
A COMPARISON OF DIFFERING TECHNIQUES FOR THE 

DEIERMINATION OF MINHbtd. CONTENT IN BONE 

SAMUEL EVERETI' NARROW III 

Submitted to the Office of Graduate Studies of 
Texas A&M University 

in partial fulfillment of the retluitements for the degree of 

MASTER OF SCIENCE 

December 1989 

Major Subject: Health Physics 



A COMPARISON OF DIFFERING TECHNIQUES FOR THE 

DETERMINATION OF MINERAL CONTENT IN BONE 

A Thesis 

by 

SAMUEL EVERETT NARROW III 

Apprrved as to style and content by: 

Gerald A. Schlap 
(Chair of Comminee) 

John . Poston 
(Member) 

Dan htower 
(Member) 

John W. Poston 
(Head of Depanna:nt) 

December 1989 



A Comparison of Differing Techniques for the Determination of Minend 

Content in Bone. (December 1989) 

Samuel Evexett Narrow III, B. S. Louisiana State University 

Chair of Advisory Committee; Dr. G. A. Schlapper 

The medic@ and veterinary communiues axe in need of a non-invasive technique to 

accurately measure bone composition in animals and humans. Common techniques used 

to determine the txucture of skeletons are single-photon absorptiometry, dual-photon 

absorptiometxy, quantitative computed tomography, and neutmn activation analysis. 

Each of these techniques can be used, but each process uses different pxoceduxes which 

might lead to vaxying results. The xesults obtained can be used to show mineral content, 

and over long periods of time can be used to show changes in skeletal composition. 

Knowledge of composition changes is impxatant in the treatment of pathological diseases 

such as osteoporosis. Bone diseases such as osteopomsis axe thought to be directly 

affected by bone mineral content in the skeleton. Bone mineral is thought to be 

pmportional to the cakium content in bone volume. When calcium content can be better 

measured by xelating bone strength to calcium content, a clearer understanding of bone 

diseases as related to calcium content will develop. Data from these expeximent showed 

a correlation between bone mineral density and calcium content in sheep bones. A 

coefficient of correlation of 0. 82 was calculated with a 99. 9% confidence intervaL 
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INTRODUCTION 

Determination of bone density dates back to the early 190(ys when attempts were 

made to measure mineral contutt using X-rays (Hodge et aL 1935). A significant poxtion 

of today's research relates to the accurate determimuion of bone density in humans and 

animals. Cuxxently, the detexmixumon of bone density in the clinical envixonment relies 

on the use of single-photon absorptiometxy (SPA), dual-photon absorptiometry (DPA), 

and quantitative cMnputed tomography (QCT). These processes all use photon 

uansmission to determine bone density and bone density variations in skeletal 

composition. These measurements supply no direct data on the mineral content in bones 

themselves, because photons do not specifically sample the primary mineral of interest, 

ctdcium. Another technique, neutxon activation analysis (NAA), can quantify actual 

calcium content in bone. Neutron activation analysis is discussed in further detail in the 

literature review and methods sections. 

Bone is composed of two types of skeletal mataial, cortical bone and uabeculsr 

bone, The trabecular bone is located in the cavity region of the skeleton. It is pomus and 

is predominantly found in the vertebra, pelvis, long, and flat bones. The cortical bone is 

found in the shafts of bone and is a compact type of matnM. Bone is a changing 

structure of the body that breaks down and replenishes throughout a person's lifetime, It 

This thesis will follow the style of hPh i 



is governed by metabolic and mechanical processes that are not totally understood, 

The diagnosis of bone disease is a current topic of interest in the medical and 

veterinary communities. Methods presently can measure some charamristics of bone 

makeup but cannot direcdy measure calcium content. Calcium pmvides strength to the 

bones and the lack of calcium is a pivotal indicator of a bone disorder. Calcium depletion 

of bone is an importmt factor which is a contributor to bone disease. A significant loss 

of calcium can lead to a higher fracture risk, lower bone mineral density, and lower bone 

mineral content. 

This research will determine if there is a correlation between bone mineral densiry 

(BMD) measured using DPA and calcium content measured using NAA. If such a 

conelation exists researchers may draw a clearer inferetux: of calcium content in bones. 

Other researchers currently are developing methods to estimate &actus probabilities fcr 

varied animals but are not directly relating this information to mineral content. Their 

techniques supply a general understanding of bone composition by relating fracture 

probability to bone density calculations (Firoonzia et al. 1986). 

True calcium content will be determined thmugh use of a non-invasive technique, 

neutron activation analysis. The results from activation analysis wiU be compared and 

related to bone density measurements performed by dual-photon absorptiometry. After 

data are collected fmm neutron activation analysis and dual-photon absorptiometry, 

correlations will be examined to determine if a relationship exists between bone mineral 

density and calcium content. If such a correlation is found, dual-photon absorptiometry 

could be used to define calcium content in bones in the future and provide a basis that will 

give doctors and veterinarians added confidence in DPA measurements of skeletal 

materials. Although NAA is used in this study, it is not a pmcess which should be 



repeated mote than several times a year, NAA delivers a larger radiation dose than 

conventional absorptiometry and may cause adverse effects on living subjects if repeated 

activations occur over short periods of time, less than one year. If NAA is used in a 

repetitive fashion, radiation doses will accumulate and increase the probability of 

stochastic risks. Doses could even teach threshold exposures for certain non-stochastic 

effects. The bene6ts of using NAA are that it provides a direct measurement of calcium 

content which can be compared to bane strength in the study of bone disease, 



Currently, determination of calcium content of bones is not a direct process and, 

thus, its accuracy is not insured. For the past ten years the medical and veterinary 

communities have been xelying on techniques such as single-photon absoxptiomeuy 

(SPA), dual-photon absorptiometry (DPA), and quantitative computed tomography 

(QCT) to assess skeletal composition in terms of bone density or iracture probability 

(Flroonzia et al. 1986). These techniques, although of value in relating bone density to 

ixactuxe probability, do not provide a dixectly verifiable measuxe of calcium content in 

bones. One technique, neutron activation analysis (NAA), does perform a dhect 

measurement of calcium content using a non-invasive method. 

These methods of measuring bone characteristics all utilize nuclear processes. 

Absorptiometry is the measurement of gamma or X-ray transmission thmugh an object. 

Photons are attenuated in a medium and axe not all absorbed in the medium. The photons 

that do pass through the medium can be detected on the opposite side and analyzed using 

scintillation detection equipment. Thus, photon transmission can be used to infer certain 

characteristics of bones such as bone mineral density in g/cmx and bone mineral content 

in grams. The two types of absorptiometry are single photon absoxptiometry (SPA) and 

dual photon absorptiometry (DPA). These processes differ in that SPA has a source 

which only emits a single monoenergetic photon while DPA has a source which emits 

photons of two different energies. 

Single photon absorpuomeuy is a simple and widely available procedure that is 



used to infer mineral content in the xegion of the distal portion of the radius (foresxm) in 

units of grams of bone per unit length (gfcm). An 1-125 source which emits a 27. 5 keV 

gamma ray noxmaUy is used. Results of these measuxements, in grams of bone per unit 

length, generally are crazed as having a 6% accuracy and a 2-3% precision level 

when measuring a forearm (Flroonzia et aL 1986; Ott et al, 1987). Even though SPA is 

a helpful tool in the evaluation of bone composition, it has several difficulties. The major 

limitation of SPA is that the pxecmon of the measuxemetus may be significantly altered if 

the subject is not precisely repositioned (Fheonzia et aL 1986; Ott et al. 1987). Also, it is 

an accepted point that in physiological systems expected variations in BMD and BMC 

values for normal and pathological individuals may overlap. Some BMD measurements 

of patients with osteopomsis axe the same as BMD measurements of patients without 

osteoporosis, Also, there is a poor correlation of measuxements of bone mineral content 

of the distal radius, the iliac crest trabecular bone volume, and spinal trabecular bone 

mineral content (Firoonzia et aL 1986; Andersen and Nielsen 1986; Aloia et al. 1988). 

This occurs because mineral content measurements for the extreme distal radius that 

contains significant amounts of trabecular bone do not conelate well with data for the iliac 

crest trabecular bone volume and the spinal trabecular bone mineral content (Flxoonzia et 

al. 1986; Ott et al. 1987). 

Dual photon absoxptiometxy has become the mare prevalant clinical technique for 

diagnosis of ostecqurosis, a common bone disease (Firoonzia et al. 1986; Andersen and 

Nielsen 1986; Aloia et al. 1988; Ott et al. 1987). DPA is vexy similar in principle to 

SPA, except that DPA uses a radioactive source that emits two gamma rays with distinct 

energies. The dominant isotope used in DPA units is gadolinium-153. This radionuclide 

emits 44 keV and 100 keV photons that are detected, after transmission through the object 

being scanned, by a scintillation detection assembly as will be discussed in the methods. 



The 44 keV photon is a characumstic X-ray produced from Gd-153 and the 100 keV 

photon is a gamma ray emittal from the nucleus of the isotope. These photons can 

interact in three major ways: Compton effect, photoelectric effect, and pair production, 

The Compton effect is the dominant process in the human body because of the large 

number of low Z elements which makeup the body and the xelatively low energy of the 

photons emitted from the Gd-153. 

The process of DPA furnishes a measurement of bone mineral density, BMD, 

BMD using DPA is a measuxement of the attenuation of a sample for a specific surface 

area and expresses the average density of the scanned bone volume as a two dimensional 

measuremmt in units of g/cxxxx, These xegions of interest then can be combined to 

provide an overall average BMD. 

Quantitative computed tomography (QCT) has an added feature that SPA and DPA 

cannot provide, QCf scans supply a spatial separation of trabecular bone from cortical 

bone which allows one to independently measure both types of bone (Fixoonzia et al. 

1986; Ott et aL 1987). QCT scans can be used to infer with some reliability bone mass, 

pmvided that the user employs calibrated equipment and strictly adhexes to the cahbration 

specifications of the QCf equipment, to ensure precision of measurement. Calibration is 

performed using a device that has reference densities which correspond to density 

characteristics of xeal bone and soft tissue (Firoonzia et aL 1986), The accuracy of QCT 

compared to DPA has been detexmined using fiesh cadaver vertebrae with a specially 

constructed anthmpomorphic torso phantom (Fixoonzia et al. 1986). 

The major advantage of QCT is the capability for three-dimensional localization of 

trabecular and cortical bone. This cystic allows the user to obtain a density 

measurement of a pxedeuzmined volume of trabecular and cortical bone. The 

disadvantage of QCI' is the difficulty in xepositioning a subject for further measurements, 



DPA is preferred over SPA due to the supaior accuracy in measuring integral bone 

density (Firoonzia et al. 1986; Andersen and Nielsen 1986; Aloia et al. 1988; Ott et aL 

1987). One of the major advantages of DPA, when ctaxxpared to QCT scans, is that DPA 

is affected only slightly by the amount of fat in the volume scannetL In addition, DPA 

has been used mote successfully than QCI' in measuring integral bone density in the hip 

xegion, The major axeas of inuuest that can be scanned by DPA are the vertebrae, femoral 

neck, or hip region. DPA is used mainly to scan the hip region because it can be used to 

pmvide a superior analysis of the hip over the other techniques discussed (Fimonzia et al. 

1986; Ott et aL 1987). 

A major drawback of DPA is that the technique does not provide the ability to 

separate spatially cortical bone from trabecular bone (Firoonzia et al. 1986). Thus, DPA 

is not prescribed for the evaluation of early stages of trabecular bone loss in the spine, 

Trabecular bone loss in this axes is considered a significant clue to the early 

manifestations of osteoporceis. What DPA does pxxxvide is an analysis of a slice of the 

surface area scanned and a calculation of BMD for any bone mineral or calcified tissues in 

that slice. This procedure cannot pmvide an ~ measurement of trabecular bone in 

the spine and is the reason DPA is not considered the best method to detect early signs of 

bone disease when compaxed to QCT. 

In the 1960's, researchers expressed optimism xegarding use of the technique of 

neutron activation analysis to determine trace amounts of chlorine, sodium, calcium, 

nitrogen and phosphorus in the body. Bauelle Pacific Northwest Laboratories (BPNL) 

and Bmokhaven National Laboratory (BNL) conducted studies employing in vivo 

neutron activation analysis to estimate total body calcium 'Ihese studies concluded that 

calcium content could be determined within an accuracy of 2 1. 7% in human studies 

(Cohn et al. 1970) and k 8% in cadaver and phantom studies (Palmer et al. 1968), 



respectively. 

The Battelle experhxtents were pexformed by ixradiating human cadavers and 

phantoms filled with a skeleton surrounded by tissue equivalent liquid. The subject was 

irradiated with 2 MeV neutrons produced from the &Be(d, n) t B reaction, and 14 MeV 

neutxons produced fmm a Van de Graff positive ion accelemtor (Palmer et aL 1968). 

'Ihese studies found that the 2 MeV neutrons produced Ca-49 activity levels 

approximately 10 times higher than those using 14 Mev neutrons. The lower energy 

neutmns thexmalized inside the body volume and caused a greater number of Ca-48 

atoms to be activated. At BNL, live subjects and phantoms wexe irradiated using 2 MeV 

neutrons. Both gmups emphasized that, to uniformly activate a subject or phantom, the 

sample must be irradiated bilaterally. This procedure enabled a more uniform deposition 

of neutrons inside the cadaver or phantom and, thexefore, mote uniformly activated any 

Ca-48 atoms present. 

Both groups also found that higher energy neutron generators provided a more 

suitable neutmn source than a thermal souxce because of the deeper penetration of these 

higher energy neutrons when compaxed to thermal neutmns. High energy neutrons 

penetrate the body and lose energy until they reach thermal energies. Once the neutxons 

mach thermal energies, they only travel a very short distance before they are absorbed 

and activate an atom The greatest probability of interaction of neutrons with other atoms 

occurs in the thermal energy region. 'Ihe teseaxchexs at BPNL and BNL preferred 

activating phantoms, cadavers, and humans with 2 to 4 MeV neutrons because these 

neutrons created a mare uniformly activated region in the body without unnecessarily 

endangering other tissues (Palmer et al. 1968). Results showing the differences in 

activating a cadaver with different energy neutrons are shown in Figure 1. This figure 

illustrates how higher energy neutxxxns activate a larger number of Ca-48 atoms. As the 
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higher energy neutrons activate more calcium atoms, they also can cause greater 

biological damage and incr' the risk of stochastic effects. The lower energy neutrons 

activate fewer calcium atoms but do produce enough activated calcium atoms to enable the 

detection of a nodceable Ca-49 peak on a multi-channel analyzer using Nal(Tl) 

scindllation equipment. 

BNL speciTied several suitable sources for the determination of calcium in humans, 

xsspuBe sources which yield a 4. 5 MeV neutron field, 14 MeV neutmns which are 

produced fxom the 3H(d, n) He reaction, experimental xeactors, and portable isotopic 

sources such as: 24tAmBe, 238puBe, &&~PuBe, and Cf-252 (Palmer et aL 1968), 

~tAmBe and +9puBe sources are of limited use due to large amounts of the specified 

isotope requirexL For example, in oxder to achieve a usable amount of neutmns for 

activation analysis of cxdcium with a zsspuBe source, the mass of plutonium xequixed 

appxoaches its critical mass, a fact of significant safety concern (Cohn 1970). 

The detection equipment used by BNL and BPNL for in vivo neutron activation 

analysis for de ermination of total body ctdcium were first generation whole body 

countas. The Battefie whole body counter consisted of six 10 cm thick by 23. 8 cm 

diameter NaI(Tl) detectors mounted in a circular array (Palmer et al. 1968). As the 

subject was scanned by the detector, the rate of movement was slowed to automatically 

correct for Ca-49 decay. 'Ihe array of detectoxs also cotdd be mtated in a citcular fashion 

to provide a uniform cylindrical geometry from one end of the body to the other. This 

process pnxluced a count rate that was essentially independent of the location of a 

radioisotope in the body. In 1967, this NaI(Tl) whole-body detector, was considered 

one of the most sensitive in use (Palmer et aL 1968). 

BNL used a 54-Nal detector anay, whole body counter with an associated 

computer facility. This whole body counter had the following characteristics: high 



sensifivity and spectral resolution, invariance of counting with respect to body weight, 

and an ability to find internal localization of a radionuclide (Cohn et al. 1970). 

Immediately after bilateral activation of a sample, the sample was placed in the detector 

array and counted for 15 minutes. The elapsed time between activation and counting 

varied from five to six minutes. Once the count was peformed, the data were stored in 

the computer and the Ca-49 activity was ccsrected for decay. 

Both groups were quite successful in the determination of total body ctdcium 

content Palmer stated that the average skeleton is composed of 1000 to 1500 grams of 

calcium and that only 12 grams are in the body fluids (Palmer et al. 1968). He noted that 

the concentration of calcium in the body fluids, ~erotic plaques, and kidney 

stones will vary only by a few grams each year. Activation analysis was found to be 

capable of detecting an annual change of 2% or more of total body calcium, which 

corresponds to a variation of approximately 30 grams of calcium for an adult. Thus, a 

large calcium variation indicates a major change in the overall skeletal ~tion and 

does not indicate a small change in calcium due to variation in body fluids or other 

contributors. NAA was considered a viable technique to determine calcium content in the 

body and the diagnosis af bone disease. Uncertainties of this method were the 

uniformity of irradiation of the phantom, cadaver, or human. 

Additional resauzh was performed using the same basic procedures by K. Boddy 

(Chamberlain et al. 1968) and by J. Anderson (Activation 1967). Others have continued 

to pursue the detrsmination of total body calcium using NAA. Ott used four nuclear 

techniques, SPA, DPA, QCT, and NAA, to determine how effective each was when used 

for the study of bones and the diagnosis of bone related disease (Ott et al. 1987). In the 

early 1980's her experiments focused on total body calcium content determination by 

NAA and showed the ability to determine significant bone loss in humans as they aged. 
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Nelp previously measured total body calcium by total body NAA in the same manner 

with similar results (Nelp et al. 1970). 

In summary, since the early 19/0's, these methods discussed previously which 

analyze of skeletal composition have emerged and become procedures of choice for 

diagnosing bone disorders. These techniques are performed using either X-rays, gamma 

rays or neutrons, Single-photon absorptiometry (SPA), dual-photon absorptiometry 

(DPA), quantitative ccanputed totnography scan (QCT) and neutton activation analysis 

(NAA), each have distinct charactmstics which make them useful for analysis of specific 

components of the skeleton. 

NAA is a way to measure non-invasively the actual calcium content in bones. 

Thus, it can be used to relate calcium content to other measuring techniques such as DPA. 

NAA is not used widely to measure calcium content directly because of the possibiTity of 

the larger adiation doses to the individual and the economic considerations of performing 

NAA. Also, NAA is not an extremely available ptocedure at this time. By using data 

obtained from NAA, DPA can be used to infer calcium content with a much lower 

radiation dose to the individual and with a lower economic cost, 



MATERIALS AND METHODS 

The overall goal of this research was to find a way to infer calcium content of bones 

using a non-invasive technique. Then, these results could be used to determine skeletal 

changes in humans or ammals while incumng the smallest radiation dose to the subject. 

This study used bones from sheep cadavers. In the future, experiments shotdd be 

expanded to use live animals to gather total body BMD and calcium content information. 

The Texas AdtM University College of Veterinary Medicine provided bones &+a 

sheep for this study. Each sheep was slaughtered and dismembered. Four leg bones, 

one from each leg, were sent to the Texas A&M University Nuclear Science Center 

(NSC). When the experiment first began, each group of four legs from an individual 

animal were separately packaged, identified, and irradiated at the NSC using the TRIGA 

reactor facilities. The facilities utilized consisted of Beam Port 4, a neutron radiography 

port, that has a thermalized beam of neuuons in a field 28 cm by 43 cm (11 inches by 17 

inches). This beam was homogeneously distributed by the use of a beam shaper placed 

between the reactor core and the target area. The samples were carried to the target area 

by a chain driven cartridge holder connected to a timer. Samples prepared for irradiation 

were placed in tbe cartridge hokler and the dmer was activated which sent the sample into 

the neutron Beld for a pieset irradiation time. 

The bones and phantoms used in this project were all similar in size and shape to 

minimize any differences in results that were dependent on geometry. The animal bones 

used were the two front leg bones. The back leg bones were not used because they could 

not be fully scanned with the DPA unit since it was limited to samples 20. 3 cm (8 inches) 
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in length . The rear leg bones were on average 25. 4 cm (10 inches) long and the DPA 

unit could not provide total BMD and BMC values for the whole bone. The ftgnt leg 

bones were approximately 15, 2 cm (6 inches) long with an outside diameter of 2. 5 cm (1 

inch). 

The size of the phantom closely approximated the average size of the sheep bones. 

It was constructed of a polyethylene tube 15. 2 cm (6 inches) long with an inside diameter 

of 2. 5 cm (1 inch) and was filled with 18. 745 g of CaOs. The resemblance of the 

phantom to the sheep bones kept geometry differences to a miniuuun and allowed the 

assumption of similar counting ~ so that comparative neutmn activation analysis 

could be used to determine the calcium content in the bones. 

NAA is a mixe advantageous process ~ it allows the use of phantoms which 

closely approximate the geometry, volume and compmtion of the actual samples. Using 

a phantom with a known amount of calcium aHows the experinmnter to calculate the 

activity of the phantom in counts per gram of calcium. Once the calcium acdvhy is 

detenuined, the mass of calcium in the bone can be calculated by dividing the calcium 

activity of the bone by the specific activity of Ca-49 in the phantom, as discussed later. 

Comparative NAA enables the experimenter an easier, quicker, and slightly more accurate 

method than absolute NAA which incorporates activation foils each time a bone is 

activated. The accuracy of absolute NAA has been noted as unsatisfactory and calibration 

has been called extremely tedious (Bergerioux et al. 1979; Simonits et aL 1980). 

The bones used in this study were stripped of most of their muscle, tissue and skin 

leaving only trace amounts of flesh and ligament on the exposed bone, This reduced any 

contribution to 3. 07 Mev gamma photopeak of Ca-49 from the activation of different 

isotopes in the body. The most notable iscerpe subject to activation in the body tissues is 

Na-23. This isotope is found throughout the body and can be activated easily to ¹24 
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which emits a 2. 75 MeV gamma ray. The 2. 75 MeV photopeak of Na-24 could interfere 

with detection of the 3. 07 MeV photopeak from Ca-49. With most of the flesh stripped 

from the bones, sodium content is mduced and the difficulties of Na-24 interfering with 

Ca-49 ate reduced. 

Each bone was labeled and measured for BMD and BMC using the previously 

mentioned method of DPA. The table on page 37 lists BMD and BMC as inferred by 

DPA and total ctdcium content of each bone as ~ by comparative NAA as listed in 

the results. Calcium content is listed in grams after it was calculated using the activation 

equations explained in the results. Each BMD is in units of g/cmz and BMC is expressed 

in units of grams of total bone mineral in this table. 

The detection equipment consisted of two Harshaw Nal(Tl) crystals, one 12. 7 cm 

(5 inch) and one 7. 6 cm (3 inch) crystal, individually connected to a tube base followed 

by a pre-amp, a Canberra amphfier model 2012, an Ortec single channel analyzer model 

550, and a Canberra high voltage supply. Each separate crystal assembly was connected 

m a summing fashion to a Nuclear Data multi-channel analyzer without a coincidence 

circuit. Figure 2 shows the configuration of the detection system. 

This system was calibrated systematically before any bones were evaluated. A 

bone phantom was made to the specifications mentioned earlier and filled with 90 ml of 

aqueous NazCOs solution. The composition of the mixture was 0. 1 g of NazCOs and 

1000 ml of HzO. NazCOs was chosen because of its enussion of high energy gamma 

rays and its availability. Na-24 has a 100% emission of a 2. 754 Mev and 100% emission 

of a 1. 37 MeV gamma ray per disintegration (Walker et al. 1984), The 2. 75 Mev gamma 

emission is reasonably close in energy to 3. 07 Mev gamma from Ca-49 and, therefore, 

helped define the position of the sodium photopeak stops relative to the calcium 
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photopeak The MCA channels were preset as 1. 0 keV/channel and the region &om 

2. 875 to 3. 21 MeV was used to monitor the 2. 75 MeV photopeak of Na-24. Using this 

energy range permitted the ctdcium activity to be clearly ~ &om the sodium 

activity, the sodium photopeak ended at channel number 2850. Once the end of sodium 

photopeak was found the calcium photopeak was analyzed fiom channel 2850 to 3245. 

'1bls enabled the determination of the calcium photopeak to be perfcsmed easily and 

quickly. 

The phantom filled with NazCOs was irradiated in a dry tube in the NSC reactor 

position A-8 and allowed to decay to a radioactivity level of approximately 10 microcuries 

before handling. A dry tube is an aluminum tube approximately 152, 4 cm (5 feet) long 

with a 10. 2 cm (4 inch) inside diameter. It is air tight when sealed. 

Once the original source activity decayed to the specified level, it was taken to the 

laboratory and counted. The detection system was calibrated for energy in keV per 

channeL Sets of five counts of the phantom were taken at distances of 2. 5, 5. 1, 10. 2, 

and 15. 2 cm (1, 2, 4, and 6 inches) away from each detector to determine the efficiency 

of the detectors. The five counts for each distance were averaged. Once the average was 

determhterL calculations to determine the true activity of calcium in the phantom were 

performed and divided into the net number of counts registered by the detect These 

calculations are discussed later. Then, this product was then multiplied by one hundred 

to give an efficie~ in percent for the detection system 

The number of counts obtained with each detects were summed in the MCA and 

the backgmund count was subtracted to give the net counts for each sample. The 

backgmund count was taken by setting a count time for 24 hours with no radioactive 

samples in the laboratory. Performing this long background count enabled the 
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determination of background counts ftom naturally occuning radioisotopes and a more 

exact backgnmnd count for the Ca-49 photopeak region from 2. 875 to 3. 21 MeV. 

After the detection system was calibrated, the Isocess of activating the bones and 

bone phantoms was performed using the TRIGA reactor. The reactor core was placed 

against the thernsd column at the east face of the reactor pooL With the reactor against 

the thermal column, beam port ¹4 (BP ¹4) could be used to activate the calcium in the 

samples and phantoms to supply approximately 10, 000 counts per samph per irradiation. 

Figure 3 shows the layout of BP ¹4 and the "sample prep" room. The approximate 

neutron flux denshy for BP ¹4 was estimated in the range of 5xl0s n/crrPsec by the NSC 

staff (Kmhn 1989 pers. comm), Previous experiments by Palmer and Chamberlain, as 

discussed earlier (Palmer et al. 1967; Chamimlain et al. 1968 Cohn et al. 1969), 

irradiated both whole body phantoms and cadavers with approximately the same flux 

density as that obtained in BP¹4. The range of the neutron energies used by Chamberlain 

and Cohn were fast energies, a maximum of 14 MeV but predominantly 4 Me V, down to 

thermal energies, 0. 025 eV. Beam port ¹4 had a neutron spectra &om thermal to fast 

energies, of these neutrons the predominant energies ranged from 0. 025 eV to 11 eV. 

The irradiation process started with each bone being individually wrapped in a 

plastic bag snd given an identification number. Once this was accomplished the bones 

were stand in a beezer until the actual time of irradiation. Before the bones were 

irradiated, the phantom was activated. Activating the phantoin enabled one to determine 

the flux density for the beam port. Each time the phantom was placed in position it was 

irradiated for fifteen minutes. The bones were activated in the same fashion. Both the 

phantoms and bones were taped to the cartridge holder inside the sample preparation 

room next to the BP ¹4 cave. Once the length of irradiation was set on the timer in the 
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sample preparation room, the water shutter was remotely opened. The sample was not 

transferred by the cartridge holder into position in the neutron beam until the flux inside 

the cave became constant. Determination of a constant neutron flux was accomplished 

using an area radiation monitor located in the tunnel near the cartridge holder loading 

position. Once the reading on the area radiation monitor became essentially constant, the 

flux inside the beam port was considered to be stable with only slight variations of 

approximately &% that were due to natural water convection in the reactor pool. As the 

water heats, it becones less dense and the neutmn flux will slightly increase due to the 

decreased density of the water. 

After the sample ixradhuion was complete it was removed from the neutron beam 

and returned to the sample prep room. The sample was removed from the holder and 

placed into an un~ plastic bag. Immethately after the sample was repacked into 

the uncontaminated bag, it was rushed to the etection system and counted. When the 

sample was brought to the detection lab, it was placed on a wooden stand fabricated for 

this study. The stand positioned the sample at a prede~ height and distance 

between the detectors. The stand was constructed with sufficient room to permit both 

bones and phantoms to flt so that a reproducible geometry could be attained simply, 

easily, and quickly for every sample. Each sample was positioned in the stand 

horizontally facing the detectors, as shown in figure 2. The distance between the bone 

and each detector was set at 5. 1 cm (2 inches) and was kept constant by the use of a 5. 1 

cm (2 inch) bkxjc placed between the sample and the detector face and removed before 

the count was started. The bones wctu counted for forty minutes. These long count 

times allowed for the collection of approximately 10, 000 counts from each activated 

bone, The phantom needed to be counted for only fifteen minutes to reach this number of 

counts. 
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The following paragraphs discuss the ~ method utilized, dual-photon 

absorptiometxy. The same twelve sheep leg bones were scanned utilizing a dual-photon 

absorptiometxy unit from Lunar Radiation Corporation, Model DP3-B (Lunar 1985). 

This unit was used to measure the bone mineral density (g/cmz) and bone mineral 

content (g) in each bone. 

The dual photon absoxptiometry unit was calibrated daily before measuring BMD 

and BMC of the twelve sheep bones. The pmcedure for calibration, as specified by the 

manufacturer, was followed in detail (Lunar 1985). A ~ containing three blocks 

of bone minerxd regions was scanned five times. Hardware and software supplied by 

Lunar Coxporation with the DPA unit was utilized to determine the width, the bone 

mineral density (BMD) and bone mineral content (BMC) of the standard. The results 

were stoxed in an IBM XT micmcomputer with 640K RAM and a 10MB hardisk coupled 

to the DPA unit. The results fiom the standard were used as a comparison to any of the 

measuxed bone charactmstics. The unit employed a 13 mm collimated source that scans 

at 5. 0 mrqlsec, The scan consisted of 40 lines, which are incxemented 4. 5 mm steps 

(Lunar 1985). An image of each region scanned was displayed on the screen of the 

computer. It showed the varying regions of density and displayed information such as 

the calibrated bone mineral density, percent expected of normal for human individuals, 

and the fracture xisk as a function of the input variables of the saiuple. A printout from 

the Lunar software is illustrated in Figures 4 and 5. 

Each sheep bone was positioned in the same area to retain precision and accuracy. 

Figure 6 shows a top view of the positioning of the bones on the scanner table. Each 

bone was positioned in the center of the table below the scanner. Note that prior to each 

scan all foreign objects were removed from the table top, since any dense object in the 

path of the beam will attenuate the beam appreaably, causing an error in the measuring 
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process. Once the bone was positioned and all extraneous objects were xemoved from 

the scanning path, the process was initiated by entering the appmpriate parameters into 

the computer. The acquisition of data was entirely computa controlleL A manual 

override coukl be invoked if necessary to stop the process. After the measurement was 

performed, the data were stored in the computer for analysis at a later time. Once the 

xequested analysis was completed, the resultant data were stoxed in a computer file for 

later use. 

The software that was used to compile the information from the dual-photon 

absoxptiometry unit is dedicated to the analysis of human bone mineral. The software 

was used to calculate parameters such as BMD, BMC, and percent &actuxe risk fmm the 

parameters entered into the program for the specific sample scanned. Therefoxe, some of 

the specific information presented in the results may not be fully applicable to the 

analysis of sheep bones. However, the results can be used to show a coxrelation between 

BMD and cakium content. Befoxe any transmission data axe obtained, parameterlc data 

must be entered into the computer. The parameters arbitrarily entered for the sheep bones 

were those of a white male 39 years old, weighing 70 kg, who was 170 cm tall (Poteet 

1989 pers. comm, ). 

Images are processed in tbe computer and axe displayed on the monitor as the DPA 

unit scans the sample. 'Ihese images illustrate differences in the density of the bone over 

the cathe volume based on the ratio of the photons emitted from the Gd-153 source to 

those photons that pass through the target. The 44 keV photons do not normally pass 

thmugh bone and, thus, do not contribute to the BMD measurements (Lunar 1985). 

However, the photons are useful because as they pass through skin and muscle and aid in 

determining the outline of the bone volume. A fraction of the 100 keV gamma rays of 

Gd-153 penetrate the bone and other dense material in the body. This higher energy 



gamma ray is used in the computer analysis to calculate BMD and BMC based on the 

number of gamma rays detected on the opposite side of the target. This transnntted data 

is compared to the parameters entered into the computer for the specific sample. These 

paratneters are used in determining the BMD, BMC, and other information such as the ~ risk associated with the BMD and BMC. These risks ate shown on the computer 

monitor and the printout of the analysis, A user fiiendly chart depicts the regions of 

normal, mild, modemte, marked, and extreme risk due to fracture based on the calculated 

BMD. The value for BMD density is plotted on a chait with the subject's age on the 

X-axis and the BMD plotted on Y-axis. Once the BMD is plotted, the operator only has 

to read the corresponding Y-axis to find the associated risk for the specific subject. An 

example of this type of chart is shown in Figure 4. These regions are shaded in different 

patterns so an individual can easily determine the risk by pinpointing the age and percent 

fracture risk inside one region. 

The Lunar software for this analysis is menu driven with the operator entering data 

for the sample specific parauieters, as previously mentioned. Edge markers on the output 

of the image define the different regions of interest for each scan. These are labeled Ll, 

L2, L3, and L4. These designations correspond to the lumbar retpon of the human 

spine. When the bone ~ content is calculated, it is calculated as an average over 

that single region, This computer software also averages the BMD and BMC values for 

combined regions. Combined tegions can include two, three or all four regions. 

After the bones and phantoms were counted, the data were analyzed to find if a 

conelation existed between BMD and calcium content, BMD and BMC, and BMC and 

calcium content. These data ate shown and discussed in detail later. The analysis of the 

data consisted of a linear regression fit for BMD as a function of calcium content, BMD 

as a function of BMC, and BMC as a function of calcium content. Statistical tests were 
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performed on a MacIntosh microcomputer using the Statworks software package 

(Statworks 1985). This software was used to perform calculations and supply data on 

the F-test, P-value, and coefficient of correlation for each data set analyzed. The values 

were considered significant if the coefficient of conelation exceeded 0. 80 and the P-value 

for the F-test exceeded 0. 95 which relates to a confidence interval of 95%. 
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CALCULATIONS 

The physical characteristics of the bones and phantoms used in this pmject were all 

similar in size and shape to minimize yxuneuy effects. The average size of the sheep 

bones was six inches in length with an average diameter of one inch. The size of the 

phantom was 15. 2 cm (6 inches) in length with an inside diameter of 2. 5 cm (1 inch). 

This minimization of geometrical differences allowed compamflve techniques of neutmn 

activation analysis to detertmne the calcium content in the bones more readfly than if 

absolute NAA were to be employed. 

Absolute NAA is a method in which the energy dependent flux density is 

determined by comparison with a standard of similar geometry and weight of the isotope 

of interest. 'IIte unknowns amount of calcium weight can be calculated from a 

knowledge of nuclear data such as energy dependent cross-sections for the specific 

isotope. Some of the major drawbacks of this absolute method occur during placement 

of the standard such as self-shielding due to the presence of the sample in the neutron 

beam and the supplemental cakuhtions involved. Limited accuracy in measuring an 

isotope results from the uncertainties of the base of nuclear data on isotopes. Another 

uncertainty occurs from the lack of knowledge on the energy spectrum of the neutrons 

which are used to activate the sample. In the future an improved knowledge base of 

nuclear data will enhance this technique (Bergerioux et aL 1978). Absolute NAA has an 

error due to the lack of accuracy in determining the actual flux density. Using 

comparative NAA techniques eliminates this error in the calculations because flux density 

does not have to be determined in calculating calcium content when performing relative 
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techniques. Another problem is the length of calibration of all the components for this 

technique in order to be successfuL The calibration has been noted to be extremely 

tedious (Bergerioux et al. 1978; Simontis et al. 1980). 

The bone phantom was activated six times to determine fluctuation of neutron flux 

density within the beam port. The average ariation of flux density in the beam port 

duiing an entire operalianal day was measured to be &%. The phantom was the first 

sample to be irradiated. It was irradiated to determine the energy integrated neutmn flux 

density at the time of activation. Subsequent irradiations of the phantom were performed 

after every thud or fourth bone was ~ in beam port@i to detect any significant 

variations in the irradiation envimment present during beam port facility experiments. 

The length of time between phantom iiradiations allowed for the decay of Ca-49 to below 

detectable levels before the phantom was irradiated and counted again. After the phantom 

was removed from the cassette holder it was immediately taken to the counting system. 

previous experiments illustrated that a longer time between the end of irradiauon to the 

start time of the count created a significant decrease in counts. A two minute decrease in 

elapsed time for irradiation to counting could increase the number of counts by 20%. An 

elapsed time of 2. 75 minutes, one third of the Ca-49 half-life, was determined to be the 

minimum time requited to remove the phantom from beam port tS4 and properly place it in 

the counting stand. This elapsed time before counting the phantoms was 2. 75 minutes 

for every phantom except one, 45, for which the elapsed time before counting was 2. 867 

minutes. Each phantom was counted for a total of fifteen minutes. After the counts were 

recorded, calculations of the activity of each phantom were performed for time at ~ by 

integrating the activity equation shown below. 



30 

A(Iy-I2) = Ao*e-& ck 

Where: 

A(tl-t2) = Activity in counts per time interval t, to tz for a sample removed at tW 

(counts/sec) 

Initial activity of the sample at tW (counts/sec) 

X = Decay constant of isotope of interest in units of per second (1/sec) 

t = Time interval for counting period in seconds (sec) 

After integration, the equation can be written as: 

— =Ao" (e +1m ~2) ( 

where: 

C = Number of counts detected by the counting equipment (counts) 

ti = Time after hradiation when counting of sample started (sec) 

t2 = Time when sample count stopped (sec) 

( = Efficiency factor which can be set to unity since relative activity calculations are 



This equation enables the total number of counts to be calculated for the time integral 

from the end of irradiation to the end of the count ts. By dividing the exponential term on 

both sides of the equation, Ao can be obtained. 

The net counts were obtained by subtractmg the background ttom the gross counts. 

Then the net counts were substituted in Equation 3 to obtain Ao (activity) at time equals 

Cakium content of each bone as listed in the table on page 37 in the results, was 

calculated using Equation 4. The values for calcium content varied trom 7. 376 to 13. 957 

g. Once these values were calculated they were related to BMD in g/cm2 to determine if 

there was a correlation of the data. 
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A = Average specific activity in the phantom in (counts / sec / g) 

A, = Average activity of the bone in counts per sec at t = 0 (counts/sec) 

Mass of calcium in the bone in grams (g) 

The BMD and BMC values listed in the table on page 38 are averages of each 

bone's entire volume, These values are taken fmm analysis performed by Lunar 

Radiation's dual photon absorptiometry (DPA) unit, model DP3-B which determined 

values for BMD and BMC of the four combined sections of the scanned bone region. 

Using parameters such as age, sex, race, height, and weight the DPA unit can accurately 

measure BMD and BMC within M% accuracy and 21% precision. The four regions 

designated as Ll, L2, L3, and L4, cortespond to a person's lower back, the lumbar 

region of the spine. The value for each individual region's BMD and BMC were 

computed and averaged for the specific area. These regions can be grouped into any 

configuration to obtain an average value for combined sections up to the entire four 

regions Ll thmugh L4. 

The exposure imparted to the samples fmm these two different techntques vary 

significantly. DPA imparts energy by gamma transmission, while NAA imparts energy 

by the transmission of a neutron spectrum activating isotopes in the volume of the 

sample, The technique with the lower dose is prefened for the fuune determination of 

calcium content because of the lower risk associated with that expmure. Calculations 

were performed to illustrate how a DPA unit's dose is considerably less than a dose 

resulting from neuuon activation analysis. 
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The dose ftom the Lunar DPA unit is entirely due to the exposure to the Gd-153 

source. The source strength of the Gd-153 in the Lunar DPA unit was 1 Ci on 

November 4, 1988. The Lunar corpotation published in their literature, that the exposure 

from their model DP3-B DPA unit was 10 mrem per 30 minute exposure. This value is 

well below the non-occupational radiation limits set by the NRC and is considered very 

acceptable for a medical exposure. The non-occupational limit to the blood fcmung 

organs and bone is 500 rnrem (10CPR20, 1985). Limits for medical exposums am not 

as specifled because the medical benefit usually outweighs the cost factor for medical 

treatment. Table 1 lists Texas Department of Health's recommended limits for 

radiographic exposure limits (TRCR 1989). 

The dose from the neutron activation analysis was assumed to be contributed ftom 

thermal and epitheimal neutmns which activated the Ca-48. The determination of the flux 

was calculated by averaging the activity of the six phantoms and solving for an average 

flux using Equation 5. It was calculated to be 4xlfls neutrons/(secscm2). 

A 

fy a g a ()~ — API) 

e = Integral neutron flux (n/cm2sec) 

A = Average activity of irradiated phantom at time t (dis/sec) 

a = Energy weighted microscopic cross section of target atoms (cm&) 
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X, = Decay constant of radioisotope (sec-t) 

t ~ Length of time of irradiation (sec) 

N = Number of atoms present in sample 

Neutmn dose calculations for a sample inside beam port & were performed using the 

flux computed in Equation 5. The absorbed dose from the neutron beam was composed 

of thermal and epithetmal energy neuuons, Evaluation of the ratio of thermal neutrons to 

epithennal neutmns was performed by the NSC staff. They performed bare and 

cadmium covered foil irradia6ons to accurately determine the different fluxes and the 

Table 1. Texas Radiographic Exposure and Dose Limits 

Techn' ue 

Suggested 
Exposure 

Limit mr 

EXPOSURE/DOSE LIMITS 

Exposure Avg. Glandular 
Limit mr Dose Limit mrad 

Chest 
Abdomen 
Lumbo-Sacral Spine 
Cervical Spine 
Thoracic Spine 
Full Sphte 
Skull 
Foot 
Mammography Screening 
Dental Intraoral 

20 
360 
550 
115 
340 
175 
180 
100 

400 

30 
590 
830 
170 
510 
315 
275 
175 

600 
1000 



energy ranges. The ratio of these two energy ranges was 20:1, thermal to epithermaL 

Charged particle equilibrium was assumed in the evaluation of the neutmn dose. It 

was hypothesized drat all the secondary charged particles that left the volume of sample 

were replaced by another particle of the same type and energy entering. Equation 6 

assumes this and calculates the dose from neutmns by multiplying the flux (rad cm&/n) 

times the kerma factor (rad cm& / n) times the length of irradiation (sec). 

D=K=4*F *T n 

Where: 

D = Dose (rad) 

K = Kerma (rad) 

e = Flux (n/cm2*sec) 

Fn = Kerma factor (rad "cm2/n) 

T = Irradiation time (sec) 

The doses for the thermal neutrrrns were crdculated using Kerma factors quoted by 

Hurst (Hurst and Ritchie 1961). The Kerma factor for tissue was 2. 8x10 t t rad cm /n. 

The kerma factor for the bone was not listed in this publication. It was assumed the same 

as the tissue Kerma factor because bone is approximately twice as dense as tissue and has 

about one half as many hydmgen atoms in its molecular strucnue. The dose to the tissue 

and bone were 95. 76 mrad each. The dose to the tissue and bone from epithermal 
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neutrons wctu calculated using Kerma factors from Attix's tables for a neutron energy of 

11 eV (Attix 1986). The dose to the tissue was 0. 261 mrad and 0. 229 mrad to the bone, 

The quality factors used were five for thermal neutmns and 20 for all neutrons other than 

thermal energy, epithermal and fast (NCRP 1987). These quality factors were used in 

calculating the appmximate dose equivalent to a sample in beam port Al. The doses were 

then summed and multiplied by the quality factor to determine the total neutmn dose 

equivalent. It was calculated to be 960 mrem 
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RESULTS 

The phantom was irradiated six times, for fifteen minute intervals. The counts 

ranged from a low of 10, 030 counts for phantom irraduuion ¹3 to a xxuurimum of 10, 988 

counts for ldtantom irradiation ¹4 with an average of 10, 381 counts. These values 

corresponded to activities at t = 0 ranging fiom 23. 74 to 26. 00 disintegrations per second 

per total weight of sample. Once the calcium content had been deuumined for the 

phantom, a comparative technique was used to obtain the content of calcium in the 

individual bones. Equation ¹4 was solved to deuumine the mass of calcium in each 

bone. The average specific activity of the phantom was 24. 60 disintegrations per second. 

The average activity was then used to determine the toed calcium content in each bone. 

The values of BMD obtained with the Lunar DPA unit ranged from 0. 783 to 0. 922 

g/cmz with a standard deviation of 0. 050 for the twelve bones as listed in Table 2. 

Reviewing these measurements in Table 2 shows that the bones with a higher BMD 

usually coxresponded to a larger amount of calcium in the bone. The left leg and the right 

leg of two animals had considerably less in bone mass in one leg bone as compaxed to the 

other leg bone. The corresponding bone numbers are 4, 5 and 8, 9 in units of grams of 

calcium as shown in Table 1. The amounts of calcium content varied by 3. 76 and 3. 12 

grams respectively. Their BMD's also varied in the same manner. The values of BMC 

ranged fiom 14. 20 to 24. 97 grams with a standard deviation of 3. 566 for the twelve 

sheep bones. Table 3 and 4 list data on the phantom and bone irradiations. 

The relationships between the factors of BMC, calcium content, and BMD were 

analyzed to determine any statistical enor between values such as the coefficient of 
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correlation or the confidence interval. Linear regressions performed on the data &om 

NAA and DPA for BMD, BMC, and calcium content axe illustrated in Figures 7, 8, and 9. 

These figuxes illustrate linear regxessions of the twelve sheep bones plotted as BMC 

versus calcium content in Figure 7, BMD versus BMC in Figuxe 8, and BMD versus 

calcium conuntt in Figuxe 9. There were no statistical coxxelations found between BMC 

and the calcium content of the sheep bones, Statistically these data displayed no 

correlation between BMD and calcium content. Only half of the smaller animal bones 

correspondingly ~ in BMC and calcium content when compared to the larger 

bones. The coefficient of correlation was 0. 697, and was not considered significant, but 

Table 2. Measuxed Charactexisdcs of the Sheep Bones 

Sa le 
1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Ca 
12. 47 
13. 96 
12. 73 
12. 39 
7. 38 
11. 11 
11. 78 
8. 63 
14. 00 
12. 15 
9. 15 
9. 23 

BMD lcm "2 
0. 85 
0. 92 
0. 92 
0. 93 
0. 79 
0. 90 
0. 89 
0. 86 
0. 91 
0. 90 
0. 78 
0. 84 

BMC 
20. 15 
22. 60 
24. 57 
24. 97 
16. 42 
17. 25 
17. 18 
18. 96 
20. 61 
18. 90 
14. 42 
14. 20 

std dev. 
0. 05 

std dev. 
3. 57 
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Table 3. Phantom and Bone Counting Information 

am le¹ 
Phantom «1 
Phantom ¹2 
Phantom ¹3 
Phantom ¹4 
Phantom ¹5 
Phantom ¹6 
Average 

Bone «1 
Bone «2 
Bone «3 
Bone «4 
Bone «5 
Bone «6 
Bone «7 
Bone ¹8 
Bone ¹9 
Bone «10 
Bone «11 
Bone «12 

10656 
10340 
10030 
10988 
10039 
10235 
10381 

9903 
11085 
10112 
9840 
5858 
8827 
9352 
6587 
10930 
9649 
7170 
7307 

t1 min 
2. 75 
2. 75 
2. 75 
2. 75 
2. 87 
2. 75 
2. 75 

2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 25 
2. 42 
2. 25 

t2 min 
17. 75 
17. 75 
17. 75 
17. 75 
17. 87 
17. 75 
17. 75 

42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 25 
42. 42 
42. 25 

Ao t 0 
25. 22 
24. 45 
23. 74 
26. 00 
23. 98 
24. 22 
24. 60 

16. 37 
18. 32 
16. 71 
16. 26 
9. 68 
14. 59 
15. 46 
11. 33 
18. 37 
15. 95 
12. 01 
12. 12 

s'ld. dev. 
2. 84 

(bone) 

18. 745 
18. 745 
18. 745 
18. 745 
18. 745 
18. 745 
18. 745 

12. 47 
13. 96 
12. 73 
12. 39 
7. 36 
11. 11 
11. 78 
8. 63 
14. 00 
12. 15 
9. 15 
9. 23 

std. dev. 
2. '1 8 

(bone) 

Table 4. Phantom Counting Data and Activity 

Bam le «Net Counts t1 min t2 min A m c/sec/ 
Phantom ¹1 
Phantom ¹2 
Phantom ¹3 
Phantom ¹4 
Phantom «5 
Phantom «6 

Ayers e 

10656 
10340 
10030 
10988 
10039 
10235 
10381 

2. 75 
2. 75 
2. 75 
2. 75 
2. 87 
2. 75 
2. 75 

17. 75 
17. 75 
17. 75 
17. 75 
17. 87 
1 7. 75 
1 7. 75 

1. 35 
1. 31 
1. 27 
1. 39 
1. 28 
1. 29 
1. 31 

std. dev. 
0. 04 



the confidence interval for this regression fit was considered significant with a confidence 

interval of 98. 9%. The P-value for the F-test was 0. 012 which denotes high confidence 

intervaL The linear regression for this data is shown in Figure 7, 

The pahed comparison between BMC and BMD show a similar relationship. 

Figuxe 8 depicts the linear xegression for BMC versus BMD. Values for the BMC 

ncxeased or decreased xespectively as the BMD ~ or decreased, but not in 

proportional amounts. This is seen in Table 2. The coefficient of corelation for BMD 

versus BMC was higher, 0. 754, but was not considered a significant value. The P-value 

for this data was 0. 005 after an F-test was performed. The confidence interval was 

99. 5%, This P-value indicates that the data points significantly fit in the range of the 

estimated values using a linear regression and demonstrate a strong level of significance. 

This information may be useful in the determination of calcium content of bones but is 

not considexed as statistically significant 

The evaluation of calcium content and BMD was performed using a simple linear 

regression. The regression was performed with the BMD (g/err') on the Y-axis and the 

calcium content (g) on the X-axis. The values for these two sets of data showed a greater 

significance than the other two evaluations. The xegression shown in Figuxe 9 shows 

the data points closely following the line xnsde by the equation for the retpussion fit of 

BMD and cakium content. The coefficient of correlation was determined as 0. 82. This 

xeflects a significant ctarelation between the calcium content and BMD. The correlation is 

not as large as desired, but does show that the BMD (g/cm&) and calcium content (grams) 

possess some type of relationship. The P-value for the F-test at 0. 001, cortesponds to a 

confidence interval of 99. 9%. It was concluded from this data that calcium content can 

be confidently determined by measuring BMD in 8/cm2. 
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Regression Fit for BMC vs. Cst oF Bone 

28 
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Ce Content (gm) 

Fig 7. Regression Fit for BMC vs. Calcium Content 
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1. 2 
Regression Fit for BMD vs. BMC 

1. 0 
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0. 6 

sr 

0. 6 
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BMC (yrr) 

Fig 8. Regression Fit for BMD vs. BMC 
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1. 5 
1. 4 
1. 3 
1. 2 
1. 1 

1. 0 
0. 9 I 

A 0. 8 
0. 7 
o. 6 
0. 5 
0. 4 
0. 3 

0 

Regression Fit for BMD vs. Ca of Bone 

4 6 8 10 12 14 16 18 20 
Ca Content (ya) 

Fig 9. Regression Fit for BMD vs. Calcium Content 



CONCLUSION 

No previous research has been performed on the specific measurement of calcium 

content by relating comparative neutron activation analysis to dual photon absorptiometry 

result. No publications were found ~g BMC or BMD to duect measurements of 

cakium by using neutron activation. In this project the main goal was to determine if a 

correlation existed between BMD and cakium content of bones enabling DPA to infer 

calcium contena The cakulations for true calcium content were peformed using 

Equations 1, 2, 3, 4, and 5 using data from comparative NAA experiments discussed 

earlier. These results were compared to bone density measuremmts obtained with a 

Lunar DPA unit. After the data were collected from both techniques, statistical tests were 

performed to determine the coefficient of correlation betwetm BMD and calcium content. 

A coefficient of correlation of 0. 80 was the minimum goal of this experiment. If such a 

conelation was found, DPA could be used with more confidence in the future to infer 

calcium content of bones and would give doctors and veterinarians added confidence in 

DPA ments of all skeletal materials. De~on of total calcium content was 

performed using a standard phantom in comparative NAA experiments. The activity was 

calculated in units of counts/sec/g of calcium The phantom was irradiated six times. 

The subsequent activities were then averaged and used to determine calcium content. The 

cakium content of the bones were cakulated using the standard average specific activity. 

The cakium content was compared to the BMD and BMC measurements. 

This information showed a significant conelation between BMD and cakium 

content of the bones. A value of 0. 82 for the coefficient of correlation for BMD versus 
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calcium content was slightly larger than the goal of 0, 80. This coupled with a confhlence 

interval of 99. 9% shows a significant correlation between the two types of 

measurements. This data also illustrated that ctdcium is not the only contributor to BMD. 

If calcium was the only contributor, the linear regression for BMD versus calcium content 

would intercept the X and Y axis at the point (0, 0). 

The data discussed in the previous paragraph shows a significant corielation 

between BMD and calcium content of the front leg bones of sheep. This study creates a 

small database of information that could be expanded by studies performing experiments 

using live animals. These live animals would be used to determine whether a correlation 

between average BMD values and total body calciuin content of entire live animals exist. 

This information could pioneer a technique to indirectly measure ctdcium content of bones 

quickly and tuecisely using dual-photon absorp~ techniques enabling doctors and 

vesetinarians to easily determine skeletal changes in the study of bone disease. 

The medical and veteinary communities are currently seeking methods to perfcum 

accurate measurements of calcium loss and bone degradation seen in bone ~ such 

as osteoliorosis. Also, NASA is currently seeking methods to determine bone loss in a 

zem gravity envimnment. This information should be beneficial in the determination of 

bone loss for long term space flight or clinical studies on earth. Animal rights gmups 

and scientists ate also inuuested in using such information to monitor lab animals for 

skeletal degradation caused &om a lack of exercise. This information woukl be vital in 

the development of techniques to provide exercise programs to minimize bone mineral 

loss which is linked to skeletal disorders of these caged animals used in experiments, 
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