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- ABSTRACT

Analysis of Multi-Stage Centrifugal Pumps
Using Transfer Matrices. (December 1989)
J. Howard Kelly, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Jorgen Nikolajsen

This report describes the background, theory, and verification of the FORTRAN
program PATH. This program is used to analyze multi-stage centrifugal pumps using
the transfer matrix method. It is capable of being used to conduct a static analysis in
order to find the linearized stiffness and damping coefficients of the end bearings. It is
also able to account for seal and impeller forces, seal misalignments, and a nonrotating
flexible housing along with its supports.

The program is written to perform a dynamic analysis of the pump. Complex
eigenvalues are computed for use in conducting a critical speed and stability investi-
gation. Dynamic analysis capability is made complete with the program’s ability to

calculate mode shapes and model the pump response to mass imbalance.

iii



DEDICATION

I wish to dedicate this work to my parents James and Katie.



ACKNOWLEDGEMENTS

I gratefully acknowledge the Turbomachinery Research Consortium for
providing the funding for this project. Special thanks are also extended to Larry
Earles, Steve Hensel, Matt Franchek, and John MacGregor for answering questions,
providing entertainment, and giving me free reign to their office supplies and books. I
would also like to thank Mr. Sang Park for helping me to get started with this project.
I gratefully acknowledge Dr. John Vance for providing information and teaching me
the basics of rotordynamics, and Dr. Dara Childs for uncomplainingly allowing me to
pester him even when he had a "Do not Disturb” sign hanging conspicuously on his
office door. 1 especially thank Dr. Jorgen Nikolajsen for his kindness, availability, and
guidance during this project. Joyful thanks are given to my brothers Ed L’Antigua,
Stuart Harbert, and J. Edgar Zapata for their prayers for me and with me. Most of
all, I thank my Lord Jesus Christ for being my solace and motivator, and giving His

life that I could joyfully live.



a

A
b;

Czz,Cry, Cay Cag
Cyz, Cyys Cyo, Cyg
Coz, Cays Coo, Cog
Co2:Cay, Co0: Cos
en

€r,€y

J
Jr

Jp

NOMENCLATURE

= semi-major axis of ellipse {m)}

= cross sectional area [mz]

semi-minor axis of ellipse {m)]

= linear damping force coefficients [N s/m]|
= eccentricity of unbalance {m)|

= components of bearing eccentricity [m]
= modulus of elasticity [N/m?]

= scaling factor

= force components [N)

i

= function minimized in static iteration process

modulus of rigidity [N/m?]

1]

= incremental vector in static iteration process
= used to denote an imaginary number

= geometric moment of inertia [m?]

= Jacobian matrix in static iteration process
= transverse mass moment of inertia [kg m?]

= polar mass moment of inertia (kg m?
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1

stiffness force coefficient [V/m]

linear stiffness force coefficients [N/m]
length of station n {m]

mass of station n {kg]

linear inertia force coefficients [N s?/m]
moment about x and y axis’s [N m;
polynomial function

complex root (A + iw) [rad/s|

time [s}

shear force in x and y directions [N}
displacements in x and y directions [m)]
complex displacement in x and y directions [m]
real components of complex displacements [m/]
imaginary components of complex displacements m|
velocity in x and y directions [m/s]

acceleration in x and y directions [m/s?
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subscripts

B = bearing

B1 = left bearing

viii

= modified eccentricity components [m|

= absolute change in displacement of the shaft [m]
= X-sectional shape factor for shear deformation of shaft
= C.G. angle of imbalance [deg]

= direction angle of impeller force [deg]

= elliptical phase angle of whirl orbit [deg]

= logarithmic decrement of damped vibrations

= seal misalignments in corresponding directions [m]
= angle about y-axis [rad]

= angular velocity about y-axis [rad/s]

= damping exponent of free vibration [rad/s]

= 180 degrees converted to radians

= phase angle associated with imbalance [deg:

= angle about x—axis [rad]

= angular acceleration about x-axis [rad/s?]

= elliptical orientation angie of whirl orbit [deg]

= natural frequency of vibration (rad/s]

= damped natural frequency of vibration Irad;s)

= running speed of shaft [rpm]



B2 => right bearing
BS = bearing support
H = housing
I = impeller
LH5 = left hand side of pump
n = station namber -
N = number of stations

RHS = right hand side of pump

5 = shaft
SL = seal
2386 = direction components
superscripts
T = transpose of matrix

+ = substation between lumped mass and massless beam
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CHAPTER 1
INTRODUCTION

The objective of this project is to produce a computer code capable of
analyzing high performance multi-stage centrifugal pumps using the transfer matrix
technique with eigenvalues derived from the characteristic polynomial (Murphy and
Vance (1983)). This program is able to take into account the following features of
the pump:

1) Nonlinear bearings with linearized 2 x 2 stiffness and damping matrices.

2) Up to 25 linear seals with 4 x 4 stiffness, damping, and inertia matrices.

3) Flexible pump housing on flexible, damped supports.

4) Seal misalignments.

5) Steady-state impeller forces.

The program enables the user to perform the following analyses:

1) Determine instability threshold speed.

2) Determine damped natural frequencies and mode shapes.

3) Find steady unbalance response of the system, including displacements at
each station and reactions at each support.

4) Calculate steady state eccentricity of the bearings and the seals and use
this eccentricity to obtain the bearing stiffness and damping coefficients.

These analyses can be performed interactively.

Format and style based on ASME Journal of Vibration, Acoustics, Stress, and Reli-
ability in Design.



Prohl (1945) and Myﬂest;d (1944) were the first to introduce the transfer
matrix method as a technique for calculating the natural frequencies and mode shapes
of flexible beams. Koenig (1961) described a technique by which this method could
be applied to finding the response to imbalances, as well as the natural:frequencies.
Twelve years later, Lund (1973) set forth a procedure by which the stability and
damped critical speeds of a flexible rotor in fluid-film bearings could be found by
calculating the complex eigenvalues of the system.

Pilkey and Chang (1971) proposed a new idea for finding critical speeds with
the transfer matrix method. They set forth a method that avoids iterative searches
and instead takes advantage of the characteristic determinant being a polynomial.
The natural frequencies could now be found as roots of this polynomial. Though
submitted as a faster technique that would avoid missing critical speeds, it was not
brought to fruition for ten years. It was at this time that Murphy and Vance (1983)
wrote a paper describing a program using this method with damping included. In
their paper, they proved that this method convergesfaster than a Lund~type program
and no critical speeds are missed.

All of these papers mentioned thus far regard only single spool systems. Bohm
(1966) described a transfer matrix method for calculating critical speeds of multiple
spool systems. Hibner (1975) improved upon this scheme by considering bearings with
nonlinear viscous damping and shear flexibility. Li and Gunter (1978) developed a
program for “computing the stability of a linear dual-rotor system using the parallel

transfer matrix technique”. Neison and Meacham (1982} produced a program to



analyze dual rotor systems using finite elements with either the direct or component
mode synthesis method.

Gajan (1987) described in his thesis a computer code developed to specifically
analyze multi-stage centrifugal pumps. His program was a modification of a more
general rotor dynamics program developed by Nelson, et.al. (1981) based on using
the finite element method. Centrifugal pumps have seals as ;;vell as nonlinear bearings
to support the weight of the rotor. This condition means that the pump is statically
indeterminate, which implies that the bearing eccentricities are unknown. Therefore,
the bearing stiffness and damping coefficients are unknown. Gajan modified Nelson’s
program by developing an iterative scheme to home in on the static bearing eccen-
tricities. He also made available a means of considering seal misalignments and full
4 x 4 seal stiffness, damping, and inertia coefficient matrices.

The flexible housing option in program PATH is made available for use in ana-
lyzing vertical pumps as well as horizontal centrifugal pumps with housing. A vertical
water pump has been chosen to be analyzed in order to demonstrate the effects of
including the housing in the model. A typical vertical, multistage, deepwell pump
is shown in Figure 1 from Dicmas (1987). A number of models have been suggested
in the literature for use in analyzing vertical pumps. Some models differentiate on
whether or not to include the stiffness of the base plate connection to the founda-
tion, and if so, whether to use moment stiffnesses, direct stiffnesses, cross—coupled
stiffnesses, or all the above. Lee, et al. (1985) demonstrated the importance of mod-

eling the base-plate-to-foundation stiffness in a paper on the analysis of an idealized



vertical pump. Previous analyses had assumed infinite stiffness for this connection.
The pump model used by Lee, et al. is shown in Figure 2. They use a torsional
stiffness model, K, for the baseplate-to—foundation connection and also include the
stiffness K of the discharge pipe. It was demonstrated that both the base—plate-
to—foundation stiffness and the stiffness of the discharge “significantly ‘affected the
natural frequencies and modes” of the vertical pump model.

Smith and Woodward (1988) presented a paper describing the field vibration
analysis of “several large motor-driven vertical cooling water pumps which experi-
e?ced excessive wear of the impellers, wear rings and seals after a short period of
operation”. They discovered that the problem was due to the operating speed being
too close to a natural frequency of the system. It was shown that the “natural fre-
quency was a direct function of the stiffness of the bolted connections between the
concrete [foundation], the pump, and the motor”. Though a detailed computer anal-
ysis was never conducted, they suggested the lumped mass model shown in Figure 3.
The basis of this suggestion is that the stiffness of the baseplate-to-foundation can
greatly affect the natural frequency of the pump and should thus be included in any
numerical analysis.

None of the previous mentioned papers included the effects of the vertical pump
casing in their analyses. Chang and Braun (1987) included the casing in the anal-
ysis of a vertical multistage cryogenic pump. They showed that “a subsynchronous
mode associated with the cantilever bending of the pump casing bundle was correctly

predicted” by including the housing in the model. Finite element representations of
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Figure 2. ldealized vertical model.
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vertical pumps have also been presented in the literature by Hinata, et al. (1985) and
Cornman (1986).

Gajan’s program, as well as Murphy’s was developed for a single spool system.
The project proposed here will improve upon each program by having the capability
of taking the flexible pump housing into account. This is particularly important when
analyzing vertical pumps which have long flexible housings. It also takes advantage
of the simplicity and speed of transfer matrices in the static analysis. By combining
the advantages of Gajan’s program with Murphy’s program along with the use of
transfer matrices and the inclusion of a flexible housing, this should be the fastest,

most encompassing pump program available.



CHAPTER II
THEORETICAL DEVELOPMENT (STATIC)

One of the primary objectives of this project is to compute the static
equilibrium position of the shaft using iransfer matrices. This is done in order to
calculate the linearized bearing coefficients for use in the dynamic analysis. The
transfer matrix method has been extensively described in the literature. For a simple
introduction, refer to Steidel (1979). For a more extensive overview, see Leckie and
Pestel (1960). In using the transfer matrix method, the shaft is broken up into a series
of lumped masses and massless beams. For the static case, referring to Figure 4, the
transfer equations are derived for the y-z plane. The transfer across lumped mass
number n is obtained by summing the forces in the y, direction and summing the
moments in the ¢, direction.

ZFyn =0=V, =V, + Ty, — Wy, =0

S My =0=

(1)

My, — My, +T4, =0



' '
Yn Yniy
Yty

N N ot o
EL‘J M, g‘ “l) M, h‘ (EDa(aGA), WJ Mm.L' ‘ l o-:,-&D — 2,0

T . l T l T vl T Yo

Cputa

I, S

Yn41

Figure 4. Discrete shaft model for stalic analysis in y—z plane.
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where I'y represents the bearing and. seal forces in the y direction, Wy depicts the

weight and impeller forces in the y direction, and I'y symbolizes the seal moments

around the x-axis. The transfer across the massless beam number = is obtained in

the same manner.

S F =02V, -, =0

DMy =0 My~ My V=0
Rearranging the terms of equations 1 and 2 results in equations 3.

Vi =V =Tyt W,
My, =My, ~ Ty,

v,

— !
Yni1 T ‘/yn-

My, =My + Vil

Using beam theory, the deflections are derived.
,

Yo = Yn
Fn = 6n

[ I, My, B2

w o _n_ _ Mgaita

Ynt1 = Yn ~ baln +(3EI aGA)Vy"“ 2E]
Vyold Myl

Ynsi'n

2EI ' EI

bnil = ¢ —

2

3)

()

Substituting the solutions for ¥, _ and My, of equation 3 into the second half of

Y1
equations 4 gives
B LEIV, MD
Va1 = Yo = fabo — (£ - ) Lo — el
6 aGA’EI  2EI

bt = 4 +v,'nzﬁ M
nH =T REl TR

(5)
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Similarly, referring to Figure 5, the transfer equations are derived for the x-z

plane.
V2, = Voo = Top + Wa,

My, = Mg, —Te,
Ve = Vz‘n

Mo, = M;, - Vidn

, ®)

Tp = Tn

0 = b,

B ,EI V) R4
- 1B — (22— 222y Yo i3
Tatl = En (6~ aGA)ET T 2ET
Vi Ml

e YT B 71

II.1 Nonlinear Bearing Forces

This program considers pumps with two nonlinear journal bearings with
multiple seals between the bearings. The bearing force, attitude.angle, stiffness coef-
ficients, and dampir;g coeflicients are all functions of the eccentricity ratio, the ratio
of the bearing eccentricity to the radial clearance between the shaft and the bearing.
The bearing eccentricity is the displacement of the journal relative to the bearing
centerline (see Figure 6). These parameters are shown in Figures 7 and 8 from Lund
(1965), and Figures 9 and 10 from Woodcock (1971).

The bearing force is represented in Figure 7 as the inverse Sommerfield number

Y Fg C

= LD“N(E)Z M
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Figure 5. Discrete shall model for static analysis in x-z plane.
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Figure 6. Schematic of bearing forces acting on shaft with eccentricity and attitude
angle.
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where Fp is the absolute bearing force, L is the axial length of the bearing, D = 2R
is the diameter of the journal, x is the viscosity of the fluid film, V is the the shaft
speed in rps, and C is the radial clearance between the shaft and the bearing, Vance
(1988). The attitude angle of Figure 8 is the angle ¢ of Figure 6 between the lines of
action of the force and eccentricity.

The dimensionless coefficients of Figures 9 and 10 are given in the direction
of the load. The conversion to coefficients with physical dimensions along with the

transformation to the defined coordinate system is given as

Koo = 5 o [Keacos®(8) ~ (Kuy + Kya) conl8) sin(8) + Koy sin’(5)]

F
Kay = 5 * [Kay cos’(8) = (Kyy = Kez) cos(8) sin(8) — Kyesin’(8)]

Ky = g * [Kyz cos?(B) — (Kyy — Kzz) cos(B) sin(B) — Kzysin(B)]
Ky = & = Ky cos®(8) + (uy + Ky)cos(B)sin(8) + Ko oin(9)] (8)
Cux = B * [Cea c08(8) — (Cay * Cye)cos(@) sin(8) + Oy sn¥(3)]
Cay = & Oy c05(8) = (Cpy = Cu) cos(8) sn(8) — Cye sn*(8)
Cpe = g # [Cyz cos*(8) — (Cyy — Cz) cos(B) sin(B) — Cuy sin*(8);
O = &+ (Cuycort(8) = (Cuy + Cpe)con(8) sin(8) + Consin(8)]
where, referring to Figure 6
B=15r—a+e (9)

The damping coefficients Czz~Cy, are not included in the static analysis, but are

interpolated for at the end of the analysis for use in dynamic calculations.
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Figure 11 is a simple schematic of a flexible shaft with linear seals, linearized
bearings, and linear bearing supports connecting the bearing housing to the ground.
In equation form,

ey =¥Ss—¥B
(10)
es=z5— 28
where e, and e, are the y and x components of the bearing eccentricity, ys and o5 are

the absolute displacements of the shaft, and yp and zp are the absolute displacements
of the bearing as seen in Figure 12.

Given an initial eccentricity, the nonlinear static bearing forces can be calcu-
lated in either of two ways. They can be found in linearized form using the stiffness
coefficients where

F, = —Kpx - Keyy
(11)

Fy=—Kyzz — Kyyy
They can also be found in basic nonlinear form by interpolating from tables for the

absolute bearing forces (see Figures 7 and 8). These two options are further discussed
in section IL.6. The forces F; and Fy are included in the variables Tz, and Ty, of
equations (6) and (3), respectively, across the bearings at station n.

In order to account for the bearing support flexibility for the one spool case, it

is first seen, referring to Figure 11, that

_ FEI‘
Kps,

yp = (12)

where Fp,_is the bearing force in the y—direction and Kps, is the bearing support
stiffness coefficient in the y~direction. Substituting this into equation (10) and rear-

ranging terms gives
Fp,

- i3
Kzs, (13)

Ys=¢€y
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Figure 1. Flexible shaft with lincar seals, linearized bearings, and linear bearing supports.
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It has already been shown that e, is the y~component of the bearing eccentricity,

from which we obtain Fp, . In the same fashion,

(14)

where z is the absolute z-displacement of the shaft, e; is the z-component of the
bearing eccentricity, Fp, is the bearing force in the z-direction, and Kps, is the
bearing support stiffness in the z-direction. The equations across a lumped mass are

represented here in matrix form.

z z

H 1o oaw] |}

& 0 1 azgy @

Ve = : : Vi (15)
V, v,
Ilig 281 agz agg -‘/]s
My » | M,

" 1),

Using equations (13) and (14), the bearing supports are accounted for by using the

following equation.

’
arg = a19 —

!
Q39 = @29 — T -
Kp

1
ak a a LA a; s, 1o
= @59 — a5 — a5 -
% Kps. Kps,

B

5277
Kps, Kps,

v

age = ass — as1
Substituting the results of equations (16) into equation (15) accounts for the bearing
supports for the one spool case. The derivation accounting for the support flexibility

with the housing is found in section 2.5.
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11.2  Seal Forces
For this program, the seal forces are linear functions of the displacements

(Childs (1981)). In matrix form, the transfer across a mass station with a seal is

!

z f z
¥ oo 0 y

8 : : : : o d [

4 Ko Kzy Kop Kip ... a5 ¢

Vet = | Ky Ky Ky Ky oo ass Vi (17
I‘L/ ﬁ’az ﬁﬂy Koo fao .. arg JiV[

o ( (4 K (o6 -0 G o

¢z Koy Koo ¢ -G89
My ¢ e 8 11, | Ms
1), v,

The variables aso-ass represent all constant forces and moments acting on the seal

station, such as weight and seal forces due to misalignments.

II.3  Seal Misalignments

Nikolajsen and Kelly (1989) demonstrated that “the stability of a ro-
tor with three or more fluid-film bearings or seals is strongly affected by the radial
misalignment of the bearings and seals.” Referring to Figure 13, §, represents the
misalignment of the seal with respect to the bearing centerline in the y direction. For

this simple example, the seal forces caused by the misalignment are
Fy= —kye,—8,) (18)

or

Fy = —kyey + Sy (19)
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where e, is the displacement of the shaft relative to the bearing centerline.
This simple example can be extended to include the four degrees of freedom
z, y, 0, and ¢ for each seal. The seal force, representing kydy, can be included into
equation (17) by substituting in the following formulas.
asg = Wy — Kpabz — Ko yby — K 986 — K464
a6y = Wy — Kyoba — Ky, 8y — Kyab — K459
arg = —Kgzbz — Kgyby — Kpp88 — Kgyb0

g9 = —K o652 — Kby — K366 — Kyy66

I1.4 Impeller Forces

The impeller forces are hydrodynamic forces exerted on the impellers and
transmitted to the shaft. These forces have been recognized to cause rotor dynamic
problems in high speed pumps (Jery, et al. (1984)). For any position of the impeller

(see Figure 14), the forces on the impeller can be represented by

Bl i) 2
The forces Foz and Fyy are the lateral forces “generated when the impeller center
coincides with the volute center” Jery, et al. (1984). Data for these forces has been
compiled by Domm and Hergt (1970), Agostinelli, et al. (1960), and Iversen, et al.
(1960),‘ among others. For this analysis, the volute center is considered coincidental
with the bearing centerline. Small offsets z, y in the impeller center generate the
remainder of the forces represented with the stiffness matrix [A] (reference Chamieh,

(1983), Chamieh, et al. (1982), and Jery and Franz (1982)).
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Figure 13. Seal misalignment with respect to bearing centerline.



Figure 14.

fmipelter coordinate system and force notation.

P4



28

For this project, the forces Fy; and Fy, are read in for each shaft speed  to be
analyzed as a force magnitude Fy and direction v as depicted in Figure 14. The force
is broken up into its 2 and y components in equation (22) which can then be accounted

for in the static force terms W, and W), of equations (6) and (3), respectively.

Fr, = Freosy
(22)
Fp, = Frsiny

The stifiness matrix [A] is also read in for each shaft speed Q and contains

cross-coupled as well as direct coefficients.
K. K.
Al = 2 =y 23
=R R ()
The stiffness matrix is accounted for in the same way as that for the bearings and

seals.

II.5 Flexible Housing

A major distinction between this project and that of Gajan and Murphy is
the inclusion of a flexible housing in the analysis. This will result in a more accurate
modeling of vertical pumps in particular. The transfer across lumped masses and
massless beams is the same as in the one spool case. The main obstacle in multi-spool
analysis is crossing over bearings and seals which connect the shaft to the housing
(see Figure 15). In order 1o keep the size of the equations small in the following

explanation, it is necessary to define two matrix variables.

T Ve
{x}= E jand {V} = 1:2; (24)
Mg
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Figure 15.  Schematic of flexible rotating shaft with a flexible nonrotating housing.
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The technique used in this analysis is to first transfer across the shaft from the

left hand end to the first bearing. The formula is

Xg
Xs : , Iy
1;5 =[9%9, (9% 9],y [9%x9]; [9x18] Xu (25)
B1 Viy
1 Jins
where the 9 x 18 matrix has the form
[9x18]=[] 0] (26)

where I represents the 9 x 9 identity matrix. Next, a transfer is made across the

housing to the first bearing. Mathematically,

Xs

Xy Vs
Vi =[9x9), [9x9] ,..[9x9] [9x18]{ ¢ 27

i mpy mg—1 1 Xy

B1 Vi

1 Jims
where the 9 x 18 matrix has the form

[9x18]=[0 I (28)

The resultant matrices of equations (25) and (27) are both 9x 18. These two equations

can be combined in the form

Xs Xs

Vs Vs

T _ [19x18]p; 1 29
X = li9x 18l | X (29)
Vi Vi

L Jm 1 ) ius

Now, to make the transfer across the bearing, the following equation is used.

Xs)' oo 0 0 0 0 Xs

Vs &} (1] {Fs} [-K] 0 0 Vs

1 I R Y I R R S| i 2
Xe{ =10 o o @) 0o o Xn (30)
Vi -k} 0 0 [K] {1} {Fy} 17

. 0o 0 0 o 0 S U
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where [1] is the 4 x 4 identity matrix,

Koz Koy 0 0

- K,

=T B 00 @)
0 0 0 0fp

the stifiness coefficients of the bearing, and 4 x 1 matrices {Fs} and {Fy} signify
the weight forces of the shaft and housing, respectively. Combining equations (29)
and (30) give the relationship of the displacements and forces on the right side of the

bearing with those at the left hand end of the shaft and housing.

s s
1 _ i
| - (18 x 18], {18 x 18}p, X (32)
H 'H
1) m U ) rms

Expressed another way, equation (32) becomes

Xs ! Xs

Vf 9% 185 vf "
Xu{ = |19x18ipy | | Xu (33)
H " Vi

1 )p L )inms

Now, if the next connection is a seal, the transfer up to it is expressed as follows.

Xs
Xs ‘{5
{Vs} :{9x91n5L|9x9};5L_,...[sxls]m,s X (34)
1 st Vit
1 Jius
Xs
Xy ‘;5
{va} = (9% Oy, 195 00y g o (9 18]y 3 (35)
1) s Vi
L ) ras

A similarity can be seen between equations (34) and {35) and equations (25) and
(27). The same procedure is followed for crossing the seal as has been described for

the bearing and so forth for passing over other connections.
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The housing supports are easily included using the following equation,

Xy)' 0 0 ] X
{v;’}' } :[[[1{']1 1 | {v}? } (36)
T )us [ 1 . 1 Jgs

nus

where (I} is the 4 x 4 identity matrix,

K. 0 0 0
‘g 0 K, 0 0 -
{K}= 0 oy Ko 0 ) (37)
0 0 0 Kyfpo

and {Fy} is the same as in equation (30).

I1.6 Iterative Scheme

An iterative scheme has been developed for calculating the steady state
bearing eccentricities to determine the linearized bearing coefficients. This plan will
first be developed for the rotor without a housing and then the effect of the housing
will be discussed. Upon completion of the transfer across the length of the shaft, the

finral matrix will have the following form.

[ r
¥ v
8 ajy @12 ... @18 Q19 6
é a1 a2z ... 428 ax &
% =] F %{1 (38)
y agy asy ... Qsg asg f
Mo 3 Pl o
M, M,
Uy L

The boundary conditions are that the forces and moments at both ends of the
shaft are equal to zero. Implementing these conditions results in equation (39).

@51 ... 0654 G439
ag] e agd agy

0

0

0, = (39)
0

1

—S o B

0 L0 1]y,
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Rearranging terms and using simpler notation gives
[Aly (X} = —{Fo} (10)

where Fy represents the forces and moments asg to agg.

Inspection of equation {40) leads to the idea of a Newton-Raphson type iterative
scheme to home in on the steady state bearing eccentricities based on an initial guess
of the deflection at station 1. An underlying problem associated with this idea is that
the objective is to find the displacements at the bearings, not at the first station. One
way to get around this obstacle is to define the displacement at station one in terms
of the bearing eccentricity components.

Transferring across the rotor stations up to bearing 1 gives the following matrix

equation.

T [z

K

] du diz ... dig die 15

@ dn dap ... dag dy )

Va Ll R - Ve (41)
Yy dgy dgy ... dsa des W

My 00 .0 1lg My
M, My

1 1

B1 1
The displacements we want are the bearing eccentricities, namely ihe z and y dis-
placements of the shafi relative to the bearings at bearing stations 1 and 2.
x
T _ldu dip dip dig y\ )i (42)
Y g doy dyp day daa |y, 2 29 f gy
1

Similarly for bearing two, we obtain

2| _[dn din dig dy dig (
{y}m [dzl dyp dys dnap, * ) das B2 (13)

o e B
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Combining equations (42) and (43) and rearranging terms results in equation {44).

di1gy -+ diap, z zp1 — digg, z:m

do1gy oo daapy | Sy U ) ymi—dag | _ )k (44)
g -+ iagy| } 8 ep — digg, 25y

doigy ... doag, $), yB2 — da9g, Yp

By inverting the 4 x 4 matrix and moving it to the other side, we acquire the dis-

placements at station one in terms of the modified eccentricity components at the

bearings.
-1
z diyg, -0 diag, "':‘1‘91 .
y U _ | dum - duag B (45)
6 11z - i, Tpy
)1 ldus - dup B

Substituting the results of equation (45) into equation (40) gives
:cz;l
1 -1 ) ¥ -
[4lx (D17 981 4o (o) = {0} (49)
E
YB2

Simplifying the equation format and setting it equal to a function {g.,} (Gajan

(1987)) renders equation (47).

{95} = [CI{X}5+{F}x {47

The solution for { X} g is found when {g:,} = {0}. A modified Newton-Raphson
iteration process will be used to find the solution. The equations for the Newton-

Raphson iteration process are as follows.

{X}p,., = {X}p, + {2},

[l {k},=—{gs},

(48)

where,
{h}n is the incremental vector and

[J]n is the Jacobian matrix.
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The components of the Jacobian matrix are

Og;
Ja =
* = Ba

(49)

There are two possible upt‘ions for transferring across the bearings. One route
would be to find the z and y components of the absolute bearing force Fig of equation
(7) which are nonlinear functions of the eccentricity, e and attitude angle, ¢ (See
Figure 6). A hindrance of this course is that when you reach equation (47), {F}
turns out to be the function of the bearing eccentricities e, and e, rather than [C].
The problem with this is that {F} would need to be differentiated with respect to
{X}g in order to compile the Jacobian matrix. Another option would be to look up
the stiffnesses Kzz, Ary, Ky, and Kyy of the bearings for given eccentricities. Each
of these stiffnesses are also functions of the eccentricity ratios and attitude angle, as
shown in Figure 9, as well a5 each of the bearings geometry and oil viscosity.. Assuming
at least a little error in the linearization of A, it would appear that using the nonlinear
force components directly would be somewhat more accurate than calculating the
stiffness coefficients. However, if the stiffness coefficients are used, the matrix [C]
rather than matrix {F} of equation (47) would end up as the function of the bearing
displacements. [C] then becomes the Jacobian matrix of equation (48) which leads
to an efficient iteration process.

Convergence problems have been experienced when the stiffnesses have been
used to calculate both the Jacobian and the function gy,. Therefore it has been
decided to use the benefits of both options. A transfer across the shaft is first made

using the ¢ and y components of the nonlinear bearing forces. This solution is then
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used to calculate the function {g.,}. Another pass is then made using the bearing
stiffness coefficients. This solution is then used to calculate the Jacobian matrix [J],.
The incremental vector {h}, can then be found using equation (48). In order to
cut down on the time of computation for each pass, the transfers up to bearing 1,
between bearings 1 and 2, and following bearing 2 are calculated and stored in 3
respective matticés before any iterations are done. This means that only five matrix
multiplications are needed for each pass regardless of how many stations are needed
to define the pump.

The iterative scheme for calculating the bearing eccentricities with the housing
included follows the same general pattern as for that without. The final transfer
equation will take the form of equation (50). Again, the boundary conditions are that
the forces and moments at both ends are equal to zero. Applyving these conditions

simplifies equation (50) to (51).

Ts z5
ys ys
: :
S s
Ve Ves
Vs an 41z ... 21y 4110 ... 018 V.o
]”ys . . . . . . Myf
zs . . . . . . RetE
My as1 @2 ... Ggs  agip ... G818 My
1 _|lo o ...o1 0 ... 0 1 (50)
g @101 2102 --- @109 210,10 --- 210,18 TH
;zg . . . . . . zn
7 : : : : . : '
bu 417,01 17,2 ... @179 817310 ... GIT,18 bH
0 0 ... 0 0 1 V.
o o
I i7"
zh My
Myy Myy
RHS T )ins



8 ast ... @54 @510 .- @533
0 H : : :
00 _|ass ... &g agi0 ... ass
0 14,1 ... G144 614,10 ... @14,13
0 H H H H
0 : : : . :
0 a7l ... 8174 Q7,10 --- 017,13
asg @s5,18
agg ag,18
14,9 a14,18
217,9 217,18

zs
ys

7]
zg
YH

$8/ 1as

Rearranging terms and using simpler notation gives equation (52).

i { - {8

(51)

(52)

Using the same basic procedure as before, the left hand side displacements are

found in terms of the displacement at the bearings. First, the ¢ and ¥ components of

the bearing displacement are found for bearing 1.

s [duy ... diy dig ... digg
ys _ | dr o dy d20 ... donn
TH dioy ... diog dioao ... dioas
ve ) gy dug odigg dio e dias gy
Similarly for bearing 2,
Ts diy ... diy digo ... din
ys _ | dn .. da dano ... dags
zy dioy .- dios diogo oo digas
v ) g, L4 - ding duge o dunfg,

z5
ys
bs
zy
yH

o0

LHS

Zos
Yos
ToH
YoH

Tos
Yos
ol
Yo

Bi

(83)

B2

(54)

3
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Combining equations (53) and (54) and rearranging terms results in equation (55).

N
%551
zs Z5g1 ~ T0Spy Ys
ys YSpy — Y055, P
fs Hpy ~ T0Hp Ha
Dp: @5 — ) YHp —YoHp | _ yfjat (35)
Dp; TH %5y — T0Sp2 Z5p,
v YSp; — Y055, Y5,
2 THp, — T0Hg, P
¢u ) 1gs YHga ~ Y0Hg, 5137
YHg,

By inverting the 8 x 8 matrix, and moving it to the other side, the displacements at

the left hand side are found in terms of the z and y displacements at the bearings.

TS
ys 3;95‘
85 He
és = [yt { Vs (36)
TH 4 1552
gg yfm
#u ) ps Hz
YHg,
Substituting equation (56) into equation (52) gives
Ysp,
z{ﬁn
-1 ) Y&, o
[AJ[D]7 9 22 o +{ R} =10} (57
Sa2
Ysg,
THps
YHg,

The same modified Newton-Raphson iterative scheme is used here to find the
= and y displacements at the bearings. The eccentricity components are solved using

the following equations.
€sp = TS5, T THp,

Cys1 = YSp1 ~ YHp
(38)

Czpy = T5p1 ~ THp:

€yp2 = YSp2 ~ YHp2
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1t has been found that convergence generally occurs within 50 iterations. Initial
guesses in each quadrant have been tested using a simple model and each converged
to the same eccentricities. Convergence problems have been experienced for cases at

low speeds where the ratio of the eccentricity to the clearance is close to unity.
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CHAPTER III
THEORETICAL DEVELOPMENT (DYNAMIC)

The formulation of the transfer matrices for the dynamic analysis is ba-
sically the same as that for the static analysis as derived in chapter II. The main
difference is that the inertia and damping terms must now be considered at the lumped
mass stations and the static terms W; and W, are neglected. Referring to Figure 16,
the transfer equations are derived for the y—z plane across the point mass. Summing
the forces in the y, direction and the moments in the ¢, direction, we obtain

N By = maiin = V), = Vi + Ty, = migin

(59)
S My, = Jrd+ badp, = My, — My, + Ty, = Jr,60 + Qndp,
Rearranging terms results in the following equations.
Vy. = mafin + Vg = Ty,
(60)

M}, = Jg.én+ Qbndp, + My, - Ty,
Similarly, referring to Figure 17, the transfer equations are found for the x-z

plane across the lumped mass.

Vi = mMmadn+ Ve, — Tz,

. . (61)
My, = Jr,bn — QdnJp, + My, — Ty,
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For the dynamic analysis, complex notation is used, and assuming harmonic
motion, the displacements and forces are
zn = Re{Zqe’}
¥n = Re{fne"}
0 = Re{fpe’}
#n = Re{fne}
(62)
V. = Re{V,e"}
Vie = Re{Ve"}
M, = Re{Mjg,e*"}
My, = Re{My. e},
and the complex frequency s is denoted as

s=Atiw (63)

where A is the damping exponent and w is the damped natural frequency (Lund

(1973)). The logarithmic decrement & is calculated as

5o _2mA (64)

w

and gives an indication of the stability of a particular mode. When § is negative, the
mode is considered unstable, while if § is greater than 1, the mode is deemed well

damped (Lund (1973)).
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. Since the static terms are not considered in the dynamic analysis, I' now ex-
presses the forces and moments due to the stiffness, damping, and inertia terms of

the seals as follows,

Top = =Kzow — Koyy — Ko90 — K4
= Casd — Cayf =~ g — Copd
= Maoi — Meyi — Moo — Moy
Ty, = ~Kyow — Kyyy — Ky — Ky
— Ozt — Cyyg — Cyob — Cyyd

— Myzé — My — Mygb — My

(65)
To, = —Kg: — Kgyy — Kogf — Koy
— Coo ~ Coyy — Coph — Cogp
— Moed — Mpyj — Mah — Mg;,q;
T4, = — Koz — Ky — Kyof — Ky
— Cyat — Cyy — Cgob — Cyudb
= Myad ~ My — Mygh — My
and the stiffness and damping terms of the bearings as shown below.
Loy = ~Kest — Koy — Crsi — Coyy
(66)

Pyo = —Kya — Kyyy — Cyat — Cyyir
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Equation (65) can now be substituted into equations (59) - (61) and expressed in

matrix notation as

‘éz ! 5: s*m z0 g g £
Mf =V tlo S0 eh e (0
My), (M), 0 0 sQJp s é).
Mo, Moy Mg $*M.s z
| My S2My, My sPMy, y
T Mo, Moy 52May  $*Mpy 6
PMpe My, Mgy Myy] ($)a (67)

$Crz 3Czy $Cpp sCpy
3Cyz sCyy sCyp sCyy

+ sCor  sCyy sChg  sCpg
$Cyz 3C4y 5C49 3Cy4
Koo Koy Koo Koy )

4| B By Ky Ky y
Koz Koo Koy [
Koo Kyy Ky Kyl L 0),

for a seal station and equation (66) can be substituted into the same equations and

expressed in matrix notation as

b; ' {C, om0 0 0 z
_ 0  s*m 0 0 Y
Mof =0 0 0 s —sipl ) 6
My ), M), 0 0 sQJp  S$ip é), (68)

$Czz + BKzp 5Coy+ Kzy 0 0
5Cyz + Kyz sCyy = Kyy 0 0
0 0 0

z

y

0 [

0 0 00 4

for a bearing station.

The displacements across the lumped mass as well as the transfer across the

massless beam are the same as for the static case (see equations (3)-(6)).
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II1.1  Critical Speed Calculations
The final equation for the one spool case will have the following form

where the 8 x 8 matrix is full of polynomials (Murphy (1984)).

o

M,

z z
Y Y
[ 4
3 _|Dun Dn2 ¢
14 - {Dn Dzz}N Vs (69)
V.
6
My

N 1

The boundary conditions for this analysis are that the forces and moments on both

ends of the shaft are zero. Applying these conditions produces equation (70).

0 T
ot =[Duly 0¥ (70)
0 ¢ ),

For the non-trivial solution, the determinant of [Dy;]y must be equal to zero. Ex-
panding the determinant results in a polynomial of degree 8 x N + 2. The roots of

this polynomial are the complex eigenvalues described in the previous section.

s=Atiw (71)

The solution is obtained using a 3-stage algorithm using quadratic iteration developed

by Jenkins and Traub (1970) implemented in the routine RPOLY (Jenkins (1975)).

1112 Modified Ricatti Technique

Horner and Pilkey (1978) described a new transfer matrix technique for
analyzing structures called the Riccati transfer matrix method. The Ricatti trans-
formation “converts a numerically unstable two-point boundary value problem into

a numerically stable initial value problem” (Horner and Pilkey (1978)). Songyuan
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(1985) used this method to increase the efficiency of the Murphy-Vance technique for
calculating the damped critical speeds, stability, and mode shapes of rotor-bearing
systems. This strategy is formulated as follows (Songyuan (1985)).
First, in order to keep the size of the equations small in the following explana-
tion, it is necessary to define two matrix variables.
z Ve
(xy={9} and {v}= }}8 (72)
4 My
The transfers across a lumped mass and a beam element from left to right can be

expressed as

'
X I 0 X
P-4 o
'
X L B \ -
IR ARES: @
i+l i i
Expanding equations (73) and (74) give
V= K:X:+ Vi (75)
X=X (76)
Vier = LTV! (77)
Xip1 = LiX!+ B! (78)
Next, define
Vi= QiX; (79)

Vi=qxi (80)



Substi‘tuting equation (79) into equation (75) gives

V= (Ki+@)X;
Taking this equation, along with equations (76) and (80), it can be seen that

Q=Qi+ K;
Now, placing equation (80) into (78) gives
Xip1=(Li+ BiQ) X}
or
X =(Li+B@Q) ' Xita
Using this equation in A.9 and substituting into equation (77) renders
Vier = LIQ{(Li = BiQ) ™ Xia

Considering this equation and (79), it can be observed that

Qis1 = LTQL(Li + B:QY)™!
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(81)

(82)

(83)

(84)

(85)

(86)

Equations (82) and (86) are the recursive relationships for @} and Qi described

in Horner and Pilkey’s paper (1978). Inverting a matrix in the midst of the Murphy-

Vance technique is no casy task and would greatly decrease the efficiency if it had

to be done at each station as it would be using equation (86). Songyuan (1985)

developed a strategy by which no inversion is necessary.

Combining equations (82) and (86) gives

Qi=L,Q (L + BiaQ )+ Ks

(87)



Now define
Ti1 = Li-1+ Bi1Qi;

and substitute into equation (87) yielding

Q=L@ T+ K:

Next define
i1
Ri= ZT] =Ti1Tia...Th
i=1
and
- Pi= QiR

Multiplying equation (89) into (90)A.19 gives

P= LY Q' _\TZ\R; + KR;

= L.T_xQ(_nﬂil.THTm I+ KR

= L:'T»JQ:'—IEFI + KiR;

Oor
Pi= LT Py + KiR;

Multiplying equation (88) into R;_; renders

T, aRisy = LioRioy + BicaQi_ Riy

or

Ri=Li_1Rio1+ Bi1Fioy

49

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)
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Equations (93) and (95) are now the recursive relationships for P; and R;. Con-

sidering equations (75), (76), and (80), it can be seen that
Q1=K (96)

In order o keep equation (90) meaningful, sti;rt with R; equal to the identity matrix.
1t follows from this and equation (96) that P; equals K.

This technique can be extended to include the housing. The equations will first
be set up across a connection station, either a bearing or a seal. The transfer across

the lumped mass and beam element can be expressed as follows.

Xs I 0 ¢ 0 Xs
Xu 0 0 0 Xu (97)
Vs ms+K —-K I 0 Vg
Vi ), K mp+K 0 1)\ v,
X Ls 0 Bs 0 Xs)'
Xpg 0 Lg 0 By X
Vs o 0o LI o Vs (98)
Vi ) 0 0 o Lyl \Ve),
If it is defined that
- _ ) Xs _ Vs
= { e} e vy {3} (99)

then equations (97) and (98) can be represented by (73) and (74), respectively. The
previous explanation now holds for the present situation except that the matrix vari-

ables now depict 8 x 8 matrices instead of 4 x 4 and the vector variables now portray
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8 x 1 vectors instead of 4 x 1. The recursive relationships for R; and P; are now
Ry Rn| _|[Ls 0 Ru R
B Rz, 0 Lp|, |Rn Ram),

Py P
i [P P,

Lsﬂu LsRyy 4+ | #HsPu BsPn (100)
LBy LRy |, " |BgPn BgPn|, |

Py P
0 i P P2,
m_¢4-1s -K Ry Rp
my + K LB B
LSP" LSPIZ]
rhpy LgPal,,

(ms+ K)Ru — KRy (ms + K)Ri — KRy (101)
—K Ry +(mg+ K)Ryy —KRyy+ (my + K)Rp, i

+

+

K
[
7 BL-[5
™
[

For transferring across a portion of the shaft and housing up to a connection, equation

(100) is the same and (101) becomes

Py Pl _ LiPy LIPy, L | msBn msRi (102)
Py P, Ly LLPy, oy LmuBa mphn|

It can be seen that the top halves of equations (100) and (102) have no housing
terms and the bottom halves contain no shaft terms. Therefore, the top halves of
these equations can be used to transfer across the shaft up to and following any
connection. Similarly, the bottom halves can be used to transfer across the housing
up to and following any connection. In order to cross a connection, equation (100)
is found up to the connection for the shaft and housing. Equation (101) can now be
calculated and used to cross over the seal or bearing station. Starting the transfer,

Ry is again set to the identity, while

P = ["65 0 } (103)
1
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if the first station is not 2 connection. Otherwise,

_|ms+ K -K
= |mph Rk ] (104)

HI.3 Scaling Technique

In order to combat problems with numerical overflow and underflow, as
well as speed up the time of execution, the scaling and condensation procedure de-
scribed in Murphy (1984) has also been used for this project. A brief description of
the procedure is given for clarity. The first step is to scale the polynomial by making
the following substitution

s=f5 (105)

where f is an arbitrary constant. Using this equation, the unscaled polynomial

P=ag+ars’ +aps® L azs® + ... 4 aps® (106)
becomes
P=co+arfs +apfs® +asf& 4 ...+ anf5" (107)
or
P=dp+a,5 +a8° + 238 + ...+ Gps" (108)

The coefficient f is chosen to try to make all the coefficients @, ...a, as close
to a@p as possible. This way when all the coefficients are divided by ao, they are all as
near unity as feasible, thus diminishing the probability of numerical underflow and

overflow.
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Another consequence of this scaling procedure is that if f is chosen as the
highest magnitude of s that we are interested in, then the higher order terms of the
polynomial can be neglected. This can be seen by considering equation (105), where

if f is the largest magnitude of the eigenvalue

lsl = V3 +w?
of interest, then all |3|'s of interest will be less than one. Therefore, if the higher order
coefficients of equation (108) are much smaller than the lower order coefficients,

a; << @ ,5>1
then the product of the roots and coefficients are even smaller.

3;5 <<< a8 (109)
Thus, the higher order terms can be neglected. Murphy developed an algorithm by

which these higher terms can be eliminated as the transfer is made along the shaft,

thereby greatly speeding up the time of execution without losing any accuracy.

III.4  Guyan Reduction for Two-Spool Case

The final equation for the two spool case will have the following form,

Ts Ts
ys ys
5 “
s 5
Vas 525
¥s
M;s Dy Dy ... Dy ] ass
My _|DPn D= ... Dy Mg, (110)
ZH : HERC TH
g” Ds; Dsy ... Dgs gH
b g
H B
7 Ve
23 Or
Moy ) rus My ) pis
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with each Dj; a 2x 2 matrix. As with the one spool case, the boundary conditions are
that the forces and moments at both ends of the shaft and housing are zero. Applying

these conditions gives

0 Dy D32 D35 Dss Xs

0l _ [Da Dg Dys Dgs Og (111)
0 D1y Dy Dis Drs| | Xw

0 Dgy Dsz Dss Dss 8 ) 1us

For the non-trivial solution, the determinant of the 8 x 8 matrix must be equal
to zero. The most time consuming aspect of Murphy’s method is in calculating the
determinant of the matrix in equation (70). For the one spool case, the determinant
is for a 4 x 4 matrix. For the two spool case, the matrix is doubled in size. In
calculating determinants the standard way, n! — 1 additions and/or subtractions are
needed, and (n — 1) * n! multiplications are needed (Kolman (1986)). For a 4 x 4
matrix, this results in 23 summations and 72 products, while for an 8 x 8 matrix,
40319 additions and 282240 multiplications are required. These numbers do not even
take into account that we are dealing with matrices full of huge polynomials, but the
relative size can be seen.

In order to lower the number of multiplications and additions for the two spool
case, the Guyan reduction technique (Guyan (1965)) is used to reduce the size of the

final matrix to a 4 x 4. Equation (111) is rewritten as

D31 D3y D3z Dss Xs

~ | Da1 Diss Dsz Dy Xy (112)
Dy Drs Dz Drs Os ’
Dg; Dgs Dsz Dgs o1 ) 1ys

{3)-[a 2] {3}, .

coco

or more simply,



where each Bj; is a 4 X 4 matrix.

Equation (113) can be represented by the two formulas

[Bul{X}+[B]{0}={0} (114)

[Bu] {X}+[Bz]{O}={0} (118)

Using equation (115), the angular displacement of the shaft and housing can be put

in terms of the radial displacement of the shaft and housing.
{0} =~[Bp] [Baj{X} (116)
Substituting this into equation (114) gives
[Bui{X}~[Bu] Bz [Bn){X}={0} (117)
or
(1B = (B} (Bal™ (Ba)] {X}= {0} (118)

Now, the non-trivial solution is found when the determinant of the 4 x 4 ma-
trix of equation (118) is solved. Using this technique requires 250 additions and/or
subtractions and 320 multiplications without taking into account the polynomial fac-
tor. This is a reduction of two orders of magnitude for additions and three orders of
magnitude for the number of multiplications in finding the eigenvalues, i.e., damped

natural frequencies and damping exponents.
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A difficulty lies in the calculation of the inverse of the 4 x 4 matrix [Baa] of

equation (118). The method used in the calculation of the inverse is

_ _ndj[B ]
(Bn]™ = dct[B::}

where adj{By;] is the adjoint of [Byy] and det{B) is the polynomial determinant of
[Baz] of some degree m. This denominator polynomial was then multiplied into the
matrix [By] of equation (118) in order to put the whole equation over a common
denominator. Since the right hand side of the equation is {0}, the denominator was
then merely crossed out of the equation. Now when the determinant is calculated, the
polynomial obtained is 3m orders greater than what is required for the system, thus
producing 3m extra roots. These extra roots are actually the roots for the polynomial
determinant of [Bap,].

An analysis has been performed in order to determine the range of roots that
can be divided out without destroying the accuracy of the computed eigenvalues. The
model is a simply supported stacked steel beam system as shown in Figure 18. The
inner and outer connections have stiffnesses in the z and y directions of 10E16 bjint.
These large stiffnesses are used in order to decouple the beam’s effect on each other.

The lower beam represents a housing with an outside radius of 1 inch, inside radius of
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0.7 inches, and length of 24 inches. The upper beam portrays a solid rotor of radius
0.5 inches and length 24 inches.

The first five natural frequencies of each beam are calculated as a single spool
rotor using PATH and are compared with theoretical values computed using Harris
and Crede (1976) constants for a simple hinged-hinged beam model. Results are
tabulated in Table 1.

The only roots that need to be divided out are those less than or equal to
the maximum frequency of interest. Therefore, using the scale factor f described in
the previous section, the number of roots divided out is steadily increased. Table 2
displays the eigenvalues computed using scale factors of 210,000 rpm and 330,000
rpm along with the number of roots divided out. Using a scale factor of 210,000 rpm,
sixty denominator roots are divided out. The eigenvalues calculated are exact up to
the cutoff frequency which has an error of 0.1%. Employing a scale factor of 330,000
rpm, 84 denominator roots are divided out. This results in a maximum error of 17.5%
for the first housing eigenvalue and an error of 9.7% for the second rotor eigenvalue.
The other values match well with the single-spool values, though with an additional
eigenvalue computed in the ninth slot. Based on this analysis, PATH gives a warning

message if more than 70 denominator roots need to be purged.

III.5 Mode Shape Calculations
The mode shapes are calculated by first finding the relative displacements

at the far left station. Rewriting equation (70),

Cu Ci2 Ci3 Cu z
Cn Cn Cypy Oy yl _
C1 Oz C3 Cag [
Can Ciz Ciy Cufy | 4

(119)

coco
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Table 1. Natural Frequencies using Single Spool Model (rad/sec)

Rotor Housing
Theory PATH (25 stations) Theory Path (14 stations)

863.5 862.5 2108. 2096.
3456. 3428, 8437. 8248.
7778, 7689. 18988. 18075.
13824. 13559. 33748. 31027.
21610. 20965. 52757. 46455.

Table 2. Eigenvalue Accuracy Comparison (rad/sec)

f =210,000rpm  f = 330,000rpm single-spool

862.5 862.6 862.5
2096. 2463. 2096.
3428. 3771. 3428.
7689. 7669. 7689.
8248. 8269. 8248.
13559. 13539. 13559.
18075. 18075. 18073.
20993. 20968. 20965.
- 29676. -

31020. 31027,

60 roots 84 roots

and setting z; to 1. + 40 results in the following set of three simultaneous equations.
Cy G Cu y Cn
Cy Ci3 Cus 6 =—3 Can (120)
Cs Cuz Casly o), Ca

Equation (120) can now be solved for the modal displacements 3, 83, and ¢y corre-

sponding to a particular eigenvalue. A transfer is again made across the shaft using
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these values and the same eigenvalue to find the modal displacements at each sta-
tion. The other mode shapes are found in the same manrner using the other complex
eigenvalues.

It should be kept in mind that the elements in the 4 x 4 matrix of equation
(119) are polynomials of sometimes large degree n. An efficient strategy of evaluating
these polynomials is Horner’s rule (Forsythe, et al. (1977)), depicted in the following

equation.

P(s) = ani1+ $(an + ${an_y + s(... (a2 + a13)...))) (121)

If damping is included in the model, the modal displacements z, y, 6, and &

will be complex. Letting
Fi = Tpi + 1T
(122)
Fi = Yri + 1ei
then
Z; = Tp;COSWt — T; sinwgl
(123)
Yi = Yri COS Wyt — Yo sinwygt

which represents an ellipse in the x-y plane (Barrett, et al. (1976)). The mode
shapes are therefore represented by the semi-major and semi-minor axes, a and b, of

the ellipse, and the orientation angle ¥ as shown in Figure 19 (Barrett, et al. (1976)).

i = [0.5(c%; + 25 + y7s + ¥2)

:
+ \/ 0.25(22, + 22 — 4% ~ 922 + (Zrigei + Teaiyei)?)?

Zriliri — Teilfei {124)
b = Lo
a7
b= 1 tan~| 2(@riyri + Teilei) |

2 (2 + o~ vk - v2)
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The mode shapes for the housing are calculated in basically the same manner

except that equation (119) would be a rewrite of equation (111) instead of (70).

II1.6 Response to Imbalance

The solution for the imbal of n{ﬂexible rotor using transfer

P

matrices has been explained by Lund and Orcutt (1967) and more extensively by
Kleespies (1986). Considering Figures 20 and 21, and summing forces in the ¢ and y

directions for the nth lumped mass station gives

Z Fyo=mjj =V, =V, + Ty, + mule,sin(wt + ¢) = mj
(125)
Z Fop =mé = V]~ V,, + T, + mwe,cos(wt + ¢) = mé
or in complex notation
Vy'ﬂ = —muwlj+ ‘7”“ - f‘y" - muzen(cos an +isinay)
(126)
17;'" = —mw's + V,, ~ T, — mwen(sin a, — i cos ay)

where en is the CG eccentricity for the nth station and a is given as the offset CG
angle from some specific line of reference. The CG angle a is used to differentiate
orientations of imbalances along the shaft. The other equations for the moments,
displacements, and forces across the lumped mass and massless beam are the same
as for the previously mentioned dynamic analysis. Now, though, the transfer matrix
is of order 9 x 9 for the one spool case and 17 x 17 with the housing included.

For the one spool case, the final equation will look like

T T

Yy Y

‘; 0:11 C:n C:ls ‘; -
v T Ca Car ... Css Vv
M, L O PV I 7 A
My My

V)N L Y



Figure 19.

Elliptical orbit schematic.
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Applying the boundary conditions of zero forces and moments at both ends of the

shaft give
g gsx gsz gsa gm z gss
= 61 62 63 64 Y 69
0~ |Cn Crn Ciz Crg 8 T Crs (128)
0 Cn Cn G Culy l¢), Coo )}y
or
Cs1 Cs2 Cs3 Csq Csy

z
Ce1 Ce2 Cos Cou y _ Cey
Cn Cr Cr3 Cna 61 - Cre (129)
Coo Coz Cwz Cas]py (4], Ceo ) i

which is a set of four simultaneous equations. Equation (129) can be solved for
the displacements at station 1 and these values can be used to transfer across the
shaft again to find the displacements at all the other stations. The values of the
displacements are complex and are represented in the same manner as the mode
shapes of section 3.2. The response with the housing included is found in the same
manner, except the matrices are larger.

Murphy described in his dissertation a method by which the boundary condi-

tions at the left end of the rotor
Vo, =Vy = Mg = My, =0

could be taken into account at the beginning of the transfer, thus saving a great
deal of computation time. His algorithm has been modified here for the imbalance

response. First, rewrite the final system transfer matrix of equation (127) as

7 7 it4 M}
[l tet] - [ et ] T4 i) om
0 1y 0 0 1 Jylo 1t

where [UL], [LL], [UM], and [LM] are 4 x 4 submatrices, {UR} and {LR} represent

4 x 1 vectors, [I] is the 4 x 4 identity matrix, and 1 is the 1 x 1 identity matrix.
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Equation (130) can be rewritten as
o) . g
LI {ZR}) =[lv{lv-1.. Rl D |iD (131)
0 1N i

where the little matrices [ ][ Jy—1 ... [ ]2[ ] signify the transfer through the sta-
tions along the rotor. When multiplying across, start with [/] = (/] and [D] = 0.
When the 9 x 9 matrix of station 1 is multiplied into the 9 x 5 matrix, it will pro-
duce another 9 x 5 matrix. This sequence is then repeated until the left hand side of

equation (131) is constructed. Equation (129) is then the same as
z
[LLly §§ ¢ =~ILR]y (132)
¢)y

The two-spool case can be represented in the same manner. First, the final

system transfer matrix is represented by
ULy UMy UMp
LLy LM, LMp
0 0

1
UL, UMy UMp,
LL, LM, LMpalpys
UL, UMy, UM, UMp UR,
LL; LMp; LMy LMm LR,
0 0 1 0 0 (133)
ULy, UMp, UM, UMp, UR;
LL, LMy LM, LMa, LRyl gys
where UMy, LM;, UMy, and LM, are 4 x 1 matrices, I is the 4 x 4 identity matrix, 1

cooom~
coroo
o~Nooo

is the 1 x 1 identity matrix, and the rest are 4 x 4 matrices. The upper 9 x 9 portion
of the large matrix of equation (133) is the same as that of equation (130). Since
the housing does not rotate, it does not need the extra column for a mass imbalance.

Equation {134) corresponds to equation (132) with a housing.
o
Ys
bs
s __[zm
TH LM,
YH
Oy
¢H LHS

[LLJ LMg, (134)

LLy LMg;

RHS ]RHS



CHAPTER IV

PROGRAM VERIFICATION

Most of the options available for the one spool case are also available in
Gajan’s program APDS (Analysis of Pump Dynamic Systems). Therefore, a com-
parison has been made using his program and thesis to verify this program. A time

comparison is also made.

IV.1 Static Equilibrium Verification
Figure 22 (Gajan (1987)) shows a 3-bearing shaft with two disks previ-
ously modelled by Nikolajsen (1978), and by Gajan (1987) as a 2-bearing shaft with a
midspan seal. The model also includes seal (bearing) misalignment and bearing sup-
port flexibility. The same model used by Gajan has been analyzed using the transfer
matrix program and the 3 results are compared below in Table 3.
The results for the eccentricity ratio match fairly well for all three programs.
The differences between APDS and PATH could be due to APDS adding mass for
the bearing supports while PATH does not. PATH takes the bearing support mass
into account with the housing option. Another possibility is that APDS uses a finite
element distributed model for the shaft while PATH uses a transfer matrix lumped
mass model. Nikolajsen’s disparity is “considered to be primarily due to replacing a

nonlinear bearing with a linear seal at the center station” (Gajan (1987)).
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Table 3. Equilibrium Comparison

Nikolajsen APDS PATH

Ecc. Ratio

X-comp. 442 436 424
y-comp. .609 .585 613
Total 752 731 146

IV.2 Dynamic Verification - Single Spool

In Gajan’s thesis, he analyzed an eleven stage centrifugal pump built by
Pacific Pumps and previously analyzed by Engineering Dynamics Incorporated (EDI).
Figure 23 (Gajan (1987)) is a schematic of the analyzed pump. A natural frequency
calculation has been made for the pump and the resuits are compared in Table 4 with
EDI’s analysis, Gajan’s analysis, and the current analysis using program PATH.

As can be seen, the two programs APDS and PATH compare almost exactly.
The biggest difference is the time of execution, where PATH is approximately one
order of magnitude faster than APDS. During this run, each program also calcu-
lated the first six precessional mode shapes and all modes for the real roots. The
precessional modes are shown in Figures 24, 25, and 26.

A six case study was also carried out by Gajan (1987) in order to discern the
effects of the extra stifiness, damping, and inertia seal coefficients and the static
analysis. For this project, four cases are carried out and compared to resulis from
APDS. Case 1 uses 2 x 2 stiffness and damping coefficient matrices for the seals and

bearings. Case 2 extends case 1 by adding a 2 x 2 inertia coeficient matrix for the
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Table 4. Natural Frequency Calculations for an 11 Stage Pump

EDI APDS PATH
Natural Frequency 3959. 3994.  3994.
Log Decrement -1.8  -L72 -1.73
Natural Frequency 4997. 5081.  5081.
Log Decrement 3.53 3.62 3.61
Natural Frequency 5007. 5049.  5047.
Log Decrement 11 1.11 1.11
Natural Frequency - 5491. 5494,
Log Decrement - 14.2 14.2
Natural Frequency 9304.  9530. 9513.
Log Decrement .97 .98 .98
Natural Frequency 9777. 9902.  9884.
Log Decrement .58 .65 65

CPU Time

9:59.84 1:10.64

1

seals. Case 3 enlarges the seal stiffness, damping and inertia coefficient matrices to

4 x 4’s, thus adding moment effects of the seals. Case 4 is the same as 3 with a static

analysis for determining the bearing coefficients.

Campbell diagrams are used to contrast the four cases as displayed in Figures

27, 28, 29, and 30. These diagrams are plots of the damped natural frequencies

versus the running speed. The log decrements are shown for data points for every

1000 rpm running speed. A line, y = z, is also shown on each plot. Wherever this

line crosses the mode line, the speed represents a potential critical speed. If the

log decrement is greater than one, the mode is considered well damped. If the log

decrement is negative, the mode is unstable. Usually each mode will consist of a
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forward precessional and a backward precessional mode, identified on the diagrams
by the letters ‘F’ and ‘B’, respectively (Lund (1973)). Table 5 discloses the potential

critical speeds and log decrements for each case.

Table 5. Critical Speeds and Log Decrements

Critical Speed Log Decrement

Case 1
4943. .79
4926. 2.6

Case 2
1461. 9.7
- 2689. 8.1
4690. .82
4656. 2.5

Case 3
940. 6.4
1228. 7.9
5003. .99
5266. 2.4

Case 4
5016. 1.0
5350. 2.4

Mode shapes for the four test cases have been plotted and are shown in Figure
31 for a shaft speed of 5000 rpm. This speed is chosen since it is the approximate
critical speed for each case as displayed in Table 5. Plots are taken for thg forward
whirl mode closest to the running speed. For the response to imbalance, two one
ounce-inch unbalances are placed 90 degrees out of phase at station numbers 5 and

19 as in Gajan’s thesis. Figure 32 displays the displacement of station 19 versus
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the running speed. Station 19 is ome of the stations where an unbalance is located.
Figures 33 and 34 exhibit the reactions of the bearings to the imbalance versus the
running speed.

Case 1 was computed using APDS and the values computed match PATH nearly
perfectly. A Campbell Diagram has also been calculated for case 3 using APDS. It is
shown in Figure 35. The numbers computed did not exactly match those computed
using PATH. The reason for this discrepancy is not understood, but could be caused
by the different methods used to account for the inertia coefficients. PATH uses a
lumped mass transfer matrix model, while APDS uses a finite element distributed

mass mode].

IV.3 Dynamic Verification - Rotor with Flexible Housing

In order to verify the correctness of the pump housing option, an analysis
has been made of a simple rotor. The model is of a Centritech lab rotor on damped
asymmetric bearings defined and analyzed in the JAZZ user’s manual (Murphy and
Vance (1982)). Two cases have been analyzed. The first analysis is with a near mass-
less housing and supports designed to produce the same stiffness used by Murphy
when put in series. This is done by aligning the intershaft bearings with the bearing
supports and giving them stiffness and damping coefficients that are twice the mag-
nitude of the coefficients used in the JAZZ analysis. Figure 36 shows schematics of
the two models. As shown, the housing has been modeled to follow the shape of the

rotor as its diameter changes. Eigenvalues calculated for this system are compared
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with Murphy’s without the hoﬁsing. The second analysis is made with a steel flexi-
ble housing and is compared with values generated using STAB2V2 (Li and Gunter
(1978)), a Linear stability analysis program for dual rotor systems. Both cases are
with the rotor running at a speed of 4688 rpm.

Table 6 displays the values generaied with the first run. PATH values match
frequencies generated using JAZZ with a maximum error of 0.9%.

The values corresponding to the second analysis are shown in Table 7. The
mode shapes for the rotor and housing are displayed in Figures 37, 38, 39, 40, 41,
42, 43, and 44 along with the corresponding mode plots for the rotor as computed
using JAZZ. The eigenvalues computed using each program match each other within
a maximum difference of 1.9%. Comparing Table 6 with Table 7, it would appear
that the 4th and/ 5th frequencies result from the inclusion of the housing. The mode
shapes for these frequencies, as displayed in Figures 40 and 41 lend support to this
notion. The desirability of using the Murphy-Vance polynomial technique is affirmed
here by the existence of the second eigenvalue computed using PATH, which is missed
using STAB2V2. These modes appear reasonable and the rotor modes corresponding
to the eigenvalues computed for the single spool model match the two dimensional
mode plots from Murphy and Vance (1982). PATH’s flexible housing option is now

considered verified.
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Figure 36. Centritech lab rotor on damped asymmetric bearings with and without
a housing.



Table 6. Natural Frequency Comparison with Near Massless Flexible Housing

JAZZ PATH
Log. Dec. Nat?l Freq. (rpm) Log. Dec. Nat’l Freq. (rpm)

0.548 1860.8 0.550 1860.0
0.139 1933.2 0.138 1932.4
0.333 7497.1 0.334 7506.7
0.351 8056.8 0.352 8062.6
0.258 15617. 0.259 15660.
0.203 17568. 0.205 17607.

Table 7. Natural Frequency Comparison with Steel Flexible Housing

STAB2V2 PATH

Log. Dec. Nat'l Freq. (rpm) Log. Dec. Nat'l Freq. (rpm)

0.557 1859. 0.559 1865.

= - 0.140 1936.
0.332 7499. 0.334 7567.
0.355 8054. 0.359 81435.
0.095 8741. 0.096 8748.
0.236 8773. 0.238 8780.
0.259 15625. 0.262 15857.

0.203 17567, 0.209 17907.
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CHAPTER V
EFFECTS OF PUMP HOUSING

An analysis is now described that shows the effects of the vertical pump
housing on the natural frequencies and modes of the system. An investigation is first
made of the system without the housing, and the results are then compared with an
analysis of the system including the housing. Johnston Pump has graciously provided
a vertical pump model for use in showing the effects of modelling the flexible housing.
The pump is a three stage vertical water pump with a running speed of 1770 rpm. It
is driven by a 100 H.P. motor and pumps 1400/1700 gallons per minute with a total
head of 165/135 feet. A schematic of the pump model is shown in Figure 45. The
dark circle blots indicate lumped mass locations.

Johnston Pump was unable to provide the damping and stiffness coefficients for
the bearings. These coeflicients have therefore come from other source; as follows.
The coefficients for the bottom sump bronze bearing and three impeller bronze bear-
ings were calculated using a computer program called JOURNAL written by Earles
(1987) which matched published data presented by Allaire, et al. (1975) and Lund
(1965). The coefficients for the next three rubber bearings located along the column
pipe were interpolated from data provided in a paper by Hiroshi and Hirohisa (1989).

Gampbell diagrams for the pump with and without the housing are shown in
Figures 46, 47, and 48. From the analysis without the housing, nine damped natural

frequency run lines are computed lower than the running speed of 1770 rpm. An
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interesting phenomenom is the large window shown in Figure 47 near the running
speed. According to this analysis, there are no critical speeds near the running speed
of 1770 tpm. Figures 49, 50, and 51 display the first six modes computed with the
rotor rotating at 1770 rpm.

Figure 48 displays the Campbell diagram for the pump with the housing. Eigen-
values were calculated for running speeds from 200 rpm to 2000 rpm in 200 rpm incre-
ments. It appears from the plots that the program PATH missed some roots. A scale
factor of 3400 rpm was used for this analysis, but nevertheless 90 denominator roots
were divided out for each speed. Dividing out this many roots probably resulted in
numerical error before the eigenvalues of interest were even begun to be computed as
discussed in section II1.4. The difference in the Campbell diagrams with and without
the housing seem to comfirm this, as does the fact that mode shapes corresponding
to roots with the housing included were unable to be computed due to numerical
overflow. It appears that the greatest effect of including the housing is in raising
the natural frequencies of the system. This also contradicts what would normally be
expected since the foundation of case 1 is the flexible housing in case 2. The overall
stiffness of the system is now lower in case 2 than in case 1, which should imply lower
natural frequencies or at least more natural frequencies in the lower {requency range
as in Figure 47.

Though the objective of this chapter is to describe the effects of including the
housing in the model, the apparent numerical instability of this particular model
prevents this. The deduction is that the pump modelled with the housing included is

too large to be analyzed using the Guyan reduction technique implemented in PATH.
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Figure 46.  Campbell Diagram for first six modes of Johnston pump model without the housing.
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CHAPTER VI

CONCLUSIONS AND DISCUSSION

An efficient program has been developed for use in analyzing multi-stage
centrifugal pumps with or without a housing. Some of the more positive features of
the program are its speed, the ability to include the housing in the model, and the
flexibility of being used interactively for single speed analyses or in batch for multiple
speed runs. The accuracy of PATH has been demonstrated by comparison to the
finite element program APDS. The desirability of using the polynomial approach has
also been shown with the Centritech model by computing an eigenvalue missed using
the standard Lund-type method.

As with any engineering project, additional improvements need to be considered.
Problems with long rotors have been shown in the analysis of the vertical water
pump. Lund and Wang (1986) described a method by which the Riccati method
could be applied to the analysis of long shafts on a flexible foundation. This method
would need to be modified for use with the Murphy-Vance polynomial approach.
L’Antigua (1989) described a method by which shell elements could be combined
with the transfer matrix approach in rotordynamic analysis. This method was shown
to be especially useful for transferring across conical sections of the model. Another
improvement would be to define an approach by which the housing could be efficiently
modelled using the polynomial method without having to take the inverse of any

matrices.
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APPENDIX A

INPUT DATA FOR EQUILIBRIUM ANALYSIS VERIFICATION

Gajan (1987) The system of units used is kilogram, meter, second

Shaft Material Properties
Density T76E3  (kg/m®)
Elastic Modulus  2.05E11 (N/m?)
Shear Modulus  .82E11  (N/m?)

Shaft Description
Element Number Length (m) Outer Radius (m)

1 .2 025
2 .2 .025
3 2 - 025
4 2 025

Concentrated Masses
Station  Concentrated Diametral Polar

Number Mass Mom. of I. Mom. of I.
(kg) (kg=m?) (kg»m?)

2 127.46 0.0 0.0

4 127.46 0.0 0.0

Bearing Description (both bearings)
Bearing 1 station number 1
Bearing 2 station number 5

Oil Viscosity 3.93E-2 (N =s/m?)
Bearing Length 1.667TE-2 (m)
Bearing Diameter 5.0B-2 (m)

Bearing Radial Clearance 7.5E-5 (m)



Bearing Sommerfeld Number and Attitude Angle
Eccentricity Ratio Sommerfeld Number Attitude Angle (rad)

0.0 1.0E15 1.57
0.1 8.9526 141
0.2 4.07 1.31
0.3 2.453 1.19
0.4 1.5335 1.08
0.5 9551 .96
0.6 .563 .838
0.7 .2966 715
0.8 125 558
0.9 .03 .401
1.0 .87E-9 1.0E-9

Bearing Dimensionless Stiffness Coefficients
Eccentricity Kz; Kzy Ky Ky

Ratio

0.0 2.5 26. -26. 1.0
0.1 2.4 9.56 -9.49 1.161
0.2 2.38 452 -5350  1.32
0.3 233 27 -4.33  1.61
0.4 226 169 -392 2.0
0.5 2.19 1.0 -3.87  2.63
0.6 212 .54 -4.025  3.54
0.7 2.037 0.0 -4.48  4.98
0.8 2.033 -.563 -537 7.42
0.9 2.163 -1.55 -7.68 14.62
1.0 2.4 -3.0 -14.0 350

Bearing Dimensionless Damping Coefficients

Eccentricity Cp. Cey Cyr Cyy
Ratio

0.0 40.0 -23 -9 40.0
0.1 22.65 -2.35 -1.43 18.88
0.2 11.75 -2.42 -2.61 10.57
0.3 7.59  -245 -2.90 7.97
0.4 5.52  .248 -2.99 6.95
0.5 412 -251 -3.01 6.67
0.6 298 -248 -295 69
0.7 2.36  -2.58 -3.03 7.8
0.8 1.92  -2.87 -3.32 9.28
0.9 1.55 -3.58 -3.96 14.19

1.0 1.15  -4.0 -4.90 25.0



Bearing Support Coefficients

Bearing K, K, Cz Cy
(Nfm) _(Njm) (N xo/m) (Nxs/m)

1 8.33E06 8.33E06 0.0 0.0
2 8.33E06 8.33E06 0.0 0.0

Seal Stiffness .

Speed = 4000 rpm
Station K, K.y Ky Kyy
Number (N/m) (N/m) (N/m) (N/m)
3 1.366E7 1.812E7 -1.812E7 1.366E7

Seal Damping
Speed = 4000 rpm

Station Cg, Czy Cyz Cyy
Number (N xs/m) (N xs/m) (N=xs/m) (N xs/m)
3 9.1E4 3.6E4 -3.6E4 9.1E4
Seal Misalignments
Station X Y I3 2
(m) (m) (rad) (rad)

3 0.0 -3.686E-4 0.0 0.0
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APPENDIX B
INPUT DATA FOR EDI COMPARISON

Gajan (1987) The system of units used is pound, inch, second

Shaft Material Properties
Density TT64E-3  (Ibx s%/in?)
Elastic Modulus 30.E6 (ib/in?)
Shear Modulus  .82E11  (lb/in?)

Concentrated Masses
Station Concentrated Diametral Polar

Number Mass Mom. of I.  Mom. of I.
(Ibxs%fin)  (lbxs?xin) (Ib*s®xin)

1 05564 .14383 .2963

5 015528 0.0 0.0

9 040217 .108 .21580

11 02976 .1056 21

13 031056 109 218

15 031056 .109 .218

17 031056 -109 218

19 031056 .109 218

21 .031056 109 218

23 .029500 1056 211

25 031056 .109 218

27 030800 1079 .2158

29 029762 1056 211

30 037525 0.0 0.0

31 010691 0.0 0.0

32 015528 0.0 0.0

35 035481 0.0 0.0

37 .004558 0.0 0.0



Shaft Description

Element Number Length (m) Outer Radius (m)

1 1.44

2 1.185
3 5.1875
4 13.125
5 3.25

6 1.3750
7 1.5625
8 1.4380
9 2.3150
10 1.4380
11 2.3130
12 1.4380
13 2.3130
14 1.4380
15 2.3130
16 1.4380
17 2.3130
18 1.4380
19 2.3130
20 1.4380
21 2.3130
22 1.4380
23 2.3130
24 1.4380
25 2.3130
26 1.4380
27 2.3130
28 1.4380
29 2.1245
30 3.6225
31 2.3750
32 13.0
33 3.25
34 1.5

35 4.25
36 1.1250

1.19
1.213
1.25
1.2525
1.2550
1.4975
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.50
1.255
1.25
1.25
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Support Stiffness
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Station Koz Kqy Ky Kyy
Number (lb/in)  (Ib/in) __ (Ibfin) (1b/in)
4 .29200E6 0.0 0.0 -41400E6
9 12590. 7950. -7950. 12590.
11 11170. 5620. -5620. 11170.
13 11240. 5630. -5630. 11240.
15 11280. 5660. -5660. 11280.
17 11310. 5680. -5680. 11310.
19 11350. 5710. -5710. 11350.
21 11390. 5740. -5740. 11390.
23 11420. 5770, -5770. 11420.
25 11500. 5800. -5800. 11500.
27 11490. 5820. -5820. 11490.
29 5840. 7770. -7770. 5840.
30 -82400. .15360E6 -.15360E6 -82400.
33 .29200E6 0.0 0.0 41400E6
Support Damping
Station (g, Cry Cyz Cyy
Number (lbx s/in) (lbxs/in) (lb*sfin) (lb=s/in)
4 609. 0.0 0.0 609.
9 30.4 0.0 0.0 30.4
11 254 0.0 0.0 25.4
13 25.4 0.0 0.0 25.4
15 25.4 0.0 0.0 25.4
17 254 0.0 0.0 25.4
19 25.4 0.0 0.0 25.4
21 25.4 0.0 0.0 25.4
23 25.4 0.0 0.0 25.4
25 25.4 0.0 0.0 25.4
27 25.4 0.0 0.0 25.4
29 16.0 0.0 0.0 16.0
30 253. 0.0 0.0 253.
33 609.3 0.0 0.0 609.3



APPENDIX C

INPUT DATA FOR EDI CASE ONE

Gajan (1987) The system of units used is pound, inch, second

Shaft Material Properties
Density .TT64E-3 (Ib* s%/in?)
Elastic Modulus 30.E6 (Ib/in?)
Shear Modulus  .82E11 (1b/in?)

Concentrated Masses
Station  Concentrated Diametral Polar

Number Mass Mom. of .  Mom. of I.
__(Ibx s%/in) (b= s2xin) (Ibxs®xin)

1 05564 14383 2963

5 015528 0.0 0.0

9 .040217 .108 .21580

11 02976 .1036 211

13 031056 109 218

15 .031056 .109 218

17 031056 109 218

19 031056 109 218

21 031056 .109 218

23 629500 .1056 211

25 031056 109 218

27 030800 .1079 2158

29 029762 1056 211

30 037525 0.0 0.0

31 010691 0.0 0.0

32 015528 0.0 0.0

35 035481 0.0 0.0

37 004558 0.0 0.0



Shaft Description
Element Number Length (1n) Outer Radius (in)

1 1.44 1.19
2 1.185 1.213
3 5.1875 1.25
4 13.125 1.2525
5 3.25 1.2550
6 1.3750 1.4975
7 1.5625 1.50
8 1.4380 1.50
9 2.3150 1.50
10 1.4380 1.50
11 2.3130 1.50
12 1.4380 1.50
13 2.3130 1.50
it 1.4380 1.50
15 2.3130 1.50
16 1.4380 1.50
17 2.3130 1.50
18 1.4380 1.50
19 2.3130 1.50
20 1.4380 1.30
21 2.3130 1.50
22 1.4380 1.50
23 2.3130 1.50
24 1.4380 1.50
25 2.3130 1.50
26 1.4380 1.50
27 2.3130 1.50
28 1.4380 1.50
29 2.1245 1.50
30 3.6225 1.50
31 2.3750 1.255
32 13.0 1.25
33 3.25 1.25
34 1.5 1.0
35 4.25 1.0

36 1.1250 .394



Bearing Description (both bearings)
Bearing 1 station number 4 :
Bearing 2 station number 33

0il Viscosity 2.0E-6 (Ibx s/in?)
Bearing Length 1.0 (in)
Bearing Diameter 2.5 (n)

Bearing Radial Clearance .003.  (in)

Bearing Stiffness Coefficients
Speed K, Kay Kyz Ky,
(rpm) _(Wbfin) (Ibfin) (Ibjin) (ib/in)

300 10000. 0.0 0.0 .8E6
1000  12330. 0.0 0.0 .T4E6
1500 15000. 0.0 0.0 -62E6
2000  17900. 0.0 0.0 .573E6
2500 19500. 0.0 0.0 .55E6
3000 21000. 0.0 0.0 .524E6
3500 23200. 0.0 0.0 48E6
4000 25280. 0.0 0.0 .450E6
4500  27430. 0.0 0.0 428E6
3000  29600. 0.0 0.0 407E6
5500  31000. 0.0 0.0 .38E6
6000  34000. 0.0 0.0 37TE6
6500 36000. 0.0 0.0 .355E6
7600  36000. 0.0 0.0 .345E6
7500 38500. 0.0 0.0 .344E6

8000  41900. 0.0 0.0 .342E6



Bearing Damping Coefficients
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Speed (g, zp Cyz Cyy

(rpm) (lbxs/in) (lbxsjin) (Ibxs/in) (Ibxs/in)

500. 280. 0.0 0.0 7500.

1000.  280. 0.0 0.0 7240.

1500. 280. 0.0 0.0 4500.

2000. 280. 0.0 0.0 2100.

2500. 280. 0.0 0.0 1800.

3000.  280. 0.0 0.0 1470.

3500,  280. 0.0 0.0 1220.

4000.  280. 0.0 0.0 1120.

4500.  280. 0.0 0.0 1020.

5000.  280. 0.0 0.0 910.

5500.  280. 0.0 0.0 840.

6000.  280. 0.0 0.0 700.

6500.  280. 0.0 0.0 669.

7000.  280. 0.0 0.0 620.

7500. 280. 0.0 0.0 550.

8000. 280. 0.0 0.0 500.
Seal Descriptions

Seal Station

Number

1 9

2 11

3 13

4 15

5 17

6 19

T 21

8 23

9 25

10 27

11 29

12 30



Seal Stiffness Input

Part 1 Speed = 1100 rpm
Seal Koz Kzy Koy Koo
Number ({b/in) (Ib/in) (Ibjrad) (lb/rad)

1 686. 263. 0.0 0.0
2 481. 194, 0.0 0.0
3 483. 195. 0.0 0.0
4 483. 196. 0.0 0.0
5] 487. 197. 0.0 0.0
6 489. 198, 0.0 0.0
T 493. 199. 0.0 0.0
8 496. 200. 0.0 0.0
9 499. 201. 0.0 0.0
10 503. 202. 0.0 0.0
11 348. 175. 0.0 0.0
12 11834. 9622. 0.0 0.0
Part 2 Speed = 1100 rpm

Seal Ky Ky Kgg Ky
Number (1b) (Ib) (lbxin/rad) (lb*in/rad)
1 0.0 0.0 0.0 0.0
2 0.0 0.0 00 0.0
3 0.0 0.0 00 0.0
4 0.0 00 0.0 0.0
3 00 00 00 0.0
6 0.0 0.0 00 0.0
7 0.0 0.0 00 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 6.0
10 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0

12 0.0 00 00 0.0



Seal Damping Input

Part 1 Speed = 1100 rpm

Seal Cea 7y Cq Cas

Number (lbxs/in) (lb*s/in) (Ibxs/rad) (ibxs/rad)

1 3.93 g1 0.0 0.0

2 3.13 276 0.0 0.0

3 3.14 279 0.0 0.0

4 3.15 .282 0.0 0.0

3 3.16 .285 0.0 0.0

6 3.17 .288 0.0 0.0

7 3.18 .291 0.0 0.0

8 3.19 294 0.0 0.0

9 3.20 297 0.0 0.0

10 3.21 3 0.0 0.0

11 2.04 .19 0.0 0.0

12 248. 33.25 0.0 0.0
Part 2 Speed = 1100 rpm

Seal Cyz Cyy Csg Cyo

Number (lbxs) (lbxs) (lzin) (lbreving

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 6.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 9.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Inertia Input
Part 1 Speed = 1100 rpm

Seal M., My Mg Mo

Number (lbxs2/in) (lbxs*/in) (Ib+ s¥/rad) (Ib* s*/rad)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
Part 2 Speed = 1100 rpm

Seal M, My o Mg, My

Number (lbxs°) (Ib+s?) (Ttb'::‘{n) (Lf:;'")

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0



Seal Stiffness Input

Part 1 Speed = 3300 rpm
Seal Kiz Koy K4 Ko
Number (lb/in) (ib/in) (lb/rad) (Ib/rad)

1 5948.  2544. 0.0 0.0
4810.  2078. 0.0 0.0
3 4830. 2085. 0.0 0.0
4 4840.  2095. 0.0 0.0
5 4870. 2105, 0.0 0.0
6 4890.  2106. 0.0 0.0
7 4930.  2108. 0.0 0.0
8 4960.  2112. 0.0 0.0
9 4990.  2117. 0.0 0.0
10 5008.  2120. 0.0 0.0
11 3672. 18%4. 0.0 0.0
12 .125E6 71134. 0.0 0.0
Part 2 Speed = 3300 rpm
Seal Koo Kgy Kyy Kgo
Number (1b) (Ib) (lb+in/rad) (Ibxin/rad)
1 0.0 00 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.6 0.0 0.0 0.0
4 0.0 00 00 0.0
5 00 00 0.0 0.0
6 0.0 00 0.0 0.0
7 0.0 00 0.0 0.0
8 6.0 0.0 0.0 0.0
9 00 00 0.0 0.0
10 0.0 0.0 0.0 0.0
11 00 00 00 0.0

12 00 00 00 0.0



Seal Damping Input
Part 1 Speed = 3300 rpm

Seal Caz Coy 2 Cro

Number (lbxs/in}) (lbxs/in) (lbxsirad) (lb*s/rad)

1 12.64 .79 0.0 0.0

2 10.81 .69 0.0 0.0

3 10.83 .70 0.0 0.0

4 10.85 .70 0.0 0.0

5 10.87 .71 0.0 0.0

6 10.90 Jq1 0.0 0.0

7 10.92 72 0.0 0.0

8 10.94 .72 0.0 0.0

9 10.96 73 0.0 0.0

10 11.0 74 0.0 0.0

11 7.3 47 0.0 0.0

12 686. 97.1 0.0 0.0
Part 2 Speed = 3300 rpm

Seal Cyz Cyy Cso Cuo

Number (lbxs) (lbxs) (Ytsriny (lbmsein)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0



Seal Inertia Input
Part 1 Speed = 3300 rpm

Seal Mg, My My My

Number (lb* s?/in) (Ib*s%/in) (1b* s%/rad) (Ib* s?/rad)

1 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0

Part 2 Speed = 3300 rpm

Seal My My, My, My

Number (lbxs?) (Ihxs?) (essiny (lbactsin)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0,

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Stiffness Input

Part 1 Speed = 6600 rpm
Seal Kpz sz K z¢ Kzg
Number (Ib/in) (Ib/in) (lb/rad) (Ib/rad)

1 23116. 10716. 0.0 0.0
2 18810. 8776. 0.0 0.0
3 18910. 8786. 0.0 0.0
4 19010. 8796. 0.0 0.0
5 19110. 8806. 0.0 0.0
6 19210. 8816. 0.0 0.0
7 19250. 8826. 0.0 0.0
8 19310. 8846, 0.0 0.0
9 19390. 8866. 0.0 0.0
10 19440. 8893. 0.0 0.0
11 14134, 7726. 0.0 0.0
12 .55E6  .255E6 0.0 0.0
Part 2 Speed = 6600 rpm

Seal Kyo Kyy Kyy Kgp
Number (Ib) (Ib) (Ibxin/rad) (lb=in/rad)
1 0.0 00 0.0 0.0
2 00 00 0.0 0.0
3 0.0 0.0 0.0 0.0
4 00 00 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 00 0.0
9 0.0 0.0 0.0 0.0
10 0.0 0.0 00 0.0
11 00 00 0.0 0.0

12 0.0 00 00 0.0



Seal Damping Input

Part 1 Speed = 6600 rpm

Seal Czz Cay Coy Cze

Number (lbxs/in) (lbxs/in) (lb*s/rad) (Ib* s/rad)

1 26.7 1.35 0.0 0.0

2 22.92 1.19 0.0 0.0

3 22.99 1.2 0.0 0.0

4 23.03 1.21 0.0 2.0

5 23.06 1.22 0.0 0.0

6 23.08 1.23 0.0 0.0

7 23.10 1.24 0.0 0.0

8 23.12 1.25 0.0 0.0

9 23.14 1.26 0.0 0.0

10 23.16 1.28 0.0 0.0

11 15.36 .813 0.0 0.0

12 1320. 190. 0.0 0.0
Part 2 Speed = 6600 rpm

Seal Coz Coy Cyg Cuo

Number (lbxs) (lbxs) (laasiny (lbeeiny

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 6.0

3 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0

129



Seal Inertia Input
Part 1 Speed = 6600 rpm

Seal My My, Meg Meo

Number (Ibx s?/in) (lbx s*/in) (lbx s*/rad) (Ib+ s?/rad)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 | 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
Part 2 Speed = 6600 rpm

Seal My, My, My, Myg

Number (lb*s) (lbxs?) (%) (%)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0



APPENDIX D

INPUT DATA FOR EDI CASE TWO

Gajan (1987) The system of units used is pound, inch, second
Shaft Material Properties

Density TT64E-3  (Ibx s2/in%)

Elastic Modulus 30.E6 (1b/in?)

Shear Modulus  .82E11  (lb/in?)

Concentrated Masses
Station Concentrated Diametral  Polar

Number Mass Mom. of . Mom. of I.
(ib  s*/in) (b= s =in) (lb* s *in)

1 .05564 .14383 2963

5 015528 0.0 0.0

9 040217 108 .21580

11 02976 .1056 211

13 031056 .109 218

15 031056 .109 218

17 031056 109 218

19 .031056 109 218

21 031056 109 .218

23 .029500 .1056 211

25 .031056 .109 218

27 .030800 1079 .2158

29 029762 1056 .21

30 037525 0.0 0.0

31 010691 0.0 0.0

32 1015528 0.0 0.0

35 035481 0.0 0.0

37 004558 0.0 0.0
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Shaft Description

Element Length Outer Radius
Number (in) (in)

1 1.44 119

2 1.185 1.213
3 5.1875 1.25

4 13.125 1.2525
5 3.25 1.2550
6 1.3750  1.4975
7 1.5625 1.50

8 1.4380 1.50

9 2.3150 1.50
10 1.4380 1.50
11 2.3130  1.50
12 1.4380 1.50
13 2.3130 1.50
14 1.4380 1.50
15 2.3130  1.50
16 1.4380 1.50
17 2.3130  1.50
18 1.4380 1.50
19 2.3130  1.50
20 1.4380 1.50
21 2.3130  1.50
22 1.4380 1.50
23 2.3130 1.50
24 1.4380 1.50
25 2.3130  1.50
26 1.4380 1.50
27 23130 1.50
28 1.4380  1.50
29 2.1245  1.50
30 3.6225 1.50
31 2.3750 1.255
32 13.0 1.25
33 3.25 1.25
34 1.5 1.0

35 4.25 1.0

36 1.1250 .394



Bearing Description (both bearings)

Bearing 1 station number
Bearing 2 station number

Qil Viscosity

Bearing Length

Bearing Diameter

Bearing Radial Clearance

4

33

2.0E-6 (Ib* s/in?)
1.0 (in)

2.5 (in)

003 (in)

Bearing Stiffness Coefficients

Speed K K,y Ky Kyy
(rpm) (Ib/in) (Ib/in) (Ib/in) (Ib/in)
500 10000. 0.0 0.0 .8E6
1000 12330. 0.0 0.0 .T4E6
1500 15000. 0.0 0.0 62E6
2000  17900. 0.0 0.0 .ST3E6
2500  19500. 0.0 0.0 -55E6
3000  21000. 0.0 0.0 .524E6
3500 23200. 0.0 0.0 A8E6
4000 25280. 0.0 0.0 450E8
4500  27430. 0.0 0.0 428E86
5000 29600. 0.0 0.0 .407E6
5500 31000. 0.0 0.0 .38E6
6000 34000. 0.0 0.0 .37E6
6500  36000. 0.0 0.0 .355E6
7000  36000. 0.0 0.0 .345E6
7500 38500. 0.0 0.0 .344E6
8000 41900. 0.0 0.0 .342E6
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Bearing Damping Coefficients
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Speed Cqz oy Cyz Cyy

(rpm) (lbxs/in) (lb*s/in) (lbxs/in) (Ib+*s/in)

500. 280. 0.0 0.0 7500.

1000.  280. 0.0 0.0 7240.

1500. 280, 0.0 0.0 4500.

2000.  280. 0.0 0.0 2100.

2500.  280. 0.0 0.0 1800.

3000. 280. 0.0 0.0 1470.

3500. 280. 0.0 0.0 1220.

4000.  280. 0.0 0.0 1120.

4500.  280. 0.0 0.0 1020.

5000. 280. 0.0 0.0 910.

5500,  280. 0.0 0.0 840.

6000.  280. 0.0 0.0 700.

6500.  280. 0.0 0.0 669.

7000.  280. 0.0 0.0 620.

7500.  280. 0.0 0.0 550.

8000.  280. 0.0 0.0 500.
Seal Descriptions

Seal Station

Number

1 9

2 11

3 13

4 15

5 17

6 19

T 21

8 23

9 25

10 27

11 29

12 30



Seal Stiffness Input
Part 1 Speed = 1100 rpm

Seal Kqe Kay Ky Ko

Number (ib/in) (lbfin) (Ib/rad) (Ib/rad)

1 686. 263. 0.0 0.0

2 481. 194. 0.0 0.0

3 483. 195. 0.0 0.0

4 483. 196. 0.0 0.0

5 487. 197. 0.0 0.0

6 489. 198. 0.0 6.0

7 493. 199. 0.0 6.0

8 496. 200. 0.0 0.0

9 499, 201. 0.0 0.0

10 503, 202. 0.0 0.0

11 348. 175. 0.0 0.0

12 11834. 9622. 0.0 0.0
Part 2 Speed = 1100 rpm

Seal Ky kg Ky Ko

Number (Ib) (1) (ibxinfrad) (Ib*in/rad)

1 0.0 0.0 00 0.0

2 0.0 0.0 0.0 0.0

3 00 0.0 0.0 0.0

4 0.0 0.0 00 0.0

5 0.0 0.0 00 0.0

6 0.0 0.0 00 0.0

7 0.0 0.0 00 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 00 0.0 0.0

—
)

0.0 0.0 0.0 0.0



Seal Damping Input
Part 1 Speed = 1100 rpm

Seal Czz 2y (&) Cqp
Number (lb*s/in) (Ibxsfin) (lbxs/rad) (ibxs/rad)
1 3.93 311 0.0 0.0
2 3.13 276 0.0 0.0
3 3.14 .279 0.0 0.0
4, 3.15 .282 0.0 0.0
5 3.16 .285 0.0 0.0
6 3.17 .288 0.0 0.0
7 3.18 .291 0.0 0.0
8 3.19 294 6.0 0.0
9 3.20 297 0.0 0.0
10 3.21 3 0.0 0.0
11 2.04 .19 0.0 0.0
12 246. 33.25 0.0 0.0

Part 2 Speed = 1100 rpm
Seal Coz Cgy  Cug Ce
Number (lbxs) (lbxs) (‘zeniny (lbrasiny

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0
10 6.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0



Seal Inertia Input
Part 1 Speed = 1100 rpm

Seal My My, My, Mo

Number (lbxs?/in) (lb*s*/in) (Ibxs¥/rad) (Ib+ s*/rad)

1 0.003 0.0 0.0 0.0

2 0.002 0.0 6.0 0.0

3 0.002 0.0 0.0 0.0

4 0.002 0.0 6.0 0.0

5 0.002 0.0 0.0 0.0

6 0.002 0.0 0.0 0.0

7 0.002 0.0 0.0 0.0

8 0.002 0.0 0.0 0.0

9 0.002 0.0 0.0 0.0

10 0.002 0.0 0.0 0.0

1 0.0015 0.00003 0.0 6.0

12 0.3156 -.0032 0.0 0.0
Part 2 Speed = 1100 rpm

Seal My Mg My Myp

Number ({bxs%) (Ib+ s%) (lbx::‘;{n) (lba::;in)

1 0.0 6.0 0.0 0.0

2 0.0 0.0 Q.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Stiffness Input

Part 1 Speed = 3300 rpm

Seal Kz Kzy Kog K.o

Number  (b/in) (Ib/in) (Ib/rad) (Ib/rad)

1 5948. 2544. 0.0 0.0

2 4810. 2078. 0.0 0.0

3 4830. 2085. 0.0 0.0

4 4840.  2095. 0.0 0.0

5 4870. 2105. 0.0 0.0

6 4890.  2106. 0.0 0.0

7 4936.  2108. 0.0 0.0

8 4960. 2112. 0.0 0.0

9 4990,  2117. 0.0 0.0

10 5008. 2120. 0.0 0.0

11 3672. 1854. 0.0 0.0

12 J125E6  71134. 0.0 0.0
Part 2 Speed = 3300 rpm

Seal  Kyp Kgy Kag Ko

Number () (1) (lbxin/rad) (ibxin/rad)

1 0.0 00 00 0.0

2 0.0 0.0 0.0 0.0

3 00 00 0.0 0.0

4 0.0 00 0.0 0.0

3 0.0 0.0 00 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 00 0.0

10 0.0 00 0.0 0.0

1 0.0 0.0 0.0 0.0

12 0.0 0.0 00 0.0
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Seal Damping Input
Part 1 Speed = 3300 rpm

Seal  Cus Cey Cug c,

2. z8
Number (lb#s/in) (Ibxs/in) (Ibxs/rad) (Ibxs/rad)
1 12.64 .79 0.0 0.0
2 10.81 .69 0.0 0.0
3 10.83 .70 0.0 0.0
4 10.85 .70 0.0 0.0
5 10.87 At 0.0 0.0
6 10.90 71 0.0 0.0
7 10.92 72 0.0 0.0
8 10.94 .72 0.0 0.0
9 10.96 .73 0.0 0.0
10 11.0 .74 0.0 0.0
11 7.3 A7 0.0 0.0
12 686. 97.1 0.0 0.0

“Part 2 Speed = 3300 rpm
Seal Cou  Cpy  Cuq Ceo
Number (lbxs) (lbxs) (‘zs=in) (lbeaniny

1 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0



Seal Inertia Input
Part 1 Speed = 3300 rpm

Seal M,z Myy Mg Mae

Number (Ibx s?/in) (Ibx s?/in) (Ib* s*/rad) (Ib* s*/rad)

1 0.003 0.0 0.0 0.0

2 0.003 0.0 0.0 0.0

3 0.003 0.0 0.0 0.0

4 0.003 0.0 0.0 0.0

5 0.003 0.0 6.0 0.0

6 0.003 0.0 0.0 0.0

7 0.003 0.0 0.0 0.0

8 0.003 0.0 0.0 0.0

9 0.003 0.0 0.0 0.0

10 0.003 0.0 0.0 0.0

11 0.002 0.0 0.0 0.0

12 0.316 0.003 0.0 0.0
Part 2 Speed = 3300 rpm

Seal My Mgy My Mo

Number (lbxs?) (lbss?) (llsin) (lbastuin)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

7 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Stiffness Input

Part 1 Speed = 6600 rpm

Seal Kzz Kzy Ky Ko

Number (Ib/in) (Ib/in) (Ib/rad) (lb/rad)

1 23116. 10716. 0.0 0.0

2 18810. 8776. 0.0 0.0

3 18910. 8786. 0.0 0.0

4 19010. 8796. 0.0 0.0

5 19110. 8806. 0.0 0.0

6 19210. 8816. 0.0 0.0

7 19250. 8826. 0.0 0.0

8 19310. 8846. 0.0 0.0

9 19390. 8866. 0.0 0.0

10 19440. 8893. 0.0 0.0

11 14134, 7726. 0.0 0.0

12 .55E6  .255E6 0.0 0.0
Part 2 Speed = 6600 rpm

Seal K4z Kgy Hyg Ky

Number (Ib) (1) (lb=in/rad) (lb*in/rad)

1 0.0 00 0.0 0.0

2 00 00 00 0.0

3 0.0 00 0.0 0.0

4 0.0 0.0 00 0.0

5 0.0 0.0 00 0.0

6 0.0 00 00 0.0

7 0.0 0.0 00 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Damping Ix;pui

Part 1 Speed = 6600 rpm

Seal Cez Czy Ceg Czo

Number (Ib*s/in) (ibxs/in) (lbxs/rad) (lb*s/rad)

1 26.7 1.35 0.0 0.0

2 22.92 1.19 0.0 0.0

3 22.99 1.2 0.0 0.0

4 23.03 121 0.0 0.0

5 23.06 1.22 0.0 0.0

6 23.08 1.23 0.0 0.0

7 23.10 1.24 0.0 ‘0.0

8 23.12 1.25 0.0 0.0

9 23.14 1.26 0.0 0.0

10 23.16 1.28 0.0 0.0

11 15.36 813 0.0 0.0

12 1320. 190. 0.0 0.0
Part 2 Speed = 6600 rpm

Seal Csz Coy Coo Cug

Number (lbxs) (lhxs) (Unoin) (lbaswiny

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0
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Seal Inertia Input
Part 1 Speed = 6600 rpm

Seal M, My, Mg Mo

Number (ibx s?/in) _(lb* s*/in) (Ib* s*/rad) (Ib* s?/rad)

1 0.002 0.0 0.0 - 0.0

2 0.002 0.0 0.0 0.0

3 0.002 0.0 0.0 0.0

4 0.002 0.0 0.0 0.0

5 0.002 0.0 0.0 0.0

6 0.002 0.0 0.0 0.0

7 0.002 0.0 0.0 0.0

8 0.002 0.0 0.0 0.0

9 0.002 0.0 0.0 0.0

10 0.002 0.0 0.0 0.0

11 0.001 0.0 0.0 0.0

12 0.316 0.0 0.0 0.0
Part 2 Speed = 6600 rpm

Seal My, My, Mgy Mye

Number (lbxs) (lhss?) (Mutlsiny (lashein)

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 [1X]

3 0.0 0.0 0.0 0.0

4 0.0 0.0 0.0 0.0

5 0.0 0.0 0.0 0.0

6 0.0 0.0 0.0 0.0

T 0.0 0.0 0.0 0.0

8 0.0 0.0 0.0 0.0

9 0.0 0.0 0.0 0.0

10 0.0 0.0 0.0 0.0

11 0.0 0.0 0.0 0.0

12 0.0 0.0 0.0 0.0



APPENDIX E

INPUT DATA FOR EDI CASE THREE

Gajan (1987) The system of units used is pound, inch, second
Shaft Material Properties

Density TT64E-8  (Ib = s%/int)

Elastic Modulus  30.E6 (ib/in?)

Shear Modulus  .82E11  (Ib/in?)

Concentrated Masses
Station Concentrated Diametral Polar

Number Mass Mom. of I.  Mom. of I.
(b s%/in) (Ibx s2xin) (Ibx s® xin)

1 05564 14383 .2963

5 015528 0.0 0.0

9 040217 .108 .21580

1 02976 1056 211

13 031056 109 218

15 031056 109 218

17 .031056 .109 218

19 .031056 .109 218

21 .031056 109 218

23 029500 1056 211

25 031056 .109 218

27 030800 .1079 2158

29 029762 1056 211

30 037525 0.0 0.0

31 010691 0.0 0.0

32 .015528 0.0 0.0

35 .035481 0.0 0.0

37 .004558 0.0 0.0
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Shaft Description

Element Length Outer Radius
Number (in) (in)

1 1.44 1.19

2 1.185 1.213
3 5.1875 1.25

4 13.125  1.2525
5 3.25 1.2550
6 1.3750 1.4975
T 1.5625 1.50

8 1.4380 1.50

9 2.3150 1.50
10 1.4380 1.50
11 2.3130  1.50
12 1.4380 1.50
13 2.3130 1.50
14 1.4380 1.50
15 2.3130  1.50
16 1.4380 1.50
17 2.3130  1.50

18 1.4380 1.50
19 2.3130  1.30
20 1.4380  1.50
21 2.3130  1.50
22 1.4380 1.50
23 2.3130  1.50
2 1.4380 1.50
25 2.3130 150
26 1.4380 1.50
27 23130 1.50
28 1.4380 1.50
29 2.1245  1.50
30 3.6225 1.50
31 2.3750  1.255
32 13.0 1.25
33 3.25 1.25
34 1.5 1.0

35 4.25 1.0

36 1.1250 .394



Bearing Description (both bearings)
Bearing 1 station number 4
Bearing 2 station number 33

Oil Viscosity 2.0E-6 (lb* sfin?)
Bearing Length 1.0 (in)
Bearing Diameter 2.5 (in)

Bearing Radial Clearance .003  (in)

Bearing Stiffness Coefficients

Speed K, Ky Kye Ky
(rpm) (lbfin) (Ib/in) (Ib/in) (Ibjin)
500 10000. 0.0 0.0 .8E6
1000 12330. 0.0 0.0 .T4E6
1500  15000. 0.0 0.0 .62E6
2000 17900. 0.0 0.0 .573E6
2500 19500. 0.0 0.0 .55E6
3000  21000. 0.0 0.0 .524E8
3500 23200. 0.0 0.0 48E6
4000 25280. 0.0 0.0 .450E6
4500  27430. 0.0 0.0 428E6
5000  29600. 0.0 0.0 407E6
3500 31000. 0.0 0.0 .38E6
6000 34000. 0.0 0.0 .3TE6
6500  36000. 0.0 0.0 .355E6
7000 36000. 0.0 0.0 .345E6
7500 38500. 0.0 0.0 .344E6

8000  41900. 0.0 0.0 .342E6



Bearing Damping Coefficients

Speed Oz 2y Cye Cyy

(rpm) (bxs/in) (Ibxs/in) (lb*s/in) (ib* s/in)

500.  280. 0.0 0.0 7500.

1000.  280. 0.0 0.0 7240.

1500.  280. 0.0 0.0 4500.

2000. 280. 0.0 0.0 2100.

2500.  280. 0.0 0.0 1800.

3000. 280. 0.0 0.0 1470,

3500. 280, 0.0 0.0 1220.

4000.  280. 0.0 0.0 1120.

4500.  280. 0.0 0.0 1020.

5000.  280. 0.0 0.0 910.

5500.  280. 0.0 0.0 840.

6000. 280. 0.0 0.0 700.

6500.  280. 0.0 0.0 669.

7000.  280. 0.0 0.0 620.

7500.  280. 0.0 0.0 550.

8000. 280. 0.0 0.0 500.
Seal Descriptions

Seal Station

Number

1 9

2 11

3 13

4 15

5 17

6 19

T 21

8 23

9 25

10 27

11 29

12 30



Seal Stiffness Input

Part 1 Speed = 1100 rp
Seal Ko Kuy Ky Kzp
Number (lb/in) (Ib/in) (Ib/rad) (Ibjrad)

1 686. 263. -1600. 1600.

2 481. 194. -1120. 1120.

3 483. 195. -1123. 1123.

4 483. 196. -1126. 1126.

5 487. 197. -1129. 1129.

6 489. 198. -1132. 1132.

7 493. 199. -1135. 1135.

8 496. 200. -1139. 1139.

9 499. 201. -1146. 1146.

10 503. 202. -1153. 1153.

11 348, 175. -800. 800.

12 11834. 9622, -.293E6 .293E6

Part 2 Speed = 1100 rpm

Seal Ky Ky Ko K

Number (lb) (ib} (b= anfrad) (Ib*1in/rad)

1 4. 186. 463. 48.
54. 129. 323, 36.

3 54.2 1294 3243 36.2

4 534.4 129.8  325.5 36.4

5 54.6 130.6  327.0 36.6

6 54.9 131.6 3283 36.8

7 55.2 132.6 329.7 37.0

8 55.7 134.0 331.0 371

9 55.9 135.0 333.0 37.2

10 56.1 1370 335.C 37.3

11 49, 95. 233. 30.5

12 20444. 14654. .438L6 91398.



Seal Damping Input
Part 1 Speed = 1100 rpm
Seal C,

Czy Cop

zz Ty kd

Number (lbxs/in) (b*s/in) (Ib+s/rad) (Ibxs/rad)
1 3.93 311 .160 .160
2 3.13 .276 137 137
3 3.14 279 1375 1375
4 3.15 .282 138 138
5 3.16 285 .1385 .1385
6 3.17 .288 .1389 .1389
7 3.18 291 1383 .1393
8 3.19 294 1397 1397
9 3.20 .297 1399 1399
10 3.21 3 141 .141
11 2.04 19 095 .095
12 246.2 33.25 72 72.

Part 2 Speed = 1100 rpm
Seal Coz Coy Css Ceo
Number (lbxs) (lbxs) (HPussin) (lhreuny
1 116 11 .76 057
2 .105 876 61 .0526
3 1052 879 613 .05265
4 1054 .882 616 0527
5 1057 .885 619 05275
6 1059 .888 622 .0528
7 1062 .891 625 05285
8 1085 .893 627 0529
9 1067 895 629, 05295
10 107 997 .63 053
11 .07 .57 4 036

12 76. 494. 1897. 182.



Seal Inertia Input
Part 1 Speed = 1100 rpm

Seal My Mgy My Mo

Number (Ib*s%/in) (lb* s*/in) (b= s?/rad) (Ib+ s?/rad)

1 .003 0.0 -.002 .002

2 .002 0.0 -.001 .001

3 .002 0.0 -.001 001

4 .002 0.0 -.001 .001

5 .002 0.0 -.001 .001

6 .002 0.0 -.001 .001

7 .002 0.0 -.001 .001

8 .002 0.0 -.001 001

9 .002 0.0 -.001 .001

10 002 0.0 -.001 001

11 0015 00003 -.001 -.001

12 3156 -.0032 7 7
Part 2 Speed = 1100 rpm

Seal My My My, Myp

Number (lbss®) (lbxs?) (lsfvin) (lbsalsiny

1 0.0 0012 001 0.0

2 0.0 0012 .001 0.0

3 0.0 0012 001 0.0

4 0.0 .0012 001 0.0

5 0.0 .0012 001 0.0

6 0.0 20012 .001 0.0

7 0.0 0012 .001 0.0

8 0.0 .0012 .001 0.0

9 0.0 0012 .001 0.0

10 0.0 .0012 001 0.0

11 0.0 005 .0005 0.0

12 -.007 715 1.72 -.005



Seal Stiffness Input

Part 1 Speed = 3300 rpm
Seal Kiz Kqy Ky
Number (lb/in) (lbfin) (Ib/rad)

Kz
(b/rad)

1 5948.  2544.  -15520.
2 4810.  2078.  -12707.
3 4830.  2085.  -12737.
4 4840.  2095.  -12747.
5 4870. 2105,  -12777.
6 4890.  2106.  -12807.
7 4930. 2108,  -12837.
8 4960.  2112.  -12867.

9 4990.  2117.  -12900.
10 5008.  2120.  -12951.
11 3672.  1854.  -9610.

12 .125E6 71134, -.215E7

Part 2 Speed = 3300 rpm
Seal Ky Ky, Ky

15520.
12707.
12737,
12747,
12777.
12807.
12837.
12867,
12900.
12951.
9610.

215E7

Ky

Number (lb) (1) (Ibxin/rad) (Ib*in/rad)

1 698. 1570.  4370.
2 567. 1258.  3558.
3 568. 1262.  3568.
4 569. 1268.  3578.
5 570. 1273.  3588.
6 572. 1280.  3598.
7 574, 1288.  3608.

8 576. 1293, 3618.
9 578. 1308.  3630.
10 580. 1316, 3644.
11 510. 966. 2703.

12 .146E6 .156E6 .416ET

442,
366.
367.
368.
369.
371.
373.
374.
375,
377,
315.
.751E6
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Seal Damping Input

Part 1 Speed = 3300 rpm

Seal Caz 2y Cry Cep

Number (Ibxs/in) (lbxsfin) (Ibxs/rad) (lbxs/rad)

1 12.64 .79 .51 .31

2 10.81 .69 .44 44

3 10.83 .70 44 44

4 10.85 .70 44 44

5 10.87 .71 44 44

6 10.90 7l 44 .44

7 10.92 .72 44 44

8 10.94 72 44 44

9 10.96 .73 44 .44

10 11.0 .74 44 .44

11 7.3 47 31 31

12 686. 97.1 210. 210.
Part 2 Speed = 3300 rpm

Seal Cyz Cyy Csp Cyo

Number (lbxs) (lbrs) (Hzssin) (lbrssiny

1 311 3.45 2.33 .18

2 272 2.95 2.0 .163

3 275 2.95 2.02 .163

4 .278 2.96 2.03 .164

5 .281 2.96 2.04 .164

6 .284 2.97 2.05 165

7 287 2.97 2.06 .166

8 .290 2.98 2.07 167

9 .296 2.98 2.08 .168

10 3 3.0 2.1 AT

11 2 2.0 1.4 12

12 .220 1334.  5555. 524.
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Seal Inertia Input
Part 1 Speed = 3300 rpm

Seal M. M, My My

Number (b s%/in) (Ib* s?/in) (ib* s*/rad) (1b* s?/rad)

1 .003 0.0 -.001 .001

2 003 0.0 -.001 001

3 003 0.0 -.001 .001

4 003 0.0 -.001 .001

5 .003 0.0 -.001 .001

6 .003 0.0 -.001 .001

7 .003 0.0 -.001 .001

8 .003 0.0 -.001 001

9 .003 0.0 -.001 001

10 .003 0.0 -.001 .001

11 .002 0.0 -.0008 0008

12 316 .003 -7 N
Part 2 Speed = 3300 rpm

Seal My My My, Mgy

Number (lhxs®) (lxs?) (lrting (lusemy

1 0.0 .001 .0005 0.0

2 0.0 .001 0005 0.0

3 0.0 .001 0005 0.0

4 0.0 .001 0005 0.0

5 0.0 001 0005 0.0

6 0.0 001 .0005 0.0

7 0.0 .001 0005 0.0

4 0.0 001 .0005 0.0

9 0.0 .001 0005 0.0

10 0.0 001 L0005 0.0

11 0.0 .001 0005 0.0

12 -.006 .70 1.726 -.0053
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Seal Stiffness Input

Part 1 Speed = 6600 rpm
Seal Kz Koy Kz Ko
Number (Ib/in) (Ib/in) (lb/rad) (ib/rad)

1 23116. 10716. -65911. 65911.

2 18810. 8776. -54222. 54222.

3 18910. 8786.  -54250. 54250.

4 19010. 8796.  -54300. 54300.

5 19110. 8806.  -54350. 54350.

6 19210. 8816.  -54400. 54400.

7 19250. 8826.  -54450.  54450.

8 19310. 8846.  -34300. 54500.

9 19390. 8866.  -54530. 54550.

10 19440. 8893.  -54625. 54625.

1 14134, 7726, -40240.  40240.

12 .55E6  .255E6 -.886E7 .886ET
Part 2 Speed = 6600 rpm

Seal Hye Ky Ky Ky

Number (Ib) (ib) (lbxin/rad) (Ib*in/rad)

1 2906.  6000. 18254. 1811.

2 2368. 4840. 14946. 1811.

3 2372. 4850.  14960. 1508.

4 2378. 4860.  14970. 1512.

3 2381.  4875. 14980. 1516.

6 2388.  4890. 15000. 1520.

T 2391.  4900. 15020. 1524.

8 2398. 4925.  15076. 1528.

9 2401.  4960. 15099. 1532,

10 2407.  5023. 15118. 1536.

11 2100. 3656. 11138. 1283.

12 51E6 .687E6 .168E8 286E8



Seal Damping Input o
Part 1 Speed = 6600 rpm

Seal  Ci. Cuy Cop Cuo

Number (lbxs/in) (Ibxsfin) (lbxs/rad) (Ib=s/rad)

1 26.7 1.35 1.05 1.05

2 22.92 1.19 .9 9

3 22.99 1.2 .903 903

4 23.03 1.21 .905 .905

5 23.06 1.22 907 .907

8 23.08 1.23 .909 .909

7 23.10 1.24 911 911

8 23.12 1.25 913 913

9 23.14 1.26 915 915

10 23.16 1.28 917 917

11 15.36 .813 837 657

12 1320. 190. 408. 408.
Part 2 Speed = 6600 rpm

Seal Coz Cey Cyy Cop

Number (lb+s) (lhss) (lxesiny (lorswin

1 .36 7.2 4.72 .39

2 .49 6.2 4.12 .33

3 .5 8.2 4.13 331

4 5 6.2 4.13 .331

5 5 6.2 4.13 .331

6 5 6.2 4.13 331

7 5 6.2 4.13 331

8 .5 6.2 4.13 331

9 5 6.2 4.13 .331

10 .52 6.25 4.15 .336

11 .35 4.15 2.75 .24

12 427, 2512, 11028. 1016.
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Seal Inertia Input
Part 1 Speed = 6600 rpm

Seal M., M, My M,

Number (lbxs?/in) (Ib* s*/in) (Ib+ s*/rad) (Ibx s?/rad)

1 .002 0.0 -.002 002

2 .002 0.0 -.002 002

3 002 0.0 -.002 .002

4 002 0.0 -.002 .002

b .002 0.0 -.002 .002

6 .002 0.0 -.002 .002

7 002 0.0 -.002 .002

8 002 0.0 -.002 002

9 002 0.0 -.002 .002

10 .002 0.0 -.002 002

11 001 0.0 -.001 001

12 316 0.0 -7 T
Part 2 Speed = 6600 rpm

Seal My Mg Mgy Myp

Number (lbxs®) (lbxs?) (fifyin) (lestein,

1 0.0 .001 .0008 0.0

2 0.0 .001 .0008 0.0

3 0.0 .001 .0008 0.0

4 0.0 .001 .0008 0.0

5 0.0 001 0008 0.0

6 0.0 .001 .0008 0.0

7 0.0 001 .0008 6.0

8 0.0 001 .0008 0.0

9 0.0 001 .0008 0.0

10 0.0 001 .0008 0.0

11 0.0 .001 .0006 0.0

12 0.0 7 1.7 0.0
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APPENDIX F

INPUT DATA FOR EDI CASE FOUR

Gajan (1987) The system of units used is pound, inch, second
Shaft Material Properties

Density TT64E-3 (b * s%/int)

Elastic Modulus  30.E6 (Ib/in?)

Shear Modulus ~ .82E1l  (lb/in?)

Concentrated Masses
Station Concentrated Diametral  Polar

Number Mass Mom. of I.  Mom. of I.
(lb* s%/in) (lb* s xin) (Ibx s® xin)

1 05564 14383 2963

3 015528 0.0 0.0

9 040217 .108 21580

11 .02976 .1056 211

13 031056 109 .218

15 031056 109 218

17 031056 109 218

19 .031056 109 218

21 .031056 .109 218

23 029500 .1056 211

25 .031056 .109 .218

27 .030800 1079 2158

29 1029762 1056 211

30 037525 0.0 0.0

31 -010691 0.0 0.0

32 015528 0.0 0.0

35 035481 0.0 0.0

37 004558 0.0 0.0
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Shaft Description

Element Length

Outer Radius

Number _(in) (in)
1 1.44 119
2 1.185 1.213
3 5.1875  1.25
4 13.125  1.2525
5 3.25 1.2550
6 1.3750  1.4975
7 - 1.5625  1.50
8 1.4380 1.50
9 2.3150  1.50
10 1.4380 1.50
11 2.3130  1.50
12 1.4380 1.50
13 2.3130  1.50
14 1.4380 1.50
15 2.3130  1.50
16 1.4380 1.50
17 2.3130  1.50
18 1.4380 1.50
19 2.3130  1.50
20 1.4380 1.50
21 2.3130 1.50
22 1.4380 1.50
23 23130 1.50
24 1.4380 1.50
25 2.3130  1.50
26 1.4380 1.50
27 23130 1.50
28 1.4380  1.50
29 2.1245 1.50
30 3.6225 1.50
31 2.3750  1.255
32 13.0 1.25
33 -3.25 1.25
34 1.5 1.0
35 4.25 1.0
36 11250 .394



Bearing Description (both bearings)
Bearing 1 station number 4
Bearing 2 station number 33

Oil Viscosity 2.0E-6  (Ib* s/in?)
Bearing Length 1.0 (in)
Bearing Diameter 2.5 (an)

Bearing Radial Clearance .003 (tn)

Bearing Sommerfeld Number and Attitude Angle
Eccentricity Sommerfeld Attitude

Ratio Number Angle
(rad)
0.0 12.2 0.0
0.1 6.46 0.0
0.2 3.43 0.0
0.3 1.82 0.0
0.4 965 0.0
0.5 512 0.0
0.6 272 0.0
0.7 144 0.0
0.8 0764 0.0
0.9 0405 0.0
1.0 0215 0.0

Bearing Dimensionless Stiffness Coefficients
Eccentricity K:» Kpy Kyz Kyy

Ratio

0.0 201 0.0 0.0 1.67
0.1 1.79 0.0 0.0 2.14
0.2 1.56 0.0 0.0 2.74
0.3 134 0.0 0.0 3.50
0.4 863 0.0 0.0 449
0.5 588 0.0 0.0 5.74
0.6 400 0.0 0.0 735
0.7 273 00 0.0 941
0.8 J186 0.0 0.0 12.0
0.9 27 0.0 0.0 154

1.0 0862 0.0 0.0 19.7



Bearing Dimensionless Damping Coefficients
Eccentricity Czz Ciry Cyz Cyy

Ratio

0.0 350 0.0 0.0 30.0

0.1 186 0.0 0.0 224

0.2 9.85 0.0 0.0 164

0.3 5.22 0.0 0.0 119

0.4 4.59 0.0 0.0 8.94

0.5 313 00 0.0 7.50

0.6 1.95 0.0 00 7.58

0.7 1.06 0.0 0.0 9.20

0.8 452 0.0 00 123

0.9 .105 0.0 0.0 17.0

1.0 0.0 0.0 00 232
Seal Descriptions

Seal Station

Number

1 9

2 11

3 13

4 15

5 17

6 19

7 21

8 23

9 25

10 27

11 29



Seal Stiffness Input

Part 1 Speed = 1100 rpm
Seal Kae Koy Koy Kap
Number _(ibfin) (lbjin) (lbjrad) (ibjrad)
1 686. 263. -1600. 1600.
2 481. 194. -1120. 1120.
3 483. 195. -1123. 1123.
4 483. 196. -1126. 1126.
5 487, 197 1129,  1129.
6
7
8
9

489. 198. -1132. 1132.
493, 199. -1135. 1135.
496. 200. -1139. 1139.

499. 201. -1146. 1146.
10 503. 202. -1153. 1153.
11 348. 175. -800. 800.
12 11834. 9622. -.293E6 .293E6

Part 2 Speed = 1100 rpm

Seal K4z Ky Ksp Kge
Number (i)  (b)  (lbxinfred) (Ibxin/rad)
1 T4 186. 463. 48.

54. 129. 323. 36.
3 54.2 129.4 3243 36.2
4 54.4 129.8 3255 36.4
5 54.6 130.6  327.0 36.6
6 54.9 131.6 3283 36.8
7 55.2 1326 329.7 37.0
8 55.7 134.0  331.0 37.1
9 55.9 135.0  333.0 37.2
10 56.1 137.0  335.0 37.3
11 49 95. 233. 30.5

12 20444. 14654. .458E6 91398.



Seal Damping Input
Part 1 Speed = 1100 rpm

Seal Cze Cry Cep Czo

Number (lb*s/in) (lbxsfin) (lbxs/rad) (lb+s/rad)

1 3.93 311 .160 160

2 3.13 .276 137 137

3 3.14 279 1375 1375

4 3.15 .282 .138 138

5 3.16 .285 .1385 | 1885

6 3.17 .288 1389 .1389

7 3.18 .201 1393 .1393

8 3.19 .204 1397 1397

9 3.20 .297 .1399 .1399

10 3.21 3 .141 141

11 2.04 .19 .095 .095

12 246.2 33.25 72. 72.
Part 2 Speed = 1100 rpm

Seal Cyz Coy Cos Ceo

Number (lbxs) (lbxs) (lbrain) (learin)

1 116 1.1 .76 057

2 105 .876 .61 0526

3 1052 878 613 .05265

4 1054 .882 616 10527

5 1057 .885 619 85275

6 1059 888 622 0528

T 1062 .891 625 05285

8 1065 .893 627 0529

9 1067 .895 .629 05295

10 107 997 .63 033

11 07 57 4 036

12 76. 494. 1897. 182,



Seal Inertia Input
Part 1 Speed = 1100 rpm

Seal My, May My Mag

Number (Ibxs¥/in) (lbxs?/in) (Ibx s*/rad) (ibxs®/rad)

1 .003 0.0 -.002 002

2 .002 0.0 -.001 .001

3 .002 0.0 -.001 .001

4 .002 0.0 -.001 .001

5 .002 0.0 -.001 .001

6 002 0.0 -.001 .001

7 002 0.0 -.001 001

8 002 0.0 -.001 .001

9 002 0.0 -.001 001

10 .002 0.0 -.001 .001

11 0015 00003 -.001 -.001

12 3156 -.0032 -7 7
Part 2 Speed = 1100 rpm

Seal My, My, Myy Mgy

Number (Ib+s®) (lbxs?) (laslsin) (lhastsin)

1 0.0 .0012 .001 0.0

2 0.0 .0012 .001 0.0

3 0.0 .0012 001 0.0

4 0.0 .0012 .001 0.0

5 0.0 .0012 .001 0.0

6 0.0 .0012 .001 0.0

7 0.0 .0012 .001 0.0

8 0.0 0012 001 0.0

9 0.0 .0012 .001 0.0

10 0.0 .0012 001 0.0

11 0.0 005 .0005 0.0

12 -.007 715 1.72 -.005
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Seal Stiffness Input

-Part 1 Speed = 3300 rpm
Seal Kz K2y K4 Ko
Number (Ib/in) (Ibfin) (Ib/rad) (lb/rad)

5948. 2544,  -15520.  15520.

—-

2 4810.  2078.  -12707. 12707.
3 4830.  2085. -12737. 12737.
4 4840.  2095.  -12747. 12747.
5 4870. 2105,  -12777. 12777.
6 4890.  2106.  -12807. 12807.
7 4930.  2108.  -12837. 12837.
8 4960.  2112.  -12867. 12867,
9 4990.  2117.  -12900. 12900.
10 5008. 2120, -12951. 12951.
11 3672.  1854. -9610.  9610.
12 125E6 71134, -215E7 .215E7
Part 2 Speed = 3300 rpm
Seal Koo Koy Koy Ky
Number (1b) (1b) (Ib*in/rad) (lbxin/rad)
1 698. 1570.  4370. 442,
2 567. 1258. 3538. 366.
3 568. 1262. 3568. 367.
4 569. 1268.  3578. 368.
5 570. 1273, 3588. 369.
6 572. 1280. 3598. 371.
7 574. 1288.  3608. 373.
8 576. 1293.  3618. 374.
9 578. 1308.  3630. 375.
10 580. 1318. 3644. 377,
11 510. 966. 2703. 315.

12 146E6 .156E6 .416ET7 .751E6



Seal Damping Input
Part 1 Speed = 3300 rpm

Seal Czz zy Cm¢ Cqo

Number (lbxs/in) (lb*s/in) (lbxs/rad) (Ib*s/rad)

1 12.64 .79 .51 .51

2 10.81 .69 44 44

3 10.83 .70 44 .44

4 10.85 .70 44 44

5 10.87 71 44 44

6 10.90 .71 .44 .44

7 10.92 72 4 44

8 10.94 72 44 A4

9 10.96 .73 44 44

10 11.0 .74 44 .44

11 7.3 AT 31 31

12 686. 97.1 210. 210.
Part 2 Speed = 3300 tpm

Seal Cyz Cyy Cyo Ceo

Number (lbxs) (lbxg) (leaminy (lnesin)

1 311 3.45 2.33 .19

2 272 2.95 2.0 .163

3 275 2.95 2.02 .163

4 278 2.96 2.03 164

5 281 2.96 2.04 164

6 284 2.97 2.05 165

7 287 2.97 2.06 .166

8 .280 2.98 2.07 167

9 .296 2.98 2.08 .168

10 3 3.0 2.1 17

1 2 2.0 1.4 12

12 220 1334. 5555. 524.
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Seal Inertia Input
Part 1 Speed = 3300 rpm

Seal Mo My My Mg

Number (lb+s%/in) (Ib* s*/in) (Ibxs?/rad) (lb+ s?/rad)

1 .003 0.0 -.001 .001

2 .003 0.0 -.001 .001

3 .003 0.0 -.001 001

4 .003 0.0 -.001 001

5 .003 0.0 -.001 001

6 .003 0.0 -.001 001

7 003 0.0 -.001 .001

8 003 0.0 -.001 .001

9 .003 0.0 -.001 001

10 .003 0.0 -.001 .001

11 .002 0.0 -.0008 .0008

12 316 .003 -7 N
Part 2 Speed = 3300 rpm

Seal My My, M Myp

Number (lb=s?) (lbxs?) (Lesin) (lrduny

1 0.0 .001 0005 0.0

2 0.0 001 0005 0.0

3 0.0 .001 .0005 0.0

4 0.0 001 .0005 0.0

5 0.0 .001 0005 0.0

6 0.0 .001 0005 0.0

7 0.0 .001 .0005 0.0

8 0.0 001 -0005 0.0

9 0.0 001 .0005 0.0

10 0.0 001 00035 0.0

11 0.0 001 .0005 0.0

12 -.006 .70 1.726 -.0053



Seal Stiffness Input
Part 1 Speed = 6600 rpm

Seal Koo  Kay Koy Kgo
Number (Ib/in) (lb/in) (ib/rad) (1bjrad)
1 23116. 10716, -63911. 6591L.
2 18810. 8776. -54222. 54222,
3 18910. 8786, -54250. 54250,
4 19010. 8796.  -54300. 54300,
5 19110. 8806. -54350. 534350,
6 19210, 8816.  -54400. 54400.
T

19250. 8826.  -54450.  54450.

8 19310. 8846.  -54500.  54500.
9 19390. 8866. -54550.  54550.
10 19440. 8893.  -54625. 54625.
11 14134.  7726.  -40240.  40240.
12 .55E6  .255E6 -.886E7 .886ET
Part 2 Speed = 6600 rpm
Seal Kye Ky Ky Kyp
Number (Ib) (b) (Ibxin/rad) (Ibxin/rad)
1 2906. 6000. 18254. 1811.
2368.  4840. 14946. 1811,
3 2372. 4850.  14960. 1508.
4 2378. 4860. 14870. 1512,
5 2381. 4875.  14980. 1516.
[ 2388. 4890.  15000. 1520.
7 2391. 4900.  15020. 1524,
8 2398. 4925.  15076. 1528.
9 2401.  4960. 15099. 1532.
10 2407. 5023,  15118. 1536.
11 2100. 3656. 11138. 1283.

12 -51E6 .687E6 .168ES8 .286E8



Seal Damping Input
Part 1 Speed = 6600 rpm

Seal Crz Cry Cz4 Czo

Number (lbxs/in) (lb+s/in) (lbxs/rad) (Ibxs/rad)

1 26.7 135 1.05 1.05

2 22.92 119 9 9

3 22.99 1.2 .903 .903

4 23.03 121 .905 .905

5 23.06 1.22 907 .907

6 23.08 1.23 909 .909

7 23.10 1.24 911 911

8 23.12 1.25 913 913

9 23.14 1.26 915 915

10 23.16 1.28 917 917

11 15.36 .813 657 657

12 1320. 190. 408. 408.
Part 2 Speed = 6600 rpm

Seal Coz Csy Coo Cs0

Number (lbxs) (lbss) (lbmssin) (lomavin

1 .56 7.2 4.72 .39

2 .49 6.2 4.12 .33

3 5 6.2 4.13 .331

4 B 6.2 4.13 .331

5 5 6.2 4.13 331

6 .5 6.2 4.13 .331

7 -5 6.2 4.13 331

8 .5 6.2 4.13 .331

9 5 6.2 4.13 331

10 .52 6.25 4.15 .336

1 .35 4.15 2,735 24

12 427. 2512. 11028, 1016.
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Seal Inertia Input
Part 1 Speed = 6608 rpm

Seal M., M.y My Mo

Number (b s2/in) (Ib* s/in) (Ib* s®/rad) (lbxs®/rad)

1 .002 0.0 -.002 .002

2 .002 0.0 -.002 .002

3 .002 0.0 -.002 .002

4 002 0.0 -.002 002

5 002 0.0 -.002 .002

6 .002 0.0 -.002 .002

7 002 0.0 -.002 002

8 .002 0.0 -.002 .002

9 .002 0.0 -.002 002

10 .002 0.0 -.002 .002

11 .001 0.0 -.001 001

12 316 0.0 -7 N
Part 2 Speed = 6600 rpm

Seal My My, My My

Number (lxs®) (lbxs?) (frefsing (lastuin)

1 0.0 001 .0008 0.0

2 0.0 001 .0008 0.0

3 0.0 .001 .0008 0.0

4 0.0 .001 0008 0.0

5 0.0 .00t .0008 0.0

6 0.0 001 0008 0.0

T 0.0 001 .0008 0.0

8 0.0 .001 .0008 0.0

9 0.0 001 .0008 0.0

10 0.0 001 .0008 0.0

11 0.0 001 .0006 0.0

12 0.0 7 17 0.0



APPENDIX G

INPUT DATA FOR CENTRITECH ROTOR

Murphy and Vance (1984) The system of units used is pound, inch, second
Shaft Material Properties

Density T2T2E-3 (b= s°/in?)

Elastic Modulus 30.E6 (Ibfin?)

Shear Modulus  11.7E6  (Ib/in?)

Shaft Description
Element Length Outer Radius
Number (in) (in)

i 753 2.0

2 1.752 1.2505
3 1.752 1.2505
4 762 2.0

5 1.8 1.25

6 2.021 1.0

7 3.0 1.0

8 4.998  4.95

9 2.021 1.005
10 3.0 1.005
11 4.996  4.95
12 2.012 1.0025
13 3.0 1.0025
14 5.004 4.95
15 2.075 1.0025
16 3.0 1.0025
17 2.756 1.25
18 1.750 1.25
19 1.760 1.25
20 2.2 1.25
21 1.0 1.005

22 1.001 1.005



Support Stiffness
Station K, Kzy Ky, Kyy
Number (Ib/in) (Ib/in) (lb/in) (Ib/in)

3 40400. 0.0 0.0 294000,
19 40400. 0.0 0.0 294000.

Support Damping
Station  Ciz Coy Cye Cyy
Number (lb*s/in) (lbxs/in) (lb*sfin) (lb*s/in)
3 359. 0.0 0.0 783.
19 359. 0.0 0.0 783.



APPENDIX H

INPUT DATA FOR CENTRITECH
ROTOR WITH MASSLESS HOUSING

The system of units used is pound, inch, second
Shaft Material Properties

Density T272E-3 (b * s%/in%)

Elastic Modulus 30.E6 (1b/1in?)

Shear Modulus  12.E6 (ib/in?)

Shaft Description
Element Length Outer Radius
Number (in) (in)

1 753 2.0

2 1.752 1.2505
3 1.752 1.2505
4 .762 2.0

5 1.8 1.25

6 2.021 1.0

7 3.0 1.0

8 4.998 4.95

9 2.021 1.005
10 3.0 1.005
11 4.996 4.95
12 2.012 1.0025
i3 3.0 1.0025
14 5.004 4.95
15 2.075 1.0025
16 3.0 1.0025
17 2.756 1.25
18 1.750 1.25
19 1.760 1.25
20 2.2 1.25
21 1.0 1.005

22 1.001 1.005



Housing Material Properties
Density .7383E-13  (Ib = 2/int)
Flastic Modulus  30.E6 (1b/in?)
Shear Modulus  11.7TE6 (1b/in?)

Housing Description
Element Length Outer Radius Inper Radius

Number (in) (in) (in)
1 2.6 2.5 2.25
2 4.667 2.5 2.25
3 4.667 2.5 2.25
4 4.998 5.5 5.25
5 2511 15 1.25
6 2.511 15 1.25
7 4.996 5.5 5.25
8 2.506 2.5 1.25
9 2.506 L5 1.25
10 5.004 5.5 5.25
1 3.194 1.625 1.375
12 3.194 1.625 1.375
13 3.194 1.625 1.375
14 1.980 1.625 1.375
15 1.980 1.625 1.375
16 1.001 875 625
17 1.001 875 625

Support Stiffness
Station Kez K, K Kyy

v yz
(Rotor) (Housing) (Ibjin) (Ibjin) (ibjin) (Ib/in)
3 2 80800. 0.0 0.0 588000.
19 14 80800. 0.0 0.0 588000.

Support Damping
Station C. Cry Cyz C,

=z vy

(Rotor) (Housing) (lbxs/in) (lbss/in) (lb=sfin) (Ibx*s/in)

3 2 718. 0.0 0.0 1566.

19 14 718, 0.0 0.0 1566.
Housing Support Coefficients

Station K, Ky C: Cy

Number (1b/in) (lbfin) (lbxs/in) (lbxs/in)

2 80800. 588000. T718. 1566.

14 80800. 588000. 718. 1566.



APPENDIX I

INPUT DATA FOR CENTRITECH
ROTOR WITH FLEXIBLE HOUSING

The system of units used is pound, inch, second
Shaft Material Properties

Density T272E-3  (Ib* s%/int)

Elastic Modulus 30.E6 (1b/in?)

Shear Modulus  12.E6 (1b/in?)

Shaft Description
Element Length Outer Radius

Number (in) (in)

1 753 2.0
1.752 1.2505

3 1.752 1.2505

4 762 2.0

5 1.8 1.25

6 2.021 1.0

7 3.0 1.0

8 4.998 4.95

9 2.021 1.005

10 3.0 1.005

11 4.996 4.95

12 2.012 1.0025

13 3.0 1.0025

14 5.004 4.95

15 2.075 1.0025

16 3.0 1.0025

17 2.756 1.25

18 1.750 1.25

19 1.760 1.25

20 2.2 1.25

21 1.0 1.005

22 1.001 1.005
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Housing Material Properties
Density T383E-3  (Ib=s%/in%)
Elastic Modulus  30.E6 (ib/in?)
Shear Modulus  11.7E6  (lb/in?)

Housing Description
Element Length Outer Radius Inner Radius

Number (in) (1n) (in)

1 2.6 2.5 2.25

2- 4.667 2.5 2.25

3 4.687 2.5 2.25

4 4.998 5.5 5.25

5 2,511 1.5 1.25

6 2511 1.5 1.25

7 4.996 5.5 5.25

8 2.506 2.5 1.25

9 2.506 1.5 1.25

10 5.004 5.5 5.25

11 3.194  1.625 1.375

12 3.194 1.625 1.375

13 3.194  1.625 1.375

14 1.980 1.623 1.375

15 1.980 1.625 1.375

16 1.001 875 625

17 1.001 875 625
Support Stiffness

Station K., Ky Kys Kyy

(Rotor) (Housing) (lb/in) (lb/in) (lb/in) (Ib/in)

3 2 80800. 0.0 0.0 588000.

19 14 80800. 0.0 0.0 588000.
Support Damping

Station Czz Cry Cyz Cyy

(Rotor) (Housing) (Ibxs/in) (lbxs/in) (lbxsfin) (lb+s/in)

3 2 718. 0.0 0.0 1566.

19 14 718. 0.0 0.0 1566.
Housing Support Coefficients

Station K. Ky C: Cy

Number (Ib/in) (Ibjin) (lbxs/in) (Ibxs/in)

2 80800. 588000. T718. 1566.

14 80800. 588000. 718. 1566.



APPENDIX J

INPUT DATA FOR JOHNSTON VERTICAL PUMP

The system of units used is pound, inch, second
Shaft Material Properties

Density JT383E-3  (ib* s?/int)

Elastic Modulus  30.E6 (1b/in?)

Shear Modulus  11.7E6  (lb/in?)

Shaft Description
Element Length Outer Radius
Number (in) (in)

1 5.625 .84375
2 4. 84375
3 5 .84375
4 4. .84375
5 5. .84375
6 4. .84375
7 5. .84375
8 8.125 .84375
9 1.313 625
10 14.21 625
11 10.96 625
12 19.96 625
13 10.96 625
14 12.631 .625
15 9.537 625
16 9.537 625
17 9.537 .625
18 9.537 .625
19 13.9 625
20 10.85 625
21 10.65 625
22 10.65 625
23 12.881 .625
24 9.787 625
25 9.787 625
26 9.787 625
27 9.787 625

28 13.59  .625
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Element Length Outer Radius
Number (in) (in)
29 10.34 625
30 10.34 625
31 10.34 625
32 9.438  .625
33 9.594 .625
34 9.413 .625
35 9.413  .625
36 9.413 625
37 9.413 625
38 9.413 625
39 12.123 625
40 12.123  .625
41 3.1275  .625
42 6.375 625
43 4.875 8125
44 18. 8125
45 18. .8125
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Concentrated Masses
Station Concentrated Diametral  Polar

Number Mass Mom. of . Mom. of L.
(lbxs?fin)  (lbxs*xin) (Ib+s?*1in)

2 0854887 .6013 .85035

4 0854887 .6013 .85035

6 0854887 6013 85035

10 002817 0032938 0016285

19 002817 0032938 0016285

28 002817 0032938 0016285

33 .002817 0032938 0016285

42 04608 221 1105
Constant Bearing Stlﬁ'ness Coefficients

Station K, Kqy Kyy

Number (lb/in) (Ib/in) (lb/z’n.) (Ibfin)

1 5522  452.2 -452.2  552.2

46 2.3E5 0.0 0.0 2.5E5
Constant Bearing Damping Coefficients

Station Ciz Cay Cyz Cyy

Number (lbxs/in) (Ib=xs/in) (lb+s/in) (lb*s/zn)

1 43.82 18.6 -18.6 43.82

46 0.0 0.0 0.0 0.0
Seal Descriptions

Seal Station

Number

1 3

2 5

3 7

4 14

5 23

6 32

7 41

8 43



Seal Coefficient Input
Speed = 1398 rpm

Seal Koo Koy  Coe Cay

Number (Ib/in)  (Ib/in) (lbx s/in) (Ibxs/in)

1 .8496 3171, 29.22 4.961

2 .85 3171, 29.22 4.961

3 .85 3171, 29.22 4.961

4 52420. 0.0 23.98 0.0

5 52420. 0.0 23.98 0.0

6 52420. 0.0 23.98 0.0

7 2.498E5 0.0 285. 0.0

8 2.5E5 0.0 0.0 0.0
Speed = 1602 rpm

Seal Ko K.y Czz Cay

Number (Ibfin)  (lbjin) (lbxs/in) (lbxs/in)

1 8496 3171, 29.22 4.961

2 .85 3171. 29.22 4.961

3 .85 3171, 20.22 4.961

4 65670. 0.0 17.1 0.0

5 65670. 0.0 17.1 0.0

6 65670. 0.0 171 0.0

7 2.498E3 0.0 285. 0.0

8 2.5E5 0.0 0.0 0.0
Speed = 1800 rpm

Seal K., Koy Coz Coy

Number (Ibjin)  (lbjin) (lbxs/in) (Ib*s/in)

1 .8496 3171, 29.22 4.961

2 .85 3171. 29.22 4.961

3 85 3171. 29.22 4.961

4 95360. 0.0 25.7 0.0

5 95360. 0.0 25.7 0.0

6 95360. 0.0 25.7 0.0

7 2.498E5 0.0 285. 0.0

8 2.5E3 0.0 0.0 0.0



APPENDIX K

INPUT DATA FOR JOHNSTON VERTICAL
PUMP WITH FLEXIBLE HOUSING

The system of units used is pound, inch, second
Shaft Material Properties

Density .TI83E-3  (Ibx s3/in?)

Elastic Modulus 30.E6 (1b/in?)

Shear Modulus  1L.7E6  (lb/in?)

Shaft Description
Element Length Outer Radius
Number (in) (in)

1 5.625 .84375
2 4. .84375
3 5. .84375
4 4. .84375
5 5. 84375
6 4. .84375
7 5. .84375
8 8.125 .84375
9 1.313 .625
10 14.21 625
11 10.96 625
12 10.96 625
13 10.96 625
14 12.631  .625
15 9.537 625
16 9.537 .625
17 9.537 625
18 9.537 .625
19 13.9 625
20 10.63 .625
21 10.65 .625
22 10.65 625
23 12.881 625
24 9.787 625
25 9.787 625
26 9.787 625
27 9.787 .625

28 13.59 .625



Element Length Outer Radius
Number (in) (in)

29 10.34 625
30 10.34 625
31 10.34  .625
32 9.438 625
33 9.594 625
34 9.413 625
35 9.413 625
36 9.413 625
37 9.413 625
38 9.413 625
39 12,123 625
40 12123 625
41 3.1275  .625
42 6.375 625
43 4.875 .8125
44 18. 8125

45 18. .8125



Housing Material Properties
Density .T383E-3 (Ib* 8*/int)
Elastic Modulus  30.E6 (Ib/in?)
Shear Modulus  11.7E6  (Ib/in?)

Housing Description
Element Length Outer Radius Inner Radius

Number (in) (in) (in)

1 2.5 6.25 5.815
2 0.5 3.9 3.4625
3 4.5 3.9 3.4625
4 2.188 45 3.9375
5 3.125 6.125 5.35

6 5.0 5.9 3.0

7 875 6.0 4.15

8 3.125  6.125 5.35

9 5.0 5.8 3.0

10 875 6.00 4.15
11 3.125  6.125 5.35
12 5.0 5.8 3.0

13 875 6.0 4.15
14 55.47 6.0 5.69
15 3.094 6.1 5.45
16 46.77 6.0 5.69
17 46.77 6.0 5.69
18 3.094 6.1 5.45
19 46.77 6.0 5.69
20 46.77 6.0 5.69
21 3.094 6.1 5.45
22 63. 6.0 3.69
23 1.5 12.0 5.69
24 22.75 8.25 7.94
25 2.5 8.25 3.0

26 11.88  8.25 7.94

27 36.0 8.25 6.575



Concentrated Masses
Station Concentrated Diametral  Polar

Number Mass Mom. of .  Mom. of I.
(1b* s%/in) (Ibx s*xin) (Ibxs%*in)

2 0854887 6013 .85035

4 0854887 .6013 .85035

6 0854887 6013 85035

10 002817 10032938 0016285

19 .002817 0032938 0016285

28 002817 .0032938 0016285

33 002817 .0032938 0016285

42 04608 221 1105
Constant Bearing Stiffness Coefficients

Station Kz Key Ky: Ky

Number (Ib/in) (Ibfin) (Ibjin) (Ib/in)

1 3 5522 432.2  -452.2  552.2

46 28 2.5E5 0.0 0.0 2.5E5

Constant Bearing Damping Coefficients
Station Crz Cay Cy, C,

= vy
Number (lbxsjin) (lbxs/in) (Ib*s/in) (lb=s/in)
1 3 4382 18.6 -18.6 43.82
46 28 0.0 0.0 0.0 0.0

Seal Descriptions
Seal Rotor  Housing
Number Station Station

1 3 6

2 5 9

3 7 12
4 14 15
5 23 18
6 32 21
7 41 25
8 43 27



Seal Coefficient Input
Speed = 1398 rpm

Seal Koo Koy Caz Czy

Number (Ib/in) _ (lb/in) (lb+ s/in) (Ibx s/in)

1 8496 3171, 29.22 4.961

2 .85 3171, 29.22 4.961

3 -85 3171 29.22 4.961

4 52420. 0.0 23.98 0.0

5 52420. 0.0 23.98 0.0

6 52420. 0.0 23.98 0.0

7 2.498E5 0.0 285. 0.0

8 2.5E5 0.0 0.0 0.0
Speed = 1602 rpm

Seal Kz Kay Czz Cay

Number (Ib/in)  (lbjin) (Ib+s/in) (Ib*s/in)

1 .8496 3171, 29.22 4.961

2 -85 3171, 29.22 4.961

3 .85 3171. 29.22 4.961

4 65670, 0.0 17.1 0.0

5 65670. 0.0 17.1 0.0

6 65670. 0.0 171 0.0

7 2.498E5 0.0 285. 0.0

8 2.5E5 0.0 0.0 0.0

Speed = 1800 rpm

Seal K K, fol Cuy

oz 2y
Number (Ib/in)  (Ib/in) (Ib* sfin) (ib* sfin)
1 8496 3171.  29.22 4.961

2 85 3171, 29.22 1.961

3 85 3171, 29.22 4.961

4 95360. 0.0 25.7 0.0

5 95360. 0.0 25.7 0.0

6 95360. 0.0 25.7 0.0

7 2.498E5 0.0 285. 0.0

8 2.5E5 0.0 0.0 0.0

Housing Support Coefficients
Station K K, Ky Ky
Number (Ib/in) (Ib/in) (Ib*in/rad) (Ibxin/rad)
1 0.0 0.0 0.0 0.0
23 2.5E6 2.5E6 3.0E6 3.0E6
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