
APPLICATION OF THE RESIDUE NUMBER SYSTEM

TO THE MATRIX MULTIPLICATION PROBLEM

A Thesis

by

GARY FRANKLIN CHARD

Submitted to Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

December 1989

Major Subject: Electrical Engineering

APPLICATION OF THE RESIDUE NUMBER SYSTEM

TO THE MATRIX MULTIPLICATION PROBLEM

A Thesis

by

GARY FRANKLIN CHARD

Approved as to style and content by:

Yu-Ying Jackson Leung
(Chair of Committee)

Karan L. Watson
(Member)

Phil p S. Noe
(Member)

g ~3 - . + 9:Lc ~
Donald K. Friesen

(Member)
Jo W. Howze

(Head of Department)

December 1989

ABSTRACT

Application of the Residue Number System

to the Matrix Multiplication Problem. (December 1989)
Gary Franklin Chard, B. S. , Texas A&M University

Chairman of Advisory Committee: Dr. Yu-Ying Jackson Leung

I'he primary objective of this research is to evaluate
a residue implementation of the matrix multiplication
algorithm by comparison to a more conventional binary
approach. Included in this research is a proposed method

of concurrent residue multiplication and addition, as well
as methods of input and output translation. Common

building blocks are used repetitively throughout the design
process, in an effort to minimize the design time of such a

residue system. Logical simulation of the residue design
was conducted for functional verification, as well as for a

means of timing comparison to a more conventional design.
It was found that the residue design was 2. 73 times larger,
and 3. 18 times faster than the typical binary comparison

structure. Many comments are presented throughout this
thesis pertaining to considerations that must be made when

contemplating the design of a residue system. The matrix
multiplication algorithm is also simulated, such that exact
timing information is given for both input and output
matrix coefficients.

To my parents

ACKNOWLEDGEMENT

I would especially like to thank Dr. Leung for his
advice and continual support throughout this research. l
also thank him for helping me make graduate school a

positive experience. I would also like to thank Dr.
Watson, Dr. Noe, and Dr. Friesen for serving on my

committee. Finally, I would like to thank my girlfriend
Sherry for her moral support, and for her help in preparing
the manuscript.

TABLL' O" CONTENTS

ABSTRACT

Page

1. 1. 1.

DEDICATION

ACKNOWLEDGMENT

LIST OF TABLES

LIST OF FIGURES

CHAPTER

I INTRODUCTION

1 V

1. X

1. 1 Problem Statement

1. 2 Approach

II BACKGROUND

2. 1 The Residue Number System
2. 1. 1 Properties of the RNS
2. 1. 2 Basic RNS Identities

8
8

13
2. 2 Basic Operations in The RNS

2. 2. 1 RNS Addition
2. 2. 2 RNS Multiplication

2. 3 Translation from Binary to Residue

2. 4 The Chinese Remainder Theorem

2. 5 Sign Representation of a Residue Number

2. 6 Introduction to Matrix Multiplication

15
16
18

19

21

22

2. 7 The Matrix Multiplication Algorithm 2. 7. 1 The Multiply and Add Cell 2. 7. 2 Formulation of the Matrix
Multiplication Algorithm

III APPLICATION OF THE RNS
TO MATRIX MULTIPLICATION

26
27

28

31
3. 1 Error Free Design

3. 2 System Dynamic Range Determination

32

35

TABLE OF CONTENTS (Continued)

IV MATR X MULTIPLICATION ALGORITHM SIMULATION

Page

39

MAC Computing Structure

Input Matrix Coefficient Timzng

Algorithm Simulatzon Development

Algorithm Simulation 45

V DESIGN DEVELOPMENT

5. 1

5. 2

5. 3

Res' due System Specificatzons

Multiply and Add Cell
5. 2. 1 MAC Functional Configuration 5. 2, 2 Modified Braun Array
5. 2. 3 Lower Truth Table Modulo m 5. 2. 4 Upper Truth Table Modulo m 5. 2. 5 Four — Bit Binary Adder

Input Translation
5. 3. 1 Input Operand Adjustment
5. 3. 2 Residue Digit Generation

52
55
57
61
66
67

68
70
72

Output Translation
5. 4. 1 Controlled Addition/Subtraction 5. 4. 2 Multiplication by Inverses 5. 4. 3 Correct Sign Determination

75
78
78
83

VI SIMULATION RESULTS AND COMPARISON 87

6. 1 Simulation Development 87

6. 2 Simulation Results
6. 2. 1 MAC Simulation
6. 2. 2 Input Simulation
6. 2. 3 Output Simulation
6. 2. 4 Global Considerations

88
89
91
93
95

6. 3 Residue Design Area Calculations
6. 3. 1 MAC Area
6. 3. 2 Input Translation Area
6. 3. 3 Output Translation Area
6. 3. 4 Global Considerations

96
97
98
98

100

Design Comparison
6. 4. 1 Comparison Structure

101
102

TABLE OF CONTENTS (Continued)

6. d. 2 Time and Area Comparison

VII CONCLUSION

Page

103

105
7. 1 Contributions

7. 2 Future Research

106

108
REFERENCES

APPENDIX A MATRIX MULTIPLICATION ALGORITHM
SIMULATION RESULTS

110

112
APPENDIX B TRUTH-TABLES AND KARNAUGH MAPS 116
APPENDIX C SCHEMATIC PLOTS

APPENDIX D SIMULATION RESULTS

125

136
VITA 150

LIST OF TABLES

Table Page

2. 1 Residue Representation of the Numbers
from -4 to t32 for Moduli 2, 3, 5 12

2. 2 Multiplicative Inverses

2. 3 Partitioned Interval of Definition
3. 1 Determination of Dynamic Input Range

4. 1 Matrix A and B Input Coefficient Timing

15

23

36

4. 2 Algorithm Simulation for Arbitrary
Input Matrices

4. 3 Output Coefficient Timing

5. 1 Modulo 15 Truth Table

5. 2 Multiplicative Znverses

6. 1 Primitive Component Models

6. 2 MAC Simulat'on Results

6. 3 Input Translation Simulation Results
6. 4 Output Translation Simulation Results
6. 5 Processing Time Comparison

A. l MAC Simulation Data

A. 2 Input Translation Simulation Data

A. 3 Output Translation Simulation Data

62

BO

BB

90

92

103

137

143

149

LIST OF FIGURES

Figure

2. 1 Multiply Add Cell

2. 2 Hexagonal Array for Matrix Multiplication
2. 3 Banded Matzix Multiplication

3. 1 System Configuration

4. 1 Computing Array for Matrix of Bandwidth Five
4. 2 MAC Input/Output Naming Convention

4. 3 Input Matrices of Bandwidth Five

5. 1 Residue MAC Configuration

5. 2 Proposed MAC Configuration of Each Modulus

5. 3 Modified Braun Array

5. 4 Full Adder Cell Design

5. 5 Modified Braun Array Hardware

5. 6 Modulo 15 Karnaugh Maps

5. 7 Modulo 15 Truth Tables

5. 8 Four-Bit Binary Adder

5. 9 Input Translation Functional Configuration
5. 10 Input Operand Adjustment

Page

27

29

30

31

42

52

56

58

60

60

65

68

71

73

5. 11 Mixed Radix Coefficient Determination 77

5. 12 Conditional Adder

5. 13 Non-Conditional Adder

5. 14 Four-Bit Braun Array

5. 15 Multiplication and Addition of the
Mixed-Radix Coefficients

79

79

81

A. l Modulo 7 Truth Table Hardware 126

LIST OF FIGURES (Continued)

Page
A. 2 Modu'o '1 Truth Table Hardware

A. 3 Modulo 13 Truth Table Hardware

A. 4 8X4 Multiplier

A. 5 Twelve-Bit Multiple Generator

A. 6 Fourt. een-B't Carry Save Adde"

A. 7 Fourteen-Bit Binary Adder

A. 8 Modrfied Adder A

A. 9 Modi ied Adder B

A. 10 Seventeen-Bit Two's Complementer

A. ll Modulo 7 Trial ¹1 MAC Simulat'on

A. 12 Modulo 11 Trial ¹1 MAC Simulation

A. 13 Modulo 13 Trial ¹1 MAC Simulation

A. 14 Modulo 15 Trial ¹1 MAC Simulation

A. 15 Modulo 16 Trial ¹1 MAC Simulation

127

128

129

130

131

132

133

134

135

138

139

140

141

142
A. 16 Modulo 7 Trial ¹1

Input Translation Simulation

A. 17 Modulo 11 Trial ¹1
Input Translation Simulation

A. 18 Modulo 13 Trial ¹1
Input Translation Simulation

A. 19 Modulo 15 Trial ¹1
Input Translation Simulation

A. 20 Modulo 16 Trial ¹1
Input Translation Simulation

145

146

147

148

CHAPTER I

INTRODUCTION

Digital signal processing is a rapidly emerging

technical area, where speed of computation is of prime

importance, as well as practical considerations such as
component packaging, silicon area, and cost. Some of the
newest areas of interest in digital signal processing are
real-time image processing, satellite communications,

pattern recognition, and vector calculations. For these
applications, parallelism has recently proven to be the key

to faster processing of data. Parallelism may be achieved
on mathematical, architectural, and realizational levels
[1). The residue number system , as will be seen shortly,
achieves parallelism on a mathematical level.

Around 100 A. D. , a Chinese mathematician named Sun Tzu

authored a book containing a poem called t' ai-yen (great
generalization) . This poem was a puzzle, which challenged
the reader to determine an integer number having a

remainder of two, three, and two, when divided by three,
five, and seven, respectively. The answer to the poem

being the integer twenty-three. Although Sun Tzu did not
know it at the time, he formed the basis of the Residue
Number System (RNS), which would be studied in detail
twenty centuries later. His poem is the equivalent of a

IEEE Transactions on Computers used as a journal model.

three — modulus RNS with three prime moduli (3, 5, 7] . This
poem also stated a rule, refined by scholarly people over
many centuries, called the Chinese Remainder Theorem [2].
It is the Chinese Remainder Theorem that allows convers'on
of the resicue remainder digits back to an integer.

Between twenty and thirty years ago, a renewed
interest in the Residue number system began. Szabo and

Tanaka published a comprehensive book on the basic theorems
and properties of the RNS [2]. Their primary interest in
this number system was its application to the design and

organization of digital computing machines. Without the
invention of digital computers, the residue numbe system
would most likely be as underdeveloped today as it was

centuries ago. The techniques of addition, subtraction,
multiplication, and division, as well as the fundamental
properties and theorems of residue arithmetic were

presented in [2]. Szabo and Tanaka concluded that
operations such as addition, subtraction, and

multiplication are simple operations to perform. Division,
sign determination, and overflow detection were found to be
difficult operations in both concept and implementation.

Since the renewed interest occurring in the mid
1960's, scientists have been studying and contributing to
the topic of residue arithmetic. Industry has never
adopted the residue number system as a viable alternative
to the conventional binary number system. Several changing
factors, such as the need for increased parallelism in

algorithms, new hardware capabilities, and semiconductor
technology evolution, will soon cause the characteristics
of the residue number system to be more closely examined.
The number system has many inherent advantages over
conven ional number systems, as well as a few shortcomings,
whi h subsequently have greatly limired the acceptance and

use of the residue number system. Typical processors
implemented today are unable to do matrix multiplication
without careful programming by the user. Thus by

implementation of a dedicated processor for the specific
task of matrix multiplication, using current Very Large
Scale Integration (VLSI) techniques, a cost and performance
effective solution to the problem of matrix multiplication
can be achieved. The approach that will be used in
designing this dedicated processor, will be that of
systematically connecting local processing elements in a

parallel-pipelined fashion. In [3], an algorithm is
proposed for matrix — matrix multiplication using a systolic
array concept. Designs using the systolic array concept
(simple and regular interconnections, parallel algorithms,

and pipelining), have been proven to achieve a higher chip
density, resulting in both a cheaper and a higher
performance implementation. It is possible that further
time enhancements may be made by the RNS, which has an

inherent parallel nature, as compared to the conventional
binary number system. The intent of this research is to

show that by applying the residue number system to a

computationally intense problem, enhancements can be made

over a compazable problem using the binazy number system.

1. 1 Problem Statement

Significant amounts of research effort have oeen

expended investigating the properties of the residue number

system, and its appl'cations to current computer

technology. The aim of this research is to determine iz
through applying the residue number system to the matrix
multiplication problem, the solution time can be
effectively reduced. Also, this research hopes to express
several practical considerations to be dealt with when

contemplating the use of a residue type design.
Furthermore, the exact timing information of the matrix
multiplication algorithm will be studied, in hope that a

generalized timing equation can be derived.

1. 2 Approach

The goal of this research is to quantify the
processing time of matrix multiplication, using the residue
number system. It is expected that the exact timing
specifications of the system, as well as the exact chip
area such a design would occupy will be determined.
Moreover, the results of this research will allow the

comparison of the residue number system approach to that of
the bina y system. In the event that significant
improvements over the binary number system are made, the
use of the residue number system vill greatly be promoted.
Details of the approach towards the above stated goals will
now be described.

There are several tasks to be considered in the design
and simulation of a system as ment&oned above. First, a
method of translation to the residue number system which is
suitable to a pipelined operation will have to be
considered. There are currently several papers making

comments on the translation problem from binary to the
residue number system. In [4], ROM's (Read Only
Memories) are used to accomplish part of the translation
task. In a VLSI design, it is very desirable to avoid
using ROM' s from the aspect of their slow speed and area
requirements. Thus, it will be important to develop a
method of translation, avoiding the use of ROM' s.

Also, on a larger architectural level, a systolic
array method of matrix multiplication will be necessary
[5] . The method of matrix multiplication, proposed in [3],
uses a systolic array approach. This algorithm will be
developed, and tailored to accommodate the RNS. The exact
timing information will also be given.

Next, a method for implement. at. ion of the basic residue
number operations such as addition and multiplication will

be investigated [6-B] . Once again, the design will avoid
using the ROM approach, in search of a nigher performance
solution. Considerable time will be spent on the
optimization of addition and multiplication processes,
since the MAC (Multiply and Add Cell) will be the most
prevalent processing element in the design.

Just as it was necessary to translate from the binary
to the RNS, it will be necessary to translate from the RNS

back to the binary number system I4, 9-12].
As a verification on the design process, and as a

check on the timing information, the design will be
simulated on an Apollo workstation using Mentor Graphics'
Neted and Quicksim design tools.

CHAPTER TI

BACKGROUND

During the 1950' s, fabrication of transistors on

crystalline silicon was developed. The integrated circuit
plays a large role i. n society today. It has applications
ranging from components in home stereos, to the eiectronic
ignition control computer module in automobile engines.
The integrated circuit is also fundamentally important to
computers as we know them today.

Cver a short time in the span of history, the
integrated circuit (IC) has evolved from containing several
transistors, to present technology of a million transistors
on a single silicon chip.

The photolithographic process of the mid 1980's allows
for the fabrication of integrated circuits very large in
size, not previously possible, to be placed inside a single
component package. Even more important than this, current
research in component packaging includes effort in the area
of multichip modules, where it will be possible to
implement large circuits in several pieces, and combine

them onto a silicon substrate, and encase them in one

package [13] .

Therefore, as technology progresses, the capability of
fabricating complex systems such as the matrix
multiplication algorithm, requiring significant amounts of

hardwaze, becomes more viable. It should be noted that the
desire to implement such a specialized algorithm would be

primarily for that of an increase in computational speed.
The host processor could nor possibly multiply two matrices
of such a complexity in a comparable amount of time. The

matrix multiplication algorithm will be responsible foz a

ceztain increase in speed, which is further enhanced

through the application of the residue number system. The

properties of the residue number system will now be
invest' gated.

2. 1 The Residue Number System

The notation used in introducing the properties and

various aspects of the Residue Number System will be
consistent with that of Szabo and Tanaka [2]. In cases
where theorems are stated, the proofs will be omitted.

2. 1. 1 Properties of the RNS

Every number system has several characteristics
allowing it to be distinguished from other number systems.
Among these characteristics are the range, uniqueness in
representation, and the base (radix) of the number system.
The decimal number system and the binary number system are
both fixed radix number systems. The decimal number system
has a fixed radix of ten, the binary number system has a

fixed radix of two. The following illustrates the idea of
a fixed radix system using the decimal number system as an

example.

Q~m~e 2

(12793) zo = 1*10 + 2*10 + 7*10 + 9*10 + 3*10

Thus, we note that any decimal number can be expressed as a

sum of rts individual digits multiplied by the base ra'sed
to the appropriate power of the digit being expressed. In
this case the digits are multiplied by powers of 10. The

residue number is not a fixed radix number system. In
fact, the residue system has more than one radix and is
described by an N-tuple of integers &m~, mz, ms, , mw)

where each of the integers m is called a modulus. This N-

tuple of integers is often referred to as moduli, which is
the plural form of the word modulus. Any number x in the
residue number system can be expressed as an N-tuple of
integers defined by a set of N equations:

x = q m + r i = 1, 2, 3, , N

where q is an integer chosen to ensure that r has a value
equal to or greater than zero and less than the modulus m

The integer number r is the least positive remainder of
the division of x by m . This value, r~, is called the
residue of x. modulo m , often denoted by /x/ . The

quotient term, q , is often represented as [x/m] . A

10

commonly used form of the above equation is often expressed
as

x = m„[x/m;] + /x/

where /x/, „ is always a positive integer. The following
example illustrates both the idea of an N — tuple of moduli,
and the idea of an N — tuple of rl.

~E2 2 E 22:

For a three modulus system, with moduli given by an N-

tuple (N=3) (mi, m~, ms) = (3, 5, 7), given an integer in the
decimal number system x = (37) io, a representation in the
residue l. umber system can be found as follows:

/x/ i = /37/s = x

= /x/ , = /37/s = x—
/x/ s = /37/7 = x

mi[x/mi] = 37 3[12]
mz(x/mz] = 37 — 5[7]
ms[x/ms] = 37 — 7[5]

Thus, the RNS representation of 37 is (ri, rs, rs)
(1, 2, 2) .

Similarly, we can find the residue representation of
the decimal number 142.

ri = 142 — 3[47] = 1

rz = 142

rs = 142

5[28] = 2

7[20] = 2

Thus, the RNS representation of 142 is given by the set
(1, 2, 2). It should be noticed that this is the exact

result obtained in the previous example when a RNS

representation of 37 was found. It seems as though a

contraaiction has been made, implying that as far as the
residue number system is concerned, the numbers 37 and 142
are identical. The following theorem will help resolve
this paradox (2).

Two integers x and y have the same representation for a given ser of moduli mi, mx, mw if and only i (x — y) is an integer multiple of the least common multiple of the moduli denoted by M.

The least common multiple of the moduli for the above
examples is M = (3) *(5) *(7) = 105. If we denote x = 37,
and y=142, then (x — y) = 105, which is an integer multiple
of M. Thus as the theorem predicts, the numbers 37 and 142
should have the same residue representation. F'urther
insight into the RNS can be obtained by examining Table
2. 1. First we notice that M = (2) *(3) *(5) = 30. Also
noticing that the residue representation of 0 is the same

as the residue representation of 30, and that all the
numbers between 0 and 30 have a unique residue
representation. It is also true that any arbitrary
interval of exactly 30 numbers denotes a unique mapping
from decimal to a residue representation. The residue
number system is periodic, and must be restricted to a

single period, denoted by an interval of definition. It is

Table 2. 1 Residue Representation of the Numbers
from -4 to +32 for Moduli 2, 3, 5

-4
-3
-2
-1
0
1

2
3
4
5
6
7
8
9
10
11
12
13
14

Moduli
3

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Moduli
3

13

fairly appazent that once a number is converted into its
residue representation that it is not easy to determine the
sign of a number, nor is it easy to perfozm any type of
magnitude compar' son among the residue digits.
Consequently, this is one of the most serious disadvantages
of the Residue Number System.

2. 1. 2 Basic RNS 1dentities

The following are several pertinent identities of the
RNS, with the pzoofs omitted for the sake of brevity.
Interested readers are uroed to consult [2] for urtner
details.

(1) 0 & /x/ & (m-1)

(2) /Km/ = 0 for K an integer
(3) //x/„/ = /x/

(4) /x+mK/ = /x mK/ = /x/

(5) /-x/ = /(m-1) x/ = /m-x/

Addition for a single modulus in the residue number system
is now formulated by the following equation:

/x + y/ = //x/ + /y/ / = //x/ + y/ = /x + /y/ /

/x+y/ is often referred to as the sum modulo m of x and y.
Multiplication for a single modulus in the residue number

system is formulated by the following equation:
/(x) (y)/m = /(/x/) (/y/)/ = /(x) (/y/)/

The properties of addition and multiplication modulo m will
now be demonstrated in Example 2. 5.

~~m1~~2

Let m = 7, x = 32, y = 26

/32// = 4 /26/7 = 5

Addition

/x + y/v = /32 + 26/7 = /58/7 = /4 + 26/7 = 2

Multiplication

/xy/ = / (32) (26) /7 = //32/v26/v = / (4) (26) /7 = 6

The following multiplicative inverse theorem [2] is
very useful in solving linear equations of the form /ax/
/b/ . If 0 & a &m and /ab/ = 1, then a is calleci the
multiplicative inverse of b modulo m, and is denoted by a

/1 ib/

The quantity /lib/ exists if and only if the greatest
common divisor between b and m is equal to one and /b/ does not equal zero.

If the above theorem holds, then /lib/ is unique. From

Table 2. 2 it is apparent that for a given number, a

multiplicative inverse does not always exist.

15

Table 2. 2 Multiplicative Inverses

Modulo 14

1/X
14

1

2
3
4
5
6
7
8

9
10
11
12
13

1

None
5

None
3

None
None
None
11

None
9

None
13

The following equation may be solved using the
multiplicative inverse theorem:

/3x/v = 4

because (a, b) = (3, 5) = /(3) (5) /7

Thus, /x/-7 = /(5) (4) /7 = 6

2. 2 Basic Operations in the RNS

The previous section discussed the fundamental

theorems and identities of the RNS. This section will

emphasize the operations on a complete res due

representation, rather than on a system with a single
modulus. For the discussion allowing, the reader should
assume that we have a modulr set that is pairwise
relatively prime. The assumption of pairwise relatively
prime moduli will be commented on later.

2. 2. 1 RNS Addition

The basic identity for addition modulo m was definea
for individual moduli. This basic definition can be
extended to include systems where multiple moduli are to be
used. Theorem 2. 3 allows addition in systems with multiple
moduli [2j.

~~r2~:
For a given residue system consisting of' moduli
mr, mz, ms, . . . , mw, let x and y be defined to be in the residue form. This residue form is denoted by /x + y/M.

/x/ r, /x/ /x/ w)

+

/x+Y/M

{ /y/ & , /y/ z , -, /y/)

(/x+y/ j, /x+y/ z, . . . , /x+y/)

Also important, there exists one and only one integer,
namely /x+y/M, with such a representation on the interval
(O, M-1). The following example illustrates the process of
addition for a given set of moduli.

For the moduli 3, 4, 5, and 13((M 780) add

124 & — — — & (1,

79 &---& { 1,

4,

3, 4,

7

124 0 I 4, 7)

+ 79 1, 3, 4, 1

/203/w 203 3 3 8)

From Example 2. 6, several comments can be made. First, the
process of residue addition has no intermodular carries.
Each residue digit of the result is only dependent upon the
corresponding digit of the operands. Typical fixed radix
number systems are not defined in such a way. The binary
number system is used to illustrate this in Example 2. 7.

~~e 2 7:
Let x and y be binary numbers given by x = (13) f o = (1101)
and y = (11) ro = (1011) s. The binary addition of x and y
is shown below:

111 &--- carry digits 1101 1101
~+ ~+

11000 11000

Note that in order to obtain the result, it is necessary to

18

generate carries from the least significant bit position
towards the most significant bit position (left to right)

so that the higher order resultant bits may be determined.
It is this absence of interdigit. carries that result in an

inherent speed advantage over fixed radix systems. Also,
notice that the result is obtained modulo M, sucn that if
t. he result exceeds the value M-l, an ambiguity arises.
This is a result of a previous identity, stating that /x/
and /x + mK/ will have the same residue representation.

2. 2. 2 RNS Multiplication

The basic identity for multiplication modulo m was

defined previously zor a system with a single modulus.
This definition can be extended to include systems with
multiple moduli, as was the case in addition [2].

For a given residue system consisting of moduli mi, mz, ms, . . . mw, residue multiplication is defined for x and
y by the following:

x &-----& (/x/ i , /x/ z , /x/ 3

x y &-----& (/y/ml , /y/m2 , /y/m3

. , /x/ w)

. , /y/mN)

/xy/M (/xy/ml i/ Y/m2 r/ Y/m3 . , /xy/ ~)

Within the interval (O, M-1) only one integer will have the
above residue representation, namely /xy/~.

For the moduli 3, 4, 5, and 13, (M=7BO) multiply
x = 122 (— — — — -)

5

(2, 2, 2, 5

2, 1, 0, 5)

122

5

2, 2, 2, 5)

2, 1, 0, 5)

i610/7ao = 610 (1, 2, 0, 12)

The same comments apply to multiplication that applied to
addition. Specifically, t. hat multiplication is carry free
between moduli, and results in ambiguity if xy exceeds M-l.

2. 3 Translation from Binary to Residue

A vast majority of digital computers today use a
form of the binary number system for computation. In order
to use the RNS, it is necessary to translate from the
conventional binary number system to the residue
representation of a number. An integer x in the binary
number system is described as follows:

2 b + 2 b I + + 2 bz + 2 br + bo
Szabo and Tanaka observed that if the powers of 2 modulo m

are stored in computer memory, that Ixl could be computed

by adding modulo m the powers of two which have a non-zero
bz [2).

20

~Earp 1 e ~2

Let x = (26) „o = (11010) z

To compute /x/s, the following values should be
computed prior to /x/s:

/2 /2 = 1

/2/s = 2

Computing /x/s

/2 /3 — — 2

/1/s = 1

/2 / = 1

/X/3 = / (1) (1) + (2) (1) + (1) (0) + (2) (1) + (1) (0) /3

/5/s = 2

/26/s = 2

Another method of input translation has been proposed
that uses a variation on the idea presented above. The

method uses n/2 processing elements (n = word length of
weighted number), with each processing element responsible
for storing the two residues of two consecutive bits in the
input word [10]. Depending on whether a one or a zero is
present for the specified input bit, the residue of the 2"
bit position is either added modulo m to the resultant of
previous bits or zero added to the previous bits
respectively. This design would be very suitable for
pipelined operation, with the computation of each pair of
residue digits for each clock stage. The matrix
multiplication algorithm used in this research does not
allow any speed increase with the application of
pipelining.

21

2. 4 The (hinese Remainder Theorem

The Chinese Remainder Theorem allows conversion out of
a residue representation into a weighted number system
[14], Given a residue representation (rr, rs, rs, , rN),
the Chinese Remainder Theorem makes it possible to
determine /x/~, provided that the greatest common divisor
of any pair of moduli is one. A moduli set obeying this
property is called pairwise relatively prime. The

following theorem fails to hold i the requirement of
pairwise relatively prime coes not hold (2] .

Chinese Remainder Theorem

/x/~ /((za/rsIza/ 3)) /
where z = M/ma, M = (mr) (ms) (mw), and the greatest common divisor between any two moduli is one.

F' or the moduli mr = 13, mz = 11, ms = 7, and m4 = 9, the
number given by the residue representation (4, 2, 4, 7] can be
found as follows:

M = (13) (11) (7) (9) = 9009

/zr/ja = /(11) (7) (9) /ra = /693/rs = 4

/zQ/rr = / (13) (7) (9) /sr. = /819/rr = 5

/z3/v = / (13) (11) (9) /v — — /1287/v = 6

/zg/s = /(13) (11) (7) /s = /1001/g = 2

/x/goos = /693/ (10) (4) /as + 819/ (9) (2) /rr + 1287/ (6) (4) /v + 1001/ (5) (7) /9/9QQ9

22

/ (693) (1) + (819) (7) + (1287) (3) + (1001) (8) /gpps

/18295/spps = 277

There exists a modified orm of the Chinese Remaincer
Theo em in tne event that moduli are chosen such that they
are not pairwise relatively prime. Interested readers
should consult [2] for details of this modified Chinese
Remainder Theorem.

2. 5 Sign Representation of a Residue Number

Explicit sign representation of a number defines the
case where the sign of a number can be determined by

inspection. Such is the case with a signed magnitude

rep esentation of a binary number, where the most

significant bit position gives the sign of the operand.
Implicit sign representation of a number defines the

case where the sign information is not readily apparent
upon inspection of a number. Implicit representation is
the case when a number is in residue representation. It
should be apparent from Table 2. 1 that immediate

determination of operand sign is virtually impossible upon

inspection.

It is common practice to consider numbers in the range
of [O, M/2 -1] as positive, and numbers in the range [M/2, M-

1] as negative. This assignment is made assuming that the

23

dynamic range of the system will remain within the
specizied range of [0, M-l], otherwise the actual resulting
number, not to mention the sign, will be lost. The

following example illustrates the part'tioning of a residue
system into positive and negative parts. Table 2. 3

illustrates what is meant by dividing t. he interval of
definition for a given set of moduli.

Table 2. 3 Partitioned Interval of Definition

A = Actual Number
B = Partitioned Number

A B
Mo du li
2 3 5 A B

Moduli
2 3 5

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14

0
1

2
3
4
5
6
7
8
9
10
11
12
13
14

0 0 0
1 1 1

0 2 2
1 0 3
0 1 4
1 2 0
0 0 1

1 1 2
0 2 3
1 0 4
0 1 0
1 2 1

0 0 2
1 1 3
0 2 4

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1

1 0 0
0 I 1
1 2 2
0 0 3
1 1 4
0 2 0
1 0 1

0 1 2
1 2 3
0 0 4
1 1 0
0 2 1

1 0 2
0 1 3
1 2 4

~J((p 1 f

Let x = 5, and y = -9, from Table 2. 3 the residue
representation of x and y are as follows

x = (1, 2, 0

y =
(1, 0, 1

/ x+v /~=(0, 2, 1}
Since x + y = 5 + -9 = -4, we would expect in Table

2. 3 for the residue representation of -4 to be (0, 2, I),
this is exactly the case.

This concludes the introduction of the Residue Number

System. There are many other theorems and identities which
have not been presented. Division is presented in (2(, but
it is a complex operation when compared to addition and

multiplication. This research will not need to implement a
method of division, hence it will not be discussed. Next

the basics of matrix multiplication, as well as the matrix
multiplication algorithm will be examined.

2. 6 Introduction to Matrix Multiplication

A matrix is simply an array of numbers denoted by A,

in the form of:

aii ais . . . ai„
asi ass . . . as

ami arne '' amn

A matrix has m rows, and n columns. 'f A is a matrix, and

has m rows and n columns, then in order to multiply B by A,

we require that B be a matrix of n rows and p columns. The

multiplication of two matrices is defined as follows [15]:
Let C = AB = ~c ~ , then C is known to be a matrix of

m rows and p columns such that

C = a ibis + a ~bxo + + a. b) i = 1, 2, , m

ip

~m~1 2

Let A =
I 1

3
2

I and B =
I

— 2 5
1

Then

AB =
i (1) (— 2) + (2) (4)

(&) (-2) +(1) (4)
(1) (5) + (2) (-&)
(3) (5) +(1) (-&)

AB = 4 — 1
-2 12

It should be noted from a computational standpoint, it
takes a total of 8 multiplications and 4 additions to
multiply simple 2-by-2 matrices together. In general,
[mxn] x[nxm] requires (m-1) n additions, and mn

multiplications. Clearly for large matrices, the number of
multiply and addition steps increase rapidly. The

following algorithm, which forms the foundation to which

this research was applied, greatly reduces the amount of
time required to multiply two matrices together.

26

2. 7 The Matrix Multiplication Algori. thm

One of the most successful applications of pipeline
processing has been in the execution of arithmetic
operations [3] . Pipelined operation allows for small

portions of an overall task to occur at each position in
the "pipe". This type of setup is extremely valuable when

successive operations of the same type occur (e. g. an

operation operates on a vector) . It takes a certain amount

of time to fill up the "pipe", whicn is known as the start-
up or initialization time. If the successive operations on

the vector are very long, the start-up time time becomes

very insignificant. A majority of supercomputers use
multi-stage pipelining to achieve very fast operating
speeds. A pipeline arithmetic unit can be visualized as a

systolic array of linearly connected processors. Where

each processor (processing element.) is capable of
performing a small portion of a global task. Kung found

that the multiplication of two matrices could be done by

using an array of hexagonally shaped processing elements
[3]. This algorithm is suitable to Very Large Scale
Integration (VLSI) where it is essential that processors
are regular (in this case identical) and only locally
connected. The basic processing element used by this
algorithm is called an inner-product step processor. In

this research, the inner-product step processor will be

27

re erred Lo as a Mult ip) y and Add Cr 11 (MAC)

2. i. l The Multiply and Add cll

Figure 2. 1 illustrates the shape of the multiply and

add cell (innei-. product step processor), which is the most

basic element rn the matrix multiplication algorithm.

B

MAC

A

Figure 2. 1 Multiply Add Cell

The MAC contains three registers Rz, Re, and Rc, and six
connections crossing the MAC boundary. Of the six
connections, three are inputs and three are outputs. At

each time interval, the processor transfers the data on its
input lines denoted by A, B, and C into Ra, Re, and Rc,
respectively, then computes the value of (Ra) (Re) +(Rc), and

2B

transfers the old values of R~ and Rs, along with the new

va' ue of Rc ((R~) (Rs) +(Rc)) to the output lines, denoted

A, B, and C, respectively. Since the inputs of each of the
NAC's are latched, changing outputs will not interfere with
the input of another NAC until the following clock cycle.
It is this described cell, that will allow the
multiplication of two matrices together by the following
algorithm.

2. 7. 2 Formulation of the Matrix Multiplication Algorithm

The matrix product C = (c j) of A = (a j) and B

(b j), can be computed by the following relationships (3]

(k+i) i j Cij (k) k = 1, 2, . . . , n

Ci j (n+1) Ci j

Figure 2. 2 illustrates the algorithm using a diamond-

shaped array of linearly connected hexagonally shaped
multiply and add cells.

The configuration of Figure 2. 2 could be used to
multiply the following matrices: A x B = C

all a12 I x I bll
a21 a22 I I b21

b12
I

=
I

cll c12
b22 c21 c22

The algorithm is easily applied to larger matrices with the
addition of more NAC's configured in a similar manner.

a 12 b21

b22

a11 bl1

MAC
b12

AC MAC

MAC MAC AC

AC AC

AC

Figure 2. 2 Hexagonal Array for Matrix Multiplication

30

The pattern for the input coefficients, as well as ' he

timing constraints will be examined in Chapter IV.

The exact configuration of I:igure 2. 2 could be used to

multiply two band matrices of 1arger dimension. The

multiplication of two matrices with bandwrdth wr = p~+q, — 1

and wa — — p~+qz-l, respectively, is shown in Figure 2. 3.

all a12 0 0 0
a21 a22 a23 0 0
0 a32 a33 a34 0
0 0 a43 a44 a45

0 0 0 a54 a55

X

bll b12 0 0 0

b21 b22 b23 0 0

0 b32 b33 b34 0
0 0 b43 b44 b45

0 0 0 b54 b55

cll c12 c13 0 0
c21 c22 c23 c24 0
c31 c32 c33 c34 c35

0 c42 c43 c44 c45

0 0 c53 c54 c55

Figure 2. 3 Banded Matrix Multiplication

F'rom Figure 2. 3, the bandwidt. h of A and B can be calculated
to be wa = 2+2 — I = 3 and wa = 2+2 — I = 3 respectively. It
should be noted that this is exactly the bandwidth of a

matrix which has two columns and two rows. Thus the
matrices given in Figure 2. 3 could be multiplied using the

14AC configuration of Figure 2. 2. In general, if A and B

are matrices of bandwidth wa and wa, then it takes wjwa

hex-connectect processors to compute the multiplication of A

and B to obtain the resultant. matrix C [3J

CHAPTER III
APPLICATIGN GF THE RNS TD MATRIX I'IULTIPLICATIGN

The matrix multi plication algorithm lends itself to an

applica& ion r. equiring high speed multiplication. In

addition to the requirement of high speed multiplication,
the application must also have a need to multiply matrices
with a very large dimension or very frequently. In most

applications, the algorithm will ideally be implemented on

a single chip. It is expected that this chip will be
attached to a host processor, exchanging the various input
and output operands through the system bus, as shown in
Figure 3. 1. [16].

Host
Processor Memory

Matrix
Multiplication

Chip

System Bus

Figure 3. 1 System Configuration

Applications without the need for high speed matrix
multiplication, or without the need to multiply large
matrices successively, can not efficiently use the
algorithm. It should be clear that since the algorithm

32

will most likely be implemented on a separate chip, and

that any further increases in speed, attributed to the
Residue Number System, would be worth extra design time.
While the amount of time saved for one multiplication of
small matrices is not very significant, the amount of time
saved for many successive multiplications adds up to be
very relevant. As previously mentioned, certain residue
operations are much more complex than other operations.
The operations of multiplication and addition are among the
simplest, while magnitude comparison, sign determination,
and division have proved to be more difficult. The matrix
multiplication algorithm is simplified into successive
multiply and add operations. For this reason, it should be
apparent that this algorithm is a prime candidate for
operations of the residue type. It is also expected that
if division was necessary, that the overhead required to do

this might be fatal to the application of the Residue
Number System. The following section discusses the
considerations necessary to successfully implement the
matrix multiplication algorithm using the RNS.

3. 1 Error Free Design

The residue number system has a very unique property,
being that it does not suffer from round-off error. This
can be used to the systems advantage or disadvantage

33

depending on the application. In an application where

exclusively integers will be manipulated, this is a very
highly desired feature. In applications where fractions
are being manipulated, error of some magnitude . 's both
tolerated and expected. In the conventional binary number

system, when two numbers of arbitrary word length n are
multiplied together, it is possible to get resultant word

lengths of 2n. It is common practice to truncate the lower
n bits when dealing with fractions. Conversely, when

deal'ng with integers, it is common to designate a certain
upper limit number of bits for the system. Any time this
system upper limit is exceeded, overflow is said to have

occurred. Upon the occurrence of overflow, the result of
the calculation may be only partially complete, or
completely incorrect. At any rate, the answer is
inadequate, and should never be used for any further
calculation.

It should be clear that in a residue system design, it
is not important to designate at the onset whether the
input operand will be a fraction or an integer. The system
will produce the entire output length, depending on the
application, the designer can truncate the upper or lower
portion of unused bit positions, for integer or fractional
designs, respectively.

One consequence of the above mentioned error free
property, is that the overall system dynamic range must be
determined. Considering an ordinary binary system, where

successive multiplication and addition processes occur, it
can be shown that if the dynamic range of the system (i. e.
maximum word length of the binary operands) is exceeded
before any of the above mentioned processes are complete,
that the result will be both incorrect and unusable. ln a

residue system equivalent, if the dynamic range is exceeded
during some calculation internal to the overall process,
there is still hope. It is only mandatory that the end

result remain in the dynamic range of the given system.
The following example should clarify this issue.

Let the moduli of a system be mi = 3, and ms = 5

M = (3) (5) = 15

Thus, the system interval of definition is (0, 14).
Suppose z = (a) (b) + (c) is to be calculated, where

a = (4) &-----& /a/ = (1, 4)

b = (6) io & /b/M = (Oi 1)

c = (— 10) io ~ --& /c/~ (2p 0)

x b

1, 4)

x (0, 1)

(24) ip (0, 4 }

Note: (a) (b) has already exceeded the interval of
definition, even so the calculation is continued.

24
+ — 10

)
x (2, 0)

(14) io (& (2i 4)

35

ab t c = (24) ip + (10) ~ p = (+14) & desired result
Since (2, 4) is the residue representation of 14,
the calculation is exactly correct.

This property has no parallel in the binary number

system. If at any point in a binary calculation overflow
occurs, the resulting calculation has no predictable chance
of being correct.

3. 2 System Dynamic Range Determination

There are two ways of determining tne dynamic range of
a residue system design. It is possible to exami. ne the
input word length, and make a calculation to determine the
maximum possible value at the output, assuming worst case
(largest valued) numbers at the input, for all inputs. The

second approach is to agree on a maximum allowable output,
and hope that this range is never exceeded. This
particular method would be particularly useful if a

designer knows ahead of time that a certain output. value
will never be exceeded. In this case, the design would be
simplified accordingly. In this research, the first
approach is used.

The assumed input operand format in this design is
presumed to be that of a signed magnitude number. This
format is typical in floating point processors, although
this is not a floating point processor. It would allow

easier communication with a floating point processor, since
the operands will be input and output in tne same format.
It may be advantageous to place an intermediate processor
between the host and matrix multiplier, for the purpcse of
pre-adjusting the mantissa of an input floating point
number, also for the purpose of readjusting the mantissa on

return to the host processor [16]. This process should be
pipelined, so that the time required to adjust the operands
does not affect the performance of the algorithm.

The actual dynamic range of this system will be

directly determined by two factors. The first factor is
the input operand word length. The second factor depends
on the size of the input matrices to be multiplied. Table
3. 1 shows the value determining the maximum value possible
in any position of the output matrix.

Table 3. 1 Determination of Dynamic Input Range

A B

Square Input Matrix Dimension

2 1

3 3
4 7
5 15
6 31
7 63
8 127

6
54

294
1350
5766

23814
96774

8
72

392
1800
7688
31752
129032

10
90

490
2250
9610

39690
161290

12
108
588

2700
11532
47628
193548

14
126
686
3150
13454
55566

225806

16
144
784

3600
15376
63504

258604

A = Signed Magnitude Input Word Length
B = Maximum Possible Magnitude of Input

37

From Table 2. 1, for signed magnitude input word length, the
maximum magnitude of the input can be calculated by 2" — 1.
For an input word length of eight bits (n=8), the maximum

input value can be calculated as 2 ' -1 = 2 -1 = 127.
The maxrmum value of any number in the output matrix can be
determined by:

X = (dimension of input matrix) (maxrmum input value)

The above formula is assuming square input matrices,
Example 3. 2 demonstrates the calculation of this value.

The maximum value of any one value in the output
matrix can be calculated given both the square input matrix
size, and the input word length. If the matrix input size
is 4, and the input word length is 7, we can calculate the
upper bound of any entry in the output matrix as follows:

X = (4) ((2 ~ — 1)) = (4) (63) = 15876

Consulting Table 3. 1, for an input word length of 7, and a

matrix size of 4, we do not get the same result as Example

3. 2. This is because in Example 3. 2, only the positive
output range was considered, so that the total range can be
found by doubling the positive dynamic range. In the case
of Example 3. 1, the total dynamic output range is given by

(2)(15876) = 31752.

The motivation for finding the output range so

38

meticulously is due to the nature of the residue system.
Pemembering that the result will only be correct in the
case where it is enclosed by the interval of definition.
Tl e approach taken in such a design might be that the
output must be correct for all possible inputs. Another

approach could be that of a defined interval of definition,
with some sort of assurance that the defined interval will
never be exceeded. Once again, the philosophy behind this
design is that the correct result will be achieved for all
possible input combinations of a given word length.

In this design it was decided that an eight-bit input
operand, and an input matrix of bandwidth five would be
sufficient to demonstrate the advantages and disadvantages
of a residue system design. Specifying a bandwidth of five
also specifies the maximum allowable output operand value,
in exact accordance with Table 3. 2. This is very
convenient from the standpoint of a general design. For an

input matrix of any arbitrary size, the algorithm works as
long as the bandwidth of the arbitrary matrix is less than
or equal to five. In the event that the matrix has a

bandwidth less than five, zeros should be input at the
unused input ports.

39

CHAP TER IV

MATRIX MULTIPLICATION AI GORITHM SIMULATION

The reference presenting this algorithm fails to
adequately introduce the necessary timing information to
successfully implement the algorirhm [3j. It will be he

purpose of this chapter to develop and demonstrate the
application of the algorithm itself. Specifically, the
algorithm will be demonstrated for input matrices with an

input bandwidth of five. The timing parameters obtained
from this simulation will be needed later.

4. 1 MAC Computing Structure

The computing structure will contain wrws multiply and

add cells. Therefore, a diamond shaped array of twenty-
five processors will be necessary to implement the
algorithm. Figure 4. 1 shows the structure to be used for
the simulation. A MAC referencing system is necessary, so
that each separate MAC can be identified individually from

the surrounding processors. As shown in Figure 4. 1, the
numbering convention is that of starting at the top, and

numbering each MAC from left to right, consecutively, in a
row-wise fashion. With the exception of the lower-most MAC

in each vertical column, each MAC has six external boundary

2R

1R

20

0
1R

30
MAC I

3R

4R

40

6R

11R

7R

110

MAC4 MAC 6

MACI 0

10R

150
15R

Ci I
MAC I 2 MAC I 2 MACIA MACI7

MAC 1 6 MAC17 MAC I 8 MAC I 9

Figure 4. 1 Computing Array for Matrix of Bandwidth Five

connections. These connections must also have

distinguishable names. The naming convent ion tor MAC r'4 is
shown . n figure 4. 2.

4R
40

4L

MAC4

Figure 4. 2 MAC Input/Output Naming Convention

it should be noted that all inputs to the MAC traveling
from left to right, are labeled 4R. All inputs to the MAC

traveling from right to left are labeled 4I, . The upwards

going input is labeled 4I, while the upwards going output
is labeled 40. All other cells are named in a similar
convention.

4. 2 Input Matrix Coefficient Timing

Crucial to the success of this algorithm is the
pattern of input coefficients. The pattern is somewhat

regular s n struct ure. After simulation of the algorztnxi zs

complete, the out put porc timing coefficients wil) be

apparent. Timing patterns for A = (a. .) and B = (b, .) will
be examined. Figure 4. 3 shows the exact format of the
input matr' ces A and B, each having a bandwidth of five.

all a12 a13 0 0
a21 a22 a23 a24 0
a31 a32 a33 a34 a35
0 a33 a43 a44 a45
0 0 a53 a54 a55

B

bll b12 b13 0 0
b21 b22 b23 b24 0
b31 b32 b33 b34 b35
0 b33 b43 b44 b45
0 0 b53 b54 b55

Figure 4. 3 Input Matrices of Bandwidth Five

The A matrix input coefficients will march into the
computing array of Figure 4. 2 from the left hand side
towards the right. The B matrix input coefficients will
march into the computing array from the right hand side
towards the left. There are five input ports into which

the A matrix coefficients will go, namely 11R, 7R, 4R, 2R,

and 1R. There are also five input ports into which the B

matrix coefficients will go, namely 1L, 3L, 6L, 10L, and

15L. Table 4. 1 shows the input port coefficient timing
table. The input timing was found by trial and error. All
coefficients on a horizontal row are input into the same

Table 4. 1 Matrix A and B Input Coefficient Timing

Matrix A Input Timing Table

Coefficient Movement

11R

7R
I

Sl, ~ 4R
& 15

2R

1R

a11

a12

822

a13

a42

a23

a33

a43

a24

a53

a45

Increasing Time

Matrix B Input Timing Table

Coefficient Movement

W O

1L

3L

6L bll

10L b12

b21

b13

b22

b3]

b23

b32

b24

b33

b35

b53

b54

b55

Increasing Time

input port. All coefficients on a vert cal segment are
input at different ports, during the same clock cycle.
Going in increments of one from left to right corresponds
to one clock cycle. This means that input coefficient bii
is input one clock cycle before coefficient b», and that
input coefficient b~~ is input three clock cycles before
input coefficient bss With the input coefficients timing
established, the development of the simulation may be
examined.

4. 3 Algorithm Simulation Development

In order for the development to be clear, the reader
is recommended to consult Figure 4. 1 and Figure 4. 2 as
necessary. The algorithm may be broken down into three
basic transfers at the MAC level. Each of these transfers
occurs at the onset of a clock cycle. The first basic
transfer is an operand traveling from left to right across
the array. An example of this is the operand at 5R being
transferred to 9R. The second basic transfer is similar to
the first basic transfer, except instead of moving from

left to right, an operand moves from right to left . An

example of this is the operand at BL being transferred to
12L. The third basic transfer is only slightly more

complex than the first two. During any given clock cycle,
the MAC computes the product and sum of the three inputs,
which appears at the output of the mac before the next

clock cycle begins. Using MAC9 from Figure 4. 1 as an

examp'e, in a civen clock cycle, MAC9 multiplies (9R) (9L),
and adds to this (9I), and places this result on 90 bezore
the clock cycle is finished. At the onset of the next
clock cycle, the operand at 90 will be stored in the
register in front of MAC3. In other words, the value at 90

is transformed into 3I when the clock pulse occurs. A

program was written modeling this transfer level
description of the MAC array. The complete output of the
simulation may be found in Appendix A of this thesis, but
the results are discussed here.

0. 4 Algorithm Simulation

Simulation of this algorithm is important for several
reasons. First, the determination of the input coefficient
timing is necessary to implement this array structure. Of

equal importance, the output coefficient timing will be
determined by examining the simulation results. Finally,
it is important in this research to determine exactly how

many clock cycles it takes to complete a complete matrix
multiplication process, from start to finish.

The simulation input matrices, as well as the
resultant matrix is shown in Table 4. 2. The input matrices
A and B were chosen arbitrarily to demonstrate how the
algorithm works. Table 4. 2 shows the actual A and B input

46

Table 4. 2 Algorithm Simulation for Arbitrary Input Matrices

Input Matrix A Input Matrix B Resultant Matrix C
9
3
7
-2
-9

0
-3
-2
1

9

1 4 8 0 0
3 2 -5 3 0
-4 -6 -7 4 -4
0 7 3 4 -7
0 0 -9 -I -5

-25 -40 -62 45
-5 -31 -32 6
-9 -30 -66 33
26 31 -58 9
36 117 63 -3

-36
9

-24
-24
-42

Matrix A Input Timing
11R
7R
4R
2R
IR

0 6 0 0 -9 0
5 0 0 -2 0 0
0 0 7 0 0 1

0 3 0 0 -2 0 900-300

0 O O O O

9 O O O O

0 3 0 0
o 5 o o o

0 0 0 0

1L
3L
6L

10L
15L

0 -6 0 0 3 0
0 0 -7 0 0 4
-5 0 0 4 0 0
0 3 0 0 -4 0

0-1000
0 0 -5 0 0

-7 0 0 0 0
0 0 0 0 0

Matrix B Input Timing
-4 0 0 7 0 0 -9 0 0 0 0

110
70
40
20
10
30
60

100
150

Output Matrix Timing 00003600
0 0 0 26 0 0 117
0 0 -9 0 0 31 0
0 -5 0 0 -30 0 0
-25 0 0 -31 0 0 -66
0 -40 0 0 -320 0
0 0 -62 0 0 6 0
0 0 0 45 0 0 9
0 0 0 0 -36 0 0

0 0
0 0
0 63

-58 0
0 0
33 0
0 -24
0 0
0 0

0 0
0 0
0 0
0 -3
9 0
0 -24
0 0
0 0
0 0

0
0
0
0

-42
0
0
0
0

coefficrents as they are znput int o the array. Also shown

are the output coefficients, which will be used to
generalize the output matrix cceff'cient timing sequence.

The output coefficient timing can now be genera'ized
for the C matrix, and is shown in Table 4. 3.

Table 4. 3 Output Coefficient Timing

110
70
40
20
10 C11
30
60
100
1SO

C21

C1

C31

C13

C41

C2

C1

CS1

C31

C23

C1

C41

C2

CS1

C3

C2

C43

C3

CS

C3

C4
CS

C4
CS

The amount of time for one complete matrix
multiplication can now be extracted. The reader should
note the regularity of the wedge shaped output coefficient
pattern in Table 4. 3.

Several comments can now be made about the overall
timing of the algorithm. It takes five clock cycles before
any output coefficient appears at an output port. It takes
an additional twelve clock cycles before the last
coefficient is output. Thus, it takes a total of

seventeen clock cycles to completely multiply two matrices
of bandwidth five together.

In general, the processing time to multiply two

matrices of an arbitrary bandwidth w (w = w, = wz) is grven

by the following equation:

T = (3w — 4) + 3(S)
where:

T~ = Overall Processing Time

S = Dimension amount larger than a minimum
sized matrix of the same bandwidth

For example, a minimum sized matrix of bandwidth 3 is a 2X2

matrix, while a minimum sized matrix of bandwidth 5 is a

3X3 matrix. The amount of time to multiply two matrices of
bandwidth five, and dimension 4X4 is calculated from the
above equation TP = (3(5) — 4) + 3(4 — 3) = 14 clock cycles.

This concludes the algorithm simulation discussion.
The whole simulation output, rather than the summarized

results presented in this chapter, can be found in Appendix

A of this thesis.

CHAPTER V

DESIGN DEVELOPMENT

This chapter introduces the design to be simulated in
this research. The approach of this chapter will be that
of a detailed presentation, such that this design could be

duplicated by the reader. Some of the smaller details will
be presented as they are important in the design of a

residue system. The following section describes the design
at a system level. Subsequent sections examine the steps
in designing the major blocks of the system.

5. 1 Residue System Specifications

It was agreed upon that the design to be simulated in
this research should be large enough to demonstrate the
application of the residue system to a problem of useful
complexity. The design presented in this chapter assumes
an input operand of eight bits, in signed magnitude format.
This allows an input range from -127 to t127. An upper
limit bandwidth of five is placed on the input matrices A

and B. There are many scientific algorithms requiring the
multiplication of banded form matrices with bandwidth

dimensions of five and smaller.

With the global system requirements specified, the
process of moduli selection may begin. First the dynamic

range of the system must be determined. From Table 3. 1,
fo an input of eight bits, and a matrix size of 5, we see
that the overall dynamic range of the system is 161290.
Although the selection of moduli is arbitrary, it is
beneficial to choose pairwise relatively prime moduli.
This is done so that the Chinese Remainder Theorem can be

implemented, rather than the alternate form of the Chinese
Remainder Theorem. Before the moduli set chosen for this
design are presented, several comments should be made about
moduli selection. It is important to have as few moduli as

possible, yet it is also true that hardware complexity
increases as the moduli size increases. There exists a set
of equations to generate moduli sets that are pairwise
relatively prime. It is not convenient to use these
equations, since they tend to select small numbers

initially, with the moduli size growing very rapidly. The

design of the system presented here chose a set of five
moduli, although a set of four moduli of the proper
magnitude would successfully satisfy the system

requirements. The reason five moduli were presented
instead of four will be explained shortly. The moduli set
for this research is given by (mr, mz, ms, mq, ms)

7, 11, 13, 15, 16). First it should be noted that the moduli

are pairwise relatively prime. The moduli seven, eleven,
and thirteen are prime numbers themselves, so there is no

concern that these moduli are not pairwise relatively
prime. Fifteen and sixteen have a greatest common divisor

of one, so they are pairwise relatively prime with respect
to themselves, and with respect to the other moduli as
well. The reason for selecting five moduli, instead of
four, s due to the convenience of implementing modulo 2

addition and multiplication. It was found that modulo 2"'

addition and multiplication are identical to conventional
binary addition and multiplication. Although it is not
apparent to the reader at the present time, it will be
demonstrated that very little effort will be required to
implement the modulo 16 operations. Thus, designing the
MAC portion of the system will be eauivalent to the design
of a four moduli system. The primary advantage of hav'ng
five smaller moduli, rather than four larger, is the speed
of the computation involved. Remembering that the modulus

of a number is governed by the following equation:
0 & /z/ & m

Thus the range of the residue representations for all the
moduli will be between zero and fifteen. All of which can
be expressed by four binary digits. This will not be a

critical component of the design, but will contribute to
the performance of the residue design. The choice of the
moduli set is a task left to the designer. Assuming the
set of moduli will satisfy the system requirements, there
is no simple and clear cut way to arrive upon the optimum

set. There is no guarantee that the moduli set chosen in
this research is optimum. It is not even clear what the

word optimum means, since in one design it may be necessary

to optimixe Lhe ci rcuit area, the . peed of oper al ion, or

combination of br 1 h.

With the moduli set cho. , en above, Lhe 'ar ' ous aceLs

of the design may now be investigated. The most prevalent
portion of the design is the mult'ply and add cell, which

will be presented first. Also, the approach used to
translate into and out of the residue representati. on will

be presented.

5. 2 Multiply and Add Cell

The multiply and add cell is the most basic building
block of the matrix multiplication algorithm. The MAC of
the residue desi gn will . . till be re' errea to as - MAC,

although it will consist of five smaller blocks. The

residue MAC is shown in Figure 5. 1.

A B C A B C A B C A B C A B C

cg
D
C

Modulo 7
MAC

Modulo 11
MAC

Modulo 13
MAC

Modulo 15
MAC

Modulo 16
MAC

Figure 5. 1 Residue MAC Configuration

It should be noted that each MAC independently processes
the corresponding residue digits of the input operands A,

B, and C.

There are several approaches that can be made when

implementing modulo addition and multiplicat'on. There has

previously not been any research effort in concurrent
addition and multiplication modulo m. It would be easy to
implement modulo m multiplication, and then implement

modulo m addition, but this method was found to be very
time consuming. There are very few if any papers on

implementing residue multiplication without using the RON

approach, which is not a viable solution to this problem.
There are several methods of implementing residue addition.
One method proposed adds two numbers together, then
subtracts the modulus from the result of addition
repetitively until the sum changes from a positive sign to
a negative sign, when this occurs, the modulus is then
added back to the current sum, which then becomes the
result modulo m [7]. This method is acceptable when the
addition process can be pipelined, but is very time
consuming to implement sequentially due to the large number

of subtractions necessary. Another proposed method

recognizes that residue addition is cyclic, and as a

consequence of this, uses shift and rotate logic to
correctly select the desired result [8j. This method grows

very large in complexity, even for moduli of modest size.
It was reported that implementation of modulo fifteen

addition requires over seven hundred logic gates. This
method will not be acceptable in this research either. It
must be remembered that this does not include hardware

requirements to implement modulo m multiplication.
An alternative approach to the problem is to examine

the two processes that must occur simultaneously, namely

modulo m multiplication and addition. Each of the five
digits of a residue representation can be expressed in four
binary digits, with the exception of the first modulus,

which is 7, where its residue digits can be expressec in
three binary bits. The method proposed in this research is
a hybrid approach to the problem in the sense that
operations of both binary and residue types will be used.
It was found that after the binary multiplication and

addition of A, B, and C for each modulus has occurred, the
result could be taken modulo m, . This approach requires
the implementation of two truth tables for each modulus,

requiring a total of eight truth tables for the entire
design. Although it is undesirable to have large amounts

of truth tables in a design due to their irregular
structure, in this case it will be acceptable, because the
same structure will be used repetitively. It will be found
later that both the input and output translation problems
will use the same modular truth table blocks. Another
important factor in allowing the use of truth tables is
their simplicity in design. Each of the truth tables will

4 5

only be required to have five inputs, and four outputs. A

generalization of this approach to designs of larger
complexity will be made at later point in this research.

5. 2. 1 MAC Functional Configuration

The MAC configuration proposed in this research is
shown in Figure 5. 2. It should be noted that this
configuration is for ~~ modulus inside the MAC boundary

shown, thus there will be four such designs inside the MAC.

There would be five, except modulo 16 operations are
simplified and will not need the full configuration as
shown in Figure 5. 2. Also, the modulo 7 design will not
have as many input and output bits, but the overall
structure will be identical. Before the design of the
individual blocks of the MAC are discussed, an example will
be used to illustrate operation at a functional level for
an individual modulus.

For the modulus 15, given the following inputs:
A = (12) ip

B = (9) ip

C = (5) ip

(1100) z

(1001) z

(0101) z

the result P = AxB + C can be computed using the
proposed structure as follows:

From the Modified Braun Array,

Modified Braun Array
AxB+ C

Upper Truth Table
Modulo m

Lower Truth Table
Modulo m

Four Bit Binary Adder

Lower Truth Table
Modulo m

Figure 5. 2 Proposed MAC Configuration for Each Modulus

AxB + C = (12) (9) + (5) = (113) io = (1110001) e

From the Upper Truth Table,

/ (1100000) x/is = / (96) /q s = (6), o

From the Lot er Truth Table:

/(10001) s/is — /(17) /is — (2)ip
From the Four-Bit Binary Adder,

(2) ~ (6) (0 0 1 0) s + (0 1 1 0) x: (1 0 0 0) s: (8)

From the second Lower Truth table,
/ (8) 10/1S = / (1000) /2 (8) io
Thus, the modulo 15 result P = AxB + C is:

/ (113) ip/is = P = (8) ip

This is the exact answer obtained by the MAC

configuration, hence the configuration is functionally
correct.

This concludes the description of the MAC

configuration at the functional level. The individual
blocks of the functional configuration of Figure 5. 2 will
now be examined closer at the design level.

5. 2. 2 Modified Braun Array

A modified form of the braun array is used for the
binary multiplication and addition of input operands A, B,
and C. The structure to be used in this design is shown in
Figure 5. 3. This structure is the common input stage to
all moduli of the MAC.

A380 A280
C3

AIBO
CI

AOBO

CI CO

FA FA FA

FA
281

FA
181 081

FA

A382

FA
282

FA
182 082

FA

A383

FA FA
283 183 083

FA

FA FA FA 381

Figure 5. 3 Modified Braun Array

P =AxB+C

A typical braun array consists of the lower portion of the
array of full adders. A top row of full adder cells was

added to the top of the array in order to accommodate the
additive input C. Thus the multiplication of A and B, and

the addition of C to tne result of A and B occurs
simultaneously. Full adder cells will appear throughout
this thesis, and it is appropriate at this point to
introduce the repetitively used full adder cell. The

unmodified full adder cell is shown in Figure 5. 4a. The

full adder cell in Figure 5. 4b is modeled after the cel' in
F'ig 5. 4a, with several "cosmetic" differences. The full
adder cell in Figure 5. 4b is actually identical to the cell
in Figure 5. 4a. First, the plotter resolution does not
include the bubble at the output of NAND gates, so that
NAND gates appear to be AND gates, although this is not the
case. Secondly, the very last gate in Figure 5. 4b really
is a hardwired AND gate, but Neted does not contain a

hardwired AND gate in the component library. Thus, a

regular AND gate with an area and time delay of zero was

inserted for functional and simulation purposes. Thirdly,
the vertical dimension of the actual implementation is
reduced such that more full adder cells could be placed on

the schematic editor screen. It is for this reason that
the NAND gates are offset from one another rather than in a

straight line. The hardware implementation of the modified
Braun Array is shown in Figure 5. 5. This array will be
used at several places, and will be referred to regularly.

A)

Figure 5. 4 Full Adder Cell Design

Figure 5. 5 Moditied Braun Array Hardware

5. 2. 3 Lower Truth Table Modulo m

The lower truth table block has five inputs, and four
outputs. The input bits are the five lowest order bits of
the result from the braun array. The output bits represent
the input modulo m (/input/). There are five different
moduli in this design, but only four of them have hardware

requirements. Modulo 16 operations are equivalent to
typical binary operations, thus no further manipulation of
the result from the braun array is necessary (the lower
four bits are the needed result) . The detailed and

complete design procedure of the lower modulo 15 truth
table will be presented, as well as the results of the
modulo 7, modulo 11, and modulo 13 truth tables.

Table 5. 1 shows the five-bit binary input decimal

equivalent, as well as the result modulo 15, which is the
desired output of the truth table. The four truth table
outputs are labeled W, X, Y, and Z, in order of decreasing
significance. For example, a decimal equivalent input of
23, gives a result of 8 = /23/„s. From Table 5. 1, a

Karnaugh Map may be formed for each individual output bit,
W, X, Y, and Z. Karnaugh Maps allow output variables to be

simplified into logical equations, as functions of their
inputs. The Karnaugh Maps for the Modulo 15 truth table
are shown in Figure 5. 6. The simplified output equations
derived from the Karnaugh Maps are as follows:

2

Table 5. 1 Modulo 15 Truth Table

Five Bit
Result

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Result
Mod 15

0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
0
1

2
3
4
5
6
7
8
9

10
11
12
13
14
0
1

Truth Table Out uts

Y

0 1

0 1

0 1

0 0
0 0
1 1

1 1

1 1 1

1 0 1

0 0 0

1 1 1

0 0 0 0
0 0 1 0
1 1 0 1

Figure 5. 6 Modulo 15 Karnaugh Maps

W = BD + BC + ABDE + ABODE

X = CD + ABC + ACDE + ACE + BCE

Y = ADE + ADE + ABD + ACD + BDE + CDE

Z = ADE + ADE + ABE + ABE + ABCE + ACE + ABCDE

These equations can be implemented with multi-input NAND

gates and inverters. The hardware implementation of the
Modulus 15 truth tables is shown in figure 5. 7. Once

again, this is an all NAND realization even though plotter
resolution does not allow foz bubbles on the outputs of
NAND gates. The circuitry on the left hand side is the
lower truth table implementation, the circuitry on the
right hand side is the upper truth table implementation

(discussion in the following section) . Similar truth
tables and Kaznaugh Maps can be formed for the remaining

moduli (found in Appendix B) . The results aze given below:

W = 0

X = ACD + ABCE + BCDE + ACD + ABCE + BCDE

Y = ABDE + ABCD + ABDE + ACDE + ACDE + ABCD +

ABDE + ABCD + ABDE + ACDE

Z = BCE + BCE + ABCE + ABDE + ABDE + BCDE + ABCDE

W = ABCD + ABCE + ABCD + ABCD + ABCDE

X = ABC + ACDE + ABCD + ABCD + ABCD t ACDE

Y = ADE + ABD + BCDE + ADE + ABD + BCDE

Z = ABE + ABCE + BCDE + ABDE + ABE + ACDE + ABCE

Figure 5. 7 Modulo 15 Truth Tables

66

W = ABDE + ABC + BCD + ABCE + ABCD

X = ABC + ACDE + ABCD + ABCD + ACDE + BCDE

Y = ABD + ADE + ACD + BDE + ADE + ABCD

Z = ABE + ACE + ABE t ACDE + ABCE + ABDE + ABCDE

5. 2. 4 Upper Truth Table Modulo m

The upper truth table is developed in a manner similar
to the lower truth table. Each upper truth table has five
inputs, and four outputs, but the significance of the input
bit positions are greater than those of the lower truth
tables. From Figure 5. 2, it is seen that the Modified
Braun Array structure has eight outputs, five of them

connected to the lower truth table as inputs, and three of
them connected to the upper truth table. The reader should
note that only the three lower ozdez bits are necessary for
the MAC, but it will be shown shortly that the input
translational problem will have a necessity for the
uppermost two bits. The truth tables and Karnaugh Maps are
very similar to those previously presented, except for the
relative magnitude of each input bit position. Previously
a binary input of 00011 represented the decimal value of
three. For the upper truth tables this is not the case, a

similar input in this case yields a decimal value of
ninety-six (00011XXXXX)s, remembering that the least
significant bit is really the sixth significant position

from the Modified Braun Array. The results of the Karnaugh

Maps for the various moduli are presented below:

W = 0

X = DE + BD + CE

Y = CD + CE + AD

Z = AD + ADE + ACD

~~11 1

W = ACE + ACD

X = C + AD + AE

Y = ADE + ACD + ABD + ADE + ADE

Z = AE + ADE + B + CE

W = ADE + CE + B + AE

X = AE + ADE + B + ACE + ACD

Y = AE + BCD + CDE + CE

Z = AD + CDE + ABDE

W = ADE + BC

X = ABD + ADE + ADE

Y = AE + ABE

Z = 0

The hardware implementation of the modulo 15 upper
truth table was shown previously in Figure 5. 7.

5. 2. 5 t'our — BiL Binary Adder

Th bi nai y adder rs u ed Lo add t he two . our — brt

o»Lpuis from the upper and lower truth tables. ri serral
ripple carry adder is used in this case, which is simply a

one — dimensional array of full adder cells. To form the

four — bit binary adder, four of the cells in F'igure 5. 4 are

repeated, and connected such that the carry out from lower

bit positions becomes the carry in for higher bit
positrons The complete four-bit binary adder is shown in

pigure 5. 8.

Figure 5. 8 Four-Bit Binary Adder

5. 3 Input Translation

Input translation must occur before the various

operands may enter the MAC computing array. Globally, the

matrix multiplication chip is composed of three major

parts, he input translator, the MAC array, and the output
translator. This section will discuss input translation.

The goal of the input translational portion is to
convert an eight-bit input operand, in signed magnitude

format, to the proper residue system representation. The

method used for input translation uses several functional
blocks common to the Multiply and Add Cell, reducing the
design time. It was found that if the input operand is a

negative number, /x/ = /M-b/ must be calculated (where

M = 7*11*13*15*16, and b is the absolute value of the input
operand) to obtain the correct residue representation,
rather than /x/ when the input operand is positive.
Example 5. 2 gives several examples of the input conversion
process.

~m~le~:
m = (7, 11, 13, 15, 16)

M = 7*11*13*15*16 = 240240

Given the following input operands:

A = (10011010) s = (26) io
B = (01101001) s (+105) io
C = (10001001) z = (9) io

the residue representations are found as follows:
/A/ = /240240 — 26/ i = 1, 2, 3, 4, 5

/B/ /105/ i = 1, 2, 3, 4, 5

/C/ = /240240 — 9/ i = 1, 2, 3, 4, 5

The residue representations are:

70

A = (2, 7, 0, 4, 6)
B = (0, 6, 1, 0, 9)
C = (5, 2, 4, 6, 7)

The block diagram for the input translation of an

eight-bit signed magnitude input operand is shown in Figure
5. 9. The various hardware aspects of input translation
will now be examined in detail.

5. 3. 1 Input Operand Adjustment

The input operand adjustment portion of the input
translational process examines the most significant bit of
the input, if this value is a logical "1", then the input
is negative, and the absolute value of the input must be
subtracted from M (M=240240). If the most significant
bit of the input is a logical "0", then the input is
positive, and the input value should be transferred through
the input operand adjustment block. It should be noted
that eighteen bits are required to express M in binary
form. This implies that eighteen-bit addition will have to
be performed when the input operand is negative (M

absolute value of x). A great simplification can be made

at this point due to the limitation of the input range. It
should be noted that for an eight-bit signed magnitude

number, the largest positive or negative number is one

hundred and twenty-seven. When this value is subtracted
from 240240 in binary form, only the ten least significant

M = 240240

10

Input

Input Operand Adiustment

10

Mod 7 Mod I I Mod 13
Upper/Lower Upper/Lower Upper/Lower
Truth Tables Truth Tables Truth Tables

Mod 15
Upper/Lower
Truth Tables

4 4 4 4 4 4 4 4

Four Bit Four Bit Four Bit Four Bit
Binary Adder Binary Adder Binary Adder Binary Adder

Mod 7
Lower

Truth Tables

Mod 11
Lower

Truth Tables

Mod 13 Mod 15
Lower Lower

Truth Tables Truth Tables

4 3 4 0 4 0 4

Four Bit Four Bit Four Bit. Four Bit
Binary Adder Binary Adder Binary Adder Binary Adder

5 5

Mod 7
Lower

Truth Tables

Mod 11
Lower

Truth Tables

Mod 13
Lower

Truth Tables

Mod 15
Lower

Truth Tables

4 4 4 4

Complete Residue Representation of Eight Bit Signed Magnitude Input

Figure 5. 9 Input Translation Functional Configuration

72

bit positions are altered. Therefore, it is useless to
carry out the full eighteen-bit. addition process, when only
the lowest ten bit positions have the possibility of
changing. In other words, the top eight bit positions
remain constant throughout the addition process. The

necessary manipulation of the upper eight bit positions
will be examined in the following section.

The hardware implementation to accomplish the input
operand adjustment portion of the input translation process
is shown in Figure 5. 10. It is fairly simple in design, a
ten-bit binary adder, with a row of exclusive-or gates at
the input. It should be stated that whenever the input is
positive, the circuitry allows the input operand to pass
through unchanged, but when negative, the absolute value of
the input operand is subtracted from the lower ten bit
positions of 240240. From the above simplification, the
result of the subtraction yields a ten-bit number. The

rest of the input translation of Figure 5. 9 will now be
examined.

5. 3. 2 Residue Digit Generation

The tight dynamic range of the eight-bit input, as
compared to the large value of M, allows a simplification
in the upper truth tables of the individual Karnaugh maps.
Since the input number subtracted from M must be less than

127, the dynamic range of resultant is a ten-bit

73

Figure 5. 10 Input Operand Adjustment

number between 01111XXXXX and 10011XXXXX. Remembering

that the Multiply and Add Cell only requires values between

00000 and 00111, a great simplificarion is made in the
upper truth tables for all of the moduli. The reason for
this simplification was not explained when the upper truth
tables were i. nt. roduced earlier in this chapter.

As was mentioned previously in the operand adjustment
section, the upper eight bits of the eighteen-bit
representation of 240240 are not involved in the
subtraction process in the operand adjustment portion of
Figure 5. 9. However, they must be taken into consideration
to produce a correct result. The upper eight bits of N

corresponds to a decimal value of 239616. It was found

that if /239616/ was added to the result of the previous
steps for each corresponding moduli, that the resulting
residue representation was correct. The calculation of the
values to be added to each moduli are calculated below:

/239616/7

/239616/zx

/239616/~s

/239616/rs

/239616/z s

These values are shown to be added in at the appropriate
step in Figure 5. 9. It is expected that an engineer will
spend more time designing a residue system than he or she

would a more conventional system. It should be noted that

75

there are quite a few common blocks that are repetitively
used in this proposed design. More importantly, the common

building blocks may be optimized separately, then combined

in an orderly fashion. This methodology both improves

cizcuit performance and saves silicon area.

5. 4 Output Translation

The Chinese Remainder Theorem was examined first when

considering an appropriate method of converting from

residue representation back to a binary or fixed weight

representation. Implementation of the Chinese Remainder

Theorem requires addition modulo M, which in this case
means several addition or subtractions with word lengths
greater than eighteen. Another method of conversion from

residue to a weighted system is called the mixed-radix
conversion process [2]. It was found that the mixed-radix
conversion process has two main advantages over an

implementation of the Chinese Remainder Theorem. First, a

significantly larger amount of hardware is required to
directly implement the Chinese Remainder Theorem. Second,
the Chinese Remainder Theorem does not allow any type of
intermediate magnitude comparison or sign determination.
It will be shown that at an intermediate step of the mixed-

radix conversion process, enough information exists to
compare the magnitude of two residue numbers, or to
determine the sign of a residue number. Using the Chinese

76

Remainder Theorem, it is impossible to obtain any of the
above mentioned information without completely converting
to the binary representation.

The mixed radix conversion process is governed by the
following equation:

x = As(m~m2msm~) + A~(mam@ms) + As(mrmz)t A2(mr) t A~

where (mr, ma, m3/ m«ms) = (16, 15, 13, 11, 7), and x

is the result of converting a number from residue to binary
representation. It should be noted that the mixed-radix
system is a weighted system, hence magnitude and sign
determination is relatively easy. The mixed radix
representation of x is given by &Ar, Aa, As, A~, As&. The A

values may be determined by the following:

Aj = rr

A2 — — / ((x — rr) /mj) /

As = / ((A2 — r2) /ma) / 3

A~ = / ((As — rs) /ms) /

As = / ((A4 — r~) /m~) /

Residue division is not really occurring even though the
above equations imply it is necessary. Multiplying by the
multiplicative inverse is the same as division, which will
be the approach taken. The functional diagram of the mixed

radix conversion process is shown in Figure 5. 11. The

individual portions of Figure 5. 11 will now be examined.

Also included in this section on output translation will be

a comprehensive example unifying the individual processes.

77

Residue Represeninilnn Inpuis

16 15 13 11 7

Al

NCA NCA NCA NCA
CA CA CA CA

CA CA CA

CA
9 9 4

X X X
UTT/LTT UTI/LTT UTT/LTT UTT/Lrr

LTT LTT LTT LTT

A2

NCA NCA NCA
CA CA CA

CA
3 I

CA

X X X
urr/LTT vn/Ln urr/LTr

LTT LTT LTT

A3

NCA NCA
CA CA
CA CA

UTT/LTT IJIT/LTT

LTT LTT

A4

NCA
CA
CA

2

X
UTT/LTI'

+
Ln

Figure 5. 11 Mixed Radix Coefficient Determination
Output Translation

78

5. 4. 1 Controlled Addition/Subtraction

Two of the blocks in Figure 5. 11 are called "CA" and
"NCA". These notations stand for conditional and non-

conditional addition. The non-conditional addition block
has two four-bit numbers as inputs and a five-bit number as
an output. The block subtracts the one four — bit input from

the other. This subtraction performs the x — ri portion of
the mixed-radix process. Since a residue representation
must not be negative, the subsequent conditional adder
blocks sample the most significant bit of the five-bit
input, if this is a zero, then no computation occurs. If
the most significant bit is a one, then the input is
negative, and thus the modulus (m) for the appropriate
digit of the residue representation (r) must be added to
the negative number. This non-conditional addition process
must be repeated until it is assured that the residue
representation at each of the stages in determining the A

contains only non-negative (or zero) residue digits. The

hardware implementation of both the conditional and non-

conditional adders are shown in Figure 5. 12 and 5. 13.

5. 4. 2 Multiplication by Inverses

After the subtraction of the most significant
remaining residue digits, and the conditional addition
processes are complete, multiplication of the residue

79

Figure 5. 12 Conditional Adder

Figure 5. 13 Non-Conditional Adder

representations by the respective multiplicative inverse
occurs. The multiplicative inverses are shown in Table

5. 2.

Table 5. 2 Multiplicative Inverses

1|16
1(15
1~13

Modulus
15 13
1 9

17 13

For example, /1~16/~ = 4. All multiplicative inverses can

be represented in four binary bits except for 17, which

requires five bits. Multiplication by 17, when using
binary arithmetic, is simply the digits of the multiplicand
repeated twice. For example, (17) (9) = (10011001)z, and

(17)(13) = (11011101)z. Thus, the multiplication of all
residue digits by their respective multiplicative inverses
will only require a Braun array capable of four-bit
multiplication. The desired Braun array has been

previously designed, with the exception that the top row of
full adders needed in the MAC has been deleted, and is
shown in Figure 5. 14. The blocks in Figure 5. 11 labeled
"UTT/LTT", "+", "LTT", are the same blocks that were

presented in the MAC section. This sequence of blocks
simply converts the larger input number into residue
representation for each of the moduli. The following

Figure 5. 14 Four Bit Braun Array

82

example should help clarify some of the items presented in
this section.

Given mr=16, ms=15, ms=13, m~=11, and ms=7, the mixed radix
coefficients (A) can be computed for a residue
representation of x = (2, 3, 4, 2, 6) as follows:

(reference Figure 5. 11 as necessary)

Ar — — 2

(-2)
2 3

2 0 4

x(/li16/)

(/r /)
18

5
0 16
0 2

A~=1

(-1)

(tm)

5 0 2
— 1
— 1 1

10 1

x (/1 (15/)
28 30 1

2 8 1

(-2)

(+m)

As=2

2 8 1

6 -1 ~+
6 6

x(/1(15/)

(/r /)
102 78

3 1

A~=3

83

(-3)

(+m)

3 1

— 2
~+

5

x(/1 ill/)

(/r, /)

222
10

3

As=3

In summary, A~=2, Ax=1, As=2, A~=3, As=3

Checking the Pesult:
x = 3*16*15*13*11 + 3*16*15*13 + 2*16*15 + 1*16 + 2 112818

x = 112818 = (2, 3, 4, 2, 6) in residue representation
The resulting coefficients are exactly correct.

5. 4. 3 Correct Sign Determination

The conversion is almost complete. The multiplication
and addition of the moduli and the mixed-radix coefficients
(A) can begin as soon as the first A is determined. The

multiplication and addition begins and occurs
simultaneously with the determination of the latter mixed-

radix coefficients (As, A« As) . Figure 5 . 15 shows the
functional description of the addition and multiplication
of the appropriate moduli and mixed-radix coefficients.
The hardware implementations of the individual blocks are
shown in Appendix C of this document. The last three
blocks of Figure 5. 15 will be discussed now as they are
important to a residue type design. It should be noted

19S A4
4

8X4 Muluplier

AS
4

Twelve-Bit
ultiple Generato

A3 1S
'4

Four-Bit
B ra un A rray

A2
4

Eight-Bit
Binary Adder

Twelve-Bit
Binary Adder

Al

12 12 12

Fourteen-Bit
arry Save Adder

14 14

Fourteen-Bit
arry Save Adde

14 14

Fourteen-Bit
Binary Adder

14

18

edified Adde
A

18

odinted Adde
B

12

Eighteen-Bit
Two's Complemente

18

Eig h teen-B it
Signed Magnitude

Result

Figure 5. 15 Multiplication and Addition of the
Mixed-Radix Coefficients

B5

that the output before the Modified Adder A block will be

an eighteen-bit number between 0 and 240240. If the number

is in the range [0, 120119], then the result is a positive
number and is correct in present form. If the number is in
the range (120120, 240239], then the number is a negative
number, and 240240 must be subtracted from it. The

determination of sign must occur i. n two distinct stages.
First M(2=120120 must be subtracted from the eighteen-bit
result. If this number is negative, then the original
number was in the range of [0, 120119], which was a positive
number. In the very next stage 't is necessary to add

120120 back to this number, because it needs to be a

positive number as it was originally. If the subtraction
of M)2 is not a negative number, then the original number

was in the range [120120, 240239], and must be a negative
number. In the very next stage it is necessary to subtract
another 120120 from this number, so that a total of 240240

has been subtracted from it. At this point, the result is
the completely correct result in two' s complement

representation. If the most significant bit is a "one",
then the lower seventeen bits are complemented, and t. he

result will be in the desired signed magnitude form. If
the most significant bit is a "zero", then the result is in
correct signed magnitude form, and should bypass the
complementer stage. The hardware implementation of the
Modified Adder A and B, as well as the two' s complementer,

are shown in Appendix C of this thesis.

86

This concludes the introduction of the design of this
research. The following chapter presents the simulation of
this design, as well as a performance comparison to a more

conventional approach.

87

CHAPTER VI

SIMULATIQN RESULTS AND COMPARISON

The purpose of this chapter is to present the
simulation results, as well as compare the timing and area
constraints of the residue design to a more conventional
binary approach. Mentor Graphics Neted and Quicksim were

used for schematic capture and logic simulation.

6. 1 Simulation Development

Chapter IV presented a detailed simulation of the
matrix multiplication algorithm. Rather than simulate the
design as a whole, the three fundamental portions were

simulated. Specifically, the Multiply and Add Cell for all
moduli, and the Input and Output translational portions
were simulated. Simulation of the above portions,
including the matrix multiplication algorithm simulation,
will give all the required timing information. It was

found that the schematic capture of the full design would

be a very large task, and would not be beneficial to this
research.

Before any simulation or comparison begins, it is
appropriate to present the primitive component timing and

area models [17). These parameters will be used

consistently throughout this chapter for comparison and

simulation purposes. Table 6. 1 gives the proportional
delay time of an individual gate, as well as the
proportional area each component occupies. Actual timing
and area information is strongly dependent on semiconductor

processing. To obtain actual timing or area information,
the values must be multiplied by a scaling factor, The

scaling factor for the gate delays is T~, and typically
ranges from . 25 ns to 1 ns. The area scaling factor A is
typically around 25x25 square microns, with a strong
dependence on the lithographic 1'newidth of the process
used for fabrication. The simulation results from Quicksim

will now be summarized. The more detailed simulation
output in raw data form, as well as graphical form, can be

found in Appendix D of this thesis.

Table 6. 1 Primitive Component Models

Com onent
n-in ut NAND Gate n&10

Inverter
n-in ut AND Gate n&10
n-in ut OR Gate n&10

XOR Gate
One-Bit Full Adder

D Fli -Flo

Dela T Area A

10

6. 2 Simulation Results

This section will present the simulation results of

each of the three major portions of this design. The most

important portion of the simulation is the MAC. The timing
information of the MAC will determine the overall system

clock speed. The overall clock speed will be crucial when

the comparison is made later in the chapter. A portion of
this section also deals with the global timing information
of the design.

6. 2. 1 MAC Simulation

The more detailed simulation output for the MAC can be

found in Table A. l and Figures A. ll through A. 15 in the
Appendix D. Table 6. 2 shown in this section is to
summarize the MAC simulation results. Since each MAC

contains five independent residue multiply and add cells,
there are five different sub-tables (one for each modulus

) shown in Table 6. 2. Also, note that numbers shown in the
table have been converted to decimal for convenience. The

worst case simulated delay from Table 6. 2 is 23 Te. The

following calculations show how the worst case "predicted"
gate delay for the MAC is obtained:

Modified Braun Array:

Delay = 1 AND Gate + 7 Full Adders
(1) (2) + (7) (2)
16 T~

Upper/Lower Truth Table:

Delay = 1 inverter + 2 nand gates
(1) (1) + (2) (1)

Table 6. 2 MAC Simulation Results

Modulo 7

Input A Input B Input C
Trial ¹ I 4 3 5
Trial ¹2 6 3 5
Trial ¹3 3 6 1

Trial ¹4 3 4 3

Result Delay
3 23
2 13
5 23
I 14

Modulo 11

Input A Input B Input C
Trial ¹ I 8 9 4
Trial ¹2 3 7 9
Trial ¹3 4 8 2

Result Delay
10 21
8 21
1 22

Trial ¹4 1 3 10 2 15

Modulo 13

Input A Input B Input C
Trial ¹ I 8 7 10
Trial ¹2 4 9 2
Trial ¹3 12 4 8
Trial ¹4 2 11 5

Result Delay
I 23

12 19
4 19
I 16

Mo&iulo 15

Input A Input B Input C
Trial ¹ I 13 10 3
Trial ¹2 3 9 12
Trial ¹3 8 9 4
Trial ¹4 9 3 7

Result Delay
13 23
9 18
I 16

Modulo 16

Input A Input B Input C
Trial ¹I I 4 9
Trial ¹2 3 5 2
Trial ¹3 4 12 10
Trial ¹4 I 11 12

Result Delay
13 9
I 9

10 8
7 6

Four-Bit Binary Adder:

Delay = 4 Full Adders
(4) (2)

B T~

Lower Truth Table:

Delay = 1 inverter + 2 NAND gates
(1) (1) + (2) (1)

= 3 Te

Summing the above gate delays gives the MAC worst case gate
delay, which is 16+3+()+3 = 30 T . Note that the simulated
worst case delay should always be less than or equal to the
worst case predicted delay, as is the case in Table 6. 2.

6. 2. 2 Input Simulation

The results of the input translation process are
summarized in Table 6. 3. The more detailed simulation
output can be found in Table A. 2 and Figures A. 16 through
A. 20. The reader should notice that some of the delays are
larger than 30. This means that the input translation
process must be broken up into two stages since the
pipeline segment time (governed by the MAC) is the maximum

time any one segment should take to execute. Examining the
worst case delays for the input translation process will
help determine where the latches will need to be placed,
ensuring that no operation in the input translational
process exceeds the maximum of 30 Tw. The worst case
delays for the input translation process are given as

Table 6. 3 Input Translation Simulation Results

Trial ¹1
Trial ¹2
Trial ¹3
Trial ¹4

Modulo 7

Input Result Delay
-44 5 25

+77 0 26
-114 5 23
+57 I 15

Trial ¹ I
Trial ¹2
Trial ¹3
Trial ¹4

Modulo 11

Input Result Delay
-82 6 29

+60 5 21
41 3 28

+114 4 23

Trial ¹I
Trial ¹2
Trial ¹3
Trial ¹4

Modulo 13

Input Result Delay
-36 3 22

+109 5 25
-51 I 24

+71 6 20

Trial ¹I
Trial ¹2
Trial ¹3
Trial ¹4

Modulo 15

input Result Delay
-115 5 35
+36 6 15
43 2 25

+28 13 19

Trial ¹I
Trial ¹2
Trial ¹3
Trial ¹4

Modulo 16

Input Result Delay
-51 13 7

+49 I 4
-87 9 6

+104 8 2

83

follows:

Input Operand Adjustment:

delay = 1 XOR Gate + 10 Full Adder
(I) (2) + (I 0) (2) =22 Tv

Upper/Lower Truth Tables:

delay = 1 Inverter + 2 NAND Gates
(1) (I) + (2) (1) =3 Tv

Four-Bit Binary Adder:

delay = 4 Full Adders
(4) (2)
8 Tv

Lower Truth Table:

delay = 1 Inverters t 2 NAND Gates
(1) (I) + (2) (1)

= 3 Tv

F'our-Bit Binary Adder:

delay = 8 T

Lower Truth Table: (Same)

This gives a worst case gate delay of 47 T for the input
translation process. If a row of latches is placed between

the Upper/Lower Truth Tables block and the first Four-Bit
Binary Adder block, the gate delays for the two different
stages are 25 Tv and 22 T for the first and second stages,
respectively.

6. 2. 3 Output Simulation

The simulation results of the output translational
process are summarized in Table 6. 4. Again, the

Table 6. 4 Output Translation Simulation Results

od 16 Mod 15 Mod 13 Mod 11 Mod 7
Input In ut In ut Input Input

Result Delay

Trial ¹ I 7 13 2 4 3 -104297 173
Trial ¹2 13 13 4 8 6 107533 125
Trial ¹3 12 5 10 5 4 12380 118
Trial ¹4 6 2 3 7 2 -1258 160

more detailed simulation output can be found in Table A. 3

in the Appendix D. There is no timing diagram for the
output portion because the large number of signals would

not fit with clarity on one page. Output translation is
the most complex of the operations presented thus far.
There are many design options, depending on the complexity
of circuitry used in the addition and multiplication of the
mixed-radix coefficients. This design uses only simple
binary adders and multipliers. Much faster methods are
available, but they consume a much larger area. Faster
methods, as will be proved shortly, are not beneficial.
Output translation is a pipelined process. As soon as the
first matrix multiplication is out of the MAC array, the
next multiplication may begin. In light of this, one pair
of matrices are being multiplied together at the same time
the result of the prior pair of matrices is going through

output translation. Thus, for the above stated reason, the
time required for output translation is negligible after
the first matrix multiplication. It can be shown that the
output translational process must be broken into fifteen

95

stages in order to operate at the same clock cycle as the
rest of the matrix multiplier. From Figure 5. 11 it takes
eight clock cycles to generate the mixed-radi. x coefficient
A5. The remaining seven (8t7 = 15) are a result of t. he

Twelve-Bit Multiplication, the Fourteen-Bit Carry Save

Adders, the Modified Adders A and B, and the Two's

Complementer (all shown in Figure 5. 15) . The resulting
output matrix values will most likely be transferred off of
the matrix multiplier chip at the same clock rate as the
system bus. Also, it is very unlikely that the system bus

will be operating at the same speed as the matrix
multiplier. Nonetheless, for comparison purposes, this
research will use a worst case of 15 clock cycles to
convert from residue representation to signed magnitude
format. The following section examines the the global
timing information from the above simulation results, as
well as the results of the matrix multiplication algorithm
simulation.

6. 2. 4 Global Considerations

Although a comprehensive global simulation has not
been performed, there exists enough information to
precisely predict the overall performance of the design.
As derived in Chapter IV, it takes seventeen clock cycles
to completely multiply two matrices together. From the

96

previous section, it takes 2 clock cycles for input

translation, and 15 clock cycles for output translation.
Therefore, it takes 34 clock cycles to complete the first
matrrx multiplication. It takes 17 additional clock cycles
for each successive matrix multiplication. The following
equation gives the total processing time (T~) in gate
delays for a certain number of successive
multiplications (N):

I) (tmult:) (ts) N&1

matrix

where t~ = (17 cycles + 17 cycles) te
tn = tssg + teer =30+3

33 To/cycle

t me = clock cycles to complete
MAC array portion

Simplifying:

T = 1122 + (N — 1) (17) (33)
1122 + (N) (561) — 561
561 + (N) (561)
(N+1) (561) T

For example, the total processing time to multiply two

pairs of matrices in succession is 1683 Te. The following
section calculates the area such a design occupies on

silicon.

6. 3 Residue Design Area Calculations

This section will briefly show the calculations made

in determining the area this design will occupy on silicon.
Also in this section will be a discussion on global area

97

issues

6. 3, 1 MAC Area

The MAC area calculations are shown below, it may be

necessary for the reader to refer back to figures in the
previous chapter dealing specifically with the MAC. The

calculat. ions for one MAC are as follows:
Modified Braun Array:

Area = 16 Full Adders + 16 And
(16) (10) + (16) (2)
192 Av

(6 Less Full Adders for Mod 1

Gates

6 Braun Array Only)

Lower and Upper Truth
Modulo 7:

Upper
Area

Lower
Area

Modulo 11:
Upper

Area

Lower
Area

Modulo 13:
Upper

Area

Lower
Area

Modulo 15
Upper

Tables:

12 NAND Gates + 5 1nverters
(12) (1) + (5) (1)
17 Av

27 NAND Gates + 5 lnverters
(27) (1) + (5) (1)
32 Av

18 NAND Gates + 5 Inverters
(18) (1) + (5) (1)
23 A

28 NAND Gates + 5 Inverters
(28) (1) + (5) (1)
33 A

20 NAND Gates + 5 Inverters
(20) (1) + (5) (1)
25 Ae

28 NAND Gates + 5 Inverters
(28) (1) + (5) (1)
33 Av

98

Area

Lower
Area

10 NAND Gates + 5 Invezters
(10) (1) + (5) (1)
15 A

26 NAND Gates t 5 Inverters
(2 6) (1) + (5) (1)
31 A~

Four-Bit Binary Adder:
Area = 4 Full Adders

(4) (10)
40 Av

TOTAL MAC AREA = 5 (192) + 80 + 2 (129) + 4 (40) — 6 (10)
1398 Av

Thus the total (4ultiply and Add Cell Area is 1398 Aw.

6. 3. 2 Input Translation Area

The input translation area calculations are as
follows:

Input Operand Adjustment:

Area = 10 Full Adders + 7 XOR Gates
(10) (10) + (7) (3)
121 Aw

Upper and Lower Truth Tables:
(Same as Above)

Four-Bit Binary Adder:
&Same as Above)

TOTAL AREA = 1 (121) + 80 + 3 (129) + 8 (40)
908 AK

Thus the total Input Translation Area is 908 Ae.

6. 3. 3 Output Translation Area

The output translation area calculations are as

ca

follows:

NCA (Non-Conditional Adder):
Area = 5 Full Adders + 4 Inverters

(5) (10) + (4) (1)
54 A

CA (Conditional Adder);
Area = 5 Full Adders t 4 AND Gates

(5) (10) + (4) (2)
58 A~

Four-Bit Braun Array:
Area = 12 Full Adders t 16 AND Gates

(12) (10) + (16) (2)
152 Aw

Truth Tables:
(Same as Above)

Four-Bit Binary Adder:
(Same as Above)

Eight-Bit Binary Adder:
Area = 8 Full Adders

(8) (10)
80 As

Eight by Four Multiplier:
Area = 32 Full Adders + 32 And Gates

(32) (10) + (32) (2)
384 A

Twelve-Bit Binary Adder:
Area = 12 Full Adders

(12) (10)
120 Ae

Multiple Generator:
Area = 36 And Gates

(36) (2)
72 A

Fourteen-Bit Carry Save Adder:
Area = 14 Full Adders

(14) (10)
140 Ae

Modified Binary Adder A:
Area = 18 Full Adders

(18) (10)
180 AQ

100

Modified Binary Adder B:
Area = 36 Inverters + 54 NAND Gates + 18 Pull

Adders
(36) (1) t (54) (1) + (18) (10)
270 AR

Twos Complementer:
Area = 1'7 AND Gates + 17 OP Gates + 17 XOR Gates

(17) (2) + (17) (2) + (17) (3)
119 A

TOTAL OUTPUT
TRANSLATION AREA = 10(54) + 19(58) + 6(152) + 850 + 400

+ 80 + 404 + 120 + 72 + 2(140)
+ 140 + 180 + 270 + 119

5469 A

Thus the total Output Tran lation Area is 5469 Aw.

6. 3. 4 Global Considerations

There are several global options to be considered when

implementing such a design, depending strongly upon the
total amount of silicon area available. One may examine

the output coefficient pattern, and note that each output

port only has a non-zero coefficient every three clock
cycles, such that three output ports could share an output

translator. It is possible to build an array of data
latches to accumulate the three resultant matrix operands

at each clock cycle. In this method, the resulting
operands wait their turn to enter the single output

translator, and are then transferred off the of the matrix
multiplier chip. Another scheme could be to implement

three different output translators, with each translator
transferring an output matrix coefficient off chip every

101

clock cycle. The latter scheme is much more efficrent
time-wise, but requires three output transistors as opposed

to one. The latter scheme also requires more component

package pins.

The input translator rs not as large, and does not

require as much consideration. Since each input port only

requires an input operand every three clock cycles, and

there are 10 input port. s, only four input translators are
necessary.

The global area calculation, for both methods of
output translation is shown below:

TOTAL AREA = 4(908) t 25(1398) + (1 or 3) (5469)
44051 or 54989 Ae

The following calculation should give the reader an idea of
how large such a circuit is on silicon.

(Av = 25x25 square microns)

Chip Area = 54989x(25x10) x(25x10) = . 344 cm

6. 4 Design Comparison

It is the purpose of this section to compare the
residue design to a more conventional implementation of the
matrix multiplication algorithm. As previously stated, the
residue system is error free, in the sense that the output

is correct for all possible eight-bit inputs. It was

assumed that the input operand was an eight-bit. integer
value.

102

6. 4. 1 Comparison Structure

The approach of the comparison structure will be that
of cascading a signed magnitude multiplier with a signed

magnitude adder. Signed magnitude multipliers are the same

as a Braun array, with the addition of one XOR Gate to
determine the resulting sign. The timing and area
calculations for the eight-bit multiplier are shown below:

Eight-Bit Multiplier:

Delay = 12 (2) + 2
26 T

Area = 49 (2) + 42 (10)
518 Ae

The calculations for a eighteen-bit signed magnitude adder

are shown below (17):
Eighteen-Bit Adder:

Delay = 3 (2) + 17 (2) + 17 (2) + 2
76 T

Area = 16 (18)
288 Ae

Thus, the comparison structure has a total of 102 T , and

an area of 806 Av. As with the residue design, the
following global area calculation will allow comparison to
the residue design:

Total Area = 25(806) = 20150 Av

The total , processing time (Te) to multiply N successive
pairs of matrices together is given by the following equation:

103

T = N (te) (17)
N (t&&& + tarr) (17)
N (102 + 3) (17)
1785N T

N&1

The total time required to multiply two pairs of matrices
in succession is 3570 T , the time required to multiply

three pairs of matrices together in succession is 5355 Ts.

6. 4, 2 Time and Area Comparisons

The global area required to implement the residue

design is 44051 A~ or 54989 A depending on the output

strategy used. The global area required for the
conventional binary approach is 20150 A . The residue

design is 2. 18 or 2. 73 times larger than the binary

approach.

The timing comparisons yield different results
depending upon the assumed number of successive
multplications occurring. Table 6. 5 shows the time

required to execute a given number of matrix

multiplications for the residue and conventional method, as

well as the ratio of the two processing times.

Table 6. 5 Processing Time Comparison

N esidue Tp

1122
3366

Binary Tp

1785
8925

Tp Ratio

1. 59
2. 65

10 6171 17850 2. 89
50 28611

100 56661
500 28 1061

89250
178500
892500

3. 12
3. 15
3. 18

104

The total processing time T ratio converges to 3. 18. 1n

an ideal application, the matrix multiplier is constantly
in operation, It must be remembered that the residue

design is capable of multiplying over 1, 5 million pairs of
matrices in one second (assuming a relative gate delay of
one nano-second). For this reason, 500 successive
multiplications (as assumed in Table 6. 5) is a very small

number compared to actual hardware capabilities.

i05

CHAPTER VII

CONCLUSION

This research applied the Residue Number System to a

specific digital signal processing problem, that of matrix

multiplication. The mathematical operations of addition
and multiplication are simpler than residue division and

sign determination. The matrix multiplication algorithm

was an ideal candidate, since it only requires
multiplication and addition.

The proposed design used common building blocks in the

multiply and add cell, the input translator, and the output

translator. Using the common building block approach to
VLSI design greatly reduces design time. As a result of
this, any extra design time spent optimizing the layout of
these modules should be very beneficial to the performance

of the overall design. This design methodology also
achieves a higher chip density, resulting in both a cheaper

and a higher performance implementation.

The system presented in this research was designed to
interface with a system using the signed magnitude number

system. If this design is attached to a purely residue

processor, neither the input nor the output translators are
necessary. This would greatly affect the area comparison

calculations, beneficial to the residue number system. The

input and output translators were designed and included

106

because there are no commercially available residue

processors, hence input and output. translators are

essential at the present time.

7. 1 Contributions

In this research, a design was formulated for a

specific input word length and matrix bandwidth. It should

be noted that there is no limitation when extending this
methodology to either larger word lengths or matrix

bandwrdths. The number of truth table inputs is not

dependent on the specific problem. In this research, two

four-bit truth tables, and one two-bit truth table could

have been implemented rather than two five-bit truth
tables. In light of this, as many truth tables as

necessary can be placed in parallel for larger word

lengths. All other portions of the design may easily be

extended to larger problems, although it may be necessary

to add another modulus to satisfy dynamic range

requirements.

Typical methods of residue addition, and especially
multiplication, require the use of ROM' s. ROM' s tend to be

very slow, particularly in this case, where the global

clock speed (determined by the MAC) is of prime importance.

A very regular and modular approach to residue

multiplication and addition was presented. The fact that
addition and multiplication occurs simultaneously in this

I07

research is irrelevant, as each could occur alone with

similar hardware. The proposed method of residue addition
and multiplication is an excellent option to the vLSI

designer. Along with residue addition and multiplication,
this research also presented methods of input and output

translation, which modified current methods of input and

output translation. More importantly, these methods use

the same building blocks as the MAC, which is essential to
VLSI design.

Tnis research also provided a comparison of the

residue design to a more conventional approach. Although a

larger amount of area is necessary to implement the residue

design, it is still easily implemented on a single chip.
The timing performance is very significant. The residue
design is capable of a throughput greater than three times

that of the binary design. The use of the residue system,

throuah this comparison, should be greatly promoted. Also

presented in this research were several practical design

considerations, essential to a system designer considering
a design of the residue type. Several comments were made

on the less apparent properties of the RNS, as well as the
process of moduli selection,
determination.

and dynamic range

The exact input and output coefficient timing was

derived for the matrix multiplication algorithm, due to
inadequate presentation in prior literature. Also, a

108

simulation of the algorithm was conducted such that timing

information could be obtained. From the algorithm

simulation and Quicksim logic simulation, the comparison to
a conventional binary approach was made. The area required

for the residue design was found to be 2. 73 times larger
than the conventional design in the worst case. A large

portion of the difference is found in the input and output

translation processes. The residue design is much faster.
The residue design processes input matrices of bandwidth

five 3. 18 times faster than the conventional design. This

proves that "peed enhancements over conventional methods

can be obtained through the application of the Residue

Number System.

7. 2 Future Research

There are many areas within the Residue Number System

which would benefit from further research. In order for
the RNS to find its way into the commercial market, several

shortcomings must be overcome. Residue division, is very

difficult, as well as sign determination and magnitude

comparison. It is the above mentioned limitations that
currently prevent the possibility of an all-RNS

workstation.

It is very likely that many already developed

algorithms, like the matrix multiplication algorithm,

could also benefit greatly from the RNS. It is also likely

109

basic algorithms can be modified to exploit tne

characteristics and unique properties of the RNS,

Especially algorithms which fail to converge from round off
error, since the RNS does not allow this type of error.

The residue number system has many interesting
properties to offer, but requires future designers to
examine their individual applications, and to objectively
evaluate the advantages and disadvantages of the RNS.

110

REFERENCES

[1] Bayoumi, M. A, , G. A. Jullien, and W. C. Miller,
"Highly Parallel Architectures for DSP Algorithms
using RNS", Proceedings of ISCAS 85, pp. 1395 — 1398, 1985.

[2] Szabo, N, S. and R. I. Tanaka, Residue Azi thmeti c and Its Appli cati ons to Computer Technology, New York:
McGraw-Hill, 1967.

[3] Kung, H. T. , "Structure of Parallel Algorithms",
Advances in Computers, Vol. 19, pp. 65 — 112, 1980.

[4] Baraniecka, A. and G. A. Jullien, "On Decoding
Techniques for Residue Numbez System Realizations of Digital Signal Processing Hardware", IEEE Transactions
on Circuits and Systems, Vol. CAS-25, No. 11, pp. 935-
936, November 1978.

[5] Leung, Y. -Y. J. and M, A. Shanblatt, Performance
Tradeoffs in *he Hierarchical Design of Regular VLSI
Structures, Technical Report No. MSU-ENGR-86-001,
Michigan State University, East Lansing, MI, January 1986.

[6] Taylor, F. J. , "A VLSI Residue Arithmetic Multiplier",
IEEE Transactions on Computers, Vol. C-31, No. 6, pp. 540-546, June 1982.

[7] Bayoumi, M. A. , G. A. Jullien, and W. C. Miller, "A
VLSI Implementation of Residue Adders", IEEE
Transacti ons on Circui. ts and Systems, Vol . CAS-34,
No. 3, pp. 284-288, March 1986.

[8] Banerji, D. , "A Novel Implementation for Addition and
Subtraction in Residue Number Systems", IEEE
Transactions on Computers, Vol. C-23, No. 1, pp. 106-
109, January 1974.

111

[9] Banerji, D. K, and J. A. Brzozowski, "On Translation
Algorithms in Residue Number Systems", IEEE
Transacti ons on Computers, Vol. C — 21, No. 12, pp. 1281-1285, December 1972.

[10] Alia, G. and E. Martinelli, "A VLSI Algorithm for Direct and Reverse Conversion from Weighted Binary
Number System to Residue Number System", IEEE
Transacti ons on Ci zcui t s and S yst ems,

Vol�

. CAS-31, No .
12, pp. 1033-1039, December 1984,

[11] Capocelli, R. M. and R. Giancarlo, "Efficient VLSI
Networks for Converting an Integer from Binary System to Residue Number System and Vice Versa", IEEE
Transactions on Circuits and Systems, Vol. CAS-35, No.
11, pp. 1425-1430, November 1988.

[12] Bayoumi, M. A. , G. A. Jullien, and W. C. Miller, "I/O
Strategies for Residue Number System Architectures for Digital Signal Processing Applications", Inteznati onal
Symposium on Ci rcui ts and Systems 1984, pp. 1069-1072,
1984.

[13] Lyman, J. , "Components and Packaging", Electr oni c
Design, Vol. 37, No. 1, pp. 50 — 63, January 12, 1989.

[14] Soderstrand, M. A. , Residue Numbez System Arithmetic:
Modern Applicatio~s in Digital Signal Processing, New
York: IEEE Press, 1986.

[15) Agnew, J. , and R. C. Knapp, Linear Algebra Vi th
Appli cati ons, Monterrey, CA: Brooks/Cole Publishing
Co. , 1983.

Leung, Y. -Y. J. and M. A. Shanblatt, "Systolic Array
Simulation for Quantification of Speed/Area Parameters", Simulation, Vol. 44, No. 6, pp. 295-300,
June 1985.

[17] Hwang, K. , Computer Ari thmeti c, New York: John Wiley
and Sons, 1987.

112

APPENDIX A

MATRIX MULTIPLICATION ALGORITHM SIMULATION RESULTS

113

5X5 MATRIX MULTIPLICATION SIMULATION

9 0
3 — 3
7 — 2

6 — 2
0 — 9

8
-5

3
— 9 — 1

— 7
-5

— 25 — 40
-5 — 31
— 9 — 30
26 31
36 117

— 62
— 32
— 66
-58

63

45
6

33
9

— 3

— 36
9

-24
— 24
— 42

11R
7R
4R
2R
1R

0 — 9
— 2 0

0 0
0 -2

— 3 0

0 0
9 0
0 0
0 5
2 0

0 0
0 0
3 0
0 0
0 0

1L
3L
6L

10L
15L

OUTPUTS

0 -4 0 0
0 0 — 6 0
2 0 0 — 7
0 -5
0 0

0
3
0
0

0 — 9 0 0
0 0 — 1 0

0 0 -5
0 — 7 0 0
0 0 0 0

11
7
4
2
1
3
6

10
15

0
0
0
0
0
0

0 0

0 — 5
25 0
0 — 4
0 0

0
0

— 9
0

0 0
— 62

0 36
0 0
0 31

0 — 30
31 0
0 -32
0 0
5 0
0 -36

0 0
117 0

0 0
0 -5

— 66 0
0 33
0 0
9 0
0 0

0
0

63
8 0

0
0

-24
0
0

0
0
0

-3
0

-24
0
0
0

0 — 42
0 0
0 0

L
R
0

2 I
L
R
0

3 I
L
R
0

4 I
L
R
0

5 I
L
R

0 11
0 -4
0 9
0 -25

0 7
0 — 4
0 3
0 -5
0 14
0 -6
0 9
0 -40

0 19
0 -4
0 7
0 -9
0 8
0 — 6

— 10 0 0

— 3 0
-31 0

0 — 16

0 -2
0 -30
0 -23

0 -3 0
0 -32 0
0 0 24

0 1
0 31
0 — 42

0 — 2

-48 0 0
— 9 0 0

2 0 0
— 66 0 0

0 — 13 0
0 — 9 0
0 5 0
0 -58 0
0 35 0
0 -1 0
0 2 0
0 33 0
0 0 90
0 0 — 9
0 0 3
0 0 63
0 0 14
0 0 — 1
0 0 5

9
0
0
9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0

-3
0
0

— 3
-24

0
0

-24
0
0
0

0 -42

0 -42

0 0
0 -42

114

6

7

8

9

10

11

12

13

14

15

16

17

18

0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0
I
L
R
0

0 11 0
0
0
0
0
0
0
5
0
1
3
2
7
8
2
3

14
0

— 5
0
0

26
— 6

7
— 1
-2
— 7

3
— 2

9
4
9

45

0 19
0 4
0 2
0 2
0 8
0 16
0 -5
0 3
0 1

0 3
0 6
0 18
0 16
0 2
0 5
0 26
0 8
0 -5
0 2
0 -2

0 — 10
0 1
0 — 7
0 9
0 — 62

18
-4
— 2
26

— 48
18

— 3
6
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

— 9
36
12
— 6
-2
24

7
— 7

7
-42

6
4
3

18

9
-36

— 6
— 9
54
-30
— 7
-2
— 16
15

4
7

43

0
0
0
0
0

54
7
9

117
— 16

3
1

— 13
43

4
— 2
35
— 12
— 7
— 3

9

0 9
0 — 14
0 -5

0 — 24

0 — 9
0 0

0 — 1

0 -3
0 1
0 — 5

0 — 2
0 0
0 0

7
0
0

63
3
9

90
10

4
1

14
-28
-7
— 2
— 14

0
— 3

0

0 -7
0 1
0 1

0 -36

0 — 42

0
0
0
0

— 9
0
0
0

— 1
0
0

— 27
— 5

3
— 42

0
0
5
0

0 — 1
0 0

0 -5
0 0

115

19

20

21

22

23

24

25

0 8
0 2
0 16

0
0
0 16

0 2
0 6
0 12
0 32
0 — 5
0 5
0 7

8

32

0
0 3
0 — 12

— 7
— 9
63
18

— 2
10

-4
7

— 2

-5
6

-30

3
5

15

0
0
0 1

0 0
0 — 2
0 0

4
— 9
-36

-2
8

0 -4
0 -9
0 36

4
0
0

36
-7

9
— 27

0 — 7
0 0
0 0

0 — 5

APPENDIX B

TRUTH TABLES AND KARNAUGH MAPS

Modulo 7 Lower Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

IRESULT
iMOD 7

TRUTH TABLE
OUTPU T

Y
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
0
0
1
1

W

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

X
0 1 1 0
0 1 1 0
0 0 0 1
0 1 0 0

Y

0 0 0 0
0 0 1 1
1 0 0 0
1 1 0 1

z
0 0 1
1 1 0
1 0 1
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 1 0 0
0 0 0 1
1 0 0 1
1 0 0 1

1 1 0 1
1 0 0 0
0 1 1 1
0 0 1 0

0 0 0 1
1 0 1 0
1 0 1 0
0 1 0 1

Modulo 11 Lower Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

fRESULTi
IMOD 111

0
1
2
3

5
6
7
8
9

10
0
1
2
3
4

5
6
7
8
9

10
0
1
2
3
4
5
6
7
8
9

TRUTH
QUTP

TABLE
UT

Y

0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0
1
0
0
1
1
0
0
1
1
0
0

0 0 0 1
0 0 0 1
0 0 0 0
0 0 0 1

X
0 1 0 0
0 1 0 0
0 1 1 0
0 1 0 0

Y

0 0 0 0
0 0 1 0
1 1 0 0
1 1 1 1

z
0 0 1 0
1 1 0 1
1 1 0 0
0 0 1 0

0 1 0 0
0 1 0 0
1 0 1 0
0 0 1 0

1 0 1 0
1 0 1 0
0 0 0 1
1 0 0 1

0 0 1 1
1 1 1 1
0 0 0 0
1 0 0 0

1 1 0 0
0 0 1 1
0 1 1 1
1 0 0 0

Nodulo 13 Lower Truth Table

5 BIT
RESULT

0
1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

fMOD 13f
0
1
2
3

5
6
7
8
9

10
11
12

0
1
2
3
4
5
6
7
8
9

10
11
12

0
1
2
3
4
5

fRESULTf
TABLE TRUTH

OUTP UT

W

0 0 1 1
0 0 0 1
0 0 0 1
0 0 0 1

X
0 1 1 0
0 1 0 0
0 1 0 0
0 1 0 0

Y

0 0 0
0 0 0
1 1 1
1 1 0

z
0 0 0 0
1 1 0 1
1 1 0 1
0 0 1 0

0 0 0 1
0 1 0 1
0 1 0 0
0 1 0 0

0 1 0 0
1 0 0 1
1 0 1 0
1 0 1 0

1 1 1 1
0 0 1 0
1 1 0 0
0 0 0 0

1 1 0 1
0 0 1 0
0 0 1 1
1 1 0 0

120

Modulo 15 Lower Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
'7

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

/MOD 15'
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

0
1

iRESULTi
TRUTH TABLE

OUTPUT
W

0 0 1
0 0 1
0 0 0
0 0 1

X
0 1 1
0 1 1
0 1 0
0 1 1

Y
0 0 0
0 0 0
1 1 0
1 1 1

z
0 0 0
1 1 1
1 1 0
0 0 0

0 0 1 1
0 0 1 1
0 1 0 1
0 0 0 1

0 1 1 0
0 1 1 0
1 0 0 1
0 1 0 0

0 0 0 0
1 1 1 1
0 0 0 0
1 1 0 1

1 1 1 1
0 0 0 0
0 0 1 0
1 1 0 1

Modulo Upper Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

iACTL.
DEVALUE

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
800
832
864
896
928
960
992

[RESULTS
iMOD

TRUTH TABLE
OUTPUT

W X Y
0 0 0
0 1 0
0 0 0
0 1 0
0 0 1
0 1 1
0 0 1
0 0 0

W

Q Q * *
p p * *
0 0 0 *
Q Q * *

X
0 0 * * 11**
1 0 1 *
0 0 * *

Y 01** 01**
0 0 0 *
Q 1 * *

8
Q Q * * 00**
1 0 0 * 11**

Q * * *
Q * * *
p * * *
Q * * *

Q * * *
j * * *

* * *
p * * *

Q * * *
Q * * *

* * *
* * *

* * *
j * * *
p * * *
p * * *

122

Modulo Upper Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

ACTL.
IVALUE

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
800
832
864
896
928
960
992

IRESULTI
IMOD 11I

0
10

6

TRUTH TABLE
OUTPUT

W X Y
0 0 0
1 0 1
1 0 0
1 0 0
0 1 1
0 1 1
0 1 0
0 1 0

W

Q Q * *
Q * *

1 0 0 * 10**
X

0 1 * * 01**
0 1 1 *
0 1 * *

Y
0 1 * *

* * 001*
0 0 * *

Z 01**
Q Q * *
0 0 1 *
j j * *

0 * * *
0 * * *
Q * * *
Q * * *

* * *
* * *

Q * * *
* * *

j * * *
Q * * *

* * *
Q * * *

Q * * *
* * *
* * *

Q * * *

123

Modulo 13 Upper Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
800
832
864
896
928
960
992

0
6

12
5

11
4

10
3

12
5

11
4

10

iACTL. iRESULTi
iVALUEiMOD 13'

TRUTH TABLE
OUTPUT

W X Y

0 0 0
0 1 1
1 1 0
0 1 0
1 0 1
0 1 0
1 0 1
0 0 1

W

Q j * *
Q Q * *
0 0 1 *

] * *

X
Q Q * *

* * 101*
Q * *

Y
0 j * *
] Q * *
0 1 0 *
Q 1 * *

Z

Q j * *
0 0 * *
1 1 0 *
0 Q * *

Q * * *
] * * *

* * *
Q * * *

* * *
Q * * *
0 * * *

* * *

Q * * *
* * *
* * *

Q * * *

* t *
j * * *
0 * * *
Q * * *

124

Modulo 15 Upper Truth Table

5 BIT
RESULT

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

0
32
64
96

128
160
192
224
256
288
320
352
384
416
448
480
512
544
576
608
640
672
704
736
768
800
832
864
896
928
960
992

0
2

6
8

10
12
14

0
2
4
6
8

lACTL. IRESULTi
iVALUEiMOD 151

TRUTH TABLE
OUTPUT

W X Y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

W

Q j * *
Q 1 * * 010*
p] * *

X
Q Q * *
Q Q * *
1 1 0 *

* *

Y
Q P * *
] j * *
1 1 0 *
Q Q * *

Z

Q Q * *
Q Q * * 000*
Q Q * *

Q * * *
Q * * *

* * *
p * * *

Q * * *
* * *

Q * * *
* * *

* * *
p * * *
Q * * *
1 * * *

Q * * *
Q * * *
Q * * *
p * * *

125

APPENDIX C

SCHEMATIC PLOTS

125

Figure A. l Modulo 7 Truth Table Hardware

127

Figure A. 2 Modulo I 1 Truth Table Hardware

128

Figure A. 3 Modulo 13 Truth Table Hardware

129

Figure A. 4 8X4 Multiplier

130

Figure A. 5 Twelve-Bit Multiple Generator

Figure A. 6 Fourteen-Bit Carry Save Adder

] 32

Figure A. 7 Fou rteen-B it B i nary Adder

133

Figure A. S Modified Adder A

134

Figure A. 9 Modified Adder B

Figure A. 10 Seventeen-Bit Two's Complementer

136

APPENDIX D

SIMULATION RESULTS

137

Table A. l MAC Simulation Data

ZQ. Q

21. Q I
102. 4 Q

0
I IC 4 0 . . I I Q

I Q

I D

14. 4 Q

115 I ~
116 4 0
:17 I Q

119 4 0
120 4 D

I 4 0
2 4 0
3 4 0

zat e o !18 0
2' 8 D

15 6 0
zie. e a
217 8 0 . 8 8 0
219 8 Q

Zzo. a 0
221. 3 Q

zzz. a a
223. 5 ~
224. e a
Z25. 8 0
zze e ~
3QI 2 Q

315 2 0
17. 2 Q

)18. 2 Q

32Q 2 0
321. 2 0
322 2 0

C Q

0 Q

0
0 I
0 I
0
G I
C I
0
0
Q I

I
0 I
Q I
Q

0 I
I

0 I
I Q

I 0
I Q

I 0
I C

I Q

Q

I 0
I 0

0
I 0
I Q

I 0
0
0

Q 0
Q Q

0 0
~ Q

Q Q

0 0
Q 0

Q I Q

0 I 0
Q I 0
I 0 I
I 3 I

0 I
I ' I
I . I
I 0

0
I
I 3 I
I Q I

Q I
Q I

I
I Q I
I Q I
Q ' 0
tl I
Q I 0
0 I 0

Q

0 I G

Q 0
0 I 0
0 I ~
0 I 3
0 I 0
0 I G

~ ' C

Q '. Q

0 I 0
I Q 0
I 0 Q

I 0 Q

I Q Q

I Q C
0 0

I 0 0

C I 0 I 0
Q I 0 I Q

Q
'

Q I 0
I ' I 0 0

I '. 0
I 0

I I 0
I C 0

G I
Q Q

I I 0 0
I I I
I I '. 0 D

I I ' I Q

I ' 3
I 3 I
I I

Q 0 Q 0 I
0 0 0 ' I
Q Q 0 Q I
0 0 Q 0 I
~ Q 0 0 I

c a o
Q Q 0
0 Q 0 Q

Q 0 0 Q I
0 0 Q I

Q 0 0 C

0 0 0 0 I
0 0 tl 0
Q Q 0 Q

Q 0 3 0
I I I 0 I

I I 0 I
I '. 0 I

I I I 0 I
I I I 7

I I
I I ' 0 I

4
Q 3
Q

I
I I

C

I

3 3
0 K

C

3 . 0
C

0
Q 0)

I Q

I I
0

I
I

I
I Q

I I
0
I

0
G I

I
0 0

I
3 0 G

0 G

a
Q C

0

0 Q

C

0 G Q

0 0
Q I
0 0
3
Q Q

0 G

0 0
0 I
0

Q

0
0 C

Q Q

G 0
0 Q

0 0

0

Q 0
0 3

G

0 0
Q 0

I I
0 0 0
I Q

I
0 I 0

Q. Q

21 Q

22 Q

zj. ~
102. 4

I 4
'15 4

zo4. e Ill. e
215 ~
216. 8
2ul. 8
219 8
22o. e
222. 8
223. 8
22 ' . S
125. 8
226. 8
227. 8
3Q7. 2
318. 2
319. 1
32D. 2
321. 2

0 0
Q I 0
Q I 0
0 I 0
Q I
Q I I
Q I I
Q ~ I

Q Q

Q D

0 0
II Q

0 Q

Q Q

Q Q

I 0
0 Q I
0 Q I I
0 Q I I
Q Q I I
Q Q I I,

Q Q I I
Q Q I I
Q Q I I
Q 0 I I
0 0 I I
0 0 I I
0 0 I I
0 0 I
0 Q I I
Q Q I
0 0 I I
Q 0 I

0 I
0 I I
0 I I
0 I
0 I
tl I
I '. 3

I 0
I I 0
I I Q

I I Q

I I Q

I I 0
I I 0
I I ~
I I 0
I I Q

I I Q

I I D

I 0 0
I Q 0
I 0 Q

I Q 0
I 0 0

Q

Q I
0 I
0 I
0 I
Q I
D

0 Q

Q 0
0 Q

Q G

Q 0
0 Q

Q Q

Q Q

Q 0
Q 0
D 0
Q 0
a Q

Q 0
Q 0
Q D

D Q

Q 0

Q

Q I
0 I
~ I
~ I
~ I
Q I
Q I
Q

0
Q I
0
Q I
0 \
Q

0 I
0 I
0 I
0 I
I I
I I
I I
I I
I I

0 X
0 Q

~ 0
0 ~
Q Q

0 0
Q Q

0 Q

0 Q

0 Q

G I
0 0
0 I
0 0
Q 0
0 I
0 I
0 I
0 I
0 I
0 I
0 Q

0 Q

0 Q

Q Q

6 x
x r
I 4
I I
I I
Q I
I 0
I 0
0
I 0
Q I
0 Q

0 I
Q

0 Q

0 I
I I
Q I
D Q

D I
Q I
Q 0
I 0
I I
Q I

TIME 3

N$113NXG

~ I 53 "bl 3 «I 3 "I
xl I Clo R I 44

Q. Q I
22. 6 I
23. Q I

IQ2. ~ Q

IIQ. 4 D

111. 4 8
312. ~ Q

113 4 Q

1' . 4 Q
115. 4 Q

116. 4 Q

117. 4 6 '14. 4 0
119. ~ 0
12Q. ~ Q

121. 4 Q
2Q4. 8 I zij. e I
21 ~ . 8 I
236. 6 I

Q 0
0 Q

0 Q

I 0
I 0
I 0
I Q

I 0
I Q
I 0
I Q

I 0
I 6
I 0
I 0
I D

I Q

I Q

I 0
I 0

Q 6
0 6
0 0
0 I
o
Q I
0 I
Q I
0 I
0 I
Q I
Q
Q
Q I
Q I
0 I
0 0
6 0
C 0
Q Q

I I I
I I I
I I I
6 0 I
0 0
D 0 I
Q Q I
0 0 I
o o
D 0 I
0 Q I
6 0 I
0 Q I
0 0 I
Q 0 I
D 0 \
I 0 0
I 0 D

D 6
I 0 Q

I 0
I 0
I Q
0 Q

0 0
0 0
0 0
0 Q

a a
0 D

0 Q
D Q
Q Q
D Q

Q 0
Q 6
I Q

I 0
I 0
I Q

I 6
I 0
I 0
I Q

I Q

0
I 0
I 0

O
I 0
I 0
I Q

I 0
I D

I Q

I Q
0 0
Q 0
Q 0
Q 0

x 6
Q 0
Q 0
Q 6
6 0
I 0
0 Q

I 0
I 0
I I
Q Q
I I
Q Q

O I
0 0
I I
I I
I I
0 D

0 Q

X X
0 X
0 I
0 I
o o
I I
D 0
I I
O 0
I I
D 0
I I
0 0
a o
0 0
0 Q

0 o
Q I
Q I
Q 0

. INE 3 " I 53 51
2 0 'Iz ba 02 '

C 2 '-0

I I
I I
I I
I I
I I ! I
0 Q

Q Q

Q 0
0 Q

0 0
0 0
Q Q

0 tl

Q Q

2 '. 8 . 8
219 e
22Q 8
221. 4
222 4
223. 8
3C7 2
315. 2
316 2
317. 2
31 ~ 2
319. 2
32Q. 2
322. 2
323. 2

Q 0
0 Q

Q 0
Q Q

Q 0
Q Q

I 0
I 0
I Q

Q
I Q

I 0
I Q

I 0
I 0

~ I
0 I
Q I
0 I
Q I
0 I
I 0
I 0
I 0
I 0
I 0
I C
I 0
I 0
I 0

Q Q

tl Q

0 Q

7 Q

Q 0
0 Q

I I
I I

I
I I
I I
I I

I
I I
I

0 C

0 0
Q

0 0
C

Q Q

0 I
0 I
~ I
0 I
0 I
Q I
0 I
0 I
Q I

I Q

I 0
I Q

I 0
0

I 0
Q I
0 I
0
D I
0 I
0 I
Q I
0 I
Q I

I
Q

I
G

0 I
3
Q I
I I
I Q

I Q

G O

I I
0 0
0 I
Q 0

I
Q

0 I
C I
0 Q

Q

Q

Q 0
0 I
0

I
Q 0
0

I

TINE " 3 " I
2 "

Q "b2 bo 2 "
Q ':2 Q

Qol
19 Q I
2' D I
22. Q I
23 Q I

102. 4 Q

llo. 0
111 4 Q

I 2. 4 Q

113 4 Q

114. 4 Q

115. 4 Q

116 I Q

117 4 Q Iie. 4 o
IZQ. 4 D

2QI. S I
215. 8 I
214 8 I
215. 8 I
216 8 I
217. 8 I
218. 8 I
22Q. S I
3Q7. 2 I
315. 2 I
316 2 I
317. 2 I
318. 2 I
319 2 I
32Q. 2 I
321. 2 I
322. 2 I
324. 2 I
327. 2 I

I ~ I
I Q I
I 0 I
I Q I
I Q I
0 I I
Q I I
0 I I
Q I I
0 I
Q I
Q I I
D I I
0 I I
0 I I
0 I I
Q 0 Q

0 Q ~
0 Q Q

Q 0 Q

0 0 0
Q Q 0
Q 0 0
a 0 ~
0 0 I
0 0 I
0 Q I
0 Q I
a 0 I
Q 0 I
0 D I
0 Q I
0 Q I
0 0 I
0 0 I

I 3
I Q

Q

I 0
I Q

I 0
I 0
I 0
I 0
I ~
I Q

I 0
I Q

I Q

I Q

I Q

I Q

I 0
I Q

I 0
I Q

I Q

I Q

I Q

Q 0
tl D

a Q

D ~
0 0
Q 0
0 Q

0 0
0 0
0 Q

Q 0

I 0 C

I Q 0
I Q Q

I C 0
I Q Q

Q I
Q I
Q I I
0 I I
Q I I
C I I
~ I
Q I I
0 I I
0 I I
0 I I
D I Q

0 I 0
Q I Q

Q I Q

0 I 0
Q I
Q I 0
D I Q

I Q

I I 0
I -' 0
I I 0
I I 0
I I ~
I I 0
I I Q

I I Q

I I 0
I I D

I I
Q I I
Q I I
0 I
0 I I
I Q 0
I Q 0
I 0 0

Q Q

I 0 Q

I Q 0
I 0 0
I 0 Q

I 0 0
Q Q

I Q Q

~ Q

I 0 Q

I Q 0
I 0 0
I Q 0

a 0
0 Q

I 0 0
I I I
I I I
I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

X X
X I
I I
I I
I I
I I
I 0
I 0
Q 0
I 0

Q

0
I I
I Q

C Q

I 0
I 0
I I
G Q

I
0 Q

I I
0 0
G 0
0 0

0
Q I
Q I
I Q

I 0
0 Q

Q Q
Q Q

Q Q

Q I

4 X
X X
Q

G I
0 I
G Q

I
Q 0
I 0
I
Q

0 I
Q I
Q I
0 I
Q

I I
G ~
I I
0 Q

I
D 0
Q I
Q I
I I
Q Q

I
I ~
Q Q

I Q

I I
I Q

0 Q
D 0

Mod la 16 NXC jl Xl I I Ra I

Q. D

3 8
6. Q

7. 0
9. Q

IQ2. ~
ioa. ~
IDS. ~
IQT. ~
149. ~
I 11. ~
2Q4. 6
2oj. e
zoe. e
209. 8
216. 8
212, S
367. 2
31Q. 2
311. 2
313. 2

8 0
0 Q

Q 0
Q 0
Q 0
Q C

0 0
0 0
Q Q

Q Q

0 0
Q I
0 I
6 I
8 I
4 I
D I
0 0
Q Q

Q 0
Q Q

Q I
Q I
0 I
0 I
0 I
I I
I I
I I
I I
I I
I I
0 Q
0 Q
Q 0
Q D

0 0
D 0
0 I
0 I
0 I
0 I

O I O

0 I D

Q I Q

0 I D

0 I 4
0 I 0
0 I 0
Q I 0
Q I Q
0 I Q
o I a
I I 0
I I Q

I I 6
I I 0
I I 0

I 0
I 0 I
I 0 I
I ~ I
I Q I

D I
0 I
Q I
D I
D I
I Q

I 0
I 0
I Q
I Q

I 0
0 I
0 I
Q I
Q I
Q I
Q I
I I
I I
I I
I

0 0
0 D

0 Q
0 0
0 0
0 I
Q I
0 I
0
0 I
Q I
0
0 I
0 I
0 I
Q I
0 I
I 0
I Q

I Q

I 0

x
I X
I X
I 6
I I
Q I
0 I
0 I
0 Q

0 I
0 Q

0 Q
0 Q

Q Q

0 I
0 Q

Q I
I

0 0
0 0
Q 0

x x x
x x
6 0 I
I Q I
I 0 I
I Q I
I 0 Q

I I I
I Q I
Q 0 I
Q 0 I
0 0 I
I D I
I 0 Q

I I Q

I I Q

0 I 0
0 I 0
D I 0
0 I I
I I I

TINE 3 I "b3 bl 3 I 'P3 91 "42 0 b2 "bo 02 " Q "P2 PQ

TINE 3 I b3 bl " 3 I "43 I
2 "Qb2 IQ2 "D2Q

a3
a2

a1
ao

b3

b2

b1

bo

c3
c2
c1
c0

02

10. 0 20. 0 30. 0 40. 0

Figure A. l l Modulo 7 Trial ¹I MAC Simulation

a3

a0/

c1
c0

r2

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 12 Modulo 11 Trial ¹1 MAC Simulation

a3

a2

a1
ao

b3

b2

b1

bo

C3

c2
C1

c0

r2

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 13 Modulo 13 Trial ¹1 MAC Simulation

141

33
i3 2

a1
a0

b3

b2

b1

bo

c3
c2
c1
c0
v3

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 14 Modulo 15 Trial ¹1 MAC Simulation

142

10. 0 20. 0 30. 0

a3

a2

a1

ao

b3

b2

bi
bo

c3
c2
c1
c0

p3

p2

p1

p0

40. 0

Figure A. 15 Modulo 16 Trial ¹1 MAC Simulation

143

Table A. 2 nput Translation Simulation Data

d I 7

p t

Hcd I 11

6 lt

HC115

0. 0 I
20. ~ I
24 0 I

5 0 I
'. Cz 4 0
ce 4 0

IC 4 0
108 4 tl

110 4 0
111. 4 0
112 4 0
113 4 0
11 4 0
115 ~ 0
116. 4 0
117 0
lilt. 4 0
119 I 0
110. 4 0
121 4 0
122 4 '3

123 4 0
124 4 0
126. 4 0
204 8 I
207 8 I
zoe e
2'5. !t I
2 . 8 I
218 e
219 4 I
zzz. e
Z23 8 I
224. 8 I
225. 8 I
226. 8 I
227. 8 I
307. 2 0
311. 2 0
312. 2 0
313. 2 ~
316. 2 0
311! 2 0
319. 2 0
321. 2 0
322. 2 0

0
0
0
0
I
I
I
I
I

I

I

I

I
I
I
I
I
I
I
I
I
I
I
I
I

0
0
0
0
0
0
D

0
0

I

I
I

0
0
0
0
tt

0

0
0
0
C

0
0
0
0
0
I
I
I
I
I

I

I
I
I
I
I
I
I

I
I
\
I

0 I
0 I
0 I
0
0
0
0 I
0
~ I

I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
0 I
D I
0 I
0 I

0
tl

0
I 0
I 0
I 0
I 0

0
I 0
I 0
I 0
I 0
I 0
I I

I
I I
I I
I I
I I
I I
I I
I I

I
I
I
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
I
I !
0
D

0
0
0

0
0
0
0
0
0
D

0
0
0
0
0
0
0
0

0
0

0
0
0
0
0
0
0
0
0

0
0
3
0
0

0
0

I
I
I
I
I
I
I
I
I
I
I
I
0
0
0
0
0

D

0
0

0
0
0
0
I
I
I

I
I

I
I
I
I
I
I
I
I
I
I
I
0
0
0
0
0
G

0
0
0
0

0
0
I
I
I
I
I
I
I
I
I

D X
0 X
0 I
0 I
~ I
0 0
0 0

0
0 0
0 I
0 0
0 0
0 0
0 I
0
0 I
0 0
0 I
0 0
0 I
0 0
0 0
0 tl

~ 0
0 0
0 0
0 I
0 I
~ 0
~ I
D I
0 D

0 I
0 0
0 I
0 ~
tl I
0 I
0 0
D 0
0 0
0 I
0 I
0 0
0 0
0 D

X

0
D

0
I
0
0
I
I
I
I
0
0
0
I
0
0
0
0
I
I
0
0
0
I
I
0

0
0

D

0
0
0
0
0
I
0
0
0
0
0
0
0

X
X
x
I
I
0
I
0
0
0
tl

I
0
I
0
G

0
I
0
I
0

I
0
0
0
0
0
tl

I
0
0
0
0
I
I
I
I
0
I
0
0
I
I
0
I

0. 0
20. 0
21. G

22. 0
102. 4 . 13. 4
'14 4
115. 4
116. 4
117. 4
118 4
lie. ~
120. ~

121, ~
122. 4
123. 4
124 4
126. 4
127. ~
20 ' , 8
215, 8
216. 8
21'I . 8
218. 8
219. 8
220. 8
221. 8
224. 8
225. 8
227. 8
228, 8
307. 2
317, 2
318. 2
319. 2
320. 2
321. 2
322. 2
323. 2
32 ' . 2
325. 2
326. 2
327. 2

0 0
tl 0
0 0
0 0
3 I
0 I
0 I
~ I
0
D I
0
0 I
0
0 I
D I
D I
D I
0 I
0 I
I 0
I 0
I D

I D

I 0
I 0
I 0
I 0
I 0

0
0

I 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
D 0

X X
x 0
0 0
0 0
0 0
I I
0 0
I I
0 0
I I
0 0
I I
0 0
I I
0 D

0 I
0 I
0 0
0 I
0 I
0 0
0
0 0
0 I
0 0
I 0
0 0
0 I
0 I
0 0
0 0
0 0
0 0
I 0
0 0
I I
0 0
I I
0 0
I I
0 0
0 I
0 I

TIHE 7 '- 5 3 I 3 " I

H d I 13

0 0
28. 0
29. 0 I

102. 4 0
105. 4 0
106 4 0
107 4 0
I 0 ~ 0
1-4. 4 0 I!5. 4 0 '6. 4 0
117 4 0
I '. 6 4 0
119. 4 0
120. 4 0
121. 4 0
122 4 0
123 4 0
zo4. ~
zo . e I
208. 9 I
209 8 I
211 8 I
214. 6 I
21 . 8 I
216. 8 I
217. 8 I
zle e
219. 8 I
zza. e
221 8 I
222. 4 I
223. 8 I
224. 6 I
225. 8 I
226. 8 I
227. 8 I
228. 8 I
229. 8 I
230. 8 I
231. 8 I
232. 8 I
307. 2 0
311. 2 0
318. 2 0
319. 2 0
32D. Z 0
3?1. 2 0
322. 2 0
323. 2 0
324. 2 0
325. 2 0
)26. 2 0
328. 2 D

3'29. 2 0
330. 2 0

0 I 0 0
I 0 I D 0
I 0 I 0 0
0 I I I I
0 I I I I

I I I I
0 I I I I
0 I I . I
3 I I '. I
0 I I ' I
0 I I I
0 I I I
0 I . ' I
0 I I I I
0 ' I I I
0 ' I I I
0 I I I
0 I I I
0 I 0 I 0
0 I 0 I 0

I 0 X
I 0 0
I 0 0
0 0 0
0 0 0
0 0 0
0 0 0
o 0 a
0 0
0 0 G

0 0 0
0 0 0
0 0 0
~ 0
~ 0 0
0 0
0 0
~ 0 0
0 I 3
0

0 I 0
0 I 0
0 I 0
0 I 0
0 I 0
0 I ~
0 I 0
0 I 0
0 I 0
0 ' 0
0 I 0
0 I 0
0 I 0

I 0
I 0
I 0
I 0
I 0
I 0
I 0
I 0
I 0
I 0
I 0
I D

I 0

0 I 3
0 I 3
0 '. 0
0 I I
0 I 0
0
0 I 0
0 I 0
0 I
0 I 0
0 I 0
D I 0
0 I 0

0 ' 0 I 0 0 I
0 I 0 I 0 tl I 0
0 I 0
D I 0
D 1 ~
0 I 0
0 I 0
0 I 0
0 I 0
I I I
I I I
I I I
I I I
I I 1
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I

I 0 0 I
I 0 0 I 0

0 I I
O I 0
0 I 0
0 I 0
0 I 0
I 0 0
I 0 0
I 0 I

0 0
I 0 I
I 0 D

I 0 I
I 0 0
I 0
I 0 0
I ~ 0
I 0 0
I 0 0
I 0 tl

I 0
I 0
I 0
I 0
I 0
0 0
0 0
0 0
0 0
0 0
0 0
D 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

X X
X X

I
I
I
0
I

0 0
I

0 0
I I

0
I
0

I 0
0 0
0 0

0
I I
0 0

0 0
I
0 0
0
0 0
I I
0 0
I I
~ 0

I
0 0
I I
0 0
0 I
0 I
0 0
0 I

0
I I
0 0
0 I
0 0
I I

0
I 0

I
0 0

I " 3

2 . 0 2

TIHE 7 5 . 3

6 4 '\

I I 0 0 I
I I 0 0 I
I I 0 0 I

I 0 0 I
I 0 0 I 0
I 0 0 I 0

0 0 I 0
0 0 I 0
0 0 I 0

I 0 0 I 0
I 0 0 I 0
I 0 0 I 0

0 0 I 0
0 0 I 0
0 0 I 0
0 0 I 0
0 ' 0 I

I 0 I 0 I
0 I 0 I
0 ' 0 I
0 I 0 I
0 I 0 I
0 I 0 I
0 I 0 I

I 0 I 0 I
I 0 I 0 I
I 0 I 0 I

~ I 0 I
I ~ I 0 I
I 0 I 0 I

0 I 0 I
G I I I 0
0 I I I 0
0 '. I I 0
0 I I I 0
0 I I I
0 I I . ' 0
0 I I I 0
D I I I 0
0 I I I 0
0 I I I 0
0 I I I 0
0 I I I 0
0 I I I 0
0 I I I 0
0 I I I 0
0 I I I 0

I I
I I
I I
I I
0 0
0 0
0 0
I 0
0 ~
G 0
tt 0
0 0
tl 0
tl 0
0 0
0 0
I 0
I 0

0
I 0
I 0
I 0
I 0

0
I 0
I 0
I ~
I 0
I 0
I 0
I 0
0 0
0 0
0 0
0 0
~ 0
0 0
0 0
0 ~
0 0
0 0
tl ~
II 0
0 0
0 0
0 0
0 ~

4 0. 0
0 32 0
0 34 0
0 35 0

102 4
105. 4

10 . 4

07. ~
110. 4

111 4

112 4
0 11)
0 114 4
I 115
0 116
I 11 . 4

0 204 8
07 il

210 e
0 215. 8
c Zlee
0 217. 11

0 216. 8
0 219. 8
o zzo e
I 221. ~

0 224 e
0 225. 8
0 227 8
I 228. 8
0 229. 8

307. 2
0 310. 2
I 311. 2
0 312 2
I 313. 2
~ 31I 2
I 317. 2
o jle. z
I 319. 2
0 320. 2

321. 2
322 2

0 323. 2
0 324. 2
0 325. 2

I 326. 2
tl

I INE
0
I
0
0
I
0
0

X X 4 X

x r o
I 0 X 0 X
I 0 I 0 I
0 0 I 0 I
0 0 I '. I
0 0 0 . I
C 0 I '. I
0 0 0 0 0
0 I I ' 0
0 0 I ' 0
0 0 I I I
0 0 I 0 I
0 I I I
0 0 G 0 0
0 0 I I 0

0 I I 0
0 G 0 ~

0 0
0 0 0 0
I ' ' I
0 0 0 0

I
0 0 0 0

I I 0 I I
0 0 tl 0
I I 0 I
I 0 0

I 0 0 0 I
0 0 I I

I 0 0 I 0
0 D ~ I 0
0 I ' I 0
0 I D 0 0
0 I 0 0 I
0 0 0 0 0
0 I 0 I I
~ 0 0 I 0
0 I I I I
0 0 0 0 0
0 I I I I
0 0 0 0 0
0 \ I I I
0 0 0 0 0
0 I I I I
0 0 0 0 0
0 I I 0 I

7 " 5 " 3 " . I "Q3 " I

Hdi 6

I p T

0 a
3. 0
5. 0
6. ~
7, 0

102
10 ~ . I
106. 4
204. 8
205. 8
207. 8
208. 8
210. 8
)07. 2
309. 2

I 0
I 0

0
I 0
I 0
0 0
0 0
0 0
I I
I I
I I
I I
I I
0 I
0 I

I I
I
I I
I I
I I
I I
I I
I I
0 I
0 I
0
0 I
0 I
I 0
I 0

0 0
0 0
0 0
0 0
0 0
0 0
0 D
0 0
0 I
0
0 I
0 I
0 I
I D

I 0

I I
I I
I
I I
I I
0 I
0 I
0
I I
I I
I I
I I
I I
0 0
D 0

X X
r x
x
X I
I I
I I
I I
0 0
0 0
0 0
0 0
I 0
I 0
I 0
I 0

4 X
X I
X I
D I
0 I
0 I
0 0
0 I
0 I
0 0
0 I
I I
0 I
0 I
0 0

TZICE I. 7 ' 5 I 3 I I 9) I 6 ~ I 2 I 0 92 '90

tINE in7 Ins 13 ll "3 "I
6 "14 nz "ID "2 "0

in7

in6
in5
in4

1R3

1R2

ini
in0

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 16 Modulo 7 Trial ¹I Input Translation Simulation

in7

in EI

in5
in4

1 fl 3

1 fl 2

1n1

in0
f' 3

p2

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 17 Modulo 11 Trial ¹I Input Translation Simulation

1n7

in6

in5
in4

1R3

1R2
)

in 1

in0

r3
r2

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 18 Modulo 13 Trial ¹I Input Translation Simulation

in7
in6

104
1 fl 3

in 2

101
in0
f'3

t 2

r0

10. 0 20. 0 30. 0 40. 0

Figure A. 19 Modulo 15 Trial ¹I Input Translation Simulation

10. 0 20. 0 30. 0

in7
in6
in5
in4
1 fl 3

1 fl 2

1 fl 1

in 0

g3

g2

g1

g0

40. 0

Figure A. 20 Modulo 16 Trial ¹I Input Translation Simulation

f. 0

0
!51
!55
!59
!6!
'63

5
61
69

20(6
'06 8
2!0 8
2 8 8 . '3G 8

'. 4 8
24' 8

8 :ee
8

253 6

255. 8
256. 6
257 tt

258 6
759
260 8
262 5

263 6
264 8
Jss e
256 8
267 8
268 8
269 tl

270 I
271 8
272 8
274 8
276 tl

2, 7 tl

278 6
279 6
280 8
261. 8
282 8
283. 8
285 8
286 it

257 8
2S8 8
290. 8
291 8
292. 8
293. 8
294. S

296 8
29 3

99 9
30 ~ . 8
)o) e
312. 3
)!4 8
3!7 3
319 8
320. 8
322 8
323. 8
)zl. 'e
328. 9
333. 8
409. 6
415. 6
31. 6

433. 6
437. 6
lse. (
4 ~ I. 6
4 I 2. 6
~ l4. 6
446, 6
445. 5
l49, 6
450. 6
t51. 6
452. 6
656. 6
458. 6
460. 6
462. 6
463. 6
46S. 6
~ 67. 6
471. 6
472. 6
AD)3. 6
475. 6
476. 6
477. 6
478. 6
479. 6
480. 6
481. 6
~ 82. 6

3 Tabl e A
I 0 I tt

0 I 0
0 I 0
0 I 0
0 I 0
0 I 0 0!0 010 010 010
0 I 0
0 I 0

I 0

I 0
I I 0
I I 0
I ! 0 ! 0
I I 0 110

I ~
I 0

0
I '. 0 110

I 0

I . 0
0
0

I I 0 110
I 0

I I 0 011
I
I

0 ' I
I

I I
I

83 6
484. 6
485. 6
486. 6
487 6
4ee 6
459 6
490. 6
431. 6
493. 6
(94 6
497 6
498 6

5 . ' 3 . 6
14

516. 6
51' 6 !8. 6
522 6
527 6
614 4

(le 4
620
61s. t
I '10 4
642 4
643
els ~
r, l
(49 4

65! 4
653 4
654. 4

655. 4
656 I
656 4
660
662 ~
663.
664 4
ees 4
667 4
669. ~
67!l. 4

671. 4
672. 4

674. 4

677. 4
678. 4
6 9. 4
seo 6
6 tl I . ~
682. 4

685. (
686. 4
687. 4
See. e
690. 4
692. ~
693. 4

699. 4
703. 4
704. 4
707 4
715. 4
718 I
719 4
21. 4

23. 4
724. 4
726. 4
727. ~
728. l
729. l
731. ~
732. 4
733 ~
734. 4
735. 4
737 4
738. ~
739. 4
740. 4
741. ~
742. 4
743. 4
7 ~ 4. ~
745. 4
746, ~
747. 4
Tla. a
749. 4
'750. 4
751. 4
752. 4
754. 4
755. 4
756. 6
760. 4
764. 4
76S. 4
766. 4
770. ~
774, ~
7 IB6

I 0 I 0 I 0 !0!0!QO 0!0. '0 1011. 00
0 ' 0 '

0
I 0 I G 3

I 0 ' 0 0
I 0 '

C '. 0
I 3 I 0 ' 0 0 1010!00
I 0

'
0

0 '. 0 I
0 I 0 ' 0 0

I J
0 0

0
'

0 ' 0
I ') - G

7 '. 0 I 0
I " I 0 ' 0
I 3 I 0 '

C D

I '. I 0 0 I 3
I ' '. 0 " I
I I I 0 0 I 0
I ' I 0 0 I 0

I 'I G I 3 I!QGI
I

1000
I 0 0 0 1000
I O DO
I 0 0 0
I 0 0

0 It 0
I ~ 0 0
I 0 0 0 1000 1000
I 0 0C
I '3 0 C

I 0 0 0
0

1000 1000 1000 000
0 I I 0
0 I I 0
0 I ' 0
0 I ' 0
0 I
0 I
0

0 ~
Il D

0 0 001 001
0 0 I
0 0
0 I I
0 0 I
0 0 I
0 0 I
0 0 I 001

0 '. I I I ' 0
0 I I I I I 0

0 I
0 0 I
0 3 I
0 0

0 I
O 0
0 0 I
0 0 I
0 0 I

I 0 0
I 0 0 I

I 0
0 I 0
0 I 0
0 I 0 G!0
0 I 0
0 I 0
0 I 0
~ I 0

0 I
0 I
0 I
0 . I
0 I I
0
0 I
0 I I
0 I

XX XX
XX XX
XXXXX
xxxxx
XXXX9
. JXX9
XXX9

)XXX9
9

0 I I
0 I I 0111

I I I 0111 011
0

I I 0 110 110 110
0

I 0
I G

I tt 0 I
I tt

I 0 3 I
I t) 0 I
I 0 0
I ~ I I
I 0 0

0 I 0 0 I I
0 I G 0 I I
~ 0 0 I I 0
0 0 0 I I 0

I C I 3
I I
I 0 I I

0 I I

I 0 G I
0 0
I '. 0

0
I 0

0
0 I 0

0 . ' 0
0 I ' 0

I 0

I . ' I I
0

0 ' I
0 ' I

0 'I

0 0
~ 0 I 001
0 0 I
0 0 I
0 0 I
tt 0 0
0 0 3
tl 0 0
0 0 0
0 0 D

~ 3 0
~ 0

G I ~ 010
0 0
0 I 0

I 0 010
0

I 0 0
I 0 0

0 0
0 0

I D 0
I Q 0
I 0 0

t:9
6!

0 0 0
3 0 0 . ' I
0 0 0 I
3 0 0 I I
7 0 0 I '. 0
0 0 G I I 3

G

I 0 I
I 0 I

0 I
I 0 I
I 3 I
I 0 I I
I '3 I I 011

I . 0 I I
I 0 I I
I . 0 I I

I I
0 I I

I I I
0 I I 1011

I 0 I

3. (3
)9 53
)9743
33'03

2

32CJC
0 Qsc
3. '05C . -' 5 0 ' -' " -'- I

56
0)0 6

06

0 . 0 I ~ 0 0 0 I
0 . 0 I 3 0 0 0 I I 0))e)

78)
57.)

0 . 0 I 3 0 0 0 I
\ \ 0 0 I \ . 0 I 0 0 0 0 I

I I'3
3 7F)
lao)3
)eo))
I ~ 03)
20033
30(33
21678
01278

12 3
1278

2007a
00378
20038
00038
00408
23708
)0583
30208

I I 0
I I 0
I I 0
I '- 0
I I 0
I I 0
I 0
I I 0
I I 0
I I 0 1. 0
I I 0

I 0
I 0

I I 0
I I 0 110
I I 0

I 0 110 110
I ' 0
I I 0
I I 0

I 0
I I 0
I I
I I 0

I 0
I 0

I ' 0
0

I 0
I I 0 110

0
')

)
I 0

0
0
0
0
0

I 0
I I 0

0
I . ' 0

I I I 3 '. ' 3 0 I 0 0 0 ~ I I
I I I 0 '. I I 0 I 0 0 0 0 I I 0
I I ' 0 I I 7 ' 0 I 0 0 0 0 I I 0
I I I 0 I I 0 ' 3 I 0 0 tt 0 I I 0

I 0 I I 0 ') ' 0 0 0 0 I . 0
I 0 I I G

' 0 I 0 I 0 ~ I I 0
I I tt I I C

' 0 I ~ 0 0 ~ ' '. 0
I I I 0 I I 0 0 I 0 0 0 0 . ! 0
I I I 0 I I C C I tl ~ 0 0 I I 0
I I ' 0 I I G . 0 I 0 0 0 0 I I
I I I 0 I I 0 . 0 I 0 0 0 0 I ! 7
I I I 0 I I 0 I 0 I 0 0 0 0 I I 0
I I I 3 I I J ' 0 I 0 0 0 G I I a
I I I 0 '- I 0 -' 0 ' 0 0 G 0 I ' 0
I I I 0 I I 0 ' 0 I 0 0 0 0 I 0
I I ' 0 I I 0 3 I 0 0 0 0 I I C

I I ' ~ I I 0 I) I 0 0 0 0 I I 0
I ' I 0 I I I 0 I 0 0 0 D ' I 0 110110'0100 ~ 0110
I I I 0 I I 0 I 0 0 0 0 I I 0
I I I 0 I I 0 I 0 I ~ ~ 0 0 I I 0
I I I 0 I '

tl I 0 I 0 0 0 0 I I 0
I. I I 0 I I 0 . 0 I ~ 0 0 0 I I 0
I I I 0 I I 0 '- 0 '- 0 0 0 0 I I 0
I I I 0 I I ~

' 0 I 0 0 0 0 I I 0
I I '. 0 I I D ' 0 ' 0 ~ 0 0 I I 0
I I I ~ I I 0 ' 0 I 0 G 0 0 I I 0
I I I 0 I I 0 ' 0 I 0 0 0 0 I I 0
I I I 0 I I 0 - ' I 0 0 0 0! I 0 1110110!0100001!0
I I I 0 I I 0 I 0 I ~ 0 Q 0 I ! 0
I I I 0 I I 0 I 0 I ~ 0 0 0 I I 0
I I I 'I ! I 0

' 3 I 0 0 0 0 I I 0
I I ' 0 I \ D \ 0 I 0 0 0 0 I I D

I I I ~ I I 0 ' ": 0 0 0 0 I I 0

I I 0 I I 0
'

3 '. 0 tl 0 " ' I
I I 0 I -' 0 . ! 0 0 0 3 '. ', 0

I ' ' " I I I . - . 0 0 0 0 I I 0
I 0 I I . '

I 0 0 0 0 I I 0
I I I 0 I I 0 . " ' 0 0 ~ 7 I '. 0 111010!-0GCQI I 0 110110!. '000 ~ '10
I I I 0 I I 3 0 I 0 0 0 D I I 0
I I I 0 \ I 0 7 I 0 0 0 0 I I ~
I I I 0 I I 0 ' 0 0 0 0 I I 0
I I ' 0 I I 0 I ". ' 0 0 0 ~ I I 0 1110110010000110
I I I 0 I I C ~ I 0 0 0 0 I I 0 111011010D00110

0 I I 0 0 0 I
I I 0 0 0 I 0

C I I 0 0 ~ I 0 0!!ODD!0
0 ~ I I
0
0 0 I
tl 0 I
0 0 I I
0 D '. I
D ~ ! I
~ ~ I I
0 0 I I 0011 011

I I 0 G I
0 I I I 0
0 ' ' I 0 0 I 0
0

' ' I 0 0 I 0 0' ll 0lo
0 . ; I 0 0 ' 0

0 ' I I 0 I 3
I I ' - I

0 0

0010 0010
0 0 I Ij
0 G I 0
0 0 I 0
0 0 I
0 0 I

I 0
0 I I 0
0 I I 0
0 I I 0 01!0
0 I I 0

I 0

49

I 0 0 0 I 0 0 ~ I I 0 ', ' . C 0 I 0
0 I I 0 " 0 '. 0 0 0 I I 0 I I ' 0 0 I 0
0 I I 0 0 0 * ~ 0 0 I I 0 I I ' 0 0 I 0
0 I I 0 0 0 ' 0 ~ 0 I I 0 I I I 0 7 '. 0
0 ! I 0 0 0 I 0 0 0 I I 0 I I I " 'J '. 0
0 I I ~ 0 0 I 0 0 ~ I I 0 I . ' I 0 0 I 0
~ I I 0 0 0 I 0 0 0 I I 0 I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 . I I 0 0 I 0 Q!10001 ~ 00110!110Q!0
0 I I 0 0 0 I 0 0 0 I I G I I ' 0 0 I 0 0!1000100011011. 00!0
'J ' I 0 0 0 I 0 0 0 I I 0 I I I 0 0 . 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0 011000100011011!0010
0 I I ~ 0 0 I 0 0 D I I 0, I I 0 0 I 0
0 I I 0 D 0 I 0 0 0 I I 0 I I ' 0 0 I 0
0 I ' 0 0 0 I ~ D 0 I I 0 I I

' 0 tl I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I . ' 0 0 I 0
~ I ! 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I '. ~ I '. I 0 0 I 0 011 ~ 0010001101!10010
0 I I 0 0 0 I 0 0 0 '. I 0 I I I 0 0 ' 0
~ I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 . ' I: 0 0 I 0
0 ' I 0 0 0 I 0 0 0 I I 0 I I I 0 ~ I 0
0 I I 0 0 0 -' 0 0 0 I I I . ' I 0 0 I 0
0 I I 0 ~ 0 I 0 0 0 I ' 0 I ', I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I ! 0 0 I 0
0 I I ~ 0 0 I 0 0 0 I I 0 I I ' 0 0 I 0 0110001000110!100!Q
0 I I 0 0 0 I 0 0 0 I I 0 I I ' 0 0 I 0
0 ' I 0 0 0 I 0 0 0 I I Q I I '. II 0 I 0
~ 1100010001101110010
0 I I 0 0 0 I 0 0 0 I '. 0 I I I 0 D I 0 01100010001101110010
0 I I 0 0 0 I 0 0 0 I I 0 I ! I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I '. 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0 0!100010001101110010
D I I 0 D 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 1 0 0 0 I 1 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 C I I 0 I I I 0 0 ! 0
0 I I D 0 0 I 0 0 0 I I 0 I I I 0 D I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I D 0 I 0
0 I \ 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0 D!10001000110!110010
0 I I D 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 J. I 0 I I I 0 D I 0
a I I 0 a a t a o o 11 o 11 I o o I o
0 I I 0 0 D I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 D 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I D 0 0 I I 0 ! I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I D I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 ' I I 0 0 I 0
0 I 1 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
D I I 0 0 0 I 0 0 0 I I 0 I I I 0 0 I 0
0 I I 0 0 0 I 0 0 0 I I 0 I ! I 0 0 I 0
0 I 0 0 0 I 0 II 0 I I 0 I I I 0 0 \ 0
0 I I 0 0 D I 0 0 0 I I 0 I I I 0 D I 0
0 I I D D 0 I 0 0 0 I I 0 I I I 0 0 I 0
16t3 " 6 0 " 511 3 2 I 3 I 0" ll 62 5I3 51D 3!I 12" 13 "7

6 I " 5 2 313 " 3 0 ". I I ' l2

2 (6
(". *

02506
02586
02 86
)'8J6

5
03

!25(8
336)3

3
)36 3
!86A3

6A3
2A3

-. ZA3
I ZA)

5 AD
7 5 5 AD " 4 5 AD
24 JAD
C 0 5 AD
2 t) 5 AD
0 05AD

30!aQ

00!00
01. 'QD
') ', DFO
'IDFD

'5DD
0!ICD
001
Qe)ao
QA)8D
'A30D

AQOO
IA(00
IA40O
IA40C
!A410
lx42C
'. A4 OC
IACCC
IA40C
IAQQC
IA40C
IA41C
'A6 C
IA6EC ' A)FC
IA350
IA3 C
!ajcc
IBJCC
- 8 I DC
I 8 4 EC : 86EC
' 86AC
!8 CC
la(cc
I ~ 46C
1846C
la44c
1925C
OABSC
OAF7C
088)C
2IIC)c
03C7C
2DDFC

tl! '5
2' 3. 5
0!S. J

Qeez(
IA. 26
I A= 2 6

)6
IA516

)2506
'. 2
'. 2 5 C 5
12
!2)c(
!2
'. I . : 5 -:: 5

IQA a

I 5(
103(5
I C6
!85C(
3812
Z9D65
ODD66
20046
2DD ~ ~
20005
OC927
22eA)
12!t97
15395
OS)44
05)AC
OD526
2A526
2A506
385II6
la506 ' FE3 6
!F83 ~
3F83 ~
3FSQC
31'805
3091E
10018
20DIA
2052A
2056A
0 II 5 6A
2 OSSA

205EA
204EA

I 0
I I 0 0 1100
I I 0 ~
I I D 0
I I 0 0
I I 0 0
I I 0 0
I I 0 D 1100 lloa 100 1100 11 0 0 1100
I I 0 0 100 1100 100
I I D 0 1100 1100 1100 1100 100 1100
I I 0 0 110D 1100 1100 1100 I! 0 0 100

I 0 0

1101 0\01 0101
0 I 0 I
0 I 0 I 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101
D I 0 I 0101 0101 0101 0101 0101 0101 0101 0101 0101 0101 0701 0101

D I D I

JO!010000110 0! 7 0 0 I 0 I 0 I 0 0
D I I 0 0 I 0 I 0 I 0 D

D I I 0 0 I D I 0 I 0 D 0!". 0
D I 0 01 3 0 01 I 0 01. 0
0 I 0
0 I . 0 0130 0110
0 I " 9
0 I 0 0 01 "Q
0100 0100
01 '0 0100
0 I 0 0100 0100 010 ~
D I 0 0
0 I " 0 0100
01G0 0100
0 I 0
0 I 0 01)0

0100 0100
D I D 0 0100 0100 0100 0100 0100 0100 0100 0100 0100
a isa
D I 0 0
0 I D 0 01 0 0 01 0 0 0100 0100 0100
0 10 0 0100 0100 010 0
0 I 0 0 0100
II IOD
0 I 0 0

0 I 0 I 0!DI
0 I 0 101 0101
0 I 0 I
0 '. 0 I 010 0101 0101 0101 0101
0 I Q I.
0 I 0 I 0101 0101 010 0101 010 0101
0 I O 0101 0101 0101 Qlo1
0 I 0 I 0101
0 ! D I !0

I I!7 0) 01700101010D
0 'I " 0 0 I 0 I 0 I 0 0

Output Tj. -anslat ion Simulation Data

150

VITA

Gary Franklin Chard received his B. S. Degree in

Electrical Engineering in May of 1988 from Texas A&M

University, College Station, Texas. He is currently

completing his M. S. Degree in Electrical Engineering also

from Texas A&M University. He has worked for Texas

Instruments Incorporated during the summer since 1985. He

is a member of Eta Kappa Nu and Tau Beta Pi. His permanent

address is 2503 Grandview Dr. , Richardson, Texas 75080.

