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ABSTRACT 

Verification, Optimization and Refinement of a. Direct-Inverse Transonic 

Wing Design Method Including Weak Viscous Interaction. (August 1989) 

Robert R. Ratcliff, B. S. , Texas A&M University 

Chair oi' Advisory Committee: Dr. Leland A. Carlson 

New developments in the direct-inverse wing design method in curvilinear co- 

ordinates are presented. A spanwise oscillation problem and proposed remedies are 

discussed. Test cases are presented which reveal the approximate limits on wing as- 

pect ratio and leading edge sweep angle for a. successful design, and which show the 

significance of spanwise grid skeivness, grid refinement. viscous interaction, the initial 

airfoil section and Mach number — pressure distribution compatibility on the final 

design. Furtherniore. preliminary results are shown which indicate that it is feasible 

to successfully design a. region of the wing which begins aft of the leading edge and 

terminates prior to the trailing edge. 
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NOMENCLATURE 

influence coefficients used in compensation terms 

AR aspect ratio 

cos cosine 

local chord 

airfoil section lift coefficient 

wing lift coefficient 

Cv pressure coefficient 

ca specific heat at constant pressure 

cosh hyperbolic cosine 

KVing surface function in the physical doniain 

speed of sound 

Fourier coefficients used in grid scheme 

the relative z distance from the sectional quarter chord point 

general function 

lhl determinant of the inverse jacobian matrix. 

inverse Jacobian transformation matrix 

enthalpv per unit mass 

I, J, Ii grid locations in (, u, i, directions 

Jacobian transformation matrix 

'. tfach number 



vn 

P, Q, R Jameson's upwinding terms 

pressure 

compensation terms 

magnitude of physical velocity 

radius. radial distance; coeflicient of determination 

Reynolds number 

radius of fuselage 

radius of wing tip 

coordinates of the wing's surface in the auxiliary plane 

wing surface function in the computational domain 

arc length along approximated wake location 

velocity at the edge of the boundary layer 

velocity vector in Cartesian coordinates 

II, I:, W velocity components in Cartesian coordinates 

f', VI tV contravariant velocity components 

velocity vector in computa. tional spa. ce 

ZI yI Cartesian coordinates 

ydesIVII ordinate of the design section 

ymca@. mean ordinate of the target section 

y1 ordina. te ot airfoil at trailing edge 

angle of attack 



angle between the wall shear line and the external streamline of the bound- 

ary layer 

transformed boundary layer displacement thickness 

magnitude of change in the airfoil surface in physical coordinates 

user specified trailing edge thickness in units of chord fraction 

central-difFerence operator defined in Eq. (2-20) 

relofting correction 

boundary layer displacement thickness 

degree of extrapolation coefficient 

ratio of specific heats 

circula. tion 

floiv curvature at the approximate svake lo( ation 

averaging operator defined in Eq. (2-20) 

vector difl'erential operator 

reduced velocity potential function 

velocity potential function 

density 

snioothing operator, standard deviation 

sinh hyperbolic sine 

airfoil section thicliness 

T? 

original airfoil thickness 

airfoil thickness at different %tach number 

momentum thickness 



s degree of smoothing coefficient 

coordinates in auxiliary plane 

transformed coordinates 

Subscripts 

avg 

i die 

average quantity 

forward direct-inverse interface 

idte aft inverse-direct interface 

II index increment 

i, j, k grid loca. tions in the (, rl, (, 
' 

directions 

ky value at the wing's surface 

l lower surfa. ce 

le leading edge 

0 stagnatron conditions 

s singular hne location 

T iteration time level 

te trailing edge 

upper surface 

wake 

z. y, = components in the z, y, = directions 

i'reestream conditions 

F, rl, t, components in the E. q, r, dhrections 

Superscripts 

iteration time level 

degrees 
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CHAPTER I 

INTRODUCTION 

With the advent of efficient numerical schemes that accurately model the ir- 

rotational transonic flow about complex configurations such as wing-bodies and the 

appearance of computers with memory capacities and computational speeds neces- 

sary to execute these schemes in a, reasonable amount of time, the efficient design of 

wings for transonic flight is quickly becoming a. reality. Although transonic potential 

schemes combined with integral boundary layer solvers may not model the real flow- 

field as accurately as Euler or 'Vavier Stokes schemes, i their use can significantly 

reduce the costs and tinie expenditures associated ivith transonic iving design. 

There are basically iivo general types of inverse design methods: inverse solvers 

and predictor/corrector (P, 'C) methods. In the P, , '(' type methods, an analysis code 

is used to calculate the flowfield for an arbitrary initial geometry', and then. this geom- 

etry is systematically modified by considering the differences between the calculated 

and target pressures. The changes to the airfoil sections can. be obtained through 

optimization type procedures; or, as shown by C"ampbell. the appropriate geometry 

changes can be systematically deterniined by using a, design algorithm winch relates 

pressure changes to changes in airfoil curiaiure. 

An example of an inverse solver is the direct-inverse transonic wing analysis- 

design method, which has been under development at Texas Ag. hf University. In 

Journal model is AJAR Journal of . aircraft 



this method, the wing geometry is determined by specifying pressure distributions 

over part of the wing and then solving the mixed Neumann and Dirichlet boundary 

value problem associated with the full potential equation for compressible flow via 

finite difference and/or finite-volume techniques. The specified pressure distributions 

can be selected by the experienced designer to have such desira, ble characteristics 

as weak or nonexistent shock waves, a slowly increasing adverse pressure gradient to 

limit boundary layer separation, a center of pressure loca, tion giving a desirable pitch- 

ing moment, or an efficient spanwise loa. ding. The designer may also use wind-tunnel 

tests of successful airfoils as an aid in picking a desirable pressure distribution. The 

direct-inverse technique has been successfully used in stretched and sheared Carte- 

sian coordinate systems' ' '' and most recently by Gaily ' in a curvilinear 

coordinate system. 

It. would be convenient if only the inviscid flowheld had to be included in the 

design process; but, unfortunately, it has been verified through transonic wind tunnel 

tests at low Reynold's numbers and flight testing at high Reynold's numbers tliat vis- 

cous effects are very significant . For example, as the Revnold's number increases. 

the shock wave location is further aft on the wing. Thus, the shock wave in a. viscous 

flowfield (finite Re) is located further upstream than that predicted by an inviscid 

(infinite Re) flowfield calculation. Although the inclusion of the viscous interaction 

significantly weakens the shock strengtli compared to inviscid results, the accompa. - 

nying upstream displacement of the sliock wave causes the sum of the differences 

between the upper and lower surface pressure distributions to be smaller than in 

the inviscid case: hence, the wing lift coefficient will be smaller in the viscous case. 



Furthermore, it has been discovered that a wing using an aft-cambered airfoil section 

designed inviscidly for transonic conditions might develop 25-50% less lift in a viscous 

environment . 

In light of the previous discussion its obvious that viscous effects must be taken 

into account through some means. One approach that applies in cases where there 

are no regions of massive separation is referred to as the weak viscous interaction 

technique. Since the weak primary viscous interaction eflect is the formation of a 

boundary layer on the wing which efl'ectively makes the airfoil thicker, the external 

streamlines for the wing boundary of the inviscid potentiid field are sliifted outwards 

by a distance called the displacement thickness. This shifting is due to the decrease 

in velocity of the fluid in the boundary layer . Thus, to include the efl'ects of weak 

viscous interaction in an analysis of a, wing, one simply needs to determine the po- 

tential solution for the surface, find the displacement thickness using the properties 

associated with the streamhne representing the body, add this displacement thickness 

to the original surface. and repeat the process until the displa, cement thicknesses and 

the potential field converge. 

YVeak viscous interaction can be included in the inverse design process in much 

the same way. In the inverse regions, where the pressure boundary condition is 

applied. the new surface which approximately satisfies the boundary condition is 

calculated penodicallv bv an integration of the flow boundarv condition. At that time, 

the displacement thickness from the boundary layer calculations can be subtracted 

from this new surface to yield the hard or actual designed airfoil. This process can 

be carried out iteratively until there is an insignificant change in the displacements 



due to boundary layer interaction and the inverse boundary condition, and in the 

flowfield's potential solution. 

Fortunately, there is a, computer program called TAWFIVE (for Transonic Anal- 

ysis of a. Wing And Fuselage and Interacted Viscous Effects) which not only has the 

capability ot computing the potential field about a, wing and fuselage combination 

but also contains a. robust three dimensional integral boundary layer scheme which 

provides the necessary viscous effects in the form of' boundary layer displacement 

thickness, wake curvature, and wake thickness. It should be noted that a. three 

dimensional boundary layer code is desirable in order to properly predict the in- 

creased decambering of the sections near the tip due to the cross flow in the bound- 

arv layer' . In TAYVFIVE, the inviscid numerical scheme is based upon . Jameson 

and Caughey's FLO-30 conservative. finite-voluine, full-potential flow method where 

computations are performed on a body-fitted, sheared. parabolic. wind-tunnel type 

coordinate system. The three dimensional boundary layer scheme added by Streett 

to the originally-inviscid code computes the first order, weak, self-consistent, viscous 

interactions which include the boundary layer displacement efFect on the wing's sur- 

face, the displacement in the wake. and the curvaturepressure lump in the wake. 

The boundary layer on the wing is found using s. compressible integral method for 

laininsr and turbulent flow with a fixed transition location. Tlie tnrbulent inethod 

was based on work bv Smith', while the laminar method was developed by Stock". 

Small regions of separation are also modeled. This latter feature is an important ad- 

dition for successful convergence, since small regions of separation often occur in the 

initial stages of computations behind shockwaves, in the cove region of aft-cambered 



airfoils and near the trailing edge on the upper surface of the wing, even though 

they may not exist in the final converged solution . The parameters in the wake re- 

gion are computed in streamwise strips using a two dimensional entrainment integral 

technique. This method has been deemed valid for transport type wings- ". 
Gaily ' has successfully incorporated the inverse design process into the 

TAWFIVE program. Since the modifications made were compatible with the existing 

computational methods and program structure of TAWFIVE, his work resulted in 

a, versatile design code capable of allowing the user to design an entirely new wing 

or even discontimious, nonadjacent segments ot a wing. The latter option may be 

invaluable to en~eers who are typically faced with the dilemma of designing around 

regions where the wino geometry may be fixed by constraints other than aerodynaniic 

considerations. As seen in Fig. 1 these segments can even be non-adjacent upper or 

lower surfaces with overlapping lower or upper surfaces respectively. 

On the other hand, as a consequence of the inverse method. previous experience 

has revealed that specified pressure distributions may not be imposed in regions less 

than about ten percent behind the leading edge of the wing section. This limitation 

was due to the difficulties associated with enforcing the pressure boundary condition 

near the leading edge of the airfoil where the vertical velocities are large. However 

this feature was not viewed as a. real limitation since the leading edge regions of most 

airfoils are similar, the leading edge shapes may be constrained by non-aerodynamic 

factors, and since a leading edge geometry can be selected to produce the desired 

pressure values at the beginning of the design region 
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Moreover, the imposed pressure distributions may often lead to an impractical 

airfoil that has an excessively blunt trailing edge or one in which the upper or lower 

surfaces cross prior to the trailing edge resulting in a fish tail shape. An excessively 

blunt trailing edge might cause a, wing to have an excessive a. mount of drag due to 

base pressure at the trailing edge, while the fish tail shape would be impossible to 

construct. Since the nose shape or curvature has been shown to control trailing edge 

closure, ' these undesirable shapes can be eliminated with a, procedure which 

systematically modifies the leading edge thickness distribution called relofting. Two 

types of relofting procedures have already been included in the program by Gaily. 

One is a simple linear rotation scheme where the surface being designed is rotated 

about the leading edge a proper amount to achieve the desired trailing edge thickness. 

In the second procedure, the leading edge is proportionally thnmed or thickened s. 

proper amount so that the relofted leading edges are in the same I'amily of airfoil 

shapes. 

Gaily's original design cocle has been tested in a variety of ways for a. Lockheed 

King-A wing-body. The self-consistency of the approach wss tested by designing 

airfoil sections using certain desired pressure distributions, analyzing the resulting 

designed airfoils, and then comparing the desired pressure distributions input to those 

found through analysis. In all of the inviscid cases considered, the code proved itself' 

consistent; the section lift coefiicients of the designed and target sections and the 

respective pressure distributions were in strong agreement. The relofting procedures 

and the ability of the code to niake large surface changes was verified by transforming 



a 12'Fs thick airfoil at supercritical conditions to a 6'Fa thick airtoil at subcritical 

conditions in the same NACA family. 

Although the code worked well for the inviscid cases attempted, there were 

some modifications and test cases which were required to make this code more valu- 

able. For instance, since Streett found that the wake eff'ects (wake displacement and 

curvature) were relatively important in the calculation of the lift distribution on a 

three dimensional wing, presumably their inclusion in the design process would be 

important as well. This was'investigated by utilizing the wake options in the code and 

and comparing their effect on the design of a. wing. The logic necessary to include 

the viscous effects in the design process originally added by Gaily was tested and 

modified where necessary. 

Recently, a spanwise decoupling in the design regions which led to instabilities 

in the design solution was observed. The supposed source of this instability and the 

various methods used to coinbat this problem will be discussed later in the report. 

One niodification added to the program, which helps smooth out the rippling 

spanv ise variations in the wing and give the designer added versatility, is an option 

where the user specifies pressure distributions at the edges of the design region and 

then the changes in the thicknesses of the airfoil sections ralculated by the prograin for 

those stations are interpolated and added to the stations delimited l&y the edges. This 

approach is different from the original method where the target pressure distributions, 

not the change in thicknesses, were interpolated to the stations in the design region. 

Since the designer is admonished in the TAWFIVE user's manual that the 

wing is not modeled accurately enough to allow analysis of very low-aspect ratio 



wings and that grid problems may be encountered for wings which have high taper 

ratios or sweep angles, three wings of different aspect ratios and sweep angles will be 

used in the inverse design process to approximately delimit the range of' geometries 

applicable to the present design code, TAW5D. 

Because of the high computer costs associated with executing this program for 

fine computational grids, results will be shown which will reveal how fine the grid 

needs to be for satisfactory preliminary designs. 

In summary, this thesis presents developments in the inverse design method. 

It includes a, brief description of the analysis and design methods and techniques 

used to suppress a spanwise oscillation problem resulting from the interaction of the 

design method with the potential solver. In addition. it presents a series of test cases 

that reveal the lack of dependency of the clesign on the initial airl'oil section, the 

importance of including viscous efi'ects in iving design, and constraints due to aspect 

ratio, wing sweep. spanwise grid skewness. In addition, some questions about the 

necessary refinement of. the grid and about any necessary constraints due to 'vlach- 

number-input-pressure-distribution compatibility will be answered. 



CHA. PTER II 

DESCRIPTION OF TAWFIVE 

As was stated in the introduction, the inverse-wing-design program, TAW5D, 

which was originally modified by Gaily, uses as its core the computer program 

TAWFIVE, which can be broken into three major sections: the inviscid, transonic, 

potential flow solver; the cylindrical/wind-tunnel type grid generation scheme; and 

the three dimensional, laminar and turbulent. integral boundary layer code included 

bv Streett which is based on the works ol' Smith"', Stock"' and Green. 
' Since 

the theory behind the code is spread across numerous ret'erences, an attempt will be 

made to summarize its formulation in a succinct fashion for the reader's convenience. 

II. 1 FLO-30 

The transomc potential flow solver. FLO-30, z " by, laineson and Gaughey, 

is a finite volume method which solves the 1'ull potential equation in divergence form 

(pu), c (pu) ~ (pu'). = 0 (2 — 1) 

transformed from C'artesian to curidlinear coordinates 

(phf )t — (pht') + (phN')( — 0 (2 — 2) 

The denvation of the transforniation of Eq. (2-2) is presented in Appendix A. 

An expression for the local density, p, and the local speed ot' sound, u, nondi- 

niensionalized by the appropriate freestream quantities can be 1'ound by beginning 

with the energy equation 

9i 
2 2 

ih, = =+ha 



where q' = (uz + vz + u') q' 

Then assuming the existence of a. perfect gas such that 

a 
Ir =crT = 

p — 1 

t. he energy equa. tion becomes 

0 — lzzq' — 1z 
2 

qt + at = qz + az 
2 

IVext, assuming freestream and stagnation conditions such that 

qz = 0 az = a, 
(2 — 6) 

and upon normalizing all the primitive variables by the appropriate freestream quan- 

tities 
p 

p~q~ 
p = p 

p~ 
(2 — j) 

The bars on the nondimensionalized quantities wsll hereafter be omitted for conve- 

nience. 

Eq. (2-5) becomes 

0 — 1 1 

2 . 1Iz 

The local speed of sound is obtained using Eqs. (2-5) and (2-g), yielding 

a: a fq 0) 

Using the isentropic relation 



and realizing that 

1 
poo qMz (2 — 11) 

the isentropic relation becomes 

PY 
p= 

q M~z 
(2 — 12) 

Then making use of the speed of sound relation 

vp a 
P 

a, relation for density is found 

p = (aM )'-' 

which for air can be simplified to 

(2 — 15) 

This expansion is the actnal form ilsed in FLO-30 but ilie more familiar fornnila, for 

density is shown in Eq. (2-lo) and can be easily determined by substituting tlie speed 

of sound relation of Eq. (2-9) into Eq. (2-14). 

(2 — 16) 

The nonconservative form of Eq. (2-1) shown in Eq. (2-1i) can be determined 

by expanding the derivatives of Eq. (2-1); substituting in the appropriate derivatives 

of the density using the expression in Eq. (2-2): multiplying by ~v, and then iinple- 

menting the equation of state for a, perfect gas, the definition of the speed of sound; 

and finally defining the velocities in terms of a, velocity potential. ci 

" ) ** + (u u ) vs (" ' ) 

— 2uu@» — 2umc)v-. — 2umrs~s = 0 

(2 — 1i) 



Both of these forms are valid for isentropic, irrotational flows of Mach numbers 

ranging from zero to transonic; but, by using the conservative form of the potential 

equation, a finite difl'erence scheme will resultss which conserves mass. especially in 

areas containing large gradients such as with the flow through a. shock. Although, 

nonconservative schemes have been successively implemented due in part to the fact 

that the effective mass production at the base of the shock wave fortuitously models 

the shock/boundary layer interactions, the best approach may be to use a. conservative 

scheme with viscous corrections added by a, separate boundary layer model '. This 

approach is the method utilized by TAWFIVE to include viscous efl'ects. 

FLO-30 uses a, finite-volume type scheme which makes use of a, staggered box 

approach. Its formulation is directly analagous to the control volume approach used 

to derive the original PDE in Eq. ('2-1), except in the finite-volume scheme, the 

discrete nature of the finite difference model is considered from the onset by using 

a. finite control volume in the neighborhood of a grid point in the finite-difference 

mesh . This method is best illustrated by using it to discretize the folloiving tivo- 

dimensional, incompressible version of Eq. (2-1) written in Cartesian coordinates 

ug — ur — 0 

With the aid of the iwo-dimensional box shown in Fig. 2. it can be seen that the 

staggered box scheme derives its name from the way in which the primary and sec 

ondary boxes interlock. The values of the potentials at the four grid points which 
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Fig. ' Staggered box finite-volume cell 

make up the corners of each primary box are used to calculate the velocities. u, n, in 

the following manner: 
u = ia, =p/6, q 

('2 — 19 ) 
c = sir — — p, 6„c 

where» and 6 are averaging and difi'erentiating operators respectively and are defined 

by . Jameson a. s 

». f = 
) (f, i, - f, /j 

(2 — '20 j 

6 f 
where it is assumed tha. t Az 

=f, i, — f, 
1. Therefore, the velocity. u, for instance, at the 

primary box center located at (i — —, , j + —, ) is found by 
1 ~ ! 

u, in~i = (»26zp'); i, i 
( cji ! 6 — 

&'&n/ ) + ( cj i 1 u — ! — cia/- t l ('2 — 21) 



The flux at the midpoint of each secondary box is determined by averaging the ve- 

locities u and v at the corners of that box in the y and z direction respectively; and 

the net flux into the secondary box at (i, j) is obtained, giving the discretized version 

of Eq. (2-18) 

frv6, (u) + fr, 6„(v) = 0 (2 — 22) 

where for example 

( 
— 

I u 1 1 u. 1 s +u s . r 'u. y 1 

(pu6, u)„— (2 — 23) 

The previous discussion implicitly assumes that the velocity varies in a. linear fashion 

between the primary cell centers so that the flux into the top of the secondary cell 

face svoulrl be, for instance. 

f 
r s 

v(z, y)dz 
r s — — »+— 2 2 2 

s 

=( 
I — r» 

r c 1 r v 
r z — v s rdz r» r 

+— 1 
2 

s+v 
I. -1, s +— 

2 r' 2) 
2 

(2 24) 

Jameson and Caughey found that this lumping of the fluxes at the primary cell centers 

reduced to a. rotated Laplacian type difference schesne and hence to an uncoupling 

of the solution between adjacent grid points. Therefore, compensation terms vere 

added winch basically extrapolate the fluxes 1'rom the corners ot' the secondary cell 

to a. distance, c, towards the midpoint of each secondary cell face. C'onsidering Fig 2 

and using an e = . 25, the flux, u, at the corresponding grid location (i — —, . j, 1) is 1 1 

c7h ) u r r — — u r t —. 25 '+r s+r '+r r+r y ooy f 
(2 — 25) 
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where 

(2 2fl) 

When all the fluaes are extrapolated in this manner, the fluxes at the secondary cell 

centers become 

U, 2' 

U 1 

i, /+ 2 

U 1 
2 

U» — e(oz ) 1 1 U 1 t~e(oz ) 1 
I — / —— 2' 2 

z Ir 2' 2 2' 2 

U 1 — «(rnz ) 1 1 ~U 1 1 — «(C22 ) 1 1 '" 1-2/ — 
2 

2 
U 1 1, 

— e(crzlr) 1 1 + U 1 ~t e. s(crzr/), 1 ~2 

V 1 1 «, drz . 1 1+'U 1 1+e(Gz ) 1 1 r+ — 
U 

—— 2' 2 2' 2 2' 2 
zv i+ — 

U 
—— 

(2 — 2i) 



When the net flux into the secondary box is accounted for, Eq. (2-22) becomes 

p„6, u+ p, 6„v 

(P*s), +sr, qsr (16*v)i~sr, — sr (4'*v)i-sr, +sr (P*s)i-sr, -rr)— -e( . . . , — . . . , — . . . , + . . . , =0 

which is equivalent to 

(2 — 28) 

p»6»4 + p**6»P — e6«»P = 0 (2 — 29) 

(Typically, e is . 25) 

Notice that the compensation terms lead to a fourth derivative of the potential; this 

higher order derivative will become important later in the discussion. of a, spanwise 

oscillation problem that occured in the design process. 

The previous concepts can be extended to three dimensional compressible flow 

in curvilinear coordinates by considering eight primary boxes as shown in Fig. 4. The 

three-dimensional potential equation 

(Phfr)f - (Phtr)„— (PhR ) = 0 (2 — 20) 

is again descrenzed in the same way as in the two-dimensional case to grve 

psc6t (pkf ) — p~t6„(phV) ~ pf„64 (ph11' ) = 0 (2 — 31) 

The same averaging scheme is used in this case except that the derivatives uow have to 

be averaged in two of. the coordinate directions instead of one. For example. (phtV)& 

becomes: 

(pss6(pb 5') 

( +-o —, s — — p i-'o — —, s — — — r )-s, s — —, 

h11' r s s -c hN' s r t — hU s t t ~ kU' t r r) 2' 2' 2 s' s' s 2' 2 z' 2' 2 

4 

(p itrso s'6 s p, + — o — —, &t s p r z I+& p, z s ) phtV 4 4 4+phW r s s+ptrB' s s s +phN' 
s/ 

4 
(2 —:32) 
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Since relating the potential, ttt, to the contravariant velocities, U, V, and, W may 

be somewhat unclear to the uninitiated, it is explained here for convenience. First, 

considering the the full potential function, 4, defined as 

4 = P + e cos(a) + y sin(a) (2 — 33) 

the standard chain rule can be applied to it to give u, v and, ru as follows: 

B4 
u — —— 

Bz 
B4 

u 
By 
BC' 

ul 
Bz 

Bf oy Br) By 
Bc& Bf B(P BT/ 

Bf B= Bnl B= 

Bdy Bj + — — + cos a. 
Bj Bz 
Bnt Bt 

T slrl a 
Bj By 

Bc BC 

Bt Bs 

(2 3$) 

Defining 

sz y)z &z 
C 

f j) = fy rly jy 
C 

(2 — 3fi) 

and realizing that 

, J;= [H'] 
' 

(2 — 36) 

where H is the transformation matr&x defined bv 

('& 
yc svith h = H 

-n 
(2 — 3i) 

the physical velocities, u. v, u. normalized by g~ can be related to the gradient of the 

reduced potential function, o, by 

v — IH I 
c&n — s&n a (2 — 28) 

Note that since the grid point coordinate locations in the physical space, (r, y, :), 

are generated as functions of (t, y, t ), it is convenient to use H instead ol' J explicitly. 
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The contravariant velocities U, V, W, whose directions lie along the correspond- 

ing (, rf, C grid lines are rela. ted to the physical velocities by: 

(2 — 39) 

and the derivatives of the potentials and the metrics are defined as: 

fbf = Vs(6&(4) zf = P„cbf(s) 

6 = pgbn(4') Pf = 
Pvjb& (N) (2 — 40) 

4'f = Vfsb((4) =& = v«bc(r) 

The density, p, and Jacobian, h, are evahiated at the centers of the of their respective 

primary cell centers. Again, by lumping the fluxes at the corners oi' the secondary 

cell's corners. the solution is decoupled on odd and even grid points leading to two 

indepeudent solutions. This problem is remedied with compensa. tion ternis winch 

again move the evaluation location of the fhixes to a. point soineivhere in between the 

corner and the midpoint of the secondary cell face. Kohen this procedure is performed 

for all the cell faces, the potential equation takes on the form of 

p&(bt (phfrl + p~cb& (ph V) + ps&br ( ph VV) 

1 
u(bfnQts + I fb. («( — f"&~rQ(s — 

—. btsrQEs( 
(2 — 41) 

u here the Q's are the compensation terms defined by Jameson as 

QCs (4t 4s) pfbfso 

Q. ( = (-4s+. 4t) &tbsc& 

044 
— — ( 44 ~ . 44) gab~4 j 

Q(s( = (-« -' -4. — 4() bt. c& 

(2 — 42) 



Here, Af, Av, Af are the infiuence coefficients which compensate for the dependence 

of p on 4)f, 4)v, and t6f. These terms end up being the coefficients of of Pff, t6vv and 

4)tf in the expanded form of Eq. (2-30) 

Since the formation of entropy through a shock wave has been neglected through 

the use of the potential function, artificial viscosity must be added to eliminate the 

physically unrealistic solutions. In general, if central differences are used throughout 

the flow field, it is possible for the solution to predict discontinuous expansion shocks 

followed by compression shocks. This situation is a case where entropy decreases 

which is a, physical impossibility, and is remedied by adding Jameson's ' P, Q, and 

R terms which provide the necessary artificial viscosity by producing an upwind bias 

in the supersonic zones. The form of these terms can be found by formulating the 

potential equation in streaniline coordinates ivhich reveals the true zone of dependence 

in the supersonic zones. Then in these supersonic zones, the second derivatives of 

the potential, o, included in the streamwise term are formulated with upstream or 

backward differences while the second derivatives included in the crossflow term are 

differenced centrally As shown in the final form of the following finite volume 

equation, the terms are formulatecl in such a, way as to inaintain the conservative 

foriil of tile potelitial equatioil. 

p«6t(phd ~ P) p&t6, (pht' i Q) —' 
, pt, 6t(phttr-c R) 

r fs&Q'i( 
P16tsQc& — Ps6~cQsq Ps6itOtt — = D 

(2 — 43) 

This numencal equation is then embedded into an artificial time dependent 

equation cq, 0 
(phf' — P) ~ — (phV + Q) — —. (ph)V + B) 

6it 0' Bj 

~ compensation terms = a jtz &, 3ovz 4 pc6(~+ 6 jz 
(2 — 44) 
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and solved via a. successive line overrelaxation (SLOR) scheme which sweeps in the 

( direction along constant l, 
' 

surfaces starting at the root of the wing and implicitly 

solves for the potentials in the rl direction. Equation (2-43) is a direct statement of 

the conservation of mass and should approach zero as the solution converges. 

After obtaining a solution on a coarse grid, grid halving is used so that the finer 

grid has a better initial approximate solution, thus speeding np the convergence of 

the solution. 

II. 2 Grid Geometry 

The computational grid used by the potential solver, FLO-30, is a, body-fitted, 

curvilinear mesh which can be wrapped around a, generalized wing-fuselage combina; 

tion that is symmetric about the x-z plane. A body-fitted grid system is desirable in a 

full-potential scheme when the boundary conditions are applied at the actual surface 

of the airfoil. XVith a body-fitted grid, no interpolation is required and the boundary 

conditions are easily and accurately applied. Because ol' the shape the grid system 

resembles, it is called a wind-tunnel type grid. An example of this grid is portrayed 

in Fig. 5. The grid shown is the coarsest mesh and has 40 x 6 x 8 points in the f, tb 

and i, directions respectively. With this grid. the wing becomes a constant il surface, 

and each cylindrical looking shell is a constant ~ surface. Constant ( hnes can be 

seen running spanwise on the wing at constant chord fractions from the leading edge. 

. iotice also that due to the conformal transformation used 'i constant f lines are 

packed close to the leading edge of the wing. This clustering is an attractive feature 

when designing airfoil sections using the direct-inverse approach. tforeover, constant 
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Fig. 5 Continued 



C lines are spaced evenly on the wing and, on the finest mesh, give the designer up 

to 21 spanwise stations where the pressure distributions can be specified. As can be 

also seen from the figure, the lines of constant ( and r) are nearly orthogonal on the 

constant C surface shown at the wing tip of the airplane, while lines of constant f 

and C on surfaces of constant r), such as the wing, are not orthogonal except, of course, 

for cases where the wing has no sweep or taper. The lines of constant C leaving the 

surface of the wing are nearly orthogonal to the surface; this fact will be important 

later on in the discussion of the wing-design methodology. 

The computational grid system is created using a series of analytically-defined 

algebraic. conformal, and shearing transformations to transform the the wing-fuselage 

combination snd surrounding flowfield in the physical space to a box in the compu- 

tational space shown in Fig. &x Following Caugheys the polar coordinates r and 6 

are defined in the crossflow planes as 

r = (Ms -, =t)' (2 — 4o ) 

(2 — Afi) 

Tlie fuselage surf'ace, which is symmetric a. bout the x-y plane. is defined by r 

Bf (z, 9). All points in the flowfield are then referenced to the surface of the fiiselsge 

at the saine z and H location and norinalized by the distance between radius. Bi. of 

the cylindrical surface passing through the wing tip and the radius ot' the fuselage, 

Bf at the given z and 8 location: 

'r — Bf (z. 9) r— (2 — 47) 
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This normalization causes the lines of constant i, or equivalently k, on the surface 

of the wing to be curved in the x-z plane so they will not coincide exactly with the 

chord line of the airfoil section. This procedure also maps the fuselage to a, slit in the 

computational domain. This type of normalization allows for high, low, snd mid-wing 

configurations. 

The function Bf(z, 8) is found through a. Fourier decomposition of the user- 

defined fuselage cross sections such that 

Rf(an ()) = Q u;i cos j(8 P — 
) 

2 i=i 
(2 — 48) 

The coefficients, n, &, which are assumed to be continuous functions of r, are spline 

fitted in the z direction for each j. The required radius of the i'uselage can be found 

for any point on the wing. or in the flow(ield, bv interpolating these coefficients to 

the desired z. 

A singular point is located at the focus of a parabola. which is fit to the leading 

edge of each wing section with a least squares curve fit. The wing sweep, taper and 

rlihedral are accounted for by referencing the coordinates in each surface of constant 

T to the location of the singular line. which is the locus of points comprising the 

singular points, r, (r), 0, (i ) at the leading edge of the wing. 

(z — r, (r)) 
, i = ' +(ng(2) c(r) 

(2 — 49) 
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Fig. 2 Section surface and wake representation at a, constant r station in the 
normalized plane 

This normalization efi'ectively maps the wing's planform to a rectangle in the compu- 

tational space. The 9 coordinates of the wing corresponding to the givenfi and z are 

1'ound by linearly interpolating the coordinates of the asrfoil sections at snput stations 

defining the wing in the spanwise direction. Then at the sntersectson of a. surface of 

constant r witEr the wing's surt'ace shorvn in Fig. i. tEre sving section and the wake is 

transformed into a, bump in the conformally mapped plane, as shown in Fsg. 8, wsth 

the inverse of' the conformal transt'ormation 

X +f8 = lop [1 — cosh (('+ irt')I (2 — 51) 
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auxiliary plane 

Fig. 9 reveals an entire constant r surf'ace in the auxiliary plane. A function 5 (sc, r) 

is defined to be the Jl' coordinate correspond1ng to the wing's surtace defined bv the 

input geometry at a. constant r. 

The 1t' coordinate is sheared ont with s. simple normalizat1on according to 

so that the wing surface lies on a, coordinate line 1n a. nearly orthogonal coorclinate 

svstpn1 of (, = con sl . 

'Aext, the spacing of the coordinate points in the physical domain is controlled 

by introduc1ng a. C'artesian grid into the (, nbC computational do1nain where 

o+C~Ct!m (2 — 53) 



30 

ID 0 0 
I 

d/d 

D X al 

D X 
l l l 
D x a 

\ 
D x a 

\ l 
D x a 
l l l 
D X al 

D X 

I 

I 

1 

I 

I 

I 

I 

I- 

I 

I 

Ol 

tD 

EA lD 

oax 

I 

0 
0 
0 

0) 

0 
CV 

I I I I 

I I I 
x al 

I I I x a 
I I I 

D x al 

I I I 
D X a 

I I x al 

I 

I 

I 

f 

l 

I- 

I 

I 

p cv 

I 

~ 0 ~ x a 

Vl3 



Since the derivatives of the spatial coordinates needed for the transformation metrics 

are evaluated numerically, stretching to infinity is impossible; thus the computational 

domain is truncated a finite distance away from the airplane. The outer limits of ( 

and ( are chosen such that the grid stretches out far enough from the wing-fuselage so 

that freestream boundary conditions can be safely applied. These constants are not 

user specified, but rather are hard coded in Subroutine COOR of TAWFIVE, such 

that the distance of the outer boundary from the fuselage is about 3 wing spans. This 

distance is probably more than sufficient for most applications; but if a. low aspect 

ratio wing is used, which has a large powerful potential vortex at the wing tip and 

significant amounts of spanwise flow, the aerodynamicist may want to increase the 

outer boundarv distance 

The (, ij and, (, 
' 

functions for a, coarse grid (40xflxgj are shown in Figs. 10-1'~. 

iiotice that distribution of ( between grid points 3 and 34, which corresponds to the 

upper and lower trailing edges respectively, in this domain varies linearly s, nd eienly 

on the wing and then varies quite quickly into the wake ending at a dov:nstream 

location where the floivfield is assunied to be nonchanging. The C stretching function 

has the same form, but of course the outer limit at ft = 12 determines the outer, 

radial boundary where the freestream conditions are imposed, whicli in tins case. 

as mentioned earlier. will be about . '1 wing spans. The ij stretching function varies 

in a parabolic fashion from the iving's surface at J = 14. Although tins stretching 

does seem to pack grid points close to the surface of. the wing, since rj is basically an 

angular ordinate, the grid spacing above the wing becomes greater as one proceeds 
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Fig. (0 Stretching function for the t (I) direction 

towards the tip This increase means that the resolution at the tip region is much less 

than that at the root, but this is countered later with a radial correction so that the 

grid spacing immediately above the iving is essentially constant for everv spanivise 

station 

Once the function S (('. r j has been linearly interpolated to the new t coorcli- 

nates, the physical coordinates of tlie grid system can be found through the reverse 

procedure. First, (', r)', and i are found using Eq. (2-52). Then Eq. (2-51) is 

used to extract X and H. But before this operation is performed, z and H have to be 



CI 
'0 0. 8 
0 " 0. 6 

Ol 0. 4 
V 

0. 2 
CO 

0 
0 1 2 3 4 5 6 7 8 9 

J 
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separated in Eq. (2-51). First, both sitles are exponentiated and the definition of the 

hyperbolic cosine is used so that Eq. (2-51) becomes 

1 t r r & o e'e' =1 — — Iefe'" -'e te '") 
2 

(2 — 54) 

(: sing Euler's identity, 

e" = cos(=) + i sin(=) (2 — gg) 

rearranging, and separating imaginary and real parts, 'ives 

"-'='--" q("- ') 
2 

(2 — ggi) 

e -f e sin8 = — — sing (ef — e ) 2 
(2 — 57) 
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Dividing these two equations by each other and solving for 8 explicitly yields 

— sin ij' sinh f' 
t) = tan 

1 — cos il' cosh s' 
(2 — . jg) 

Next z is found explicitly by first using a trigonometric identity and Eq. (2-58) to 

generate 

sin 8 
— sin g' sinh s' 

yl(1 — cos rt'cosh t') c sin rl'sinh 

Substituting this into Eq. (2-. ji) and perl'orming some algebra, gives 

(2 — gpj 

z = (n (cosh s' — cos il') (2 — 60) 

So given t' and rt' from the previous steps. the normalized coordina. tes z anil H are 

obtained for all the grid points in the domain. At this time, two more special stretch- 

ing functions are introduced. One function is used to further stretch z downstream 
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of the tving and another scales 8 such that nearly constant grid spacing is achieved 

immediately above the wing from the root to the outer boundary. The eÃects of the 

stretching functions can be seen in Fig. 13. 

Notice that this conformal transformation packs grid lines at the leading edge 

of the wing where the gradients are large. This clustering is an attractive 1'esture for 

the inverse design procedure. However, it is paired with the disadvantage that the 

chordwise grid spacing is large at the trailing edge w here high resolution is needed to 

accurately satisfy the Kntta, condition and to resolve trailing edge pressures accurately 

especially with those generated by aft canibered airfoils. 

Equations (2-49) and (2-50) are inverted to give z and 8 and then Eq. (2-47) is 

inverted to yield r for a, given z and 8. This last step requires extensive interpolation 



to find the radius of the fuselage, Bf(z, 8), for all of the grid points. Then Eqs. (2- 

45) and (2-46) are used to find the physical coordinates y and s of the grid. Finally, 

coordinates of the points located in 'ghost' surfaces are obtained through simple linear 

extrapolation of the adjacent grid points along the appropriate k, r) or, k, 

' 
grid line. 

II. 3 Boundary Conditions 

There are a number of boundary conditions which must be applied to the math- 

ematical model of the physical flow about the wing-body. These include flow tangency 

on the wing, fuselage, and the symmetry plane; appropriate far-field boundary con- 

ditions at the finite limits of the computational domain; the Kutta, condition at the 

trailing edge of the lifting wing: appropriate treatment of the wake: and the compu- 

tational slit outboard of the wing tip. 

II. 3 1 Flov; taiigency 

The flow tangency condition is easily impleinented due to the curvilinear system. 

The fluxes above the surface need only be reflected to the ghost points beneath it so 

that the net out of plane component of the flux vanishes at the surface. In the case 

of the wing this becomes 

'k& zk P 'k" sk hf i = hf 

„kr-r, k 
= P ckk-r, k 

hl i = — hh where: ky = j„. „, s (2 — 61) 

phpV k k k 
— phil chllw s, 1' 

Similarly for the symmetrv plane 

phf, k 
— — phf', , ''s ' 

2 

phV, , i k 
— — phV, , . k 

where: j = 2 on the symmetry plane (2 — 62) 

phlV, , ii k 
— phlV „i k , i, k 'si 



While for the fuselage this becomes 

phU, 2i = phU, 

phV, . zz = phV, si where: h = 3 on the fuselage 
su 22 

phIV, 322 = — phIV, , si 

(2 — G3) 

The previously discussed compensation terms snd upwinding terms are also similarly 

reflected in an appropriate manner. 

Potentials at the ghost points located at grid points beneath the surfaces are 

needed for the calculs, tion of surface velocities used in the upwinding terms and the 

surface pressures. These are found for the wing and fuselage by setting the appropriate 

contravariant velocity to zero in 

(2 — Gql 

and using the resulting equation to solve for the unknown poteiitial at the ghost point. 

In the case of the fuselage. this method of defining the ghost points is used solely when 

they are needed in the calculation ol' the upwinding terms in the residual expression. 

When the pressures are calculatecl, the ghost points are defined by assunnng 

so that the potential at the o'host point is, in effect, liuearly extrapolated in the span- 

wise direction. As seen in Fig. 14, these tivo methods lead to quite clift'erent values. 

The first leads to a discontinuous spanwise variation in the potential ivhile the second 

has a much smoother variation. The first approach guarantees that tlie flow will be 

tangent at the fuselage, while the second does not. However, the pressures calculated 
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Fig. 14 Comparison between the ghost-point potentials defined with flow tangency 
(dashed lines) and extrapolation (solid lines) 



at the root are fairly independent of the method used to define the potentials at the 

ghost points in the I'uselage. 

The potentials at the ghost points of the symmetry plane are similarly calculated 

by assuming 

(2 — 66) 

This process imposes an inflexion point on the pertubation velocity in the r) direction 

at the symmetry plane since only symmetrical cases are treated. It is uncertain why 

bv was not set to zero instead to approximate tangency at the plane of symmetry. 

However, this situation is rather academic since these ghost points are used only for 

supersonic regions adjacent to the symmetry plane to compute the small spanwise 

upwinding term. 

II. 3. 2 Far-field boundarv conditions 

Since the reduced potential used in the formulation of the numerical method 

represents a, pertubation from the freestream value, they are set explicitly to zero on 

the radial boundary. ('max, and the upstream boundary representeil by part of the 

minimum il surface. 

At the outflow boundary. (( (niin niax) the streamwise pertubation velocity. 

o~ is set to zero. This latter condition implies that the pressure will return io iis 

freestream value, assuming that there is not any crossflow 

II 3. 3 AVake tres. tment 

In the original method of FLO-30, the wake is treated as a, vortex sheet which 

has a, discontinuous jump in the tangential velocity and a continuous normal velocity 
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through the sheet. The rolling up of the sheet is ignored and the vertical convection 

of the sheet is approximated by assuming that the walre lies along the constant rl 

grid line that leaves the trailing edge smoothly and returns to the plane of the wing 

at the outflow boundary. The requirement that the normal velocity be continuous is 

enforced by setting V„= 0 on the wake, which fixes the values of the potentials at the 

ghost points, and the jump in the tangential velocity is satisfied by forcing a. constant 

jump in potentials on the the surface of the sheet along a, constant & and il line. This 

jump in potential is obtained using the circulation determined at the trailing edge of 

the wing. 

II. 3. 4 Outboard computational slit 

Due to the C-grid type forniation of the grid. there exists a. computational sht 

outboard of the iving iip on the plane of the wing. Since physically the pressure must 

be continuous across this cut, the potentials on the surface and at the corresponding 

ghost points are deflned such that the reduced velocities normal and tangential to io 

the surface are continuous across the slit. 

II. 4 Boundary Layer Scheme 

II. 4. 1 Integral method 

Streeti' incluclesi an integral boundary layer scheme in TV%FIVE to account 

for the necessary viscous effects in the form of the boundary layer displacement thick- 

ness, wake curvature and wake thickness. An integral method was chosen for its 

computational efficiency and its relative robustness. 



In an integral approach the degree of the partial differential equations is reduced 

by an (r priori integration in the direction normal to the surface. This reduction can 

be illustrated by considering the boundary layer equations governing a two dimen- 

sional incompressible flow 

Bu Bv — +- 
Ox By 

On On 
u — +v — = U 

Bz By 

=0 

dU — +v- 
dz Oy 

(2 — 67) 

(2 — 68) 

If Eq. (2-68) is integrated with respect to y from the wall (y = 0) to a. distance )t 

outside the boundary layer, it becomes 

On On dU vo 
(u — ' v — — U — )dy = — ' 

r-p Oz Oy dz p 
(2 — 69) 

where so is the shearing stress at the wall. 

Using the continuity equation, Eq. (2-67), to obtain the normal velocity component, 

i'. s, s 

r Bn v= — 
J ( 

— )dy 
p Bz 

(2 — 70) 

and substituting this result into Eq. (2-69). the result is 

f On On f" On, dl' 
(u — — — — dy — U — )dy = —— 

p Oz Oi/ (i Ov dÃ p 
(2 — 71) 

After integrating by parts snd reducing, Eq. (2-71) becomes 

f 
h B dU fh 

Iu (I — u) dJ( ~ — 
J (I: — u) dy 

p O. r dz p p 
(2 ('i) 

iow, takino )( — oo and defining a displacenient tluckness, Oi, and a momentum 

thickness. f( as 

G;U = / (U — u)dy 
Js=p 

HU = f i((U — u)dy 
Jr=p 

(2 — 73) 



and substituting them into Eq. 2-72, it becomes 

— (U~8) + 6;U — = — ' d &, dU rv 

dz ' dz p 
(2 — 74) 

In this reduction process, two partial differential equations have been replaced by 

one ordinary difFerential equation. Since only the integrated quantities, 6* and 8, 

are really the only quantities required of the boundary routine to model the weak 

viscous interaction, the fact that the solution to this equation does not provide the 

exact local variation of primitive flow properties across the boundary layer is not of 

consequence. The required functional form oi' the variation in u across the boundary 

layer is assumed a priori — by a polynomial for instance. 

II. 4. 2 Laminar scheme 

In three-dimensional, compressible. lammar flow the same integration proce- 

dure is implemented using two bounday-layer momentum equations and their corre- 

sponding moment of momentum relations to yield a, system oi' four coupled partial- 

difFerential equations. - 'In the formulation of these equations, it is assumed that the 

streariiwise velocity profile is of the Faulker-Skan (F-S) family of similarity profiles 

and that the cross flow profile is a linear combination of the F-S family of profiles. 

These incompressible profiles are extended to compressible flow by the scaling of the 

normal coordinate with the Stewartson transformation. 

II. 4. 3 Turbulent scheme 

The formulation of the turbulent scheme is similar to the laminar, but the 

streamwise velocity is assumed to have a, simple power-law profile which is a function 



ol' the streamwise shape factor and the transformed boundary layer thickness and 

normal coordinate; and, the cross flow profile has the form of 

v u Z — = — (I — — ) tan P 
U U 

where Z is the transformed normal coordinate, zh is the transformed boundary layer 

displacement thickness, and /'3 is the angle between the external streamline of the 

potential flow and the wall shear direction. In the turbulent scheme, the final three 

governing equations are two momentum integral equations derived from the conti- 

nuity and boundary layer momentum equations and one entrainment equation. The 

latter equation accounts for the addition of mass into the boundary layer from the 

surrounding flow as the boundary layer grows. 

II. 4. 4 Lag entramment 

Originally, in the work by Smith-', the relationship between the entrainment 

coefficient and the shape factor required in the previous scheme vsas formulated em- 

pirically with a simple algebraic equation. Later Green found a relationship for the 

required quantities through the use of the turbulent kinetic energy equation which 

explicitly represents the balance between production, advection, difl'usion and dissi- 

pation of turbulent energy in the boundary layer. He referred to this as the Lag- 

Entrainment method ' 

Also, in Green's method the desired momentum and displai ement thickness of 

the wake is determined by simply continuing the integration of the three governing 

equations past the trailing edge on either side of the wake. It is assumed that aft 

ot' the trailing edge that the skin friction coefficient is zero and that the dissipation 



length scale is twice that on the wing, Once the integration is performed on either side 

of the wake, the required integral properties are simply the sum of those calculated 

on both sides. 

II. 4. 5 Solution of' the governing equations 

The resulting governing equations are solved through an explicit type integra. - 

tion scheme in the z (or chordwise direction) along constant span stations. In this 

scheme, the domain of dependence is conservatively assumed to lie between the ex- 

ternal streamline of the potential flow and the shear angle of the boundary layer. To 

account for this dependency, the spanwise derivatives found in the governing equa- 

tions are backward differenced if the external streamline and the wall shear line lie 

on the outboard side of the chordline and central differenced if the streamline and 

the shear line lie on opposite sides of the chordline. 

Boundary conditions are required at all inflow boundaries. At the root, a, plane 

of symmetry is assumed. Here, the cross flow velocity is set to zero. as are all all 

spanwise derivatives. At the wing tsp. all spanwise derivatives are also set equal to 

zero And flnally. an attachment line approach is used to determine the initial 

conditions at the leading edge. 

II. 4. 6 Wake curvature 

AVhen the flou; leaves the wing at the trailing edge, it initially follosvs a curverl 

path and then soon aligns itself with the freestream downstream of. the wsng This 

large curvature of the flow near the traihng edge can have a, measurable effect on the 

overall lift of the wing. In fact, Streett found that in one instance the sectional lift 

coefflcient near the tip of the wing was decreased by about four percent when the 



curvature of the wake was taken into account. Usually, if only first order effects are 

considered, the pressures at the trailing edge would be equal on the upper and lower 

surface. But, if the wake is considered to have an effective thickness of b + 8 due 

to viscous effects and curvature, the pressures on either side of the wake will not be 

equal except at the centerline of the wake. Since the flowfield about the wing snd the 

wake with the displacement thickness added to it is modeled inviscidly, the trick is 

to calculate a pressure difFerence across the wake at the trailing edge in the inviscid 

flow which will yield a zero pressure difl'erence at the centerline of the wake in the 

real viscous flow . It has been shown that the appropriate pressure jump across the 

wake with a thickness of tt* can be written as a, function of the curvature. a, oi' the 

centerline of the actual wake. the mean tangential velocity. u, , and the mean density. 

p„, , in the wake a. s 

2 fl +p — pttp Psottom — apu tt u u (2 — 
r 6) 

Cxtven that the pressure difFerence is small, this can be related to the circulation, I', 

f dr„. = — j P, '. , ds. , 
ate &t 

(fl — ii) 

svhere S, is the arc distance along the a. ake. The circulation at the tratling edge 

is calculated by the difl'erence tn the potentials at the trailing edge tn the tnviscid 

solution snd Eq. (2-ii) is ntunerically integrated from the trarling edge to one grid 

point upstream of the downstream boundary. The circulation at the downstream 

boundary is then matched to the circulation obtained from the integration. 



Since the wake effects are relatively small, it is only important to know the 

approximate location of the wake centerline. This simplifies the problem since the 

actual wake location would have to be found by tracking the streamline of the inviscid 

solution leaving the trailing edge and then a new grid would have to be created 

about the new wake so that the boundary conditions on the wake could be applied. 

Alternatively, the approximate shape of the wake can be l'ound by assuming that the 

streamline leaves the trailing edge smoothly at the average of the local trailing edge 

angles and that then the angle between the wake centerline surface and the freestream 

decays logarithmically, similar to that of a, point vortex in a. uniform freestream at a. 

given angle of attack . The circulation, I', of this point vortex located at the quarter 

chord point could be determined by forcing flow tangency at the trailing edge of the 

iiiiig section. The ordinate of the centerline of the wake would then haie a. form 

simila. r to 

3 3 
ig u'a s e flic + 't all ci ( d c ) — c t a Il ( Q ) l n 

s — C 4 

(2 — 78) 

where d is the z distance from the quarter chord point of the wing section. 

The curvature of the flow, a. can be determined by calculating the rate of change of 

the flow angle at the approximated wake location. 

II. 4. 7 A'ake thickness 

The thickness of the wake is accounted for by simply adding the displacement 

thicknesses obtained from the boundary layer solver to either side of the predefined 

wake location. The ghost points in the wake are then redefined such that strict flow 

tangency is enforced along this new surface. 



II. 5 Comparieon to Experiment 

TAWFIVK was used to analyze RAE Wing-A wing-body at a Mach number 

of . 8, an angle of attack of 2 degrees, and a Reynolds number of 2. 66 million based 

on the root chord. The pressure obtained from this analysis are compared to some 

experimental data at two convenient stations in Fig. 15. Even though no attempt 

was made to try and match lift coefficients by changing Mach number or angle of 

attack, the comparison between the experimental and predicted pressures is fairly 

good up to the trailing edge. There TAYVFIVE predicts slightly higher pressures. 

This characteristic behavior has been attributed to the improper modeling of the 

the strong viscous-interaction region at the trailing edge" but may also be due to 

a, combination of the coarseness of the grid at the trailing edge and wind tunnel 

interference errors 
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CHAPTER III 

INVERSE DESIGN METHOD 

III. 1 Inverse Boundary Condition 

As stated earlier, in the direct-inverse method a pressure boundary condition 

is enforced rather than flow tangency aft ot the portions of the wing which are to be 

designed. Following Gaily, the input pressure coefficien can be written in terms 

of the XIach number, II, and the freestream speed, q, as 

Cr =, 1, ' «I 1 — — „— 1 (3 — 1) 

where q' = (u — er — u 3) qr 

Solving for u in Eq. (:3-1) yields 

(3 — 3) 

This form of the equation seems to have been choseu. over the more obvious form of 
i 

I — l — ' v 
l 13 uis (3 3) 

since it is less likely that its radicand would be negative. Equating Eq. (3-3) and the 

first roiv of' Eq. (2-38) results in 

Jll+f + Jir ques J134 j— — cos o (3 — 4) 
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z' 
where J, , j are the elements of (H ) . A potential, (rtr, d k), can be formulated 

in terms of the pressure coefficient by expanding about the grid point location 

(i — 2, j, k), a, nd then using central differences in the f and t, 
' 

direction and second 

order backward differences in the normal direction, If, yielding 

~„(d, ", +„'- y", „k) 
+ 12(3 (4' ', k + ~i-I j, k) (4i, , j — l, k di — l, l — l, k) 

+ dio-2, k + @i, l, j -2, k') 4 (3 — 5) 

' n n n n 
IS (@in, kn-I v r — la, k — I r, l, k — I 4i-lu, k — I) 

=F(C„n, k) 

where on are the potentials at the current time level and on I are the updated 

polcnll rls 

Solving for the o to be specified. Eq. (3-3) becomes 

n I l ( n 
Or, ky, k ) ~flOr — l, ky, k Jl1 4 J12 

JI2 (3Or — l, ky, k 4 (Or, ky — l, k + Or — l, ky — l, k) 

— Ork I k 
— 

Or — 1ky — 'r I]/4 (3 — 6) 

n, n n n, 
I I ( r, ky, kn-l Pr — l, ky, k-l r, ky, l — I 4 r — l, ky, k — I) 

-f-(C„. . I) I 
Ivhere F (1 ', I, ) is the right hand side of Eq. (3-rg) and j =- );y on the lying 

surface. Also, the I) grid lines are numbered such that ky — 1 is the location of' the 

grid point immediately above the Icing's surface. Pressures are specified al half grid 

point locations In the ( direction to eliminate the chance of' the solution decoupling 



on 'odd' and 'even' grid points. Since the actual sectional shape of the final wing 

is unknown initially, the potentials are specified on the wing's surface at the present 

time level. 

III. 2 Integration of the Flow Tangency Boundary Condition 

Since the grid is boundary conforming, the wing sections in the design region 

must be updated every so often by integrating the flow tangency condition written 

in curvilinear coordinates. After Gaily, the curvilinear form of the equation can be 

found by first considering the flow tangency condition for Cartesian coordinates 

U rF=O with F(z, y, z) = 0 (3 — I) 

where U is the physical velocities and F is the function describing the surface of the 

ii illg 

The physical velocities can be related to the coniravariant velocities using tlie 

aforementioned relations, which are repeated here for convenience. 

(r& 
jUj = 

y& y„yf ) 
V = jH'fV' = HV 

-c -„ -(, W 

By using the chain rule in the same manner in which the above expression was derived, 

the gradient. 7', of the surf'ace function. F, with respect to the physical coordinates, 

;r, y, = can be related to the gradient, V', ol' the surface I'unction S((, y, 0) bv 

ac 

Jj 

Substituting these two into the tangency equation gives 

(2 — 9) 

(HV) (H ') V'S = 0 (3 — 10) 



losing the identity from linear algebra, 

[A B]T BTAT 

Eq. (3-10) becomes 

V [H-'H] V'S=o 

which is reduced to the desired form of the flow tangency condition for curvilinear 

coordinates 

V V"S=O (3 — 13) 

A more convenient form is obtained by expanding this to 

BS c»S, oS 
C —, I — — IV — =0 

iaaf, 0» i7( 
(:3 — 11 ) 

Since the wing is a, surface of constant », where 

c»» 

c»S &»($ t)s, 

(:3 — lg ) 

Eq. (. '3-14) reduces to 

('3 — 1G ) 

The integration of this equation can be handled in two different ways. If the 

spanwise term, &&, is lagged one global iteration, it will always be zero since upon the 8a 



creation of a, new grid, all derivatives of rl with respect to the ( or t, 
' 

direction vanish 

on the wing's surface; a, nd, Eq. (3-16) reduces to 

(3 — 17) 

The other approach would be to integrate Eq. (3-16) iteratively. If the contravariant 

velocities are frozen at their current values, and the spanwise terms are initially as- 

sumed to be zero. Eq. (3-17) can be integrated to find the approximate inverse changes 

Ail. These can be used to find approximations to the spatial spanwise derivative, &&, 
an 

which can then be included in Eq. (3-16) to provide a better approximation to the 

flow tangency equation. The process can then be repeated using Eq. (3-16) until the 

spatial derivatives converge, iiumerical experiments reveal that the spanwise terms 

are at least two orclers of magnitude snialler than the chordwise term prior to the 

creation of the new grid. Hence. the spanwise terms can normally be neglected. 

Equation (3-17) was integrated using the trapezoidal rule 

II = — 1 upper surf's. ce (3 — 18) 

II = il lower surface 

For comparison purposes the fourth order scheme 

' 

(&) -Ir, s 

iias also used. With the fourtli order scheme the trapezoidal rule wss used for the 

first two integration steps. This higher order integration scheme had little effect on 



the final answers, except for coarse grids in regions of high curvature such as the cove 

region of a supercritical airfoil. 

Since Gaily found that calcula, ting V using strictly finite differences was not 

accurate enough, he instead, using an approach similar to that in Ref. (60), discovered 

that V was most accurately obtained from the residual expression. First, assume that 

V ph V tr(„((ph V) 
fi ph. fi p(„((phfi) 

(3 — 20) 

and then combine the previously defined averaging snd difierencing operators 

1 t 
)r &y s = ((p" 'sy~-', a (ph )r, sy-t k) (3 — 23) 

~y(phV), i, „. — — ((phl ), 1 s 
— (phl'!, , r . ) ('3 '1 1) 

to genera. te 

)r rry rr: ' 
(p )r yy — — S 

' 
&rr (p )r ky (3 — 23) 

Substituting this result into the residual expression, Eq. (2-4. '3). and solving for the 

out of plane flux, phV, on tire wing surface gives 

2tr(n((phV)r i. „ i = try(t((phlr), t y 
& 2&r(( (phV, y 

r s) m r, 'rl — s, ' 

(. '3 — 2-l ) 

pc. h( (p!1!l' 
~ iy s) — compensation nrrd rrprorndinrt terms 

Since at convergence the floiv should also be tangent to the designed surface. 

the tangency condition is enforced in the residual expression, Eq. (2-43), by setting 
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The resulting expression is identical the RHS of Eq. (3-24), and the expression for 

the normal flux becomes 

Residual 
Pfs( (p )i, sv, a 2 0 

(3 — 26) 

Note that since the residual is not zero in the design region due to the inverse boundary 

condition, this expression reveals that there will be a mass flux of fluid i'rom the 

boundary ' during the iterative design process. No attempt was made to account 

for this transient flux, since at convergence it would be zero. 

l. pon substitution of Eq. (3-26) into Eq. (3-20) and using the cell averaged flux, 

phd, on the surface the boundary condition becomes 

07] 3' /lfif(phl ) Residual 

pt„c(phf") 2p~s((phf ) 
(3 — 2i) 

The changes normal to the surface at each spanwise station are obtained by integrating 

from the beginning of the inverse region to the trailing edge using the trapezoidal rule. 

Assuming that the grid line leaving the wing in the rl direction is normal to the 

wing, these changes. Ail, are then converted from computational to physical units by 

scaling by transformation metrics such that 

cIz 0y Zl = Aili, '— (3 — 23) 

After subtracting the boundary laver displacement thickness from the inverse changes. 

l's, which are linearly interpolated to the user defined input stations, the resultnig 

displacements are added to the initial airf'oil sections yielding the new iving surface 

for the current time level. 
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III. 3 Relofting 

Many times the trailing edge thickness may be too large if the leading edge 

curvature is too small or may be 'fish-tailed' if the leading edge curvature is too 

large. These undesirable situations can be remedied by a procedure called relofting 

where the designed surface is rotated about the leading edge to meet a, specified 

trailing edge ordinate or trailing edge thickness. s 

This relofting procedure can be accomplished in two separate ways. In the 

first method, assuming both the upper and lower surfaces oi' the wing a. re being 

designed, the user specified trailing edge ordinate, 

gt~ue = yavg + 
2 

(3 — 29) 

is subtracted froni the ordinate oi' the displaced surface, 

ydesigr Vtrxnaiuppe (3 -- 30) 

to yield a, correction of 

i u, yt vdeswn (3 — '31) 

where Aq is the user specified trailing edge tluckness, D~ is the initial inverse 
!ou 

change, Jl!zu!„i is the trailing edge ordinate of the original airfoil section. and y„rg !s 

the average of the trailing edge ordinates of the input, geometry. 

This correction, 

b„(z) = h„„x ( 
& chord / 

is proportionally added to the initial inverse displacements which amounts to a, rota- 

tion of the displaced surface about the leading edge to meet the trailing edge ordinate. 
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Fio. 16 The effect of relofting on the design in tire initial stages of convergence 

To illustrate this relofting procedure, the first global iteration of a typical design be- 

fore and after relofting is revealed in Fig. 16. 

Il' only the trailing edge thickness is specifierl. allowing the trailing edge ordinate 

the t'reedom to vary, the correction instead becomes 

~~u ~ ~1 
'2 2 (chord) (3 — 33l 

where Au snd AI are the initial inverse changes on the upper snd lower surfaces 

respectively. It should be noted that the inverse displacements are positive when 

they cause an increase in thickness. 



The second relofting scheme determines the displacements aft of the direct- 

inverse junction of the design region in the same way, but the leading edge ordinates 

sze thinned to meet the displaced surface at the beginning of the design region. This 

insures that the leading edge shapes remain in the same family of airfoils. 

n+I 
n+I( ) n( ) I JJrdle (3 — 34) 

where y;dl, is the airfoil thickness at the direct-inverse interface in the chordwise 

direction. 

In order afford the designer extra, f(exibility, one more relofting scheme wss 

devised where a portion of the trailing edge region is user spec&fied instead of just 

the trailing edge ordinate. Using the sarue rational as with the rotatson scheme, the 

correcuon added to the clisplace&l surface to meet the specified ordsnate at the aft 

direct-inverse junctson located at z;dr„ is 

( 
z — zl, 

b„(z) = b, (z, d„) x ( t zsdte zle d 

(3 — 38) 



CHAPTER IV 

REMEDYING SPANWISE INSTABILITIES 

IV. 1 Spanwise Oscillations 

In the original work by Gaily ', the pressure distributions applied at the 

computational grid stations of constant t, 
' 

lines on the wing in the design region were 

obtained by spanwise, linear interpolation of the pressures input by the user at de- 

sign stations to every grid station delimited. This meant that the inverse boundary 

condition was enforced at every constant, ( grid station in the design region. and that 

every sectional shape was determined relatively independent of tire others. 1'nfortn- 

nately, an annoying divergent spanwise oscillation problem sometimes occurred when 

designing a wing which required extensive relofting, especially when the initial section 

was thinner than the target. This oscillation led to sections which were too thick or 

too thin at adjacent constant C grid station. (see Fig. 17). This problem was more 

pronounced when the sweep was increased or the aspect ratio was decreased and was 

usually divergent except for very lngh aspect-ratio v;ings (AR=10) with no ssveep. 

Early in the research, it was discovered tha, t the problem could be circumvented 

by specifying the C's distribution at at least every other constant j grid station and 

then linearly interpolating the inverse displacements calculated at those grid stations 

to the other grid stations included in the design region. The regions in the middle 

of the design region were simply analyzed using the original flow-tangency boundary 
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condition. The resulting sections, interpolated to the geometry input stations, were 

all relofted as usual to satisfy the trailing edge ordinate condition. This procedure 

led to a convergent solution most of the time, except when designing wings with 

significant sweep or with low aspect ratios, such as Lockheed Wing-B and Wing-C. 

It was later discovered that a similar procedure was briefly discussed in Ref. 40 to 

overcome a, decoupling of the solution in the chordwise and spanwise direction leading 

to a, numerical instability when using an inverse panel-method code. In this case, the 

ordinates of the 'odd' points along the chord were obtained by quadratic interpolation 

using the ordinates of adjacent 'even' chordwise points while the ordinates of each 

'odd' spanwise grid station were generated using linear interpolation between the 

contiguous 'even' spanwsse stations. 'This procedure efi'ectively eliminated hall' ol' the 

unknosvns. The similauties of the decoupling problem in this scheme and our dsrect- 

inverse method are quite evident. even though the design schemes are quite different 

in methodology. 

Although this somewhat heuristic cure to the problem seemed to work for the 

most part. the fundamental cause I'or tins problem was not well understood. hence the 

oscillation problem was investsgated sn nnrch greater depth. Initially, it was thought 

that either the inverse bounrlary condition nr the relofting scheme was solely to blame. 

which led at first to a serses of reforrnulatious; while none of these were successful. 

they did create great insight into the problem. 

Since the oscillation problem seemed to stem from the uncoupling of the solution 

in the spanwise direction, the original inverse boundary condition in Eq. (3-5) v as 



rewritten as 

4 Jl1 + 3 J12 z~yl as-1 
4'i, ky, k — 1 g puky, k i, ky, k+1 

13 

-4 ( 
( Jill'i-l, ky, k 

13 

— ~12[~4, "-l, ky, k 
— 4 (d', ", ky — i, k+ O', "-Lky-t, k) 

Qa Qp + v'i-l, ky, k+1 i — l, ky, k-l 

such that the 4us could be obtained implicitly in the spanwise direction. Although 

this would seem to strongly couple the potential field in the spanwise direction, it did 

not deter the solution from oscillating in the slightest regard. 

One form of Eq. (3-4) was tried using one-sided diA'erences for the spanwise 

derivatives. and yet another which specified the 1'y at (i —;, . ky. k —;, l grid locations: 

but they did not cure the problem either. 

The idea of devising a conservative 1'ormulation of the inverse boundary con- 

dition using a control volume approach more in keeping with the spirit of the finite 

volume scheme used in FLO-30 or the approach used in Ref. (41) was conceived, but 

the details necessary to implement this approach were never pursued. 

Attention was then directed towards the methods used to integrate the Aow 

tangency equation and the relofting oi' the resulting shapes. Since the problem seeined 

to stem from the lack of spanivise information, the spanwise terms in Eq. Ll-lg) 

were included during the surface update process. The ratio 1- was obtained from n 

Eq. (2-39j and the potentials at the present time level. An approximation of the 

spanwise derivatives, ~&, ivas calculated using central spanwise differences of the av 



initial displacements which were calculated using Eq. (3-17). Then Eq. (3-16) was 

solved iteratively until there was no appreciable change in the displacements. In case 

the relofting adversely affected the results, this process was also tried after the inverse 

displacements were changed with relofting. However, the inclusion of these terms had 

very little effect on the displacements calculated since. in both cases, they were at 

least an order of magnitude smaller and did not help the divergence problem in the 

slightest regard. 

Spanwise smoothing of the displacements was also tried. Although this tech- 

nique did provide a smoothly varying distribution of sectional thicknesses, the diver- 

gence was merely slowed. Sometimes the solution would reach a settling point where 

it ivould not converge further, but the resulting section shapes were not satisfactorily 

accui a. te 

In the midst of the search for a, cure for the oscillation problem, it v as discovered 

tliat if the potentials obtained from a, converged solution of the target section were 

specified on the wing using s different initial geometry, the design solution would 

converge without oscillating. This result appeared to condemn the inverse boundary 

condition and redeem the integration and relofting schemes. On the other hand. if 

the inverse boundary condition was apphed at e~ier grid station. and displacements 

were calculated only at everv other spanwise grid station and were interpolated to the 

stations in between, the solution also converged. which seemed to indicate that the 

inverse boundary condition was not the sole origin of the problem. Thus, it appeared 

that the problem was stemmed from a, combination of causes. 



IV. 2 Success 

After the many failed attempts of remedying the oscillation problem by refor- 

mulating the inverse boundary condition and the integration and relofting shemes, 

attention was directed towards the residual and the terms composing it. The residual 

is directly affected by the inverse boundary condition; moreover, the residual directly 

influences the section shapes through the integration ol' the flow tangency boundary 

condition. Consequently, the residual was broken into its major components and 

plotted in the spanwise direction after each surface update of a, known divergent case. 

This case happened to be a medium-grid design of Lockheed King-A with the initial 

section being a NACA 0006 section over the entire wing and the target being a. VACA 

0012 section. The design region extended from 30% to 20"ys senfispan. Sample plots 

for this divergent case are shown at four different t&me levels in Fig. 18. where the 

total residual also includes the upwinding terms. As can be seen, the compensation 

terms, which include spanwise derivatives of &p. at first are very small compared to 

the rest of the terms but, later tend to dominate and amplilv the oscillation. This 

oscillation starts at the direct-inverse interface or, sn other rvorrls, at the first span- 

wise station from the root in the design region and propagates spanwise as a, damped 

oscillation with a. period ol' tsvo grid spar&ngs. 

The oscillation problem seems to be driven by a, combinatson of events wh&ch 

build upon each other causing a divergence. It is believed that the initial mismatch in 

the potentials at the direct-inverse interface in the spanwise direction is amplified by 

the compensation terms which include spanwise derivatsves ol' the potential function. 
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The residual is then undershot and overshot on alternating spanwise stations. This 

oscillation is further magnified by relofting, which creates a section that is too thin 

when the slopes defined in Eq. (3-27), which of course are directly proportional to the 

residual, are too large and vice-versa. . Since more or less fluid has to be ejected from 

the section that is too thin or thick, respectively, to give a streamline approximately 

corresponding to the correct target section, the potential field shown in Fig. 19 

at each design station is forced further away from the adjacent fields by the inverse 

boundary condition which in turn forces an even further undershoot or overshoot of 

the residual, resulting in a, growing spanwise oscillation. With the aid of other nu- 

merical experiments, it has been I'ound that it is only necessary to have two adjacent 

design stations to drive this oscillation to divergence. It is of interest that, when the 

ivavy wing surface resulting from a, divergent solution was analyzed iviih TAWFIVE. 

the potential field varied more smoothly in the spanwise direction than did the poteu- 

tial field obtained from the design solution. In light of the previous discussion, this 

result verifies that the inverse boundary condition was. in tact, forcing the adjacent 

potential fields away from each other. 

It should be noted that this problem is not due solely to the implementation 

of the direct-inverse technique since this oscillation has not beeu observed with the 

ZEBRA desi 'n code. Rather, it seeuis to be unique to the coupling of tlie niethorl 

with the analysis code, FLO-30. Seemingly, tivo pertinent differences between the 

two codes exit. Firstly, the ZEBRA code, which uses a sheared Cartesian coordinate 

system aligned with the v'ing, applies the boundary conditions at the mean plane of 
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the wing. This first difference is important, since the actual thickness of the wing 

may have less of an impact on the flowfield computed by the ZEBRA scheme due to 

the fact that the point of application of the boundary condition is not changing with 

time. Secondly, its full potential, fully conservative numerical scheme uses a mid- 

segment type of finite difference approach rather than a. finite-volume scheme with 

fourth derivative type compensation termsis that seem to be amplifying the errors in 

the design solution. 

Nevertheless, after exploring many alternatives to counter this oscillation prob- 

lem, four methods based on the previous observations have been devised to damp out 

the spanwise oscillation: 

A) Specify the inverse boundary condition at at least every other spanwise 

station and linearly iiiterpolate the inverse displacements to the stations lying in 

between. This has been named the Type II-2 method. 

B) Specify the inverse boundary condition at every station, but a ain only 

calculate inverse changes at every other station and linearly interpolate the inverse 

changes to the stations in between. This will be referred to as the Type II method. 

C') Immediately prior to every surf'ace update. calculate all spanwise derivatives 

of the potential in. the residual based upon a potential function smoothed in the 

spanwise direction. This smoothing is accomplished by first defining the operator a( 

Oce I )4 — 2) 
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where x determines the amount of smoothing. Then using a in the spanwise difFer- 

entiation of P with the maximum a. mount of smoothing (i. e. , s = 1) 

the smoothed spanwise derivative of ifi becomes 

4. 0 
(4 — 4) 

D) Smooth the slopes, ~, in the spanwise direction in the design region in the pap 
p 

same manner as with method C. It should be noted that, as stated earlier. smoothing 

the integrated slopes, i. e the inverse corrections. did not suppress the oscillation but 

only slowed the rate of divergence. 

Three different cases were studied in order to test the effectiveness of each 

method at suppressing the oscillation and in reproducing the known target section. 

All three cases used Lockheed King-A at a Xlach number of . 8 and at aui angle of 

attack of 'O'. The first case utilized a . 'iACA 0012 airfoil as the initial section and the 

original supercntical wiug sections accompanyuig King-A as the target section. The 

design region stretched from 30-70', vc semispan of the wing and began 8~ac aft of the 

leading edge and extended to the trailing edge. Since a, medium grid (80x12x16) was 

employed, there was a, constant C grid station at every 10~~a semispan. Results are 



shown in Fig. 20 I' or the four different approa, ches. 

Although all four approaches worked well for this case, by using the RMS of the 

errors between the target section and the section designed as a, measure of accuracy, 

methods A and C produced the best results for this case in the interior as well as 

at the edges of the design region. For the same number of flowfield iterations, the 

technique D produced the most unsatisfactory results when compared to the target 

sections. 

The effect of each approach on the residual at the trailing edge after 10 surface 

updates can be seen in Fig, 21. The discontinuities in the residual for method A 

is due to the fact that the inverse boundary condition is applied only at the 30, 00 

and 20'7c semispan locations. All four approaches have a. characteristic jump in the 

residual at the first spanwise design station at 30", I semispsn. This 3ump is probably 

due to the previously discussed spanivise mismatch problem with the potentials at 

the direct-inverse interl'ace, which manifests itself in the compensation ternis. The 

Type II method had the largest jump at this interface, while the Type II-2 method 

had the smallest jump. Votice that the spanwise distributions ot' the resichial I' or tlie 

two smoothing approaches are quite similar in the design region. 

Since only sniall differences existed betiveen the methods for the previous test 

case. a. more severe test ii as conducted by designing an entire icing using %AC'A 0006 

sections as the initial airfoils and VtACA 0012 sections as the targets. These sections 

were chosen due to the fact that most of the problems in the past v;ere amplified 

by beginning with a. thin section and targeting a thicker section. Furthermore, a. 
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full wing design would reveal whether the accuracy of each method depended on the 

spanwise location of the wing. 

When an attempt was made to compute these cases, it was discovered that 

when using the smoothing two smoothing techniques, (methods C and D), it was 

necessary to use zero order extrapolation of the displacements from the adjacent 

grid station to the root section. The root section tended to lag in the convergence 

process in comparison to the rest of the grid stations. This behavior is possibly due 

to a, slowly converging flowfteld at the the wing-fuselage juncture. Since all of the 

sections started out too thin, this lagging of the root section forced the adjacent 

grid station to quickly become too thick, which led to divergence at the root in both 

cases. Zero order extrapolation of the nondimenssonalized displacements forced the 

root section to converge at a rate rvhich svas more in compliance svith the rest of the 

grid stations at the expense of degradsng the accuracy of' the root section. Since the 

root section has been successfully designed independently, presumably. thss problem 

might be circumvented by simply allowing the flowfield solutron to converge further 

before each relofting, although such a, procedure would probably be a, less efficient 

approach. 

Also. no smoothing of the potentials or the residuals was used at the tip. Since 

both the residual and the potentsals are quickly varying in the spanuise direction in 

the tip region, smoothing leads to large errors in the residuals and hence the se& tion 

shapes. In fact, better results can be obtained for the smoothed potential approach 

by using a zero order extrapolation of the normalized displacements from the grid 

station inboard of the tip to the tip. Overall though, the inboard sections of the wing 



slowly became thicker, while those outboard responded more quickly, initially causing 

these outboard sections to actually become too thick. 

The resulting sectional shapes for the four different methods are compared in 

Fig. 22. As can be seen in the figure, method C works well when designing in the 

interior of the wing, but did not give satisfactory results at the tip of the wing where 

smoothing the quickly varying potential led to large errors in the section shapes. Since 

the residuals also varied quickly at the tip, the slopes at the tip were not smoothed 

with method D. Since there were not any slopes defined at. the fuselage ghost point 

location, (i, ky, 2), the slopes were not smoothed at the root either. This method 

produced the most accurate results while still managing to suppress the oscillation 

problem In contrast. the Type II and Type II-2 methods workeil well on the entire 

wino surface. and notliin special needed to be done at the root or tip. 

The same case ivas executed on the Fine grid (100x24xg2) to study any effect 

of grid size on the accuracy and effectiveness of the methods. This grid allowed 21 

design stations which were located a distance of o% seniispans from each other. iVhen 

using the Type II and Type II-2 methods, the lagging of the root section actually 

forced the section located at 10 zi, semispan, two grid stations outboard, to become 

too thick, ivhich led again to a, divergent solution. . Thus, for this fine rid & ase, it was 

necessary to use zero order extrapolation of the the nornialized displacements from 

the adjacent station to the root when using all four remedies. Cases which do not 

require such large changes in thickness at the root have not required this procedure 

using the Type II and Type II-2 methods. In addition. because of the aforementioned 
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problems with the smoothing approaches at the tip, no smoothing was used at the 

tip section. 

The results for this case are shown in Fig. 23. For this case, the smoothing 

approaches yielded satisfactory sections on the region of the wing spanning from 

about 30% to 85%. Elsewhere, the sectional shapes vary significantly from the target 

section. Thus, the smoothing approaches work well when designing in the interior of 

the wing, but they do not give satisfactory results near the root and tip of the wing. 

An objective measurement of the accuracy of the sections in relation to the 

target can be obtained using a. coefficient of determination, r, defined assr 

where oz is the siandard deviation of the ordinates of the target section defined as 

(0 — 0) 

( I — i) 

is the deviation of the design from the target for the same z values. This quantity 

varies from 0 to I, one being perfect. 

gloreover. to further clarify which niethod produced the least amount of oscil- 

lation, the average error variation in the spanwise direction for each method should 

be compared. The spanwise variation of the coefficient of determination and average 

percent error are shown in Figs. 24 — 29. The Type II and Type II-2 methods 
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produced the least amount of oscillation, while smoothing the potentials produced 

the most amount of oscillation in the error. 

There is still some doubt by this investigator whether only secondary aberrations 

have been observed and not the true, fundamental cause of the oscillation. In light 

of this, another efl'ect that should be investigated is that of the addition of mass into 

the flowfield by the inverse boundary condition. Some other investigators ' have 23, 43 

included a source correction in the far field a, nd in the near field . In this research. 

this source correction was neglected since this addition of mass would be driven to 

zero at convergence. But, its effect on the unconverged solution is not clear. In order 

to see if this had a, significant eR'ect on the solution. a, quick, numerical experiment was 

performed in which the distance to the outer boundary was doubled. (See Fig. 80) 

Presumably, if the addition of. mass was adversely afFecting the boundary condition 

in that region for a, given distance, it would have less of an efFect if the distance ivere 

increased since the additional mass flux. arriving at the boundary ivould be less and the 

outer boundary boundary condition would be better satisfied. When this computation 

was completed. however, the solution seemed to be completely unaffected. diverging 

at the same point in the iteration history. This was only a, simple attempt at proving 

that the sources on the iving were not the fundamental motivation tor the oscillation. 

4 thorough analysis must consider the effect of this mass addition on the doivnstream 

bonndarv snd the near field. The downstream boundarv could be stretched I'urther 

downstream. and appropriate source correction terms, using the flux ejected froin the 

inverse regions of the wing as the source strength, . could be added to the reduced 

potential in the entire flowfield. 
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Another possible cause could be the assumption of flow tangency used in the 

residual expression in the integration of the flow tangency equation. WVhen this as- 

sumption is made, not only are the fluxes reflected about the current wing boundary, 

but so are the compensation terms. This procedure in effect doubles the amplitude of 

the 6„~ and the tv type compensation terms. Since the flow is not generally tangent 

to the current shape when designing a, new airfoil section, reflecting the compensation 

terms may be initially incorrect. An alternative formulation may be needed. 

In retrospect, a few comments about the advantages of each method in different 

design situations are warranted. For instance, methods C and D give the designer the 

most flexibility; the desired pressure distributions can be imposed at every spanwise 

grid station, and the section shapes corresponding to each grid station can be calcu- 

lated relatively independent)1 ol' the adjacent stations. On the other hand. because 

of the interpolation required in the first two methods. the section shapes ar odd' 

stations are directly dependent upon the shapes at 'even' stations: so although the 

designer loses a. little flexibility, he gains a smoother spanwise distribution of section 

thicknesses in the spanwise direction. From a designer's standpoint of course, method 

A is the most restrictive of the four, but it yields the smoothest designs in the span- 

wise direction, and converges the quickest. Therefore. method A (i. e. , the 'Type 11-2 

method) would most probably be the best to use ivith wings of nioderate to high 

aspect ratios. But, Xlethod B (i. e. , the Type II method) would most probably be 

necessary for wings with aspect ratios of the same order as Lockheed %King-B. 
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CHAPTER V 

RESULTS AND DISCUSSION 

Since the versatility of the method in designing multiple, overlapping 

regions of the wing has already been well demonstrated by Gaily ', most of the 

test cases presented, herein, were chosen instead to exhibit some of the constraints 

and limitations of the current inverse design procedure. The cases were chosen to 

reveal the approximate limits imposed on the aspect ratio and sweep of the wing; and 

the significance of grid skewness, viscous interaction, grid refinement, and the initial 

airfoil on the fina1 airfoil section design. Some questions about the compatibility 

of Mach number and pressure distribution will be answered by designing a. wing 

at one Mach number using pressures obtained from a. wing analysis at a different 

Mach number. Finally, preliminary results will be presented for a, partial wing design 

beginning aft of the leading edge and terininating forward of the trailing edge. 

V. 1 Boundary Layer and YVake ERects 

One of the objectives ol' this study was to determine the significance of various 

viscous efi'ect in. the design ol' transonic wingss. The wing chosen for this study was 

a, typical transport type wing, Lockheed VVing-A. This wing has an aspect ratio of 

8. 0, a, leading edge sweep of. 27, a, taper ratio of . 41, a. twist of 2. 28 at the root and 

-2. 04' at the tip, and 1. 5' of dihedral. 



An input pressure distribution was obtained by analyzing Lockheed Wing-A us- 

ing full viscous effects; these included boundary layer displacement thickness, wake 

thickness, and wake curvature. The flight Mach number of . 8, angle of attack of two 

degrees, and Reynolds number, Re, of 25 million used in the analysis were thought to 

represent flight conditions for a. typical, average-sized transport; and the distribution 

was considered to be typical of that which would be available to and desired by a. 

designer. All computations were performed on a fine (160x24x32) grid. The resulting 

pressure distributions obtained from the analysis were used in two separate design 

cases, each composed of five and three subcases, respectively. The first series of cases 

was a, full wing design using the target section as the initial section. By using the 

target section, any effect of the initial section on the final ontcome would presum- 

ably be eliminated. The type II design method was used and the inverse boundary 

condition was enforced from 5%% aft of the leading edge to the trailing edge. Further- 

more, relofting was not initially done at all. The results for the partially converged 

cases were plotted and then further converged allowing relofting to take place. In 

this way, the effect of relofting on the final design could be determined. The itera- 

tion history of each case was kept the same, even though by doing this the absolute 

level of convergence could very well be difl'erent since changes of various magnitudes 

were associated with each case. The large amount of computational tinie required for 

these cases dictated this type procedure and for comparison purposes tins approach 

is acceptable. Fortunately, it turned out that the sectional shapes in every case were 

varying quite slowly by the end of the design run, indica, ting tha, t the sections were 

near convergence. 



In each case, viscous options were 'turned off' one at a time to assess their 

effect. In the erst case, the wing was designed with all viscous effects. In the second, 

the lag entrainment was turned off. The third case did not use wake curvature, while 

the fourth neglected both wake curvature and wake thickness. Finally, in the fifth 

case the wing was designed inviscidly. The resulting unrelofted designs for each case 

are compared in Fig. 31. As expected, the inviscidly designed sections are slightly 

thicker at the root where the normalized boundary layer displacements are thinnest 

(see Fig. 32 ) and become increasingly thicker towards the tip in accordance with 

the thickening boundary layer. 

Veglecting lag entrainment, wake curvature and thickness had very little effect 

on the designed sectional shapes overall. But, if' the trailing edge region is examined 

closely for cases with the wake effects neglected, the trailing edges sometimes cross. 

lfpon converging these shapes further and enforcing a. trailing edge ordinate 

requirement with relofting, significantly different results were obtained. As shown 

in Fig. 33, the inviscidly designed shapes are now thinner on the upper surface snd 

slightly tlucker on the lower surface, especially in the cove region where viscous effects 

are large. Also, because of the relot'ting involved. the leading edge radius has become 

smaller. The rest of the cases produced sections which did not deviate much from the 

target, except near the tip. However, ueglecting both wake effects produced sections 

that were actually tliicker than the target. This change was due to the relofting that 

was necessary to uncross the trailing edges, which produced larger leading edge radii 

and hence thicker sections. 
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Table 1. Results from the analysis of the wings designed with difterent viscous in- 

tera, ction a, ssumptions at a M = . 8 and a Re = 24 x 10s 

Case Wing Cr, Wing 

+Fuselage Cf, 

Target . 4745 . 5347 . 0197 

Full Viscous . 4636 . 5226 . 0195 

iNo Lag Entrainment . 4719 . 5316 . 0197 

No Wake Curvature . 4636 . 5226 . 0195 

No Wa. ke Effects . 4605 . 5194 0193 

Inviscid . 4060 . 4598 . 0169 

Tlie resulting wing for each case was analyzed using full viscous eR'ects and the 

same iteration history. Table 1 gives a coiuparison of the lift and drag coefficients 

resulting from the analyses of these designed wings. 

As can be seen from the pressure distributions shown in Fig. 34 and Table 1, 

the inviscidly designed wing produced 15% less lift than did the target wing. The lift 

usually obtainecl in the cove region was diminished, in tliis case. by the decambering ol' 

the aft portion of the wing. The thinning of the top in conjunction with the thickening 

ot' the bottoni of the inviscidly designed airfoils also caused a decanibering of each 

section, which explains the large decrement in lift produced. As shown in Fig. 35, the 

reason the top ivas thinner is because the boundary layer displacement thicknesses 

which are 'built' into the imposed pressure distribution were not subtracted from 

the inverse displacements in the inviscid design. In order to meet the trailing edge 
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ordinate requirement, the resulting section had to be relofted more to compensate, 

thus lea, ding to a thinner section on top. 

The wing lift coeflicients obtained from the analyses indicate that by not using 

lag entrainment, a design correlating closely with the target can be better accom- 

plished for the given sequence and number of flowfield iterations. It is suspected 

displacements and hence the inverse displacements may take longer to converge to 

the correct value as compared to excluding lag entrainment. By ignoring wake curva. - 

ture and using all the other available viscous options, wings with identically slightly 

lower lift coefflcients as compared to the targets were produced. Furthermore, wake 

thickness influenced the design in a. slightly more prot'ound way than did wake curva; 

ture bv producing a wing with 3% less lift than the target. 

As an ai'ter tliought, the original wing v-as analyzed ivith each viscous option to 

assess its efl'ect. The analysis results of the designed wings, shown in Fig. 36, reveal 

that wake curvature eRects were practically negligible. This result may be ilue io the 

relatively high freestream Reynolds number of 25 million used in the comparisons. 

Since this Re would lead to low values of 6* and 8, the curvature efl'ects would also be 

expected to be low; Streett's case- used a, much lower Reynolds number of 0 million. 

On the other hand, neglecting wake thickness and lag entrainment effects both had a. 

decremental effect on the wing's lift, which was probably due to the I'orv:ard slufting 

of the shock location. 

The seconil set of design cases involved a, partial wing design which extended 

from 30-70% semispan and began 10% aft of the leading edge of the airl'oil, but the 
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inverse boundary condition was only enforced at the 30, 50 and 70% semispan station 

and the displacements were linearly interpolated to the stations in between. The 

initial airfoil section at 50% semispan was formed by thinning the supercritical target 

section by 6% and removing the cove region. The initial sections at the edges of the 

design region were the same as the target sections, while the remaining sections were 

obtained through linear interpolation. The results for these cases are presented in 

Fig. 37. For the Reynold's number chosen, neglecting wa. ke effects seems to have 

had a small effect on the resulting design. The sections are a. little thicker than the 

sections designed with full viscous eff'ects. As noted earlier, the wake eff'ects had 

relatively little eff'ect on the pressure distributions obtained from the analysis of the 

target wing; but, when the boundary layer displacement thicknesses obtained were 

investigated. it was discovered that neglecting wake effects in the analysis produced 

boundarv layer displacement thicknesses that were on the average 3. 5% thicker at the 

trailing edge than those obtained from a full viscous analysis. Since the boundary 

layer displacement thicknesses are subtracted from the initial inverse changes to yield 

the hard airfoil. these larger displacement thicknesses would produce a. section that 

was initially thinner than the target; but, after relofting the airfoil section, it would 

actually be thicker than the target. 

The iving sections designed inviscidly are profoundly different at 30 s. nd 70% 

semispan. but only slightly different at 50% semispan. The thinning of the top surface 

in complement with the thickening of the lower surf'ace significantly decambered these 

sections. The large differences st the inboard and outboard design stations are due to 
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the influence of the inviscid pressures outside the design region; and, the remarkable 

agreement in the middle of the design region, except in the cove region where the 

boundary layer is thick, is due to the influence of the viscous boundary condition 

at the edges of the design region. This observation can be verified by reviewing the 

previons case and noticing that the airfoils sections varied smoothly in the spanwise 

direction at all spanwise stations. 

After the wings were designed, all three were then analyzed with full viscous 

effects to assess the significance of the changes made to the wing on the pressure distri- 

butions and to see how well these pressures matched the target pressures. Knowing 

that the wing designed with full viscous effects is correct, it is quite obvious I'rom 

Fig. 38 and Table 2 that the wing designed inviscidly is quite unsatisfactory. The 

shock is not far enough ai't and the lift produced is sometimes 30", ~r smaller than that 

desired. 

Based on the results of this study, it can be concluded that for the Reynold's 

number and Xfach number chosen, wake curvature and wake thickness and lag en- 

trainment have a very small elfect on the designed airfoil sections. However. the 

boundary layer displacement effect has a, profound efi'ect on the section shapes and 

hence must be included in the design process to yield a wing which will produce the 

dessred hft in a. viscous environment. 

K'. 2 Spanwise Grid Skewness 

In the course of the present research, it svas discovered that the skewness of the 

constant ( grid lines leaving the tip of the wing (Fig. 3g) can have a. dramatic efl'ect on 
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Table 2. Comparison of the total and wing lift coefficient obtained from a fully 

viscous analysis of the wings designed using different viscous interaction 

assumptions at a M = . 8 and a. Re = 24 x 10 

Lift 

Coefficient 

Target Full Viscous No Wake Design Inviscid Design 

. 514 . 509 . 506 . 42 ) 

Wing Cr, . 483 . 478 , 477 

the design of the sections near the wing tip. As can be seen in Fig. 40, if the grid was 

significantly skewed and the input pressures were calculated on an nonskewed grid, 

it was impossible to obtain the correct airfoil shapes in the tip region. This difficulty 

is due to the large differences in pressures betv. een the skewed and nonskewed grid. 

These pressure profile differences are shown in Fig. 41. As shoivn in the figure. 

the grid skewness has caused the shock location to move further sft. Although the 

skewness of the grid was quite extreme in this case these results affirm the need for 

smoothly varying grids in wing design. at least in the spanivise direction. It should 

be noted though, that if the input pressures were obtained on a skewed grid and used 

in the design process with a, skewed grid then the tip sections were well resolved. In 

summary then, if the pressures calculated on an nonskewed grid are correct or closer 

to real pressures encounterecl in flight, then it would be wise to ensure that the grid 

is smoothly varying. 

V. 3 Wing Planform Effects 

Three cases were attempted to roughly delimit the applicable range of aspect 

ratios and leading edge sweep angles for which good results could be obtained with 
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(b) 

Fig. 39 Comparison between a, fairly nonskewed (a) and skewed grid (b) 
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Fig. 42 Grid generated about VVing-C with an incompatible root section and flise- 

lage cross section 

the present design method. These included Lockheed 1Vings A. B and C. These wings 

have aspect ratios of g, 3 8. and '2. 6, leading edge sweep angles of '2i, 33, and 4& degrees 

snd taper ratios of . 4. . 4. snd . 3 respectively. The target pressure distributions ivere 

obtained by a, direct analysis of the target ivings in an inviscid environment. The 

initial section for XVing-A was a NACA 001'2, while a. ABACA 0006 ivas used for EVing- 

B. The original section v as used ivith RVing-C due to the difficulty of the case. Also 

for XVing-C, as opposed to the circular cross-section, an elliptical cross section of the 

t'uselage was used to provide a. flatter surface for the grid generation packs. e The 

circular cross-section conibined with the large relative thickness of the root section 

compared with the width of the fuselage played havoc on the grid at the root. as can 

be seen in Fig. 4'2 



In order to better understand the flow about each wing, the corresponding 

velocity vectors on the surface of each wing were plotted, as shown in Figs. 43-46. 

As should be expected, the spanwise component of the flow increa. ses as the aspect 

ratio decreases and sweep increases. It is also interesting thai there seems to be 

an inboard component of the flow for all three cases on the upper surfaces alt of the 

leading edge. This inboard flow may be attributed to the effect of the fuselage and the 

wing tip vortex. These effects can be seen most readily by viewing a, cross section of 

the flow just aft of the wing tip shown in Fig. 46. The vortex near the tip of the wing 

is quite evident, and flow tangency at the fuselage also contributes to the spanwise 

component of the flow. The momentum of the air over the tip must dominate the 

flow. since, as seen in Figs. 4i — 4, J, the spanwise pressure gradients appear to encourage 

the air to niove outboard However, ui order to determine whether 

the flow actually traveled in the inboard direction. it would be necessary to plot the 

actual streamlines of' the flov; over the surf'ace of the v ing. 

The design region for VVing-A a. nd XVing-B extended I'rom 10-100% semispan 

and began 6/c and '2. , 5, & aft of the leading edge, respectively. C'omputations ivere 

performed on a fine grid. Results for WVing-A are shown in Fig. . 50. while results for 

King-B are shown in Fig. 61. As can be seen the designed and target sections for 

both wings are in excellent agreement in the interior of the design region and closely 

match at the edges of the design region. 

In the case of KVing-C, the section shapes should not have changed with the 

application oi' the inverse boundary condition. But, because of the large amount 
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Fi~. 4i Pressure contour plot for Lockheed %King-A AI = . 8. o = 2 
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of spanwise flow and the associated spanwise gradients for Wing-C, the spanwise 

oscillation effect could not be overcome with any of the present remedies. Further 

information about this case was obtained by using the Type II method and not 

relofting the section shapes. The results for such a. converging fine grid case are 

shown in Fig. 52. The first design station at 18% semispan is too thick on 

the upper surface as compared to the target. This discrepancy is again due to the 

over prediction of the residual at the first station due to the initial mismatch in 

the potentials in the spanwise direction, and, hence, to large spanwise gradients of 

the potential. The errors diminish as the tip is approached, but are always relatively 

large in the trailing edge region due to the difficulty in accurately imposing the inverse 

boundary condition near the trailing edge for this case. If an attempt were niade to 

converge tllis case lurtller bv continuously relofting the sllapes to meet the tr'iiling 

edge ordinate, the same spanwise oscillation problem wonld again occur. However, 

non-relofted results such as in Fig. 52 would be very useful for preliininary design 

studies. 

V. 1 Initial Profile Effects 

One of the disadvantages of the direct-inverse niethod is that a priori knoivledge 

about the correct shape of the leading edge must be known to achieve suitable asrfoil 

shapes and desired trailing edge thickness Relofting does alleviate this disadvantage 

to a. large degree: but it ivill not. in general, produce a. leading edge that will yield the 

desired pressure distribution at the leading edge if the inverse boundary condition is 

by necessity applied too 1'ar aft. It was thought that because FLO-30's grid package 
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clusters grid Itttes close to the leading edge of the airfoil, that the design could be 

started quite clsae to the leading edge, thus relieving the designer of the difficulty 

of choosing a correct nose shape. Two test cases were conducted to investigate the 

dependence of the final design on the initial airfoil section. Both used Lockheed 

Wing-A at the same conditions mentioned earlier for the viscous study. For the first 

case, the initial airfoils were the same as those in the viscous study. These airfoils all 

had leading ~ which were in the same family as the target section. The design 

began 10% aft, of the leading edge. In the second case. NACA 0012 sections were 

used at all the design stations; here, the leading edge ol these sections were not in 

the same familv as the target airfoil sections. For this case, the pressure boundary 

condition began 4/& aft of the leading edge. Referring to Fig. 03, it can be seen that 

although slightl: — hetter results were obtained near the leading edge for the first case. 

that the airfoils designed were fairly insensitive io tire initial section. 

V. 4. 1 Direct-inverse interface proximity to leading edge 

Since experience with the method has shown that the closer the inverse bound- 

ary condition is applied to the leading edge, the longer it takes for the solution to 

converge, it was of interest to determine how the location of the direct-inverse in- 

terface afi'ected the final design and the resulting pressure distributions. This study 

was accomplished ivith the aid ot' the previously discussed Wing-B case. whose design 

region began at 2. 4+s chord, and an inviscid design of Wing-B also ivith ABACA 0000 

sections as the initial geonietry. With the second case, the design v:as starteil at 4'7i 

chord from the leading edge; and, the input pressures were obtained from an iuviscid 
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analysis of Wing-B. Since the design pressure distributions were consistent in both of 

these cases, the fact that one was a, viscous design and the other an inviscid design is 

not important here. 

Some representative samples of the resulting section shapes for the second case 

are shown in Fig. 54. The resulting wings were analyzed under the same conditions 

that the original input pressure distributions were obtained. Representative samples 

of the resulting pressure distributions are compared to their respective target distri- 

butions in Figs. 55, 56. As can be seen. the wing whose design began 2 5'7c aft 

captured the suction peek at the leading edge, while the other case, which began at 

i~is aft of the leading edge, did not 

When designing near (less than 5, 'c) the leading edge, the solution sometimes 

began to slightly diverge or ceased convergrng. I sually the clessgn could be converged 

to the point where there was only a maximum change m the surface of . 1-. 2~& chord. 

This was more a problem on the fine grid than on the medsum. II' it was necessary to 

converge it further, the beginning of the design region was moved aft. This observation 

is important because if it is necessary to begin the design close to the leading edge to 

properly determine the shape of the nose, a, successt'ul design may be accomplished by 

beginning the design as close to the leading edge as desired or is possible, then movsng 

the be inning ol' the design region att as the solution approaches rhe last stages ol. 

convergence. This method not only frees the designer from the task of choossng the 

correct leading edge shape, but it should also accelergte the convergence of the design 

considerably. 
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leading edge, with the target pressure distributions 
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Because of the leading edge clustering of grid points in TAWSD, successful 

designs have been accomplished on the medium grid with the chordwise direct-inverse 

junction beginning just aft of the stagnation point on the lower surface. If the pressure 

boundary condition is applied upstream of the stagnation point, major difficulties 

arise when an attempt is made to integrate past this point of singularity. since the 

slope, p, is indeterminate there. V 

For the case shown in Fig. , 57, the design was begun 1% aft of the leading 

edge, but in retrospect, it could have begun close to . 3'ys aft. of the leading edge ssnce 

the converged stagnation point was located about . '2"!c aft. Votice how precssely the 

designed surfaces can be computed when compared to the targets outboard of the 

first design station. This case efi'ectively demonstrates that since the dessgn re ion 

can be extended extremely close to the leading edge with TAWSD, the fact that the 

pressure boundary condition can only be applied aft of the leading edge is a very 

small shortcoming of this direct-inverse method. 

V. g Pressure Distubution Compatibility 

Since a, designer might not readily have available an input pressure distribution 

compatible with the design freestream Vlach number, the efiect of desigrfing a. wing 

at one Xiach number using a, pressure distrsbutson obtasned from an analysis of the 

wing at a. rlifi'erent tlach number was investigated. The King-A planform was used 

throughout this portion of the study. VACA 0012 sections were used as the targets 

and 'VACA 0006 sections were used as the initial sections in the dessgn. The entire 
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wing was designed on from root to tip, and the design region started 10% aft of the 

leading edge of the wing. 

Two separate tests were performed. The first involved a fine design at a, nearly 

incompressible Mach number of . 2 using a, pressure distribution obtained from an 

analysis of the target at a. Mach number of . 1. As can be seen from Fig. 58, 

thinner section shapes were obtained at the higher Mach number. This thinning is in 

agreement with the 2-D PrandthGlauert similarity rule 

wliich states that the Cz will be invariant with Ma. ch number if the thickness, r. is 

reduced as the Mach number is increased for linearized fiow. For this case. Eq. (5- 

1) would predict that a 1»4% decrease in thickness would be necessary to liave the 

same pressure distribution at the higher hlach number. The design code for this . '3-D 

case produced a. section which ivas on the average 1. 6% thinner than the 'MAC'A 0012 

section. 

The second case involved a medium grid design at a glach number of . 85 using 

a, pressure distribution obtained at a, Mach number of . 80. Referring to Fig. 59, the 

section shapes produced are again thinner than the initial section. The top surface. 

thougli, required a, sudden thiniung of the surface at the shock location. Surprisingly, 

upon arialyzing this wing, the pressure distributions shov n in Fig. 60 match quite 

well with the target everyv here except in the tip region of the wing. So, given the 

constraints of the problems, it appears that the only way the boundary conditions 

could be met was to have these dips in the airfoil surface. Since these dips might 
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lead to boundary layer difficulties, it wonld probably behoove the designer to vary 

the Mach number or alter the pressure distribution to eliminate the necessity of these 

V. 6 Grid Refinement EfFects 

Since the computational time required for a design on the medium grid is about 

an eighth of that required on a fine grid, it may be tempting to try to design on the 

medium grid using fine grid or real pressures. In order to assess the practicality of this 

approach, a transonic design on a, medium grid using fine grid pressures was carried 

out. The case was performed at a, Mach number of . 8 and an angle of' attack of two 

degrees. The original supercritical sections for 'Aiing-A v'ere used as the initial, as 

v:ell as, the tareet sections. The results are shown in Fig. 61 The only place ivhere 

the designs calrie close to the target was near the niiddle of the wing. A slight wave 

appears in the upper surfaces ot' the designed sections near the shock location. This 

pertubation is due to the smearing of the shock on the inedium grid. The section 

designed at the wing tip deviated considerably from the target. The tact that at the 

wing tip the fine grid Ct is lower than the medium grid Ct most probably led to the 

decambering of the sections at the iving tip. 

. lo attempt v;as made to match the Cg's of the fine grid and inedium grid 

aualyses by varymg the Mach inimber or angle of attack. but a comparison ot' the 

niediuiu grid pressures at various Mach inimbers and angles of attack ivith the target 

fine grid pressures tor the supercritical viing shown in Fig. 6'2 reveal that it ivould 

probably be necessary to alter the tivist of the wing to closely match the C~'s at all 
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of the design stations. It also shows that increasing the angle of attack to 2. 1' would 

have produced closer matching Ct's and hence perhaps better designs. In retrospect, 

though, given that the fine grid pressures are correct or more realistic, it would be 

necessary, unless appropriate corrections can be found, to use the fine grid to properly 

design the correct airfoil sections. 

V, 7 Fixed Trailing Edge Design 

This case was investigated to verify that a fixed trailing edge design could be 

accomplished with the present version of the code. The case chosen utilized Lockheed 

1Ving-A at a, lvlach number of . 3 and an angle of attack of 2 . A. NAC'A. 0012 section 

was used as the initial geometry from 30% to 70% semispan, while the remaining part 

of the w'ing used the original supercritical sections. Tlie inverse boundary conilitioii 

ivas enforced from i% to 80% chord The airfoil aft of 80% chord was fixed so tliat it 

maintained the NACA 0012 trailing edge shape. The input pressures were obtained 

tlirough a medium grid inviscid analysis ot the wing with the original supercritical 

sections used throughout. Furtherniore, to provide for a, smooth transition at the aft 

direct-inverse junction, the displacements ivere smoothed in the chordwise direction. 

The type II-2 design method was used in this case. 

The resulting section shapes are shov n in Fig. 63. The target airfoil section 

would actually be the first HO%i of the supercritical section and the last 20% of the 

NACA 0012 section. Surprisingly, even with the aft portion of the wing fixed. the 

designed sections came quite close to matching the original 1Ving-A profiles at the 

30% and 50% semispan locations At the 70 'c semispan location, the designed section 
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as compared to the original Wing-A section is much thicker on top and thinner on 

the bottom leading to a more cambered profile. This shape is probably due to the 

interaction of the geometric constraints and the required design pressures. The shock 

strength of the input Cz distribution does become quite large at this loca, tion and 

it appears that the section may have become more cambered to account for this 

increase. Or, the increased camber may have been needed to provide the necessary 

lift required by the inverse boundary condition. The pressure distributions obtained 

from an inviscid analysis of the resulting shapes are compared with those produced 

by the original XVing-A sections snd the 'NACA 0012 sections in Fig. 64 The figure 

reveals that the design pressure distributions are a combination of the YVing-A. and 

i%ACA 001'2 pressure distributions. It is also interesting that it seems s. secondary 

shock uear the aft, linui oi' the clesign region v as necessary to meet. the constraints of 

tins problem. 'This very iinpractical case, oi' course, was only meant to demonstrate 

that it is feasible to fix the aft region of the wing. If a, more realistic trailing edge 

were used, better results would surely 1'olios . 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

Progress in the direct-inverse wing design method in curvilinear coordinates has 

been made, which included the remedying of a spanwise oscillation problem and the 

assessment of grid skewness, viscous interaction, grid refinement and the initial airfoil 

section on the final design. Some of the important conclusions were: 

(I) In response to the spanwise oscillation problem, designing at every other span- 

wise station produced the smoothest results for the cases presented. 

(2) A smoothly varying grid is especially needed for the accurate design at, the wing 

tip. 

(3) The final designed airfoil section is independent of the initial section if the 

chordwise direct-inverse junct&on ss nxoved close to the leading edge. 

(4) Boundary layer displacement thicknesses must be included in the successful 

design of a v ing in a, viscous environnxent. 

(fi) Presexxtly the design of only higll axle( nledium aspect ratio wings is possible 

with this code. 

(fi) A. partsal wing design beginning aft of the leading edge and ternxinating prior 

to the trailing edge is possible with the present nxethod 

(7) Designs xnust be perl'ormed on a fine grid 

It is reconxmended that nxore work be done to fully understand the fundanxental 

motivation behinxl tire spanwise decoupling pxoblem in ordex to eliminate all spanwise 



oscillations in sectional thickness from the solution. This work should also include the 

development of a better way to handle the formulation of the residual at the spanwise 

direct-inverse junction to eliminate the initial spanwise jump in the residual located 

there. Furthermore, the design scheme at the wing root and tip should be refined to 

provide more accurate airfoil sections in those regions. 

In addition, the necessary logic should be added to begin the integration of the 

flow tangency boundary condition on either side of the section's stagnation point at 

the present iteration level. This addition should allow the entire airfoil section to be 

designed with the pressure boundary condition specified everywhere on the wing's 

surface except at the stagnation point 

Prelimenary results have indicated that by allow(ng the trailing edge ordinate 

to float an untwisted wing can be tw(sred. lf this (s a, well-posed problenn n(e(hods 

should be devised to accurately calculate the twist given the inverse displacements at 

the present time level and to inchude this in. the iterative process such that the tv;ist 

angle converges without undue oscilla, tion. It would also be interesting to investigate 

the possibility ot also allowing the leading edge ordinate to vary (n a constrained 

fashion so that the local dihedral angle could change. 

And finally, since the potential solution and, hence, the design. converge rather 

slosvly due to the SLOR numerical scheme, the design scheme should be incorporated 

into the multi-grirl version of FLO-00 to hasten convergence. 
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APPENDIX A 

DERIVATION OF THE FULL POTENTIAL 

EQUATION IN CURVILINEAR COORDINATES 

The full potential equation transformed from cartesian to curvilinear coordi- 

nates is derived here as a, courtesy to the reader. 

The full potential or the continuity equation written in cartesian coordinates is 

(pn). + (pe)„+ (pm), = O (. 4 — 1) 

where 

(4 — 2) 

It is desired to transform this equation to a. curvilinear coordinate system of 

a. nd s where 

( = P(r. r~, s) n=n(r u r) t =((~, y. =) (. 4 — 3) 

By using the standard chain rule. the 1'ollowing operators can be defined 

0 — — E. — + r)r — — ('. . —. 
z 
&3 0 — = ty 

— + r1y 
— + r, y 

—. 
'1 ( 

r9 0 c1 = (. — + rlr — '- tr— '( 
I)sing these operators in Eq. ( 4. -I) yields 

f* (Pn)t + rts (Pu), — 
f, . (Pu)( 

+ ty(Pn)(+ 9y(Pr. ) + ty(Pi )y- 

+ sr(prr!)t r1= (Pyy)y 4 j-"(Prr')( = 0 

(. 4 — 4) 

('I — 5) 
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Defining the Jacobian, J, as 

rfv 
c?(z, tJ, z) 

(A — 6) 

Then after Hoist, multiplying the Eq. (A-5) by J, and rearranging to conservative 

form plus remainder gives 

[((pu) &*J ') + ((pv) 4J ') + ((p~) & J ')I& 

+ [((pu)'1 J ) + ((pu) 9 J ) + ((p~) 1 J '), 
+ I((Pu)t*J ) + ((Pv) t J ) + ((P ) t J )]c 

— (P-) [(~. J-'), + ('J-'), + (~. J-'), 
] 

— (P') [(&s J ') 
f 

— (0sJ ') + (&s J ') 
1] 

— (pu, ) [(sc, J ')f+ (iLJ ') + (j. J ')(] = 0 

Now using the fact that 

r? J ' 
z c? J 

c?s 

(A — 7) 

(. 4 — 8) 

the last three terms in brackets can be shown to be zero. For example, equatmg the 

erst of these terms to zero 

(pu) [(f, J ') 8 (q, . J ') q (j, J ') 
] 

= 0 (. 4 — 9) 

and expanding the derivatives anil coRecting like terms gives 

J ' 
[(f*)t — (0. )s+(t )c] 

— J If, Jt — rt, J„+ C„J(I — 0 

Rewriting Eq. (A-4) in matrix notation 

(A — 10) 

(4 = 
( &y 0y ) 

t (A — 11) 



177 

After solving for ~, a, &&, this becomes 

where 

a 
af 
a 

Bg 
a 

Qa 

a — A12 A13 Bz 

A22 — A23 g — „[J 'I — A32 A33 ay 

az 

(A — 12) 

A11 — rlytz ty 7z 412 fyt, z fz(y A13 fypz 9y6 

A23 = fzgz — fzgz (A — 13) 

A31 =ibjy rly(z A32 = fzty fy jz Ass = 
cozily 31zfy 

These operators can be used to expand the derivatives of spaz, ilz, and (z so that 

(fz)f = [Allfzz Aslfzy + A31&zz] J 

(q. ), = [Arrq. * — -4 tq. y 
-' A32q. z] J — 1 (A — 14) 

(& )f = [4»&z — A23& y+ A33&-] J 
Substituting these into Eq. (A-10) and collecting terms yields 

[411fzz A21fzy + A31fz 

Airfzz A22fzy + A32fzz 

— -423f*y! 433', z] 

— J '[Ai»zfz — 42»y(z+ A31Jz(z (A — l5) 

—. 112 Jzitz —, 422 Jyrtz & A32 Jzitz 

+. 4»J. (z — A23Jy&z — 433 . &. l = 

with J — fzA11 — gzA12! tzA13 

Expanding the seconcl term in brackets in the previous equation to 

— J "J, J + Jy(frit. -r', z 

—, fzilz(' — C. q*t, '*! fzn C* — f*q=E. ) 

Jz(fznzt. 'y — &. 31yC. — E. il. fy 

(A — 15) 



178 

and cancelling like terms, this reduces simply to 

Second term = J J (A — 17) 

where: Jz =tz (Art) — rlz (Art) + Cz (Ats)z 

+ (zzAtt — rlzzAtt + CzzArt 

Partially expanding J, to 

J, =(zzArt — zlzzArr + tzzAtS 

(A — 18) 

+s* (v*yt'. + qy P, 
' 
*~ — rt. (. y 

— tyv*. ) 

— a. (t'*ys. + 4t*. — t*. 4 — t'. (*y) 
(A — 19) 

+t, z (fzynz + tyg" — g. yt. — ztyt") 

tJpon collection of like terms, this becomes identical to the first ternr in brackets in 

Eq. (A-lfi), thus satisfying the equality. This can be shown to be true of the other 

remamder type terms in Eq. (A-7). 

Now, reducing the conservative part of Eq. (A-7) to 

IJ ((P") t + (P") (y + (Pm) (z)]f 

+ J '((pu)zt. +(py) ay+(pm)qz)I„ (A — 20) 

+ IJ ((Pu) (, ', y (P") ty+ (Prn) Cz)]( —— 0 

and clefining the contravariant velocities, L', 1', W, as 

lz z1y la (A — 21) 

wit h 

Zt 
h=J '= yf 

-f 

zs zt 
uf (. 1 — 22) 

Eq, (A. -20) reduces to the desired conservative form ot 

(pbf )&+ (phV) — (phW)& — — 0 (A — 23) 
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APPENDIX B 

DERIVATION OF THE Cp EQUATION 

Although this derivation probably appears in most good books on aerody- 

namics, it is included here as a. courtesy to the reader. 

C& is defined as 

p — pm 
22 

Ip~q ~ 
(B — 1) 

Using the definition of the speed of sound and isentropic relations, this can be rewrit- 

ten as 

(B — 2) 

It is desired to obtain a, relation 1' or the pressure coefFicient, C&, in ternis of soley 

the freestrea. m XIach number and the local q~. This can be easily accomplished by 

beginning with Eq. (2-14), 

p = (aAI )»-' (B — 2) 

and using the isentropic relation in Eq. (2-10), pressure can be written as 

p = (ai1I, )»=' 
pcc 

(8 — 4) 

Upon substituting this into Eq. (B-2), equation, C'z becomes 

2 2 

C'„— ((a'1I )» ' — I) 
2 1Is (B — ') 

And finally, niaking use of Fqs (2-8) and (2-9), the previous equation can be reduced 

to thc desired relation 

C'r —— „1 + — 21I 1 —, — 1 (B — fi) 

where q = (u e u — iu ) q ~ 
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