outer laminations of this composite beam have modulus of elasticity of E, and the 

inner laminations have modulus of elasticity of Ei. It is assumed that E, is greater than 

E2, an assumption that would be generally true for glulam beams. Composite beams are 

often analyzed using the transformed-section method, because the usual elastic beam 

formulas can be used with slight modification. Figure 3. 1(c) illustrates the transformed 

cross section. 

P 
w A 

djI A 

L 

E 

MA rz h 

1 

Section A-A Traneformed-Secuon 

Y (o) (c) 

Hgure 3. 1: Simple composite beam. 

This method transforms the composite cross section to a homogeneous material with a 

modulus of elasticity of Ess, where Ers is an arbitrary constant. The width of the P' 
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lamination is adjusted by the ratio of its corresponding E, to the constant Ew. Equation 

3. 2 demonstrates this transformation. 

(3. 2) 

where: 

biu 

E; 
Ew 

b; 

adjusted width of the i lamination, 
modulus of elasticity of the P lamination, 
transformed modulus of elasticity and 
width of the i~ lamination. 

The elastic flexural formulas then can be used with slight modification. The bending 

stress in the cross section is represented by: 

My a bi E 
C 

(3. 3) 

where: 

M 

Ii 

normal bending stress in the t lamination, 
bending moment applied at the cross section, 
distance from the neutral axis to the point in question and 
moment of inertia of the transformed cross section. 

An element of the original simple composite beam, Figure 3. 1(a), is removed and 

examined in greater detail in Figure 3. 2(a). This cut has length dx and cross sectional 

properties identical to the original beam shown in Figure 3. 1(b). The element is subjected 

to a moment M on the left side and an opposing moment on the right side M + dM. The 

bending stress is superimposed on Figure 3. 2(a). Note the discontinuity in the stress 

distribution corresponding to the different values of E, with the slope becoming steeper 

as E increases. Both of these properties are characterized by Equation 3. 3. The shaded 

area in Figure 3. 2(a) is now examined in greater detail in Figure 3. 2(b). 
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Fj 
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FR h/2 
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Y 

Section B-B 

(c) 

Figure 3. 2: Stresses, forces and moments on the composite cross section. 

The bending stresses are resolved into component forces F in Figure 3. 2(b). The shear 

V acting parallel to the line OP can be found using simple statics as follows: 

(3. 4) 

where: 
Fs 
Ft. 
V&tp 

= resultant bending force on the right side in the t lamination, 
= resultant bending force on the left side in the r~ lamination and 
= shear force acting parallel to line OP. 

Rearranging terms to solve for Vpp. 

Vop = Fat ' Fg - Fq - Fq (3. 5) 

The bending stress (Equation 3. 3) can be integrated over each area A;; thus, yielding the 

resultant component forces over their respective areas. These resultant forces can then 

be substituted into Equation 3. 5 to form Equation 3. 6. Figure 3. 2(c) is a section removed 

from 3. 2(a) illustrating the infinitesimal area dAP The area of integration A, must be 

changed as the modulus of elasticity changes. 
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f E, (M+dM)y f Ez (M+dM)y 

E, My~ I Ei My~ 
E. I, E. I, 

I 

(3. 6) 

where: A, = area of integration of the t laminadon and 

Equation 3. 6 can be simplified as shown in Equation 3. 7. 

(3. 7) 

The shear stress roP can be found by dividing the shear force acting parallel to line OP 

by the area that it acts over as follows: 

Vop 
T OP d b 

(3. 8) 

where: 
dr 
rop 

= length of cut in the simple composite beam and 
= shear stress acting parallel to the line OP. 

Equation 3. 9 is the result when Equation 3. 7 is substituted into Equation 3. 8. 

Ei dM 1 r Es dM 1 r 
fydA, + — — — fydA E. dr I, b „' E„ds I, b 

1 

(3. 9) 

Equation 3. 9 can be simplified by noting the shear force Vis the derivative of the moment 

dM/dr, and the area integral is commonly known as the first moment of the area Q. 
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Equation 3. 10 gives the shear stress in the simple composite beam acting parallel to line 

OP. 

E, VQi Eq VQs 

E, IP E, IP 

where: Q, = first moment of the area of the t lamination. 

Equation 3. 10 can be expanded to the general case for any number of laminations, shown 

by Equation 3. 11. This is the general form of the equation for shear stress at any point 

X, along the depth of the beam. 

I 
V P EiQ~ 

E, IP 
(3. 11) 

where: rs = shear stress at any point X along the length and depth of the beam. 

A similar form of this equation can be found in Allen and Haisler (1985) in the advanced 

beam section. 

SHEAR DEFLECTION DERIVATION FOR COMPOSITE BEAMS 

Once a general equation for shear stress is derived, the internal energy can be found by 

substituting Equation 3. 11 into the second part of Equation 2. 1, yielding Equation 3. 12. 

(3. 12) 

Applying Castigliano's Theorem (Equation 2. 2) to Equation 3. 12 results in Equation 3. 13. 
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I 2 s 

2 

(3. 13) 

Integrating across the base yields: 

(3. 14) 

2 

Equation 3. 14 can be integrated numerically by expressing it in the form of Equation 

3. 15. The integrals are replaced with summations and the partial derivatives are replaced 

by v, , which is the shear component of a unit load applied at midspan. The shear 

modulus, G„, is placed inside the summations so it can vary along the length and depth 

of the beam. The Eg is removed from inside the summations because it is constant across 

the beam length and depth. 

J 2 ~ 
V, . v, . ~ ~ E 

g~v = P P hy hx 
l i P J i hJG[J 

I( 

(3. 15) 

where: 

gx, v 

Eg 
Ncnrx 

V; 

v; 

I~ 
Ncttry 

Ea 
Qi 
b; 

shear deflection at point x, 
transformed modulus of elasticity, 
number of intervals along the x-axis, 
shear force at i, 
shear force at i due to unit load at x, 
moment of inertia of the transformed cross section at i, 
number of intervals along the y-axis and 
modulus of elasticity of the k lamination at i, 
first moment of the area of the k lamination, 
actual width of the j~ lamination, 
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G, , = shear modulus of the j lamination at i, 
width of intervals along the x-axis, 

hy = width of intervals along the y-axis. 

SUMMARY 

An equation was derived to calculate the shear stress at any point along the length and 

depth of a composite beam. This equation then was extended using energy methods, 

resulting in an equation that characterized the deflection from any arbitrary flexural 

loading condition. Assumptions and limitations to the developed equations are discussed 

next. 

Assumptions 

The assumptions that led to the derivation of Equations 3. 11 and 3. 15 are as follows: 

1. The shear force on the beam acts parallel to the shear stresses. 

2. The shear stresses act uniformly across the width of the beam. 

3. The material is linear elastic homogeneous and is only subjected to small 
displace ments. 

4. Deformations are about the plane of bending (i. e. no lateral-torsional buckling). 

Limitations 

A limitation of the model is that the shear stress formula (Equation 3. 11) is limited to 

beams that are deeper than they are wide, When b=h, the true maximum shear stresses, 

can be significantly larger (13% for a homogeneous beam) than what Equation 3. 11 

predicts (Gere and Timoshenko, 1984). This underprediction of shear stress would also 
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cause an error in the amount of shear deflection predicted by Equation 3. 15 for a 

composite beam. 
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CHAPTER IV 

MODEL VERIFICATION 

Verification of a model is simply to determine if the model performs as intended. There 

are numerous techniques that can be used to verify the shear deflection model for 

composite beams developed in Chapter III (Equation 3. 15). One possible comparison 

would be to use a finite element (FE) method to characterize the deflection caused by a 

certain loading condition. The problem with this technique is the input parameters, i. e. 

material properties, are neither completely characterized for every wood species grouping 

nor understood in the general area surrounding naturally occurring strength reducing flaws 

(e. g. knots and grain deviations). If a discrepancy is found between the FE model and 

Equation 3. 15 it is not known if the error is with the material property assumption or with 

the shear deflection inodel. The verification approach used here is to compare Equation 

3. 15 with other energy methods. By comparing the shear deflection model with different 

energy method models, a measure of confidence can be obtained if the models compare 

favorably. 

MODEL COMPARISON 

Symmetric Two-Point Loaded Homogeneous Rectangular Beam 

The first comparison conducted is for a homogeneous rectangular beam that is simply 

supported, and is loaded by two symmetrically placed loads. This case scenario is fairly 

simple; therefore, the exact theoretical solution was obtained by using energy methods. 

The predicted deflection from Equation 3. 15 was then compared to the exact solution. 

The two-point loading was selected because it is a more general loading case than a single 

concentrated load located at midspan. Figure 4. 1 is a graphical representation of this case 

scenario with the shear (V) and moment (M) diagrams plotted beneath the beam scheinatic 

diagram. The beam is loaded with symmetric two-point loads P/2, located at a distance 



24 

u from the ends of the beam. A fictitious concentrated load Q is applied at midspan so 

deflection could be found at that point. The width and depth of the beam are b and h, 

respectively. Two local coordinate systems are defined (x, and xi) to simplify 

characterizing the V and M equations that are used in the deflection calculations. 

P/2 P/2 
Q 

I 

L/2 L/2 Cross-Section 

+xt 

P/2 Q/2 

V(x) 

-P/2 

Pa/2 QL/4 

M(x) 

ligure 4. 1: Shear and moment diagrams for a homogeneous beam. 

The moment and shear equations and the corresponding partial derivatives must be broken 

into four separate equations because of discontinuities, and is written as follows: 
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x, 0 to a 

Px, Qxi 
M(x) = — '+— 

2 2 
BM 

BQ 2 

V(x ) = — +- P Q 
2 2 

BV 1 

BQ 2 

x, : a to L/2 

Pa Qx 
M(x) = — +— 

2 2 
BM 

BQ 2 

V(x ) =- Q 
i 

BV 1 

BQ 2 

x~:Otoa 

Px Qx 
M(x) = — +— 

2 2 
BM xs 

BQ 2 

V(Q = — — —— P Q 
2 2 

BV 

BQ 2 

t L/2 

pa Qxs 
M(Q = — +— 

2 2 
BM 

BQ 2 

p(x) = —— Q 
1 

BV 1 

BQ 2 

Equation 4. 1 is the energy method procedure with the shear and moment equations 

substituted into Equation 2. 3 to find the midspan deflection. The virtual load Q applied 

at the midspan is a fictitious load and is equal to zero; therefore, it was excluded from 
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the deflection calculations; although, the partial derivatives associated with Q must be 

included. 

1~Px, xi R ~Pl 
El 

0 
2 2 GA 0 2 2 

— j — — d . — fod, . 1 Pa xi R 

El 2 2 ' GA 

(4. 1) 

1 f Paxs~ R f0+ EI 2 2 GA 

where: 
P 
a 
L 

sum of the two symmetrically placed loads, 
distance from the two-point load to the end of the beam and 

= distance between the beam reactions. 

After integration and algebraic simplification, the final deflection equation for a simply 

supported two-point loaded homogeneous beam is expressed as foHows: 

8 = — (3Ls — 4as) +- 
48 EI 2GA 

(4 2) 

As before, the first term represents the bending component of deflection and the second 

term represents the shear component. 

The following beam dimensions are assumed for this verification: L = 456 in. , a = 180' 

in. , b = 5. 125 in. , and h = 24 in. Other assumptions include: the beam is homogeneous 
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with E = 2. 0 x 10' psi, G = (EI16) and P = 1000 lbs. The form factor (k) was equal 

to 1. 20 since the cross section was rectangular. The bending term from Equation 2. 4 and 

the composite shear deflection equation (Equation 3. 15) were encoded in a FORTRAN 

routine (see Appendix A). Additional parameters needed for the algorithm were ncurr = 

76 with a 4r = 6 in. and ncuty = 16 with any = 1. 5 in. 

Table 4. 1 displays the results of the two methods. The two models compared favorably 

for both bending and shear. Both bending deflection and shear deflection predicted from 

the model were consistent to four significant digits. The small error could be minimized 

even more if ncutx is increased; however, the error is less than three hundredths of a 

percent. This error is insignificant since the variability of all material properties prevent 

the actual deflection from being calculated to this much accuracy. The numbers were 

carried out to six significant digits for comparison reasons, not to imply false accuracy. 

Table 4. 1: Results from the symmetric two-point loaded homogenous rectangular 
beam test scenario. 

Method bending deflection shear deflection total deflection 

Exact Solution 

Finite difference' 

error (%) 

(in) 

0. 156 951 

0. 156 997 

0. 029 

(in) 

0. 007 024 

0. 007 024 

0. 0 

(in) 

0. 163 975 

0. 164 021 

0. 028 

Calculated using Equation 4. 2 
r FORTRAN algorithm using Equations 2. 4 and 3. 15 (see Appendix A) 

Uniformly Loaded Homogeneous Rectangular Beam 

Beams are often subjected to uniform and concentrated loads in design applications. 

Hence, it is important to predict total deflection for both types of loading conditions. The 

shear distribution and moment distributions for a uniformly loaded beam are one-degree 

higher polynomials than for concentrated loads. Since shear and bending deflections are 
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related to their respective distributions, the numerical integration of Equation 3. 15 could 

be erroneous for higher-order loading such as uniform loading; therefore, a homogeneous 

uniformly loaded beam is analyzed as the second beam test case. 

The exact theoretical equations for bending and shear deflection were derived for a 

homogeneous, uniformly loaded beam using energy methods similar to the procedure for 

developing Equation 4. 2. Equation 4. 3 represents the final results of this procedure. 

5 wLs /ttvL2 
6 = — — + 

384 EI 8 GA 
(4. 3) 

where w = a uniform load. 

The uniform load, w, for this test case was taken as 10 lbs/in. All other parameters for 

the FORTRAN algorithm were identical to the two-point loading scenario discussed 

previously. Table 4. 2 presents the results from this case scenario. The bending 

deflection predictions were consistent to three significant digits and the shear deflection 

predictions were consistent to four significant digits. 

Table 4. 2: Results from the uniformly loaded homogeneous rectangular beain test 
scenario. 

Method bending deflection shear deflection total deflection 

(in) (in) (in) 

Exact Solution' 0. 476 784 0. 020 286 0. 497 070 

Finite difference' 0. 476 850 0. 020 286 0. 497 136 

error (%) 0. 014 0. 0 0. 013 

Calculated using Equation 4. 3 
r FORTRAN algorithm using Equations 2. 4 aad 3. 15 (see Appendix A) 
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Although the deflection calculation lost one significant digit from the two-point loading 

case, the error between the model and the exact predicted results decreased. From a 

practical standpoint this error is insignificant; however, better accuracy could be achieved 

by increasing ncurr and decreasing M. The shear deflection model performed well for 

both rectangular homogeneous case studies. The two different loading conditions did not 

have a significant effect on the accuracies of the shear deflection model. 

Homogeneous I-Beam 

In the next case study, the cross section of the beam is altered. A cross section that is 

popular for structural members is the I-beam. This is an efficient section in terms of 

bending and deflection because the majority of the material is located at a farther distance 

from the neutral axis than a solid section with the same amount of material. Figure 4. 2 

illustrates the cross sectional dimensions of a commercially produced wood I-beam. 

1. 5" 

0. 375" 11" 

1. 5 

Figure 4. 2: Cross sectional dimensions of a commercially produced wood I- 
beam. 

The length of the beam was assumed to be 252 in. and was loaded at third points (a = 

84 in. ) with P = 500 lbs. The material properties for this homogeneous beam were 
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assumed as E = 2. 0 x 10' psi and G = (E/16). The FORTRAN algorithm had additional 

parameters of nctux = 42 with a du = 6 in. and ncury = 28 with a 2' = 0. 5 in. To 

assure accuracy of the model, cuts along the y-axis must be made at discontinuities in the 

cross sections, such as changes in E and changes in the width of the member; therefore, 

more intervals were required along the y-axis for the I-beam than the rectangular beam 

because of the cross sectional geometry. The shear deflection model was compared with 

Equation 4. 2 with a modified k factor. Using the Orosz (1970) method to calculate k for 

an I-beam (see Appendix B), it was found that k = 2. 134 718. Table 4. 3 presents the 

results from this case study. The shear and bending deflection models both compare well 

to the model using Equation 4. 2 and the Orosz k factor. 

Table 4. 3: Results from homogeneous I-beam test scenario. 

Method bending deflection shear deflection total deflection 

Theoretical Soln. 

Finite differencet 

error (%) 

(in) 

0. 231 627 

0. 231 633 

0. 003 

(in) 

0. 032 978 

0. 032 978 

0. 0 

(in) 

0. 264 605 

0. 264 611 

0. 002 

Ctdculated using Equation 4. 2 and k = 2. 134 718 (Oross, 1970) (see Appendix B) 
t FORTRAN algorithm using Equations 2. 4 and 3. 13 (see Appendix A) 

Composite I-Beam 

A variation on the homogeneous I-beam that improves its efficiency even more is 

producing it from two different materials. Since I-beams are often used in designs where 

deflection or bending stress are the limiting factors, such as floors and ceilings, 

manufacturers make the flanges out of high quality, stiff material; thus, increasing the 

strength and sfiffness of the beam. I-beams can be made with lower quality material in 

the web since longer spans usually are not governed by shear failures. Predicting bending 

deflection for a composite beam simply requires using the homogeneous equation with 
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slight modification. The cross section is transformed to a homogeneous material and the 

moment of inertia is calculated for the transformed cross section. The E value used in 

the deflection equation is the E for the transformed homogeneous material. The shear 

deflection is also similar to the homogeneous case. Orosz's (1970) method was used to 

calculate k for a composite I-beam (see Appendix B), The cross section for this method 

is transformed to the E of the web with the area of the transformed cross section being 

substituted for A. The value for G is assumed to be F ~/16. This case study assumes 

the same parameters as the homogeneous I-beam with the only differences being that the 

E of the flange is assumed to be 3. 0 x 1(y' psi and the E of the web is assumed to be 1. 0 

x 10' psi. The form factor was calculated as 4. 621 403. Table 4. 4 displays a comparison 

between the shear deflection model and Equation 4. 2 with the modified k factor. 

Table 4. 4: Results from composite I-beam test scenario. 

Method bending deflection shear deflection 

(in) (in) 

total deflection 

(in) 

Theoretical Soln. 
' 0. 169 776 0. 063 704 0. 233 480 

Finite differencet 0. 169 781 0. 063 704 0. 233 485 

error (%) 0. 003 0. 0 0. 002 

Calculated using Equation 4. 2 and R = 4. 621 403 (Orosx, t970) (see Appendix B) 
' FORTRAN algorithm using Equations 2. 4 and 3. 15 (see Appendix A) 

Once again, the shear deflection model performed well, compared to the theoretical 

deflection, for a composite I-beam. An interesting observation between the difference in 

the homogeneous I-beam and the composite I-beam should be pointed out. Producing an 

I-beam that has a flange 50% stiffer than the homogeneous case only reduced bending 

deflection by 36%; however, decreasing the E of the webs by 50% nearly doubled the 

shear deflection. This confirms intuition, because the maximum shear stress in the beam 

is located at the neutral axis which is made from the less stiff material. 
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Composite Glulam Beam 

The final case study is for a composite glued-laminated timber (glulam) beam. Many of 

the beams specified by AITC 117-Manufacturing (1988) are not symmetrically balanced 

about the neutral axis. Figure 4. 3 represents a layup for a 24F-V4 beam that Hernandez 

(1991) used in his research. This is one of many beam combinations specified by AITC. 

L20 

16@1. 5 

L2 

L1 
502-24 

Figure 4. 3: 16 lamination 24F-V4 glulam beam layup. 

Glulam beam manufacturers, like I-beam manufacturers, want to optimize the material 

placed in a glulam beam to best utilize their lumber resource and still maintain strength 

and stiffness design values. They achieve the same goal by placing the higher quality 

wood farthest from the neutral axis and the lower quality material in the core. The 24F- 

V4 beam contains 50% of the abundant lumber graded L3 and only one lamination of the 

scarce, high quality lumber graded as 302-24. This high quality zone in the bottom of 

Figure 4. 3 is referred to as the tension lamination and is located on the tension face of 

the beam. This lumber grade limits the strength reducing characteristics to small knots 

and small grain deviations. This unbalanced layup changes the position of the neutral 

axis, so it is not necessarily in the middle of the cross section, Table 4. 5 list the E 
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values assumed for the five lumber grades for the test case scenario. These values were 

taken from Hernandez's (1991) data. These values correspond to the median E values for 

their respective grades. 

Table 4. 5: Modulus of elasticity values assumed for the 24F-V4 glulam beam. 

Lumber Grade 

302-24 

Ll 

L2D 

L2 

L3 

Modulus of Elasticity 

(Mpsi) 

2. 996 

2. 710 

2. 557 

2. 205 

L985 

Median E values (Hernandez, 1991) 

The deflection of the glulam beam was calculated similarly to the I-beam. The theoretical 

deflection was calculated using Equation 4. 2 with several modified parameters. The 

dimensions of the beam were identical to the rectangular homogeneous loading case with 

P = 1000 lbs. The cross section was transformed to the average of the E values for the 

16 different laminations. The moment of inertia was calculated for the transformed cross 

section. The k factor was calculated using a method that was developed by Mansour and 

Gopu (1990) to be 1. 272 750 (see Appendix C). The shear modulus was assumed to be 

equal to E /16 and the A term was equal to the gross cross sectional area, which is also 

equal to the transformed cross sectional area. This modified equation was compared to 

the shear deflection model and the results are displayed in Table 4. 6. 
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Table 4. 6: Results from composite glulam beam test scenario. 

Method bending deflection shear deflection total deflection 

Theoreflcal Soln. ' 

Finite difference' 

error (%) 

(in) 

0. 127 039 

0, 127 076 

0. 029 

(in) 

0. 006 712 

0. 006 722 

0. 149 

(in) 

0. 133 751 

0. 133 798 

0. 035 

Calculated using Equation 4. 2 and k = 1. 272 750 (Mansour and Gopu, 1990) (see Appendix C) 
t FORTRAN algorithm using Equations 2. 4 and 3. 15 (see Appendix A) 

The bending deflection error was consistent with the other test case scenarios. The shear 

deflection error was larger; however, the error for the shear deflection model is less than 

two-tenths of a percent which is practically insignificant. In this case, the error term was 

reduced by increasing the number of intervals along the y-axis. By increasing ncurp to 

48, the error in the prediction was reduced to 0. 045%. This error in the prediction was 

caused by the unsymmetric cross section. The centroid does not correspond to one of the 

increments; therefore, the discontinuity at the centroid was skipped. It would be most 

favorable for an increment to correspond to the centroid; however, this is infeasible for 

all beam layups. Although the accuracy increased as the number of increments increased, 

the error in the original prediction was small and had little effect on the total deflection 

prediction. 

SUMttIARY 

The shear deflection model developed in Chapter HI (Etluation 3. 15) was verified for a 

variety of beam scenarios and compared to classical methods. The error in the prediction 

associated with the shear deflection model was negligible for rectangular homogeneous 

beams loaded by either two-point symmetric loading or uniform loading, as well as for 

homogeneous and composite I-beams loaded with symmetric two-point loading. The error 

between the theoretical shau deflection and the shear deflection model for a composite 
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glulam beam loaded with a two-point symmetric load was found to be less than two-tenths 

of a percent. The error term can be further reduced if the number of intervals along the 

y-axis is increased for the numerical integration. 

The shear deflection model was verified through comparison with existing published shear 

deflection models. This model is more flexible because it can be used for either 

rectangular or non-rectangular shaped beams; whereas, other beam models are limited to 

either composite glulam beams or I-beams. 
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CHAPTER V 

MODEL VALIDATION 

Validation of a model is to determine whether the model accurately represents the "real- 

world" system which it is intended to characterize. The composite shear deflection model 

(Equation 3. 15) was validated with a set of data collected by Hernandez (1991). Lumber 

data were used as input to the deflection model which back-solved for glulam beam 

apparent E. The results were compared to actual glulam beam E's measured in the 

laboratory. 

EXPERIMENTAL PROCEDURE 

Hernandez's (1991) and Hernandez et al. 's (in press) work on a probabilistic glulam beam 

model (called PROLAM) was done concurrently with an extensive research program 

undertaken by the American Institute of Timber Construction (AITC) that tested full size 

glulam beams. This research program was conducted for a variety of reasons, including 

validation of glulam beam models. Before the beams were fabricated, the laminating 

stock was run through a continuous stress grading machine to obtain E profiles for each 

piece of lumber. These pieces then were stamped with an identification number so they 

could be identified in the glulam beam after fabrication. A group of thirty 16-lamination 

24F-V4 Douglas-fir glulam beams were tested for this research program. The 24 in. -deep 

beams were manufactured to a length of 40 ft. using nominal 2 x 6 in. Douglas-fir 

laminating lumber. After fabrication, the beams were planed to a final width of 5. 125 

in. These beams were destructively tested at the U. S. Forest Products Laboratory under 

symmetric two-point loading. The beams spanned 38 ft. between the reactions with a 

distance of 8 ft. between the load-heads. The beams were restrained from buckling out 

of plane. During testing, the apparent E was measured for each beam. 
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The E profiles recorded from the continuous lumber tester (CLT) data were averaged for 

each two-foot lumber segment. Beam maps were constructed using the two-foot average 

E~r. Cross sectional profiles were then taken at a one foot interval and matrices of 

numbers were recorded in data files. The dimension of the matrices were 39 by 16, 

representing 39 one foot intervals and 16 laminations. One beam map could not be 

constructed due to a data collection problem; therefore, the sample size was 29. 

ADJUS~ OF LUMBER E VALUES - METHOD 1 

Model development 

A FORTRAN program (Appendix D) was written to analyze the array of CLT data. The 

program first transformed the array of Ec~r to two foot static bending modulus of 

elasticity, E„using the following equation (Hernandez, 1991). 

Es = 1 3224 ~ Eczr 0 2344 (5. 1) 

where: 
E, = two-ft static bending E and 

= raw CLT-E values averaged over a two-ft segment. 

It should be noted that Equation 5. 1 is an empirical regression model developed from an 

independent lumber sample. The E~~ used to develop Equation 5. 1 was collected at a 

different time and a different CLT machine than the lumber profiles collected for this 

research; however, the CLT machines were calibrated approximately the same. This test 

scenario was conducted to analyze the robustness of Equation 5. 1. This program 

simulates loading the beams with a symmetrically placed two-point load with an arbitrary 

load at the same location where the ~ beams were loaded. The deflections of the 

beams were estimated using the first term of Equation 2. 4 and Equation 3. 15. After the 

deflection was found, the beam apparent E was backed-solved for using the classic 

deflection (bending deflection only) equation for symmetric two-point loading. 
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Test Results 

The first case scenario assumed an E/G ratio of 16, which is the traditional value for 

Douglas-fir lumber found in the Wood Handbook (USDA, 1987). Figure 5. 1 illustrates 

a graph of the measured E versus predicted E. 

2. 5 
E/G = 16 

2. 4 

'cn 2. 3 

r 2. 2 

2. 1 

2. 0 

1. 9 

1. 8 
1. 8 1. 9 2. 0 2. 1 2. 2 

Measured E (Mpsi) 

2. 3 

Figure 5. 1: Predicted E versus measured E for 24F-V4 Douglas-fir beams (E/G 
= 16). 

The predicted E was higher than the measured E for all 29 beams. The error ranged from 

3. 18 to 17. 38% with an average of 8. 28%. Appendix E contains the data for the actual 

and predicted E values for the test beams. A paired t-test (Walpole and Myers, 1978) 

was performed on the null hypothesis that the two means were equal. The t-test statistic 

was calculated as 13. 46 which is greater than the critical t value of 1. 70 at a significance 

level of 5 percent and 28 degrees of freedom; thus, rejecting the null hypothesis. 

In The next case scenario, E/G ratio was altered. Chui (1991) suggested that an E/G ratio 

for low quality wood ranged from 25 to 30 and an E/G ratio of 20 was more reasonable 
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for straight-grained wood. Since the lumber graded L3 consisted of relatively low quality 

lumber, an E/G ratio of 30 was assumed and the other lumber grades were assumed to 

have an E/G ratio of 20. Figure 5. 2 illustrates the data from this test. 
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E/G varies 

2. 3 

2. 2 

2. 0 

1. 9 

1. 8 
1 1. 9 2. 0 2. 1 2. 2 2. 3 

Measured E (Mpsi) 

Figure 5. 2: Predicted E versus measured E for 24F-V4 Douglas-fir beains (E/G 
= 20 for all laminaflons except L3 where E/G = 30). 

The error for this test ranged from — 0. 43 to 13. 14% with an average of 4. 42%. The t- 

statistic was calculated as 7. 32 for the two means. Once again a statistically difference 

was found between the means. 

ADJUSTMENT OF LUMBER E VALUES - METHOD 2 

A possible source of error is the transformation between Eesr to Es. This regression 

equation was developed for a different sample of lumber (Richburg, 1989) than the 

sample used to fabricate the glulam beams. A CLT is a machine that subjects lumber to 

a concentrated load at midspan with a span of 48 in. The lumber is forced to undergo a 
fixed deflection and the load required to cause this deflection is continuously measured 
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as the specimen is fed through the machine. Then the E is inferred from the continually 

measured load. The regression equation (Equation 5. 1) that transforms the E~r to E, 
takes two factors into account: span and shear. The equation transforms from a span of 
48 in. to a span of 24 in. , and the E~r data include shear deflection; whereas, the E, is 

calculated from pure bending deflection. Since Equation 5. 1 is an empirical relationship 

and it was developed from a different lumber data set, it is not necessarily valid for the 

lumber sample used to fabricate the glulam beams. 

A transformation that should be analyzed uses a regression equation developed at 

approximately the same time that the E-profiles were collected for the laminating lumber. 

This regression equation was developed by Galligan (Bender, 1990) for the CLT machine 

in which the E-profiles were obtained. It relates Ec„r to long-span static bending modulus 

of elasticity (EQ as follows: 

Ers = 1. 227 +Eczr — 0. 191 (5 2) 

where: Eis = long-span static bending E. 

This equation cannot directly parallel Equation 5. 1, because it transforms to Eis, not E, . 
An equation was developed (see Appendix F) that transforms the E data from long-span 

to short-span. This equation can be written as follows: 

Es = 1142*Em 0219 (5. 3) 

Equations 5. 2 and 5. 3 were substituted into the FORTRAN code in place of Equation 5. 1, 
and the same analysis was repeated. The paired t-test statistic for E/G = 16 was 

calculated as 9. 37. This again indicates significant difference between the two means at 

a 5% level of confidence. This scenario overpredicted E in all cases with the range of 
error from 0. 62 to 15. 03%, with an average of 8. 93%. In the next study, the E/G ratio 

was assumed to be equal to 20 for all lumber grades except L3 where it was assumed to 
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be 30. The paired t-test statistic equaled 3. 37 indicating statistical significance between 

the two mean values, and the errors ranged from -2. 96 to 10. 79% with an average of 

2. 11%. 

ADJUS~ OF LUMBER E VALUES - METHOD 3 

Equation 5. 3 was developed on a two-ft shear-free bending test in which data indicate (see 

Appendix F) that the average two-ft E, for lumber is larger than E~; however, Kline, et 

al. (1986) suggest that the average of the short span segments should be close to the Ei . 
This could possibly indicate that the procedure for measuring E, used in Equations 5. 1 

and 5. 3 gives higher results than expected due to an unexplained experimental 

phenomenon. Therefore, the next case scenario only uses Equation 5. 2 which transforms 

Eci, to Eis. The results for this test case were the most favorable. At an E/G rado of 

16, the paired t-test statistic was calculated as 2. 76 which is the closest to the critical 

value of 1. 70 at a 5% level of confidence for all case scenarios. The percent error ranged 

from — 3. 09 to 10. 22% with an average of 1. 71%, The mean of the predicted E was only 

33 800 psi higher than the mean of the actual measured E. The next test varied the E/G 

ratio as before. This yielded a t-statistic of — 3. 40 and the errors ranged from — 6. 447 

to 6. 237% with an average of -1. 91%. Although there was statistical significant 

difference between the actual and the predicted E values, there was no practical difference 

for an E/G ratio of 16 with Equation 5. 2 used as the E transformation equation. 

Figure 5. 3 illustrates three different empirical cumulative distribution functions (CDF). 

The middle CDF represents the actual data. The CDF on the right represents the 

predicted E for the test case scenario of E/G = 16 and using Equation 5. 2 as the 

transformation equation. The CDF on the left side of the predicted CDF is for an E/G 

ratio that equals 20 for all lumber samples except L3 in which E/G = 30. 
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Figure 5. 3: Empirical cumulative distribution function for various case scenarios. 

SUMMARY 

Close agreement was found between actual and predicted beam apparent E. Less than two 

percent difference was observed between the two mean values. Although a paired t-test 

indicated significant differences between the means, the variability of the predicted and 

the actual E's were small; thus, making it easy to reject the null hypothesis that the two 

means were identical. The regression equation that relates EeLr to E, appears to be in 

error. The regression equation relating Eel and ELs gave the best results for all cases 

studied. This could be because the regression equation was developed at approximately 

the same time the lumber profiles were collected from the CLT machine. Equations 5. 1 

and 5. 3 were developed with independent lumber samples, and they consistently 

overpredict E, . It appears the calibration equation for the CLT machine varies over time 

and from machine to machine; therefore, it is recommended to periodically collect test 

data that relate EcLr and Ets. A possible source of error could be the way that shear 

stress is modeled. It has been shown by numerous researchers (Doyle and Markwardt, 
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1966;1967, Palka and Barrett, 1985 and Chui, 1991) that G is a random variable; 

however, for this model it was assumed to be a constant ratio to E throughout the 

lamination for lack of a better procedure to model G. 
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CHAPTER VI 

MODEL IMPLEMENTATION 

The shear deflection model developed in Chapter III (Equation 3. 15) was verified for a 

variety of test case scenarios in Chapter IV. The deflections predicted with the model 

compared well both to theory and to published shear deflection models (Orosz, 1970 and 

Mansour and Gopu, 1990). The model compared closely to actual test data in Chapter 

V, with an error of less than two percent between the averages of actual and predicted E 
was observed. Since the model compared favorably to existing deflection methods and 

to actual test data, it was implemented into a probabilistic glulam beam model developed 

by Hernandez et al. (in press), called PROLAM. 

EXISTING GLULAM MODEL: PROLAM 

PROLAM is a stochastic model that simulates glulam beam performance. This model 

simulates glulam beam fabrication and generates random values of E and tensile strength 

(7) for each two-foot lumber segment in the beam. These E and T values are spatially 

correlated along the lengths of the individual pieces of lumber. The simulated pieces of 

lumber are joined together with finger joints that also are assigned E and T values. This 

model predicts the strength of the beam in bending, referred to as modulus of rupture 

(MOR), using a transformed section analysis. The E for the beam is calculated using a 

finite difference approximate method developed by Hilson et al. (1990, 1988) and 

Pellicane and Hilson (1985), represented by Equation 2. 4. 

PROLAM was validated with the 30 beams discussed in Chapter V for MOR; however, 

the simulated E values were approximately 14% high (Hernandez et aL, in press), Since 

Equation 2. 4 only approximates the shear deflection for composite beams a more accurate 

model was implemented into PROLAM (Equation 3. 15). 
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PROLAM Refinements 

PROLAM has a subroutine that calculates the transformed section at specific increments, 

da:, then it repeats the transformed section at each finger joint location in the tension zone 

of the beam. The original deflection model developed by Hilson et al. (1990, 1988) and 

Pellicane and Hilson (1985) was placed in this subroutine. The composite shear deflection 

model is more complex; therefore, when it was substituted into PROLAM, it was placed 

in a separate subroutine. Another addition to PROLAM was allowing the E/G ratio to 

vary for the different lumber grades. Although this is not completely stochastic, the E/G 

ratio can vary across the cross section instead of being held to a constant ratio of E/G. 

SENSITIVITY ANALYSES 

Several sensitivity analyses were analyzed using PROLAM with the composite shear 

deflection model implemented. The beams simulated were identical to the validation 

beams discussed in Chapter V. The sensitivity in the numerical integration was studied 

as well as the effect of different shear deflection models. The sensitivity of E/G also was 

studied. 

Effect of Length Increment Size 

The number of increments along the length of the beam were chosen to be 500, 250, 100, 

50, 38, 25 and 10 resulting in increment sizes of 0. 912, 1. 824, 4. 560, 9. 120, 12. 00, 

18. 24 and 45. 60 in. , respectively. A total of 1000 beams were simulated with the same 

random number seed for the seven computer runs as a variance reduction technique (Law 

and Kelton, 1991). Average beam E's for the various beam simulations are summarized 

in Table 6. 1. 
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Table 6. 1: Effect of length increment on apparent modulus of elasticity. 

250 

50 

38 

25 

10 

(in) 

0. 912 

1. 824 

4. 560 

9. 120 

12. 00 

18. 24 

45. 60 

apparent E 

(Mpsi) 

2. 330 

2. 331 

2. 332 

2, 335 

2. 333 

2. 343 

2. 334 

errort 

(%) 

0. 043 

0. 086 

0. 215 

0. 129 

0. 558 

0. 172 

Predicted using PROLAM 
t Assumes nests = 500 is basis for comparison 

For numerical integration, the accuracy increases as the number of increments becomes 

larger, to a certain point where round off ermr begins to dominate (Chapra and Canale, 

1988); therefore, it was judged to use ncurr = 500 as the basis for the comparisons. The 

errors for all cases studied were less than one percent. Although the error was small for 

10 increments, this would be a poor number to choose because M is larger than the two- 

ft lumber property cells; therefore, a very low E segment could be skipped. Furthermore, 

this analysis does not take into account the effect that ncufz has on MOR, only E. The 

error is small for all the test cases; therefore, E is fairly insensitive to the number of 

increments along the length of the beam. An increment of sstz = 12 in. was selected to 

further analyze the validation beams. 

Effect of Depth Increment Size 

A similar sensitivity analysis was performed for the number of increments in the y- 

direction. The number of intervals, ncufy, was set at 160, 48 and 16 resulting in 
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increment sizes of 0. 150, 0. 500 and 1. 500, respectively. The results from this sensitivity 

analysis are given in Table 6. 2. 

Table 6. 2: Effect of depth increment size on apparent modulus of elasticity. 

48 

16 

hy 

(in) 

0. 150 

0. 500 

1. 500 

apparent E 

(Mpsi) 

2. 333 

2. 333 

2. 333 

errort 

0. 0 

0. 0 

Predicted using PROLAM 
t Assumes ncurr = 160 is basis for comparison 

There was no effect on the average apparent E for the 1000 simulated beams from the 

number of increments in the y-direction, therefore, it is recommended to use ncuty equal 

to the number of larninations. No difference was observed because PROLAM calculates 

apparent E frotn total deflection; therefore, the shear deflection did not affect the total 

deflection enough for significant differences to be observed. 

Effect of Shear Deflection 

In the next sensitivity analysis, the effect the shear deflection model has on the average 

apparent E is studied. Figure 6. 1 is the fitted three-parameter lognormal probability 

distribution function (PDF) of the apparent E for the different shear deflection prediction 

methods. 
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Figure 6. 1: Comparison between different shear prediction methods. 

Once again, the random number seed was held constant and E/G was equal to 16 for the 

three different simulations. As expected, the PDF for no shear deflection was furthest 

to the right of the three PDF's. By adding an approximate shear deflection model 

(Hilson, et al. 1988) to PROLAM, the PDF was shifted to the left. By adding the more 

accurate composite shear deflection model, the PDF was shifted even further to the left. 

The statistical calculations for the three test scenarios are summarized in Table 6. 3. The 

fitted PDF's were plotted instead of the histograms to make the plot readable and 

differences between the methods could be observed easier. A sample size of 1000 beams 

was used in this case study. 
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Table 6. 3: Effect of shear deflection model on apparent modulus of elasticity. 

Shear Deflection Model 

no shear deflection 

Hilson et al. 

composite 

Modulus of Elasticity 

Average 

(Mpsi) 

2. 484 

2. 374 

2. 333 

COV' 

4. 0 

3. 9 

4. 0 

Predicted using PROLAM 
r Coefficient of variation 

The ratio of the apparent E with shear deflection included to the apparent E without shear 

deflection is 0. 94. This is very similar to the 0. 95 factor found in ASTM D3737 (ASTM, 

1991e) that reduces the calculated E values for glulam beams. This standard specifically 

states that the 0. 95 factor accounts for shear deflection. 

Effect of E/G Ratio 

The effect of the E/G ratio on PROLAM using the composite beam analysis is presented 

next. As discussed in Chapter V, a computer simulation was performed with an E/G = 

20 for all lumber grades except L3, where E/G = 30. Figure 6. 2 illustrates the PDF for 

this computer simulation with the PDF from the previous case study for the composite 

shear deflection model overlaid on the plot. 



50 

0. 25 

0. 20 
V 

0. 15 

0. 10 

E/G = 20 for all grades except 
E/G = 30 
for L3 

E/G = 16 

0. 05 

0. 00 
1. 8 2. 0 2. 2 2. 4 2. 6 2. 8 3. 0 

Apparent E PVlpsi] 

Figure 6. 2: Effect of different E/G ratios on apparent E. 

Figure 6. 2 indicates that the E/G for the individual lumber grades has a pronounced effect 

on the apparent E predicted by PROLAM. The average E was 2. 234 Mpsi with a 

coefficient of variation (COV) of 4. 0%. This COV was identical to the case where E/G 

was equal to 16; however, the mean was reduced by approximately 100 000 psi. 

Effect of L/d on Design Equations for Deflection 

PROLAM was developed as a tool to analyze different case scenarios without having to 

destructively test glulam beams. An Lid ratio of 20 gives beam E corresponding to the 

book value used by designers. A case study was conducted using PROLAM for three 

different loading scenarios: 1) two-point loading goad span equal to 20% of total span), 

2) a uniform loading and 3) single-point loading at the midspan. These simulations were 

performed with an E/G = 16 and then repeated for an E/G = 20 for all lumber grades 

except L3 where E/G = 30. The E for the first run at f. /d = 20 was used as the design 

E for the beam layup, which in this case was a 24F-V4 Douglas-fir beam. The 
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deflections for the three different loading cases, and the two E/G studies were calculated 

at L/d ratios of 8, 10, 12. 5, 15, 20, 25, 30 and 35 using the common design equations 

given as Equations 6. 1, 6. 2 and 6. 3. The sample size was 1000 beams for all loading 

scenarios and the 4x was set equal to 6 in. The actual deflection of the beams were 

estimated by taking the average apparent E from PROLAM and back-solving for 

deflection using the appropriate beam equation. The deflection equation for two-point is 

as follows: 

8 (3Lz 4a 
48 EI 

(6 1) 

Equation 6. 2 is the deflection equation for uniformly loaded members. 

5 wL 
t) = —— 

384 EI 
(6. 2) 

Equation 6. 3 represents the deflection equation for a single concentrated load at midspan. 

6 — PL 
48 EI 

(6. 3) 

Figures 6. 3, 6. 4 and 6. 5 represent the error in the predicted deflection for the various L/d 

ratios for the three loading conditions. 
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Figure 6. 3: Error in predicted deflections for different L/d ratios for a two-point 
symmetric load. 
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Figure 6. 4t Error in predicted deflections for different L/d ratios for a uniform 
load. 
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Figure 6. 5: Error in predicted deflections for different L/d ratios for a 
concentrated load at midspan. 

The effect that E/G ratio has on the error of the prediction can be seen in Figures 6. 3, 

6. 4 and 6. 5. The graphs all have similar characteristics. For long spans (L/d greater 

than 20) where deflection could control the design, the deflections using Equations 6. 1, 

6. 2 and 6. 3 are larger than the actual deflections predicted by PROLAM. For wood 

beams with an L/d ratio in the range of 15 to 25, Equation 6. 1, 6. 2 and 6. 3 are 

commonly considered sufficiently accurate (Hoyle and Woeste, 1989). However, the 

results shown in Figures 6. 3, 6. 4 and 6. 5 indicate errors of approximately 10% for L/d 

of 15, which may not be acceptable. 

SUMMARY 

The composite shear deflection model developed in Chapter III was implemented in an 

existing glued-laminated timber beam model called PROLAM. The sensitivity that 

several parameters had on the apparent E predicted from PROLAM were analyzed. The 
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number of increments along the length and depth of the beam had little effect on the 

apparent E predicted by PROLAM. Recommended values for 4x are whole numbers 

which correspond to the locations of point loads. A M of either 12 in. or 6 in. was 

chosen for all the case studies performed. The recommended number for ncuty is the 

same as the number of laminations in the beam. 

The E/G ratio had a significant effect on the apparent E predictions, therefore the E/G 

ratio is an important parameter and future research is needed to better characterize the 

shear modulus. The common engineering design practice of ignoring shear deflection for 

I. /d ratios of 15 to 25 can lead to significant error, depending on the loading condition 

and the E/G ratio. 
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

SUMMARY 

Beam deflection due to flexure is comprised of two components: 1) bending and 2) shear 

deflection. Shear deflection for many structural materials is ignored; however, wood has 

a relatively low shear stiffness as compared to bending stiffness. Shear deflection for 

wood beams can exceed the bending deflection under certain situations; therefore, it 

should be considered. This problem is reasonably straightforward for solid sawn lumber; 

however, it becomes more complex for composite beains such as glued-laminated timber 

beams and I-beams. 

There are several possible methods to develop a shear deflection model for composite 

beams. A popular method that often is used in beam mechanics is the finite element (FE) 

method; however, this requires complex input that is neither completely understood for 

wood nor characterized for the multitude of wood species groupings. Using a FE method 

for wood can create a false sense of accuracy since these methods are only as accurate 

as the input parameters. Hence, a method was derived that was less computationally 

rigorous, and requires less input parameters. 

The shear deflection equation developed here was based on energy methods and an 

extension of basic mechanics of materials. During development of the shear deflection 

model, an intermediate step was the development of an equation that characterizes the 

shear stress distribution for composite beams. A possible application of the shear stress 

equation would be to use it in a probabilistic model to predict shear strength of composite 

beams. Although several researchers have developed methods to predict shear deflection, 

they are not general enough to handle composite glulam beams, I-beams and nonprismatic 
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shapes. Another advantage of the composite shear deflection model is its ability to 

analyze G as a stochastic variable. 

The composite shear deflection finite difference model was verified by comparing it to 

both theory and to published shear deflection models. The model performed well in all 

cases studied. The model was also compared to a set of actual glulam beams that were 

fabricated by AITC and tested by the U. S. Forest Products Laboratory. The comparison 

was made between the predicted apparent E of the beam by using individual E profiles 

of luinber that comprises the glulam beam to actual measured beam E. The difference 

in the actual beam E and predicted E was less than two percent. A paired t-test indicated 

a statistically significant difference between predicted and observed means; however, the 

low variability in the E data made it easy to reject the null hypothesis that the two average 

E's were identical. The difference between predicted and actual apparent E was believed 

to be caused by a regression equation that related ~r to E„not the composite shear 

deflection model. 

The composite shear deflection model was incorporated into an existing glulam beam 

model and sensitivity studies were performed, It was found that the number of increments 

along the length and depth for the finite difference model had little effect on the predicfion 

capabilities of the model. It is recommended that the number of increments in the y- 

direction (beam depth) be equal to the number of laminations for a glulam beam. It is 

recommended that the number of increments in the x-direction (beam length) be chosen 

so an increment will correspond to the location of a concentrated load for greater 

accuracy. It is also recommended that the number of increments along the length of the 

beam be at least 25. 

A sensitivity analysis was performed to determine the effect of the E/G ratio. This ratio 

is often assumed to be 16 for Douglas-fir lumber; however, several researchers indicate 

G is a random variable, not perfectly correlated to E. A significant effect was seen when 

the E/G ratio was set equal to 20 for all lumber grades except L3, which it was set equal 



57 

to 30, for the 24F-V4 beam combination. This affected the apparent beam E by 

approximately 100 000 psi. 

An important finding was that the common engineering design practice of ignoring shear 

deflection for L/d ratios between 15 to 25 can lead to significant errors. 

Underconservative errors of approximately 10% were observed for a composite glulam 

beam at an L/d ratio of 15 for a concentrated load at midspan. This case was assuming 

the E/G ratio equaled 20 for all lumber grades except L3, where it was assumed to be 

equal to 30. 

CONCLUSIONS 

The following conclusions were made as a result of this research: 

1. Shear deflection is significant for wood beams, especially for composite beams. 

2. A finite difference solution to predict shear deflection for composite beams gives 
excellent results as compared to theory as well as other shear deflection models. 

3. A finite difference solution that includes shear deflection to predict apparent E for 
composite glulam beams gives reasonable results as compared to actual test data. 

4. The regression equation relating Ecir and Es has a significant impact on the 
models prediction capability; therefore, it should be periodically updated. 

5. The E/G ratio has a significant effect on the shear deflecflon predictions. More 
research is needed to characterize localized shear modulus. 

6. The number of increments along the length and depth of the beam for the finite 
difference model has little effect on the models prediction capability. It is 
recommended to use a dx = 12 in. and a Ay equal to the number of laminations 
of the beam. 

7. The common engineering design practice of ignoring shau deflection for Lld 
ratios between 15 and 25 can lead to significant errors for composite glulam 
beams. 
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Average two-ft static bending E measured was higher than long-span E. The two- 
ft E was collected under "third-point" loading with the shear-free E being collected 
between the load heads. The long-span E was collected at an L/d ratio equal to 
100 to minimize the effects of shear deflection. More research is needed to 
characterize the relationship between short-span and long-span E. 

RECOM1VH26)ATIONS FOR FURTHER RESEARCH 

The following areas were identified as candidates for further research: 

l. Study the spatial variation of G, as well as its relationship to other material 
properties. 

2. Develop a stochastic inodel that accurately and independently predicts G. 

3. Investigate the apparent discrepancy between two-ft static bending shear-free E and 
long-span E. 

4. Incorporate the composite shear stress equation into PROLAM to predict design 
shear stresses. 

5. Validate the shear deflection model for composite I-beams using actual test data. 

6. Develop a probabilistic model similar to PROLAM for wood I-beams. 
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APPENDIX A 

COMPOSITE BEAM DEFLECTION MODEL FORTRAN CODE 



c 

Skagga, T. D. 1992. Sheer deflectian of composite uood 
beams. R. S. Thesis, Department of Agricultural Engineering 
Texas AQI University, College Station, TX. 

= used to aus deflection due to bending 
= used to aus deflection due to shear 
= uidth of the i-th lamination 
= total deflection due to bending and shear 
= increment for model along the length of the beam 
= depth of beam 

modulus of elasticity of the i-th lamination 
= arbitrary value for E to transform the cross section 

to (1. 5e6 psi) 
= moment of inertia calculated for the transformed 

cross section 
= length of the beam 
= distance from the end to the center of the beam 
= theoretical moment at the x-section being checked 
= theoretical smment caused by a unit load st midspsn 
= nutbar of cuts along the length of the beam 
= Dimmer of cuts per lmainstion in the y-direction 
= nlmber of lsminations in the cross section 
= arbitrary load used to calculate deflection from e 

sysmmtric tuo-point load 
= first amment of inertia 
= reaction for one side for uniform loading 
= thickness of the I smi nations 
= thickness of the cut in the y-direction 
= type of load on bean 

1 ~ lmiform load 
2 sysmmtric 2-point loading 

theoretical shear st the x-section being checked 
theoretical shear caused by a unit load at midspan 
arbitrary load used to calculate deflection frma a 
uniform load 

= location share cross section is being checked 
e location share cross section is being checked 
= distance frma end of bean to first load for 

symaetric 2-pt loading 
~ distance fran end of bema to ascend load for 

syametric 2-pt loading 
distance fram bottcm of beam to centroid 

lbeem 
midapn 

XIXIXI'I 't 

ncu'tx 
ncuty 
nlama 
P 

vx 
VXIXI'I t 
m 

e tesporary term used to calculate ybar and itren 
= temporary stmmation variable used to calculate ybsr 
= temporary sumsstion variable used to calculate ybsr 
o temPOrary Stmmatien Variable uSed tO CSICulate defleCtian 
e temporary sumsstion variable used to calculate deflection 

e eeeee C 

program deflect 
real itran, b&50), a&50), lbeam, midspn, mx, mxunit 
open &unit 10, file 'deflect. inp', status='old') 
open &lmit 20, file='def(ect. out', statuse'Imklxmal') 

c 
c This program calculates the deflection for a cosposite beam 
c uith varying uidths snd shapes. For more information seel 
c 
c Nilson, S. O. , P. J. Pal licsne, L. R. J. @hale end I. Smith. 
c 19BB. Towards optimal design of glued-laminated tiaber 
c beans. In Proc. international conference on timber 
c engineering, ed. R. Y. Itani, III186-193. Seattle, MAI 
c Forest Products Research Society. 
c 
c 
C 

C 

c 
c uritten by: Thomas D. Bkaggs 
c November 1991 
c 
c======= 
c 
c VARIABLE LIST 
c 
c addupm 
c eddupv 
c b(i) 
c def 
c delta 
c depth 
c e&i) 
c e15 
C 

c itran 
c 
c 
c 
C 

c 
c 
c 
c 
c 
c 
c q 
c r1 
c 
c 't co'I 

c tlosd 
c 
c 
c 
C 

c 
C 

C X 
C XX 

c x1 
c 
C X2 
c 
C ybSI' 
C 

C TEHPDRART TERMS 
c 
C S 
C Sy 
c stale 
c stmg 
c a(Sly 
C 
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c-& format n 
10 format 

+ 
+ 

20 f orms t 
+ 

30 f orms t 
+ 

40 f orms t 
50 format 

+ 
60 f orms t 
70 format 

+ 
+ 

80 format 
110 format 

+ 
+ 
+ 

120 format 
130 format 
140 format 

+ 
150 f orms t 
160 f orms t 

c-& initisli 

tat«nants 
&/. /, /. I*«««*««««» 

I««««**«««& 
(/. /, /, 
(/. /. /, 

«********* / 
««««*«««««I& 

ERROR 
s Imln't be «- 'to L/2 

« I) Distributed Loading 

Symmetric 2-pt Loading 12X, 
&12x, ' ' 

&12x, I I 

12x. I I 

(12x, ' ' 
(12x', ' I 

12x, 'I 
12x' , , 

' 

&12x, ' 
&12x '' 
12x, '' 
12x, II 
12x, 'I 

(12x 
(12X I I 

(12x, 'I 
12x, 'I 

&12x, 'I 
&12x '' 

ze varis 

145XI I I) 
Length of Composite Beam (ft) : 'f5. 1' 

, 
'', /, 

Thickness of lsminations (in) : 'f6. 2' 'I) 
Uniform Load of &lb/in) I 'f6. 1' I') 
Concentrated load of & lb) : 'f6. 1' 

, '/, 
located at s distance of (ft) : 'f5. 1' 

, ''/, 
from ends of bean ) 

I 

lorn 

NOE 

&in) (vpsi) 11 / '45x''' / 
1&c&'5x, f6. 3, 6x, f6. 3' 11) 

'i2, 8x, f6. 3, 6x, f6. 3' 
'i2 '(T&'5x f6. 3 6x f6. 3' 

Flexural Deflection (in) : 'f9. 6' 
Sheer Deflection (in) : 'f9. 6' 

modified Deflection 
Total Deflection &in): 'f9. 6' 

blas 

') 
I / 
I ) 

I I ) 
I ) 

= 10 
p = 1000 
e15 = 1. 5e6 
ncu'ty = 1 

c-& read input from DEFLECT. IVP 
reed &10, *) tlosd 
if (tloed. eq. l) reed(10, *) v 
if (tloed. eq. 2) read&10, *) p 
read (10, *) nlsmn, t, lbesm, xl, delta 
reed (10, «) (b(i), e(i), i«l, nlsms) 
if (tload. eq. 2) then 

if (xl. gt. lbesm/2. 0) then 
«rite &20, 10) 
goto 500 

endif 
endif 
if (tlosd. eq. l) «rite (20, 20) 
if (tlosd. eq. 2) vrite (20, 30) 
vrite &20, 40) 
«rite (20, 50) lhasa, t 
if (tlosd. eq. l) «rite &20, 60) v 
if (tload. eq. 2) «rite &20, 70) P/2. , xl 
«rite &20, 40) 
«rite &20, 80) 
«rite &20, 40) 
depth = 0. 
sans = 0. 
sy « 0. 

c-& calculate distance to the centroid 
do 200 i«l, nlann 

depth * depth+t 
a « b&i)*t«a&i&/el5 
stmm «s(nns«s 

200 ay ay«a*&depth-t/2. ) 
ybsr ay/amm 
depth 0. 
itran 0. 

c-& calculate 1 for the transformed cross section 
do 210 inl, nlaam 

depth = depth+t 
s * b(i)«t«e(i)/e15 

210 itran ~ itrsn«a«t«t/12. «s«(yber-depth«t/2. )««2 
lbeaa « lbeaa 12. 
midspn lbeaa/2. 
xl x1«12. 
x2 lbeaa-xl 
rl v«lbeam/2. 
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ncutx = int(lbeam/delta& 
addupm = 0. 0 
sddupv = 0. 0 

c-» calculate theoretical sheer and moment distributions 
do 240 i=i, ncutx 

x = delta»rea((i-1) 
if &x. ie. midspn) then 

mxunit = 0. 5*x 
vxunit = 0. 5 

else 
mxunit 0. 5&&(beam-x& 
vxunit -0. 5 

endif 
if (tloed. eq. l& then 

vx = rl - v*x 
mx = rl*x - w xnx/2. 

else 
xx — x 
mx = p/2. &xl 
vx = 0. 0 
if (xx. gt. x2) xx = lbeam - xx 
if (xx. le. x 1 ) then 

nm - p/2 *xx 
vx = p/2. 

endif 
if (x. gt. x2) vx = -p/2. 

~ ndif 
depth = 0. 0 
q = 0. 0 
sunq 0. 0 
suny = 0. 0 

c-& calculate sheer deflection (Sksggs, 1992& 
do 220 j=l, nlems 

tcut = t/real(ncuty) 
do 220 k=1, ncuty 

depth = depth+tcut 
q = b(j)'tcut'(ybar-depth+tcut/2. & 

sunq = sunq + e(j)&q/e15 
220 suny = suey + tcut*sust suet/&e(j)nb&j» 

eddupv = addupv+(deltansuny 16. »vx»vxunit)/ 
+ &itran&itran) 

c-» cslcuiete bending deflection (wilson et al. , 1988) 
240 sddupm sddupm+mx&mxunit&delta/(e15*itrsn) 

def addupv+sddupm 
c-& write output to DEFLECT. %IT 

vrite (20, 110)b(1), e(1)/l. e6 
write (20, 120&(i, b&i), e(i)/l. e6, i 2, nlams-l) 
write (20, 130&nlmns, b(nlems), e(nlams)/l. e6 
vrite (20, 40) 
write &20, 80& 
write (20, 40) 
write &20, 150) 
write (20, 40& 
write &20, 140) sddupm, sddupv 
write &20, 160) def 
write &20, 40) 
write &20, 80) 
close (unit '10) 
close (unitn20) 

500 stop 
and 
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APPENDIX B 

OROSZ'S (1970) FORM FACTOR QUATTRO PRO CODE 
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A1t 'This uorksheet calculates k for the shear deflection equation. 
A2( 'It uss originally derived for sn l-bema, but possible applications 
A3t 'could be a glulsm beam uith 2 different (tether grades. It should 
A4t 'be noted that it is only valid for a bema that is symaetric about 
A5t 'the neutral axis. 
Ayt 'Reft Dross, I. 1970. Simplified method for calculating shear 
Agt 'deflections of besom. U. S. D. A. Forest Service Research Note FPL-210, 
A9t 'U. S. Forest Products Laboratory, Nsdison, VI. 
E13t sP ~ 

F13t 500 
814: agate 
C14t I 
E14: 4s = 
F14: 84 
815: "p = 
C15: (3/8)/(3*2. 25) 
E15t «A 

F15: 24. 375 
816: et = 
C16: 11/14 
E16: eE 
F16: 1000000 
A19: "el = 
819: ((I-ST)/SP+ST) 
A20: sa2 = 
820: &ST"5/2-ST"3+ST/2&/SP"2 
421: ea3 
821:((-ST"5)*(1/(10*SBETA)+2/3)+ST"3*(1/(3*SBETA)+2/3)-ST/&2*SBETA)+8/(30*SBETA))/SP 
D21: ek = 

E21: 4. 5 $8$19 ($8$20+$8$21+$8$22)/$8$24 
A22: "e4 = 
822: 8*$1 5/30 
A24. "DI = 
824: « 1-$1"3&/SF+$1"3&"2 

A F15 
SETA C14 
E F16 
K E21 
P 015 
I C16 
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APPENDIX C 

MANSOUR AND GOPU'S (1990) FORM FACTOR FORTRAN CODE 
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c 
c 
c 'This program calculates the form factor used to calculate 
c shear deflection for rectangular coaposite beams. 
c Adapted fram: 
c 
c 
c 
c 
c 
c 
c 
C Vritten by: Thomas O. Skaggs 
c November 1991 
c 
c 

Hsnsour, M. H. Snd V. K. A. Gopu. 1990. Statistical analysis 
of pitch-cambered beam deflections due to MOE variability 
In proc. international conference on tiaber engineering, 
ed. H. Sugiyams, I1170-175. Tokyo, Japsnl Forest 
Products Research Society. 

c 
c VARIABLE L 
c 
c etran 
c b(l) 
c base 
c c(i) 
c 
c 
c 
c 
c 
c k 
c 
c nlems = 

c 
c y(l) 
c 
c ybar 
c 
c TEHPORART 
c 
c si 
c b2 
c c3 
c sua1 
c su»12 
C 

c 

IST 

ares of the transformed section 
transformed uidth of the i-th lamination 
uidth of the cross section 
term used to calculate k, Equation 11 (Mansour 
snd Gopu, 1990) 
modulus of elasticity of the i-th lamination 
average E for the cross section 
moment of inertia calculated for the transformed 
cross section 
form factor used to calculate shear deflection 
for composite rectangular beams. 
lxmamr of leminations in the cross section 
thickness of the laminations 
distance fram the bottom fiber of the cross 
section to the top fibers of the i-th lamination 
distance from bottom of beam to centroid 

e(i& 
aber 
I 't I' an 

TERMS 

temporary 
temporary 
'taapol'sry 
tmm»orsry 
teaporsry 

term used to calculate 
term used to calculate 
term used to calculate 
suaaation variable 
stmmatlon variable 

1f6 31 11/ 
'f6. 3' 

1 

1) 
NOE I 1 / 

(Mpsi& 11 / 

40 format &12x, '= 
50 forest &12x, ' ' 

+ 12x, 11 
12x' , ~ 

12x' , 
J 60 format (12x, ' 
j 70 fonaet (12x, ~ 

80 format (12x, ~ ~ 

+ 12x, 'l 
+ 12x, '& 

+ 12x, ' I c-» read input from 

'45x''', / 1 

I(C) '12x, f6. 3, 11x' ' ') 
' i2, 15xf6. 3, 11x' , '' & 

'i2, '(T)'12x f6. 3, 11x, ', '~ 
& 

1/5x I I ~ / 
Average E of lama &Mpsi& 
Transformed I (in"4) 
Form factor &k& 

MANS&NR. INP 

I 1/ 
I, /' 
I )' 

'f8. 3' 
'f8. 3' 
'f8. 6' 

read(10, ») nlams, t, base 
read(10, ~ 

& (e&i), i=i, nlmas) 
slaai = 0. 0 
y(1) e 0. 0 

c-» calculate average E for cross section 
do 200 i 1, nlmas 

smai = staaT»e(i) 

program mansour 
real b(50), c(50), y&51), a&50&, itrsn, k 
open (unit=10, file 'mansour. inp', statues'old') 
open (tatitc20, file='mansour. out' status 'unknoun') 

c » forms't s'cstamsnts 
10 format (12x '== — ========ac» HARBOUR. KIT a ==') 
20 format (12x, '1'45x' ' ') 
30 format &12x, '' Thickness of lsminstions (in) 

+ 12x, '( Vidth of leminstions (in) 



200 y( i+1) = t*rea l ( i ) 
aber = sun'I/real(nlmns) 

c-n transform the width of the i-th lamination 
do 210 ill, nlems 

210 b(i) = banana(i)/aber 
sunl = 0. 0 
strsn 0. 0 

c-& calculate distance to the centroid 
do 220 i=1, nlems 

sunl = sunl + b(i)n(y&i+l&ny(i+1)-y(i) y(i)) 
220 etrsn stran + b&i)*(y(i+1)-y(i)) 

yber = 0. 5*sunl/atren 
sunl = 0. 0 
sun2 = 0. 0 

c-n calculate 1 for the transformed cross section 
do 230 i=i, nlems 

sunl = sunl + b(i)n(y((+1)-y(i))en3/12. 
230 sun2 = sun2 + b(i)n&y&i+1&-y&i)&n&y(1+1)+y&i)-2nyber)n*2 

itrsn = sunl + sun2/4. 
sunl = 0. 0 
sun2 = 0. 0 

c-n calculate k using Eq. 10 0 11 (Nannour and Gopu, 1990) 

240 

250 

do 250 i l, nlams 
c&i& ~ 0. 0 
do 240 j=i+l, nlems 

c(i& = c(i)+b(j)*((y(j+1)-ybar)**2-(y(j)-ybsr)**2& 
c(i) = c(i)/b(i) 
sl = ((y(i+1)-ybsr)-(y(i)-ybar))*((y(i+1)-ybsr)**2+c(i))a*2 
b2 = ((y(i+1)-ybsr)nn3-(y(i)-yber)a*3)n(&y(i+1)-ybar)nn2+c&i)) 
c3 = ((y(i+1)-ybsr)**5-(y(i)-ybar)n*5& 
sunl = aunl+b(i)*(y&i+1)-y&i))/(4. *itrsn*itrsn) 
sum2 = nun2+b(i)a&a)-2. *b2/3. +c3/5. ) 

k = sunl*sun2 
c-n vrtte output to HAVSOUR. OUT 

write (20, 10) 
write (20, 20) 
write (20, 30) t, base 
write (20, 20) 
write (20, 40) 
vrite (20, 20) 
write (20, 50) e(l)/l. e6 
write &20, 60)(i, e(i)/l. e6, i=2, nlsms-l& 
write &20, 70) nlsms, e(nlams&/l. e6 
write (20, 20) 
write (20, 40) 
vrite (20, 80) aber/l. e6, itrsn, k 
write &20, 20) 
write (20, 40) 
close &unit=10) 
close (unit=20) 
s'top 
arel 
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APPENDIX D 

BEAM E MODEL FROM CLT MAP FORTRAN CODE 
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c 

Sksggs, T. D. 1992. Sheer deflection of canposite voad 
beams. N. S. Thesis, Department of Agricultural Engineering 
Texas ASN University, College Station, TX. 

c 
c This program calculates the apparent NOE values given the 
c clt beam profiles. 
c 
c References: 
c 
c Hilson, B. O. , P. J. Pal licane, L. R. J. Uhele snd I. Smith. 
c 1988. Touards optimal design of glued-laminated timber 
c beams. In Proc. internstiansl conference on timber 
c engineering, ed. R. T. Itsni, I I F186-193. Seattle, NAI 

c Forest Products Research Society. 
c 
c 
c 
c 
c 
c Vritten by: Thames D. Skaggs 
c November 199'I 
c 
c 

c VARIABLE LIST 

bold 
canteen& 
date&i, j& 

diff 
e&i& 
error 
infile(i) 
pe(i) 
nbeam 
SImlg 
s Irma 2 
t 
Sbsr 
Svsr 

special screen function, turns bold on 
character statement for conments 
CLT-E date reed in then transformed to static 
bending E for the i-th segment and the j-th lem 
difference betueen actual and predicted E 
actual measured E for the i-th beam 
percent error in prediction 
data file name for the i-th beam 
predicted E for the i-th beam 
nunber of beams to analyze 
emanation terms for statistical calculations 
summtion terms for statistical calculations 
paired t-test statistic 
average for the respective variable 
variance for the respective variable 

c 
program beams 
reel data(40, 16) , e(30), pe(30& 
character»7 infile(30& 
nbemn ~ 29 
sune = 0. 
sune2 ~ 0. 
sIamne = 0. 
sImpe2 ~ 0. 
sund ~ 0. 
sumd2 = 0. 

c-» foramt stetmnents 
10 fornmt &a7, 2x, f5. 3) 
20 foment &/'lgx, 'infi le'lx, 2(6x'Bean»E ~ &, Bx, 'diff'7x, 

+ 'error'/, 23x, 'actual '7x 'predj 22x, 'B'/) 
30 format (Bx, a12, 4(5x, f7. 3)) 

open (10, file (beams. inp', status='old'& 
open (20, file Ibeenm. autI, ntatuSeIneuI& 

c-» reed data filenames 
do 100 i l, nbeem 

100 read &10, 10) infile(i), e&i) 
close (10& 
Nrite &20, 20) 
do 130 ii I, nbema 

open (Il, filesinfile(ii), statues'old') 
c-» read data fran 'infile(ii) ~ 

do 110 isl, 39 
110 read (11, ~ ) (data&i, j), jc1, 16) 

close&11) 
c-» transform CLT-E to Static Bending (Skaggs, 1992) 

do 120 i=1, 39 
do 120 j=l, 16 

c 120 date(i, j)nl. ge6e(1. 3224edeta(i, j&-0. 2344) 
c data( i, J )s1. 227 data(i, j &-0. 191 
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c 120 
120 

data(i, j)=I. OO6*&1. 162*data(I, j)-0. 2'19& 
data( i, j ) ~ 1. Oe6*&1. 227'data( i, j & -0. 191) 

call trform(data, bmoc) 
pe(ii) = bmoc 
diff = pe(ii)-e(ii) 
error = 100*diff/e(ii) 
sune ~ sune + e(ii) 
sune2 = sune2 + e(ii)*e(il) 
suqm = sulpe + pe(ii) 
sulpe2 = sunpe2 + pe(ii)*pe(ii) 
sund = sumd + diff 
sund2 = sumd2 + diffndiff 

130 urite (20, 30) infi le&ii), e&ii), pe&ii), diff, error 
c-v calculate statistical parameters 

char num/reel(abeam) 
pebar = sunpe/real(nbeam) 
dbsr = sund/real(nbeam) 
ever = ((ree((nbeam)nsum2)-(sunensune)&/ 

+ (reel(nbeam)*(real(nbeam)-1. ) ) 
paver = ((real&abeam)*sunpe2)-(sunpe*nunpe))/ 

+ (real&nbeam) &real(nbeam)-1. )) 
dvar = ((rea((nbeam)nnund2)-(sundnnund))/ 

+ (real&nbeam)*(real(nbeam)-1. )) 
c-& calculate test statistic for paired t-test 

t = dbsr/sqrt(dvsr/real(nbeam)) 
uri te (20, 60) ebsr, pebar, dber, ever, paver, dvsr 

60 format (/13x, 'mean'3&5x, f7. 3), /, Iax, 'vsr'3(5x, f7. 3)) 
urite &20, 50) t 

50 format (/, 10x, 't-test statistic : 'f8. 3& 
close &20) 
stop 
end 

C 

C 

c 
c 
c 
c VARIABLE LIST 
c 
c oddupll = 
c addupv = 
c bmoc 
c b(i) 
c def 
c delta 
c 
c 
c 
c 
c e15 
c 
c gmod( j &e 
C 19 
c i 15 
C 
c 
c 
c 
c 
c 
c 
C 

C 
c q 
c rl 
C 'C 

c Ccut 
c VX 

c vxlali 'C 

c x 
C XX ~ 
c xl ~ 

c 

SUBROUTINEI TRFORR 

depth 
~ ('I j) 

(bean 
mi dspn ~ 
mx 
mKul'I 'C ~ 
ncuty 
nl arne 

p e 

used to sun deflection due to bending 
used to sun deflection due to shear 
apparent E of the beam 
uidth of the i-th lamination 
total deflection due to bending snd sheer 
increment for nunericel integration along the 
length of the bean 
depth of beam 
static bending E for the i-th segment end j-th 
iemination 
arbitrary value for E to trsnsfona the cross section 
to (1 5e6 psi) 
E/0 ratio for the j-th laninstion 
gross moment of inertia 
smment of inertia calculated for the transformed 
cross sect'lon 
length of the beam 
distance fran the end to the center of the bean 
theoretical moment at the x-section being checked 
theoretical moment caused by a lait load at midspen 
amber of cuts per laninstion in the y-direction 
nunber of laninations in the cross section 
arbitrary load used to calculate deflection from s 
symnetric tml-point load 
first moment of inertia 
reaction for one side for Imiform loading 
thickness of the laninstions 
thickness of the cut in the y-direction 
theoretical shear et the x-section being checked 
theoretical shear caused by s Imit load et midspsn 
location share cross section is being checked 
location share cross section is being checked 
distance fram end of beam to first load for 
synmetric 2-pt loading 



75 

c x2 

C )tul I 

= distance fram end of beam to 
symnetric 2-pt loading 
distance frcm bottmn of beam 

secand load for 

to cent roi d 
c 
c TEHPORART TERRE 

8 
sy 
slain 
SUnq 

c suny 

= temporary term used 
't8flpol'Sl'y SUImlntllsl 

= tenporary summtion 
= temporary SUmation 

shear deflection 
'tespal'81'y susnat'lan 
shear deflection 

to calculate ybar and i15 
variable used to calculate ybar 
variable used to calculate ybsr 
variable used to calculate 

variable used to calculate 

subroutine trform&e, bmoc) 
reel e(40, 16&, gmod(16), i15, (beam, midspn, mx, mxunit, ig 

c-» initialize variables 
data gmod /4»20. , 8»30. , 4»20. / 
e15 ~ 1. 5e6 
ncuty = 1 

nlems = 16 
t = 1. 5 
base = 5. 125 
delta 12. 0 
lbeam = 456. 0 
xl = 180. 0 
x2 = 2/6. 0 
midspn= 228. 0 
p = 1000. 
addupm= 0. 0 
sddupv= 0. 0 
ig = 5904 
do 240 i=1, 38 

c-» calculate theoretical shear snd moment distributions 
x = delta*real(i- 1) 
if (x. le. midspn) then 

mxunit = 0. 5»x 
vxunit = 0. 5 

else 
nlxlnll't = 0 5 (lb8881 x) 
vxunit = -0. 5 

endif 
xx — x 
mx = p/2»xl 
vx = 0. 0 
if (xx. gt. x2) xx n lbeam - xx 
if (xx. le. xl) then 

mx 8 p/Z. »xx 
vx = p/2 ~ 

if (x. gt. x2) vx = -p/Z. 
endif 
depth = 0. 
SUna 8 0. 
ey = 0. 

c-» calculate distance to the centroid 
do 200 j l, nlmns 

depth depth+t 
8 e bess»tee(i, j&/e15 
SUIm SUnn+8 

200 ay 8 ay+an(depth-t/2. ) 
ybnl' ~ sy/8UIm 
depth = 0. 
i 15 ~ 0. 

c-» calculate i for the transfornmd cross section 
do 210 j ~ l, nisse 

depth depth+t 
~ basest*a&i, j&/el5 

210 i'15 i15+set+t/12. +8+&yber-depth+t/2. &8»2 
depth 0. 0 
q ~ 0. 0 
SUsq ~ 0. 0 
SUny * 0. 0 

c-» calculate sheer deflection (gksggs, 1992) 
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do 220 j=1, nlsms 
tcut ~ t/real(ncuty) 
do 220 k=1, ncuty 

depth = depth+tcut 
q = bsseetcut*(ybsr-depth+tout/2. ) 
smsq = sttaq + e(i, j)*q/e15 

220 staay = suey + tcut*staaq*stmxf'gmod(j)/&e(i, j)*base) 
sddupv = sddupv+suay vx*vxunit*delta/(i15 ~ i15) 

c-& calculate bending deflection (Hilson et al. , 1988) 
240 sddupm = addupm+mx mxunit*delta/(e15*i15) 

def = sddupv+addupa 
c-r backsolve for apparent HOE Eq. 4. 2 (Skaggs, 1992) 

bmoc P*X1*&(3. 0*(beam*&beam)-(4. 0*xf*X1))/ 
+ (1. 0e6*48. 0*defe&g) 

return 
end 
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APPENDIX E 

E DATA FOR 24F-V4 GLULAM BEAMS 
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AITC Project S704R: Phase il Douglas-fir glulam Beams 

E/0 = 16 
Using Equation 5. 1 for the E-transformation 

Beam (D Actual E Pred E diff error 
(Hpsi) (Hpsi) (Hpsi) (X) 

Si 
82 
83 
84 
85 
86 
87 
88 
89 
810 

2. 143 2. 250 0. 107 
1. 943 2. 106 0. 163 
1. 958 2. 111 0. 153 
2. 085 2. 187 0. 102 
2. 216 2. 311 0. 095 
2. 136 2. 204 0. 068 
2. 034 2. 156 0. 122 
2. 094 2. 161 0. 067 
2. 127 2. 240 0. 113 
2. 072 2. 166 0. 094 

4. 993 
8. 389 
7. 814 
4. 892 
4. 287 
3. 184 
5. 998 
3. 200 
5. 313 
4. 537 

RT 

R2 
R3 
R4 
R5 
R6 
R7 
RS 
R9 
R'10 

1. 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 843 
2. 054 
2. 057 
2. 203 
2. 038 

2. 120 
2. 278 
2. 339 
2. 250 
2. 315 
2. 085 
2. 175 
2. 196 
2. 396 
2. 204 

0. 216 
0. 206 
0. 283 
0. 145 
0. 233 
0. 242 
0. 121 
0. 139 
0. 193 
0. 166 

11. 345 
9. 942 

13. 765 
6. 888 

11. 191 
13. 131 
5. 891 
6. 757 
8. 761 
8. 145 

11 
T2 
13 
14 
TS 
T6 
T7 
TB 
T9 
T10 

evg 
sd 

COY(X) 

2. 022 2. 226 0. 204 
2. 163 2. 283 0. 120 
2. 056 
2. 145 2. 384 0. 239 
2. 056 2. 338 0. 282 
2. 075 2. 251 0. 176 
2. 012 2. 190 0. 178 
2. 062 2. 264 0. 202 
2. 120 2. 263 0. 143 
1. 956 2. 296 0. 340 

2. 0632 2. 2326 0. '1694 
O. OS43 O. OS18 0. 0677 
4. 08S1 3. 6649 

paired t-test statistic c 13. 466 

10. 089 
5. 548 

11. 142 
13. 716 
8. 482 
8. 847 
9. 796 
6. 745 

17. 382 

8. 2817 
3. 4799 
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AITC Project 8704R: Phase ll Douglas-fir Glulsm Seams 

E/0 = 20 for all lama except (3 uhere E/G = 30 
Using Equation 5. 1 for the E-transformation 

Seam ID Actual E 
(Mpsi) 

Pred E diff error 
(Mpsi) (Mpsi) (X) 

81 
82 
83 
84 
85 
86 
87 
88 
89 
810 

2. 143 
1. 943 
1. 958 
2. 085 
2. 216 
2. 136 
2. 034 
2. 094 
2. 127 
2. 072 

2. 16S 0. 025 1. 167 
2. 033 0. 090 4. 632 
2. 039 0. 081 4. 137 
2. '110 0. 025 1. 199 
2. 227 0. 011 0. 496 
2. 127 -0. 009 -0. 421 
2. 080 0. 046 2. 262 
2. 085 -0. 009 -0. 430 
2. 160 0. 033 1. 551 
2. 091 0. 019 0. 917 

R1 
R2 
R3 
R4 
R5 
R6 
R7 
RS 
R9 
R10 

T1 
TZ 
T3 
T4 
T5 
T6 
T7 
TB 
19 
710 

evg 
sd 

COY(X) 

1. 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 843 
2. 054 
2. 057 
2. 203 
2. 038 

2. 022 
2. 163 
2. 056 
2. 145 
2. 056 
2. 075 
2. 012 
2. 062 
2. 120 
1. 956 

2. 0632 
0. 0843 
4. MST 

2. 048 
2. 195 
2. 252 
2. 169 
2. 231 
2. 015 
2. 100 
2. 120 
2. 306 
2. 126 

2. 146 
2. 200 

2. 295 
2. 251 
2. 170 
2. 113 
2. 183 
2. 181 
2. 213 

2. 1529 
0. 0767 
3. 5622 

0. 144 
0. 123 
0. 196 
0. 064 
0. 149 
0. 172 
0. 046 
0. 063 
0. 103 
0. 088 

0. 124 
0. 037 

0. 150 
0. 195 
0. 095 
0. 101 
0. 121 
0. 061 
0. 257 

0. 0897 
0. 0660 

7. 563 
5. 936 
9. 533 
3. 040 
7. 157 
9. 333 
2. 240 
3. 063 
4. 675 
4. 318 

6. 133 
1. 711 

6. 993 
9. 484 
4. 578 
5. 020 
5. 868 
2. 877 

13. 139 

4. 4197 
3. 3303 

paired t-test statistic 7. 318 
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AITC Project 8704R: Phase II Douglas-fir Clulsm Beams 

8/8 = 16 
Using Equations 5. 2 8 5. 3 for the E-transformation 

Bean ID Actual E 
(mpsi) 

Pred E diff error 
(pepsi) (Hpsi) (Z) 

81 
82 
83 
84 
85 
86 
87 
88 
89 
Bio 

2. 216 
2. 136 
2. 034 
2. 094 
2. 127 
2. 072 

2. 268 
2. 154 
2. 103 
2. 107 
2. 193 
2. 114 

2. 143 2. 202 
1. 943 2. 050 
1. 958 2. 056 
2. 085 2. 136 

0. 059 2. 753 
0. 107 5. 507 
0. 098 5. 005 
0. 051 2. 446 
0. 052 2. 347 
0. 018 0. 843 
0. 069 3. 392 
0. 013 0. 621 
0. 066 3. 103 
0. 042 2. 027 

R1 
R2 
R3 
R4 
R5 
R6 
R7 
RB 
R9 
R10 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
TB 
T9 
T10 

1. 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 84i3 
2. 054 
2. 057 
2. 203 
2. 038 

2. 022 
2. 163 
2. 056 
2. 145 
2. 056 
2. 075 
2. 012 
2. 062 
2. 120 
1. 956 

2. 065 
2. 232 
2. 297 
2. 203 
2. 272 
2. 028 
2. 124 
2. 146 
2. 358 
2. 154 

2. 177 
2. 238 

2. 344 
2. 296 
2. 204 
2. 139 
2. 218 
2. 216 
2. 250 

0. 161 
0. 160 
0. 241 
0. 098 
0. 190 
0. 185 
0. 070 
0. 089 
0. 155 
0. 116 

0. 155 
0. 075 

0. 199 
0. 240 
0. 129 
0. 127 
0. 156 
0. 096 
0. 294 

8. 456 
7. 722 

11. 722 
4. 656 
9. 126 

'10. 038 
3. 408 
4. 327 
7. 036 
5. 692 

7. 666 
3. 467 

9. 277 
11. 673 
6. 217 
6. 312 
7. 565 
4. 528 

15. 031 

aug 
sd 

CDV(Z) 

2. 0632 
0. 0843 
4. 0881 

~ ge 
2. 1843 0. 1211 5. 9297 
0. 0867 0. 0696 3. 4993 
3. 9682 

paired t-test statistic 9. 369 



SITC project 8704R: phase II Douglas-fir Glulam Beams 

E/G = 20 for all lama except L3 Were E/0 = 30 
Using Equations 5. 2 4 5. 3 for the E-transformation 

Beam ID Actual E 
(Hpsi) 

Pred E diff error 
()lpsi) (Hpsi) (X) 

81 
82 
$3 
$4 
85 
$6 
$7 
88 
$9 
gio 

2. 143 
1. 943 
1. 958 
2. 085 
2. 216 
2. '136 
2. 034 
2. 094 
2. 127 
2. 072 

2. 121 -0. 022 -1. 027 
1. 979 0. 036 1. 853 
1. 985 0. 027 1. 379 
2. 060 -0. 025 -1. 199 
2. 183 -0. 033 -1. 489 
2. 078 -0. 058 -2. 715 
2. 02S -0. 006 -0. 295 
2. 032 -0. 062 -2. 961 
2. 113 -0. 014 -0. 658 
2. 040 -0. 032 -1. 544 

Ri 
R2 
R3 
R4 
R5 
R6 
R7 
RS 
R9 
R10 

1. 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 843 
2. 054 
2. 057 
2. 203 
2. 038 

1. 995 
2. 150 
2. 210 
2. 123 
2. 188 
1. 959 
2. 050 
2. 071 
2. 268 
2. 077 

0. 091 
0. 078 
0. 154 
0. 018 
0. 106 
G. tie 

-0. 004 
0. 014 
0. 065 
0. 039 

3. 764 
7. 490 
0. 855 
5. 091 
6. 294 . 0. 195 
0. 681 
2. 951 
1. 914 

T1 
12 
T3 
T4 
T5 
T6 
T7 
TS 
T9 
T10 

2. 022 
2. 163 
2. 056 
2. 145 
2. 056 
2. 075 
2. 012 
2. 062 
2. 120 
1. 956 

2. 256 
2. 210 
2. 123 
2. 064 
2. 138 
2. 135 
2. 167 

0. 111 
0. 154 
0. 048 
0. 052 
0. 07e 
0. 015 
0. 211 

2. 097 0. 075 
2. 156 -0. 007 

3. 709 
0. 324 

5. 175 
7. 490 
2. 313 
2. 584 
3. 686 
0. 708 

10. 787 

svg 
sd 

COT(X) 
0. 0843 
4. 0881 

0. 0812 
3. 8551 

2. 0632 2. 1054 0. 0422 2. 1068 
0. 0675 3 3373 

paired t-test statistic ~ 3. 367 
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lITC Project 8704R: Phase il Douglas-fir Glulem Seams 

E/G = 16 
Using Equation 5. 2 for the E-transformation 

Beam ID actual E 

&Mpsi) 
Pred E diff error 
(Mpsi) (Mpsi) &X) 

81 
82 
83 
84 
85 
86 
er 
ee 
89 
810 

2. 143 2. 113 -0. 030 -1. 4DO 
1. 943 1. 979 0. 036 1. 853 
1. 958 1. 984 0. 026 1. 328 
2. 085 2. 054 -0. 031 -1. 487 
2. 216 2. 170 -0. 046 -2. 076 
2. 136 2. 070 -0. 066 -3. 090 
2. 034 2. 026 -0. 008 -0. 393 
2. 094 2. 031 -0. 063 -3. 009 
2. 127 2. 104 -0. 023 -1. 081 
2. 072 2. 035 -0. 037 -1. 786 

Rl 
R2 
R3 
R4 
R5 
R6 
R7 
RB 
R9 
R10 

Tl 
TZ 
T3 
T4 
T5 
T6 
Tr 
TS 
T9 
T10 

1. 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 843 
2. 054 
2. 057 
2. 203 
2. 038 

2. 022 
2. '163 
2. 056 
2. '145 

2. 056 
2. 075 
2. 012 
2. 062 
2. 120 
1. 956 

1. 993 0. 089 
2. 139 0. 067 
2. 196 0. 140 
2. 1N 0. 009 
2. 174 0. 092 
1. 960 0. 117 
2. 044 -0. 010 
2. 063 0. 006 
2. 249 0. 046 
2. 070 0. 032 

2. 091 0. 069 
2. N3 -0. 020 

2. 237 0. 092 
2. 195 0. 139 
2. 114 0. 039 
2. 057 0. 045 
2. 126 0. 064 
2. 125 0. 005 
2. 156 0. 200 

4. 6rl 
3. 234 
6. 809 
0. 428 
4. 419 
6. 348 

-0. 48'r 
0. 292 
2. 088 
1. 570 

3. 412 
0. 925 

4. 289 
6. 761 
1. 880 
2. 237 
3. 104 
0. 236 

10. 225 

evg 
sd 

COY(X) 

2. 0632 2. 0970 0. 0338 1. 7053 
0. 0843 0. 0760 0. 0658 3. 2605 

3. 6Z$6 

paired t-test statistic a 2. 762 
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AITC Project 8704R: Phase II Douglas-fir Glulsm Beams 

E/G = 20 for sll lama except 
Using Equation 5. 2 for the 

Beam ID Actual E Pred E 
(Mpsi) (Mpsi) 

Ls share E/G = 30 
E-transformation 

diff error 
(Mpsi) (X) 

81 
82 
83 
84 
BS 
86 
87 
88 
89 
810 

2. 143 
1. 943 
i. gSB 
2. 085 
2. 216 
2. 136 
2. 034 
2. 094 
2. 127 
2. 072 

1. 998 
1. 955 
1. 959 
2. 029 
1. 965 

-0. 138 -6. 461 
-0. 079 -3. M4 
-0. 135 -6. 447 
-0. 098 -4. 607 
-0. 107 -5. 164 

2. 036 -0. 107 -4. 993 
1. 911 -0. 032 -1. 647 
1. 917 -0. 041 -2. 094 
1. 983 -0. 102 -4. 892 
2. 091 -0. 125 -5. 641 

Rl 
RZ 

R3 
R4 
R5 
R6 
R7 
RB 
R9 
Rl0 

1 . 904 
2. 072 
2. 056 
2. 105 
2. 082 
1. 843 
2. 054 
2. 057 
2. 203 
2. 038 

1. 925 
2. 062 
2. 114 
2. 037 
2. 095 
1. 895 
1. 973 
1. 992 
2. 165 
1. 998 

0. 021 1. 103 
-0. 010 -0. 483 

O. OSB 2. 821 
-0. 068 -3. 230 
0. 013 0. 624 
0. 052 2. 821 

-0. 081 -3. 944 
-0. 065 -3. 160 
-0. 038 - 1. 725 
-0. 040 - 1. 963 

T1 
T2 
T3 
T4 
T5 
T6 
T7 
TB 
T9 
T10 

2. 022 
2. 163 
2. 056 
2. 145 
2. 056 
2. 075 
2. 0'lZ 
2. 062 
2. 120 

2. 016 
2. 066 

2. 154 
2. 114 
2. 038 
1. 986 
2. 050 
2. 049 

-0. 006 -D. 297 
-0. 097 -4. 485 

0. 009 0. 420 
0. 058 2. 821 

-0. 037 -1. 783 
-0. 026 -1. 292 
-0. 012 -0. 582 
-0. 071 -3. 349 

1. 956 2. 078 0. 122 6. 237 
ss Ls 

svg 
sd 

COY(X) 

2. 0632 
0. 0843 

2. 0224 
0. 0711 
3. 5174 

0. 0408 -1. 9060 
0. 0646 3. 1220 

paired t-test statistic = -3. 398 
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APPENDIX F 

COMPARISON OF LOCALIZED SHEAR-FREE E AND LONG-SPAN E 
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OVERVIEW OF EXP1HKHENTAL DESIGN 

Lumber was sampled in the summer of 1991 from one laminator located in the pacific 

northwest United States. This laminator supplied 32 pieces of 16 ft. 2 x 6 Douglas fir 

lumber visually graded as Ll. The lumber was selected by regrading machine stress rated 

(MSR) laminating lumber. If the lumber qualified for Ll, every fifth piece was selected 

until 32 pieces had been collected. 

The following information was recorded for each of the 32 pieces: moisture content, 

dimension, short-span modulus of elasticity (E, ) on 5 adjacent two-ft long segments and 

long-span modulus of elasticity ~. 

TESTING EQUIPMENT 

Two-ft Modulus of Elasticity Equipment 

All specimens were nondestructively tested in bending to determine E, . The bending test 

machine used was originally designed and fabricated for Taylor's (1988) localized lumber 

properties research. This equipment performs a bending test using "third-point" loading 

conditions. Third-point loading is defined as a static bending test with two equal and 

symmetrically placed loads applied to a simply supported test specimen. The theoretical 

shear-free, flatwise bending E, between the loads, was calculated from the force and 

deflection data collected during the testing procedure. 

A computerized data acquisition and control system was also used that was designed for 

Taylor's (1988) research. This system allows continuous measurement of the force 

exerted on the test specimen and the relative deflection between the two load heads. 

The load was measured by a load ceil mounted between the hydraulic ram and the test 

frame to an accuracy of p 0. 1 lbs. The deflection was measured using a linear variable 
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displacement transducer (LVDT) mounted to the middle of the load head mechanism. 

This LVDT measured the relative deflection between the two loads for the test specimen. 

The deflection data was recorded to an accuracy of P 0. 001 in. 

The signals from the load cell and the LVDT were connected to a data acquisition system 

(DAS) installed in a Compaq Portable II computer. These data later were used to 

calculate E, . The DAS also automatically controlled the hydraulic operation and retracted 

the load head at a predetermined load. 

Long-Span Modulus of Elasticity Equipment 

All of the test specimens were subjected to another nondestructive bending test to 

determine long-span E. Long-span E is based on a static, flatwise bending test with a 

simply supported center point concentrated load and a span-to-depth (L/d) ratio of 

approximately 100 to minimize the effects of shear deflection. The reactions provide 

unrestrained support at both ends of the test specimen; however, the support at one end 

was allowed to tilt to match the twist of the lumber. Preload and final weights of 8. 80 

and 51. 10 lbs were used. 

TESTING PROCEDURE 

The lumber was assigned identification numbers at the hminator's plant then the test 

specimens were shipped to the Agricultural Engineering Research Laboratory at Texas 

ARM University where all tests were conducted. All test were performed in accordance 

with AITC T116 Modulus of Elasticity of E-Rated Lumber by Static Loading (AITC, 

1990), ASTM D198 Standard Methods of Static Tests of Timbers in Structural Sizes 

(ASTM, 1991a) and ASTM D4761 Standard Test Methods for Mechanical Properties of 

Lumber and Wood-Based Structural Material (ASTM, 1991f). 
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The lumber was "stickered" to allow it to condition to an equilibrium moisture content 

of approximately 12%. The moisture content was measured with a resistance-type 

moisture meter. These measurements then were converted to dry-basis moisture content 

using calibration data from oven tests. Moisture content was measured in three locations: 

midspan and 36 in. from each end. The moisture meter readings were measured to the 

nearest 0. 1% (wet-basis). 

Five two-ft segments were marked and numbered for each test specimen. The dimensions 

of each specimen were measured at approximately the same location the moisture samples 

were collected. The dimensions were measured using digital calipers. The thickness was 

measured to the nearest 0. 001 in. and the width was rounded to the nearest 0. 01 in. This 

was required because E is more sensitive to errors in thickness than it is to width 

measurements. 

Each specimen was tested in flatwise bending to determine E, at the five segments. These 

measurements were repeated for both sides of the specimens. The theoretical shear-free 

E between the load heads was determined by the following equation. This equation is 

valid only for "third point" loading. 

P Ls 
Es = 

h„36 bhs 
fF 1) 

where: 
ER 

P 
~R 
L 
b 
h 

two-ft static bending modulus of elasticity, 
total concentrated load on specimen, 
deflection of the neutral axis of the beam relative to the load heads, 
total test span of the specimen, 
width of the specimen and 
thickness of the specimen. 

The short-span bending test used a span of 6 ft. with a distance between load heads of 2 

ft. Force and deflection data were sampled by the DAS at a rate of 5 Hz between the 
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range of 150 lbs and 400 lbs. Linear regression was used to determine the P/A„ term. 

The average dimensions for the lumber were substituted for b and h. 

The long-span E was measured for all specimens on both sides. The long-span E is 

calculated by the following equation. 

P L 
E~ =— 

4 bfis 
(F. 2) 

where: 
E~ long-span static bending modulus of elasticity and 

total midspan deflection. 

The long-span bending test used a span of 12. 5 ft. Deflection data was measured 

manually with a dial indicator to the accuracy of 0. 001 in. A preload of 8. 80 lbs was 

applied at midspan and the deflection was measured underneath the load. A final load of 

51. 10 lbs was then placed at midspan and the total deflection was recorded instantly to 

minimize the result of load creep. The difference between the two deflections was 

substituted for Ar and P was equal to the difference between the final load and the preload 

(42. 30 lbs). 

EXPERIMENTAL RESULTS 

The lumber was allowed to condition to its equilibrium moisture content inside a 

controlled environment. The average dry-basis moisture content for the sample was 

11. 77% with a standard deviation of 0. 59% at the time testing began. The width and 

thickness were measured for the sample. The average width and standard deviation was 

5. 504 in. and 0. 009 in. , respectively. The thickness averaged 1. 502 with a standard 

deviation of 0. 002 in. The average of the five two-ft modulus of elasticities were 

compared to the long-span E measurements. Table F. 1 contains the data from testing 

side-A and Table F. 2 contains data from testing side-B. 
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Table F. l: Comparison of localized shear-free E and long-span E - Side-A 

number 

seg 1 seg 2 

Modulus of Elasticity 

seg 3 seg 4 seg 5 avg' L-spent 

(Mpsi) 

1 

2 
3 

4 
5 

6 
7 

8 

9 
10 
11 
12 
13 

14 

15 

16 
17 

18 
19 
20 
21 

22 

23 

24 

25 

26 
27 

28 
29 
30 
31 
32 

3. 127 

2. 831 

2. 213 
2. 226 
1. 780 
1. 837 

2. 164 
l. 777 

2. 248 

2. 036 
2. 639 
1. 331 
1. 683 
2. 406 
2. 108 
2. 632 

2. 801 
1. 842 

l. 817 
2. 347 

2. 669 
2. 521 

1. 843 
2. 908 
2. 518 
1, 610 
2. 183 
1. 545 
1. 931 
1. 993 
1. 441 
1. 772 

3. 268 
2. 511 
2. 177 

2. 130 
l. 793 
l. 896 
2. 233 
l. 821 

2. 261 
2. 192 
2. 708 
l. 503 

1. 798 
2. 485 
2. 219 
2. 634 

2. 860 
1. 978 
1. 778 

2. 531 
2. 674 

2. 277 

1. 939 
2. 812 
2. 572 
1. 795 
2. 193 
1. 630 
1. 910 
1. 909 
1. 381 
l. 823 

3. 227 

2. 537 
2. 441 

2. 082 
l. 886 

l. 841 

2. 254 

1. 884 

2. 292 
2. 186 

2. 573 

1. 480 
1. 790 
2. 459 

2. 346 
2. 566 

2. 832 
1. 875 
1. 782 
2. 591 
2. 487 

2. 592 
2. 062 

2. 827 

2. 385 
1. 886 

2. 128 

1. 709 
l. 880 
1. 93$ 
1. 336 
1. 700 

3. 163 

2. 535 

2. 254 

2. 012 
1. 855 

1. 870 
2. 248 

1. 799 
2. 174 

2. 363 
2. 840 

1. 417 
l. 767 
2. 546 

2. 236 

2. 687 
2. 711 
2. 049 

1. 775 
2. 547 

2. 169 

2. 625 

2. 145 
2. 853 

2. 247 

1. 895 

2. 035 
1. 826 

1. 901 
1. 979 
1. 376 
1. 674 

3. 170 
2. 488 

2. 158 

1. 946 
1. 850 
1. 735 
2. 208 
1. 755 
2. 221 

2. 488 
2. 824 

1. 459 

1. 728 

2. 608 
2. 430 
2. 774 

2. 533 
2. 061 
l. 809 

2. 446 

2. 252 

2. 526 

2. 166 
2. 706 
2. 188 

2. 020 
l. 892 
1. 872 
1. 820 
1. 927 

1. 378 
1. 724 

avg 

sd 

COV(%) 

3. 191 
2. 581 
2. 248 

2. 079 
1. 833 
1. 836 
2. 221 

1. 807 

2. 239 
2. 253 
2. 717 
1. 438 
1. 753 
2. 501 
2. 268 
2. 659 
2. 748 

l. 961 
l. 793 
2. 492 
2. 450 
2. 508 

2. 031 
2. 821 
2. 382 
l. 841 

2. 087 
1. 716 
1. 888 
1. 948 
1. 383 
1. 739 

2. 1691 
0. 4276 

19. 71 

2. 99 
2. 32 
2. 18 

l. 93 
1. 82 

l. 79 
2. 19 
1. 80 
2. 16 

2. 14 

2. 42 

1. 47 

l. 76 
2. 31 
2. 15 
2. 44 

2. 63 
1. 95 
1. 80 
2. 39 
2. 31 

2. 34 

1. 08 
2. 71 
2. 36 
l. 82 

l. 99 
1. 70 
1. 86 

1. 91 
1. 38 
1. 72 

2. 056$ 
0. 3982 

19. 36 

Average of the five 2-ft setpnents 
t Long-span E measured at a L/d ratio of 100 
s Sample standard deviation of all 2-fl segments 
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Table F. 21 Comparison of localized shear-free E and long-span E - Side-B 

Board 

ID 
number 

seg 1 seg 2 
Modulus of Elasticity 

seg 3 seg 4 seg 5 

(Mpsi) 

avg L-spatl 

1 

2 

3 

4 

5 

6 

7 
8 

9 
10 

11 

12 

13 
14 

15 

16 
17 

18 

19 
20 

21 
22 

23 
24 

25 
26 
27 

28 
29 
30 
31 
32 

3. 028 
2. 562 
2. 137 
2. 059 
1. 831 
1. 808 

2. 145 

I . 802 
2. 230 
1. 998 
2. 700 
1. 397 
1. 6$0 
2. 415 
2. 008 
2. 470 
2, 708 

1. 916 
1. 823 

2. 276 

2. 605 

2. 391 
2. 094 
2. 877 

2. 535 
1. 664 
2. 147 

1. 525 
1. 975 
2. 104 

1. 431 
l. 809 

3. 141 

2. 367 
2. 106 
1. 992 
1. 915 
1. 867 
2. 197 

1. 796 
2. 250 
2. 117 
2. 705 

1. 507 

1, 731 
2. 488 

2. 125 
2. 521 
2. 815 
2. 049 
l. 789 
2. 436 
2. 591 
2. 186 

2. 025 
2. 848 

2. 736 
1. 850 

2. 194 
1. 613 
1. 940 

2. 023 
1. 389 
1. 838 

3. 194 
2. 385 

2. 366 

1. 945 
2. 035 
l. 809 

2. 271 
1. 862 

2. 288 
2. 088 
2. 615 
l. 471 

l. 762 
2. 418 
2. 206 

2. 515 
2. 865 
1. 899 

1. 772 
2. 474 

2. 406 
2. 463 
2. 136 
2. 847 

2. $20 
1. 930 
2. 098 
1. 69$ 
1. 909 
1. 945 
1. 317 
1. 782 

3. 210 
2. 353 
2. 203 

1. 901 
l. 893 
1. 837 

2. 184 

1. 796 
2. 159 

2. 291 
2. 913 
1, 481 

1. 749 
2. 493 
2. 137 
2. 567 

2. 783 

2. 104 

1. 762 
2. 562 

2. 140 

2. 493 

2. 422 

2. 819 
2. 332 
1. 973 
2. 000 
1. 761 
1. 943 

I. 979 
1. 386 
1. 685 

3. 228 

2. 329 
2. 192 
l. 824 

1. 832 
1. 735 
2. 140 

1. 768 
2. 203 
2. 436 

2. 917 
1. 584 

1. 733 
2. 616 
2. 339 
2. 566 
2. 640 

2. 122 

1. 799 
2. 529 

2. 230 
2. 425 

2. 308 
2. 670 
2. 272 
2. 042 

1. 840 

l. 825 

l. 837 

2. 003 
l. 368 
1. 769 

avg 

sd 

COV(%) 

3. 160 
2. 399 
2. 201 

1. 944 
1. 901 
1. 811 
2. 187 
1. 805 

2. 226 

2. 186 
2. 770 

1. 488 

1. 725 
2. 486 
2. 163 

2. 528 

2. 762 
2. 018 
1. 789 
2. 455 

2. 394 
2. 392 
2. 197 
2. 812 
2. 479 

1, 892 
2. 0$6 

1. 684 
1. 921 
2. 011 
1. 378 

1. 777 

2. 1562 
0. 4103t 

19. 03 

2. 98 
2. 31 
2. 17 
1. 92 
1. 81 

1. 79 
2. 17 

1. 80 
2. 18 
2. 13 

2. 4$ 

1. 45 

l. 78 
2. 34 

2. 13 

2. 46 

2. 64 
1. 95 
1. 81 
2. 37 
2. 31 
2. 32 

2. 01 
2. 71 

2. 36 
1. 83 

2. 00 
1. 70 
1. 85 

1. 91 
1. 37 
1. 72 

2. 0851 
0. 3592 

17. 23 

' 
Average of the five 2-fi segments 

t Long-span E measured st a Lld ratio of 100 
t Sample standard deviation of all 2-11 segments 
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An interesting point should be noted about the data. The ratio of E~ to the average E, 
is 0, 96. This is very similar to Taylor's (1988) findings. Taylor found the ratio to be 

0. 95 and 0. 96 for 302-24 and Ll lumber grades, respectively. 

There was little difference between the sides being tested; therefore, all data were grouped 

together for a regression analysis excluding one side of one specimen that had an 

extremely low long-span E and was considered an outlier; therefore, the sample size was 

equal to 63. Figure F. 1 illustrates the plot of E, versus Ei, 

3. 5 

3. 0 

2. 5 

CV 

h 2. 0 

1. 5 

r = 0. 979 
n = 63 

1. 0 
1. 0 1. 5 2. 0 2. 5 3. 0 3. 5 

Long Span E (Mpsi) 

Figure F. lt E, versus Et, test data. 

The regression equation relating these two values was found as: 

Es = 1142~E~ 0219 (F. 3) 

An interesting point about Equation F. 3 should be noted. Kline et al. (1986) did a similar 

experiment except their short-span segments were 30 in. instead of 24 in. Their data 

indicate that the average of the Ea is close to Eis (no more than 0. 63% difference); 
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however using the regression equation developed from this research, any E greater than 

1. 54 Mpsi yield an average E, that is greater than E~. This indicates the average two-ft 

E is higher than the long-span E for practically the whole data set of Ll laminating 

lumber. It is believed that a possible source of error could be caused by a crushing from 

the load heads for the 2-ft E measurements. A specimen with two million psi E would 

only take 0. 006 in. of crushing to cause a 5% error in the measurement. To put this 

localized crushing in perspective, 0. 006 in. is about 1. 5 times greater than the thickness 

of a piece of paper. This is one possible explanation for the experimental error. This 

experimental error is significant because AITC has adopted this procedure for collecting 

lumber property data. 

SUMMARY 

Data were collected on 32 pieces of 16 ft. 2 x 6 Douglas-fir laminating lumber. The 

lumber was subjected to several nondestructive test including E, and E~. The test data 

indicate that the average E, value collected during this research does not equal E~ which 

is counterintuitive. 
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