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ABSTRACT

Verification, Optimization and Refinement of a Direct-Inverse Transonic
Wing Design Method Including Weak Viscous Interaction. (August 1989)
Robert R. Ratcliff, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Leland A. Carlson

New developments in the direct-inverse wing design method in curvilinear co-
ordinates are presented. A spanwise oscillation problem and proposed remedies are
discussed. Test cases are presented which reveal the approximate limits on wing as-
pect ratio and leading edge sweep angle for a successful design, and which show the
significance of spanwise grid skewness, grid refinement, viscous interaction, the initial
airfoil section and Mach number - pressure distribution compatibility on the final
design. Furthermore, preliminary results are shown which indicate that it is feasible
to successfully design a region of the wing which begins aft of the leading edge and

terminates prior to the trailing edge.
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NOMENCLATURE
A influence coefficients used in compensation terms
AR aspect ratio
cos cosine
¢ local chord
&/} airfoil section lift coefficient
Cr wing lift coefficient
oA pressure coefficient
cp specific heat at constant pressure
cosh hyperholic cosine
F Wing surface function in the physical domain
a speed of sound
a; Fourier coefficients used in grid scheme
d the relative x distance from the sectional quarter chord point
f general function
| determinant of the inverse jacobian matrix
)i 4 inverse Jacobian transformation matrix
h enthalpy per unit mass
I,J K grid locations in &, n, { directions
J Jacobian transformation matrix

M Mach number

vi



P,QR

Re
Ry

Ry

Ydesign
Ymean

Yt

Jameson’s upwinding terms

pressure

compensation terms

magnitude of physical velocity

radius, radial distance; coefficient of determination
Reynolds number

radius of fuselage

radius of wing tip

coordinates of the wing's surface in the auxiliary plane
wing surface function in the computational domain
arc length along approximated wake location
velocity at the edge of the boundary layer

velocity vector in Clartesian coordinates

velocity components in Cartesian coordinates
contravariant velocity components

velocity vector in computational space

Cartesian coordinates

ordinate of the design section

mean ordinate of the target section

ordinate of airfoil at trailing edge

z+if

angle of attack



Al

Ay

&

viii

angle between the wall shear line and the external streamline of the bound-
ary layer

transformed boundary layer displacement thickness
magnitude of change in the airfoil surface in physical coordinates
user specified trailing edge thickness in units of chord fraction
central-difference operator defined in Eq. (2-20)

relofting correction

boundary layer displacement thickness

degree of extrapolation coefficient

ratio of specific heats

circulation

flow curvature at the approximate wake location

averaging operator defined in Eq. {2-20)

vector differential operator

reduced velocity potential function

velocity potential function

density

smoothing operator, standard deviation

hyperbolic sine

airfoil section thickness

original airfoil thickness

airfoil thickness at different Mach number

momentum thickness



5 degree of smoothing coefficient
& coordinates in auxiliary plane
& ¢ transformed coordinates
Subscripts

avg average quantity

idle forward direct-inverse interface
idte aft inverse-direct interface

I index increment

i ik grid locations in the &, 7, ¢ directions

ky value at the wing’s surface

i lower surface

le leading edge

o stagnation conditions

s singular line location

T iteration time level

te trailing edge

u upper surface

w wake

z, Y. = components in the r, y, z directions
0 {reestream conditions

& . ¢ components in the £, 7, ¢ directions
Superscripts

n iteration time level

o degrees
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CHAPTER 1
INTRODUCTION

With the advent of efficient numerical schemes that accurately model the ir-
rotational transonic flow about complex configurations such as wing-bodies and the
appearance of computers with memory capacities and computational speeds neces-
sary to execute these schemes in a reasonable amount of time, the efficient design of
wings for transonic flight is quickly becoming a reality. Although transonic potential
schemes combined with integral boundary layer solvers may not model the real flow-
field as accurately as Euler or Navier Stokes schemes,'~® their use can significantly
reduce the costs and time expenditures associated with transonic wing design.

There are basically two general types of inverse design methods: inverse solvers
and predictor/corrector (P/(') methods. In the P/C' type methods, an analysis code
is used to calculate the flowfield for an arbitrary initial geometry; and then. this geom-
etry is systematically modified by considering the differences between the calculated
and target pressures. The changes to the airfoil sections can be obtained through
optimization type procedures; o, as shown by Campbell.* the appropriate geometry
changes can be systematically determined by using a design algorithm which relates
pressure changes to changes in airfoil curvature,

An example of an inverse solver is the direct-inverse transonic wing analysis-

design method. which has been under development at Texas A&M University.> "% In

Journal model is ATAA Journal of Aircraft



this method, the wing geometry is determined by specifying pressure distributions
over part of the wing and then solving the mixed Neumann and Dirichlet boundary
value problem associated with the full potential equation for compressible flow via
finite difference and/or finite-volume techniques. The specified pressure distributions
can be selected by the experienced designer to have such desirable characteristics
as weak or nonexistent shock waves, a slowly increasing adverse pressure gradient to
limit boundary layer separation, a center of pressure location giving a desirable pitch-
ing moment, or an efficient spanwise loading. The designer may also use wind-tunnel
tests of successful airfoils as an aid in picking a desirable pressure distribution. The

direct-inverse technique has been successfully used in stretched and sheared Carte-

5-12,16,17 A3-15

sian coordinate systems and most recently by Gally in a curvilinear
coordinate system.

It would be convenient if only the inviscid flowfield had te be included in the
design process; but, unfortunately, it has been verified through transonic wind tunnel
tests at low Reynold's numbers and flight testing at high Reynold’s numbers that vis-
cous effects are very significant!®. For example, as the Reynold's number increases.
the shock wave location is further aft on the wing. Thus. the shock wave in a viscous
flowfield (finite Re) is located further upstream than that predicted by an inviscid
(infinite Re) flowfield calculation. Although the inclusion of the viscous interaction
significantly weakens the shock strength compared to inviscid results, the accompa-
nying upstream displacement of the shock wave causes the sum of the differences

between the upper and lower surface pressure distributions to be smaller than in

the inviscid case; hence, the wing lift coefficient will be smaller in the viscous case.



Furthermore, it has been discovered that a wing using an aft-cambered airfoil section
designed inviscidly for transonic conditions might develop 25-50% less lift in a viscous
environment®.

In light of the previous discussion its obvious that viscous effects must be taken
into account through some means. One approach that applies in cases where there
are no regions of massive separation is referred to as the weak viscous interaction
technique. Since the weak primary viscous interaction effect is the formation of a
boundary layer on the wing which effectively makes the airfoil thicker, the external
streamlines for the wing boundary of the inviscid potential field are shifted cutwards
by a distance called the displacement thickness. This shifting is due to the decrease
in velocity of the fluid in the boundary layer'®. Thus, to include the effects of weak
viscous interaction in an analysis of a wing. one simply needs to determine the po-
tential solution for the surface. find the displacement thickness using the properties
associated with the streamline representing the body, add this displacement thickness
to the original surface, and repeat the process until the displacement thicknesses and
the potential field converge.

Weak viscous interaction can be inciuded in the inverse design process in much
the same way. In the inverse regions, where the pressure boundary condition is
applied, the new surface which approximately satisfies the boundary condition is
calculated periodically by an integration of the flow boundary condition. At that time,
the displacement thickness from the boundary layer calculations can be subtracted
from this new surface to yield the hard or actual designed airfoil. This process can

be carried out iteratively until there is an insignificant change in the displacements



due to boundary layer interaction and the inverse boundary condition, and in the
flowfield’s potential solution.

Fortunately, there is a computer program called TAWFIVE (for Transonic Anal-
ysis of a Wing And Fuselage and Interacted Viscous Effects) which not only has the
capability of computing the potential field about a wing and fuselage combination
but also contains a robust three dimensional integral boundary layer scheme which
provides the necessary viscous effects in the form of boundary layer displacement
thickness, wake curvature, and wake thickness. It should be noted that a three
dimensional boundary layer code is desirable in order to properly predict the in-
creased decambering of the sections near the tip due to the cross flow in the bound-
ary layer?®. In TAWFIVE, the inviscid numerical scheme is based upon Jameson
and Caughey's FLO-30 conservative. finite-volume. full-potential flow method where
computations are performed on a body-fitted, sheared. parabolic. wind-tunnel type
coordinate system. The three dimensional boundary layer scheme added by Streett®
to the originally-inviscid code computes the first order, weak. seif-consistent, viscous
interactions which include the boundary layer displacement effect on the wing’s sur-
face, the displacement in the wake. and the curvature/pressure jump in the wake
The boundary layer on the wing is found using a compressible integral method for
laminar and turbulent flow with a fixed transition location. The turbulent method
was based on work by Smith?!, while the laminar method was developed by Stock®%.
Small regions of separation are also modeled. This latter feature is an important ad-

dition for successful convergence, since small regions of separation often occur in the

initial stages of computations behind shockwaves, in the cove region of aft-cambered



airfoils and near the trailing edge on the upper surface of the wing, even though
they may not exist in the final converged solution!!. The parameters in the wake re-
gion are computed in streamwise strips using a two dimensional entrainment integral
technique. This method has been deemed valid for transport type wings®.

Gally*~*% has successfully incorporated the inverse design process into the
TAWFIVE program. Since the modifications made were compatible with the existing
computational methods and program structure of TAWFIVE, his work resulted in
a versatile design code capable of allowing the user to design an entirely new wing
or even discontinuous, nonadjacent segments of a wing. The latter option may be
invaluable to engineers who are typically faced with the dilemma of designing around
regions where the wing geometry may be fixed by constraints other than aerodynamic
considerations. As seen in Fig. 1 these segments can even be non-adjacent upper or
lower surfaces with overlapping lower or upper surfaces respectively.

On the other hand, as a consequence of the inverse method. previous experience
has revealed that specified pressure distributions may not be imposed in regions less
than about ten percent behind the leading edge of the wing section. This Limitation
was due to the difficulties associated with enforcing the pressure boundary condition
near the leading edge of the airfoil where the vertical velocities are large. However
this feature was not viewed as a real limitation since the leading edge regions of most
airfoils are similar, the leading edge shapes may be constrained by non-aerodynamic
factors, and since a leading edge geometry can be selected ta produce the desired

pressure values at the beginning of the design region'®,



INVERSE DESIGN REGIONS

S T

BOTH
SURFACES &

; _

INVERSZ DESIGN REGIONS

S D
<655 DY

BOTH
SURFACES

Fig. 1  Typical examples of overlapping and non-adjacent design regions 3



Moreover, the imposed pressure distributions may often lead to an impractical
airfoil that has an excessively blunt trailing edge or one in which the upper or lower
surfaces cross prior to the trailing edge resulting in a fish tail shape. An excessively
blunt trailing edge might cause a wing to have an excessive amount of drag due to
base pressure at the trailing edge, while the fish tail shape would be impossible to
construct. Since the nose shape or curvature has been shown to control trailing edge
closure,!®12:23:2¢ these undesirable shapes can be eliminated with a procedure which
systematically modifies the leading edge thickness diﬂribution called felofting. Two
types of relofting procedures have already been included in the program by Gally.
One is a simple linear rotation scheme where the surface being designed is rotated
about the leading edge a proper amount to achieve the desired trailing edge thickness.
In the second procedure. the leading edge is proportionally thinned or thickened a
proper amount so that the relofted leading edges are in the same family of airfoil
shapes.

Gally's original design code has been tested in a variety of ways for a Lockheed
Wing-A wing-body. The self-consistency of the approach was tested by designing
airfoil sections using certain desired pressure distributions. analyzing the resulting
designed airfoils. and then comparing the desired pressure distributions input to those
found through analysis. In all of the inviscid cases considered. the code proved itself
consistent; the section lift coefficients of the designed and target sections and the
respective pressure distributions were in strong agreement. The relofting procedures

and the ability of the code to make large surface changes was verified by transforming



a 12% thick airfoil at supercritical conditions to a 6% thick airfoil at suberitical
conditions in the same NACA family.

Although the code worked well for the inviscid cases attempted, there were
some modifications and test cases which were required to make this code more valu-
able. For instance, since Streett found that the wake effects (wake displacement and
curvature) were relatively important in the calculation of the lift distribution on a
three dimensional wing,?® presumably their inclusion in the design process would be
important as well. This was investigated by utilizing the wake options in the code and
and comparing their effect on the design of a wing. The logic necessary to include
the viscous effects in the design process originally added by Gally was tested and
modified where necessary.

Recently, a spanwise decoupling in the design regions which led to instabilities
in the design solution was observed. The supposed source of this instability and the
various methods used to combat this problem will be discussed later in the report.

One modification added to the program, which helps smooth out the rippling
spanwise variations in the wing and give the designer added versatility, is an option
where the user specifies pressure distributions at the edges of the design region and
then the changes in the thicknesses of the airfoil sections calculated by the program for
those stations are interpolated and added to the stations delimited by the edges. This
approach is different from the original method where the target pressure distributions,
not the change in thicknesses, were interpolated to the stations in the design region.

Since the designer is admonished in the TAWFIVE user’s manual®® that the

wing is not modeled accurately enough to allow analysis of very low-aspect ratio



wings and that grid problems may be encountered for wings which have high taper
ratios or sweep angles, three wings of different aspect ratios and sweep angles will be
used in the inverse design process to approximately delimit the range of geometries
applicable to the present design code, TAW5D.

Because of the high computer costs associated with executing this program for
fine computational grids, results will be shown which will reveal how fine the grid
needs to be for satisfactory preliminary designs.

In summary, this thesis presents developments in the inverse design method.
It includes a brief description of the analysis and design methods and techniques
used to suppress a spanwise oscillation problem resulting from the interaction of the
design method with the potential solver. In addition. it presents a series of test cases
that reveal the lack of dependency of the design on the initial airfoil section. the
importance of including viscous effects in wing design, and constraints due’to aspect
ratio, wing sweep. spanwise grid skewness. In addition, some questions about the
necessary refinement of the grid and about any necessary constraints due to Mach-

number-input-pressure-distribution compatibility will be answered.
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CHAPTER II
DESCRIPTION OF TAWFIVE

As was stated in the introduction, the inverse-wing-design program; TAWS5D,

which was originally modified by Gally,'3-!5

uses as its core the computer program
TAWFIVE, which can be broken into three major sections: the inviscid, transonic,
potential flow solver; the cylindrical/wind-tunnel type grid generation scheme; and
the three dimensional, laminar and turbulent. integral boundary layer code included
by Streett?® which is based on the works of Smith?!, Stock® and Green.26~2% Since

the theory behind the code is spread across numerous references, an attempt will be

made to summarize its formulation in a succinct fashion for the reader’s convenience.

1.1 FLO-30
The transonic potential flow solver. FLO-30, =% by Jameson and:-Caughey,

is a finite volume method which solves the full potential equation in divergence form
(pu), + (pv), + {pw), =0 (2-1)

transformed from Cartesian to curvilinear coordinates :
(phI) = (V) + (phW), = 0 2-2)

The derivation of the transformation of Eq. (2-2) is presented in Appendix A.

An expression for the local density, p. and the local speed of sound, a. nondi-
mensionalized by the appropriate freestream guantities can be found by beginning
with the energy equation

(2-3)

+
>
P

1=

k]
5‘+h1=
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where ¢¢ = (u2 +22 4 wz) 2,

Then assuming the existence of a perfect gas such that

2
h=cT = 2—-4
p I-1 ( )
the energy equation becomes
1= .
=g +ai= (2-3)
Next, assuming freestream and stagnation conditions such that
91 = Qoo a) = Qoo
(2-6)
@=0 az = a,

and upon normalizing all the primitive variables by the appropriate {reestream quan-

titles
PR
Poc
T
T

The bars on the nondimensionalized quantities will hereafter be omitted for conve-

T=

nience.

Eq. (2-5) becomes
y-1_ 1
Uz

(2-38)
The local speed of sound is obtained using Egs. (2-3) and {2-8). yielding

rea-(2) ()

Using the isentropic relation

2oy (2-10)



and realizing that

1
= —— 2-11
Poo 1%, ( )
the isentropic relation becomes
o
= 2-12
P ( )
Then making use of the speed of sound relation
=2 (2-13)
P
a relation for density is found
= (aMao)™T (2-14)

which for air can be simplified to

= 5
p:(i) :(L) (2 - 15)
Uno Ao

This expansion is the actual form used in FLO-30. but the more familiar formula for
density is shown in Eq. (2-16) and can be easily determined by substituting the speed

of sound relation of Eq. (2-9) into Eq. (2-14).

i
-1

ME (11— =% —u?) (2~ 16)

The nonconservative form of Eq. (2-1) shown in Eqg. {2-17) can be determined
by expanding the derivatives of Eq. (2-1); substituting in the appropriate derivatives
of the density nsing the expression in Eq. (2-3); multiplying by f3; and then imple-
menting the equation of state for a perfect gas, the definition of the speed of sound:

and finally defining the velocities in terms of a velocity potential. @.
(az - uz) by + (a2 - vz) dyy + (a2 - wz) 3%
(2-17)
— 2uVoy — 20wy — 2uwdy: =0
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Both of these forms are valid for isentropic, irrotational flows of Mach numbers
ranging from zero to transonic®®; but, by using the conservative form of the potential
equation, a finite difference scheme will result®® which conserves mass. especially in
areas containing large gradients such as with the flow through a shock. Although,
nonconservative schemes have been successively implemented due in part to the fact
that the effective mass production at the base of the shock wave fortuitously models
the shock/boundary layer interactions, the best approach may be to use a conservative
scheme with viscous corrections added by a separate boundary layer model®”. This
approach is the method utilized by TAWFIVE to include viscous effects.

FLO-30 uses a finite-volume type scheme which makes use of a staggered box
approach. Its formulation is directly analagous to the control volume approach used
to derive the original PDE in Eq. {2-1), except in the finite-volume scheme, the
discrete nature of the finite difference model is considered from the onset by using
a finite control volume in the neighborhood of a grid point in the finite-difference
mesh®®. This method is best illustrated by using it to discretize the following two-

dimensional, incompressible version of Eq. (2-1) written in Cartesian coordinates

Uy = vy, =0 (2 -13)

With the aid of the two-dimensional box shown in Fig. 2. it can be seen that the
staggered box scheme derives its name from the way in which the primary and sec-

ondary boxes interlock. The values of the potentials at the four grid points which
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Fig. 2 Staggered box finite-volume cell

make up the corners of each primary box are used to calculate the velocities. u, v, in

the following manner:
u = b =60
(2 -19)
v =0y = 0,0
where 1 and & are averaging and differentiating operators respectively and are defined

by Jameson as

where it is assumed that Az = 1. Therefore, the velocity. u. for imstance. at the

primary box center located at (! + %.j + %] is found by

, (Bir1,; = Big) + (div1 01 — Biye1) 5
Uiy geg = By ot = 5 (2-21)




The flux at the midpoint of each secondary box is determined by averaging the ve-
locities u and v at the corners of that box in the y and z direction respectively; and

the net flux into the secondary box at (%, j) is obtained, giving the discretized version

of Eq. (2-18)
1452 (2) + gy (v) = 0 (2-22)
where for example
Ul 1= U Lo b UL LU 1
(bew),; = A A T ) (2-23)

The previous discussion implicitly assumes that the velocity varies in a linear fashion
between the primary cell centers so that the flux into the top of the secondary cell

face would be, for instance:

Az 7
=jatd Fath (2 —24)
3 + v
R Eae Vitgits
2

Jameson and Caughey found that this lumping of the fluxes at the primary cell centers
reduced to a rotated Laplacian type difference scheme and hence to an uncoupling
of the solution between adjacent grid points. Therefore. compensation terms were
added which basically extrapolate the fluxes from the corners of the secondary cell
to a distance, ¢, towards the midpoint of each secondary cell face. Considering Fig. 3

and using an e = .25, the flux, u, at the corresponding grid location (i + %] +3)is

ou
: = — 25 — 2-25
Yipda+d T Yirkget (3?!)”‘%']*% { )
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When all the fluxes are extrapolated in this manner. the fluxes at the secondary cell

centers become

u, 1.1 —€lo 1 +u c(o
iegimg O icgiag Tty T Oy
L is -
3 2
I Doy)s L1 L=
Y-} s(o”Jh;JA% Uiyiod €lozy), 1,1
iy, = -
: & N (2-27)
o b T O e T gy e (On)i g
ity T 2
- , Y
o lirping T g oy gy ey iy
ii-% P



When the net flux into the secondary box is accounted for, Eq. (2-22) becomes
Hybeu + prbyv

(2 - 2)

— e (Gediapird — Bordiryymd — Gmdiiggup + )iy joy) =0

which is equivalent to
HyBoa + iazbyy = eBazyyd = 0 (2 -29)

(Typically, € is .25)
Notice that the compensation terms lead to a fourth derivative of the potential; this
higher order derivative will become important later in the discussion of a spanwise
oscillation problem that occured in the design process.

The previous concepts can be extended to three dimensional compressible flow
in curvilinear coordinates by considering eight primary boxes as shown in Fig. 4. The

three-dimensional potential equation
(PRI )¢ = (phY), = (kW) = 0 (2 -30)
is again descretized in the same way as in the two-dimensional case to give
Hncbe (phU) + pucebn (phV) + pgybe (phW) =0 (2-31)

The same averaging scheme is used in this case except that the derivatives now have to

be averaged in two of the coordinate directions instead of one. For example. (ph W)g

becomes:
(penbcph W), =
(PhIV,ay g~ PP Wos, s 1 T PhW g1y Wy
4
(PP, g b + P pag + PRWig iy + PPV gacs)
4
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Fig. 4 Three dimensional staggered box finite-volume cell
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Since relating the potential, ¢, to the contravariant velocities, U, V, and, W may
be somewhat unclear to the uninitiated, it is explained here for convenience. First,

considering the the full potential function, ¢, defined as
® = ¢ + zcos(a) + ysin(a) (2-33)

the standard chain rule can be applied to it to give u, v and,w as follows:

Al = Qé% 3(,‘)3_7; @% +cosa

8z 0tdz  Gndx (0=
8% _ 9o 886y  968¢

By T BBy T B0y T Ay
9% _ 0506 390y 000

Y8 T B¢o:  mo:  BCox

u=

+sin a (2 —34)

Defining

[ P

& oy G (2 —335)
3 >

<

B EEN)
and realizing that
= [HT] (2 -36)
where H is the transformation matrix defined by
g Eno ¥
H=1{v v y() with h =H| (2—37)
(e n ¢
the physical velocities, . v, w normalized by gs can be related to the gradient of the

reduced potential function, ¢. by

u 1-1/ o¢ [ cos

v ) =[HT [0 )+ sina (2 -38)
(7

w @ 0

Note that since the grid point coordinate locations in the physical space, {z, y, =),

are generated as functions of (£, 7, (). it is convenient to use H instead of J explicitly.
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The contravariant velocities U, V, W, whose directions lie along the correspond-

ing £,7,¢ grid lines are related to the physical velocities by :

U u
(V):H-l(v) (2-39)
w w

and the derivatives of the potentials and the metrics are defined as:

be = pncle (8) g = pncle (z)
Sy = p¢ebn (6) Ye = Bncbe (y) (2-40)
&¢ = peadi (¢) 2 = pnehe ()

The density, p, and Jacobian, &, are evaluated at the centers of the of their respective
primary cell centers. Again, by lumping the fluxes at the corners of the secondary
cell's corners. the solution is decoupled on odd and even grid points leading to two
independent solutions. This problem is remedied with compensation terms which
again move the evaluation location of the fluxes to a point somewhere in bétween the
corner and the midpoint of the secondary cell face. When this procedure is performed

for all the cell faces. the potential equation takes on the form of

Pncbe (PRU) + peeby (pRV) + pendc (ph W)

1 (2-11)
-« (#cfénQEn + ebncQuc + padielce = §5sntQ£n<> =0
where the Q's are the compensation terms defined by Jameson as
Qey = (Ae = Ay) ncfeno
Qug = (g + Ag) pebycd
(2 —42)

Qce = (¢ + ) pnbeds

Qenc = (e + Ay + A¢) Sgnedb



21

Here, Ag, Ay, A¢ are the influence coefficients which compensate for the dependence
of pon @, ¢y, and ¢. These terms end up being the coefficients of of g, ¢nq and
$¢¢ in the expanded form of Eq. (2-30)%%.

Since the formation of entropy through a shock wave has been neglected through
the use of the potential function, artificial viscosity must be added to eliminate the
physically unrealistic solutions. In general, if central differences are used throughout
the flow field, it is possible for the solution to predict discontinuous expansion shocks
followed by compression shocks. This situation is a case where entropy decreases
which is a physical impossibility, and is remedied by adding Jzu-‘neson'Sm’?'1 P.Q.and
R terms which provide the necessary artificial viscosity by producing an upwind bias
in the supersonic zones. The form of these terms can be found by formulating the
potential equation in streamline coordinates which reveals the true zone of dependence
in the supersonic zones. Then in these supersonic zones. the second derivatives of
the potential, &, included in the streamwise term are formulated with llpétream or
backward differences while the second derivatives included in the crossflow term are
differenced centrally?®. As shown in the final form of the following finite volume
equation, the terms are formulated in such a way as to maintain the conservative

form of the potential equation.
HacSe (Pl + P) & peebn (phY + Q) + pgaSc (phW + R)
Senc@ (2 —43)
-e (#cfansn = RebagQug + HnbeeQoe — w> =0

This numerical equation is then embedded into an artificial time dependent

equation

i 0] 9
Z(phl7 + P)+—— (phV + Q) = — (phW + R
7% (p ) an(P +@Q) ER (phW + R) (2 1)

+ compensation terms = ader + 30,7 + Yd¢T + S¢T
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and solved via a successive line overrelaxation (SLOR) scheme which sweeps in the
¢ direction along constant { surfaces starting at the root of the wing and implicitly
solves for the potentials in the » direction. Equation (2-43) is a direct statement of
the conservation of mass and should approach zero as the solution converges.

After obtaining a solution on a coarse grid, grid halving is used so that the finer
grid has a better initial approximate solution, thus speeding up the convergence of

the solution.

II.2  Grid Geometry

The computational grid used by the potential solver, FLO-30, is a body-fitted,
curvilinear mesh which can be wrapped around a generalized wing-fuselage combina-
tion that is symmetric about the x-z plane. A body-fitted grid system is desirablein a
full-potential scheme when the boundary conditions are applied at the actual surface
of the airfoil. With a body-fitted grid, no interpolation is required and the boundary
conditions are easily and accurately applied. Because of the shape the grid system
resembles, it is called a wind-tunnel type grid. An example of this grid is portrayed
in Fig. 5. The grid shown is the coarsest mesh and has 40 x 6 x 8 points in the £. 7,
and { directions respectively. With this grid. the wing becomes a constant 5 surface,
and each cylindrical looking shell is a constant { surface. Constant £ lines can be
seen running spanwise on the wing at constant chord fractions from the leading edge.
Notice also that due to the conformal transformation used?* constant ¢ lines are
packed close to the leading edge of the wing. This clustering is an attractive feature

when designing airfoil sections using the direct-inverse approach. Moreover. constant
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¢ lines are spaced evenly on the wing and, on the finest mesh, give the designer up
to 21 spanwise stations where the pressure distributions can be specified. As can be
also seen from the figure, the lines of constant ¢ and 75 are nearly orthogonal on the
constant ¢ surface®* shown at the wing tip of the airplane, while lines of constant ¢
and ¢ on surfaces of constant 7, such as the wing, are not orthogonal except, of course,
for cases where the wing has no sweep or taper. The lines of constant ¢ leaving the
surface of the wing are nearly orthogonal to the surface; this fact will be important
later on in the discussion of the wing-design methodology.

The computational grid system is created using a series of analytically-defined
algebraic, conformal, and shearing transformations to transform the the wing-fuselage
combination and surrounding flowfield in the physical space to a box in the compu-
tational space shown in Fig. 8. Following Caughey’®. the polar coordinates r and &

are defined in the crossflow planes as

L
r=(y*+:%? (2 —45)

f=tan"t () (2 - 46)
The fuselage surface, which is symmetric about the x-y plane. is defined by r =
R¢(x,#). All points in the flowfield are then referenced to the surface of the fuselage
at the same r and # location and normalized by the distance between radius. R. of
the cylindrical surface passing through the wing tip and the radius of the fuselage.
Ry at the given z and 6 location :

7=

r— Ry(x.0) (2-17)
[Rt—Rf(-L‘)G)E
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This normalization causes the lines of constant 7, or equivalently %, on the surface
of the wing to be curved in the x-z plane so they will not coincide exactly with the
chord line of the airfoil section. This procedure also maps the fuselage to a slit in the
computational domain. This type of normalization allows for high, low, and mid-wing
configurations.

The function R¢(z,8) is found through a Fourier decomposition of the user-

defined fuselage cross sections such that
m
Rf(.z:i,9)=Zaijcosj(€+g) (2-48)
=1
The coeficients, a;;, which are assumed to be continuous functions of z, are spline
fitted in the x direction for each j. The required radius of the fuselage can be found
for any point on the wing. or in the flowfield, by interpolating these coeflicients to
the desired .
A singular point is located at the focus of a parabola which is fit to the leading
edge of each wing section with a least squares curve fit. The wing sweep, taper and
dihedral are accounted for by referencing the coordinates in each surface of constant

7 to the location of the singular line, which is the locus of points comprising the

singular points, z,(7), s (F) at the leading edge of the wing.

,_[I*rj(f])+log(2) (2 —49)
e(r)
p—(1-14

(2 - 50)
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Fig. 7 Section surface and wake representation at a constant 7 station in the
normalized plane

This normalization effectively maps the wing's planform to a rectangle in the compu-
tational space. The # coordinates of the wing corresponding to the given 7 and z are
found by linearly interpolating the coordinates of the airfoil sections at input stations
defining the wing in the spanwise direction. Then at the intersection of a surface of
constant 7 with the wing’s surface shown in Fig. 7. the wing section and the wake is
transformed into a bump in the conformally mapped plane. as shown in Fig. 8, with

the inverse of the conformal transformation

Z+if = log [1 — cosh (€' + in')] (2-51)
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Fig. § Section surface and wake representation at a constant = station in the
auxiliary plane

Fig. 9 reveals an entire constant 7 surface in the auxiliary plane. A function §(¢'.7)
is defined to be the n' coordinate corresponding to the wing’s surface defined by the
input geometry at a constant 7.
The 7' coordinate is sheared out with a simple normalization according to
) Liapl = A 5 =
e=¢ g=n/8(F). (=r (2-52)
so that the wing surface lies on a coordinate line in a nearly orthogonal coordinate

system of { = const.
Next. the spacing of the coordinate points in the physical domain is controlled

by introducing a Cartesian grid into the ¢, 7, { computational domain where

—Etim S € S iimy 057 <1, 0<(< Clim (2-53)
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Since the derivatives of the spatial coordinates needed for the transformation metrics
are evaluated numerically, stretching to infinity is impossible; thus the computational
domain is truncated a finite distance away from the airplane. The outer limits of £
and ¢ are chosen such that the grid stretches out far enough from the wing-fuselage so
that freestream boundary conditions can be safely applied. These constants are not
user specified, but rather are hard coded in Subroutine COOR of TAWFIVE, such
that the distance of the outer boundary from the fuselage is about 3 wing spans. This
distance is probably more than sufficient for most applications; but if a low aspect
ratio wing is used, which has a large powerful potential vortex at the wing tip and
significant amounts of spanwise flow, the aerodynamicist may want to increase the
outer boundary distance.

The &.n and, ¢ functions for a coarse grid (40x6x3) are shown in Figs. 10-12.
Notice that distribution of £ between grid points 8 and 24, which correspo‘nds to the
upper and lower trailing edges respectively, in this domain varies linearly and evenly
on the wing and then varies quite quickly into the wake ending at a downstream
location where the flowfield is assumed to be nonchanging. The ¢ stretching function
has the same form, but of course the outer limit at K = 12 determines the outer,
radial boundary where the freestream conditions are imposed. which in this case.
as mentioned earlier. will be about 3 wing spans. The 7 stretching function varies
in a parabolic fashion from the wing's surface at J = 14. Although this stretching
does seem to pack grid points close to the surface of the wing, since 7 is basically an

angular ordinate, the grid spacing above the wing becomes greater as one proceeds
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Fig. 10 Stretching function for the £ (I} direction

towards the tip. This increase means that the resolution at the tip region is much less
than that at the root, but this is countered later with a radial correction so that the
grid spacing immediately above the wing is essentially constant for every spanwise
station.

Once the function §(£.7) has been linearly interpolated to the new ¢ coordi-
nates, the physical coordinates of the grid system can be found through the reverse
procedure. First. &, ', and 7 are found using Eq. (2-52). Then Eq. (2-51) is

used to extract & and A. But before this operation is performed, Z and § have to be
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Fig. 11 Stretching function for the » (J) direction

separated in Eq. (2-51). First. both sides are exponentiated and the definition of the

hyperbolic cosine is used so that Eq. {2-51) becomes
efel® =1 — L (Ef'e“” + e>§‘5‘m‘&)
2 /
Using Euler’s identity,
e'® = cos(z) + isin(2)
rearranging, and separating imaginary and real parts. gives

eTeosh =1— %cos 7 (esl - 575’)

- = 1 . ’
e*sind = -3 siny' (551 - e's)

(2 -54)
(2-55)
(2 - 56)
(2-57)



34

Zeta stretching function, CO
o
]

[}

0 1 12

»
©
S
o
-3
~
@
©

Fig. 12 Stretching function for the ¢ (K) direction

Dividing these two equations by each other and solving for # explicitly yields

(2 - 58)

d=t 41[ —sin7'sinh &' ]
= tan

1 —cos7y'cosh ¢’

Next # is found explicitly by first using a trigonometric identity and Eq. (2-58) to

generate
. i sinh €'
sind = — siny'sinh ¢ (2~ 59)
y/ (1 = cos y' cosh €)% + sing sinh® ¢’
Substituting this into Eq. (2-37) and performing some algebra gives
7 = In (cosh &' — cosy') (2—160)

So given £ and 5’ from the previous steps. the normalized coordinates Z and § are
obtained for all the grid points in the domain. At this time, two more special stretch-

ing functions are introduced. One function is used to further stretch 7 downstream
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Fig. 13 Comparison between stretched and unstretched §

of the wing and another scales & such that nearly constant grid spacing is achieved
immediately above the wing from the root to the outer boundary. The effects of the
stretching functions can be seen in Fig. 13.

Notice that this conformal transformation packs grid lines at the leading edge
of the wing where the gradients are large. This clustering is an attractive feature for
the inverse design procedure. However, it is paired with the disadvantage that the
chordwise grid spacing is large at the trailing edge where high resolution is needed to
accurately satisfy the Kutta condition and to resolve trailing edge pressures accurately
especially with those generated by aft cambered airfoils.

Equations (2-49) and (2-50) are inverted to give = and & and then Eq. {2-47) is

inverted to yield » for a given z and 6. This last step requires extensive interpolation
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to find the radius of the fuselage, R¢(,6), for all of the grid points. Then Egs. (2-
45) and (2-46) are used to find the physical coordinates y and z of the grid. Finally,
coordinates of the points located in ‘ghost’ surfaces are obtained through simple linear

extrapolation of the adjacent grid points along the appropriate ¢,7 or, ¢ grid line.

I1.3 Boundary Conditions

There are a number of boundary conditions which must be applied to the math-
ematical model of the physical flow about the wing-body. These include flow tangency
on the wing, fuselage, and the symmetry plane; appropriate far-field boundary con-
ditions at the finite limits of the computational domain; the Kutta condition at the
trailing edge of the lifting wing; appropriate treatment of the wake; and the compu-
tational slit outboard of the wing tip
3.1 Flow tangency

The flow tangency condition is easily implemented due to the curvilinear system.
The fluxes above the surface need only be reflected to the ghost points beneath it so
that the net out of plane component of the flux vanishes at the surface. In the case

of the wing this becomes

Phl‘vb,ky%‘k = Ph[‘},ky-;k
ph";.‘ky_%yk = —phv‘-.kyi%vk where: ky = juing (2—61)
Phwl‘,kw;,k = ph["l,ky~%.k

Similarly for the symmetry plane

phpi,!%,k = phUz,Z%,k
pth%‘k = ’/’hVi,:%,k where: 7 =2 on Lh.e symmetry plane (2 —62)

PhWi,l%,k =hWoass
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‘While for the fuselage this becomes

PRU, 504 = PRU, ;3

phl/‘",,..zir = phVi.j,s% where: k = 3 on the fuselage (2 - 63)
PhW,‘q'z% = —PhV‘G,J‘,ag

The previously discussed compensation terms and upwinding terms are also similarly
reflected in an appropriate manner.

Potentials at the ghost points located at grid points beneath the surfaces are
needed for the calculation of surface velocities used in the upwinding terms and the
surface pressures. These are found for the wing and fuselage by setting the appropriate

contravariant velocity to zero in

o 1/ % cos o
<V> - [HTH] (oq) fﬁfl(sina) (2 - 61)
W o 0

and using the resulting equation to solve for the unknown potential at the ghost point.
In the case of the fuselage, this method of defining the ghost points is used solely when
they are needed in the calculation of the upwinding terms in the residual expression.

When the pressures are calculated, the ghost points are defined by assuming
G =0 (2~ 65)

so that the potential at the ghost point is. in effect, linearly extrapolated in the span-
wise direction. As seen in Fig. 14, these two methods lead to quite different values.
The first leads to a discontinuous spanwise variation in the potential while the second
has a much smoother variation. The first approach guarantees that the flow will be

tangent at the fuselage, while the second does not. However, the pressures calculated
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at the root are fairly independent of the method used to define the potentials at the
ghost points in the fuselage.

The potentials at the ghost points of the symmetry plane are similarly calculated
by assuming

S =0 (2 - 66)

This process imposes an inflexion point on the pertubation velocity in the 5 direction
at the symmetry plane since only symmetrical cases are treated. It is uncertain why
by was not set to zero instead to approximate tangency at the plane of symmetry.
However, this situation is rather academic since these ghost points are used only for
supersonic regions adjacent to the symmetry plane to compute the small spanwise
upwinding term

I[.3.2 Far-field boundary conditions

Since the reduced potential used in the formulation of the numerical method
represents a pertubation from the freestream value, they are set explicitly to zero on
the radial boundary. (max, and the upstream boundary represented by part of the
minimum 5 surface.

At the outflow boundary, (£ = €pip max ). the streamwise pertubation velocity.
©¢ is set to zero, This latter condition implies that the pressure will return to its
freestream value. assuming that there is not any crossflow®t.

I1.3.3 Wake treatment
In the original method of FLO-30, the wake is-treated as a vortex sheet which

has a discontinuous jump in the tangential velocity and a continuous normal velocity
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through the sheet. The rolling up of the sheet is ignored and the vertical convection
of the sheet is approximated by assuming that the wake lies along the constant 7
grid line that leaves the trailing edge smoothly and returns to the plane of the wing
at the outflow boundary. The requirement that the normal velocity be continuous is
enforced by setting V;, = 0 on the wake, which fixes the values of the potentials at the
ghost points, and the jump in the tangential velocity is satisfied by forcing a constant
jump in potentials on the the surface of the sheet along a constant { and # line. This
jump in potential is obtained using the circulation determined at the trailing edge of
the wing.
I1.3.4 Outboard computational slit

Due to the C-grid type formation of the grid, there exists a computational slit
outhoard of the wing tip on the plane of the wing. Since physically the pressure must
be continuous across this cut. the potentials on the surface and at the corresponding
ghost points are defined such that the reduced velocities normal and tangential to to

the surface are continuous across the slit.

II.4 Boundary Layer Scheme

I14.1 Integral method

Streett®? included an integral boundary layer scheme in TAWFIVE to account
for the necessary viscous effects in the form of the boundary layer displacement thick-
ness, wake curvature and wake thickness. An integral method was chosen for its

computational efficiency and its relative robustness.
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In an integral approach the degree of the partial differential equations is reduced
by an a prioréintegration in the direction normal to the surface.?! This reduction can
be illustrated by considering the boundary layer equations governing a two dimen-

sional incompressible flow!?:

du v ’ -
3—m+§y-—0 (2-67)

(2 —68)
If Eq. (2-68) is integrated with respect to y from the wall (y = 0) to a distance k

outside the boundary layer, it becomes
(e gy = (2-69)
z »

where 7, is the shearing stress at the wall.
Using the continuity equation, Eq. (2-67), to obtain the normal velocity component.
v, as

Y Gu

v== [ (5o (2-10)

and substituting this result into Eq. (2-69). the result is

BOu Bu [YOu dU To
Ju _Ou gy -l 27
/o“’ax o | Bty U= T (2-71)

After integrating by parts and reducing, Eq. (2-71) becomes
1ok
/ = (T dy+ﬂ/u:—u)dy:3 (2-72)
dr Jo P

Now, taking # — > and defining a displacement thickness, £]. and a momentum

thickness. ¢ as

81U =/ (U —wu)dy

y=0

oU? =/ w(U - u)dy
¥

=0
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and substituting them into Eq. 2-72, it becomes

4 ) 4 s e _
E(Ua)wluﬁ_p (2-74)

In this reduction process, two partial differential equations have been replaced by
one ordinary differential equation. Since only the integrated quantities, §* and 6,
are really the only quantities required of the boundary routine to model the weak
viscous interaction, the fact that the solution to this equation does not provide the
exact local variation of primitive flow properties across the boundary layer is not of
consequence. The required functional form of the variation in u across the boundary
layer is assumed a priori-by a polynomial for instance.
II.4.2 Laminar scheme

In three-dimensional, compressible. laminar flow the same integration proce-
dure is implemented using two bounday-layer momentum equations and their corre-
sponding moment of momentum telations to yield a system of four coupled partial-
differential equations.’ In the formulation of these equations, it is assumed that the
streamwise velocity profile is of the Faulker-Skan (F-S) family of similarity profiles
and that the cross flow profile is a linear combination of the F-S family of profiles.
These incompressible profiles are extended to compressible flow by the scaling of the
normal coordinate with the Stewartson transformation.
143 Turbulent scheme

The formulation of the turbulent scheme is similar to the laminar, but the

streamwise velocity is assumed to have a simple power-law profile which is a function
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of the streamwise shape factor and the transformed boundary layer thickness and
normal coordinate; and, the cross flow profile has the form of

z
%: %“'K’z“‘“ﬂ (2 —75)

where Z is the transformed normal coordinate, A is the transformed boundary layer
displacement thickness, and 3 is the angle between the external streamline of the
potential flow and the wall shear direction. In the turbulent scheme, the final three
governing equations are two momentum integral equations derived from the conti-
nuity and boundary layer momentum equations and one entrainment equation. The
latter equation accounts for the addition of mass into the boundary layer from the
surrounding flow as the boundary layer grows.
II.44 Lag entrainment

Originally, in the work by Smith®!, the relationship between the entrainment
coefficient and the shape factor required in the previous scheme was formulated em-
pirically with a simple algebraic equation. Later Green found a relationship for the
required quantities through the use of the turbulent kinetic energy equation which
explicitly represents the balance between production. advection, diffusion and dissi-
pation of turbulent energy in the boundary layer. He referred to this as the Lag-
Entrainment method?’

Also. in Green's method the desired momentum and displacement thickness of
the wake is determined by simply continuing the integration of the three governing
equations past the trailing edge on either side of the wake. It is assumed that aft

of the trailing edge that the skin friction coefficient is zero and that the dissipation



length scale is twice that on the wing. Once the integration is performed on either side
of the wake, the required integral properties are simply the sum of those calculated
on both sides.

I1.4.5 Solution of the governing equations

The resulting governing equations are solved through an explicit type integra-
tion scheme in the z (or chordwise direction) along constant span stations. In this
scheme, the domain of dependence is conservatively assumed to lie between the ex-
ternal streamline of the potential flow and the shear angle of the boundary layer. To
account for this dependency, the spanwise derivatives found in the governing equa-
tions are backward differenced if the external streamline and the wall shear line lie
on the outboard side of the chordline and central differenced if the streamline and
the shear line lie on opposite sides of the chordline.

Boundary conditions are required at all inflow boundaries. At the root, a plane
of symmetry is assumed. Here, the cross flow velocity is set to zero. as are all all
spanwise derivatives. At the wing tip, all spanwise derivatives are also set equal to
zero. And finally. an attachment line approach®® is used to determine the initial
conditions at the leading edge.

I1.4.6  Wake curvature

When the flow leaves the wing at the trailing edge. it initially follows a curved
path and then soon aligns itself with the freesiream downstream of the wing. This
large curvature of the flow near the trailing edge can have a measurable effect on the
overall lift of the wing. In fact, Streett found that in one instance the sectional lift

coefficient near the tip of the wing was decreased by about four percent when the
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curvature of the wake was taken into account. Usually, if only first order effects are
considered, the pressures at the trailing edge would be equal on the upper and lower
surface. But, if the wake is considered to have an effective thickness of 6 + & due
to viscous effects and curvature, the pressures on either side of the wake will not be
equal except at the centerline of the wake. Since the flowfield about the wing and the
wake with the displacement thickness added to it is modeled inviscidly, the trick is
to calculate a pressure difference across the wake at the trailing edge in the inviscid
flow which will yield a zero pressure difference at the centerline of the wake in the
real viscous flow®?. It has been shown that the appropriate pressure jump across the
wake with a thickness of 6* can be written as a function of the curvature, x,.. of the
centerline of the actual wake. the mean tangential velocity. u,., and the mean density.
Puw, in the wake as

Ap = Ptop — Phottom = np,,u?wﬂw (2 —76)

Given that the pressure difference is small, this can be related to the cirenlation, T,

/ dr, = -/ BuhudSu (2-77)
Ite Tte

where S, is the arc distance along the wake. The circulation at the trailing edge

by

is calculated by the difference in the potentials at the trailing edge in the inviscid
solution and Eq. {2-77) is numerically integrated from the trailing edge to one grid
point upstream of the downstream boundary. The circulation at the downstream

boundary is then matched to the circulation obtained from the integration.
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Since the wake effects are relatively small,®? it is only important to know the
approximate location of the wake centerline. This simplifies the problem since the
actual wake location would have to be found by tracking the streamline of the inviscid
solution leaving the trailing edge and then a new grid would have to be created
about the new wake so that the boundary conditions on the wake could be applied.
Alternatively, the approximate shape of the wake can be found by assuming that the
streamline leaves the trailing edge smoothly at the average of the local trailing edge
angles and that then the angle between the wake centerline surface and the freestream
decays logarithmically, similar to that of a point vortex in a uniform freestream at a
given angle of attack®®. The circulation. T, of this point vortex located at the quarter
chord point counld be determined by forcing flow tangency at the trailing edge of the

wing section. The ordinate of the centerline of the wake would then have a form

similar to

| =~

3 3
Yuwake = Yte + tanafd — —c) — —ctan(a)ln
4 4 c

o)

where d is the z distance from the quarter chord point of the wing section.
The curvature of the flow. . can be determined by calculating the rate of change of
the flow angle at the approximated wake location.
I1.4.7  Wake thickness

The thickness of the wake is accounted for by simply adding the displacement
thicknesses obtained from the boundary layer solver to either side of the predefined
wake location. The ghost points in the wake are then redefined such that strict flow

tangency is enforced along this new surface.
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I1.5 Comparisor to Experiment

TAWFIVE was used to analyze RAE Wing-A wing-body at a Mach number
of .8, an angle of attack of 2 degrees, and a Reynolds number of 2.66 million based
on the root chord. The pressure obtained from this analysis are compared to some
experimental data at two convenient stations in Fig. 15. Even though no attempt
was made to try and match lift coefficients by changing Mach number or angle of
attack, the comparison between the experimental and predicted pressures is fairly
good up to the trailing edge. There TAWFIVE predicts slightly higher pressures.
This characteristic behavior has been attributed to the improper modeling of the
the strong viscous-interaction region at the trailing edge?® but may also be due to
a combination of the coarseness of the grid at the trailing edge and wind tunnel

interference errors.
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CHAPTER III

INVERSE DESIGN METHOD

III.1 Inverse Boundary Condition

As stated earlier, in the direct-inverse method a pressure boundary condition
is enforced rather than flow tangency aft of the portions of the wing which are to be
designed. Following Gally,'®~!% the input pressure coefficient can be written in terms

of the Mach number, M, and the freestream speed, g, as

2 41 ( qg)ffl
=2 lh=2 (-2 - 3-1
T “1 e (S 1 (3-1)

where ¢ = (1~ v? —w?) g% .
Solving for w in Eq. (3-1) yields
2 = H
2 L MG >
M ey [(1 T ) - 1}

1= (2 + (%)

u =

(3-2)

This form of the equation seems to have been chosen over the more obvious form of

.
- 3
2 YMCp\ 2 |
“‘[1’(-,71]1[; (1_ 2 ) 71}‘1 o B3

since it is less likely that its radicand would be negative. Equating Eq. {3-2] and the

first tow of Eq. {2-38) results in

vt
2 YMPeCp\ T
- Gt [(1* =) ‘1]
Judg + Jiagy + Jisdg = 7 3 —cosa (3—4)

T ()



where J; ; are the elements of (HT) _1. A potential, (¢;;%), can be formulated
in terms of the pressure coefficient by expanding about the grid point location
(i - %,j,k), and then using central differences in the ¢ and ¢ direction and second
order backward differences in the normal direction, 7, yielding
Jun ( - ¢>§‘-1.J,k)
+ J12[3 (éfﬁ + ¢?—1‘j‘h) -4 ('ﬂ,j_l,k + o1
+ %kt Ol a4 (3-5)

‘ . n n n ;
13 (B kr T 01 k1 — @Ljke1 — Sor k1) /4

=F (Op-i-%vk)

n+1

where &" are the potentials at the current time level and & are the updated
potentials.

Solving for the ¢ to be specified. Eq. (3-5) becomes

1
ntl
ot =
thy b i+ %‘712

{Jlioliug,k
—Jiz [30?41&” =4 (0] hyo1k + O 1 y—10)
~ Oy Q:Lrl,ky~24k] /4 (3-6)
= J13 (0 hy o1 = O Lyt — O kykot — Plotikyet) 14
F (0, )
where F (['p L_%‘k) is the right hand side of Eq. (2-72) and j = ky on the wing
surface. Also. the n grid lines are numbered such that ky — 1 is the location of the

grid point immediately above the wing's surface. Pressures are specified at half grid

point locations in the ¢ direction to eliminate the chance of the solution decoupling
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on ‘odd’ and ‘even’ grid points. Since the actual sectional shape of the final wing
is unknown initially, the potentials are specified on the wing’s surface at the present

time level.

1112 Integration of the Flow Tangency Boundary Condition

Since the grid is boundary conforming, the wing sections in the design region
must be updated every so often by integrating the flow tangency condition written
in curvilinear coordinates. After Gally, the curvilinear form of the equation can be

found by first considering the flow tangency condition for Cartesian coordinates
UTVF =0  with F(z,y,2) =0 3-17)

where U is the physical velocities and F is the function describing the surface of the
wing.
The physical velocities can be related to the contravariant velocities using the
aforementioned relations. which are repeated here for convenience.
Te Iy X o
[U]:(yg Yn yc)(v>=[H}[Vj:HV (3-8)
e Imo 3 w
By using the chain rule in the same manner in which the above expression was derived,
the gradient. V. of the surface function. F, with respect to the physical coordinates.

r.y. = can be related to the gradient, V', of the surface function S(¢.5.() by

95

i & N Gz 9
,VFIZ(Ey Ty q) 2 =S 3-9)

& G %

Substituting these two into the tangency equation gives

HV)I(HH)TV'S=0 (3-10)



Using the identity from linear algebra,
[A Bf =BTAT (3-11)

Eq. (3-10) becomes
VI H] Vs =0 (3-12)
which is reduced to the desired form of the flow tangency condition for curvilinear

coordinates :

vI.vis=0 (3-13)
A more convenient form is obtained by expanding this to

[0S 05 08 _

95 08 08 314
E R (3-14)

Since the wing is a surface of constant 7 . where
S ) =0l ay —n =0
as :371(@(11@

T

s _ | (3 - 15)
Iy

95 _ (€ Oy

IZ4 8¢

Eq. (3-14) reduces to

dl) _E,E(@) 318
(55 ik U UNOCT ( )

The integration of this equation can be handled in two different ways. If the

spanwise term, aﬂ, is lagged one global iteration, it will always be zero since upon the
p 32, is lagg g y



creation of a new grid, all derivatives of 7 with respect to the £ or { direction vanish

on the wing's surface; and, Eq. (3-16) reduces to

(&)™ (). i

The other approach would be to integrate Eq. (3-16) iteratively. If the contravariant
velocities are frozen at their current values, and the spanwise terms are initially as-
sumed to be zero, Eq. (3-17) can be integrated to find the approximate inverse changes
Ap. These can be used to find approximations to the spatial spanwise derivative, gf?‘
which can then be included in Eq. (3-16) to provide a better approximation to the
flow tangency equation. The process can then be repeated using Eq. (3-16) until the
spatial derivatives converge. Numerical experiments reveal that the spanwise terms
are at least two orders of magnitude smaller than the chordwise terms prior to the
creation of the new grid. Hence, the spanwise terms can normally be neglected.

Equation (3-17) was integrated using the trapezoidal rule

Tk = £2£ <(%)Lk + (%>,41,k> +{)ierrk

IH=-1 upper surface (3 -18)

II=+1 lower surface
For comparison purposes the fourth order scheme

(), (F) L () L () )
Nk =57 191 5= - = -2 = -\ 7
24 U/ U/t Ui U/ isins (3 -19)

Moz

was also used. With the fourth order scheme the trapezoidal rule was used for the

first two integration steps. This higher order integration scheme had little effect on
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the final answers, except for coarse grids in regions of high curvature such as the cove
region of a supercritical airfoil.

Since Gally found that calculating V using strictly finite differences was not
accurate enough, he instead, using an approach similar to that in Ref. (60), discovered

that ¥V was most accurately obtained from the residual expression. First, assume that

V. phV _ pene(phV)

U™ phll ~ pee(phll)

(3 -20)

and then combine the previously defined averaging and differencing operators

1 . -
in 0V )iy = 5 (90 V)isgagn + (PBV )y i) (3-21)
EqlphV ) gy = ((I)hv)i,ky—%,l: - (Ph")f.ky~%‘k) (3-22)
to generate
89 (PhV), jy s = z(phv‘)l,kyfé‘k = 2 (PR V) ey (3 —23})

Substituting this result into the residual expression. Eq. (2-43). and solving for the

out of plane flux, ph¥’, on the wing surface gives

2ieac (PRV )iy b = binche (PRD ), sy + Zitec (PRVi i) + ( :
° 3-24
penfic (PhWiaya) — compensation and upwinding terms

Since at convergence the flow should also be tangent to the designed surface.

the tangency condition is enforced in the residual expression. Eq. {2-43}. by setting

(P )iyt s = — PRV )iy 1 (3-25)



The resulting expression is identical the RHS of Eq. (3-24), and the expression for

the normal flux becomes

Residual

20 (3 —26)

#enc (PRV ), oy =

Note that since the residual is not zero in the design region due to the inverse boundary
condition, this expression reveals that there will be a mass flux of fluid from the
boundary?*~37 during the iterative design process. No attempt was made to account
for this transient flux, since at convergence it would be zero.

Upon substitution of Eq. (3-26) into Eq. {3-20) and using the cell averaged flux,

phU, on the surface the boundary condition becomes

OV pga(phV) Residual (327
Lo Bl p o Sesitnd 3 97

9 T U7 penlphl)  2pgc(phl)

The changes normal to the surface at each spanwise station are obtained by integrating
from the beginning of the inverse region to the trailing edge using the trapezoidal rule.

Assuming that the grid line leaving the wing in the 5 direction is normal to the
wing, these changes. An. are then converted from computational to physical units by

scaling by transformation metrics such that

- Jék @2 .
Alqu\, % "5 (3 - 28)

After subtracting the boundary layer displacement thickness from the inverse changes.
Al's. which are linearly interpolated to the user defined input stations. the resulting
displacements are added to the initial airfoil sections yielding the new wing surface

for the current time level.
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IIL.3  Relofting

Many times the trailing edge thickness may be too large if the leading edge
curvature is too small or may be ‘fish-tailed’ if the leading edge curvature is too
large. These undesirable situations can be remedied by a procedure called relofting
where the designed surface is rotated about the leading edge to meet a specified
trailing edge ordinate or trailing edge thickness.5~8:23.2¢
This relofting procedure can be accomplished in two separate ways.!®14 In the

first method, assuming both the upper and lower surfaces of the wing are being

designed, the user specified trailing edge ordinate,

A
Vegper = Yang * { (3-129)

is subtracted from the ordinate of the displaced surface,

Ydesign = Yinitiolupper = Dprer (3 --30)
Tower ower
to yield a correction of
e = Yt — Ydesign (3-31)

where A, is the user specified trailing edge thickness, Apper s the initial inverse
ower

change, ¥initiar is the trailing edge ordinate of the original airfoil section. and ygug is

the average of the trailing edge ordinates of the input geometry.

This correction,

. _ T — Tl _
Bilz) = b, % ( m,d) (3-32)

is proportionally added to the initial inverse displacements which amounts to a rota-

tion of the displaced surface about the leading edge to meet the trailing edge ordinate.
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Fig. 16  The effect of relofting on the design in the initial stages of convergence

To illustrate this relofting procedure, the first global iteration of a typical design be-

fore and after relofting is revealed in Fig. 16

If only the trailing edge thickness is specified. allowing the trailing edge ordinate

the freedom to vary, the correction instead becomes

ﬂfiﬂ“”l\(""%) (3-33)

bree =15
2 2 chord

where Ay and Al are the initial inverse changes on the upper and lower surfaces
respectively. It should be noted that the inverse displacements are positive when

they cause an increase in thickness.
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The second relofting scheme determines the displacements aft of the direct-
inverse junction of the design region in the same way, but the leading edge ordinates
are thinned to meet the displaced surface at the beginning of the design region. This

insures that the leading edge shapes remain in the same family of airfoils.

o+l
y“+1(:c) =4"(2) Yidle (3-34)
Yidte™

where Y. is the airfoil thickness at the direct-inverse interface in the chordwise
direction.

In order afford the designer extra flexibility, one more relofting scheme was
devised where a portion of the trailing edge region is user specified instead of just
the trailing edge ordinate. Using the same rational as with the rotation scheme. the
correction added to the displaced surface to meet the specified ordinate at the aft

direct-inverse junction located at zigs., is

iz) = Bz x ) (3-33)

Tidte — Tle



CHAPTER IV

REMEDYING SPANWISE INSTABILITIES

IV.1 Spanwise Oscillations

In the original work by Gally'®* the pressure distributions applied at the
computational grid stations of constant ¢ lines on the wing in the design region were
obtained by spanwise, linear interpolation of the pressures input by the user at de-
sign stations to every grid station delimited. This meant that the inverse boundary
condition was enforced at every constant { grid station in the design region. and that
every sectional shape was determined relatively independent of the others. Unfortu-
nately, an annoying divergent spanwise oscillation problem sometimes occurred when
designing a wing which required extensive relofting. especially when the initial section
was thinner than the target. This oscillation led to sections which were too thick or
too thin at adjacent constant ( grid station. {see Fig. 17). This problem was more
pronounced when the sweep was increased or the aspect ratio was decreased and was
usually divergent except for very high aspect-ratio wings (AR=10) with no sweep

Early in the research, it was discovered that the problem could be circumvented
by specifying the €', distribution at at least every other constant { grid station and
then linearly interpolating the inverse displacements calculated at those grid stations
to the other grid stations included in the design region. The regions in the middle

of the design region were simply analyzed using the original flow-tangency boundary
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condition. The resulting sections, interpolated to the geometry input stations, were
all relofted as usual to satisfy the trailing edge ordinate condition. This procedure
led to a convergent solution most of the time, except when designing wings with
significant sweep or with low aspect ratios, such as Lockheed Wing-B and Wing-C.

It was later discovered that a similar procedure was briefly discussed in Ref. 40 to
overcome a decoupling of the solution in the chordwise and spanwise direction leading
to a numerical instability when using an inverse panel-method code. In this case, the
ordinates of the ‘odd’ points along the chord were obtained by quadratic interpolation
using the ordinates of adjacent 'even' chordwise points while the ordinates of each
‘odd’ spanwise grid station were generated using linear interpolation between the
contiguous ‘even’ spanwise stations. This procedure effectively eliminated half of the
unknowns. The similarities of the decoupling problem in this scheme and our direct-
inverse method are quite evident. even though the design schemes are quit; different
in methodology

Although this somewhat heuristic cure to the problem seemed to work for the
most part. the fundamental cause for this problem was not well understood. hence the
oscillation problem was investigated in much greater depth. Initially. it was thought
that either the inverse boundary condition or the relofting scheme was solely to blame.
which led at first to a series of reformulations: while none of these were successful.
they did create great insight into the problem.

Since the oscillation problem seemed to stem from the uncoupling of the solution

in the spanwise direction, the original inverse boundary condition in Eg. (3-5) was
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rewritten as

o 4Ju +3J12¢'n.+1 T
e — Gikyk ~ Viky 1 =

5; { JudE Ly

- Jiz [3¢':”-1.ky¢ — 4 (Sl hymr e+ Bt py—1) (-1

+ Olay-za ¢?—1.ky—2.k] /4+F (C',, ,--%,k)}

+ Dt k1 — Pim Ly k-1
such that the ¢'s could be obtained implicitly in the spanwise direction. Although
this would seem to strongly couple the potential field in the spanwise direction. it did
not deter the solution from oscillating in the slightest regard.

One form of Eq. (3-4) was tried using one-sided differences for the spanwise
derivatives. and vet another which specified the ', at (i — %.ky.k —$) grid locations:
but they did not cure the problem either

The idea of devising a conservative formulation of the inverse boundary con-
dition using a control volume approach more in keeping with the spirit of the finite
volume scheme used in FLO-30 or the approach used in Ref. (41) was conceived, but
the details necessary to implement this approach were never pursued

Attention was then directed towards the methods used to integrate the flow
tangency equation and the relofting of the resulting shapes. Since the problem seemed
to stem from the lack of spanwise information, the spanwise terms in Eq. {3-16)
were included during the surface update process. The ratio ‘,i was obtained from
Eq. (2-39) and the potentials at the present time level. An approximation of the

spanwise derivatives, g%, was calculated using central spanwise differences of the
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initial displacements which were calculated using Eq. (3-17). Then Eq. (3-16) was
solved iteratively until there was no appreciable change in the displacements. In case
the relofting adversely affected the results, this process was also tried after the inverse
displacements were changed with relofting. However, the inclusion of these terms had
very little effect on the displacements calculated since, in both cases, they were at
least an order of magnitude smaller and did not help the divergence problem in the
slightest regard.

Spanwise smoothing of the displacements was also tried. Although this tech-
nique did provide a smoothly varying distribution of sectional thicknesses, the diver-
gence was merely slowed. Sometimes the solution would reach a settling point where
it would not converge further. but the resulting section shapes were not satisfactorily
accurate.

In the midst of the search for a cure for the oscillation problem. it was discovered
that if the potentials obtained from a converged solution of the target section were
specified on the wing using a different initial geometry, the design solution would
converge without oscillating. This result appeared to condemn the inverse boundary
condition and redeem the integration and relofting schemes. On the other hand. if
the inverse boundary condition was applied at every grid station. and displacements
were calculated only at every other spanwise grid station and were interpolated to the’
stations in between, the solution also converged. which seemed to indicate that the
inverse boundary condition was not the sole origin of the problem. Thus, it appeared

that the problem was stemmed from a combination of causes.
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IV.2 Success

After the many failed attempts of remedying the oscillation problem by refor-
mulating the inverse boundary condition and the integration and relofting shemes,
attention was directed towards the residual and the terms composing it. The residual
is directly affected by the inverse boundary condition; moreover, the residual directly
influences the section shapes through the integration of the flow tangency boundary
condition. Consequently, the residual was broken into its major components and
plotted in the spanwise direction after each surface update of a known divergent case.
This case happened to be a medium-grid design of Lockheed Wing-A with the initial
section being a NACA 0006 section over the entire wing and the target being a NACA
D012 section. The design region extended from 30% to 70% semispan. Sample plots
for this divergent case are shown at four different time levels in Fig. 18. where the
total residual also includes the upwinding terms. As can be seen. the compensation
terms. which include spanwise derivatives of . at first are very small compared to
the rest of the terms but later tend to dominate and amplify the oscillation. This
oscillation starts at the direct-inverse interface or, in other words, at the first span-
wise station from the root in the design region and propagates spanwise as a damped
oscillation with a period of two grid spacings.

The oscillation problem seems to be driven by a combination of events which
build upon each other causing a divergence. It is believed that the initial mismatch in
the potentials at the direct-inverse interface in the spanwise direction is amplified by

the compensation terms which include spanwise derivatives of the potential function.
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The residual is then undershot and overshot on alternating spanwise stations. This
oscillation is further magnified by relofting, which creates a section that is too thin
when the slopes defined in Eq. (3-27), which of course are directly proportional to the
residual, are too large and vice-versa. Since more or less fluid has to be ejected from
the section that is too thin or thick, respectively, to give a streamline approximately
corresponding to the correct target section, the potential field shown in Fig. 19
at each design station is forced further away from the adjacent fields by the inverse
boundary condition which in turn forces an even further undershoot or overshoot of
the residual, resulting in a growing spanwise oscillation. With the aid of other nu-
merical experiments, it has been found that it is only necessary to have two adjacent
design stations to drive this oscillation to divergence. It is of interest that when the
wavy wing surface resulting from a divergent solution was analyzed with TAWFIVE.
the potential field varied more smoothly in the spanwise direction than did t‘l\e poten-
tial field obtained from the design solution. In light of the previous discussion, this
result verifies that the inverse boundary condition was. in fact, forcing the adjacent
potential fields away from each other.

It should be noted that this problem is not due solely to the implementation
of the direct-inverse technique since this oscillation has not been observed with the
ZEBRA design code. Rather. it seems to be unique to the coupling of the method
with the analysis code, FLO-30. Seemingly, two pertinent differences between the
two codes exit. Firstly, the ZEBRA code, which uses a sheared Cartesian coordinate

system aligned with the wing, applies the boundary conditions at the mean plane of
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the wing. This first difference is important, since the actual thickness of the wing
may have less of an impact on the flowfield computed by the ZEBRA scheme due to
the fact that the point of application of the boundary condition is not changing with
time. Secondly, its full potential, fully conservative numerical scheme uses a mid-
segment type of finite difference approach rather than a finite-volume scheme with
fourth derivative type compensation terms'® that seem to be amplifying the errors in
the design solution.

Nevertheless, after exploring many alternatives to counter this oscillation prob-
lem, four methods based on the previous observations have been devised to damp out
the spanwise oscillation:

A) Specify the inverse boundary condition at at least every other spanwise
station and linearly interpolate the inverse displacements to the statious lying in
between. This has been named the Type II-2 method.

B) Specify the inverse boundary condition at every station. but again only
calculate inverse changes at every other station and linearly interpolate the inverse
changes to the stations in between. This will be referred to as the Type II method.

('} Iinmediately prior to every surface update. calculate all spanwise derivatives
of the potential in the residual based upon a potential function smoothed in the
spanwise direction. This smoothing is accomplished by first defining the operator o
as

ocf = Sheas (1=5) fus Shas 0e<l (4-2)
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where ¢ determines the amount of smoothing. Then using o in the spanwise differ-

entiation of ¢ with the maximum amount of smoothing (i.e.,, ¢ = 1)

% - -
(8). sy ™o -9

the smoothed spanwise derivative of ¢ becomes

() _ {igbez = Gigp + Biike1 — i
(9

igk+d T 1.0 (4-4)

D) Smooth the slopes, %, in the spanwise direction in the design region in the

same manner as with method C. It should be noted that, as stated earlier, smoothing
the integrated slopes. 1.e the inverse corrections. did not suppress the oscillation but
only slowed the rate of divergence.

Three different cases were studied in order to test the effectiveness of each
method at suppressing the oscillation and in reproducing the known target section.
All three cases used Lockheed Wing-A at a Mach number of .8 and at an angle of
attack of 2°. The first case utilized a NACA 0012 airfoil as the initial section and the
original supercritical wing sections accompanying Wing-A as the target section. The
design region stretched from 30-70% semispan of the wing and began 3% aft of the
leading edge and extended to the trailing edge. Since a medium grid (80x12x16) was

employed, there was a constant ¢ grid station at every 10% semispan. Results are



shown in Fig. 20 for the four different approaches.

Although all four approaches worked well for this case, by using the RMS of the
errors between the target section and the section designed as a measure of accuracy,
methods A and C produced the best results for this case in the interior as well as
at the edges of the design region. For the same number of flowfield iterations, the
technique D produced the most unsatisfactory results when compared to the target
sections.

The effect of each approach on the residual at the trailing edge after 10 surface
updates can be seen in Fig, 21. The discontinuities in the residual for method 4
is due to the fact that the inverse boundary condition is applied only at the 30, 50
and 70% semispan locations. All four approaches have a charactenstic jump in the
residual at the first spanwise design station at 30% semispan. This jump is probably
due to the previously discussed spanwise mismatch problem with the pot‘eutials at
the direct-inverse interface, which manifests itself in the compensation terms. The
Type 1T method had the largest jump at this interface, while the Type II-2 method
had the smallest jump. Notice that the spanwise distributions of the residual for the
two smoothing approaches are quite similar in the design region.

Since only small differences existed between the methods for the previous test
case. a more severe test was conducted by designing an entire wing using NACA 0006
sections as the initial airfoils and NAC'A 0012 sections as the targets. These sections
were chosen due to the fact that most of the problems in the past were amplified

by beginning with a thin section and targeting a thicker section. Furthermore. a
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full wing design would reveal whether the accuracy of each method depended on the
spanwise location of the wing.

When an attempt was made to compute these cases, it was discovered that
when using the smoothing two smoothing techniques, (methods C and D}, it was
necessary to use zero order extrapolation of the displacements from the adjacent
grid station to the root section. The root section tended to lag in the convergence
process in comparison to the rest of the grid stations. This behavior is possibly due
to a slowly converging flowfield at the the wing-fuselage juncture. Since all of the
sections started out too thin, this lagging of the root section forced the adjacent
grid station to quickly become too thick. which led to divergence at the root in both
cases. Zero order extrapolation of the nondimensionalized displacements forced the
oot section to converge at a rate which was more in compliance with the rest of the
grid stations at the expense of degrading the accuracy of the root section. Since the
root section has been successfully designed independently. presumably. this problem
might be circumvented by simply allowing the flowfield solution to converge further
before each relofting, although such a procedure would probably be a less efficient
approach.

Also, no smoothing of the potentials or the residuals was used at the tip. Since
both the residual and the potentials are quickly varying in the spanwise direction in
the tip region. smoothing leads to large errors in the residuals and hence the section
shapes. In fact, better results can be obtained for the smoothed potential approach
by using a zero order extrapolation of the normalized displacements from the grid

station inboard of the tip to the tip. Overall though. the inboard sections of the wing



slowly became thicker, while those outboard responded more quickly, initially causing
these outboard sections to actually become too thick.

The resulting sectional shapes for the four different methods are compared in
Fig. 22.  As can be seen in the figure, method C works well when designing in the
interior of the wing, but did not give satisfactory results at the tip of the wing where
smoothing the quickly varying potential led to large errors in the section shapes. Since
the residuals also varied quickly at the tip, the slopes at the tip were not smoothed
with method D. Since there were not any slopes defined at the fuselage ghost point
location, (i, ky, 2), the slopes were not smoothed at the root either. This method
produced the most accurate results while still managing to suppress the oscillation
problem. In contrast. the Type II and Type II-2 methods worked well on the entire
wing surface, and nothing special needed to be done at the root or tip.

The same case was executed on the fine grid (160x24x32) to study any effect
of grid size on the accuracy and effectiveness of the methods. This grid allowed 21
design stations which were located a distance of 5% semispans from each other. When
using the Type II and Type [I-2 methods, the lagging of the root section actually
forced the section located at 10% semispan, two grid stations outboard. to become
too thick, which led again to a divergent solution. Thus, for this fine grid case. it was
necessary to use zero order extrapolation of the the normalized displacements from
the adjacent station to the root when using all four remedies. C'ases which do not
require such large changes in thickness at the root have not required this procedure

using the Type Il and Type II-2 methods. In addition, because of the aforementioned
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problems with the smoothing approaches at the tip, no smoothing was used at the
tip section.

The results for this case are shown in Fig. 23. For this case, the smoothing
approaches yielded satisfactory sections on the region of the wing spanning from
about 30% to 85%. Elsewhere, the sectional shapes vary significantly from the target
section. Thus, the smoothing approaches work well when designing in the interior of
the wing, but they do not give satisfactory results near the root and tip of the wing.

An objective measurement of the accuracy of the sections in relation to the

target can be obtained using a coefficient of determination, r, defined ast? .

-k (1-3)

:V -
¥

where o is the standard deviation of the ordinates of the target section defined as

Py (¥~ Ymean]” B
n—1 } (-6
and
R [El;l (yi - ydengn)2] o)
v = n-2

is the deviation of the design from the target for the same r values. This quantity
varies from 0 to 1, one being perfect

Moreover. to further clarify which method produced the least amount of oscil-
lation. the average error variation in the spanwise direction for each method should
be compared. The spanwise variation of the coefficient of determination and average

percent error are shown in Figs. 24-29. The Type II and Type 1I-2 methods
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produced the least amount of oscillation, while smoothing the potentials produced
the most amount of oscillation in the error.

There is still some doubt by this investigator whether only secondary aberrations
have been observed and not the true, fundamental cause of the oscillation. In light
of this, another effect that should be investigated is that of the addition of mass into
the flowfield by the inverse boundary condition. Some other investigatots”'“ have
included a source correction in the far field and in the near field*®. In this research,
this source correction was neglected since this addition of mass would be driven to
zero at convergence. But, its effect on the unconverged solution is not clear. In order
to see if this had a significant effect on the solution. a quick, numerical experiment was
performed in which the distance to the outer boundary was doubled. (See Fig. 30)
Presumably, if the addition of mass was adversely affecting the boundary condition
in that region for a given distance. it would have less of an effect if the distance were
increased since the additional mass flux arriving at the boundary would be less and the
outer boundary boundary condition would be better satisfied. When this computation
was completed. however, the solution seemed to be completely unaffected. diverging
at the same point in the iteration history. This was only a simple attempt at proving
that the sources on the wing were not the fundamental motivation for the oscillation.
A thorough analysis must consider the effect of this mass addition on the downstream
boundary and the near field. The downstream boundary could be stretched further
downstream. and appropriate source correction terms, using the flux ejected from the
inverse regions of the wing as the source strength. could be added to the reduced

potential in the entire flowfield.
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Fig. 30 Grid System at the wing-body’s surface with a radial boundary stretched
twice as far as the original grid system ’ .
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Another possible cause could be the assumption of flow tangency used in the
residual expression in the integration of the flow tangency equation. When this as-
sumption is made, not only are the fluxes reflected about the current wing boundary,
but so are the compensation terms. This procedure in effect doubles the amplitude of
the &,¢ and the 8¢, type compensation terms. Since the flow is not generally tangent
to the current shape when designing a new airfoil section, reflecting the compensation
terms may be initially incorrect. An alternative formulation may be needed.

In retrospect, a few comments about the advantages of each method in different
design situations are warranted. For instance, methods C and D give the designer the
most flexibility; the desired pressure distributions can be imposed at every spanwise
grid station. and the section shapes corresponding to each grid station can be calcu-
lated relatively independently of the adjacent stations. On the other hand. because
of the interpolation required in the first two methods. the section shapes at odd’
stations are directly dependent upon the shapes at ‘even’ stations: so although the
designer loses a little flexibility, he gains a smoother spanwise distribution of section
thicknesses in the spanwise direction. From a designer’s standpoint of course. method
A is the most restrictive of the four, but it yields the smoothest designs in the span-
wise direction, and converges the quickest. Therefore. method A (i.e., the Type II-2
method) would most probably be the best to use with wings of moderate to high
aspect ratios. But. Method B (i.e.. the Type II method) would most probably be

necessary for wings with aspect ratios of the same order as Lockheed Wing-B.



92

CHAPTER V

RESULTS AND DISCUSSION

Since the versatility of the method in designing multiple, overlapping

4413 most of the

regions of the wing has already been well demonstrated by Gally
test cases presented, herein, were chosen instead to exhibit some of the constraints
and limitations of the current inverse design procedure. The cases were chosen to
reveal the approximate limits imposed on the aspect ratio and sweep of the wing; and
the significance of grid skewness, viscous interaction, grid refinement, and the initial
airfoil on the final airfoil section design. Some questions about the compatibility
of Mach number and pressure distribution will be answered by designing a wing
at one Mach number using pressures obtained from a wing analysis at a different

Mach number. Finally, preliminary results will be presented for a partial wing design

beginning aft of the leading edge and terminating forward of the trailing edge.

V.1 Boundary Layer and Wake Effects

One of the objectives of this study was to determine the significance of various
viscous effect in the design of fransonic wings®. The wing chosen for this study was
a typical transport type wing, Lockheed Wing-A. This wing has an aspect ratio of
8.0, a leading edge sweep of 27°, a taper ratio of .41, a twist of 2.28% at the root and

-2.04° at the tip, and 1.5° of dihedral.
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An input pressure distribution was obtained by analyzing Lockheed Wing-A us-
ing full viscous effects ; these included boundary layer displacement thickness, wake
thickness, and wake curvature. The flight Mach number of .8, angle of attack of two
degrees, and Reynolds number, Re, of 26 million used in the analysis were thought to
represent flight conditions for a typical, average-sized transport; and the distribution
was considered to be typical of that which would be available to and desired by a
designer. All computations were performed on a fine (160x24x32) grid. The resulting
pressure distributions obtained from the analysis were used in two separate design
cases, each composed of five and three subcases, respectively. The first series of cases
was a full wing design using the target section as the initial section. By using the
target section, any effect of the initial section on the final outcome would presum-
ably be eliminated. The type II design method was used and the inverse boundary
condition was enforced from 5% aft of the leading edge to the trailing edge. Further-
more, relofting was not initially done at all. The results for the partially converged
cases were plotted and then further converged allowing relofting to take place. In
this way, the effect of relofting on the final design could be determined. The itera-
tion history of each case was kept the same, even though by doing this the absolute
level of convergence could very well be different since changes of various magnitudes
were associated with each case. The large amount of computational time required for
these cases dictated this type procedure and for comparison purposes this approach
is acceptable. Fortunately, it turned out that the sectional shapes in every case were
varying quite slowly by the end of the design run, indicating that the sections were

near convergence.
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In each case, viscous options were ‘turned off’ one at a time to assess their
effect. In the first case, the wing was designed with all viscous effects. In the second,
the lag entrainment was turned off. The third case did not use wake curvature, while
the fourth neglected both wake curvature and wake thickness. Finally, in the fifth
case the wing was designed inviscidly. The resulting unrelofted designs for each case
are compared in Fig. 31. As expected, the inviscidly designed sections are slightly
thicker at the root where the normalized boundary layer displacements are thinnest
(see Fig. 32 ) and become increasingly thicker towards the tip in accordance with
the thickening boundary layer.

Neglecting lag entrainment, wake curvature and thickness had very little effect
on the designed sectional shapes overall. But, if the trailing edge region is examined
closely for cases with the wake effects neglected. the trailing edges sometimes cross.

Upon converging these shapes further and enforcing a trailing edge ordinate
requirement with relofting, significantly different results were obtained. As shown
in Fig. 33, the inviscidly designed shapes are now thinner on the upper surface and
slightly thicker on the lower surface, especially in the cove region where viscous effects
are large. Also. because of the relofting involved. the leading edge radius has become
smaller. The rest of the cases produced sections which did not deviate much from the
target, except near the tip. However. neglecting both wake effects produced sections
that were actually thicker than the target. This change was due to the relofting that
was necessary to uncross the trailing edges, which produced larger leading edge radii

and hence thicker sections.
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Table 1. Results from the analysis of the wings designed with different viscous in-
teraction assumptions at a M = .8 and a Re = 24 x 108

Case Wing Cg, Wing Cp
+Fuselage C'}

Target 4745 5347 0197

Full Viscous 4636 .5226 .0195

No Lag Entrainment| 4719 .5316 .0197

No Wake Curvature 4636 5226 .0195

No Wake Effects | 4605 5194 0193

Invisid | 4060 | 4508 | 0169

The resulting wing for each case was analyzed using full viscous effects and the
same iteration history. Table 1 gives a comparison of the lift and drag coefficients
resulting from the analyses of these designed wings.

As can be seen from the pressure distributions shown in Fig. 3¢ and Table 1.
the inviscidly designed wing produced 15% less lift than did the target wing. The lift
usually obtained in the cove region was diminished. in this case. by the decambering of
the aft portion of the wing. The thinning of the top in conjunction with the thickening
of the bottom of the inviscidly designed airfoils also caused a decambering of each
section. which explains the large decrement in lift produced. As shown in Fig. 35, the
reason the top was thinner is because the boundary layer displacement thicknesses
which are ‘built’ into the imposed pressure distribution were not subtracted from

the inverse displacements in the inviscid design. In order to meet the trailing edge
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ordinate requirement, the resulting section had to be relofted more to compensate,
thus leading to a thinner section on top.

The wing lift coefficients obtained from the analyses indicate that by not using
lag entrainment, a design correlating closely with the target can be better accom-
plished for the given sequence and number of flowfield iterations. It is suspected
displacements and hence the inverse displacements may take longer to converge to
the correct value as compared to excluding lag entrainment. By ignoring wake curva-
ture and using all the other available viscous options, wings with identically slightly
lower lift coefficients as compared to the targets were produced. Furthermore, wake
thickness influenced the design in a slightly more profound way than did wake curva-
ture by producing a wing with 3% less lift than the target.

As an after thought, the original wing was analyzed with each viscous option to
assess its effect. The analysis results of the designed wings, shown in Fig. 36, reveal
that wake curvature effects were practically negligible. This result may be due to the
relatively high freestream Reynolds number of 25 million used in the comparisons.
Since this Re would lead to low values of §* and 6, the curvature effects would also be
expected to be low: Streett’s case®® used a much lower Reynolds number of 6 million.
On the other hand, neglecting wake thickness and lag entrainment effects both had a
decremental effect on the wing's lift. which was probably due to the forward shifting
of the shock location.

The second set of design cases involved a partial wing design which extended

from 30-70% semispan and began 10% aft of the leading edge of the airfoil, but the
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inverse boundary condition was only enforced at the 30, 50 and 70% semispan station
and the displacements were linearly interpolated to the stations in between. The
initial airfoil section at 50% semispan was formed by thinning the supercritical target
section by 6% and removing the cove region. The initial sections at the edges of the
design region were the same as the target sections, while the remaining sections were
obtained through linear interpolation. The results for these cases are presented in
Fig. 37. For the Reynold’s number chosen, neglecting wake effects seems to have
had a small effect on the resulting design. The sections are a little thicker than the
sections designed with full viscous effects. As noted earlier, the wake effects had
relatively little effect on the pressure distributions obtained from the analysis of the
target wing: but. when the boundary laver displacement thicknesses obtained were
investigated. it was discovered that neglecting wake effects in the analysis produced
boundary layer displacement thicknesses that were on the average 3.5% thicker at the
trailing edge than those obtained from a full viscous analysis. Since the boundary
layer displacement thicknesses are subtracted from the initial inverse changes to yield
the hard airfoil. these larger displacement thicknesses would produce a section that
was initially thinner than the target; but. after relofting the airfoil section, it would
actually be thicker than the target.

The wing sections designed inviscidly are profoundly different at 30 and 70%
semispan. but only slightly different at 50% semispan. The thinning of the top surface
in complement with the thickening of the lower surface significantly decambered these

sections. The large differences at the inboard and outboard design stations are due to
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the influence of the inviscid pressures outside the design region; and, the remarkable
agreement in the middle of the design region, except in the cove region where the
boundary layer is thick, is due to the influence of the viscous boundary condition
at the edges of the design region. This observation can be verified by reviewing the
previous case and noticing that the airfoils sections varied smoothly in the spanwise
direction at all spanwise stations.

After the wings were designed, all three were then analyzed with full viscous
effects to assess the significance of the changes made to the wing on the pressure distri-
butions and to see how well these pressures matched the target pressures. Knowing
that the wing designed with full viscous effects is correct, it is quite obvious from
Fig. 38 and Table 2 that the wing designed inviscidly is quite unsatisfactory. The
shock is not far enough aft and the lift produced is sometimes 20% smaller than that
desired.

Based on the results of this study, it can be concluded that for the Reynold's
number and Mach number chosen, wake curvature and wake thickness and lag en-
trainment have a very small effect on the designed airfoil sections. However. the
boundary layer displacement effect has a profound effect on the section shapes and
hence must be included in the design process to yield a wing which will produce the

desired lift in a viscous environment.

V.2 Spanwise Grid Skewness
In the course of the present research. it was discovered that the skewness of the

constant £ grid lines leaving the tip of the wing (Fig. 39) can have a dramatic effect on
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Table 2. Comparison of the total and wing lift coefficient obtained from a fully
viscous analysis of the wings designed using different viscous interaction
assumptions at a M = .8 and a Re = 24 x 10°

Lift Target| Full Viscous| No Wake Design| Inviscid Design|
Coeflicient]

C 514 .509 .506 427
Wing Cr | 483 478 ATT 419

the design of the sections near the wing tip. As can be seen in Fig. 40, if the grid was
significantly skewed and the input pressures were calculated on an nonskewed grid,
it was impossible to obtain the correct airfoil shapes in the tip region. This difficulty
is due to the large differences in pressures between the skewed and nonskewed grid.
These pressure profile differences are shown in Fig. 41.  As shown in the figure.
the grid skewness has caused the shock location to move further aft. Although the
skewness of the grid was quite extreme in this case. these results affirm the need for
smoothly varying grids in wing design. at least in the spanwise direction. It should
be noted though. that if the input pressures were obtained on a skewed grid and used
in the design process with a skewed grid then the tip sections were well resolved. In
summary then, if the pressures calculated on an nonskewed grid are correct or closer
to real pressures encountered in flight. then it would be wise to ensure that the grid

is smoothly varying.

V.3 Wing Planform Effects
Three cases were attempted to roughly delimit the applicable range of aspect

ratios and leading edge sweep angles for which good results could be obtained with



(b)

Fig. 39 Comparison between a fairly nonskewed (a) and skewed grid (b)
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Fig. 42 Grid generated about Wing-C with an incompatible root section and fuse-
lage cross section

the present design method. These included Lockheed Wings A. B and C. These wings
have aspect ratios of 8, 3.8. and 2.6, leading edge sweep angles of 27, 35, and 45 degrees
and taper ratios of .4. .4, and .3 respectively. The target pressure distributions were
obtained by a direct analysis of the target wings in an inviscid environment. The
initial section for Wing-A was a NACA 0012, while a NAC'A 0006 was used for Wing-
B. The original section was used with Wing-C due to the difficulty of the case. Also
for Wing-C, as opposed to the circular cross-section, an elliptical cross section of the
fuselage was used to provide a flatter surface for the grid generation package. The
circular cross-section combined with the large relative thickness of the root section
compared with the width of the fuselage played havoc on the grid at the root. as can

be seen in Fig. 42
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In order to better understand the flow about each wing, the corresponding

velocity vectors on the surface of each wing were plotted, as shown in Figs. 43-45.-

As should be expected, the spanwise component of the flow increases as the aspect
ratio decreases and sweep increases. It is also interesting that there seems to be
an inboard component of the flow for all three cases on the upper surfaces aft of the
leading edge. This inboard flow may be attributed to the effect of the fuselage and the
wing tip vortex. These effects can be seen most readily by viewing a cross section of
the flow just aft of the wing tip shown in Fig. 46. The vortex near the tip of the wing
is quite evident, and flow tangency at the fuselage also contributes to the spanwise
component of the flow. The momentum of the air over the tip must dominate the
flow. since, as seen in Figs. 47-19.the spanwise pressure gradients appear to encourage
the air to move outhoard However, in order to determine whether
the flow actually traveled in the inboard direction. it would be necessary to plot the
actual streamlines of the flow over the surface of the wing.

The design region for Wing-A and Wing-B extended from 10-100% semispan
and began 5% and 2.5% aft of the leading edge, respectively. Computations were
performed on a fine grid. Results for Wing-A are shown in Fig. 50, while results for
Wing-B are shown in Fig. 51.  As can be seen the designed and target sections for
both wings are in excellent agreement in the interior of the design region and closely
match at the edges of the design region.

In the case of Wing-C', the section shapes should not have changed with the

application of the inverse boundary condition. But, because of the large amount
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Fig. 47 Pressure contour plot for Lockheed Wing-A M = 8. a = 2°
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of spanwise flow and the associated spanwise gradients for Wing-C, the spanwise
oscillation effect could not be overcome with any of the present remedies. Further
information about this case was obtained by using the Type II method and not
relofting the section shapes. The results for such a converging fine grid case are
shown in Fig. 52. The first design station at 18% semispan is too thick on
the upper surface as compared to the target. This discrepancy is again due to the
over prediction of the residual at the first station due to the initial mismatch in
the potentials in the spanwise direction, and, hence. to large spanwise gradients of
the potential. The errors diminish as the tip is approached. but are always relatively
large in the trailing edge region due to the difficulty in accurately imposing the inverse
boundary condition near the trailing edge for this case. If an attempt were made to
converge this case further by continuously relofting the shapes to meet the trailing
edge ordinate, the same spanwise oscillation problem would again occur. However.
non-relofted results such as in Fig. 52 would be very useful for preliminary design

studies

V.4 Initial Profile Effects

One of the disadvantages of the direct-inverse method is that a prior: knowledge
about the correct shape of the leading edge must be known to achieve suitable airfoil
shapes and desired trailing edge thickness. Relofting does alleviate this disadvantage
to a large degree: but it will not. in general, produce a leading edge that will yield the
desired pressure distribution at the leading edge if the inverse boundary condition is

by necessity applied too far aft. It was thought that because FLO-30's grid package
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clusters grid lines close to the leading edge of the airfoil, that the design could be
started quite clmse to the leading edge, thus relieving the designer of the difficulty
of choosing a comrect nose shape. Two test cases were conducted to investigate the
dependence of the final design on the initial airfoil sect’ion. Both used Lockheed
Wing-A at the same conditions mentioned earlier for the viscous study. For the first
case, the initial airfoils were the same as those in the viscous study. These airfoils all
had leading edges which were in the same family as the target section. The design
began 10% aft of the leading edge. In the second case. NACA 0012 sections were
used at all the design stations; here. the leading edge of these sections were not in
the same family as the target airfoil sections. For this case, the pressure boundary
condition began 4% aft of the leading edge. Referring to Fig. 53, it can be seen that
although slightlx better results were obtained near the leading edge for the first case.
that the airfoils designed were fairly insensitive to the initial section.
V.41 Direct-inverse interface proximity to leading edge

Since experience with the method has shown that the closer the inverse bound-
ary condition is applied to the leading edge. the longer it takes for the sclution to
converge, it was of interest to determine how the location of the direct-inverse in-
terface affected the final design and the resulting pressure distributions. This study
was accomplished with the aid of the previously discussed Wing-B case. whose design
region began at 2.3% chord. and an inviscid design of Wing-B also with NAC'A 0006
sections as the initial geometry. With the second case. the design was started at 5%

chord from the leading edge; and. the input pressures were obtained from an inviscid
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analysis of Wing-B. Since the design pressure distributions were consistent in both of
these cases, the fact that one was a viscous design and the other an inviscid design is
not important here.

Some representative samples of the resulting section shapes for the second case
are shown in Fig. 54.  The resulting wings were analyzed under the same conditions
that the original input pressure distributions were obtained. Representative samples
of the resulting pressure distributions are compared to their respective target distri-
butions in Figs. 55,56. As can be seen. the wing whose design began 2.5% aft
captured the suction peek at the leading edge. while the other case, which began at
5% aft of the leading edge. did not

When designing near (less than 5%) the leading edge, the solution sometimes
began to slightly diverge or ceased converging. Usnally the design could be converged
to the point where there was only a maximum change in the surface of .1-.2% chord.
This was more a problem on the fine grid than on the medium. Ifit was necessary to
converge it further. the beginning of the design region was moved aft. This observation
is important because if it is necessary to begin the design close to the leading edge to
properly determine the shape of the nose. a successful design may be accomplished by
beginning the design as close to the leading edge as desired or is possible. then moving
the beginning of the design region aft as the solution approaches the last stages of
convergence. This method not only frees the designer from the task of choosing the
correct leading edge shape. but it should also accelerate the convergence of the design

considerably.



143

Section Thicknass {y/c)
R RN
Section Thicknass ty/c)
R ERE]

00 01 02 03 G4 05 08 07 08 08 10 00 01 02 03 04 08 O
Chord Fraction {x/c) Chord Fraction bu/c}
g
s
2
H
£
£
§
2
i
2
a
0 61 02 03 04 05 08 07 08 08 10
Chord Frection (x/c}
g oo z
2 o H
é o é
E E
5 g
3
& 004 3
00 01 02 03 04 05 08 07 08 09 10 00 01 02 03 04 0§ 08 07 08 08 tO
Chord Fraction (x/c) Chord Fraction (x/c)

Fig. 54 Comparison of the designed sections with the targets and the initial sections
for a fine grid case using Lockheed Wing-B and a design region beginning
at 5.0% aft of the leading edge.



Section Thickness ly/c)

144

Section Thickness lv/c}

0044

00 01 02 G3 04 05 08 07 08 08 10
Chord Fraction (x/c)

D oos
2
2 o
2
g 0.004
5 -002
§ 004

00 01 0z 03 04 05 08 07 08 08 10 00 01 02 03 04 05 08 07 08 08
Chord Fraction {x/c) Chord Fraction {x/c}

Fig. 54 Continued




145

g

Praasura Coslficient, Cp,
8

10 - v 10 - —
00 01 02 C3 04 08 08 07 08 OF 10 00 C1 02 03 04 05 08 07 O8 05 10
Chord Frection, x/c Chord Fraction, x/c
20 Porcent Semu B 30 Prrcent Swaua
apaa Cp DISTEIBUTIONS pan

a
L)ﬂl (4]
5 08 o o8
X
E ]
§ g
004 2 o0
8 8
2 H
5 E
w 0F n 05
g &
x TARGEY g=0z281 TARGET g -0z28s
N pore grom e i

Chord Fraction, x/c

——
00 01 02 03 G4 05 08 07 08 03 10

0 01 02 03 04 OF G2 07 08 08

Chord Fraction, x/c

3

Pressute Coefficlent, Cp
e o
§ 3

TaRGET
| DESIGN
06 0t 02 03 04 D5 08
Chord Fraction, x/c

10

Pressure Coefficiant, Cp

¢

3
2

3

0 03

90 Farcent Semupan
Cp DISTRIBUTIONS
‘TARGET

TARGET
DESIGY
0z 03 04 05 06 07

Chord Fraction, x/c

oans
g o282

08 08 1o

Fig. 55 Comparison of the pressure distributions obtained from an analysis of the
Wing-B design. which had a design region that began 2.5% aft of the
leading edge, with the target pressure distributions



Prassure Cosfficlent, Cp

80 Peroent Samispan 70 Parcent Semispan
Cp DISTRIBOTIONS Cp DESTRIBETIONS
i —heE & -]
5 o8 ‘ s o
5 oo g 0.0
2 0B é o5
TARCEY G mozm ‘uzcer G020
DESIGN 0200 wd DEme 0248
00 01 82 G2 04 O5 08 07 08 09 0 C1 02 03 04 05 G8 07 08 0§
e Chord Fraction,
;ﬂhwngou’ﬁlm
=3 JARGEY
3
o oad
é
8~
e
3 05
H
TARGET G =0230
oESIe G-ozm
0 01 02 03 Q4 05 OB 07 08 08 10
Chord Fraction, x/c
100 Peroen!
90 Percent Semispan 00 et Somlspan
TaRGET a
5 oEs o o
03 h - 084
g
H
kil
g
nn-[ 2 oo
Q
08 8 os
2
&
= 0204 nscer
1od DESION &aoam DEsiGy ]
00 O1 02 03 04 D5 08 07 O& 08 10 0 0t 02 03 04 L o8 w0
Chord Fraction, x/c Chord Fragtion, x/c
Fig. 55 Continued

146



147

mmmnum.c,
g ¢

Prassure Cosfficlant, C‘,
°
S

o= .
s S
i o 08
g
5
=
£
g o
o8 é o8
TroT Geoze
G=0zm
00 01 02 03 as 65 48 07 O8 G9 10
Chord Fraction, x/c
70 Fercant Semmpan
& TN
rceT a
5 DESEN. ©
08+ o 08
g
:
g 0o
o5 2 o
H
e o028 g gm0z
1ol oEoN diozm ey &0z

0 D1 0z 03 04 OB G8 O7 08 09 10
Chord Fraction. x/c

0 01 02 03 A4 O5 08 07 08 68 10
Chord Fraction, x/c

Pareent Semias 50 eroent. Somu
e oy
TARGET & TaRcEr
ToEmoN,
= 08+
g 3
: g m‘f‘“\__‘,
S
® 2
5 H
2 o8 2 os
& 2
‘e g -0203 macer =020
1o DESIGN =028 PESIGN g=ozer |
"0 01 02 03 0e OB 08 07 08 08 10 00 01 02 03 04 08 08 OF o
Chord Fraction, x/c Chord Fraction, x/¢

Fig. 56 Comparison of the pressure distributions obtained from an analysis of the
Wing-B design, which had a design region that began 5.0% aft of the
leading edge, with the target pressure distributions



4

25&

05
TaRcEt =028 TaRTET -0z
DESTGN G 02E LGN -0TM
1 03 04 08 0o 07 08 03 10 00 01 02 03 04 02 G8 7 08 03 10
Chord Fraction, x/¢ Chord Fraction, x/c
SRR
& i
s T oemo,
§
3 >
2
la) 05
g acer o mc205
DESIoN gacam
0 01 02 03 04 08 08 G 08 03 10

Chord Fraction, x/c

0 Poroert Somirpan
N @ SR
o w1 &
= 084 = o8
] g
5 5
! $
% oo T oo
8 3
g H
§ o84 2 os
3 ]
& [
e g=oma
1ol DESIO oz w0
0 01 02 03 O+ 05 08 07 08 0§ 10 G2 03 04 08 08 O
Chord Fraction, x/c Chorg Frection, x/¢

Fig. 56 Continued

148



149

Because of the leading edge clustering of grid points in TAWSD, successful
designs have been accomplished on the medium grid with the chordwise direct-inverse
junction beginning just aft of the stagnation point on the lower surface. If the pressure
boundary condition is applied upstream of the stagnation point, major difficulties
arise when an attempt is made to integrate past this point of singularity. since the
slope, %, is indeterminate there.

For the case shown in Fig. 57 , the design was begun 1% aft of the leading
edge, but in retrospect. it could have begun close to .3% aft of the leading edge since
the converged stagnation point was located about .2% aft. Notice how precisely the
designed surfaces can be computed when compared to the targets ontboard of the
first design station. This case effectively demonstrates that since the design region
can be extended extremely close to the leading edge with TAW3D, the fact that the
pressure boundary condition can only be applied aft of the leading edge is a very

small shortcoming of this direct-inverse method.

V.5 Pressure Distribution C'ompatibility

Since a designer might not readily have available an input pressure distribution
compatible with the design freestream Mach number. the effect of designing a wing
at one Mach number using a pressure distribution obtained from an analysis of the
wing at a different Mach number was investigated. The Wing-A planform was used
throughout this portion of the study. NACA 0012 sections were used as the targets

and NACA 0006 sections were used as the initial sections in the design. The entire
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wing was designed on from root to tip, and the design region started 10% aft of the
leading edge of the wing.

Two separate tests were performed. The first involved a fine design at & nearly
incompressible Mach number of .2 using a pressure distribution obtained from an
analysis of the target at a Mach number of .1. As can be seen from Fig. 58,
thinner section shapes were obtained at the higher Mach number. This thinning is in

agreement with the 2-D Prandtl-Glauert similarity rule®®

=X (5-1)
VAT

which states that the (', will be invariant with Mach number if the thickness. 7. is
reduced as the Mach number is increased for linearized flow. For this case. Eq. (5-
1) would predict that a 1.54% decrease in thickness would be necessary to have the
same pressure distribution at the higher Mach number. The design code for this 3-D
case produced a section which was on the average 1.6% thinner than the NACA 0012
section.

The second case involved a medium grid design at a Mach number of .85 using
a pressure distribution obtained at a Mach number of .80. Referring to Fig, 59, the
section shapes produced are again thinner than the initial section. The top surface.
though, required a sudden thinning of the surface at the shock location. Surprisingly,
upon analyzing this wing. the pressure distributions shown in Fig. 60 match quite
well with the target everywhere except in the tip region of the wing. So, given the
constraints of the problems. it appears that the only way the boundary conditions

could be met was to have these dips in the airfoil surface. Since these dips might
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lead to boundary layer difficulties, it would probably behoove the designer to vary
the Mach number or alter the pressure distribution to eliminate the necessity of these

dips.

V.6 Grid Refinement Effects

Since the computational time required for a design on the medium grid is about
an eighth of that required on a fine grid, it may be tempting to try to design on the
medium grid using fine grid or real pressures. In order to assess the practicality of this
approach, a transonic design on a medium grid using fine grid pressures was carried
out. The case was performed at a Mach number of .8 and an angle of attack of two
degrees. The original supercritical sections for Wing-A were used as the initial. as
well as. the target sections. The results are shown in Fig. 61. The only place where
the designs came close to the target was near the middle of the wing. A slight wave
appears in the npper surfaces of the designed sections near the shock location. This
pertubation is due to the smearing of the shock on the medium grid. The section
designed at the wing tip deviated considerably from the target. The fact that at the
wing tip the fine grid (' is lower than the medium grid (; most probably led to the
decambering of the sections at the wing tip.

No attempt was made to match the ('z’'s of the fine grid and medium grid
analyses by varying the Mach number or angle of attack. but a comparison of the
medium grid pressures at various Mach numbers and angles of attack with the target
fine grid pressures for the supercritical wing shown in Fig. 62 reveal that it would

probably be necessary to alter the twist of the wing to closely match the C's at all
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of the design stations. It also shows that increasing the angle of attack to 2.1° would
have produced closer matching Ci’s and hence perhaps better designs. In retrospect,
though, given that the fine grid pressures are correct or more realistic, it would be
necessary, unless appropriate corrections can be found, to use the fine grid to properly

design the correct airfoil sections.

V.7 Fixed Trailing Edge Design

This case was investigated to verify that a fixed trailing edge design could be
accomplished with the present version of the code. The case chosen utilized Lockheed
Wing-A at a Mach number of .8 and an angle of attack of 2°. A NACA 0012 section
was used as the initial geometry from 30% to 70% semispan. while the remaining part
of the wing used the original supercritical sections. The inverse boundary condition
was enforced from 3% to 80% chord. The airfoil aft of 80% chord was fixed so that it
maintained the NACA 0012 trailing edge shape. The input pressures were obtained
through a medium grid inviscid analysis of the wing with the original supercritical
sections used throughout, Furthermore, to provide for a smooth transition at the aft
direct-inverse junction, the displacements were smoothed in the chordwise direction.
The type II-2 design method was used in this case.

The resulting section shapes are shown in Fig. 63,  The target airfoil section
would actually be the first 80% of the supercritical section and the last 20% of the
NACA 0012 section. Surprisingly. even with the aft portion of the wing fixed. the
designed sections came quite close to matching the original Wing-A profiles at the

30% and 50% semispan locations. At the 70% semispan location, the designed section
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as compared to the original Wing-A section is much thicker on top and thinner on
the bottom leading to a more cambered profile. This shape is probably due to the
interaction of the geometric constraints and the required design pressures. The shock
strength of the input ), distribution does become quite large at this location and
it appears that the section may have become more cambered to account for this
increase. Or, the increased camber may have been needed to provide the necessary
lift required by the inverse boundary condition. The pressure distributions obtained
from an inviscid analysis of the resulting shapes are compared with those produced
by the original Wing-A sections and the NACA 0012 sections in Fig. 64 The figure
reveals that the design pressure distributions are a combination of the Wing-A and
NACA 0012 pressure distributions. It is also interesting that it seems a secondary
shock near the aft limit of the design region was necessary to meet the constraints of
this problem. This very impractical case, of course. was only meant to demonstrate
that it is feasible to fix the aft region of the wing. If a more realistic trailing edge

were used, better results would surely follow.
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Progress in the direct-inverse wing design method in curvilinear coordinates has

been made, which included the remedying of a spanwise oscillation problem and the

assessment of grid skewness, viscous interaction, grid refinement and the initial airfoil

section on the final design. Some of the important conclusions were:

(1)

(2

o

(6)

In response to the spanwise oscillation problem, designing at every other span-
wise station produced the smoothest results for the cases presented.

A smoothly varying grid is especially needed for the accurate design at the wing
tip.

The final designed airfoil section is independent of the initial section if the
chordwise direct-inverse junction is moved close to the leading edge.

Boundary layer displacement tlxickne:;ses must be included in the successful
design of a wing in a viscous environment.

Presently the design of only high and medium aspect ratio wings is possible
with this code.

A pariial wing design beginning aft of the leading edge and terminating prior
to the trailing edge is possible with the present method

Designs must be performed on a fine grid.

It is recommended that more work be done to fully understand the fundamental

motivation behind the spanwise decoupling problem in order to eliminate all spanwise
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oscillations in sectional thickness from the solution. This work should also include the
development of a better way to handle the formulation of the residual at the spanwise
direct-inverse junction to eliminate the initial spanwise jump in the residual located
there. Furthermore, the design scheme at the wing root and tip should be refined to
provide more accurate airfoil sections in those regions.

In addition, the necessary logic should be added to begin the integration of the
flow tangency boundary condition on either side of the section’s stagnation point at
the present iteration level. This addition should allow the entire airfoil section to be
designed with the pressure boundary condition specified everywhere on the wing’s
surface except al the stagnation point.

Prelimenary resuits have indicated that by allowing the trailing edge ordinate
to float an untwisted wing can be twisted. [f this is a well-posed problem. methods
should be devised to accurately calculate the twist given the inverse displacements at
the present time level and to include this in the iterative process such that the twist
angle converges without undue oscillation. It would also be interesting to investigate
the possibility of also allowing the leading edge ordinate to vary in a constrained
fashion so that the local dihedral angle could change.

And finally. since the potential solution and. hence, the design. converge rather
slowly due to the SLOR numerical scheme, the design scheme should be incorporated

into the multi-grid version of FLO-30 to hasten convergence
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APPENDIX A

DERIVATION OF THE FULL POTENTIAL
EQUATION IN CURVILINEAR COORDINATES

The full potential equation transformed from cartesian to curvilinear coordi-
nates is derived here as a courtesy to the reader.

The full potential or the continuity equation written in cartesian coordinates is

(pu). + (o), + (pw), = 0 4-1)
where
p:(lf“:;i(uzmvz Q—w?))Wfl (A-2)

It is desired to transform this equation to a curvilinear coordinate system of

&, n, and { where
E=¢&lzy2)  m=nlrye) (=((=y3) (A-3)

By using the standard chain rule, the following operators can be defined

60,0 .0
* zE t ]1?7 TC
a a 8 a
S=by T G A-4
v fyé 77yn (.y[’ ( )
a ¢ o " 8 e 8
=6 g G
et
Using these operators in Eq. (A-1) yields
o (pule + me(pu), — G2 (pu)y
+ &y (pr)e + my(pv), + Gy lpvl; (A-5)

+ & {pw)e = n: (pw), + G (pw) =0
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Defining the Jacobian, J, as

_06mQ) |t & b _
TG (8L “-9

Then after Holst, multiplying the Eq. (A-5) by J~!, and rearranging to conservative

form plus remainder gives

()& ™)+ ((p0) &7 ™) + (o) 6277
+[((pw) 1T ™) + (pv)md ™) + ((pw)nad )],

[ 6T ™) + () 6T + (o) T,

(4-1)
(o) [(6T )+ (T )+ () ]
~ (o) [(6T e = 7Y, + (6T Y]
=) [(€7 Y+ (72, + (T, ] =0
Now using the fact that
aJ _0d
b = e (4-8)

the last three terms in brackets can be shown to be zero. For example, equating the

first of these terms to zero

(o) [(Eed ™)+ (™), 4 (CT7) ] =0 (1-9)

and expanding the derivatives and collecting like terms gives

Tt + ey + (Gl

(A - 10)
g [Er']é = ety + (rJC] =0
Rewnting Eq. (A-4) in matrix notation
a [
H & M G ¢
3 = (fy Ty Sy ) % (4-11)
a &M G ]
z <



After solving for B‘%, %, 8%, this becomes

An —4An Agp
=| -4 A —An
Ay —An Ay

SoSolle
Yool

where :
An =71y(z - Cyflz Ap = fy(z - szy Az = fw; - Th:fz
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(7] (4-12)

Agy =05l — Mole Az =8l — €l Az =Eomr — &2 (A-13)

Azt =10ly — 1yl Asa = by — 6 Azs = Loy — My
These operators can be used to expand the derivatives of {;, 75, and (; so that

(€2)g = [An1éea — Anibey + Asiéas] J!

(12), = (127120 — Aoy + Agozs Jt {A—14)

(G = [A13Con — A2sCay + AgsCaz] T
Substituting these into Eq. (A-10) and collecting terms yields
J Y Ariben — Astbay + Asibe:

~Ar9€ez — Asabey + As2be:

FAErs — A23bay + Aszées)

—J ¥ AnTets — Ani 6o + AnT6s (A - 15)
— Ay dene — Aspdyne + Aszdone
+A13TaCe — AnsTyCe — AzaJo(G) = 0
with  J = .4y — oA + GAw
Expanding the second term in brackets in the previous equation to
—J NI 4 T EanaCe - Ee
+EanzCe — Exnalz + ExMale — €on:Ca)
(A —16)

Iy — EamyCa — Eanaly

FEymale + Ealtyle — EyaCe)]
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and cancelling like terms, this reduces simply to

Second term = J~%J, (A-17)

where : Jp =€, (A11), — 7z (A12), + { (A13),

(A—-18)
+ €zodin — ez iz + (azdis
Partially expanding J; to
Iy =€zpA11 — Necdiz + (oo iz
2 (Mayle + MGz — M:Cay — (yaz)
(4-19)

71z (€ayls + §yCoz — €a2ly — Exloy)

o (Eayz + Eyzz — Moyl — Mybaz)
Upon collection of like terms, this becomes identical to the first term in brackets in

Eq. (A-15), thus satisfying the equality. This can be shown to be true of the other
remainder type terms in Eq. (A-7T)
Now, reducing the conservative part of Eq. (A-T} to
[ (o) & + (pv) & + (pw) £2)]

+ I (pu)ne + (po) my + (pw) s (A-20)

+ [T ) G+ () Gyt (pw) C2)] = 0

and defining the contravariant velocities, U, V, W as

()=
v =00 o v (4-21
w GG G w

with
115 z, x|
h=J" =ty oy oy (A-22)
B S

Eq. (A-20) reduces to the desired conservative form of

(phU)e + (phV), — (phW). =0 (4-23)
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APPENDIX B
DERIVATION OF THE Cp EQUATION

Although this derivation probably appears in most good books on aerody-
namics, it is included here as a courtesy to the reader.

Cp is defined as

P — P
Gy = B
3P0 0

Using the definition of the speed of sound and isentropic relations, this can be rewrit-

(B-1)

ten as

o=z (1) (=2

It is desired to obtain a relation for the pressure coefficient, (', in terms of soley

the freestream Mach number and the local gs. This can be easily accomplished by
beginning with Eq. (2-14),

p = (adMo0) 7T (B3

and using the isentropic relation in Eq. (2-10), pressure can be written as

P 2y
}T:(GM‘»]T” (B —4)

Upon substituting this into Eq. (B-2), equation, €, becomes
2 2 . x
Up:m((a,wm)v ,,1) (B-5)

And finally, making use of Eqs. (2-8) and {2-9), the previous equation can be reduced

to the desired relation :

(B—-6)

where qz = (u
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