
EVALUATION OF A MICROPLANE MODEL FOR 

PROGRESSIVE FRACTURE IN CONCRETE 

A Thesis 

by 

JAMES HARRIS LOPER 

Submitted to the Graduate College of 
Texas ASM University 

in partial fulfdlment of the requirements for the degree of 

MASTER OF SCIENCE 

December 1988 

Major Subject: Civil Engineering 



EVALUATION OF A MICROPLANE MODEL FOR 

PROGRESSIVE FRACTURE IN CONCRETE 

A Thesis 

by 

JAMES HARRIS LOPER 

Approved as to style and content by: 

ay W. James 
(Chairman of Committee) 

David H. Allen 
(Member) 

rry L. Kohutek 
(Member) 

Duane R. Sanders 
(Member) 

es T. P. Yao 
ead of Department) 

December 1988 



ABSTRACT 

Evaluation of a Microplane Model for 

Progressive Fracture in Concrete 

(December 1988) 

James Harris Loper, B. S. , Texas A&M University 

Chairman of Advisory Committee: Dr. Ray W. James 

Tensile cracking of a concrete structure can affect its overall behavior consid- 

erably. The purpose of this study is to evaluate a rnicroplane model for progressive 

tensile damage or fracture in concrete undergoing short term monotonic, plane stress 

load histories. The method of evaluation of the microplane model'is in the i'orm of a 

FORTRAN subroutine, which interfaces with the existing nonlinear finite element 

code ABACUS, version 4. 5. For cracked reinforced concrete, the smeared crack 

system is adopted. A strain criterion is used to quantitatively measure damage. 

The model is applied to unreinforced concrete subjected to uniaxial tension, biax- 

ial tension, and pure shear. More realistic examples studied here are bending of a 

short, deep reinforced concrete shear panel and bending of a thin one — way reinforced 

concrete slab. Comparison between the plain concrete examples and experimental 

results shows good agreement. However, a good way of modeling tension stiffening 

is needed. 
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INTRODUCTION 

Purpose and Motivation 

Tensile cracking of a concrete structure can affect its overall behavior consid- 

erably. After starting at a relatively low tensile stress, tensile damage increases as 

tensile strain increases. As a result, the concrete exhibits strain softening, which 

is defined as a decrease in stress with increasing strain. A realistic constitutive 

model which accounts I' or the post — cracking regime or strain — softening region is an 

important part in the nonlinear analysis of concrete structures. The purpose of this 

study is to evaluate a microplane model for progressive tensile damage or fracture 

in concrete undergoing short term monotonic load histories. 

The motivation of the present research lies in the need to evaluate the existing 

concrete constitutive models. Much attention has been given to the uniaxial tensile 

properties of concrete (Yankelevsky and Reinhardt 1987; Zhen — Hai and Xiu — Qin 

1987; Reinhardt 1985; Gopalaratnarn and Shah 1985; Krajcinovic 1983; Carino 

and Slate 1976; Tasuji, Slate, and Nilson 1978; Heilmann and Hilsdorf 1969; Evans 

and Marathe 1968; Newman 1968; Rosenthal 1968; Robinson 1967; Hughes and 

Chapman 1966; Hsu, Slate, Sturman, and Winter 1963; Weigler and Becker 1963; 

Nishizawa 1961; McHenry and Karni 1958; Blakely and Beresford 1955; Smith 

1953). These test results laid the foundation for researchers to attack the problem 

of modeling concrete subjected to multiaxial stresses. Today, many computer codes 

exist which can model aspects of the behavior of concrete (Colville and Abbasi 1974; 

Bazant and Cedolin 1979; Bagant and Oh 1983A; Hibbitt 1985; Hillerborg 1985; 

Roelfstra and Wittman 1985; Gambarova and Floris 1986; Rashid and Dunham 

1986). In order to effectively utilize any of these models, an understanding of 

This thesis follows the format of the Journal of Structural Engineering of the 

American Society of Civil Engineers. 



the scope and limitations of the model is needed. Here, one of the models, the 

microplane model, will be evaluated for plane stress cases. 

Material Characteristics 

The nature of the problem of modeling concrete behavior is highly nonlin- 

ear. Two reasons are responsible for this nonlinearity. The first cause is microde- 

fects, which may result from shrinkage, temperature changes, discontinuities at the 

aggregate — mortar interface, segregation and bleeding, and discontinuities in the 

mortar due to capillary pores and inclusions (Mindness and Young 1981). Inhomo- 

geneity of the material is the second cause of concrete's nonlinear behavior, Fig. 1. 

The stress — strain curves for the two main components of concrete are quite differ- 

ent as shown in Fig. 1, with both constituents being approximately linear except 

at stresses approaching the ultimate strength. The effect of this inhomogeneity is 

overall nonlinear behavior in a concrete body. 

As a concrete body is subjected to external loads, it undergoes a fracture 

process which passes through three stages: crack initiation, slow crack growth, and 

rapid crack growth (Mindness and Young 1981). As shown in Fig. 2, concrete 

behavior in compression is nearly linear up to about 30% of the ultimate load. 

This linearity is due to the stability of pre-existing microcracks at low stress levels. 

The second stage of the fracture process includes two regions. First, between 30% 

and 50% of the ultimate strength, cracks at the aggregate-cement interfaces grow 

very slowly. Secondly, between 50% and 75% of the ultimate load, these interfacial 

cracks begin to extend into the cement matrix. The result is a more extensive 

and continuous crack system than at lower stress levels. From their experimental 

work, Carino and Slate (1976) defined a discontinuity point at about 70% of the 

ultimate load. This point is significant because it is appoximately the point where 
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the curve deviates from linearity. The third stage of the fracture process occurs 

between 75% and 100% of the ultimate strength. Here, more extensive crack growth 

occurs in the matrix which leads to strain softening after the ultimate strength is 

reached. In contrast, Tasuji& Slate, and Nilson (1978) reported that the onset of 

major microcracking takes place at about 60% of the ultimate tensile stress. After 

the peak stress is reached, concrete exhibits strain softening. To observe the faning 

branch of the stress-strain curve, a stiff testing machine is needed which will prevent 

uncontrolled crack propagation and allow a constant strain rate to be maintained 

(Mindness and Young 1981). 

Typical complete stress — strain curves for concrete under monotonic uniaxial 

compression are shown in Fig. 3 (Winter and Nilson 1979). The shape of the 

stress — strain curve is similiar for low, normal, and high-strength concretes, with 

the higher strength concretes exhibiting a slightly higher strain at the peak stress 

(Ramaley and McHenry 1947). In the strain — softening branch of the stress — strain 

curve, higher strength concretes tend to behave in a more brittle manner, . with the 

stress decreasing more rapidly than in the case of lower strength concretes. 

The initial modulus of elasticity, Young's modulus, of concrete is usually 

determined from an empirical relationship based on the concrete compressive 

strength, f, '. The relation used by the ACI Building Code (ACI Code 318 — 83) 

15 

where E, = the initial compressive modulus in psi, p = unit weight in pcf, and E, 

and f& are expressed in psi. 

Poisson's ratio for concrete ranges from about 0. 15 to 0. 20, and is taken here 
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to be 0. 18. At compressive stresses below about 80% of the peak stress, the ratio of 

lateral strains to longitudinal strains is constant, after which the apparent Poisson's 

ratio begins to increase. Incremental values of Poisson's ratio in excess of 1. 0 have 

been measured (Darwin and Pecknold 1974, Kupfer, Hilsdorf, and Rusch 1969). 

When concrete undergoes cyclic compressive loading at stresses above about 

0. 60f, ', its stiffness degrades (Karsan and Jirsa 1969; Sinha, Gerstle, and Tulin 

1964). As shown in Fig, 4 (Sinha et al. 1964), hysteresis curves are formed for each 

cycle of load. The area enclosed by each curve represents the energy dissipated by 

the concrete during that cycle. In a similiar study, Gopalaratnam and Shah (1985) 

showed that concrete subjected to cyclic tension also undergoes hysteretic effects. 

Concrete subjected to uniaxial tension exhibits a stress-strain curve of similiar 

shape to that of' compression loading, Fig. 5. However, the peak stress is much 

lower in tension than in compression. The ratio of tensile strength to compressive 

strength is about 0. 1. Based on their experimental results, Tasuji, Slate, and Nilson 

(1978) suggested that the uniaxial tensile strength of concrete may be estimated 

from its uniaxial strength by 

f~ = 6(f. ')" 

The value taken by ACI for tensile strength is 

fi = 7 5(f. ')" 

where f, ' is the compressive strength in psi. It is generally accepted that the strain 

corresponding to the maximum tensile stress is in the range of 50 to 150 micro— 

strains (Carino and Slate 1976; Jones 1968; Kaplan 1963). 

As shown in Fig. 5, experimental results can vary greatly between researchers. 

The two main reasons for the differences in results are thought to be different 
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material mix proportions and different experimental test procedures used by the re- 

searchers, Table 1. Even though the ages and water — to — cement ratios were similiar, 

the coarse aggregate — to — cement ratios differed between the workers. Further, the 

maximum aggregate size used by Evans and Marathe (1968) was not given. In ad- 

dition to material difFerences, another reason for the dissimiliarities is the difi'erence 

in test procedures used in the tests. Rusch (1960) showed that the applied strain 

rate considerably afFects the compressive results, Fig. 6. The same phenomenon is 

a possibly a cause of contrast in this case. Also, if' the testing machines' stiffnesses 

differed greatly, then the difFerent strain energies stored in each machine could lead 

to different results. To guarantee a controllable strain rate in the strain-softening 

region, a stifF testing machine is needed, else the results will indicate that concrete 

is essentiaHy an elastic — brittle material. Work by other researchers {Tasuji, Slate, 

and Nilson 1978; Carino and Slate 1976) supports the idea that a soft testing appa- 

ratus greatly shortens the period of slow crack growth, and leads to failure almost 

immediately after the first crack developes. 

Several modeling problems arise from the nature of concrete. First, material 

heterogeneity and nonlinearity cause problems in explaining experimental results 

and extrapolating them (Carpinteri 1982). Further, on the uniaxial stress — strain 

diagram, any stress less than fq, the maximum tensile stress, corresponds to two 

strains. In addition, concrete micro — cracking causes the stress state within the 

body to be nonhomogeneous. Also, the effects of creep and shrinkage create 

complications. If the concrete is reinforced, bond slip between the steel and concrete 

cause problems in modeling. 

Method of Evaluation 

The method of evaluation of the microplane model will be in the form of 



1. 0 

0. 75 
o 
~ I 

0. 50 

co 025 

o 
o 

0 

Cylinder strength 

c, ' = 3000 Ib/in. 

at 56 days 

Str ain rate ~ p 001 per 1 pp da ys 

Oq 
oar 

S7 . q Oy 

do 
&r 

0. 001 0. 002 D. 003 0. 004 0. 005 0. 006 O. D07 

Concrete strain, e 

Fig. 6. Strain — Rate Effect on Uniaxial 

Compressive Response (Rusch 1960). 
(1 psi = 6. 895 kpa) 



12 

Table 1, Material Properties for Data in Fig. 5. 

ge 
Datasetl ) (days) 

(1) (2) 

60 

w/c&'& 

(3) 

0. 45 

CA/Cemt l 

(4) 

s 
Msx Agg Size (p/min) 

(53 (6) 

90 

31 

0. 45 

0. 45 

3 
16 

31 

42 

105 

0. 45 

0. 45 

0. 45 

N/A 

N/A 

N/A 

10 

10 

10 

(1) Datssets 1, 2, and 3 are by Hughes and Chapmar. (1966), and 

datasets 4, 5, and 6 are by Evans and Marathe (1968). 

(2) water/cement ratio by weight. 

(3) Coarse aggregate/cement ratio by weight. 

a FORTRAN subroutine. The subroutine will be based on Bazant's proposal 

(Bagant and Oh 1983A; Bazant 1984; Bazant and Gambarova 1984; Bazant snd Oh 

1985). First, constitutive relations from the microplsne model will be generated. 

From these constitutive relations, an algorithm will be developed and coded into a 

FORTRAN subroutine. The FORTRAN subroutine will interface with the existing 

nonlinear finite element code ABACUS. Concrete structures subjected to plane 

stress states will be studied. Examples to be considered are the two — dimensional 

cases of unisxial and biaxial tension of a plane stress element, the bending of a shear— 

beam, and the bending of a one — way reinforced slab. The initiation and growth of 

tensile cracks in these structures will be studied. Here, progressive damage or 



growth of tensile cracks is defined simply by increasing strains on microplanes. 

Growth of single cracks, which may be modeled by fracture mechanics, is not 

considered. Results of the numerical analysis will be compared with available 

experimental data (Gambarova and Floris 1986, Bazant and Oh 1985, Jain and 

Kennedy 1974). The comparison will be based on the magnitude of loads that cause 

cracking and the locations and orientations of the cracks. Further comparisions 

will be made between experimental and analytical results with regard to load- 

displacement curves. Limited studies of convergence and numerical instability with 

the chosen constitutive model will be reported. 
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REVIEW OF THE LITERATURE 

Continuum Damage Mechanics 

The idea of continuum damage mechanics (CDM) originated in 1958, when 

Kachanov introduced a kinematic variable defining the microdefect density in a 

body. Kachanov's work was motivated by his realization of the difference in effect 

that microcrack growth and dislocation kinetics have on the creep of metals. The 

results of Kachanov's work led to modern day continuum damage mechanics, a 

branch of continuum solid mechanics characterized by the introduction of special 

internal field variables representing the distribution of damage locally (Krajcinovic 

1984). In this study, continuum damage mechanics is defined as branch of the 

damage mechanics in which no boundary conditions are imposed on the interior a 

body. Examples of such boundary conditions are voids and cracks. 

In the present state of the art, CDM is a controversial topic, because damage 

can be described in many ways. For examples, the damage laws can be developed 

from either a state type or a'memory type of theory. In the state type of theory, 

the history of the body does not need to be known, because a set of internal state 

variables are available to characterize the state at any time. In contrast, the entire 

history of the body must be known, in a memory type of theory. Another source 

of controversy in CDM is the damage tensor order to be used. The damage tensor 

can be of any order, Table 2 (Krajcinoyic 1984). 

As stated by Krajcinovic (1984), some of the major contributors to damage 

mechanics research of spalling, brittle materials are Davison and Stevens (1973), 

Curran (1973), Chaboche (1978), Dragon and Mroz (1979), Krajcinovic snd Fonseka 

(1981), and Murakami and Ohno (1981). All of the theories proposed by these 

researchers, with the exception of Curran's, employ an evolution equation or a 
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Table 2. General CDM Theories&~i. 

Original Reference 
(1) 

Davison, Stevens 1973 

Chaboche 1978 

Damage Tensor Order 
(2) 

Damage Law 
(3) 

EE 

EE 

Dragon, Mroz 1979 

Krajcinovic, Fonseka 1981 

Murakami, Ohno 1981 

FP 

FP 

EE 

(1) Only theories incorporating the damage variable explicitly are listed. 

(2) Scalar and vector tensors are of order 0 and 1. 

(3) EE-evolution law, FP-Flow potential 

flow potential. Curran's theory is not a continuum mechanics type theory because 

damage is obtained by integrating over a sphere surrounding a material point. In 

contrast to these researchers, another group, including Rudnicki and Rice (1975), 

Doughill (1975), Bazant and Kim (1979), and Nicholson (1980), characterized the 

damage indirectly through an additional component of the strain tensor (cited in 

Krajcinovic 1984). In addition to Chang and Allen (1987) and Allen and Harris 

(1987), other contributors to damage mechanics include Lemaitre (1971), Leckie 

(1974), Hult (1974), and Chaboche (1974) (cited in Lemaitre 1984). 

Another continuum damage mechanics model, the microplane model, was 

proposed by Bazant and Oh (1983A). Their objective was to model damage in 

brittle aggregate materials such as concrete. They approached the objective with a, 

micromechanics perspective. 
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Non-Continuum Damage Mechanics 

For certain materials, CDM cannot be used due to large amounts of inhomo- 

geneity. In such cases, a non — continuum approach must be used to realistically 

model damage effects. Seaman, Curran, and Shockley (1976) developed a non- 

continuum damage mechanics model for fracture criteria of various metals. Their 

main objective was to develop the capability to predict quantitatively the level of 

damage produced under known dynamic loads. Damage was obtained over a sphere 

surrounding a material point. 

Damage in Concrete 

Progressive Crack Growth 

Presently, two approaches are available to quantify tensile damage or crack 

growth in concrete, These are discrete crack formulation, proposed by Griflith 

(Krajcinovic 1979), and the smeared crack formulation, proposed by Kachanov 

(1958) and Rashid (1968). Gri%th's formulation is based on growth and propagation 

of a single crack. Kachanov's proposal is based on damaged' smeared over a volume 

of material. The smeared damage approach, utilized by Bazant and Cedolin (1980), 

Cervenka and Gerstle (1972), Suidan and Schnobrich (1973), and Darwin and 

Pecknold (1976), has gained favor over the discrete crack approach for two reasons. 

First, a material such as concrete is commonly characterized by many cracks of 

various sizes and orientations in a tensile zone. This fact makes the smeared crack 

model attractive because one pays no penalty for lack of apriori knowledge of crack 

sizes and orientations. The second advantage of the smeared model is its relatively 

simple installation into a finite element program. The extent of damage can be 

simulated by decreasing the element stiffnesses rather than by introducing gaps in 

the finite element mesh as required in the case of discrete crack growth models. 
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A third approach, fracture mechanics, may be used to quantify crack propaga- 

tion if locations and extent of initial cracks are known. This inethod has been met 

with mixed reviews because some researchers (Kesler, Naus, and Lott 1972) feel 

it is impractical while others (Bazant ant Cedolin 1980) feel there is no other way 

besides fracture mechanics to achieve what they consider an objective approach to 

the crack propagation problem. 

Concrete Failure Theories 

Probably the first criterion for the onset of plastic deformation in hydrostatic 

dependent media was proposed by Coulomb in 1773 when he was studying the 

interaction between soil and retaining walls. His work laid the foundation for 

became known as the Mohr — Coulomb theory. Then in 1864, Tresca, who is credited 

as being the father of plasticity, developed a yield criterion which assumes the onset 

of yielding is due to shear stress or distortional energy instead of normal stress 

or dilatational energy. Rankine followed with his maximum stress theory in 1876. 

He assumed that failure occurs when the normal stress in any direction exceeds a 

limiting value. 

Two of the best known concrete failure models are the Mohr — Coulomb model 

and the Drucker — Prager model. The Mohr — Coulomb theory assumes failure occurs 

on a plane when the shear stress v reaches a limiting value. The limiting value of v 

is a function of confining pressure or compressive normal stress on that plane. 

Using a straight line approximation, the maximum stress is given by 

r = c+ a~ tang 



where st = the angle oi' internal friction and c = cohesion. Any state of stress whose 

Mohr's circle falls inside the failure envelope is assumed to behave in an elastic 

manner, Fig. 7. 

The Drucker-Prager model is a linear, mean stress dependent yield function 

which takes on the shape of a cone in principal stress space. The function f, defining 

yield, is given by 

f = 3aI, + (Js) ~ — k = 0 

where 
2sfng 

3(3 — sing) 

2cos4 

(3 — sing) 

Ir = rrsq 

Js — — — s;io, . 
2 

s, ' = deviatoric stress tensor 

The Mohr — Coulomb and Drucker — Prager models are the basis for more recent 

models. One such model, proposed by Kupfer and Gerstle (1973) and widely 

accepted, is shown in Fig. 8. Here, the failure surface is expressed individually for 

the regions of biaxial tension, tension — compression, and biaxial compression. Other 

recent concrete failure theories include those by Argyris, Faust, Szimmat, Warnke, 

and Willam 1974; Kotsovos and Newman, 1978; Ottosen 1977; and Willsm and 

War nke 1974. 
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Fig. 7. Mohr — Coulomb Failure Theory. 
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Concrete Constitutive Relations 

Elasticity-Based Models 

In the earliest concrete finite element models, the material was considered to 

be linear elastic and isotropic. Hookean formulations, involving either total or 

incremental stress — strain relations, were used to model biaxial concrete behavior. 

In such models, the expression for the stress is function of strain only: 

oii = Fij(eij) 

where Fv = tensorial material response function. Specifically, the stress — strain 

relation is 

da, , = D, ysi desi 

where D, isi = a fourth — order material stifl'ness matrix. 

Linear material modeling of concrete began with research on uniaxial domains 

(Aktan and Pecknold 1975; Blakely and Park 1973; Karsan and Jirsa 1969, Kent 

and Park 1971; Sinha, Gerstle, and Tulin 1964; Suharwardy and Pecknold 1978) 

and soon progressed to biaxial (Ngo and Scordelis 1967; Rashid 1968) and triaxial 

(Cedolin, Crutzen, and Dei Poli 1977; Kotsovos and Newman 1978; Ottosen 1979; 

Palaniswamy and Shah 1974; Phillips and Zienkiewicz 1976) models, The advantage 

of these models is that no loading functions, flow rules, or intrinsic time are required. 

However, because concrete is a highly nonlinear material, more complex models were 

destined to follow. 

Classical Plasticity — Based Models 

With the desire to more realistically model concrete carne models based on 

classical plasticity theory, where concrete is assumed to be a stable material. A 

stable material is defined to be one in which the plastic work done by the tractions 
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during any load step is positive (Malvern 1969). In addition to this assumption, 

researchers further make one of two other simplifying assumptions. First, concrete 

may be assumed to be an elastic — perfectly plastic material, which can flow like 

a ductile metal on the yield surface. Second, concrete may be assumed to be a 

strain-hardening or work — hardening material, in which the net total work done 

by the tractions during the cycle of adding and removing stresses is nonnegative. 

In classical plasticity, the idea of strain softening is precluded, because sll tensile 

strength is assumed to be lost after an ultimate tensile stress is reached. Several 

researchers (Chen 1981; Chen and Ting 1989; Buyukozturk 1977; Chen and Chen 

1975) have proposed such models, using either isotropic, kinematic, or combined 

hardening rules in their respective formulations. An extension of the model by 

Chen and Chen (1975) was reported by Hibbitt (1985), in an effort to make the 

model more realistic by including a strain failure criterion. 

The advantage of classical plasticity — based models is that such models incor- 

porate nonlinearity of concrete. One disadvantage is that the material strength 

of concrete may be overestimated because yielding in compression is assumed to 

be independent of hydrostatic pressure. To avoid the overestimation of strength, 

the yield surface may be capped. Another disadvantage is strain softening is not 

modeled. 

In classical plasticity theory, the four main topics to be considered are the 

stress-elastic strain relation, the yield criterion, the flow rule, and the work— 

hardening rule. These subjects are summarized as follows. 

A. Stress — Elastic Strain Relation 

where de~' = de — de~' 
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and ds; ', de, and de, , 
' are the elastic, total, and plastic strain increments, respec- 

tively. 

D, is = the incremental stiffnesses. 

B. Yield Criterion 

F(cr, , ) = 0 

C. Flow Rule 

c! o'!1 

where A = a history dependent scalar. 

D. Work — Hardening Rules 

The purpose of the work — hardening rule is to describe the growth of ail internal state 

variables (ISV) in the formulation. For combined hardening, the work — hardening 

rules are 

das = 8'de 

where ns = drag stress, which describes the growth of the yield surface. 

Z' = dadg ' = work hardening modulus 

d-P! (sd Pld P!)1/2 
s ij 

das„= d!!(a;; — as, , ) 

as, i = back stress, which describes the yield surface translation. 

Plastic — Fracturing Model 

In another effort to more realistically model concrete behavior, Bazant and 

Kim (1979) proposed the plastic — fracturing model. Plasticity theory is driven by 

plastic slip of planes in a body. In concrete, much of the inelastic behavior may be 

attributed to microcracking. This model quantifies the inelastic strain contributed 

to a body by microcracking, and adds it to the inelastic strain contributed by 



24 

plastic slip in the body. Specifically, two loading surfs, ces are defined. From these 

loading surfaces, the plastic strain increment and the fracturing stress decrement are 

determined. The plastic strain increment is defined, as in classical plasticity theory, 

by the flow rule. The fracturing stress decrement is determined from Iliushin's 

postulate and represents a decrease in stress due to concrete fracturing. 

The distinction between a plastic material and fracturing material is important 

here because it is combination of these two that is the basis of the model. A plastic 

material is one in which macroscopic inelastic behavior is governed by plastic slip at 

the microscopic level. Graphically, a plastic material behaves uniaxislly as shown 

in Fig. 9 (Bagant 1980). 

The second — order work done during the infinitesimal cycle of adding snd 

removing do;i is 

AW = -dn, idePI & 0 

which is Helmoltz's free energy in the case of isothermal conditions. It is also a 

representation of Drucker's postulate. If AW & 0, work xnust be supplied to produce 

deformation. This condition ensures stability of the material. If DW ( 0, work is 

released or available during the deformation. Even though this condition implies 

material instability through a violation of Drucker's postulate, overall stability may 

still be maintained. 

A fracturing material is one in which inelastic behavior is governed by micro- 

cracking and void formations at the microscopic level. Graphically, a fracturing 

material behaves uniaxially as shown in Fig. 10 (Bagant 1980). 

The second — order complementary work done during the infinitesimal cycle in 

which the strain de;i is superimposed and removed is 
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(Bazant 1980). 
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b, vr is Gibb's free energy and a representation of Iliushin's postulate. The stress 

decrement is daEj . If Avr & 0, work must be supplied to produce deformation. If 

As ( 0, the material may or may not be stable due to the work made available by 

the body. 

A plastic — fracturing material is one in which the inelastic behavior is char- 

acterized by plastic strain increments de; ' and fracturing stress decrements da, ". 

Graphically, a plastic — fracturing material behaves uniaxislly as shown in Fig. 11 

(Bazant 1980). 

The work done during a infrnitesimal load cycle is 

DU = — (da;jds, -'+ do, "dejj) & 0 
2 

It is assumed that this equation holds for the special cases when either de; or da, ' 

are zero and for the general case when neither is zero. 

Possibly the best way to understand this model is to directly compare it with 

classical plasticity theory. The main parts of the theory, as described by Bazant 

(1980), are summarized as follows. 

A. Stress-Elastic Strain Relation 

where ds& 
' — — des — des ' 

da, gaEl daEE and jj sj 

da, " = (dDrjs )des~ 

Thus, we have 

daj — (dDtjs~)des~ = Djs~(de&~ — des ) 

The uniaxial form of these equations is 
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B. Yield Functions 

1) Plastic Load Function 

F = F(u„, Hs) = 0 

where Hs = The fracture tensor and is a set of N ISV, which may contain 

2) Fracturing Load Function 4' = 4(c, z, Hz) = 0 

where H& 
— — a set of M ISV, which may contain o, ~. 

C. Flow Rules 

I) Plastic Flow Rule or Normality Rule in Stress Space 

def = dA— fiF 
BO'if 

where dA = -„' s da'q and 

A = a scalar called the normal plastic modulus 

h = h(cr, ;, e„) 

2) Fracturing Rule or Nomality Rule in Strain Space 

+ = a scalar called the normal plastic modulus a = v(rr, z, c;z) 

D. Growth Laws 

Taking the time derivatives of the plastic and fracturing flow rules, 

The rates of growth of the fracture and hardening parameters are 
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where 
IIF X= os~ 

O4 
Y = — ss 

and 4 i, 4z are continuous, smooth, and monotonicslly increasing functions. 

In the plastic — fracturing model, the normality condition is relaxed. Specifically, 

the plastic strain increment is not required to be normal to the yield surface. The 

reason for this relaxation is the type of inelastic behavior of geomaterials. At the 

microstructural level, normality holds for perfectly plastic slip, as exhibited by 

metals, but not for frictional slip. Frictional slip is characterized by microcracking 

or formation of voids, which is typical for rocks, soils, and concretes. 

Two load functions are defined in the model. The first of them accounts for 

plastic. strains in which no change in elastic moduli occurs. The second accounts for 

fracturing stress decrements, which are caused by a degradation of elastic moduli. 

Any unloading is assumed to be elastic but with reduced moduli. 

The main difference between classical plasticity and plastic — fracturing model 

is manifested in the idea that inelastic behavior in geomaterials is driven not only 

by slip planes, as in metals, but also by microcracking and void formations. It is 

this major difference between metals and geomaterials that requires a model which 

accounts for the stress decrements caused by microcracking and void formations. 

The plastic — fracturing model is relatively new, and because it has not been used 

to fit test data to a large extent, it has not been proven to be an eflicient concrete 

model. 

In a separate study, Dragon and Mroz (1979) proposed another continuum 

model for plastic — brittle behavior of rock and concrete. Their model is almost 

identical to the plastic — fracturing model proposed by Bazant. Both models are 

clearly based on and are extensions of the work by Doughill (1975, 1976), who first 
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introduced the fracturing load function, for a purely fracturing material. 

Endochronic Theory 

Possibly the most complicated concrete constitutive models are based on the 

endochronic theory. This theory uses reduced time, z, which is intrinsically related 

to the deformation of the material. 

The simplest form of this theory was developed by Vslanis in 1971, and can be 

derived from thermodynamic concepts (Allen 1988). In 1968, Schapery observed 

that the endochronic theory is a special case of visco-plasticity with a strain— 

rate dependent viscosity. It has been utilized by several researchers (Bazant and 

Shieh 1978; De Villiers 1977; Hsieh 1980; Sorenson, Arneson, and Bergan 1978; 

Fanning and Dodge 1979), and it has the advantage of being a more realistic and 

comprehensive representation of inelastic behavior than previous models. 

After laying the thermodynamic foundations, Vslanis arrived at the multiaxial 

form of the stress — strain relation 

ops = Kess 

where K = Bulk Modulus of the material, 

sp and z = Initial and final intrinsic times in a load step, respectively, and 

zp & z' & z 

The function p(z — z') may consist oi' a single exponential term such as 

P(z) = Ppe 

or a multiple exponential term such as 

P(z) = Pp+ Pie 
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where pp + pi = the shear modulus at z = 0, and o = a constant. 

If the single exponential term is used, and plastic incompressibility is assumed, 

the multiaxial form of the theory becomes 

f 8 

Sp 

which may be reduced to the differential equation 

cp 1 
dc, f = dzp;I + — do, f 

2/lp 2jlp 

and is equal to the deviatoric form of the Prandtl — Reuss equations. 

The Microplane Model 

The microplane model was first developed by Bazant and Oh (1983A) to model 

brittle aggregate materials such as concrete and rock. The main idea of this model 

is to first determine the inelastic behavior of each microplane or "weak plane" 

(Gambarova and Floris 1986), and then use the principle of superposition to obtain 

the overall inelastic behavior of a body. This idea can be traced back to the work 

of Taylor (1938), who applied it to the plasticity of polycrystalline metals. Then, 

in 1949, Batdorf and Budiansky formulated the slip theory of plasticity, in which 

the stresses acting on various slip planes are assumed to be resolved components 

of the macroscopic applied stress tensor, and the plastic strains from all slip planes 

are superimposed. Corno and D'Agostino (1969) extended the slip plane concept 

to the analysis of metals exhibiting strain hardening. Calladine (1971), using an 

approach similiar to the slip plane idea, analyzed saturated clay. He considered the 

clay to be as crisscrossed by "contact planes", where each contact plane is free to 

close up and slip according to the history of the normal and shearing stresses acting 

on it. The assumption of kinematic independence of each plane differentiates the 



behavior of porous materials like saturated clay and concrete from metals, where 

displacements of different planes should not be independent of each other (Wu and 

Drucker 1967). 

In 1977, Zienkiewicz and Pande proposed a multilaminate model for rocks 

and rock — like materials with multiple planes of weakness. The model specified an 

elastic — plastic constitutive relationship for the shear stress and shear strain, and a 

purely elastic relationship for the normal stress and normal strain, with no tensile 

strength. 

The microplane model (Bazant and Oh 1983A) was developed to describe 

progressive tensile fracture of concrete. It is based on a local view, superposition 

of inelastic behavior on all microplanes at a point in a body, in contrast to a global 

view, direct description of a body's macroscopic behavior. The reason for using a 

local view approach is that microcracking is assumed to be localized in the thin 

mortar layers which separate the coarse aggregate particles. 

In the microplane model, damage may be assumed to be anything from isotropic 

to fully anisotropic. The key to characterizing the anisotropic damage of the 

material is a special function, which is the normalized frequency distribution of 

microplanes of various orientations. The function weights some microplanes more 

heavily than others in the averaging process, which determines the tangent stiffness 

matrix during each load step. This averaging process quantifies the damage at 

each material point by integration over a unit hemisphere for three — dimensional 

problems or over a unit semicircle for plane problems. The model has been applied 

to reinforced concrete shear walls (Donida, Floris, and Gambarova 1987), hoHow 

cylinders subjected to axial compression and torque (Gambarova and Floris 1986), 

and anisotropic creep of clay (Bazant 1984). 
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INTRODUCTION TO DAMAGE MECHANICS 

Damage is defined as the decrease in strength of engineering materials due 

to microstructural changes caused by mechanical and environmental conditions 

(Kachanov 1986). It is an irreversible or dissipative phenomenon in which entropy 

increases. In his work, Kachanov (1986) discussed seven major categories of damage. 

The first group is creep damage, which is characterized by microvoids in metal 

grains and/or microcracks on intergranular boundaries. Creep damage can occur at 

high temperatures and moderate stresses. The second category of damage is ductile 

plastic damage, in which large plastic strains cause an accumulation of microvoids in 

grains and micocracks at the intergranular boundaries. The third class of damage is 

fatigue damage. Under cyclic loading, the structure gradually deteriorates because 

of accumulation and growth of micro and macro cracks. The fourth division is 

embrittlement of steels, in which steel undergoes a decrease in plasticity due to 

restructuring. It can be caused by atomic radiation, and causes steel to become 

brittle. An example of steel embrittlement is hydrogen brittleness, where hydrogen 

atoms diffuse into the steel atomic grid, causing dislocations. The fifth category of 

damage is chemo — mechanical damage or stress corrosion. Here, galvonic corrosion 

is accelerated by the presence of stresses. Environmental degradation, the change 

in the inechanical properties due to environmental attack, is the sixth category 

of damage. Examples of inaterials susceptible to environmental damage are soils, 

geo-materials, polymers, and wood. This type of damage may occur without any 

applied stress on the body. The seventh category oi' damage is damage of concrete, 

where cracks appear under loading due to weak zones in a heterogeneous media. 

Damage can occur in one of three ways: elastic deformation, elastic — plastic de- 

formation, and creep. An example of damage of a body under elastic deformation is 
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high — cycle fatigue. Examples of damage of a body under elastic — plastic deformation 

are ductile plastic damage and low — cycle fatigue. 

In 1958, Kachanov (Lemaitre 1984) introduced a continuous variable related 

to the density of micro — cracks and cavities in a body. This variable has constitu- 

tive equations for evolution of microcracks and cavities, written in terms of stress 

or strain which can be used in structural analysis to predict the initiation of mi- 

crocracks. Researchers Lemaitre (1971), Leckie and Hayhurst (1974), Hult (1974), 

and Chaboche (1974) formulated these constitutive equations in the frainework of 

thermodynamics and identified many phenomena, including the three main modes 

of damage discussed above (cited in Lemaitre 1984). As a result of these efforts, 

damage mechanics has now reached a state of development which allows engineering 

application. 

Damage 'Variable 

In a damaged body, consider a volume element at macro — scale, that is of large 

enough size to contain many defects, and small enough to be considered as a material 

point in the mechanics of a continuum, Fig. 12. A damage variable in is needed to 

quantify the damage in the body. Define rs as the set of all parameters describing 

the damage. No damage exists if tv = 0. 

Then ii) = i5(o;. , )is, . . . ) 

where 

A = Monotonically increasing parameter similiar to time. For irreversible processes, 

A is related to the entropy of the body. 

The choice of the function of is may be based on physical microstructural 

analysis or direct generalization of experimental data. In its simplest form, the 
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Fig. 1 2. A Continuous Domain. 
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damage variable is a scalar, as proposed by Kachanov (1958). As shown by 

Krajcinovic (1984), the main damage mechanics theories at present use damage 

tensors ranging in order from 0 to 8. In addition to these theories, Cordebois 

and Sidoroff (1982) introduced a fully anisotropic law involving 21 independent 

components. Also, Tamuzh and Lagsdinsh (1968) proposed a model in which 

damage is described by a set of functions given on the surface of a unit sphere 

surrounding an arbitrary point in a body. 

As a simple damage mechanics model, consider unisxial stress of the damaged 

body in Fig. 13. Let Ap be the undamaged increment of area, dS, and A be the 

damaged area. For the special case of isotropic damage, in which damage is assumed 

to be the same in all directions, ui is a scalar. 

A 
ui = 

Ap 
0&is&1 

where ur is a positive and monotonically increasing function. For metals, the critical 

value of ui is between 0. 2 and 0. 8 (Lemaitre 1984). The effective stress vector, T, is 

the density of forces with regard. to the effective area Ap — A. 

Effective Stress 

The damage variable is related to the usual stress vector, T, by 

T=T "' 
Ap — A 

01' 

T 
A 1 —— 

Ap 

Which leads to the relation between the effective Cauchy stress tensor s and the 

usual stress tensor cr by: 
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dS ~ n 

S = Se&ion of the body 
n = Unit Normal vector defining 

the small plane dS 

Fig. 13. Damaged Element. 
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Stress — Strain Relation 

Assuming, for simplicity, that the stress can be replaced by the eKective stress, 

the one — dimensional stress — strain relations are 

o' 
in undamaged state E 

o' 0' 

E (I — 7B) E in damaged state 

where s' is the elastic strain and E is Young's Modulus. 

To fully develop a damage mechanics model, it is necessary to formulate state— 

type variables or memory — type variables, then define a thermodynamic potential or 

evolution law. From these preliminaries many models may be derived based on the 

choice of analytical expressions for the dissipative function. The scope of this study 

is to deal with the microplane model. In the microplane model a damage variable 

is not explicitly specified. Damage is accounted for through the microplane normal 

strains at points in a body. For a detailed look at damage mechanics models, the 

reader is referred to the references mentioned in this chapter and in the literature 

review. 
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DEVELOPMENT OF THE MICROPLANE MODEL 

Three Dimensions 

Hypotheses 

1. Relation of su to e„ 

The normal microstrain, e„, which governs the progressive development of 

cracking in a concrete body, on a microplane at any orientation, is equal to the 

resolved component of the macroscopic strain tensor on the same plane, Fig. 14. 

As shown in Fig. 14, the solid lines between aggregates represent microplanes. 

e„= ncnis;I i j =1, 3 

where e„= the normal component of the strain on an arbitrary microplane. 

In this hypothesis, the macroscopic strain tensor e, i corresponds to the relative 

displacements of the centroids of the'aggregate particles. The normal component 

of e;i, e, corresponds to the deformation of the thin mortar layers between the 

aggregate particles, which are assumed to be rigid. Since the mortar deformation 

is assumed to be related to the aggregate particle displacements, e;I is assumed to 

be related to e„. 

Use of a kinematic restraint, such as e = ntnie;i, is advantageous because 

for any given value of strain, only one value of stress exists. The reverse is not 

true. Further, a static restraint, such as o~ = n;nio;. z was not assumed because 

the microstresses are far from uniform due to stress concentrations at the locations 

where the aggregate particles are closest together. 

2. Normal Micro-stress 

The stress relief due to all microcracks normal to n is characterized by assuming 

that the microstress cr„on a microplane of any orientation is a function of e„on 



Fig. 14. Schematic Picture of Microstructure. 
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the same plane. 

a„= F(e„) (2) 

de~ 

Here, no attempt is made to relate the shear stress on any microplane to the 

macroscopic strains. The shear stress on any such microplane is assumed to be zero, 

which is not to say that the macroscopic shear stresses in the body are zero. This 

assumption is reasonable if the crack opening tends to prevail over the crack slip, 

and the shear stiffness due to aggregate interlock is negligible. In a more rigorous 

effort, Bazant (1984) developed a theory to include shear stress on microplanes. 

Bazant's development of the microplane model follows. 

Relation of ~„" to cr 

To develop the stress — strain relation, the principle of virtual work may be used. 

Consider an arbitrary point surrounded by a small sphere of radius r in a volume of 

material subjected to stresses, o f9) and strains, E'I The virtual strain energy in the 

spherical volume or the work 6W done by macroscopic stresses within the spherical 

volume is 

6'W = (r;16e, f dV 

Using the spherical coordinate system, Fig. 15, this integral can be expressed as 

6W = ( / f, 6e, (p si Pdgd8)dp 
Jo=o Jo=o JO=o 

and reduces to 

6W = — rrr o&16e;I 
4 

3 
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Fig. 15. Microplane in Spherical Coordinates. 
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The virtual work done by the stresses on the surface of the sphere is 

6W = f o„(rbe„) f(n)dS 
Jzs 

where 2S = the surface area of the sphere, dS = r sing'&d8dvb, f(n) = the 

given normalized frequency distribution of microplanes of various orientations, 

characterizing the anisotropic properties of the material. For initially isotropic 

materials, f(n) a— s 1. Integrating over the surface S of the hemisphere and 

multiplying by 2 gives 

6W = 2r vr„be„dS 
Js 

Substituting (1) and (2) into (4) 

(4) 

rzw f 
6W = 2v J J F(e„)b(nvniei)(rdvb)(rsinvb)d8 

s=s /=0 
(5) 

Setting (3) equal to (5) 

6W = — vcr vr, ibe, i = 2v J J F(e„)nvn, be, qsinvfvdgd8 (6) 

From hypothesis 1, (5) must hold for any xnicroplane orientation. Cancelling bs;I 

and the constant, v s, and simplifying, 

crt = J J 
— F(e„)n, nisinvbdvbd8 

e=s y=o 2w 

Differentiating F(e„) by the chain rule, 

dF(e„) = F'(e„)den 

substituting (1), 

dF(e„) = F'(e„)nsn (8) 



differentiating (7), 

drr, q 
— 

J J 
— dF(e )n, nisi ngdgd8 

p Q 
2w 

and substituting (8), yields 

ds', I — — 
J J 

— F'(e )n, ninon singdgd8 
p Q 

2K 

Introducing 

D;qs 
— — J J 

— F'(e„)a, is singdgd8 
0 0 2w 

where F'(e„) = z 
" and o;iq = n;ninsn, we have 

ds, i = Dis des (10) 

where D;. z is the tangent stiffness matrix of the microplane system. 

Restriction on Poisson's Ratio 

A restriction on Poisson's ratio is implied by hypothesis 1. In the microplane 

system, let the elastic Poisson's ratio be denoted as v, and let the elastic Poisson's 

ratio of the body as a whole be denoted as v, . To show the restriction on v„consider 

uniaxial strain: 

ess 7L 0 all other c;, = 0 

From Fig. 13, 
n, = singcos8 

nq —— singsin8 

ns — — cosP 

and from (1), 
2 

em ns E33 
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Assume for e33 (( 1j F(e„) = E„e„, where E = F'(0) ( oo. E„ is called the elastic 

modulus of the microplane. 

Solving for I733 using (7) 

f2% r- 
l733 — — 

J J F(e )npnssinItIdpd8 
27l p p 

Substituting e = nse33 and 723 = cosljj into (11) 

3 /2W I 2 

o33 — — 
f J E„Q33cos If7dpd8 

27I p Q 

3 = -E„Q33 
5 

(12) 

Solving for a22 

I722 — — — 
J f E e n, sn237'737fId7tld8 

27I Q p 

1 = — E~ess 
5 

(13) 

The ratio between the transverse and longitudinal stresses is, from (12) and (13), 

2~ 
7722 23 E77e33 1 

o'33 — E e33 3 
(14) 

Now recall Hooke's law, 

E f v 
I737' = E'37 + 1+v( 1 — 2v 

where E and v are Young's modulus and Poisson'3 ratio, respectively, from which 

Ev 
(1 + v)(1 — 2v) 

E(1 — v) 
(1 + v)(1 — 2v) 
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and 
cTgs v 

1 — v 

Solving for v from (14) and (15), 

v 1 

1 — v 3 

Hence, the value of Poisson's ratio imposed by the microplane model is 0. 25. 

Correction of the Incremental Stiffness Matrix 

A value of v = 0. 25 is inapplicable for concrete, which has a Poisson ratio, v„ 

of 0. 18. Hence, v must be corrected. Bazant proposed to adjust v by introducing 

an additional elastic strain s, into the microplane model so that the total strain of 

the material is 

The elastic compliance matrix is given by 

1 — 2v 1+v 1 
C~is~ = 6ti6s + (6, s66 — — 6', 6s ) 3E E 3 

(16) 

Introduce the additional bulk and shear moduli, K and G, respectively: 

E K' & K = initial bulk modulus 
3(1 — 2v) 

E Gs ) G = = initial shear modulus 
2(1 y v) 

Substituting K and G into (16), the compliances corresponding to the additional 

elastic strain are given by 

1 1 1 
G;-I „= — 6;66s + — (6ts66 — — 6, 66s ) U 9Ks 2G' 3 

' (17) 



Determination of K and G 

According to Bagant, C, & 
must be made as stiff as posssible to maintain 

computer simulation stability. To do this, he suggests that either 1/G or 1/K 

must vanish. Further, Bazant claims that, in general, if I/K~ ) 0 and I/Gs = 0, 

the Poisson ratio, v, of the body as a whole is less than the Poisson ratio, v„, of the 

microplane system. If 1/K = 0 and 1/G ) 0, then v is greater than v~. Here, 

select 1/G = 0 because v, = 0. 18 and v„= 0. 25. Setting 1/G = 0 and writing 

(17) in matrix form: 

1/(9K ) 1/(9K ) 1/(9K') 0 0 0 

1/(9K ) 1/(9K') 0 0 0 
1/(9K') 0 0 0 

0 0 0 

sym 0 0 
0 

An alternative approach is to use only the diagonal terms and omit the off diagonal 

terms this compliance matrix. 

Incorporating the compliances due to the additional elastic strain, e, i, into Hooke's 

law and using Voigt notation: 
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es 

es 

1 

E 

1 — v — v 

1 — v 
1 

sym 

0 0 
0 0 
0 0 

2(1 + v) 0 
2(1 + v) 

0 
0 
0 
0 
0 

2(1+ v) 
as 
0's 

1/(9K') 1/(9K ) 1/(9K') 0 

1/(9K') 1/(9K') 0 
1/(9K') 0 

0 

sym 

0 0 
0 0 
0 0 
0 0 
0 0 

0 
as 

(18) 
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To determine K, consider a plane stress state in which 

d, $0 all other d, =0 

From (18), 
dr d) 
E 9K 

(19) 

— Vdr 

E 9K~ 
(20) 

All other e, = 0. By definition, 
sr 

v = —— 
El 

(21) 

Substituting (19) and (20) into (21); 

v„dt/E„— dr/(9K ) v 
o s /E„+ o r /(9K') 

and solving for K~, 

E„' 9K' ' E„— dr /(9K') 

dr — (1+ v) = — (v„— v) 9K' EYL 

(22) 

Equation (22) applies for v & v„and G ~ oo. 

Incremental Stress-Strain Relation 

The incremental stress — strain relation is given by 

dd, , = DfS dsS 

where 
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D;ii, = the adjusted tangent stiffness matrix. 

D;. & 
— the tangent stiffness matrix. 

C; & 
— — the compliance matrix corresponding to the additional elastic strain, e, . 

Microplane Constitutive Law 

Since tensile strain softening is to be modelled, a„, as a function of e„, must first 

rise to a maximum, and then gradually decline to zero. Bazant chose an exponential 

function to describe behavior in the strain softening region because o„approaches 

zero asymtotically on the declining branch of the curve. The smootheness of the 

function is computationally convenient, because its derivative is defined everywhere. 

For e ) 0: o„=E e e "'"I (If de„) 0) 

For e„ & 0: p = E e„ 

where 

k = (I/ep)r 

sp = value of strain at maximum uniaxial tensile stress. 

p = Material constant which must be greater than or equal to unity in order for the 

slope and curvature to be continuous through the point e = 0. 

Numerical Integration on the Surface of a Hemisphere 

Numerical integration over the surface of a unit hemisphere may be used to 

evaluate the integral in (7). The numerical integration formula may be written in 

the form 

D;"s = Q w a, f s F'(e„) 
a=i CR 

(23) 

where ip = weighting factors. 

n = 1, 2, . . . N = Number of numerical integration points on the unit hemispherical 

surface, defined by the unit vectors, n . The significance of (23) lies in the need for 
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an efficient integration scheme. Since there are 6 independent incremental stiffnesses 

in (7), the numerical integration must be carried out 6 times for each point of the 

material where the stiffness is needed. In a finite element program, the numerical 

integration must be carried out for all integration points of each finite element, and 

for all iterations. Thus, an efficient numerical integration scheme is of great value. 

A number of Gauss type numerical formulas by Albrecht and Collatz, Finden, 

Sobolev, McLaren, and Stroud are given in Stroud's book (1971). In an efFort to 

optimize the numerical integrataion, Bazant and Oh (1983B) devised some new 

formulas, based on Taylor series expansions. These formulas rely on computer 

operations to find the weights and point locations on the surface of the sphere for 

which the error is minimized. For the case of plane stresses or plane strains, Bazant 

and Oh proposed a 21 — point formula of degree 9, which gives an error of about 3%, 

Two Dimensions 

In the case of concrete subjected to plane stresses or plane strains, only the 

microplanes normal to the reference plane are considered, Fig. 16 (a). This 

simplification may cause the model to be too stiff in certain situations characterized 

by concrete damage along the oblique microplanes, with respect to the reference 

plane. However, the simplification is advantageous because it decreases the number 

of direction cosines for each microplane from 3 to 2. 

Hypotheses 

1. Relation of e„" to e„ 

This hypothesis is identical to hypothesis 1 in the 3-dimensional case except i 

and j are summed to 2 instead of 3. 

2. Normal Micro-stress 



Fig. 16. (a) Idealization of the Material as a 

Microplane System and (b) Reference Volume 

for Writing the Equilibrium Conditions Between 

the Two Stress Systems, a~ and «r„. 
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For 2-dimensional cases, Gambarova and Floris (1986) proposed 

o = F(e„)e„ 

where 
do. „ 
de„ 

= F'(e )e + F(e ) 

Relation of o. „" to o„ 

To develop the relation between a, f and cr„, consider a cylinder of unit radius 

and unit length centered at a point P in a body, Fig. 16 (b). Now apply the 

principle of virtual work by considering all microplanes of arbitrary orientations 

passing through P (Gambarova and Floris 1986). The virtual work done at P by 

the macroscopic stresses is 

6W = o, 66s;, :dV 

where dV = the volume of the cylinder. The expression reduces to. 

6W = o, i6c;;(wr l) 

For unit radius and length: 

6W = 7ra, ;6s;, . (24) 

Now consider the virtual work done on the surface of the cylinder by the mi- 

crostresses: 

6W=2 f a 6e„d& 
Jo 

(25) 

Equating (24) and (25), 

wo, i6c, , = 2 o„6e„+ 
Js 

(28) 
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Substituting hypothesis 1 into (26); 

wai, be„= 2 a„b(nin, e, , )dtft 
Jo 

= 2 f a„ninfbe, , dd 
Jo 

(27) 

Now beq is a family of virtual strains and does not vary with tb. Taking 6eif outside 

the integral in (27) and dividing both sides of the equation by w: 

2 I 
o, ;6ei, = — be;, J a„nin, dtft 

7t o 

Cancelling be;6 from both sides; 

Differentiating (28) gives 

2 ( 
aij = J a~ninjd$ 

o 

(28) 

2 I' 

dai, = — 
J da„ninf ddt 

7t o 

(29) 

Recalling Hypothesis 2; 

a„ = F(e„)e„ 

, F(. . ) -)d. . f BF Be„b "a. „) 
I dF 

+ F(. . ) d, . (30) 

Substituting (30) into (29); 

(3l) 

Differentiating hypothesis 1; 

de„= non des (32) 
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Substituting (32) into (31); 

do, f = — 
J ( 

— e„+ F(e ) n, nf(nsn des )dp 
w p den 

(33) 

Define 

(34) 

and substituting (34) into (33); 

-J. (d. - 
a, fs — e„+ F(e ) dt's dcs (35) 

where i, j, k, m = 1, 2 

Letting 

and substituting (36) into (35); 

( — e +F(e ) J, 
(36) 

da, f = D;~q dpq (37) 

where Du. s = the tangent stiffness of the microplane system. 

Restriction on Poisson's Ratio 

As in the 3 — dimensional case a restriction on Poisson's ratio is iinplied by 

hypothesis 1. To show the restriction on v„, consider a case which has only small 

values of strain, for which the tangent stiffness in (37) must reduce to the elastic 

stiffness matrix. For e„ tending to zero, 

o„= E„e„ 

This implies that 

F(e„) = —" 
e„ (38) 
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Substituting (38) into (35); 

do, f 
— — — a;fs — 0+ E dp dent 

I2E f 
ntnfn&n dP de& 

7I p 

(for e„~ 0) 

Solving i' or daqq; 

[2E„ f 
doss = 

I 
—" 

J nsntnsn~dd «s~ 
jl p 

3E„[ 
dsrr + -dess 

3 
(39) 

Solving for dcrss. , 

2E„ f 
do'ss = — 

J nsnsnkn~dgdes 
p 

3E. I 1 = — 
[ 
— dstr + dsss 

4 [3 
(40) 

Solving for dorp, 

2E„ f 
dars —— — 

J n&nznsn~dQdes~ 
7I p 

1 = — E„dsts 
2 

(41) 

Now consider uniaxial strain: 

s~z P 0 sll other s, i = 0 

For this arbitrary example, (39) and (40) reduce to 

3 
dali = -Emdsl 1 4 

and 
1 

do» — — — E„de» 
4 
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Then 
do 22 (1/4)E„de11 1 

da. » (3/4) E„de» 3 

Since the principle of superposition holds for small stresses and stains, the incre- 

mental relations become total relations; 

o'22 1 

For plane stresses;. 

o22 (E/1 — v )(ds22 + vds») vds11 
v 

a» (E/1 — v )(ds» + vdsss) ds11 

Thus, v is restricted to be 

1 
v = — (plane stress problems) 

3 

For plane strains: 

E 1 — R) P 
O22 1+@ 1 2v ( 22+ 1 v) 11 V 

Thus, v is restricted to be 

1 
v = — (plane strain problems) 

4 

E„as a Function of E, 

To simplify implementation of the microplane model into an existing finite 

element analysis program, it is necessary to relate the microplane modulus E„ to 

the elastic material modulus Ee. 

For plane stresses, 

E 
dozy = 2(ds»+ vde22) 

1 — v2 

E 
do'22 — (ds22 + Vde») 

1 — v2 

E 
do'12 

(1yv) dc12 

(42) 

(43) 

(44) 
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Equating (39) and (42), (40) snd (43), (41) and (44), respectively; 

3E„1 1 E 
4 
" 

dell + de22J = 2(de11+ vde22) 
3 1 — v2 

3E„ I 1 E 
de11 + de22J =, (de22 + vdell) 

4 [3 1 — v 

1 E 
2 

" 1+v 
— E„dell — — de, l 

To express E„as s, function of E, and Poisson's ratio, v„consider a unisxisl state 

of stress. Previously, it was shown that v is restricted to be ~ 
for plane stresses. 

Substituting v = — into any of the above three equations, and solving for E 
3 

E„= 1. 5E for plane stresses 

For plane strains, 

do 11 

do'22 = 

dcr12 —— 

E(1 — v) v 
(dell + de22) (1+ v)(1 — 2v) 1 — v 

E(1 — v) v 

(1 + v)(1 — 2v) 1 — v 
(de22 + — dell ) 

E 
e12 

(45) 

(46) 

(47) 

Equating (39) and (45), (40) and (46), (41) and (47), respectively; 

3E~ 1 1 E(1 — v) v 
dell + de22 (dell + — de22) 

4 3 J (1+ v)(1 — 2v) 1 — v 

3E„1 E(1 — v) v 

4 3 
— dell + de22 

j (1 + v)(1 — 2v) 1 — v 
(de22 + dell) 

1 E — E„dell —— de12 
2 1+v 

Previously, it was shown that v is restricted to be — for plane strains. Substituting 

v = 
4 into any of the above three equations: 

E„= 1. 6E For plane strains 
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Correction of Poisson's Ratio 

As in the 3 — dimensional case, an additional compliance matrix will be used 

to correct the initial or elastic Poisson ratio. The additional strains e, and 

stresses o, are purely volumetric and hydrostatic, respectively. An adjustment 

of the microplane modulus is also necessary. As a result, in uniaxial tension, the 

effective Poisson's ratio was observed to first increase to a peak and then decrease 

asymptotically. The effect is an increase in volume of the body, followed by a 

decrease in volume of the body, which is opposite of what happens for uniaxial 

compression. 

Adjustment of Modulus E„ 

Plane Stresses: 

Recall Hooke's law, with additional strains, s, ; 

1+v v . ;, =(, , — —;, )+. . . 
In a given plane stress problem from (18), 

I I+ v v„ 
s» = 

[ 
— o11 — — "(o» + o22)] + (1/(9K ))(1r» + F2) — [E E 

Substituting K = (1 + v, )/(v — v )E„/9, 

1 (1+v 
e» — ( ) (12» v+22 ) E. (, I+. . ) 

Letting E" =the adjusted microplane modulus, 

1 /I+v 
e» ( ) (&» v&22) 

E„' (I+ v, ) 
For convenience, drop the *. Introduce the microplane modulus as 

E„= 1. 5E, 
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which has been adjusted to comply with the correction of the Poisson's ratio. 

Plane strains: 

Recall Hooke's law with additional stresses, a, f, 

E. I 
vn 

O, f e, l + ess 611 + cr 
1 1+ v 1 — 2v„ 

Using the inverted form of (18) in a given plane strain problem, 

E„( vn, 
oil ell + (ell + e22)61] + K (ell + e22) 1+v i 1 — 2v„ 

Substituting K' = E„(v, — v„) (1 — 2v, )(1 + v, )(1 — 2v„) 

E (1 — v) v, 
%11 = 

(] ) ( 2 )(ell + 
1 

e22) 

Letting E" = the adjusted microplane modulus, 

+11 E~ (ell + e22) 
1 — v C 

which coincides with Hooke's law on the condition that 

E'* E 1+ vn, 

1 + vc 

For convenience, drop the *~. Introduce the microplane modulus as 

E„= 1. 6E, 1+v~ 

which has been adjusted to comply with the correction of the Poisson's ratio. 

Correction of the Incremental Stiffness Matrix 

For plane stresses, the additional colnpliances are 

I/(9K'*) 1/(9K ) 0 
C' = 1/(9K ) 0 

sym 0 
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where 

For plane strains, the additional stiffnesses are 

D. = 
[ 

K. " 
0] 

where 

E, (v, — v„) 
(1+ v, )(1 — 2v, )(1 — 2v„) 

Incremental Stress-Strain Relation 

The incremental stress — strain relation in 2 — dimensions is identical to that of 

3 — dimensions except i, j, k, and m are summed to 2 instead of 3. 

Microplane Constitutive 10aw 

(Bazant and Oh 1983A) 

1. Tension 

o „= E e„exp[- (aq e„+ bq e„)] 
d0r„ 2 — = E ezP( — (are„+ bqe„)) x (1 — e„(ar + b2e )) e„ 

(48) 

(49) 

which reduces to a linear — elastic relation for small strain values, Fig. 17. The 

constants ai and bi are 

ai = (1/tp)[2ln(Earp/op) — 1] 

br —— (1/cp)[1 ln(E ep/p'p)] 
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E„ 

Normal Strain, e. 

Fig. 17. Constitutive Law for a 

Microplane in Tension. 



where 
cp = (1. 67f. '+ 92. 3) x 10 

&o — — kfcs (f, ', fcs — — MPa&6. 895MPa = 1000pss) 

k = [2. 57+ (12. 4f, '+ 0. 0214f, ' ) x 10 ']/2 

fcc = 0. 35(f ) 

2. Compression 

2 o„= — [a [arctan(~e„) 

dtTc 2 2 2 — = -[a [a&/(1+c» e„) 
de 

(50) 

(51) 

where 

a& = wE„/(2[cr [) 

[ac~[ = f' 0. 59(1 + 2. 06ezp( — 200e") 

f, ' 1. 45 + 0. 0089( f, ' — 18. 84) 

e* = 0 for compression. The constitutive laws for concrete in compression are shown 

in Fig. 18, where a is a function of f, ', and E„ is a funtion of E, . 

3. Unloading after Tension 

0'a = — as + P arctan[(E„'/P)(e — bz)] 

E' /(1+ (E'n(e~ — bs)/P) ) de„ 

(52) 

where 
as — — — (a + Pw/2) 

bs = E — (P/E' )tan[(&r" + az)/P] 
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/ 
/ 

/ 

/ 

/ 

E„ 

Normal Strain, 8„ 

Fig. 18. Constitutive Law for a 

Microplane in Compression. 
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P = ~a ~(1 + 1. 38ezp( — 400e')) 1. 05 

E' = E„a[1+ b exp( — c(c' — 2. 5cs) ] & E„ 

0 = 0. 06(/'/31) 

5 = 16. 7(31/ J", ) — 1 

c = 10(31//", ) 
' 

A family of unloading curves are shown if Fig. 19. The curves show the dependence 

of compressive strength, o', on the amount of tensile damage the body has 

previously experienced. 

4. Unloading after Compression 

u 
o' = o "" exp — "(e — s'*) 

La" 
(53) 

—" = Eseep(E (e„— s'*)//r"') 
de~ 

(54) 

where E" is the tangent modulus at the point of unloading and may be taken as 

E„" = /r'*/»"' or E„"=E„ 

A family of reloading curves is shown in Fig. 20, which shows the locations of 

c*, o'", s", o'*. As shown in Fig. 20, the amount of' hysteresis the body undergoes 

during reloading greatly depends on the point of reloading. 

Numerical Integration over a Unit-Cylinder 

The numerical integration f'ormula used to evaluate (36) is 

2 do'» 
D. . . = -ae Q(a. . . — „") 

n=l 
(55) 



Normal Strain, e„ 

Fig. 19. Constitutive Laws for a Microplane 

Subjected to Unloading in Tension. 
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I 

/ 

Normal Strain, 

Fig. 20. Constitutive Laws for a Microplane 

Unloading after Compression. 
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in which the integration is carried out over a regular half-polygon, having N sides. 

Gambarova and Floris (1986) investigated the response of concrete under plane 

stresses for different numbers and orientations of planes for the same load histories, 

and concluded that relatively few planes are needed to obtain a description which 

is independent of the number and orientation of the microplanes. Specifically, they 

found that 6, 12, or 24 planes give reasonable results. In this investigation, 12 

planes are used and oriented as shown in Fig. 21. 

Cracking Criterion 

In order to quantify the damage in a body, a cracking pattern may be drawn, 

based on a stress or a strain criterion. The cracking criterion used here is based 

on strain. Once the maximum principal straiu reaches the value of strain, es, on 

the uniaxial stress — strain curve, which corresponds to the peak stress, as, then a 

crack is assumed to exist normal to the direction of maximum principal strain. 

This is done external to the microplane model and is used only to quantify the 

damage in the body. A strain criterion, rather than a stress criterion, was used 

here because it is believed that strain more realistically defines the point at which a 

specimen undergoes major rnicrocacking than does stress. This belief is supported 

by the work of Kaplan (1963), who found that strains at cracking and near ultimate 

failure were independent of the types of aggregate and water to cement ratios used 

in the experiment, while stresses were not. It is also supported by other, more 

recent, works in the literature (Tasuji, Slate, and Nilson 1978; Carino and Slate 

1976; Slate and Meyers 1968; Newman 1968). 
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y, , yz 
— — Global Coordinate axes. 

Fig. 21. Orientation of the 12 Microplanes. 
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NUMERICAL RESULTS 

Uniaxial and Biaxial Tension 

To investigate unisxial and biaxial tension behavior of concrete, one four— 

noded, plane stress quadrilateral element was loaded with two point loads as shown 

in Fig. 22. Various material constants were considered from Table 3, which gives cp, 

os, E„E„, and mrs/ss for values of the compressive strength f, ' ranging from 3000 

to 6000 psi. The table was constructed using the equations given by Gambarova 

and Floris (1986). It should be noted that ss and o'p are microplane properties, 

instead of macroscopic properties. As expected, Fig. 23 shows an increase in 

tensile strength as compressive strength increases. Also, with increasing compressive 

strength, concrete becomes more brittle, which agrees with the experimental results 

of Evans and Marathe (1968) and Hughes and Chapman (1966). 

Shown in Figs. 24 — 27. are microplane and macroscopic stress — strain curves for 

the four datasets shown in Fig. 23. The microplane datasets, generated directly 

from (48), show a higher strength and a more brittle behavio'r than the macroscopic 

datasets. The difference is due to the way the macroscopic stresses are determined 

in a nonlinear finite element analysis using the microplane model. First, the tangent 

stiffnesses, or incremental stiffnesses, are approximated using a summation of the 

products of the derivatives and the associated direction cosines for each microplane, 

equation (55). Then, since the incremental strains are known, the incremental 

stresses can be determined, from which the total stresses can be updated. Hence, 

it is the slope of the curve of the normal stress vs normal strain, not the value 

of normal stress, for each microplane which is used to determine the macroscopic 

behavior of the body. Inherently, this process causes the input curve, or microplane 

stress — strain curve, to differ from the output curve, or macroscopic stress — strain 



+ = Integration Point 

Fig. 22. Four — Noded Quadrilateral Element 

Under Uniaxial Tension. 
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Fig. 24. Response of Plain Concrete to 

Uniaxial Tension for dataset D1. 

(1 psi = 6. 895 kPa) 
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Fig. 26. Response of Plain Concrete to 

Uniaxial Tension for dataset D9. 

(1 psi = 6895 kPa) 
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Table 3. Concrete Material Properties. 

Dataset 
f, 

(psi) 
(2) 

&o &o 
(micro — in. /in. ) (psi) 

(3) (4) 

E, 
(psi) 
(5) 

E„ 
(psi) 
(6) 

o'o eo 

(psi) 
(7) 

Dl 

D2 

D3 

D4 

D5 

D6 

D7 

DS 

D9 

D10 

Dl1 

D12 

D13 

D14 

D15 

D16 

3000 

3200 

3400 

3600 

3800 

4000 

4200 

4400 

4600 

4800 

5000 

5200 

5400 

5600 

5800 

6000 

127 

129 

131 

134 

136 

138 

141 

143 

145 

148 

150 

152 

155 

157 

159 

161 

542 

570 

597 

624 

651 

678 

705 

732 

759 

786 

813 

840 

866 

893 

920 

947 

3. 32E+06 

3. 43E+06 

3. 54E+06 

3. 64E+06 

3. 74E+06 

3. 83E+06 

3. 93E+06 

4. 02E+06 

4. 11E+06 

4. 20E+06 

4. 29K+06 

4. 37E+06 

4. 46E+06 

4. 54E+06 

4. 62E+06 

4. 70E+06 

5. 63E+06 

5. 81E+06 

5. 99E+06 

6. 17E+06 

6. 33E+06 

6. 50E+06 

6. 66E+06 

6. 82E+06 

6. 97E+06 

7. 12E+06 

7. 27E+06 

7. 41E+06 

7. 55E+06 

7. 69E+06 

7. 83E+06 

7. 96E+06 

4. 27E+06 

4. 41K+06 

4. 54E+06 

4. 67E+06 

4. 79E+06 

4. 90E+06 

5. 02E+06 

5. 12E+06 

5. 23E+06 

5. 33E+06 

5. 42E+06 

5. 52E+06 

5. 61E+06 

5. 70E+06 

5. 78E+06 

5. 87E+06 

curve. 

To evaluate the accuracy the microplane model for uniaxial and biaxial tension, 

the experimental results of Tasuji, Slate, and Nilson (1978) were used. The 

researchers subjected concrete plates, 5 x 5 x 1/2 in. , to biaxial stresses. A maximum 

loading rate of 140 psi/min. was used, and the specimens were loaded so that the 



stress ratios were constant throughout the test. 

The concrete used consisted of type III portland cement. It had a water — to- 

cement ratio of 0. 6 and a fine aggregate — to — cement ratio of 1, 88, both by weight. 

The maximum aggregate size was 0. 5 in. The age of the concrete was 2 weeks. 

Deformations in the plane of the specimens were measured with 4 in. electrical 

strain gages, and deformations normal to the plane oi' the specimens were measured 

with a Fonotonic Sensor. The tensile elastic modulus, Poisson's ratio, and maximum 

strength were 3. 03 E06 psi, 0. 16, and 440 psi, respectively. Taking f, ' = 4000 psi, 

the calculated microplane properties ep and os, are 138 micro — in. /in. and 678 psi, 

respectively. 

The results of three of their tests are shown in Figs. 28 — 30. The results indicate 

that as the amount of applied transverse stress increases, the longitudinal maximum 

strength increases. This does not mean that the stren'gth of the material increases, 

but only that the material can carry more load in biaxial tension than in uniaxial 

tension. Comparison between the experimental results and the microplane model 

shows good agreement. In previous work, Donida, Floris, and Gambarova (1987) 

fitted the data for two of the three cases considerd here and found identical results 

with the microplane model. 

Pure Shear after Uniaxial Tension 

To investigate pure shear, one four-noded, plane stress quadrilateral element 

was used as in the case of uniaxial tension. The same properties were used as 

in uniaxial tension for the four example runs. Specimens were first subjected to 

uniaxial tensile stresses equal to 0, 30%, 60%, or 90% of the maximum unisxial, 

macroscopic tensile strength. Then, with the tensile stress held constant, shear 

stress increments were added. 
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Results of the analysis are shown in Figs. 31 — 38. The curves in Figs. 32, 

34, 36, and 38 show large variance in response to pure shear for different degrees 

of tensile damage between 0 and 900 micro-in. /in. However, Figs. 31, 33, 35, 

and 37 show that the datasets converge to approximately the same curve at high 

values of shear strain. The reason for these results lies in the behavior of the 

individual microplanes. In unisxisl tension, the microplanes more nearly normal 

to the direction of applied load experience tensile strains. The microplanes more 

nearly parallel to the direction of the load experience compressive strains. Because 

of these compressive strains, some of the microplanes show compressive stress — strain 

relations. This is not to say that the macroscopic transverse stress is nonzero for 

uniaxial tension, but only that that some of the microplane constitutive relations 

are compressive in nature. When the shear load is applied, some of the microplanes 

unload from compression while some others unload from tension. The magnitude 

of macroscopic tensile loading dictates how far in tension or compression each 

microplane will go prior to application of pure shear. Hence, at lower values of shear 

strain, the curves are different. However, once large values of normal strain on each 

microplane are reached, the normal micro — stresses have reached their respective 

asymptotic compressive or tensile values. At this point, the derivatives of the 

equations for normal stress are approximately zero, and the peak value of shear 

stress has been reached. The result is that the same ultimate shear strength will be 

reached regardless of the tensile stress applied if the applied tensile stress is below 

the maximum tensile stress. 

Shear — Panel 

The panel analyzed is shown in Fig. 39. It has a height of 7 in. , a height of 15 

in. , and a span of 30 in. A vertical concentrated load P is applied at rnidspan. The 
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steel reinforcement has the cross — sectional area, A, =1. 5 sq. in. and is modeled as 

being at the bottom of the beam. The ratio of reinforcing steel to cross-sectional 

area of concrete is p = 0. 014. No shear reinforcement is present. The properties 

of the concrete are Young's modulus, E, = 3000 ksi, Poisson's ratio, v, = 0. 2, and 

tensile strength, fz 
— — 400 psi. The properties of the reinforcing steel are Young's 

modulus, E, = 29, 000 ksi, Poisson's ratio, v, = 0. 3, and yield stress, fv = 60 ksi. 

Previously, Bazant and Cedolin (1980) studied the same beam. They used a 

mesh of constant strain triangles with 72 degrees of freedom. The concrete was 

assumed to be linearly elastic but, upon cracking, the shear modulus was reduced 

to 40% of its original value. These material assumptions were intended to crudely 

model aggregate interlock and avoid nonlinear behavior in compression. A strength 

criterion was used to determine when cracking initiates at any point in the beam. 

The steel reinforcement was modeled by bar elements connected to the bottom row 

of elements. 

In the present study, the existing nonlinear finite element code ABAQUS, 

version 4. 5, was used. The mesh was constructed of eight-noded quadrilateral 

elements. Material behavior was modeled using the microplane model with the 

assumption that any material point behaves orthotropically after cracking. The 

steel reinforcement was smeared into the bottom row of elements. 

Shown in fig. 40 is the response of the beam using the model by Bazant and 

Cedolin (1980) and the microplane model. The difi'erence between the two models 

is in the degradation oi' the material stiffness. Bazant and Cedolin assumed linear 

elastic moduli and a reduced shear modulus after cracking. In the microplane 

model, degradation of the stiffnesses are inherently built into the model through 

the individual microplane behavior. Despite the differences in the two models, 
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good agreement between them is observed. 

Progressive fracture in the beam is tracked as shown in Fig. 41. The cracking 

pattern is typical of a short, deep beam. Shear cracks appear first at the end of the 

beam and are inclined at approximately 45 degrees. Flexural cracks also appear& 

starting at the tensile fibers at midspan, and advancing up the section of the beam 

and outward towards the end of the beam. The numbers on Fig. 41 indicate the 

load step at which each integration point cracked and are also shown on the load 

vs. midspan deflection curve, Fig. 40. 

Problems of this type have been a point of controversy between researchers 

Darwin and Dodds (1982) and Bazant and Cedolin (1982). Much of their discord is 

in bridging the two parts of an extensive analysis of concrete structures. These two 

portions are crack initiation and crack propagation. Crack initiation is generally 

governed by a stress or a strain criterion. Crack propagation may be modeled using 

fracture mechanics. Recent research (Gustaffasson and Hillerborg 1988; Bazant 

1987; Evans and Marathe 1968; Kaplan 1961) shows a trend toward the use of sn 

energy criterion for crack propagation. The energy criterion may be based on a 

characteristic length of the body and tensile strength of the material. 

The choice of whether to include fracture mechanics in the analysis depends on 

the problem to be studied. For problems dominated by propagation of individual 

cracks, such as dams, reactor vessels, bridge girders, and ocean structures, fracture 

mechanics should be included in the study. However, for problems in which overall, 

macroscopic behavior, such as general crack patterns and load — deflection reponses, 

are needed, a simple stress or strain criterion should be adequate (Darwin and 

Dodds 1982). 
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Bending of a One-Way Slab 

The slab analyzed is shown in Fig. 42. It has a width of 18 in. , a height of 1. 5 

in. , and a span of 30 in. Two uniformly distributed vertical line loads P are applied 

across the slab width and are symmetrically placed about the middle line of the slab, 

6 in. from either simple end support. Each steel reinforcing bar has a diameter of 

3/16 in. The bars are spaced at 2. 57 in. The ratio of reinforcing steel to cross— 

sectional area of concrete is p = 0. 0071. The properties of the concrete are Young's 

modulus, E, = 4. 2E06, Poisson's ratio, v, = 0. 18, and compressive strength, f, ' = 

4580 psi. The properties of the reinforcing steel are Young's modulus, E, = 29, 000 

ksi, Poisson's ratio, v, = 0. 3, and yield stress, f„= 32 ksi. 

The concrete has a maximum aggregate size of 1/8 in. , a water-to — cement 

ratio of 0. 65 by weight, and an aggregate — to — cement ratio of 4. 5 by weight. The 

aggregate is composed of 85% coarse aggregate and 15% sand. 

In the nonlinear finite element analysis, two — noded beam elements with cubic 

interpolation functions were used. It is assumed that plane sections remain plane 

and no shear deformations exist. Two noded beam elements of lower order which 

follow the Bernoulli beam bending assumptions were not used, because they are 

not available in ABACUS. Each cubic beam element contains three interpolation 

points along its span and nine section points at each integration point. One material 

constitutive relation is required at each section point, that being the relation 

between the stress and strain components normal to the plane of the beam's cross— 

section. The load was applied using two steps, the first going to 0. 4 kips using 

automatic load incrementation control and the second going to the ultimate load 

using the Riks method. The loading was broken into two steps because the load- 

deflection response is essentially linear up to about 0. 4 kips, after which highly 
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nonlinear behavior prevails. In the first step, load increments were controlled 

internally by ABACUS to a total load of 0. 4 kips. In the second step, a special 

feature called the Riks method (Crisfield 1981; Ramm 1981; Riks 1979) was used 

to model the collapse of the slab. The Riks method is a numerical algorithm used 

to model post — peak reponse of structures. More specifically, it may be used as a 

solution procedure to overcome limit points or collapse loads where there may exist a 

large decrease in load. Example applications are buckling of beams, large deflection 

analysis of shells, and, as shown here, collapse of reinforced concrete members. 

The slab was first analyzed using the values of E and v, given above and 

with values of as —— 786 psi and es — — 148 micro — in. /in. , froin Table 3. Figure 43 

shows convergence of the results to an ultimate load of about 0. 660 kips. Also, 

the slope of the load — deflection curve very closely models the experimental data 

by Jain and Kennedy (1974). However, the calculated, empirical, values of as and 

«s were observed to lead to a 50% underestimation of the ultimate load P of the 

slab, Fig. 43. It is thought that the underestimation of the ultimate load is due to 

a lack of tension stifFening in the model. In a cracked reinforced concrete flexural 

member such as the slab, the intact concrete between each pair of adjacent tensile 

cracks assists the tensile steel in carrying the internal tensile force, and therefore 

contributes to the overall bending stiffness of the member. Here, tension stifl'ening 

is defined as the amount of stifFness contributed to the steel by the concrete after 

cracking has occurred. 

To account for tension stiffening, several approaches have been proposed. 

Jofriet and McNiece (1971) modeled tension stiffening through an empiricaliy 

developed effective moment of inertia of the cracked slab section. Similiar work 

was done by Bell and Elms (1971). Gilbert and Warner (1978), Lin and Scordelis 
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(1975), Hand, Pecknold, and Schnobrick (1973), Scanlon (1971), and Wanchoo and 

May (1975) used a layered finite element approach to the problem in which they 

specified appropriate stress — strain relations for concrete and steel to represent the 

behavior of the various layers at different stages of loading. In the layered element 

approach, unloading curves are specified to model the tension stiffening effect. The 

same approach is used here because the microplane model inherently contains an 

unloading, or strain softening, portion of the uniaxial stress — strain curve. 

The equations given by Gambarova and Floris (1985) model plain concrete 

quite accurately, as was shown earlier. However, to model tension stifi'ening, it 

is proposed to increase os and ep. At present, no analytical way of choosing the 

exact values of o's and cp& which accurately model tension stiffening, are known. A 

trial and error approach was used to model the Jain and Kennedy slab response. 

When the values of mrs and sp were increased to 1320 psi and 193 micro — in. /in. , 

respectively, the results closely model the test data, Fig. 44. The mesh used in 

this latter analysis consisted of 5 two-noded beam elements. Also shown in Fig. 

44 is the analysis of the slab with no reinforcing steel. This analysis was done to 

show the effect of reinforcing steel on the ultimate load of the slab. In this case, 

the finite element analysis shows that the slab with reinforcing steel is about 7% 

stronger than the slab without steel reinforcement. 
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CONCLUSIONS 

Numerical Aspects 

Four of the most important topics in a nonlinear finite element analysis of 

a concrete structure are element type, grid refinement, the constitutive model, 

and the load history. First, an appropriate element type and integration order 

must be chosen, depending on the problem. Examples of the importance of the 

element type and integration order were observed throughout this study. One 

such example is the uniaxial tension, biaxial tension, and pure shear cases shown 

earlier, where a four — noded, plane stress quadrilateral element with four integration 

points was adequate to obtain an accurate solution. However, in the beam — shear 

example, numerical instabilities were observed using the same element. Specifically, 

a convergent solution was not obtained using the four — noded quadrilateral element. 

An eight — noded, plane stress quadrilateral element with nine integration points gave 

a convergent solution. 

Another example which shows the importance of the element on the results is 

the one — way slab example. Neither four-noded or eight — noded plane stress quadri- 

lateral eleinents gave convergent solutions. Instead, both types of elements experi- 

enced numerical instabilities which caused divergent solutions. Beam elements with 

cubic interpolation functions gave reasonably accurate solutions compared to the 

experimental data. Thus, care must be taken in selecting the appropriate element 

type. 

A second important numerical aspect is grid refinement. In order to assure 

that a convergent solution has been reached, at least two runs must be made. In 

the one — way slab response, three meshes were used to show convergence. 

A problem with mesh convergence that was not investigated here is strain 



103 

localization, defined as the physical phenomenon in which a crack localizes into a 

thin band of material. This phenomenon is especially important if one wishes to 

investigate propagation of a single crack through a body. Bazant and Cedolin (1983) 

cited the example of a reinforced concrete panel in which a four — fold decrease in 

the element size caused the load for further crack band extension to drop by one- 

half. To eliminate the problem of crack propagation dependency on mesh size, crack 

band extensions based on energy criterions have been proposed (Bagant and'Cedolin 

1983). Strain localization was not studied here because attention was focused on 

gaining an understanding about the microplane model and obtaining macroscopic, 

overall results such as load — deflection curves and general crack patterns. In studies 

of structures such as dams, nuclear containment structures, and offshore structures, 

in which the problem may be dominated by propagation of a single crack, strain 

localization should be an integral part of the study. 

A third important numerical aspect is the constitutive model to be used in 

the analysis. The choice of the constitutive model depends to a large extent on 

two things. First, the problem to be studied is an important guideline for choosing 

the constitutive model. If the problem is dominated by tensile stresses and strains, 

the microplane model studied here may be adequate. If the problem involves large 

compressive stresses and strains, the microplane model studied here is inadequate 

because it does not model compressive strain softening. It should be noted 

that in very recent work, Bazant, Pan, and Pijaudier — Cabot (1987) incorporated 

compressive strain softening into the microplane model. Furthermore, the model 

is not capable of modeling cyclic behavior of structures. Secondly, the computer 

dictates to a lesser extent the constitutive model. Here, double precision mode 

which carries about 16 significant digits, was used in ABACUS. If the computations 
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are done in single precision mode, then significant errors can be expected in larger 

problems due to the great number of computations done during the analysis. In 

addition, storage of variables can be a problem. For every integration point in 

every element, 48 history — dependent variables are stored. These variables are the 

values of the microplane normal stress from the previous load increment, flags which 

identify an initial state of tension or compression on a microplane, and microplane 

strains and stresses corresponding to unloading from tension or compression. Four 

storage spaces are needed for each of the 12 microplanes at any integration point. 

A fourth important aspect is the load history. Specifically, whether the loading 

is proportional or non — proportional can significantly afl'ect the results. Proportional 

or radial loading is defined here as loading which causes the load path in stress space 

to originate at the origin and move outward from the origin along a straight line. 

In such a case, 

+r&/&11 ~ss/&22 &ls/&12 

where ost, o s, and oss are values of a'tt, o'ss, and mrs at their yield strengths, 

respectively. Gambarova and Floris (1986) showed in their analysis of compression 

and torsion of hollow cylinders that the difference in ultimate strength can be 

significant depending on whether the loading is proportional or sequential, Figs. 

45 and 46. These results agree with experimental results by Foure (Gambarova and 

Floris 1986). The reason for the difference is in the behavior of each microplane. In 

the proportional load situation, the microplanes are always subjected to tension 

or compression, with no unloading. In the sequential load situation, some of 

the microplanes are in compression and some are in tension when macroscopic 

compression is applied. When torsional loading is applied, some microplanes unload 

from previous compression, and others unload from previous tension. From the 
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results shown in Figs. 45 and 46, it appears that the microplane model can model 

problems in which principal axes rotate due to non — proportions1 loading. 

In addition to these four topics, the problem of numerical instability due to 

strain softening must be considered. Here, it became apparent that the Riks method 

is needed to overcome inherent numerical instablities caused by a strain softening 

material. Specifically, the examples studied here experienced numerical instabilities 

without the Riks method. Use of the Riks method allowed strain softening to take 

place without numerical instabilities. 

The Microplane Model 

In the results section, the microplane model was shown to accurately model 

uniaxial and biaxial tension. Further, the model gave results dose to those obtained 

by Bazant and Cedolin (1980) for a beam dominated by shear stresses. In addition, 

it gave a convergent solution to bending of a one — way slab dominated by flexural 

stresses. However, more research must be done before the model studied here can 

be used with great confidence. First, the analytical results of the tension-shear 

stress test should be compared with experimental data. Second, tension stiffening 

should be researched in detail. This research may include tests on two reinforced 

beams. The first specimen should have undeformed reinforcing bars lubricated to 

prevent bond between concrete and steel, and the second should have reinforcing 

bars which allow steel — concrete bond. Hopefully, information would be gained 

about the interaction between the reinforcing steel and the concrete before and 

after cracking. 

Several limitations of the microplane model are apparent. First, the model is 

limited to problems dominated by tensile stresses and strains. One way of solving 

this problem has been discussed by Basant, Pan, and Pijauder — Cabot (1987), 
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in which compressive strain softening is incorporated in the microplane model. 

Another limitation is that the model has no failure criterion. To solve this problem, 

the stitfness normal to a microplane may be dropped to zero when the normal strain 

on that plane exceeds s, given value. A third limitation of the microplane model inay 

be the scale of the problem under consideration. For example, the one — way slab is 

a scaled down model of the prototype slab. It is unknown whether the microplane 

model would predict the same failure load for the prototype as for the model. 

In addition to the limitations of the microplane model, limitations to use of 

ABAQUS, version 4. 5, exist. One limitation is the number of microplanes which 

may be used in an analysis. When 24 microplanes were used, it was observed that 

ABAQUS lost some of the variables or stored the variables in the wrong locations, 

However, the same analysis with 12 microplanes ran perfectly. Another limitation 

is the step size. At critical points such as limit loads, several iterations may be 

needed. It was observed that ABAQUS sometimes chooses incremental strains Ac, f 

which cause microplanes to errantly unload from compression or tension, which 

leads to numerical instablilities. An example of such a situation is uniaxial tension, 

where the peak value of stress is the critical point. To solve this problem, small 

load increments should be taken at or near the critical point. Also, the Riks method 

significantly helps in obtaining a solution free of numerical instabilities. 

Recommendations 

Among the many concrete material models proposed recently, the plastic— 

fracturing model, the endochronic model, and microplane model appear to be three 

promising models which merit further investigation. Given the outlines of each 

model sketched here, more research should be 'done to directly compare results of 

the three models for the same structure. This would allow quantification of the 
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accuracy of each model for a given problem. For larger structures such as dams, 

nuclear reactors, bridge girders, and offshore structures, research should be done to 

determine the necessary parameters to obtain the fracture energy to model crack 

propagation. Further research should be done to study the interaction between 

reinforcing steel and concrete. 
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