APPLICATION OF THE RESIDUE NUMBER SYSTEM

TO THE MATRIX MULTIPLICATION PROBLEM

A Thesis
by

GARY FRANKLIN CHARD

Submitted to Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 1989

Major Subject: Electrical Engineering

APPLICATION OF THE RESIDUE NUMBER SYSTEM

TO THE MATRIX MULTIPLICATION PROBLEM

A Thesis
by

GARY FRANKLIN CHARD

Approved as to style and content by:

Yu~-Ying Jackson Leung
(Chair of Committee)

A Lo Doty S Mae

Karan L. watson phildp 5. Noe
(Member) (Member)

Donald K. Friesen Jo W. Howze
(Member) (Head of Department)

December 1989

ABSTRACT

Application of the Residue Number System
to the Matrix Multiplication Problem. (December 1989)
Gary Franklin Chard, B. S., Texas A&M University

Chairman of Advisory Committee: Dr. Yu-¥ing Jackson Leung

The primary cbjective of this research is to evaluate
a residue implementation of the matrix multiplication
algorithm by comparison to a more conventional binary
approach. Included in this research is a proposed method
of concurrent residue multiplication and addition, as well
as methods of input and output translation. Common
building blocks are used repetitively throughout the design
process, in an effort to minimize the design time of such a
residue system. Logical simulation of the residue design
was conducted for functional verification, as well as for a
means of timing comparison to a more conventional design.
It was found that the residue design was 2.73 times larger,
and 3.18 times faster than the typical binary comparison
structure. Many comments are presented throughout this
thesis pertaining to considerations that must be made when
contemplating the design of a residue system. The matrix
multiplication algorithm is also simulated, such that exact
timing information is given for both input and output

matrix coefficients.

To my parents

iv

ACKNOWLEDGEMENT

I would especially like to thank Dr. Leung for his
advice and continual support throughout this research. I
also thank him for helping me make graduate school a
positive experience. I would also like to thank Dr.
Watson, Dr. Noe, and Dr. Friesen for serving on my
committee. Finally, I would like to thank my girlfriend
Sherry for her moral support, and for her help in preparing

the manuscript.

TABLE OF CONTENTS

ABSTRACT

DEDICATICN

ACKNOWLEDGMENT

LIST OF TABLES

LIST OF FIGURES

CHAPTER

I

II

III

INTRODUCTION

1.1 Problem Statement

1.2 Approach

BACKGROUND

2.1 The Residue Number System .
2.1.1 Properties of the RNS
2.1.2 Basic RNS Identities

2.2 Basic Operations in The RNS
2.2.1 RNS Addition
2.2.2 RNS Multiplication

2.3 Translation from Binary to Residue

2.4 The Chinese Remainder Theorem

2.5 Sign Representation of a Residue Number

2.6 Introduction to Matrix Multiplication

2.7 The Matrix Multiplication Algorithm
2.7.1 The Multiply and Add Cell
2.7.2 Formulation of the Matrix

Multiplication Algorithm

APPLICATION OF THE RNS
: TO MATRIX MULTIPLICATION . . .

3.1 Error Free Design

3.2 System Dynamic Range Determination

vi

Page

w o @

15
16
18
19
21
22
24

26
27

28

31
32
35

v

VI

TABLE OF CONTENTS (Continued)

MATRIX MULTIPLICATION ALGORITHM SIMULATION

4.

4.

4.

4.

5

2

3

4

MAC Computing Structure

Input Matrix Coefficient Timing

Algorithm Simulation Development

Algorithm Simulaticn

DESIGN DEVELOPMENT

5.

5

1

.2

Residue System Specifications

tip

i
1
2
.3
4
5

ly and Add Cell .

MAC Functional Conflguratlon
Modified Braun Array . .
Lower Truth Table Modulo m .
Upper Truth Table Modulo m
Four-Bit Binary Adder

Translation
Input Operand Adjustment
Residue Digit Generation

Translation .

Controlled Addltlon/Subtractlon
Multiplication by Inverses
Correct Sign Determination

SIMULATION RESULTS AND COMPARISON

6.1

6.

2

Simulation Development

Simulation Results
6.2.1 MAC simulation
6.2.2 Input Simulation
6.2.3 Output Simulation .,
6.2.4 Global Considerations . . , .
Residue Design Area Calculations .
6.3.1 MAC Area . N
6.3.2 Input Translatlon Area - .
6.3.3 OQutput Translation Area . . .
6.3.4 Global Considerations . . .
Design Comparison . . P
6.4.1 Comparison Structure .

vii

Page
39
39

6.

TABLE OF CONTENTS (Continued)

4.2 Time and Area Comparison

VII CONCLUSION, . . .

7.1 Contributions . . ,

7.2 Future Research

REFERENCES

APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D

VITA

MATRIX MULTIPLICATION ALGORITHM
SIMULATION RESULTS

TRUTH-TABLES AND KARNAUGH MAPS
SCHEMATIC PLOTS , . .

SIMULATION RESULTS . . .

viii

Page
103
1058

106

110

112
116
125
136

150

Table

LIST QF TABLES

Residue Representation of the Numbers
from -4 to +32 for Moduli 2,3,5 -

Multiplicative Inverses

Partitioned Interval of Definition
Determination of Dynamic Input Range
Matrix A and B Input Coefficient Timing

2lgorithm Simulation for Arbltrary
Input Matrices - PR

Output Coefficient Timing

Modulo 15 Truth Table

Multiplicative Inverses
Primitive Component Models

MAC Simulation Results
Input Translation Simulation Results
Output Translation Simulation Results
Processing Time Comparison

MAC Simulation Data
Input Translation Simulation Data . . .

Output Translation Simulation Data

Page

12
15
23
36
43

46
47
62
80
88
90
92
94
103
137
143
149

LIST OF FIGURES

Figure

2.1 Multiply Add Cell

2.2 Hexagonal Array for Matrix Multiplication
2.3 Banded Matrix Multiplication

3.1 S8ystem Configuration
4.1 Computing Array for Matrix of Bandwidth Five
4.2 MAC Input/Cutput Naming Convention

4.3 Input Matrices of Bandwidth Five

5.1 Residue MAC Configuration

5.2 Proposed MAC Configuration of Each Modulus
5.3 Modified Braun Array
5.4 Full Adder Cell Design, . . .

5.5 Modified Braun Array Hardware . .

5.6 Modulo 15 Karnaugh Maps

5.7 Modulo 15 Truth Tables

5.8 Four-Bit Binary Adder
5.9 1Input Translation Functional Configuration
5.10 Input Operand Adjustment,
5.11 Mixed Radix Coefficient Determination

5.12 Conditional Adder, . . .

5.13 Non-Conditional Adder
5.14 Four-Bit Braun Array
5.15 Multiplication and Addition of the

Mixed-Radix Coefficients

Modulo 7 Truth Table Hardware

Page
27
29
30
31
40
41
42
52
56
58
60
60
63
65
68
71
73
77
79
79
81

84
126

A1l
A.12
A.13
A.l4
A.15

A.l6

LIST OF FIGURES (Continued)

Modulo 11 Truth Table Hardware
Modulo 13 Truth Table Hardware
8X4 Multiplier

Twelve-Bit Multiple Gensrator
Fourteen-Bit Carry Save Adder
Fourteen-Bit Binary Adder
Modified Adder A

Modified Adder B

Seventeen-Bit Two’s Complementer
Modulo 7 Trial #1 MAC Simulation
Modulo 11 Trial #1 MAC Simulation
Modulo 13 Trial #1 MAC Simulation
Modulo 15 Trial #1 MAC Simulation

Modulo 16 Trial #1 MAC Simulation

Modulo 7 Trial #1
Input Translation Simulation

Modulo 11 Trial #1
Input Translation Simulation

Module 13 Trial #1
Input Translation Simulation

Modulo 15 Trial #1
Input Translation Simulation

Modulo 16 Trial #1
Input Translation Simulation

Page
127
128

129

131
132

134
135
138
139
140
141

142

144

145

146

147

148

CHAPTER I

INTRCDUCTION

Digital signal processing is a rapidly emerging
technical area, where speed of computation is of prime
importance, as well as practical considerations such as
component packaging, silicon area, and cost. Some of the
newest areas of interest in digital signal processing are
real-time image processing, satellite communications,
pattern recognition, and vector calculations. For these
applications, parallelism has recently proven to be the key
to faster processing of data. Parallelism may be achieved
on mathematical, architectural, and realizational levels
(1. The residue number system , as will be seen shortly,
achieves parallelism on a mathematical level.

Around 100 A.D., a Chinese mathematician named Sun Tzu
authored a book containing a poem called t’ai-yen (great
generalization). This poem was a puzzle, which challenged
the reader to determine an integer number having a
remainder of two, three, and two, when divided by three,
five, and seven, respectively. The answer to the poem
being the integer twenty-three. Although Sun Tzu did not
know it at the time, he formed the basis of the Residue
Number System (RNS), which would be studied in detail

twenty centuries later. His poem is the equivalent of a

IEEE Transactions on Computers used as a journal model.

three-modulus RNS with three prime moduli {3,5,7}. This
poem also stated a rule, refined by scholarly pecple over
many centuries, called the Chinese Remainder Theorem [21.
It is the Chinese Remainder Theorem that allows conversion
of the residue remainder digits back to an integer.

Between twenty and thirty years ago, a renewed
interest in the Residue number system began. Szabo and
Tanaka published a comprehensive book on the basic theorenms
and properties of the RNS [2]. Their primary interest 1in
this number system was its application tc the design and
organization of digital computing machines. Without the
invention of digital computers, the residue number system
would most 1likely be as underdeveloped today as it was
centuries ago. The techniques of addition, subtraction,
multiplication, and division, as well as the fundamental
properties and theorems of residue arithmetic were
presented in [2]. Szabo and Tanaka concluded that
operations such as addition, subtraction, and
multiplication are simple operations to perform. Division,
sign determination, and overflow detection were found to be
difficult operations in both concept and implementation.

Since the renewed interest occurring in the mid
1960’s, scientists have been studying and contributing to
the topic of residue arithmetic. Industry has never
adopted the residue number system as a viable alternative
to the conventional binary number system. Several changing

factors, such as the need for increased parallelism in

algorithms, new hardware capabilities, and semiconductor
technology evolution, will scon cause the characteristics
of the residue number system to be more closely examined.
The number system has many inherent advantages over
conventional number systems, as well as a few shortcomings,
which subsequently have greatly limited the acceptance and
use of the residue number system. Typical processors
implemented today are unable to do matrix multiplication
without careful programming by the user. Thus by
implementation of a dedicated processor for the specific
task of matrix multiplication, using current Very Large
Scale Integration (VLSI) techniques, a cost and performance
effective solution to the problem of matrix muitiplication
can be achieved. The approach that will be used in
designing this dedicated processor, will be that of
systematically connecting local processing elements in a
parallel-pipelined fashion. In [3], an algorithm is
proposed for matrix-matrix multiplication using a systolic
array concept. Designs using the systolic array concept

(simple and regular interconnections, parallel algorithms,

and pipelining), have been proven to achieve a higher chip
density, resulting in both a cheaper and a higher
performance implementation. It is possible that further

time enhancements may be made by the RNS, which has an
inherent parallel nature, as compared to the conventional

binary number system. The intent of this research is to

show that by applying the residue number system to a
computationally intense problem, enhancements can be nade

over a comparable problem using the binary number system.

1.1 Problem Statement

Significant amounts of research effort have been
expended investigating the properties of the residue number
system, and its applications to current computer
technology. The aim of this research is to determine if
through applying the residue number system to the matrix
multiplication problem, the solution time can be
effectively reduced. Also, this research hopes to express
several practical considerations to be dealt with when
contemplating the use of a residue type design.
Furthermore, the exact timing information of the matrix
multiplication algorithm will be studied, 1in hope that a

generalized timing equation can be derived.

1.2 Approach

The goal of this research is to quantify the
processing time of matrix multiplication, using the residue
number system. It is expected that the exact timing
specifications of the system, as well as the exact chip
area such a design would occupy will be determined.

Moreover, the results of this research will allow the

comparison of the residue number system approach to that of
the binary system. In the event that significant
improvements over the binary number system are made, the
use of the residue number system will greatly be promoted.
Details of the approach towards the above stated goals will
now be described.

There are several tasks to be considered in the design
and simulation of a system as mentioned above. First, a
method of translation to the residue number system which is
suitable to a pipelined operation will have to be
considered. There are currently several papers making
comments on the translation problem from binary to the
residue number system. In [41, ROM’ s (Read Only
Memories) are used to accomplish part of the translation
task. In a VLSI design, it is very desirable to avoid
using ROM’s from the aspect of their slow speed and area
requirements. Thus, it will be important to develop a
method of translation, avoiding the use of ROM’s.

Also, on a larger architectural level, a systolic
array method of matrix multiplication will be necessary
[5]. The method of matrix multiplication, proposed in {31,
uses a systolic array approach. This algorithm will be
developed, and tailored to accommodate the RNS. The exact
timing information will also be given.

Next, a method for implementation of the basic residue

number operations such as addition and multiplication will

be investigated (6-8]. Once again, the design will avoid
using the ROM approach, 1in search of a higher performance
solution. Considerable time will be spent on the
optimization of addition and multiplication processes,
since the MAC (Multiply and add Cell) will be the most
prevalent processing element in the design.

Just as it was necessary to translate from the binary
to the RNS, it will be necessary to translate from the RNS
back to the binary number system [4, 9-12].

As a wverification on the design process, and as a
check on the timing information, the design will be
simulated on an Apollo workstation using Mentor Graphics’

Neted and Quicksim design tools.

CHAPTER TIT

BACKGROUND

During the 1950’s, fabrication of transistecrs on
crystalline silicon was developed. The integrated circuit
plays a large role in society today. It has applications
ranging from components in home stereos, to the electronic
ignition control computer module in automobile engines.
The integrated circuit is also fundamentally important to
computers as we know them today.

Gver a short time in the span of history, the
integrated circuit (IC) has evolved from containing several
transistors, to present technology of a million transistors
on a single silicon chip.

The photolitheographic process of the mid 1980's allows
for the fabrication of integrated circuits very large in
size, not previously possible, to be placed inside a single
component package. Even more important than this, current
research in component packaging includes effort in the area
of multichip modules, where it will be possible to
implement large circuits in several pieces, and combine
them onto a silicon substrate, and encase them in one
package [13].

Therefore, as technology progresses, the capability of
fabricating complex systems such as the matrix

multiplication algorithm, requiring significant amounts of

hardware, becomes more viable. Tt should be noted that the
desire to implement such a specialized algorithm would be
primarily for that of an increase in computational speed.
The host processor could not possibly multiply two matrices
of such a complexity in a comparable amount of time. The
matrix multiplication algorithm will be responsible for a
certain increase in speed, which is further enhanced
through the application of the residue number System. The
properties of the residue number system will now be

investigated.

2.1 The Residue Number System

The notation used in intreducing the properties and
various aspects of the Residue Number System will be
consistent with that of Szabo and Tanaka [27. In cases

where theorems are stated, the proofs will be omitted.

2.1.1 Properties of the RNS

Every number system has several characteristics
allowing it to be distinguished from other number systems.
Among these characteristics are the range, uniqueness in
representation, and the base (radix) of the number system.
The decimal number system and the binary number system are
both fixed radix number systems. The decimal number system

has a fixed radix of ten, the binary number system has a

fixed radix of two. The following illustrates the idea of
a fixed radix system using the decimal number system as an

example.

Example 2.1:
(12793) 35 = 1*107 + 2%10% + 7%102 + 9%107 + 3100

Thus, we note that any decimal number can be expressed as a

sum of its individual digits multiplied by the base raised

to the appropriate power of the digit being expressed. In
this case the digits are multiplied by powers of 10. The
residue number is not a fixed radix number system. In

fact, the residue system has more than one radix and is
described by an N-tuple of integers {my,mp,ma,, my)
where each of the integers m; is called a modulus. This N-
tuple of integers is often referred to as moduli, which is
the plural form of the word modulus. Any number x in the
residue number system can be expressed as an N-tuple of
integers defined by a set of N equations:
X = qmy + rj i=1,2,3,..... N

where q; is an integer chosen to ensure that r; has a value
equal to or greater than zeroc and less than the modulus m;.
The integer number r; is the least positive remainder of
the division of x by my . This value, r;, is called the
residue of x modulo m;, often denoted by /x/qi. The

quotient term, qi, is often represented as (x/my]. A

10

commenly used form of the above equation is often expressed
as:

x = mx/mi] + /x/
where /x/.; is always a positive integer. The following
example illustrates both the idea of an N-tuple of moduli

and the idea of an N-tuple of r.

Example 2.2:

For a three modulus system, with moduli given by an N-
tuple (N=3) fmy,ms,ma} = {3,5,7}, Given an integer in the
decimal number system x = (37)10, a representation in the

residue number system can be found as follows:

ry = /&/m1 = /37/5 = x - my {x/my] = 37 - 3(12] = 1
T2 = /X/mz = /37/s = 2 - mylx/mp] = 37 - S{7] =2
r3 = /%/q3 = /37/5 = x - ms[x/m3] = 37 - 7[5] = 2

Thus, the RNS representation of 37 1is {ry,ra,r3} =

{1,2,2}.

Exapple 2.3:
Similarly, we can find the residue representation of
the decimal number 142.

ry = 142 - 3[47]

[
[

rp = 142 - 5(28] = 2

ry = 142 - 7(20] = 2

Thus, the RNS representation of 142 is given by the set

{1,2,2}. It should be noticed that this is the exact

11

result obtained in the previous example when a RNS
representation of 37 was found. It seems as though a
centradiction has been made, implying that as far as the
residue number system is concerned, the numbers 37 and 142
are identical. The following theorem will help resoive

this paradox [2].

hecrem 2,1:
Two integers =x and y have the same representation for a
given set of moduli Mmp,Mz,mMy if and only if (x-y) is an

integer multiple of the least common multiple of the moduli
denoted by M.

The least common multiple of the moduli for the above
examples is M = (3)*(5)*(7) = 105, If we dencte x = 37,
and y=142, then (x-y) = 105, which is an integer multiple
of M. Thus as the theorem predicts, the numbers 37 and 142
should have the same residue representation, Further
insight into the RNS can be obtained by examining Table
2.1. First we notice that M = (2)*(3)*(5) = 30. Also
noticing that the residue representation of 0 is the same
as the residue representation of 30, and that all the
numbers between 0 and 30 have a unique residue
representation. It is also true that any arbitrary
interval of exactly 30 numbers denotes a unique mapping
from decimal to a residue representation. The residue
number system is periodic, and must be restricted to a

single period, denoted by an interval of definition. It is

i2

Residue Representation of the Numbers

Table 2.1

from -4 to +32 for Moduli 2,3,5

w

22}

Moduli

012340123401234012

CHFNO AN~ N ~NO—~NO—a

T T OO IO A0 O A O —~O —-O

O~ 0
22222m

32

—
o

Moduli

1234012340123401234

2012012012012012012

0101010101010101010

TOg e ~aNmtnorwa a0y

-}

fairly apparent that once a number is converted into its
residue representation that it is not easy to determine the
sign of a number, nor is it easy to perform any type of
magnitude comparison among the residue digits.
Consequently, this is one of the most serious disadvantages

of the Residue Number System.

2.1.2 Basic RNS Identities

The following are several pertinent identities of the
RNS, with the proofs omitted for the sake of brevicy.
Interested readers are urged to consult [2] for further
details.

(1) 0 < /x/p < (m-1)

(2) /Em/, = 0 for K an integer

(3) /%) /m = /%)

(4) /x4mK/p = /x-mK/,, = /%)

5) /=%/m = /(m=1)%/p = /m-x/q
Addition for a single modulus in the residue number system
is now formulated by the following equation:

/%t Y/ = /K + I/ mlm = 1/ %/ + ¥/ = /% + /¥l
/x+y/n is often referred to as the sum module m of x and y.
Multiplication for a single modulus in the residue number
system is formulated by the following equation:

/Y Imo= /(%)) (/Y) I = /42) (/Y) I
The properties of addition and multiplication modulo m will

now be demonstrated in Example 2.5.

Example 2.5:
Let m = 7, x = 32, y = 26
/32/., = 4 /26/5 =5
Addition

/% + y/g = /32 + 26/4 = /58/5 = /4 + 26/ = 2
Multiplication

/xy/ = [(32) (26) /5 = //32/,26/5 = /(4) (26)/5 = 6

The following multiplicative inverse theorem [2] 1is
very useful in solving linear equations of the form Jax/ g, =
/07 If 0 < a <mand /ab/, = 1, then a is called the
multiplicative inverse of b modulo m, and is denoted by a =

/1ib/ .

Theorem 2.2:

The quantity /1|b/, exists if and only if the greatest
common divisor between b and m is equal to one and /B/m
does not equal zero.

If the above theorem holds, then /1lb/y is unique. From
Table 2.2 it is apparent that for a given number, a

multiplicative inverse does not always exist.

Table 2.2 Multiplicative Inverses

Modulo 14
[1 | X
X 14
1 1
2 None
3 5
4 None
5 3
6 None
7 None
8 None
9 11
10| None
11 9
12| None
13 13

Example 2.5:
The following equation may be solved using the
multiplicative inverse theorem:
/3x/7 = 4
/113/3 =5 because (a,b) = (3,5) = /(3)(5)/, = 1

Thus, /x/; = /(5)(4)/; = 6

2.2 Basic Operations in the RNS

The previous section discussed the fundamental

theorems and identities of the RNS. This section will

emphasize the cperations on a complete residue
representation, rather than on a system with a single
modulus. For the discussion following, the reader should
assume that we have a moduli set that is pairwise
relatively prime. The assumption of pairwise relatively

prime moduli will be commented on later.

2.2.1 RNS Addition

The basic identity for addition modulo m was defined
for individual moduli. This basic definition can be
extended to include systems where multiple moduli are to be
used. Theorem 2.3 allows addition 4in systems with multiple

moduli [2].

eQre 2.3:

For a given residue system consisting of moduli
My, Mz, M3, ...,My, let x and y be defined to be in the
residue form. This residue form is denoted by /x + y/yu.

x <m—=mm > /%y s % e e o /% o)
+ oy <==-=- > Y s MY w2 s e ¥ e)
/2ty /v U /%4Y/m1s /R¥Y/m20 <« oy /X4 mn]

Also important, there exists one and only one integer,
namely /x+y/y, with such a representation on the interval
{0,M-1}. The following example illustrates the process of

addition for a given set of modulij.

17

Example 2.6:
For the moduli 3,4,5, and 13, (M = 780) addg
2 =124 <—--> (1, 0, 4, 7}
y = 79 <——=> { 1, 3, 4, 1}
Moduli; 4 S 13

124 e > 4L 0 4 7y
+ 79 S > €1, 3, 4, 1}
T/203/y = 203 <----> 1 2, 3, 3, 9]

From Example 2.6, several comments can be made. First, the
process of residue addition has no intermocdular carries.
Each residue digit of the result is only dependent upon the
corresponding digit of the operands. Typical fixed radix
number systems are not defined in such a way. The Dbinary

number system is used to illustrate this in Example 2.7.

Example 2.7:
Let x and y be binary numbers given by x = (13)10 = (1101),
and y = (11)10 = (1011),. The binary addition of x and y

is shown below:

111 <--- carry digits
1101 1101
+ 1011 <-———----- > +£.1011
11000 11000

Note that in order to obtain the result, it is necessary to

18

generate carries from the least significant bit position
towards the most significant bit position (left to right

so that the higher order resultant bits may be determined.
It is this absence cof interdigit carries that result in an
inherent speed advantage over fixed radix systems. Also,
notice that the result is obtained modulo M, such that if
the result exceeds the value M-1, an ambiguity arises.
This is a result of a previous identity, stating that /x/_

and /x + mK/, will have the same residue representation.

2.2.2 RNS Multiplication

The basic identity for multiplication modulo m was
defined previously for a system with a single modulus.
This definition can be extended to include systems with

multiple moduli, as was the case in addition 2].

Iheorem 2.4:

For a given residue system consisting of moduli
M3,Mz, M3, . ..My, residue multiplication is defined for x and
Y by the following:

X Kmm——— LT O R A S A }
Xy <~——m- > {/y/ml,/y/m2,/y/m3, . . ., /y/mN)
/%y /y URY/m1 1 /XY /2 2 /%Y m3 1 - -, (%Y e]

Within the interval (0,M-1) only one integer will have the

above residue representation, namely /xy/,.

Example 2.8:
For the moduli 3,4,5, and 13, (M=780) multiply
% =122 <m—--- > 02,2, 2, 5
y = [R > { 2, 1, 0, 5}
122 cmemeeeee > (2,2 2, 5;
% 5 P > {2, 1, 0, 5}

/610/980 = 610 <-—=> { 1, 2, 0, 12}

The same comments apply to multiplication that applied to
addition. Specifically, that multiplication is carry free

between moduli, and results in ambiguity if zy exceeds M-1.
2.3 Translation from Binary to Residue

A vast majority of digital computers today use a
form of the binary number system for computation. In order
to use the RNS, it is necessary to translate from the
conventional binary number system to the residue
representation of a number. An integer x in the binary
number system is described as follows:

x =2, + 27 lp o+ + 2%b, + 2'b; + by
Szabo and Tanaka observed that if the powers of 2 modulo m
are stored in computer memory, that /x/n could be computed

by adding modulo m the powers of two which have a non-zero

by [2].

20

Example 2,9:
Let x = (26),45 = (11010),
To compute /x/5, the following values should be
computed prior to /x/4:
/2% 5 =1 12%/3 = 2 /227 =1
/2/5 = 2 1/ = 1
Computing /x/4
/x/3 = /(L) + (2) (1) + (1) (0) + (2) (1) + (1) (0) /5
= /5/3 =2
/26/5 = 2

Another method of input transiation has been proposed
that wuses a variation on the idea presented above. The
method wuses n/2 processing elements (n = word length of
weighted number), with each processing element responsible
for storing the two residues of two consecutive bits in the
input word ({107. Depending on whether a one or a zero is
present for the specified input bit, the residue of the 27
bit position is either added modulo m to the resultant of
previous bits or zero added to the previous bits
respectively. This design would be very suitable for
pipelined operation, with the computation of each pair of
residue digits for each clock stage. The matrix
multiplication algorithm wused in this research does not
allow any speed increase with the application of

pipelining.

21

2.4 The Chinese Remainder Theorem

The Chinese Remainder Theorem allows conversion out of
a residue representation into a weighted number system
[14]. Given a residue representation {ry,ra,r3, ..., 0y},
the Chinese Remainder Theorem makes it possible to
determine /x/y, provided that the greatest common divisor
of any pair of moduli is one. A moduli set obeying this
property is called pairwise relatively prime. The
following theorem fails to hold if the requirement of

pairwise relatively prime does not hold [21.

Theorem 2.4: Chinese Remainder Theorem
/xRl = L0 (257751257 m5)) I

where z2y = M/my, M = (my) (mz)....(my), and the greatest
common divisor between any two moduli is one.

Example 2,10:

For the moduli m; = 13, m, = 11, mz = 7, and mgy = 9, the
number given by the residue representation {4,2,4,7} can be
found as follows:

M = (13) (11) (7) (9) = 9009

I
IS

/21/33 = /{11) (7Y (9) /135 = /693/14 =
/22710 = /(13)(7)(9) /1, = /819/1, = 5

/z3/7 = /(13) (A1) (9) /5 = /1287/, [3

(]

/zals = /(13)(11) (7) /g = /1001/g = 2

/879000 = /693/(10) (4) /15 + 819/ (9) (2) /1, + 1287/(6) (4) /4
+ 1001/(5) (7) 79/ 9000

22

= /(693) (1) + (819) (7) + (1287) (3) + (1001) (8) /agos

= /18295/5050s = 277

There exists a modified form of the Chinese Remainder
Theorem in the event that moduli are chosen such that they
are not pairwise relatively prime. Interested readers
should consult (2] for details of this modified Chinese

Remainder Theorem.

2.5 sign Representation of a Residue Number

Explicit sign representation of a number defines the
case where the sign of a number can be determined by
inspection. Such is the case with a signed magnitude
representation of a binary number, where the most
significant bit position gives the sign of the operand.

Implicit sign representation of a number defines the
case where the sign information is not readily apparent
upon inspection of a number. Implicit representation is
the case when a number is in residue representation. It
should be apparent from Table 2.1 that immediate
determination of operand sign is virtually impossible upon
inspection.

It is common practice to consider numbers in the range
of [0,M/2 -1] as positive, and numbers in the range [M/2,M-

1] as negative. This assignment is made assuming that the

23

dynamic range of the system will remain within the
specified range of [0,M-1], otherwise the actual resulting
number, not to mention the sign, will be lost. The
follewing example illustrates the partitiocning of a residue
system into positive and negative parts. Table 2.3
illustrates what is meant by dividing the interval of

definition for a given set of moduli.

Table 2.3 Partitioned Interval of Definition

A = Actual Number
B = Partitioned Number

Moduli Moduli
A |B 235 A | B 235
P00 000 15|15 100
1 1 111 16 1-14] 01 1
2 |2 022 17 | <13 12 2
313 103 18 |-12] 00 3
4 | 4 01 4 19 [-11| 114
5 |5 120 20 |-10] 02 0
6 | 6 001 21 | 9 101
7 |7 112 2| -8 012
8 | 8 023 23 | 7 123
9 19 104 24 | 6| 00 4
1010 010 25 | -5 110
11 |11 121 26 | 4| 021
12 (12| 00 2 27 | 3 102
13 |13 113 28 |2 013
14 (14 | 02 4 29 | 1 124

24

Let x =35, andy = -9, from Table 2.3 the residue

representation of x and y are as follows:

X

o
[
N

0}
vy = {1, 0, 1}
/x4ty /y=4{0,2, 1}
Since x + y = 5 + -9 = -4, we would expect in Table
2.3 for the residue representation of -4 to be { 0, 2, 13},

this is exactly the case.

This concludes the introduction of the Residue Number
System. There are many other theorems and identities which
have not been presented. Division is presented in (2], but
it is a complex operation when compared to addition and
multiplication. This research will not need to implement a
method of division, hence it will not be discussed. Next
the basics of matrix multiplication, as well as the matrix

multiplication algorithm will be examined.

2.6 Introduction to Matrix Multiplication

A matrix is simply an array of numbers denoted by &,

in the form of:

I ag; ain |
A= I azy azn |
... cee
| am, 8mn |

A matrix has m rows, and n columns. If A is a matrix, and
has m rows and n columns, then in order to multiply B by A&,
we require that B be a matrix of n rows and P columns. The
multiplication of two matrices is defined as follows [15]:
Let C = AB = lei51 , then C is known to be a matrix of

m rows and p columns such that

C = aji1byg + a:i2boy + ...+ aj by i=1,2, s
)= 1,2, P
mple 2
Let A= | 1 2 | and B=1-2 5
I3 14 | 4 -3
Then
AB = 1 (1) (=2)+(2) (4) (1) (5)+(2) (=3) |
I (3) (=2)+(1) (4) (3) (5)+(1) (-3) |
AB = | 4 -1 |
| =2 12 |

It should be noted from a computational standpoint, it
takes a total of 8 multiplications and 4 additions to
multiply simple 2-by-2 matrices together, In general,
(mxn] % [nxm] requires (m-1)n2 additions, and mn?
multiplications. Clearly for large matrices, the number of
multiply and addition steps increase rapidly. The
following algorithm, which forms the foundation to which
this research was applied, greatly reduces the amount of

time required to multiply two matrices together,

26

2.7 The Matrix Multiplication Algorithm

One of the most successful applications of pipeline
processing has been in the executicn of arithmetic
operations [3]. Pipelined operation allows for small
portions of an overall task to occur at each position in
the "pipe". This type of setup is extremely valuable when
successive operations of the same type occur (e.g. an
operation operates on a vector). It takes a certain amount
of time to fill up the "pipe", which is known as the start-
up or initialization time. If the successive operations on
the vector are very long, the start-up time time becomes
very insignificant. A majority of supercomputers use
multi-stage pipelining to achieve very fast operating
speeds. A pipeline arithmetic unit can be visualized as a
systolic array of linearly connected processors. Where
each processor (processing element) is capable of
performing a small portion of a global task. Kung found
that the multiplication of two matrices could be done by
using an array of hexagonally shaped processing elements
[31. This algorithm is suitable to Very Large Scale
Integration (VLSI) where it is essential that processors
are regular (in this case identical) and only locally
connected. The basic processing element used by this
algorithm is called an inner-product step processor. In

this research, the inner-product step processor will be

referred Lo as a Multiply and Add Cell

2.7.1 The Multiply and Add Cell

Figure

(MAC) .

2.1 illustrates the shape of the multiply

add cell (inner product step processor),

27

and

which is the most

basic element in the matrix multiplication algorithm.

Figure 2.1 Multiply Add Cell

The MAC contains three registers Ras Rp,

connections

connections,

each time interval,

and R, and

crossing the MAC boundary. Of the

three are inputs and three are outputs.

the processor transfers the data on

input lines denoted by A, B, and C into R, Ry, and

respectively,

then computes the value of

(Ra) (Rg) + (Rc) ,

six
six

At
its
Re,

and

28

transfers the cld values of R, and Ry, along with the new
value of Re ((Ra) (Rg)+(Re)) to the output lines, dencted
A, B, and C, respectively. Since the inputs of each of the
MAC’s are latched, changing outputs will not interfere with
the input of another MAC until the following clock cycle.
It is this described cell, that will allow the
multiplication of two matrices together by the following

algorithm.

2.7.2 Formulation of the Matrix Multiplication Algorithm

The matrix product C = (ciy) of 2 = (as;4) and B =

(by 4), can be computed by the following relationships {37]:

cis =0
k+1 k -
iy ® Y ey v anbyy k=1, 2, ... , n
- (n+1)
Cijy = €347

Figure 2.2 illustrates the algorithm using a diamond-
shaped array of 1linearly connected hexagonally shaped
multiply and add cells.

The configuration of Figure 2.2 could be used to

multiply the following matrices: A xB-=C
| all al2 | x | bll bil2 = | ¢11 cl2
| a21 a22 | | b21 b22 | | e21 22 |

The algorithm is easily applied to larger matrices with the

addition of more MAC’s configured in a similar manner.

29

b22

bi2

Figure 2.2 Hexagonal Array for Matrix Multiplication

The pattern for the input coefficients, as well as the
timing constraints will be examined in Chapter IV.

The exact configuration of Figure 2.2 could be used tc
multiply two band matrices of larger dimension. The
multiplication of two matrices with bandwidth Wi = pytg,-1

and wy = pptgp-1, respectively, is shown in Figure 2.3.

a4y a2
pl{ allaiz 0 0 o |Ff{vilbi2 0 0 0 clteizeld 0 0
a2l w2 a3 0 0 b21 622 623 0 O €21 €22 €23 24 0
0 a32 a33 a34 0 X{ O b32b33b34 0 = €31 €32 ¢33 ¢34 ¢35
| 0 0 243 a44 245 0 0 b43 bdd kA5 0 c42 c43 c44 c45
‘o 0 0 as4 ass 0 0 0 bS4bsS 0 0 c53 c54 ¢S5

Figure 2.3 Banded Matrix Multiplication

From Figure 2.3, the bandwidth of A and B can be calculated
to be wy; = 2+2-1 = 3 and wy = 2+2-1 = 3 respectively. It
should be noted that this is exactly the bandwidth of a
matrix which has two columns and two rows. Thus the
matrices given in Figure 2.3 could be multiplied using the
MAC configuration of Figure 2.2. In general, if A and B
are matrices of bandwidth w; and w,, then it . takes WivWp
hiex~connectéd processors to compute thg_mstiplication of A

and B to obtain the resultant.matrix C (3]

CHAPTER I[II

APPLICATION OF THE RNS TO MATRIX MULTIPLICATION

The matrix multiplication algorithm lends itself to an
application requiring high speed multiplication. In
addition to the requirement of high speed multiplication,
the application must also have a need to multiply matrices
with a very large dimension or very frequently. In most
applications, the algorithm will ideally be implemented on
a single chip. It is expected that this chip will be
attached to a host processor, exchanging the various input
and output operands through the system bus, as shown in

Figure 3.1. [16].

Matrix
protost Memory Multiplication
TOCESSOor Chip
P .
« —p

System Bus

Figure 3.1 System Configuration

Applications without the need for high speed matrix
multiplication, or without the need to multiply large
matrices successively, can not efficiently use the

algorithm. It should be clear that since the algorithm

32

will most likely be implemented on a separate chip, and
that any further increases in speed, attributed to the
Residue Number System, would be worth extra design time.
While the amount of time saved for one multiplication of
small matrices is not very significant, the amount of time
saved for many successive multiplications adds up to be
very relevant. As previcusly mentioconed, certain residue
operations are much more complex than other operations.
The operations of multiplication and addition are among the
simplest, while magnitude comparison, sign determination,
and division have proved to be more difficult. The matrix
multiplication algorithm is simplified irto successive
multiply and add operations. For this reason, it should be
apparent that this algorithm is a prime candidate for
operations of the residue type. It is also expected that
if division was necessary, that the overhead required to do
this might be fatal to the application of the Residue
Number System. The following section discusses the
considerations necessary to successfully implement the

matrix multiplication algorithm using the RNS.

3.1 Error Free Design

The residue number system has a very unique property,

being that it does not suffer from round-off error. This

can be used to the systems advantage or disadvantage

33

depending on the application. In an application where
exclusively integers will be manipulated, this is a very
highly desired feature. In applications where fractions
are being manipulated, error of some magnitude Is both
tolerated and expected. Tn the conventicnal binary number
system, when two numbers of arbitrary word length n are
multiplied teogether, it is possible to get resultant word
lengths of 2n. It is common practice to truncate the lower
n bits when dealing with fractions. Conversely, when
dealing with integers, it is common to designate a certain
upper limit number of bits for the system. Any time this
system wupper limit is exceeded, overflow is said to have
occurred. Upon the occcurrence of overflow, the result of
the calculation may be only partially complete, or
completely incorrect. At any rate, the answer is
inadeguate, and should never be used for any further
calculation.

It should be clear that in a residue system design, it
is not important to designate at the onset whether the
input operand will be a fraction or an integer. The system
will produce the entire output length, depending on the
application, the designer can truncate the upper or lower
portion of unused bit positions, for integer or fractional
designs, respectively.

One consequence of the above mentioned error free
property, is that the overall system dynamic range must be

determined. Considering an ordinary binary system, where

34

successive multiplication and addition processes occur, it
can be shown that if the dynamic range of the system (i.e.
maximum word length of the binary operands) 1is exceeded
before any of the above mentiocned processes are complete,
that the result will be both incorrect and unusable. In a
residue system equivalent, if the dynamic range is exceeded
during some calculation internal tc the overall process

there is still hope. It is only mandatory that the end
result remain in the dynamic range of the given system.

The following example should clarify this issue.

Example 3, 1:
Let the moduli of a system be my =3, and mp, = 5,
M = (3)(5) = 15

Thus, the system interval of definition is (0,14).

Suppose z = (a)(b) + (c) is to be calculated, where
a = (4)q === > fa/y = (1, 4}
b = (6)40 /b/m= {0, 1}
c = (-10)14 <—~—-- > Jelw =12, 0}
a {1, 4}
x b x {0, 1}
@010 (o, 4y
Note: (a) (b) has already exceeded the interval of

definition, even so the calculation is continued.

24 {0, 4}
+ -10 x {2, 0}

(14) 10 <==-> {2, 4}

35

ab + ¢ = (24)1¢ + (=10)5 = (+14) <-- desired result
Since { 2,4 } is the residue representation of 14,

the calculation is exactly correct.

This property has no parallel in the binary number
system. If at any point in a binary calculation overflow
occurs, the resulting calculation has no predictable chance

of being correct.

3.2 sSystem Dynamic Range Determination

There are two ways of determining the dynamic range of
a residue system design. It is possible to examine the
input word length, and make a calculation to determine the
maximum possible value at the output, assuming worst case
(largest valued) numbers at the input, for all inputs. The
second approach is to agree on a maximum allowable output,
and hope that this range is never exceeded. This
particular method would be particularly useful if a
designer knows ahead of time that a certain output value
will never be exceeded. In this case, the design would be
simplified accordingly. In this research, the first
approach is used.

The assumed input operand format in this design is
presumed to be that of a signed magnitude number. This
format is typical in floating point processors, although

this is not a floating point processor. It would allow

36

easier communication with a floating point processor, since

the operands will be input and output in the same format.

It may be advantageous to place an intermediate processor

between the host and matrix multiplier, for the purpose of

pre-adjusting the mantissa of an input floating point

number, alsc for the purpose of readjusting the mantissa on

return to the host processor [16]. This process should be

pipelined, so that the time required to adjust the operands
does not affect the performance of the algerithm.

The actual dynamic range of this system will be

directly determined by two factors. The first factor is

the input operand word length. The second factor depends

on the size of the input matrices to be multiplied. Table

3.1 shows the value determining the maximum value possible

in any position of the output matrix.

Table 3.1 Determination of Dynamic Input Range

Square Input Matrix Dimension

1350 1800 | 2250 | 2700 | 3150 | 3600
31| 5766 7688 | 9610 | 11532 | 13454 | 15376
63 | 23814 31752 | 39690 | 47628 | 55566 | 63504
127| 96774 | 129032161290 | 193548 | 225806 | 258604

Al B 3 4 5 6 7]
2|1 6 8 10 12 14
303 | 54 72 90 108 | 126
417 | 204 392 | 49 | 588 | 686
5|15

6

7

8

A = Signed Magnitude Input Word Length
B = Maximum Possible Magnitude of Input

37

From Table 2.1, for signed magnitude input word length, the
maximum magnitude of the input can be calculated by 277 -1,
For an input word length of eight bits (n=8), the maximum
input wvalue can be calculated as 21 -1 = 2717 _ 1,7
The maximum value of any number in the output matrix can be
determined by:

X = (dimension of input matrix) (maximum input value)?

The above formula is assuming square input matrices.

Example 3.2 demonstrates the calculation of this value.

Example 3.2:

The maximum value of any one value in the output
matrixz can be calculated given both the square input matrix
size, and the input word length. If the matrix input size
is 4, and the input word length is 7, we can calculate the
upper bound of any entry in the output matrix as follows:

X = () (2771-1))% = (1) (63)2 = 15876
Consulting Table 3.1, for an input word length of 7, and a
matrix size of 4, we do not get the same result as Example
3.2. This 1is because in Example 3.2, only the positive
output range was considered, so that the total range can be
found by doubling the positive dynamic range. In the case
of Example 3.1, the total dynamic output range is given by

(2) (15876) = 31752.

The motivation for finding the output range so

38

meticulously is due to the nature of the residue system.
Remembering that the result will only be correct in the
case where it is enclosed by the interval of definition.
The approcach taken in such a design might be that the
output must be correct for all possible inputs. Another
approach could be that of a defined interval of definition,
with some sort of assurance that the defined interval will
never be exceeded. Once again, the philosophy behind this
design is that the correct result will be achieved for all
possible input combinations of a given word length.

In this design it was decided that an eight-bit input
operand, and an input matrix of bandwidth five would be
sufficient to demonstrate the advantages and disadvantages
of a residue system design. Specifying a bandwidth of five
alsc specifies the maximum allowable output operand value,
in exact accordance with Table 3.2. This is very
convenient from the standpoint of a general design. For an
input matrix of any arbitrary size, the algorithm works as
long as the bandwidth of the arbitrary matrix is less than
or equal to five. In the event that the matrix has a
bandwidth less than five, zeros should be input at the

unused input ports.

39

CHAPTER IV

MATRIX MULTIPLICATION ALGORITHM SIMULATION

The reference presenting this algorithm fails to
adequately introduce the necessary timing information to
successfully implement the algorithm [3]. It will be the
purpose of this chapter to develop and demonstrate the
application of the algorithm itself. Specifically, the
algorithm will be demonstrated for input matrices with an
input bandwidth of five. The timing parameters obtained

from this simulation will be needed later.

4.1 MAC Computing Structure

The computing structure will contain wiwy multiply and
add cells. Therefore, a diamond shaped array of twenty-
five processors will be necessary to implement the
algorithm. Figure 4.1 shows the structure to be used for
the simulation. A MAC referencing system is necessary, so
that each separate MAC can be identified individually from
the surrounding processors. As shown in Figure 4.1, the
numbering convention is that of starting at the top, and
numbering each MAC from left to right, consecutively, in a
row-wise fashion. With the exception of the lower-most MAC

in each vertical column, each MAC has six external boundary

41

connections. These connections must also have
distinguishable names. The naming convention for MAC #4 is

shown in Figure 4.2,

Figure 4.2 MAC Input/Output Naming Convention

It should be noted that all inputs to the MAC traveling
from left to right, are labeled 4R. ALl inputs to the MAC
traveling from right to left are labeled 4L. The upwards
going input is labeled 4I, while the upwards going output
is labeled 40. All other cells are named in a similar

convention.
4.2 Input Matrix Coefficient Timing

Crucial to the success of this algorithm 1is the

pattern of input coefficients. The pattern is somewhat

regular in structure. A&fter simulation of the algorithm is
complete, the output port timing coefficients will ke
apparent. Timing patterns for A = (as5) and B = (b;4) will
be examined. Figure 4.3 shows the exact format of the

input matrices A and B, each having a bandwidth of five.

all al2 al3 0 O
a2l a22 a23 a24 0
a31 a32 a33 a34 a3s

A= 0 233 ad3 a4 45
| 0 0 asasiass
BILbI2ZbI3 0 0

b21 b22 b23 b24 0

B - | b3Lb32 533 b3 b3S

0 b33 b43 b44 b45
0 0 bS53 bS4 bS5

Figure 4.3 Input Matrices of Bandwidth Five

The A matrix input coefficients will march into the
computing array of Figure 4.2 from the left hand side
towards the right. The B matrix input coefficients will
march into the computing array from the right hand side
towards the left. There are five input ports into which
the A matrix coefficients will go, namely 11R, 7R, 4R, 2R,
and 1R. There are also five input ports into which the B
matrix coefficients will go, namely 1L, 3L, 6L, 10L, and
15L. Table 4.1 shows the input port coefficient timing
table. The input timing was found by trial and error. all

coefficients on a horizontal row are input into the same

43

Table 4.1 Matrix A and B Input Coefficient Timing

Matrix A Input Timing Table

Coefficient Movement

R |42 253
- 7R| | a32] a3 as4
=2
E‘;\? 4R |all a22 a33 add as5
= 2R aa] | a3 a34 Jass
IR | Jas Ja24 Je3s]

Increasing Time
R —

Matrix B Input Timing Table

Coefficient Movement

L b31] b2l | 53

3L b21 b32] b43 b54]
b11 b22 b33, b44 b535
10L} b12} b23 b34 45|
151 b13 b24 b33

Input
Port
2

Increasing Time

44

input port. All coefficients on a vertical segment are
input at different ports, during the same clock cycle.
Going in increments of one from left to right corresponds
to one clock cycle. This means that input coefficient bqq
is input one clock cycle before coefficient b1z, and that
input <coefficient by, is input three clock cycles before
input coefficient bsg. With the input coefficients timing
established, the development of the simulation may be

examined.

4.3 Algorithm Simulation Development

In order for the development to be clear, the reader

is recommended to consult Figure 4.1 and Figure 4.2 as

necessary. The algorithm may be broken down into three
basic transfers at the MAC level. Each of these transfers
occurs at the onset of a clock cycle. The first basic

transfer is an operand traveling from left to right across
the array. An example of this is the operand at SR being
transferred to 9R. The second basic transfer is similar to
the first basic transfer, except instead of moving from
left to right, an operand moves from right to left. An
example of this is the operand at 8L being transferred to
12L. The third basic transfer is only slightly more
complex than the first two. During any given clock cycle,
the MAC computes the product and sum of the three inputs,

which appears at the output of the mac before the next

45

clock cycle begins. Using MACY9 from Figure 4.1 as an
example, in a given clock cycle, MACY multiplies (9R) (9L)

and adds to this (9I), and places this result on 90 before
the <c¢lock cycle is finished. At the onset of the next
clock cycle, the operand at 90 will be stored in the
register in front of MAC3. In other words, the value at 90
is transformed into 3I when the clock pulse occurs. A
program was written medeling this transfer level
description of the MAC array. The complete output ¢f the
simulation may be found in Appendix A of this thesis, but

the results are discussed here.

4.4 Algorithm Simulation

Simulation of this algorithm is important for several
reasons. First, the determination of the input coefficient
timing is necessary to implement this array structure. of
equal importance, the output coefficient timing will be
determined by examining the simulation results. Finally,
it is important in this research to determine exactly how
many clock cycles it takes to complete a complete matrix
multiplication process, from start to finish.

The simulation input matrices, as well as the
resultant matrix is shown in Table 4.2. The input matrices
A and B were chosen arbitrarily to demonstrate how the

algorithm works. Table 4.2 shows the actual A and B input

46

Table 4.2 Algorithm Simulation for Arbitrary Input Matrices

Resultant Matrix C

Input Matrix B

Input Matrix A

-36

9
24
24
42

-3

-40 -62 45
31 32 6
-30 -66 33
31 -58 9
36 117 63

-25
-5
-9
26

0
0
4
-7
5

0
3
4
4

1

QM en
TGO

—~oJoo

comnm
ong—a
RN~
ANO O

N~ OO

SnoS oo
SoNOC O
FTOooSno
(=R e NNl
[eReNe Rel o]

-
~ < N =

11

[
Ccoccovyoocoo
coocoococococo

<+
cooVodooo
Cococooanocooo
00&000%.00

Bam
coowoRooco

=~ =]
cCooovoooao

g

Output Matrix Timin
0 0 0 3 0
0 0 260

90
0

3

0

0

4

0

vy
SCoocofoococo

SCoooocoooo
SCoococoocooo
Coocooocooco
Coococoooo

9000000899
oEYT A @0

=22}
——

coefficients as they are input into the array. Alsc shown

are the output coefficients, which will be wused to

generalize the output matrix ccefficient timing sequence.
The output coefficient timing can now be generalized

for the C matrix, and is shown in Table 4.3.

Table 4.3 Output Coefficient Timing

[110 [| [csi ,‘
70 l c4ll Cs1 1

70 c3tl [Teal cs3 |
[20 cal C3 C43 Cs
10 [cIi 22 C33 [
30 c12 C23 c34 C45
60 C1 c24 C35
100 _lci4 [C24 |

150 cs_ [[T 1]

e

The amount of time for one complete matrix
multiplication can now be extracted. The reader should
note the regularity of the wedge shaped output coefficient
pattern in Table 4.3.

Several comments can now be made about the overall
timing of the algorithm. It takes five clock cycles before
any output coefficient appears at an output port. It takes
an additional twelve clock cycles before the last

coefficient is output. Thus, it takes a total of

48

seventeen clock cycles to completely multiply two matrices
of bandwidth five together.

In general, the processing time to multiply two
matrices of an arbitrary bandwidth w (w = wq, = wWp) 1s given
by the following equation:

Tp = (3w - 4) + 3(S)

where:
Ty = Overall Processing Time

S = Dimension amount larger than a minimum
sized matrix of the same bandwidth

For example, a minimum sized matrix of bandwidth 3 is a 2x2
matrix, while a minimum sized matrix of bandwidth & is a
3X3 matrix. The amount of time to multiply two matrices of
bandwidth five, and dimension 4X4 is calculated from the
above equation Te = (3(5) - 4) + 3(4-3) = 14 clock cycles.
This concludes the algorithm simulation discussion.
The whole simulation output, rather than the summarized
results presented in this chapter, can be found in Appendix

A of this thesis.

49

CHAPTER V

DESIGN DEVELOPMENT

This chapter introduces the design to be simulated in
this research. The approach of this chapter will be that
of a detailed presentation, such that this design could be
duplicated by the reader. Some of the smaller details will
be presented as they are important in the design of a
residue system. The following section describes the design

at a system level. Subsequent sections examine the steps

in designing the major blocks of the system.

5.1 Residue System Specifications

It was agreed upon that the design to be simulated in
this research should be large enough to demonstrate the
application of the residue system to a problem of useful
complexity. The design presented in this chapter assumes
an input operand of eight bits, in signed magnitude format.
This allows an input range from -127 to +127. An upper
limit bandwidth of five is placed on the input matrices A
and B. There are many scientific algorithms requiring the
multiplication of banded form matrices with bandwidth
dimensions of five and smaller.

With the global system requirements specified, the

process of moduli selection may begin. First the dynamic

range of the system must be determined. From Table 3.1,
for an input of eight bits, and a matrix size of 5, we see
that the overall dynamic range of the system is 161290.
Although the selection of moduli is arbitrary, it is
beneficial to choose pairwise relatively prime moduli.
This 1is done so that the Chinese Remainder Theorem can be
implemented, rather than the alternate form of the Chinese
Remainder Theorem. Before the moduli set chosen for this
design are presented, several comments should be made about
moduli selection. It is important to have as few moduli as
possible, yet it is also true that hardware complexity
increases as the moduli size increases. There exists a set
of equations to generate moduli sets that are pairwise
relatively prime. It is not convenient to use these
equations, since they tend to select small numbers
initially, with the moduli size growing very rapidly. The
design of the system presented here chose a set of five
moduli, although a set of four moduli of the proper
magnitude would successfully satisfy the system
requirements. The reason five moduli were presented
instead of four will be explained shortly. The moduli set
for this research is given by {(my,mp,m3,my,mg} = {
7,11,13,15,16 }. First it should be noted that the moduli
are pairwise relatively prime. The moduli seven, eleven,
and thirteen are prime numbers themselves, so there is no
concern that these moduli are not pairwise relatively

prime. Fifteen and sixteen have a greatest common divisor

of one, so they are pairwise relatively prime with respect

to themselves, and with respect to the other moduli as

well. The reason for selecting five moduli, instead of
four, is due to the convenience of implementing medulo 27
addition and multiplication. It was found that modulo 2©

addition and multiplication are identical to conventional
binary addition and multiplication. Although it is not
apparent to the reader at the present time, it will be
demonstrated that very little effort will be required to
implement the modulec 16 operations. Thus, designing the
MAC portion of the system will be equivalent to the design
of a four moduli system. The primary advantage of having
five smaller moduli, rather than four larger, is the speed
of the computation involved. Remembering that the modulus
of a number is governed by the following equation:
0 < /x/p; < my

Thus the range of the residue representations for all the
moduli will be between zero and fifteen. All of which can
be expressed by four binary digits. This will not be a
critical component of the design, but will contribute to
the performance of the residue design. The choice of the
moduli set is a task left to the designer. Assuming the
set of moduli will satisfy the system requirements, there
is no simple and clear cut way to arrive upon the optimum
set. There is no guarantee that the moduli set chosen in

this research is optimum. It is not even clear what the

word optimum means, since in one design it may be necessary
to optimize Lhe circuit area, the speed of operation, or a
combination of both.

With the moduli set chosen above, Lhe various facets
of the design may now be investigated. The most prevalent
portion of the design is the multiply and add cell, which
will be presented first. Also, the apprecach used to
translate into and out of the residue representation will

be presented.

5.2 Multiply and Add Cell

The multiply and add cell is the most basic building
block of the matrix multiplication algerithm. The MAC of
the residue design will still be referred -o as a MAC,

although it will consist of five smaller blocks. The

residue MAC is shown in Figure 5.1.

A B C A B C A B C A B C ABC
5 i
§
3
E
3
a Modulo 7 Modulo 11 Modulo 13 Modulo 15 Modulo 16
2 MAC MAC MAC MAC MAC
=

P P P P P

Figure 5.1 Residue MAC Configuration

Tt should be noted that each MAC independently processes
the corresponding residue digits of the input operands A&,
B, and C.

There are several approaches that can be made when
implementing modulo addition and multiplication. There has
previously not been any research effort in concurrent
addition and multiplication modulo m. It would be easy to
implement wmodule m multiplication, and then implement
modulo m addition, but this method was found to be very
time consuming. There are very few if any papers on
implementing residue multiplication without using the ROM
approach, which is not a viable solution to this problem.
There are several methods of implementing residue addition.
One method proposed adds two numbers together, then
subtracts the modulus from the result of addition
repetitively until the sum changes from a positive sign to
a negative sign, when this occurs, the modulus is then
added back to the current sum, which then becomes the
result modulo m [7]. This method is acceptable when the
addition process can be pipelined, but is very time
consuming to implement sequentially due to the large number
of subtractions necessary. Another proposed method
recognizes that residue addition is cycliec, and as a
consequence of this, uses shift and rotate logic to
correctly select the desired result {8]. This method grows
very large in complexity, even for moduli of modest size.

It was reported that implementation of modulo fifteen

54

addition requires over seven hundred logic gates. This
method will not be acceptable in this research either. it
must be remembered that this does not include hardware
requirements to implement modulo m multiplication.

An alternative approach to the problem is to examine
the two processes that must occur simultanecusly, namely
modulc m multiplication and addition. Each of the five
digits of a residue representation can be expressed in four
binary digits, with the exception of the first modulus,
which is 7, where its residue digits can be expressed in
three binary bits. The method proposed in this research is
& hybrid approach to the problem in the sense that
operations of both binary and residue types will be used.
It was found that after the binary multiplication and
addition of A, B, and C for each modulus has cccurred, the
result could be taken modulo my . This approach requires
the implementation of two truth tables for each modulus,
requiring a total of eight truth tables for the entire
design. Although it is undesirable to have large amounts
of truth tables in a design due to their irregular
structure, in this case it will be acceptable, because the
same structure will be used repetitively. It will be found
later that both the input and output translation problems
will use the same modular truth table blocks. Another
important factor in allowing the use of truth tables is

their simplicity in design. Each of the truth tables will

only be required to have five inputs, and four outputs. A
generalization of this approach to designs of larger

complexity will be made at later point in this research.

5.2.1 MAC Functional Configuration

The MAC configuration proposed in this research is
shown in Figure 5.2. It should Dbe noted that this
cenfiguration is for gach modulus inside the MAC boundary
shown, thus there will be four such designs inside the MAC.
There would be five, except modulo 16 operations are
simplified and will not need the full configuration as
shown in Figure 5.2. Also, the modulo 7 design will not
have as many input and output bits, but the overall
structure will be identical. Before the design of the
individual blocks of the MAC are discussed, an example will
be wused to illustrate operation at a functional level for

an individual modulus.

Example 5.1:
For the modulus 15, given the following inputs:
A = (12),0 = (1100),
B = (9.0 = (1001),
C = (5.5 = (0101),
the result P = AxB + C can be computed using the
proposed structure as follows:

From the Modified Braun Array,

A

56

B C

SR SR §

Modified Braun Array
AxB + C

Upper Truth Table
Modulo m

Lower Truth Table
Modulo m

%

[A%’

Four Bit Binary Adder

Lower Tr

Modulo m

uth Table

4

P

Figure 5.2 Proposed MAC Co!

nfiguration for Each Modulus

AXB + C = (12) (9) + (5) = (113)10 = (1110001),

From the Upper Truth Table,

/(1100000) 5/05 = /(96) /15 = (6).0

From the Lower Truth Table:

/(10001) /15 = /(17) /15 = {2) 10

From the Four-Bit Binary Adder,

(2) + (6) = (0010)5 + (0110), = {1000), = (8)1,

From the second Lower Truth table,

/{8)10/1s = /(1000)/, = (8)1, =P

Thus, the modulo 15 result P = AxB + C is:
/{113)10/15 = P = (8)1¢

This is the exact answer obtained by the MAC

configuration, hence the configuration is functionally

correct.
This concludes the description of the MAC
configuration at the functional level. The individual

blocks of the functional configuration of Figure 5.2 will

now be examined closer at the design level.

5.2.2 Modified Braun Array

A modified form of the braun array is used for the
binary multiplication and addition of input operands A, B,
and C. The structure to be used in this design is shown in
Figure 5.3. This structure is the common input stage to

all moduli of the MAC.

58

A3B0 A280 ALBO A0BO
@

g 23 PS5 2] P ” Pl PO

Figure 5.3 Modified Braun Array
P=AxB+C

59

A typical braun array consists of the lower portion of the
array of full adders. A top row of full adder cells was
added to the top of the array in order to accommodate the
additive input C. Thus the multiplication of A and B, and
the addition of C to the result of A and B cccurs
simultaneously. Full adder cells will appear throughout
this thesis, and it is appropriate at this point to
introduce the repetitively used full adder cell. The
unmodified full adder cell is shown in Figure 5.4a. The
full adder cell in Figure 5.4b is modeled after the cell in
Fig 5.4a, with several “cosmetic" differences. The full
adder cell in Figure 5.4b is actually identical to the cell
in Figure 5.4a. First, the plotter resolution does not
include the bubble at the output of NAND gates, so that
NAND gates appear to be AND gates, although this is not the
case. Secondly, the very last gate in Figure 5.4b really
is a hardwired AND gate, but Neted does not contain a
hardwired AND gate in the component library. Thus, a
regular AND gate with an area and time delay of zero was
inserted for functional and simulation purposes. Thirdly,
the vertical dimension of the actual implementation is
reduced such that more full adder cells could be placed on
the schematic editor screen. It is for this reason that
the NAND gates are offset from one another rather than in a
straight line. The hardware implementation of the modified
Braun Array is shown in Figure 5.5. This array will be

used at several places, and will be referred to reqularly.

A)

Figure 5.4 Full Adder Cell Design

Figure 5.5 Modified Braun Array Hardware

61

5.2.3 Lower Truth Table Modulo m

The lower truth table block has five inputs, and four
outputs. The input bits are the five lowest order bits of
the result from the braun array. The output bits represent
the input modulo m ¢ /input/). There are five different
moduli in this design, but only four of them have hardware
requirements. Modulo 16 operations are equivalent to
typical binary operations, thus no further manipulation of
the result from the braun array is necessary (the lower
four bits are the needed result). The detailed and
complete design procedure of the lower modulo 15 truth
table will be presented, as well as the results of the
modulo 7, modulo 11, and modulo 13 truth tables.

Table 5.1 shows the five-bit binary input decimal
equivalent, as well as the result moduloc 15, which is the
desired output of the truth table. The four truth table
outputs are labeled W, X, Y, and Z, in order of decreasing
significance. For example, a decimal equivalent input of
23, gives a result of 8 = /23/15. From Table 5.1, a
Karnaugh Map may be formed for each individual output bit,
W, X, ¥, and Z. Karnaugh Maps allow output variables to be
simplified into logical equations, as functions of their
inputs. The Karnaugh Maps for the Modulo 15 truth table
are shown in Figure 5.6, The simplified output equations

derived from the Karnaugh Maps are as follows:

Table 5.1 Modulo 15 Truth Table

—

N 01010101010101001010101010101001
“
=
£
=
O™~ OO]10011001100100110011001100100
v
<
o
[
S| = 00001111000011100001111000011100
2
=
B3 0000000011]111100000000111111100
- N
Ml 01234567890123401234567890123401
25 o o
v O
)
B
L) 012345678901234567890123 0
nww A A S AR RANNILEERIR’E
> O
olas

63

1

1

001

0]0]1(1

0|1]0]1
0(00

0

0]0j1]1

0]0]011
0j0(1[1

oL

1
1

0/0

1

1

0

110]0]1
0

0000

01010 |0

1

0/0/0]0

0(0{1]0

1]1[0]1

0{1)1/0
0j1j0]0

o[1/10

L[1;0]1

T[1]1]1

117111

1(1{0f1

0/00{0

0lojo|o

0101010

0(0(0[0

Figure 5.6 Modulo 15 Karnaugh Maps

64

W = BD + BC + ABDE + ABCDE

X = CD + BBC + ACDE + ACE + BCE

Y = ADE + ADE + ABD + ACD + BDE + CDE

Z = ADE + ADE + ABE + ABE + ABCE + ACE + ABCDE
These equations can be implemented with multi-input NAND
gates and inverters. The hardware implementation of the
Modulus 15 truth tables is shown in Figure 5.7. Once
again, this is an all NAND realization even though plotter
resolution does not allow for bubbles on the outputs of
NAND gates. The circuitry on the left hand side is the
lower truth table implementation, the circuitry on the
right hand side is the upper truth table implementation
(discussion in the following section). Similar truth

tables and Karnaugh Maps can be formed for the remaining

moduli (found in Appendix B). The results are given below:
Moduius 7;
W=20
X = ACD + ABCE + BCDE + ACD + ABGE + BCDE

Y = ABDE + ABCD + ABDE + ACDE + ACDE + ABCD +
ABDE + ABCD + ABDE + ACDE
2 = BCE + BCE + ABCE + ABDE + ABDE + BCDE + ABCDE
Modulus 11:
ABCD + ABCE + ABCD + ABCD + ABCDE

I

ACDE + ABCD + ABCD + ABCD + ACDE

= ADE + ABD + BCDE + ADE + ABD + BCDE

[1
I
&
O
+

= ABE + ABCE + BCDE + ABDE + ABE + ACDE + ABCE

Figure 5.7 Modulo 15 Truth Tables

65

56

Modulus 13:
W = ABDE + ABC + BCD + ABCE + ABCD

ABC + ACDE + ABCD + ABCD + ACDE + BCDE

ABD + ADE + ACD + BDE + ADE + ABCD

[
]

Z = ABE + ACE + ABE + ACDE + ABCE + ABDE + ABCDE

5.2.4 Upper Truth Table Modulo m

The upper truth table ig developed in a manner similar
to the lower truth table. EBach upper truth table has five
inputs, and four outputs, but the significance of the input
bit positions are greater than those of the lower truth
tables. From Figure 5.2, it is seen that the Modified
Braun Array structure has eight outputs, five of them
connected to the lower truth table as inputs, and three of
them connected to the upper truth table. The reader should
note that only the three lower order bits are necessary for
the MAC, but it will be shown shortly that the input
translational problem will have a necessity for the
uppermost two bits. The truth tables and Karnaugh Maps are
very similar to those previously presented, except for the
relative magnitude of each input bit position. Previously
a binary input of 00011 represented the decimal value of
three. For the upper truth tables this is not the case, a
similar input in this case yields a decimal value of
ninety-six (00011XXXXX), remembering that the least

significant bit is really the sixth significant position

67

from the Modified Braun Array. The results of the Karnaugh

Maps for the various moduli are presented below:

X = DE + BD + CE

Y = CD + CE + AD

Z = AD + ADE + ACD
Modulus 11:

W = ACE + ACD

X =C + AD + AE

I

Y = ADE + ACD + ABD + ADE + ADE

Z = AE + ADE + B + CE

W = ADE + CE + B + AE

X = AE + ADE + B + ACE + ACD

Y = AE + BCD + CDE + CE

% = AD + CDE + ABDE

W = ADE + BC
X = ABD + ADE + ADE
Y = AE + ABE

zZ =0

The hardware implementation of the modulo 15 upper

truth table was shown previously in Figure 5.7.

68

5.2.5 lIour-Bit Binary Adder

The binary adder is used to add the two four-bit

outputs from the upper and lower truth tables. A serial
ripple carry adder is used in this case, which is simply a
one-dimensional array of full adder cells. To form the

four-bit binary adder, fbur of the cells in Figure 5.4 are
repeated, and connected such that the carry out from lower
bit positions becomes the carry in for higher bit
positions. The complete four-bit binary adder is shown in

Figure 5.8.

Figure 5.8 Four-Bit Binary Adder

5.3 Input Translation

Input translation must occur before the various
operands may enter the MAC computing array. Globally, the

matrix multiplication chip 1is composed of three major

69

parts, the input translator, the MAC array, and the output
translator. This section will discuss input translation.
The geal of the input translational portion is ﬁo
convert an eight-bit input operand, in signed magnitude
format, to the proper residue system representation. The
method wused for input translation uses several functional
blocks common to the Multiply and Add Cell, reducing the
design time. It was found that if the input operand is a
negative number, /x/.; = /M-b/.; must be calculated (where
M = 7*11*13*15*%16, and b is the absolute value of the input
operand) to cobtain the correct residue representation,
rather than /x/,; when the input operand 1is positive.
Example 5.2 gives several examples of the input conversion

process.

my = { 7, 11, 13, 15, 16}

M = 7*11*13%15*16 = 240240

Given the following input operands:
A = (10011010), = (-26),,
B = (01101001), = (+105),,
C = (10001001), = {(-9) 10

the residue representations are found as follows:

/B/ms = /240240 - 26/, i=1,2, 3 4,5
/B/my = /105/ 1y i=1,2,3 4,5
[Clmy = /240240 - 9/, i=1,2, 3, 4,5

The residue representations are:

70

A=1{2 7,0, 4, 6}
B=1{0, 6,1, 0, 9}
C=1015 2,4,586, 7}

The block diagram for the input translation of an
eight-bit signed magnitude input operand is shown in Figure
5.9. The wvarious hardware aspects of input translation

will now be examined in detail.

5.3.1 TInput Operand Adjustment

The input operand adjustment portion of the input
translational process examines the most significant bit of
the input, if this value is a logical "1", then the input
is negative, and the absolute value of the input must be
subtracted from M (M=240240). If the most significant
bit of the input is a logical "0", then the input is
positive, and the input value should be transferred through
the input operand adjustment block. It should be noted
that eighteen bits are required to express M in binary
form. This implies that eighteen-bit addition will have to
be performed when the input operand is negative (M -
absolute value of x). A great simplification can be made
at this point due to the limitation of the input range. It
should be noted that for an eight-bit signed magnitude
number, the largest positive or negative number is one
hundred and twenty-seven. When this value is subtracted

from 240240 in binary form, only the ten least significant

M = 240240

Input

Input Operand Adjustment

10
Mod 7 Mod 11 Mod 13 Mod 15
Upper/Lower | Upper/Lower | Upper/Lower | Upper/Lower
Truth Tables | Truth Tables | Truth Tables | Truth Tables
¢ f« 1s G OEC iC
Four Bit Four Bit Four Bit Four Bit
Binary Adder | Binary Adder | Binary Adder | Binary Adder
1 1 15 {5
Mod 7 Mod 11 Mod 13 Mod 15
Lower Lower Lower Lower
Truth Tables | Truth Tables | Truth Tables | Truth Tables
6 4 3 4 0 4 6 4
| | | l
Four Bit Four Bit Four Bit Four Bit
Binary Adder | Binary Adder | Binary Adder | Binary Adder
Ts s 1s 1s
Mod 7 Mod 11 Mod 13 Mod 15
Lower Lower Lower Lower
Truth Tables Truth Tables Truth Tables Truth Tables
4 4 4 4

Complete Residue Representation of Eight Bit Signed Magnitude Input

Figure 5.9 Input Translation Functional Configuration

72

bit positions are altered. Therefore, it is useless to
carry out the full eighteen-bit addition process, when only
the lowest ten bit positions have the possibility of
changing. In other words, the top eight bit positions
remain constant throughout the addition proecess. The
necessary manipulation of the upper eight bit positions
will be examined in the following section.

The hardware implementation to accomplish the input
operand adjustment portion of the input translation process
is shown in Figure 5.10. Tt is fairly simple in design, a
ten-bit binary adder, with a row of exclusive-or gates at
the input. It should be stated that whenever the input is
positive, the circuitry allows the input operand to pass
through unchanged, but when negative, the absolute value of
the input operand is subtracted from the lower ten bit
positions of 240240. From the above simplification, the
result of the subtraction yields a ten-bit number. The
rest of the input translation of Figure 5.9 will now be

examined.
5.3.2 Residue Digit Generation

The tight dynamic range of the eight-bit input, as
compared to the large value of M, allows a simplification
in the upper truth tables of the individual Karnaugh maps.
Since the input number subtracted from M must be less than

127, the dynamic range of resultant is a ten-bit

Figure 5.10 Input Operand Adjustment

73

74

number between 01111XXXXX and 10011XXXXX. Remembering
that the Multiply and Add Cell only reguires values between
00000 and 00111, a great simplification is made in the
upper truth tables for all of the moduli. The reason for
this simplification was not explained when the upper truth
tables were introduced earlier in this chapter.

As was mentioned previously in the operand adjustment
section, the upper eight bits of the eighteen-bit
representation of 240240 are not involved in the
subtraction process in the operand adjustment portion of
Figure 5.9. However, they must be taken into consideration
to produce a correct result. The upper eight bits of M
corresponds to a decimal value of 239616. It was found
that if /239616/,; was added to the result of the previous
steps for each corresponding moduli, that the resulting
residue representation was correct. The calculation of the
values to be added to each moduli are calculated below:

/239616/5 = 6
/239616/1, = 3
/239616/13 = 0
/239616/15 = 6
/239616/15 = 0

These values are shown to be added in at the appropriate
step in Figure 5.9. It is expected that an engineer will
spend more time designing a residue system than he or she

would a more conventional system. It should be noted that

there are quite a few common blocks that are repetitively
used in this proposed design. More importantly, the common
building blocks may be optimized separately, then combined
in an orderly fashion. This methodology both improves

circuit performance and saves silicon area.

5.4 Output Translation

The Chinese Remainder Theorem was examined first when
considering an appropriate method of converting from
residue representation back to a binary or fixed weight
representation. Tmplementation of the Chinese Remainder
Theorem requires addition modulo M, which in this case
means several addition or subtractions with word lengths
greater than eighteen. Another method of conversion from
residue to a weighted system is called the mixed-radix
conversion process [2]. It was found that the mixed-radix
conversion process has two main advantages over an
implementation of the Chinese Remainder Theorem. First, a
significantly larger amount of hardware is required to
directly implement the Chinese Remainder Theorem. Second,
the Chinese Remainder Theorem does not allow any type of
intermediate magnitude comparison or sign determination.
It will be shown that at an intermediate step of the mixed-
radix conversion process, enough information exists to
compare the magnitude of two residue numbers, or to

determine the sign of a residue number. Using the Chinese

76

Remainder Theorem, it is impossible to obtain any of the
above mentioned information without completely converting
to the binary representation.

The mixed radix conversion process is governed by the
following equation:

X = Ag{mimpmsm,) + Ay (mimgma) + Az (mymy)+ Ay (mqy) + Aq
where { mi, mp, m3, my, mg } = { 16, 15, 13, 11, 7 }, and x
is the result of converting a number from residue to binary
representation. It should be noted that the mixed-radix
system is a weighted system, hence magnitude and sign
determination is relatively easy. The mixed radix
representation of x is given by <Ay,RAp, R4, RA4,A5>. The A,
values may be determined by the following:

A, = ry

Az = /(X - ry)/my) /2

B3 = /Ry = rp)/my) /ns

Ay = /(B3 - r3)/my) /g

As = /((Ag = T4)/Ma) /s
Residue division is not really occurring even though the
above equations imply it is necessary. Multiplying by the
multiplicative inverse is the same as division, which will
be the approach taken. The functional diagram of the mixed
radix conversion process is shown in Figure 5.11. The
individual portions of Figure 5.11 will now be examined.
Also included in this section on output translation will be

a comprehensive example unifying the individual processes.

77

Residue Representation Inputs

16 15 13 11 7
Al
[CNCA T NCA T Nca] Nca
CA_ I Ca [ca | _ca
CA_| CA_| <ca
[
1 9 9 4
I |
X X | X X
[UTTATT [UTTATT | UTT/TT [UTT /AT
+ - + +
[LTt | 17T LTT
A2 [
NCA | NCA NCA
CA CA CA
CA CA
7 3 1
X X X
UTT/LTT [UTT/LTT [UTTATT
< ’ v
1T LT LTT
A3
NCA NCA
CA CA
CA ca
13
X
UTTLTT [UTTATT
~ +
LTT LTT
At
NCa
Ca
CA
7
X
UTTATT
-
LTT
AS

Figure 5.11 Mixed Radix Coefficient Determination
Qutput Translation

78

S.4.1 Contreolled Addition/Subtraction

Two of the blocks in Figure 5.11 are called "CA" and
"NCA". These notations stand for conditional and non-
conditional addition. The non-conditional addition block
has two four-bit numbers as inputs and a Five-bit numper as
an cutput. The block subtracts the one four-bit input from
the other. This subtraction performs the x-r, portion of
the mixed-radix process. Since a residue representation
must not be negative, the subsequent conditional adder
blocks sample the most significant bit of the five-bit
input, 1if this is a zero, then no computation occurs. If
the most significant bit is a one, then the input is
negative, and thus the modulus (m;) for the appropriate
digit of the residue representation (r;) must be added to
the negative number. This non-conditional addition process
must Dbe repeated until it is assured that the residue
representation at each of the stages in determining the A,
contains only non-negative (or zero) residue digits. The
hardware implementation of both the conditional and non-

conditional adders are shown in Figure 5.12 and 5.13.

5.4.2 Multiplication by Inverses

After the subtraction of the most significant

remaining residue digits, and the conditional addition

processes are complete, multiplication of the residue

Figure 5.12 Conditional Adder

Figure 5.13 Non-Conditional Adder

80

representations by the respective multiplicative inverse
occurs. The multiplicative inverses are shown in Table

5.2.

Table 5.2 Multiplicative Inverses

Modulus
15 13 11 7
1 9 9 4
- 7 3 1
- - 17| 13
- - - 2

For example, /1116/4 = 4. All multiplicative inverses can
be represented in four binary bits except for 17, which
requires five bits. Multiplication by 17, when using
binary arithmetic, is simply the digits of the multiplicand
repeated twice. For example, (17) (9) = (10011001),, and
(17) (13) = (11011101),. Thus, the multiplication of all
residue digits by their respective multiplicative inverses
will only require a Braun array capable of four-bit
multiplication. The desired Braun array has been
previously designed, with the exception that the top row of
full adders needed in the MAC has been deleted, and is
shown in Figure 5.14. The blocks in Figure 5.11 1labeled
"UTT/LTT", “+", *“LTT", are the same blocks that were
presented in the MAC section. This sequence of blocks
simply converts the larger input number into residue

representation for each of the moduli. The following

Figure 5.14 Four Bit Braun Array

18

82

example should help clarify some of the items presented in

this section.

Example 5.3:

Given my=16, mp=15, m3=13, m,=11, and ms=7, the mixed radix
coefficients (Ay) can be computed for a residue
representation of x = { 2, 3, 4, 2, 6 } as follows:

(reference Figure 5.11 as necessary)

Modulys 16 15 13 11 7

A,=2
2 3 4 2 6
(-2) = - - -
1 2 0 4
K(/1116/my1) 1 x9 x99 x4
1 18 0 16
(/T35/mi) 1 5 0 2
Ay=
1 5 0 2
(-1) 1 -1 -
4 -1 1
(+my) 9 +11 0
4 10 1
X(/1115/ms)
28 30 1
(/T3/m1) 2 8 1
RAy=2
2 8 1
(-2) -2 -2
6 -1
(+my) 0 _+7
6 6
%(/1115/m3)
102 78
(/T5/my) 3 1

83

3 1

(-3) =3

-2

(+my) 7

5

®(/1]11/0) x2
10

(/T /i) 3
As=3

In summary, A;=2, RA,=1, A3=2, A,=3, Ag=3.
Checking the Result:

4 3*¥L6*15%13%11 + 3X16*%15413 + 2%16*15 + 1416 + 2

112818

x = 112818 = { 2, 3, 4, 2, 6 } in residue representation

The resulting coefficients are exactly correct.

5.4.3 Correct Sign Determination

The conversion is almost complete. The multiplication
and addition of the moduli and the mixed-radix coefficients
(A;) can begin as soon as the first A; is determined. The
multiplication and addition begins and occurs
simultaneously with the determination of the latter mixed-
radix coefficients (Az, Ay, Ag) . Figure 5.15 shows the
functional description of the addition and multiplication
of the appropriate moduli and mixed-radix coefficients.
The hardware implementations of the individual blocks are
shown 1in Appendix C of this document. The 1last three
blocks of Figure 5.15 will be discussed now as they are

important to a residue type design, It should be noted

A3 15
4 4

!
Four-Bit
Braun Array
A2
8 4

Eight-Bit
Binary Adder

Al

195 Ad

8 4
AS

4
Twelve-Bit
ultiple Generato

Fourtcen-Bit
arry Save Adder|

Twelve-Bit
Binary Adder

Fourteen-Bit
Binary Adder

Eighteen-Bit
Signed Magnitude
Result
Figure 5.15 Multiplication and Addition of the
Mixed-Radix Coefficients

85

that the output before the Modified Adder A block will be
an eighteen-bit number between 0 and 240240. If the number
is in the range [0,120119]), then the result is a positive
number and is correct in present form. TIf the number is in
the range [120120,240239], then the number is a negative
number, and 240240 must be subtracted from it. The
determination of sign must occur in two distinct stages.
First M/2=120120 must be subtracted from the eighteen-bit
result. If this number is negative, then the original
number was in the range of [0,120119], which was a positive
number. In the very next stage it is necessary to add
120120 back to this number, because it needs to be a
positive number as it was originally. If the subtraction
of M/2 is not a negative number, then the original number
was 1in the range [120120,240239), and must be a negative
number. In the very next stage it is necessary to subtract
another 120120 from this number, so that a total of 240240
has been subtracted from it. At this point, the result is
the completely correct result in two’s complement
representation. If the most significant bit is a “one",
then the lower seventeen bits are complemented, and the
result will be in the desired signed magnitude form, If
the most significant bit is a "zero", then the result is in
correct signed magnitude form, and should bypass the
complementer stage. The hardware implementation of the
Modified Adder A and B, as well as the two’s complementer,

are shown in Appendix C of this thesis.

86

This concludes the introduction of the design of <his
research. The following chapter presents the simulation of
this design, as well as a performance comparison to a more

conventional approach.

87

CHAPTER VI

SIMULATION RESULTS AND COMPARISON

The purpose of this chapter is to present the
simulation results, as well as compare the timing and area
constraints of the residue design to a more conventional
binary approach. Mentor Graphics Neted and Quicksim were

used for schematic capture and logic simulation.

6.1 simulation Development

Chapter IV presented a detailed simulation of the
matrix multiplication algorithm. Rather than simulate the
design as a whole, the three fundamental portions were
simulated. Specifically, the Multiply and Add Cell for all
moduli, and the Input and Output translational pertions
were simulated. Simulation of the above portions,
including the matrix multiplication algorithm simulation,
will give all the required timing information. It was
found that the schematic capture of the full design would
be a very large task, and would not be beneficial to this
research.

Before any simulation or comparison begins, it 1is
appropriate to present the primitive component timing and
area models [17]. These parameters will be used

consistently throughout this chapter for comparison and

88

simulation purposes. Table 6.1 gives the proportional
delay time of an individual gate, as well as the
proporticnal area each component occupies. Actual timing

and area information is strongly dependent on semiconductor
processing. To obtain actual timing or area information,
the values must be multiplied by a scaling factor. The
scaling factor for the gate delays is Ty, and typically
ranges from .25 ns to 1 ns. The area scaling factor Ag is
typically around 25X25 square microns, with a strong
dependence on the lithographic linewidth of the process
used for fabrication. The simulation results from Quicksim
will now be summarized. The more detailed simulation
output in raw data form, as well as graphical form, can be

found in Appendix D of this thesis.

Table 6.1 Primitive Component Models

Component Delay (Tg) Area (Ag) T
n-input NAND Gate (n<10) 1 1
— Inverter 1 1
n-input AND Gate (n<10) 2 2
n-input OR Gate (n<10) 2 2
XOR Gate 2 3
One-Bit Full Adder 2 10
D Flip-Flop 3 5

6.2 Simulation Results

This section will present the simulation results of

89

each of the three major portions of this design. The most
important portion of the simulation is the MAC. The timing
information of the MAC will determine the overall system
clock speed. The overall clock speed will be crucial when
the compariscn is made later in the chapter. A portion of
this section alsc deals with the global timing information

of the design.

6.2.1 MAC Simulation

The more detailed simulation output for the MAC can be
found in Table A.1 and Figures A.11 through A.15 in the
Appendix D. Table 6.2 shown in this section is to
summarize the MAC simulation results. Since each MAC
contains five independent residue multiply and add cells,
there are five different sub-tables (one for each modulus
) shown in Table 6.2. Also, note that numbers shown in the
table have been converted to decimal for convenience. The
worst case simulated delay from Table 6.2 is 23 T The
following calculations show how the worst case "predicted"

gate delay for the MAC is obtained:

Modified Braun Array:

Delay = 1 AND Gate + 7 Full Adders
(1) (2) + (7)(2)
16 Ty

Upper/Lower Truth Table:

Delay 1 inverter + 2 nand gates

= () (1) + @2) ()

Table 6.2 MAC Simulation Results

Modulo 7
Input A|Input B |Input C| Result | Delay
Trial #1 4 3 5 3 23
Trial #2 6 3 5 2 13
Trial #3 3 s [l 5 23
Trial #4 3 4 3 1 14
Modulo 11
Input A |Input B {Input C{ Result Delay_
Trial #1 3 9 4 10| 2
[Trial #2 3 7 9 3 2
"Trial #3 4 8 2 1 22
Trial #4 1 3 10 2 15
Medulo 13
_ Input AlTnput B[Input C[Result | Delay |
rial #1 8 7] 1 1 px]|
Crial #2 4 9] 2 12 19]
Trial #3 12 4] 4 19]
Trial #4 | 2 11] 1] 1
Modulo 15
Input A[Input B [Tnput C[Result | Delay
[Trial #1 13 10 3 3 23
Crial #2 3 9 12 9 T
Trial #3 g 9 4 1 T
Trial #4 | 9 3 7 4 20
Modulo 16
Inpuc A|Input B |Input C| Result | Dela:
Trial #1 T) 9 13 9
Trial #2 3 5 2 i 9
Trial #3] 12 10 10
Trial #4 | 1 11 12] 7 6

90

91

=3 T4
Four-Bit Binary Adder:
Delay = 4 Full Adders
(4) (2)
8 Tq
Lower Truth Table:
1 inverter + 2 NAND gates
(1) (1} + (2) (1)
3T

g

Delay

Summing the above gate delays gives the MAC worst case gate
delay, which is 16+3+8+3 = 30 Tg. Note that the simulated
worst case delay should always be less than or equal to the

worst case predicted delay, as is the case in Table 6.2.

6.2.2 Input Simulation

The results of the input translation process are
summarized in Table 6.3. The more detailed simulation
output can be found in Table A.2 and Figures A.16 through
A.20. The reader should notice that some of the delays are
larger than 30. This means that the input translation
process must be broken up into two stages since the
pipeline segment time (governed by the MAC) is the maximum
time any one segment should take to execute. Examining the
worst case delays for the input translation process will
help determine where the latches will need to be placed,
ensuring that no operation in the input translational
process exceeds the maximum of 30 Tg- The worst case

delays for the input translation process are given as

Table 6.3 Input Translation Simulation Results

Modulo 7
Input | Resuit | Delay
Trial # a4 5 5]
Trial #2 +77 4] 26
Trial #3 -114 S 23
Trial #4]__ +57] 1 15
Modulo 11
Input | Resull | Delay
-82 6 2
+60 S 21
Trial #3 41 3 28
Trial #4 | +114 4 23
Modulo 13
Input | Result | Delay
Trial #1] 36 3 22
[rial #2 | +109 b 25
|_Trial#3 | st 1 %
[(Trial#4 | +71 6 20
Modulo 15
Input | Result | Delay
Trial #1 -115 5 35
Trial #2 +36 15
Trial #3 43 25
Trial #4 [+28 1 19
Modulo 16
Input | Result | Delay
Trial #1 -51] 13 7
‘rial #2 +49] 1 4
rial #3 87| 9 6
Trial #4| +104] 8 2

follows:
Input Operand Adjustment:
XOR Gate + 10 Full Adder

1) (2) + (10) (2)
2 T,

delay = 1
= (
=2
Upper/Lower Truth Tables:

nverter + 2 NAND Gates

11
(1) (1) + (2) (1)
3T,

delay

[']

Four-Bit Binary Adder:

Full RAdders

delay = 4
= (4) (2)
=8

Lower Truth Table:

nverters + 2 NAND Gates

delay = 1 I
= (1) (1) + (2) (1)
=3T

Four-Bit Binary Adder:

delay = 8 Tg4
Lower Truth Table: (Same)

This gives a worst case gate delay of 47 T, for the input

translation process. If a row of latches is placed between

the Upper/Lower Truth Tables block and the first Four-Bit

Binary Adder block, the gate delays for the two different

stages are 25 T4 and 22 Tg for the first and second stages,

respectively.
6.2.3 Output Simulation

The simulation results of the output translational

process are summarized in Table 6.4. Again, the

94

Table 6.4 Output Translation Simulation Results

Mod 16| Mod 15|Med 13[Mod 11| Mod 7 —‘
Input | Input | Input | Input | Input Resuit Delay
Trial # 7 13 2 4 3 -104297 173
Trial #2 13 13 4 8 107533 125
Trial # 12 s 10 5 4 12380 118
[Trial #4 | 6 2 3 7]) -1258] 160

more detailed simulation output can be found in Table A.3
in the Appendix D. There is no timing diagram for the
output portion because the large number of signals would
not fit with clarity on one page. Output translation 1is
the most complex of the operations presented thus far.
There are many design options, depending on the complexity

of circuitry used in the addition and multiplication of the

mixed-radix coefficients. This design uses only simple
binary adders and multipliers. Much faster methods are
available, but they consume a much larger area. Faster

methods, as will be proved shortly, are not beneficial.
Output translation is a pipelined process. As soon as the
first matrix multiplication is out of the MAC array, the
next multiplication may begin. In light of this, one pair
of matrices are being multiplied together at the same time
the result of the prior pair of matrices is going through
output translation. Thus, for the above stated reason, the
time required for output translation is negligible after
the first matrix multiplication. It can be shown that the

output translational process must be broken into fifteen

95

stages in order to operate at the same clock cycle as the
rest of the matrix multiplier. From Figure 5.11 it takes
eight clock cycles to generate the mixed-radix coefficient
AS5. The remaining seven (8+7 = 15) are a result of the
Twelve-Bit Multiplication, the Fourteen-Bit Carry Save
Adders, the Modified Adders A and B, and the Two’s
Complementer (all shown in Figure 5.15). The resulting
output matrix values will most likely be transferred off of
the matrixz multiplier chip at the same clock rate as the
system bus. Also, it is very unlikely that the system bus
will be operating at the same speed as the natrix
multiplier. Nonetheless, for comparison purposes, this
research will wuse a worst case of 15 clock cycles to
convert from residue representation to signed magnitude
format. The following section examines the the global
timing information from the above simulation results, as
well as the results of the matrix multiplication algorithm

simulation.

6.2.4 Global Considerations

Although a comprehensive global simulation has not
been performed, there exists enough information to
precisely predict the overall performance of the design.
As derived in Chapter IV, it takes seventeen clock cycles

to completely multiply two matrices together. From the

96

previcus section, it takes 2 clock c¢ycles for input
translation, and 15 clock cycles for output translation,
Therefore, it takes 34 clock cycles to complete the first
matrix multiplication. It takes 17 additional clock cycles
for each successive matrix multiplication. The following
equation gives the total processing time (Tg) in gate

delays for a certain number of successive matrix

multiplications (N):

Tp = ta + (N-1) (Emuie) (Ep) N>1
where ta = (17 cycles + 17 cycles)ty
tg = tseg t tasrs
=30 + 3
= 33 T4/cycle

Lmuir = clock cycles to complete
MAC array portiocn
Simplifying:
T, 1122 + (N-1) (17) (33)
1122 + (N) (561) - 561
561 + (N) (561)
(N+1) (561) Tg

P

For example, the total processing time to multiply two
pairs of matrices in succession is 1683 Tg- The following
section calculates the area such a design occupies on

silicon.

6.3 Residue Design Area Calculations

This section will briefly show the calculations made

in determining the area this design will occupy on silicon.

Also in this section will be a discussion on global area

97

issues.

6.3,1 MAC Area

The MAC area calculations are shown below, it may ©be
necessary for the reader to refer back to figures in the
previous chapter dealing specifically with the MAC. The
calculations for one MAC are as follows:

Modified Braun Array:

Area 16 Full Adders + 16 And Gates
(16) (10) + (16) (2)

192 A,
(6 Less Full Adders for Mod 16 Braun Array Only)

wnon

Lower and Upper Truth Tables:

Modulo 7:
Upper
Area = 12 NAND Gates + 5 Inverters
= (12) (1) + (5) (1)
=17 g
Lower
Area = 27 NAND Gates + 5 Inverters
= (27) (1} + (5) (L)
=32 a4
Modulo 11:
Upper
Area = 18 NAND Gates + 5 Inverters
= (18) (1) + (5)(1)
= 23 a4
Lower
Area = 28 NAND Gates + 5 Inverters
= (28) (1) + (5) (1)
= 33 A4
Modulo 13:
Upper
Area = 20 NAND Gates + 5 Inverters
= (20) (1) + (5)(1)
= 25 A4
Lower
Area = 28 NAND Gates + 5 Inverters
= (28) (1) + (5) (1)
=33 a4
Modulo 15

Upper

Area = 10 NAND Gates + 5 Inverters
= (10) (1) + (5) (1)
=15 A,
Lower
Area 26 NAND Gates + 5 Inverters

(26) (1) + (5) (1
31 A,

wonon

Four-Bit Binary Adder:

Area = 4 Full Adders
= (4) (10)
=40 2,
TOTAL MAC AREA = 5(192) + 80 + 2(129) + 4(40) - 6(10)
= 1398 A,

Thus the total Multiply and Add Cell Area is 1398 Ag.

6.3.2 Input Translation Area

The input translation area calculations are
follows:
Input Operand Adjustment:

Area 10 Full Adders + 7 XOR Gates

(10) (10) + (7) (3)
121 3,

Upper and Lower Truth Tables:
(Same as Above)

Four-Bit Binary Adder:
(Same as Above)

TOTAL AREA = 1(121) + 80 + 3(129) + 8(40)
= 908 a,

Thus the total Input Translation Area is 908 Ag.
6.3.3 Output Translation Area

The output translation area calculations are

98

as

as

follows:

NCA (Non-Conditional Adder):

Area

5 Full Adders + 4 Inverters
(5) (10) + (4) (1)
54 Ay

CA (Conditional Adder):

Area

5 Full Adders + 4 AND Gates
(5) (10) + (4)(2)
58 Ay

Four-Bit Braun Array:

Area

12 Full Adders + 16 AND Gates
(12) (10) + (16) (2)
152 A,

Truth Tables:
{Same as Above)

Four-Bit Binary Adder:
(Same as Above)

Eight-Bit
Area

Binary Adder:

8 Full Adders
(8) (10)
80 Ay

Eight by Four Multiplier:

Area

wn

32 Full Adders + 32 And Gates
(32) (10) + (32)(2)
384 A,

Twelve-Bit Binary Adder:

Area

12 Full Adders
(12) (10)
120 a4

Multiple Generator:

Area

onon

36 And Gates
(36) (2)
72 Ay

Fourteen-Bit Carry Save Adder:

Area

]

14 Full Adders
(14) (10)
140 Ay

Modified Binary Adder A:

Area

18 Full Adders
(18) (10)
180 A,

100

Modified Binary Adder B:

Area = 36 Inverters + 54 NAND Gates + 18 Full
Adders
= (36) (1) + (54) (1) + (18)(10)
= 270 A,

Twos Complementer:

Area 17 AND Gates + 17 OR Gates + 17 XOR Gates
(17) (2) + (373 (2) + (17) (3
= 119 A,

TOTAL OUTPUT
TRANSLATION AREA = 10(54) + 19(58) + 6(152) + 850 + 400
+ 80 + 404 + 120 + 72 + 2(140)
+ 140 + 180 + 270 + 119
= 5469 A

Thus the total Qutput Translation Area is S469 Ag.

€.3.4 Global Considerations

There are several global options to be considered when
implementing such a design, depending strongly upon the
total amount of silicon area available. One may examine
the output coefficient pattern, and note that each output
port only has a non-zero coefficient every three clock
cycles, such that three output ports could share an output
translator. It is possible to build an array of data
latches to accumulate the three resultant matrix operands
at each clock cycle. In this method, the resulting
operands wait their turn to enter the single output
translator, and are then transferred off the of the matrix
multiplier chip. Another scheme could be to implement
three different output translators, with each translator

transferring an output matrix coefficient off chip every

101

clock cycle. The latter scheme is much more efficient
time-wise, but requires three output translators as opposed
to one. The latter scheme also requires more component
package pins.

The input translator is not as large, and does not
require as much consideration. Since each input port only
requires an input operand every three clock cycles, and
there are 10 input ports, only four input translators are
necessary.

The global area calculation, for both methods of
output translation is shown below:

TOTAL AREA = 4(908) + 25(1398) + (1 or 3) (5469)
= 44051 or 54989 A,

The following calculation should give the reader an idea of
how large such a circuit is on silicon.
(Ay = 25x25 square microns)

Chip Area = 54989x (25x107°) x(25x107°) = .344 cm?

6.4 Design Comparison

It is the purpose of this section to compare the
residue design to a more conventional implementation of the
matrix multiplication algorithm. As previously stated, the
residue system is error free, in the sense that the output
is correct for all possible eight-bit inputs. It was
assumed that the input operand was an eight-bit integer

value.

6.4.1 Comparison Structure

The approach of the comparison structure will be that
of cascading a signed magnitude multiplier with a signed
magnitude adder. Signed magnitude multipliers are the same
as a Braun array, with the addition of one XOR Gate to
determine the resulting sign. The timing and area
calculations for the eight-bit multiplier are shown below:

Eight-Bit Multiplier:

Delay = 12(2) + 2
=26 Tg
Area 49(2) + 42(10)

= 518 a,
The calculations for a eighteen-bit signed magnitude adder
are shown below [17]

Eighteen-Bit Adder:

Delay 3(2) + 17(2) + 17¢2) + 2

=76 Ty

Area = 16(18)
= 288 Ag

Thus, the comparison structure has a total of 102 Tg, and
an area of 806 Aj. As with the residue design, the
following global area calculation will allow comparison to
the residue design:

Total Area = 25(806) = 20150 A,
The total processing time (Tg) to multiply N successive

pairs of matrices together is given by the following
equation:

3
L]

N{tg) (17) N>1

= 1785N T,
The total time required to multiply two pairs of matrices
in succession is 3570 Ty, the time required to multiply

three pairs of matrices together in succession is 5355 Ty

€.4.2 Time and Area Comparisons

The global area required to implement the residue
design 1is 44051 As or 54989 A, depending on the output
strategy used. The global area required for the
conventicnal binary approach is 20150 Ag. The residue
design 1is 2.18 or 2.73 times larger than the binary
approach.

The timing comparisons yield different results
depending upon the assumed number of successive
multplications occurring. Table 6.5 shows the time
required to execute a given number of matrix
multiplications for the residue and conventional methed, as

well as the ratio of the two processing times.

Table 6.5 Processing Time Comparison

N Residue Tp| Binary Tp |Tp Ratio
1 1122 1785 .59
5 3366 8925 .65
10 6171 17850 2.89 |
50 28611 89250 312

100 56661 178500 3.15

500 281061 892500 3.8

104

The total processing time T, ratio converges tc 3.18. In
an ideal application, the matrix multiplier is constantly
in operation, It must be remembered that the residue
design is capable of multiplying over 1.5 million pairs of
matrices in one second (assuming a relative gate delay of
one nano-second) . For this reason, 500 successive
multiplications (as assumed in Table 6.5) is a very small

number compared to actual hardware capabilities.

CHAPTER VII

CONCLUSION

This research applied the Residue Number System to a
specific digital signal processing problem, that of matrix
multiplication. The mathematical operations of addition
and multiplication are simpler than residue division and
sign determination. The matrix multiplication algorithm
was an ideal candidate, since it only requires
multiplication and addition.

The proposed design used common building blocks in the
multiply and add cell, the input translator, and the output
translator. Using the common building block approach to
VLSI design greatly reduces design time. As a result of
this, any extra design time spent optimizing the layout of
these modules should be very beneficial to the performance
of the overall design. This design methodology also
achieves a higher chip density, resulting in both a cheaper
and a higher performance implementation.

The system presented in this research was designed to
interface with a system using the signed magnitude number
system. If this design is attached to a purely residue
processor, neither the input nor the output translators are
necessary. This would greatly affect the area comparison
calculations, beneficial to the residue number system. The

input and output translators were designed and included

106

because there are no commercially available residue
precessors, hence input and output translators are

essential at the present time.

7.1 Contributions

In this research, a design was formulated for a
specific input word length and matrix bandwidth. It should
be noted that there is no limitation when extending this
methodology to either larger word lengths or matrix
bandwidths. The number of truth table inputs is not
dependent on the specific problem. In this research, two
four-bit truth tables, and one two-bit truth table could
have been implemented rather than two five-bit truth
tables. In light of this, as many truth tables as
necessary can be placed in parallel for larger word
lengths. All other portions of the design may easily be
extended to larger problems, although it may be necessary
to add another modulus to satisfy dynamic range
requirements.

Typical methods of residue addition, and especially
multiplication, require the use of ROM’s. ROM’s tend to be
very slow, particularly in this case, where the global
clock speed (determined by the MAC) is of prime importance.
A very regular and modular approach to residue
multiplication and addition was presented. The fact that

addition and multiplication occurs simultaneously in this

107

research 1is irrelevant, as each could occur alone with
similar hardware. The proposed method of residue addition
and multiplication 1is an excellent option to the VLSI
designer. Along with residue addition and multiplication,
this research also presented methods of input and output
translation, which modified current methods of input and
output translation. More importantly, these methods use
the same building blocks as the MAC, which is essential to
VLSI design.

This research also provided a compariscn of the
residue design to a more conventional approach. Although a
larger amount of area is necessary to implement the residue
design, it 1is still easily implemented on a single chip.
The timing performance is very significant. The residue
design is capable of a throughput greater than three times
that of the binary design. The use of the residue system,
through this comparison, should be greatly promoted. Also
presented in this research were several practical design
considerations, essential to a system designer considering
a design of the residue type. Several comments were made
on the less apparent properties of the RNS, as well as the
process of moduli selection, and dynamic range
determination.

The exact input and output coefficient timing was
derived for the matrix multiplication algorithm, due to

inadequate presentation in prior literature. Alsc, a

simulation of the algorithm was conducted such that timing
information could be obtained. From the algorithm
simulation and Quicksim logic simulation, the comparison to
a conventional binary approach was made. The area required
for the residue design was found to be 2.73 times larger
than the conventional design in the worst case. A large
portion of the difference is found in the input and output
translation processes. The residue design is much faster.
The residue design processes input matrices of bandwidth
five 3.18 times faster than the conventional design. This
proves that speed enhancements over conventional methods
can Dbe obtained through the application of the Residue

Number Systemn.

7.2 Future Research

There are many areas within the Residue Number System
which would benefit from further research. In order for
the RNS to find its way into the commercial market, several
shortcomings must be overcome. Residue division, is very
difficult, as well as sign determination and magnitude
comparison. It 1is the above mentioned limitations that
currently prevent the possibility of an all-RNS
workstation.

It is very 1likely that many already developed
algorithms, like the matrix multiplication algorithm,

could also benefit greatly from the RNS. It is also likely

109

basic algorithms can be modified to exploit the
characteristics and unigue properties of the RNS.
Especially algorithms which fail to converge from round off
error, since the RNS does not allow this type of error.

The residue number system has mwany interesting
properties to offer, but requires future designers to
examine their individual applications, and to objectively

evaluate the advantages and disadvantages of the RNS.

(2]

(31

41

[61

[71

110

REFERENCES

Bayoumi, M. A., G. A. Jullien, and W. C. Miller
"Highly Parallel Architectures for DSP Algorithms
using RNS", Proceedings of ISCAS 85, pp. 1395-1398,
1985.

Szabo, N. 5. and R. I. Tanaka, Residue Arithmetic and
Its Applications to Computer Technology, New York:
McGraw-Hill, 1967.

Kung, H. T., "Structure of Parallel Algorithms",
Advances in Computers, Vol. 19, pp. 65-112, 1980.

Baraniecka, A. and G. A. Jullien, "On Decoding
Technigues for Residue Number System Realizations of
Digital Signal Processing Hardware", IEEE Transactions
on Circuits and Systems, Vol. CAS-25, No. 11, pPp. 935-
936, November 1978.

Leung, Y.-y. J. and M. A. Shanblatt, Performance
Tradeoffs in the Hierarchical Design of Regular VLSI
Structures, Technical Report No. MSU-ENGR-86-001,
Michigan State University, East Lansing, MI, January
1986.

Taylor, F. J., "A VLSI Residue Arithmetic Multiplier™,
IEEE Transactions on Computers, Vol, C-31, No. 6, PP-.
540-546, June 1982.

Bayoumi, M. A., G. A. Jullien, and W. C. Miller, "A
VLSI Implementation of Residue Adders"™, IEEE
Transactions on Circuits and Systems, Vol. CAS-34,
No. 3, pp. 284-288, March 198s6.

Banerji, D., "A Novel Implementation for Addition and
Subtraction in Residue Number Systems", IEEE
Transactions on Computers, Vol. C-23, No. 1, pp. 106-
109, January 1974.

[10]

(11

[12]

[13]

[14]

[15]

[16]

[17]

111

Banerji, D. K. and J. A. Brzozowski, "On Translation
Algorithms in Residue Number Systems™, IEEE
Transactions on Computers, Vol. C-21, No. 12, PP.
1281-1285, December 1972.

Alia, G. and E. Martinelli, ™A VLSI Algorithm for
Direct and Reverse Conversion from Weighted Binary
Number System to Residue Number System", IEEE
Transactions on Circuits and Systems, Vol. CAS-31, No.
12, pp. 1033-1039, December 1984,

Capocelli, R. M. and R. Giancarlo, "Efficient VLSI
Networks for Converting an Integer from Binary System
to Residue Number System and Vice Versa", IEEE
Transactions on Circuits and Systems, Vol. CAS-35, No.
11, pp. 1425-1430, November 1988.

Bayoumi, M. A., G. A. Jullien, and W. C. Miller, "I/O
Strategies for Residue Number System Architectures for
Digital Signal Processing Applications", International
Symposium on Circuits and Systems 1984, pp. 1069-1072,
1984,

Lyman, J., ‘"Components and Packaging", Electronic
Design, Vol. 37, No. 1, pp. 50-63, January 12, 1989.

Soderstrand, M. A., Residue Number System Arithmetic:
Modern Applications in Digital Signal Processing, New
York: IEEE Press, 1986.

Agnew, J., and R. C. Knapp, Linear Algebra With
Applications, Monterrey, CA: Brooks/Cole Publishing
Co., 1983.

Leung, Y.-Y. J. and M. A. Shanblatt, "Systolic Array
Simulation for Quantification of Speed/Area
Parameters", Simulation, Vol. 44, No. 6, pp. 295-300,
June 1985.

Hwang, K., Computer Arithmetic, New York: John Wiley
and Sons, 1987.

APPENDIX A

MATRTX MULTIPLICATION ALGORITHM SIMULATION RESULTS

112

113

5X5 MATRIX MULTIPLICATION SIMULATION

45 -36
9

6
33 -24
9 -24

-3 -42

-5 =31 -32
-9 -30 -66

31 ~58
36 117 63

-25 -40 -62
26

coocoo

coocoo

coocoo

cocoooco

comoao

coomno

ooooN

coHOO

oo

oNoom

cor~oo

woomo

onooo

coooo
coocoo
cooooo
ococooo
conoo
[
o-Hooo
1
coor~o
1 '
cowoo
omoow
~roowo
ocor~oo
!
cwoom
Toomo
I 1
coNoOO

omoo®

o~
Ccooocvoocoo
|
coocoooooo
<
cCoomoNo OO
1 1
OO0 OOO
<
comooonNc o
© [
©
cCoomomooo
[
~ ©
o-Hoowvwoono
— I
cCodooowvwoo
™

o N w0
woomomoom
bl 1 1 '

l
OGOOBUORVO
N | -

o~
cCoOMNocoOWwoO O
' I

o
cCoowmwovTooo
|
)
cCoocoNCOSE
|
coococcococoo

Ccoocooco00O

ocoocoocoooo

o~ N
TOOTOOOO0O00ODOOOOOCD
| |
N
COO0DOOO0OCOOOOOOOTOD
t

4 4
CO0OMOOMNOCONOOODO OO
| [1

NOONOCOCOCOTODOOOOCO

COC00COO00COOCOMMT HIN
= R g}
™ ©

COOOHANMNINHNMNOOSOO QOO
[T M

© ©
TANYOOCOOOOOOOOOOOCOO

LI
N
COoocOoCOoOoO0CcoCOTNHHTMN
o~ ™ 1
© om o
CODOMHINMANMMMOOCOO0CO
[A]

o et
AEMMNOO00000000CO0OD O
1 (W

COO0O0O0C0O0COOONI-ADOM
- [1
=
COoOCOrINMIVAITOOOOOOO
1 [N1 I

5
dTaNOOCOCoOOoOCOCOOCODOOD
1 1

COCOC0O0CCO0ODOOONONMM™M
CO0ODO0OMOOMOOOOOCO OO
COOCCOCO0OO00C0O00CODO00O0O

coco

oo o o ~N o

HAGOHAMOHAXOHIKOHA X
— o~ [} <« n

114

COCOCCOOOO0000000TDO00 0000000000000 000 OO0

o
TOOOOOOOO000000R000CO 0000000000000 00 OO0 HOOOINOSOOMmO
|

1 I
o~ N
COOCVOOOC00O00000000CO NOOO-HOOANMITOONO CONO COCOO0OOOOOO
i | ['

4
COOEOOOIDEOAMMNHANNNOONS OO000000OCCOD00 00O OO0 OO O
[1 ! I 1

<~ - 0
AHVANCOOCOOCCO0000CVOOO0O COO0000O000O0000 O00 MOOMT O ® M
[| 1 1

@ <
PEOEOUOCOOCO00OC000000RO0 FPOOMMNACOIATANNNH OMO COCOOOOCOOOO
0 R L I B) {
0 ™ ~
COLEOIEARAAN HAHATNDHMMAD 00000000 OCOOO00 000 CO0OOCOOOOO O
o] o [T e B B
@ o ©
TRHEIPLOOOOCOO0O0O0O0O0TVOO0O OOCOOVOOOOOOO0O0 ©OOC0 VAWM N AN~ ™

I | [T 2 B B <

o~ 0
COOOCOLOCCO000000CO0OC THAVNOVNINFCNTIVIM®D TOM COOCOOOOOOO
o TN g 1 = 1
© ©
COCOLXINVOWE HANEMANATAN OO0000OCOOO0O0O0O0O0 OO0 OOOOOOCOOOOO
=N [1 <«
o o~
“H>oOVvooooOCOOOO

COCOOOOO 0O00O0000O0OCODOO OO0 MDY NLINWY®I NN
— ~ t [

COOEOEOOLOOOCO00000000 CLVOIMNATINNDOVINMH MOO COOOCOCOOOOO
— ol

0000000501327823M0ﬁ00 COOOO0O0COCOOO0OOO 000 OCO00COOOCOOOO
M02000000000000000000 COCOO0CO0COOOCOOO OO0 OYOOHMHOTN®
COOCOOOROO000000000O000 OTOCOOHOOANNOTOO WOO OO0 OOCOOO
CLOOOOOAOOONOOA0COTRO COO00000CCCO0O00 000 COO0OOOCOOOOo
S =] oo o o o o <o o =} S o o o o <
OILROILROILROILROILROILROILROILROILROILROILROILROILRO

[t ~ w© o =3 — N ™ < v © ~ ©
— — — — — — - — —

115

ocoo

coco

Mmoo

coo

coco

®oo

coo

ocoo

=3

coco

Lo

coo

coco

HAMOHIXOHAKOHHAKOHHAXORAKOHAXO

o
—

=)
N

—
o~

o~
I3V

)
N

<
o~

W
o~

APPENDIX B

TRUTH TABLES AND KARNAUGE MAPS

116

117

Truth Table

7 Lower

Modulo

TRUTH TABLE

cooo O HOo Ao Ao O

cocoo cooo coHa oo
oo oo —ocoo —HO O cCoOOoOH
oooo oo A OO O AC
cooco co Ao O AHO — OO~
[eXeRaN) Ao O o-HOoO —HO AC
ocoooco O~ cooH oo O
cooo oo o OO OoOHAO

= > > ~

NOHOH0HO0O0HOC A0 100 A0 10HO0O0 1010100 A0

HOOAHOO 00 AHOO A0OOHA0O0 OO AHOO A O et

HOOOCO 10000110000 A1HOOCOOHHHOOO O

OUTPUT

EOOO000000D00000000RO0000COOC0000OO

OHNMIVCOANMTNVWOANMNIINOCO ANMI IO o N M

RESULT
MOD

OCHNMNMINOVEDNO AN™
e

5 BIT
RESULT

118

11 Lower Truth Table

Modulo

cooo SO HHOO ©oddO

o~ OO HHOO OMHO
HH oo cococo OHOO Hodo
coHo ERak=kol oOHOA Hooo
O cocoo cocoH oMoo
cococo coHo OHO A OO
cococo ERakakal COHHd OdHO
cocoo cooo OOHH odMHO

= > > 5]

NO1O0HOo—d0HO 00 HO0H1O O 1000 1O 1O O O

HOO A AOOA10O010O0A1HOOAHOOADOHHAOO A HO O

HOOOOHIIH 0000000 A1HHHODOOOOOAdHHOO

TRUTH TABLE
CUTPUT

EOO0O00000O0r 1 -HDO000D00COA-HA0000COCO Mo

ot
m TOANMIONOVEOAIOOANMNINOEONOCOHANMINO~©R
— —
wua
Mo
]
HHOANMINWOEROQROANMTNWONROOHOANMINONSO0ND
H T HAAAAAAAAANNNNNNNNNN OO
mpD
1%}
ColSs
['4

119

Truth Table

13 Lower

Modulo

oo o —Hoo Ao oo Ao HO

coOOoo SO A —A—HO o S A
O A A A OO HO Ao OO~
cooco O A~ — OO HO O~
o oocoo OO A O HHO
—AC OO Ial=Rele] [=ReRoNel oo
ocooco A OO CHAO
cococo cococo codH oHHo
= < > N

NOAO A0 HO 1O HOHAO0OO O HOAO MO A0 400 1O HO

HOOAAO0O A A0 01 d0 00 HAHOO A 100 HHAOOO A0 O

HOOOOATA1000O0HA0O00OIHAH1O0OCOAOOOO

TRUTH TABLE
OUTPUT

BOO00O0000Hddd100000000AdddrdAd000COO

OHNMTNWS O

10
11

NOANMSINOEDNOANS = NI
— o

RESULT
MOD 13

CHNMITNWR OOO ANM U O™ D
R R K I R I e

5 BIT
RESULT

120

15 Lower Truth Table

Modulo

e co-o oo [R=X=1=

oo HHoo oHoo oo
co-o AH O oHoH —~oon
cooo co-o oo —Ho o
A cooo OO oo
HA O O coor o-Hoo
cooo e co - SRR
cooo cooo SO rH oHHO

= = > ~

NO—AO 101010 A0HO0O A0 0410 HO0O 0O A0 A0 00O

HOOA A0 O ATOO 100 A0O0 OO0 A 10O A00 40O

HOOCOAdH 10000 AT Ad00O0O0AAHAOOOOHH OO

TRUTH TABLE
OUTPUT

E o000 riddI I 10000000 HAHHAAMO O

CHNMNMTINOVOFRDNOHNMNITIOANMI WSO DO
e o~

RESULT
MOD 15

OHNMINO~ DR AN TN
A

5 BIT
RESULT

121

Mcdulo 7 Upper Truth Table

x k% % ® K X % ® K x X ® K X x
* kK % ¥ % % ox x ok oK ox ® ok X %
IR % % % K X X x ® % % %
ocoo OoOHAO OO A AHO O
* K x x * KoK % * K K % * K ox X
X X O % LR I X X Ox x X O %
cooco oO-HOO —AHO A coo-A
[eNeReNe) = e e K] ocooo OO A

= = ™ (S}

HOOOOAHAOX X ¥ X ¥ K X OOO X X ¥ Kk X X X ¥ X X % %

HOHOHO—OOK ¥ ¥ X ¥ ¥ Kk AO 1O =% kK X X X kK K X X X % %

TRUTH TABLE
OUTPUT

BOOOOOOCOOK X ¥ x X X X OOOOQOK X X X X ¥ X ¥ kK X ¥ %

O HANM O™ © O
i

5 BIT
RESULT

122

Modulo 11 Upper Truth Table

TRUTH TABLE

B * X K X R x K K X
X K K X L R *OK X K
X K K K LR * K K X X K K K
ocoooo O A O+ OoOHACO
KoK K K XX oK ox * % X x X K ok %
X K O X * X K R = xX X %
oo QO e OO —OooH
O A cooo OHOO coo
= » sl ~

NOOAOAOHO K X X ¥ X X x 1O AO KX x XK X X ¥ X X ¥ X % %

HOAOOHHOOKX X K X X ¥ x A1 OOX XK X X ¥ X X X X K X %

XOOOOAAHTHX k¥ X X ¥ ¥ ¥ Ard A 1OX X X ¥ X X X k X X X %

OUTPUT

EOAAH10O0O0CK ¥ ¥ K ¥ X X OOOOOK %X X X x X X X ¥ % K &

5 BIT
RESULT

123

13 Upper Truth Table

Modulo

oKX K LI KX K K X oK oK X
LIS B 3 XK K X KK X ¥ KoK oKX
LR S K K X ® X X K *® KK K
SO OO O HHO HHoo
x K K K * K X X * oK K K RS
¥ K oK * oK K * KO X * K Ox
OO oHo O O OO
COoOm O o-Hoo co-HO

= = > N

NOOOALOOM® ¥ ¥ ¥ X K x OA1OOX X K ¥ kK X X X X ¥ % &

HO—HOOHAO Tk X X X X X X OO O X X X X X X K %« X X &

HXOAA1OHOOKX X ¥ ¥ ¥ ¥ x AriOAOX &k X X X K kX ® % ¥ k

TRUTH TABLE
QUTPUT

FOOAOAOHO ¥ ¥ X ¥ ¥ X x AO 4O X X K X X X X X X % % X

OHNMINOEOAO HN™
e

5 BIT
RESULT

124

Modulo 15 Upper Truth Table

x ok X K
x K K K
XK X K

cocdHo

* K K K
x ¥ OX
A

cocoo

* oK KX
* K K %
X K K %

OO

K x X
* ¥ Ox
OO
COoHH

® X % % ® K % %
* K ok % X K x %
X oK X % * oK X %
ER=R=W cooo
x K K x * oK KX
x K O * K Ox
oOHHO cooco
SRR cocoo

> ~

NOCOoOOOOCOX %

TRUTH TABLE
OUTPUT

HOAO 4O A0 & %

Koo A 1o dx

BO0OOOH ¥ X

KEKKOHAOAOKX % X X X % X K X X kK %

KKK KOOAAOK kK K X K X ¥ X X X %k %

5 BIT
RESULT

OHMNMT OO DO

APPENDIX C

SCHEMATIC PLOTS

125

Figure A.1 Modulo 7 Truth Table Hardware

126

Figure A.2 Modulo 11 Truth Table Hardware

127

Figure A.3 Modulo 13 Truth Table Hardware

128

N A
ey “'l...ﬂ:.[.|.‘13..[.“1 wilve

Mo ,'nn‘._;:; b
g TR AR
Ly G @ 07 @
Uu Uy R Uy UuU

il
SR i
N N RWT1Y TR lﬁ"
soivl sslsllSuiefionlv
i A Bl e G
U O0U 0L DL DY

Figure A.4 8X4 Multiplier

IO TTIT

— 1]
: ;_., =

= = :
A — A

Figure A.5 Twelve-Bit Multiple Generator

1T ITJIH

|

130

Figure A.6 Fourteen-Bit Carry Save Adder

131

Figure A.7 Fourteen-Bit Binary Adder

133

8 Modified Adder A

A

Figure

134

=

A A

~

—~

Figure A.9 Modified Adder B

Figure A.10 Seventeen-Bit Two’s Complementer

SET

APPENDIX D

SIMULATION RESULTS

136

137

MAC Simulation Data

Table A.1

WS Simulation Resul

Mo

X K 5 G B BB T B BB Be e 6000

MM AAABO00 OO a e
XXadroanoicoBoBEN0000 1
X060000000BABE AAAANoo0E
cooscooccooosscaasancacs

Moduio 7 MAC Simelation Resul

HModulo 13 MAC Simulaclon Resulc:

Mmoo e <k <o <o e o oo] SRR,
x . xoooomnpooonenmnmmn b
R L EL L LL P LT RO KX XAMmtti0OoamAn000O .
TN 3} *xxnano ocaanmans B
A2 E 500 00800600008000 it ~4n~aoocscoconocsoona L
SR e R0 0080000000000 Mt P ©00CEMAnAr i nmoaco ¢
R s cscocossessscocoounns P
mo0eni o s ossossenassnsna T, mm 00000 mamanrran
O B 8
- - BN H
i s 3 LTS
H ot 8 memcmcassnnnneseane]
§ e e e, € e
i Toone e ccos Ty § ccccenmnnancocssscsas L
é eococeccosecoooscooocosccan F @ eoooscecoconmmm~rcooa &
% A & m &
» imasiney U H 3
El 3
£ H
1

XXM AOHOHaAE 08000 ae
%oocononononoscc00as
k008000000 0e o0
X0oaEMOmatON0a0 oo
°c06cec0c000000caccn
©coccocecnecocncancn

ccececccooccscooooos

OOO e

138

+ + + a3
+ + + a2
+ + + ai
+ + + a0
+ + + b3
+ + + b2
+ + + b1
+ + + bo
+ + + c3
+ + + c2
+ + + ci
+ + + co
+ + + r3
—+ + re

f + ri

—+ J + ro

10.0 20.0 30.0 40.0

Figure A.11 Modulo 7 Trial #1 MAC Simulation

+ + + a3
+ + + a2
+ + + a1
+ + + ao
+ + + b3
+ + + b2
+ + + b1
¥ + + bo
+ + + c3
+ + + c2
+ + + c1
+ + + co
I + r3

t + re

f + r1

t + ro

10.0 20.0 30.0 40.0

13¢

Figure A.12 Modulo 11 Trial #1 MAC Simulation

+ + + a3
+ + + a2
+ + + a1
+ + + a0
+ + + b3
+ + + b2
¥ + + bi
+ + + bo
+ + + c3
+ + + ce
+ + + c1
+ + + c0
— + r3

1 + r2

— + ri

I + ro

10.0 20.0 30.0 40.0

Figure A.13 Modulo 13 Trial #1 MAC Simulation

141

¥ + + a3
+ + + + a2
+ + + + a1l
r + + + a0
t + + + b3
1 + + + be
F + + + b1
L + + + bo
+ + + c3
+ + + c2
+ + + ci1
+ + + c0
J + r3
I+ + re
1 + ri
r + ro

10.0 20.0 30.0 40.0

Figure A.14 Modulo 15 Trial #1 MAC Simulation

+ + + a3
. + + az2
+ + + a1
+ + + ag
+ + + b3
+ + + b2
+ + + bi
+ + + bo
+ + + c3
+ + + c2
+ + + c1
+ + + co
+———T + + p3
 ——| + + + pe
— + + + pl
+ + + po
10.0 20.0 30.0 40.0

Figure A.15 Modulo 16 Trial #1 MAC Simulation

143

Hodula 15

Modulo 11

Input Translation Simulation Data

Table A.2

oaulo T

r1

e2
91

a2

53

-in0)
~in0

G OO BEOTEE G it a4 BE0B 00600000008

a1
“im1

~in2
i6
“in2

~in3
“1a3

~ine
Hoculo
“ind

~ins

~1n6
~ing

Ln6

~s07

Input Transiation Simslation Results:
Inpuc Traralazion Simulacion Resules:

e

5 ° Te
. .
i 2
E e H
m &
&
bt g
§ H
a x ERETEYY ¥ H xcocoo omo~
H - H
- wo o 3 xxooo on ~ooo
£ cooe s “nmnmooovooonacn i3
2 s g conn - i
gL LR
& ettt A A0 B e 800000 e mm g By 3§
§ 000000000000000060000088mAnrmndnmnnm s w B E
I eomm 00 BB 0000 £
F i

~ins -tn3
“in6 ind ~in2

in?

v

144

- ¥ + in7
+ + + ing
+ + + ing
+ + + in4
+ + + in3
+ + + in2
+ + + in1
+ + + in0
+ + + r3
f + re

' ’ + ri
' J + ro

10.0 20.0 30.0 40.0

Figure A.16 Modulo 7 Trial #1 Input Translation Simulation

145

[+ + + in7
+ + + in6
. + + inS
L ¥ + + in4
4 + + + in3
1 + + + in2
+ + + in1
. + + in0
1+ r3
+ P
T
" Lt ro

10.0 20.0 30.0 40.0

Figure A.17 Modulo 11 Trial #1 Input Translation Simulation

146

+ + + in7
. + + ing
" ¥ + in5
. + + in4
¥ + + in3
- + + in2
+ - + ini
. + + inQ
. + r3

1 + re

J + - r1

I ¥ ro

10.0 20.0 30.0 40.0

Figure A.18 Modulo 13 Trial #1 Input Translation Simulation

147

+ + + in7
+ + + inG
+ + + in5
+ + + ind4
+ + + in3
+ + + ing
+ + + in1
+ + + in0
— r3
+ T re
+ a r1
' I ro0

10.0 20.0 30.0 40.0

Figure A.19 Modulo 15 Trial #1 Input Translation Simulation

t e + + in7
t + + + in6
r + + + ing
r + + + in4

+ + + in3

+ + + in2
1 + + + in1
" + + + in0
j R + + " g3
o T 7 . g2
T+ + + : gt
— + + + go

10.0 20.0 30.0 40.0

Figure A.20 Modulo 16 Trial #1 Input Translation Simulation

149

Output Translation Simulation Data

Jutput Teanslatien Simulaticn Results:
o

Table A.3

“our17:0)

i
97

o 37

i3

eoo i
9597559258 en e omaa o aE.,
HH

e af
oo e L] - £.d

23307 - 3E

coocoe gF

- i

RN PPDRRSIDII M o i o 3%
4ttt ekt e n

4Lt h et Pt 7t 4 4k 4 et 4ttt - cocscco

VITA

Gary Franklin Chard received his B. S. Degree in
Electrical Engineering in May of 1988 from Texas A&M
University, College Station, Texas. He 1is currently
completing his M. S. Degree in Electrical Engineering also
from Texas A&M University. He has worked for Texas
Instruments Incorporated during the summer since 1985. He
is a member of Eta Kappa Nu and Tau Beta Pi. His permanent

address is 2503 Grandview Dr., Richardson, Texas 75080.

