
STANDARD CELL IMPLEMENTATION OF A MICRO-CONTROl

UNIT FOR A PROLOG UNIFICATION COPROCESSOR

A Thesis

by

HABIBOLLAH GOLNABI

Submitted to the Graduate College of
Texas ARM University

in partial fulfillment of the requirement for the degree of

MASTER OF SCIENCE

May 1988

Major Subject: Electrical Engineering

STANDARD CELL IMPLEMENTATION OF A MICRO-CONTROL UNIT

FOR A PROLOG UNIFICATION COPROCESSOR

A Thesis

by

HABIBOLLAH GOLNABI

Approved as to style and content by:

Karan Watson
(Chairman of Committee)

P 'p Noe

(Member)
Nasser Keht navaz

(Member)

Dan Colunga
(Member)

J. W. Howze
(Head of Department)

May 1988

111

ABSTRACT

Standard Cell Implementation of the Micro-Control Unit

For A Prolog Unification Coprocessor. (May 1988)

Habibollah Golnabi, B. S. , Texas A&M University

Chairman of Advisory Committee: Dr. Karen Watson

This work contains the standard cell implementation of the micro-control

unit for a prolog unification coprocessor using Mentor Graphics software package.

Standard cell design tools have been interfaced with custom layout facilities to

achieve the complete chip design. The performance of the micro-control unit has

been compared to that of Parikh's functional simulation.

To My Parents

ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Karan Watson, for her helpful guidance

and suggestions throughout this research. I would also like to thank my committee

members: Dr. Philip Noe, Dr. Nasser Kehtarnavaz and Dan Colunga for thier

helpful contributions.

vl

TABLE OF CONTENTS

Page

CHAPTER

I INTRODUCTION

A. Objective

B. Previous Research

2

3

II FUNCTIONAL DESCRIPTION OF THE UNIFIC

A. Data. Formats
B. Block Diagram of the UNIFIC Execution Unit

Registers

Stack
Stack Registers and Stack Pointer

Binding Memory

Arithmetic Logic Unit (ALU)

C. Micro-Control Unit

Micros equencer

Array

Combinational Logic

Instruction Decode
Control Store
Micro-Instruction R, egister

6

6

7

9
9

9

10

10
12

12

12

14
14
14

III DESIGN HIERARCHY OF THE MICRO-CONTROL UNIT 18

A. Schematic Capture

NETwork and SYMbol EDitor
MOSISMXPAND COMP
MOSIS DESIGN CHECKER
MOSIS EXPAND DESIGN

18

18
18
20

20

TABLE OF CONTENTS (Continued)

CHAPTER Page

B.

C.

D,

MOSIS ADD DELAY
Circuit Simulation

QUICKSIM
Physical Layout

LOGICNNTRY
CELLFLOOR
CELLPLACE
CELLPOWER
CELLROUTE
CELLSQUEEZE
MINROUTE
CELLVERIFY
PREGRAPH
CELL GRAP H

Chipgraph

MCIF READ and MCIF WRITE
BUILD LIB
TD F CHIP JNP UT

20
20
21

21

21
21
23
23
23
23
23
23
24
24
24

24
26
26

IV OPERATION OF THE MICRO-CONTROL UNIT 27

A.
B.
C.

Phase I
Phase II
Phase III

27
29
30

V CIRCUIT DESCRIPTION OF THE MICRO-CONTRO UNIT 31

A.
B,

Two Phase Clock
Combinational Logic

TAGDECODE
SETCAMBIT
CAMSRCH
DECODE. SR. SP. ARITY
DEC. BOUND. VV
DEC. BOUND. VC

31
31
34
34
34
34
38
38

vm

TABLE OF CONTENTS (Continued)

CHAPTER

C. Insruction Decode
D. Microsequencer

Micro-Stack Pointer
Mi cro- S t ack

Micro-Program Counter

Register DATA

nROM
Register REG
Multiplexer

E. Array

F. Control Store
G. Micro-Instruction Register

Page

38
50

50
50
52

57

57
62

62

62

62

65

VI LAYOUT DESCRIPTION OF THE MICRO-CONTROL

A. Cell Station Process Flow
Inputs

Processing Modules

Output

B. Chip Station Process Flow

Array

Micro-Stack
nROM
PLA

UNIT 67

67
67

68

69

69

71

71
71
75

VII SIMULATION RESULTS AND CONCLUSIONS

A. Simulation Results
B. Conclusions

77

77
79

REFERENCES

APPENDIX A

80

82

TABLE OF CONTENTS (Continued)

CHAPTER Page

APPENDIX B

APPENDIX C

VITA

108

116

LIST OF TABLES

Table

I. The Simulation Results for Two Expressions with
Increasing number of Terms .

Page

78

LIST OF FIGURES

Figure

10.

12.

13.
14.

15.

16.

17.
18.

19.
20.

21.

22.

23.

Block Diagram of the UNIFIC Execution Unit

Top Level Schematic of the Micro-Control Unit

Microsequencer

Combinational Logic

Instruction Decode

The IDEA Station Process Flow

The CELL Station Process Flow

The CHIP Station Process Flow

Clocking Scheme of the Micro-Control Unit

Root Symbol of the Micro-Control Unit

Two Phase Clock

TAGDECODE Routine

SETCAMBIT Routine

CAMSRCH Routine

DECODE. SR. SP. ARITY Routine

DEC. BOUND. VV Routine

DEC. BOUND. VC Routine .

DEC 1

DECA

DEC 3

DEC 4

DEC 5

DEC 6

Page

15

19

25

28

32

35

36

37

40

41

42

43

44

45

46

47

LIST OF FIGURES (Continued)

Figure

24. DEC 7

Page

48

25.

26.

DEC 8

Micro-Stack Pointer

49

51

27. Layout Spacing of the Micro-Stack 53

28.

29.

Micro-Stack

Memory Cell of the Micro-Stack

54

55

30. Data BufFer of the Micro-Stack 56

31.
32.

34.

35.

mPCI .

mPCO

Regist, er DATA

nROM

Register REG

58

59

60

61

63

36. Multiplexer

37. Micro-Instruction Register

38. Standard Cell Design of the Micro-Control Unit

39. The Array Layout

40. The Micro-Stack Layout .

41. The nROM Layout

42. The PLA Layout

64

66

70

72

73

74

76

CHAPTER I

INTRODUCTION

The increasing importance of Artificial Intelligence (AI) has led to an extensive

research with the logic-programming language Prolog [5]. Many expert systems

being developed are implemented in Prolog because of its automatic backtracking

control and internal data-base management facilities.

The Japanese Fifth Generation Computer Systems (FGCS) project has con-

tributed significantly to the development of Prolog systems, in particular, to a, Pro-

log unification hardware unit. In the future, high performance Prolog machines are

going to play an important role in real time applications such as knowledge-based

systems, natural-language processing and robotics. Prolog provides an appropriate

base for implementation of a powerful hardware system using highly parallel ar-

chitectures and VLSI technology [18]. Since the execution mechanism of Prolog is

very much different from other conventional languages, there is a need to further

investigate its potentials.

At present, Prolog is run on conventional "Von Neumann" machines, which

slow down the execution rate [7]. One major source for the slow execution is the

unifiy function. This function spends 55-70% of the total query processing time

[19]. High performance Prolog machines are being developed in order to reduce the

processing time of the unify function. The execution time can be reduced in two

ways, (1) by reducing the total number of calls to the unify function, and (2) by

designing a unification coprocessor replacing the unify function. This unification

coprocessor can be employed in conjunction with a host processor on any computer

system.

Journal model is IEEE Transactions ou Computers.

Unification is one of the vital operations in Prolog systems, and is based on the

Resolution Principle [11]. The implementation of the unification has a great effect on

the organization and performance of Prolog systems. In formal terms, Unifiction is a

process that finds substitutions of terms f' or variables to make expressions identical.

The process of unification is analogous to that of finding a common denominator

for fractions [20].

A. Objective

The objective of this work is to accomplish the following two tasks:

(1) To design and implement the micro-control unit proposed by P. Parikh [9] using

standard cell layout. The major reason for choosing P. Parikh's architecture

[9] is that his coprocessor improves the execution speed for the unify function

by 12'Fo-16% over the coprocessor designed by R. Gollakota. [3].

(2) To interface custom layout facilities with standard cell design tools on the

Apollo workstation to achieve the complete chip design. The Mentor Graphics

software package includes a subpakage called the IDEA station. This station

contains a component cell library, the Schematic Capture tool, and QUICKSIM

(a simulation tool). The Mentor Graphics CELL station is used to describe

the physical layout of the standard cells. Chip elements not built from stan-

dard cells, such as memory devices, are implemented with the Mentor Graphics

CHIP station using CHIPGRAPH (a layout editor). These customized compo-

nents in this project are then incoporated into the CELL station by developing

a set of software tools. The CELL JAODEL file and CELL%1ST file have been

developed to convert cells in the CHIP GRAPH data. base into the cells in CELL

sation data base. Finally, a Technology File (TF) and a Process Definition File

(PDF) have been developed to convert Caltech Intermediate Format to Mentor

Caltech Intermediate Format (MCIF-Chipgraph format) or vice versa. This is

needed due to the lack of the CHIP GRAPH's design rule checker. Therefore, el-

ements developed in CHIPGRAPH can ultimately be sent to MAGIC, a layout

editor which has a design rule checker.

B. Previous Research

The first hardware unification unit was developed by S. Lien. He designed a

simple unification chip called UNIF to implement Robinson's original unification

algorithm [11]. This chip was never implemented.

J. Oldfield [7] and a team of researchers at Syracuse University are attempting

to develop a unification coprocessor called Syracuse Unification Machine (SUM)

based on the work done by S. Lien. The hardware unit consists of the LAMBDA

Lisp machine which represents expressions by the combination of a tag and a

pointer. SUM identifies the type of an expression from a tag field and proceeds

by binding agents using Content Addressable Memory (CAM) for binding variable-

to-expressions.

N. S. Woo [19] has developed a microprogrammed hardware unification unit at

ATkT Bell Laboratories. Woo has demonstrated that his coprocessor in conjunction

with a host processor significantly reduces the unification execution time.

A systolic-like architecture has been suggested to implement unification by

Shobatake and Aiso [13]. Symbols are used instead of pointers by having a line

of symbols and the arity of each symbol to represent the structure of terms on

uniformly structured hardware cells. A broadcast bus is used in this design to

search variables in a parallel fashion. The systolic algorithm is responsible for easy

execution of copying structures during the unification process.

The Parallel Inference Engine (PIE) is part of the Japanese Fifth Generation

Computer Systems (FGCS) project. This system is being developed by Moto-Oka

et. al. at the University of Tokyo [4]. It uses the goal rewriting model based on OR-

parallelism [1] in which goals are independent of each other and stored in a goal

poo!. Each unify processor in this system fetches a goal, unifies it with definition

clauses, and generates new goals. The PIE has a highly modular architecture.

A Sequential Inference Machine (SIM) has been developed as a part of the

Japanese Fifth Generation computer systems (FGCS) project [18]. The SIM consists

of two main parts: a sequential inference machine and a high speed Prolog machine.

The unification unit is an integral part of this machine. CPU is designed on a pipe-

lined local parallelism basis and a Current Mode Logic (CML) circuit is used to

speed up the processor. Currently, this project has not been completed.

A Sequential Prolog Machine (PEK) is being developed by Tamura et. al. at

Kobe University, Japan [15]. This machine is designed mainly for unification and

backtracking. The PEK theoretically achieves a very high performance level of more

than 100K logical inferences per second (LIPS).

A hardware unification unit called UNIFIC is designed and simulated by

Ram Gollakota [3] under the supervision of Dr. Karan Watson at Texas A&M

University. This architecture uses one internal data bus and makes use of Content

Addressable Memory (CAM) to improve coprocessor speed. This design has not

been implemented.

A second Prolog unification coprocessor designed by P. Parikh [9] under the

supervision ol' Dr. Karan Watson at Texas ASM University. The architecture is

designed at functional level and simulated using a hardware description language

(ISPS). Two data buses are used to expedite the internal data transfer and hence,

to reduce the execution time of the unification coprocessor. In fact, it was shown

that this coprocessor increases the execution speed by about 12%-16% over the

coprocessor designed by R. Gollakota [3]. The controller portion of the UNIFIC is

designed at system level but has not been implemented.

CHAPTER II

FUNCTIONAL DESCRIPTION OF THE UNIFIC

The architecture of the UNIFIC was designed by P. Parikh [9] at the I'unctional

level. He has shown that his coprocessor significantly reduces the execution time of

the "unify" function of the prolog interpreter. For this reason, his architecture has

been selected to be implemented by standard cell VLSI design.

A. Data Formats of the UNIFIC

Prolog uses four different types of data: constant, variable, function and list.

The UNIFIC uses 32 bit data format. The MSB is bit 31 and the LSB is represented

by bit 0. The d'ata described by P. Parikh [9] is divided further into different fields,

DTAG, CID, BO, ARITY.

B. Block Digram of the UNIFIC Execution Unit

The UNIFIC has two internal data buses, input/output registers, data and

memory address registers, stack registers and stack pointer, a LIFO stack& micro-

control unit, a Content Addressable Memory (CAM) with an attached Random

Access Memory (RAM) and an Arithmetic Logic Unit (ALU). The block diagram

of the UNIFIC execution unit is shown in Fig. 1. The UNIFIC uses two 32 bit

wide internal data buses, A and B, which are used for transfer of data through the

unification coprocessor.

Registers

DIN and DOUT

They are 32 bit data registers used for communicating with the outside world.

Data input register (DIN) and data, output register (DOUT) are connected to

the external data bus and internally connected to the data buses A and B,

respectively. Data read from the external memory comes to DIN and data to

be written to the external memory goes to DOUT.

AO

AO is a 14 bit address register connected to the external data bus. Internally

AO is connected to both the buses A and B. Any transfer to the AO register

signals a data transfer to the on-chip bus controller for the external bus. This

bus controller postpones the execution of the next state of the micro-instruction

until the external transfer is complete.

DR1 and DR2

These are each 32 bit wide registers connected to both buses A and B. The

micro-control unit has the ability to selectively decode any of the bits in the

registers.

DTEMP1 and DTEMP2

The temporary data registers DTEMP1 and DTEMP2 are each 32 bits wide.

DTEMP1 and DTEMP2 are connected to both the internal buses A and B.

These registers store the data coming into DIN only.

MAR1 and MAR2

These two are memory address registers. They are each 14 bits wide, enabling

them to access 16k memory. They are connected to both the internal buses A

and B. MAR1 can only read from the bus B. MAR1 has the address of terms

in Expression 1 and MAR2 has the address of terms in Experssion 2.

ARITY

EXTERNAL OATA BUS

EXTERNAL AOORESS BUS

DOUT AO DIN

~QR 1 DR2

DTEMP2 DTEMP1

MAR2

C-
BM BMP

BMR

stack

SP ARITY

SR

Fig. I Block Diagram of the UNIFIC Execution Urit

Arity is a 4 bit register connected to the internal bus A. The first four bits of

the pseudo-instruction contains the number of terms in the expressions. These

bits are loaded into the ARITY register from DTEMPI in the initial phase

of processing. The arity is decremented after the completion of unification of

each term in the expressions. When dealing with functions, the arity of the

expression is stored in the stack, and the arity of a I'unction is stored in the

A RIT Y re gi ster.

This is a 4 bit buffer connected to the ALU and the internal bus A. The ALU

performs a 32 bit logical comparison and the result is stored in Tl. If the result

of the comparison is fa1se, then the process of unification has failed at one of

its steps.

Stack

The stack is organized on a Last In First Out (LIFO) register stack. It is 14

bits wide and has a depth of 32 words. The contents of ARITY, MAR1 and MAR2

are pushed onto the stack whenever two functions are to be unified. The contents

are pushed onto the stack only if ARITY is non-zero.

Stack Registers and Stack Pointer

The Stack Register (SR) is a 14 bit buffer connected to both the stack

and the internal bus A. The Stack Pointer (SP) is 6 bits wide with a local

incrementer/decrementer. It is connected directly to the stack.

Binding Memory

The Binding Memory (BM) is responsible for binding variables. It is 32 bits

wide and has a Content Addressable Memory (CAM) and a Random Access Memory

10

(RAM). The upper 16 bits are part of the CAM and the lower 16 bits is the RAM.

The Binding Memory Pointer (BMP) is a 4 bit wide register connected to the

BM and the internal bus A. The Binding Memory Register (BMR) is a 32 bit

wide register which acts as a buffer between the BM and the data buses A and

B. The upper 16 bits of the BMR and the BM are always compared. If the result

of comparison is true, then data can be exchanged between that particular BM

location and the BMR. Also, if a match occurs, the BMP points to the particular

location. This provides a good speed advantage for the UNIFIC in searching for

the bindings of variables. The CAM part of the BM, is used to store the variable

identifiers. The RAM part can be used to determine if the variable is bound. The

uppermost two bits of the RAM indicate bound status, if the variable is bound, the

remaining lower 14 bits of the RAM is the pointer to the term to which it is bound.

Arithmetic Logic Unit (ALU)

The ALU performs only a 32 bit logical comparison of two registers ALUA and

ALUB. The result of the operation is fed back to the micro-control unit via buffer

Tl. If the result of the comparison is false, then the process of unification has failed

at one of its steps. This terminates further processing in the UNIFIC and send a

fail signal to the host processor.

C. Micro-Control Unit

The micro-control unit is the heart of the UNIFIC. It consists of the following

parts: microsequencer, array, combinational logic, instruction decode, control store,

and micro-instruction register. Fig. 2 depicts the functional diagram of the micro-

control unit.

PQSR (Ecf 0)

LLI

O
LIJ

C5
Lcj
CD
E

Q 0 CI
I — UJ

IO

CL
Vl
CI
Q

CI

O 0 VI

VI

0
IZ
VI

«C 0
Q

0 C

IU
Vt

CI

CU

X
CL

N
Y
o Q
Ul
Vl

M

CL

STO
R Y

tO

CU
IJJ

«C
m
VI

O

&. ID 0 CD
IU

CL
CI
I — g VI
VI

O CZ
'Z

VI

M
C

U

C

VI O 0
&- . , PI I- ICI

IZ Q CC
C

m
VI

tZ

0 0

CU
CU CI 0 0 0 M 0 0

Z. 0
K

D D
' '0

CU
CU CU

0 0

IO
m

M
Cl

CO
III

Cl 0 CI:
CU IM
Z E
Q

C CI

m

LCI

CC 0
CfJ

0
CI

IR 0
IZ 'Z
CJ

2

0

0
IJ

0

CG

Y 0 IL
M 0 0

O « I — Icl
U- VI tZ

VI «o
. . VI

Ifl

IZ
Z IZ
Vl

D D
N 0 0 O
CU ID

CU 0
0

0 0 0

N
CI 0 S
M 0 I- t

CI CI

CJ
UJ O I- «

UJ
fZ I

IU
IZ
O 0 IZ Z

Ll

12

Microsequencer

The microsequencer (mSEQUENCER)is responsible for providing the infor-

mation about the next instruction to be executed during the next microcycle. It

consists of a multiplexer (MUX), a micro-program counter (mPC), the micro-stack

(mSTACK), the micro-stack pointer (mSP), the nROM, and three special purpose

registers namely mPCO, DATA, and REG. The micro-program counter holds the

next micro-instruction address and is incremented by one at each microcycie during

sequential operation. It is loaded with parallel input data when branching occurs via

"jump" or "call" in the micro-program. The micro-stack stores the address of the

micro-instruction when "call" micro-operation is executed. This micro-instruction

stored on the micro-stack is executed when "return" micro-operation is executed.

The block diagram of the microsequencer is given in Fig. 3.

Array

The array is a mapping-table circuit which generates the starting address of'

the micro-subroutine or the branch address by decoding the inputs. The address

generated by this way is stored in REG. There are two types of branch occurring in

the micro-program. One is the conditional branch, which appears in REG, and the

other is direct branch. In case of the direct branch, the next address is stored in

DATA. Depending upon the STATE field in the micro-instruction, one of these four

registers, viz. micro-program counter, micro-stack, REG and DATA, is selected for

the next address of the micro-instruction.

Combinational Logic

This routine generates thirty three signals R(33:1) by receiving input from

DR1, DR2, and other registers employed in the UNIFIC. These signals are decoded

13

Q
O O I- CU
Ch CE

&P

V3
IU z

CL

j

N
X

C)
CJ
CL
E o

O

x
IL

O

O

a

CU

0
LC

IL

O' I-

M
C3
CL CC

Ul

IL

0
IL

O I O
W J

I-
Cll

Cl

CU
M LI z z
Q Q

tO

CZ
Ul
Cl
U.

O
Ul
CX

O O
C U.

14

by the array at each microcycle. The information regarding all these signals are

obtained by P. Parikh [9]. The block diagram of the subroutines describing the

combinational logic (COMB LOGIC) is given in Fig. 4.

Instruction Decode

Fig. 5 depicts the functional decoding scheme of the instruction decode

(INSRJ3ECODE). It essentially decodes different fields from the micro-insruction

register. The outputs from the instruction decode are the STATE field, the FLAG

field, the ADDRESS field, and the control signals.

Control Store

The control store is a read-only memory that stores the micro-program. It

is basically made up of a PLA with 39 bits wide and 70 words long . Each

micro-instruction stored in the PLA is divided into 14 fields. Fields 1 through

9 occupy upper 27 bits and control normal micro-operations such as data transfer

and arithmetic operation. Field 10 controls the decoding signals and determines

the next address of the micro-instruction. Fields 11 and 14 control writing to

and reading from the memory respectively. Field 12 determines the next micro-

instruction to be executed. It determines whether sequential operation, conditional

branch, call to a micro-subroutine, return from a micro-subroutine or a direct jump

is to be performed in the micro-prugrai. If a direct jump is required, the branching

address in the coded form is stored in the micro-instruction itself. The field holding

the coded address is decoded and nROM determines the next address to jump to.

All these fields are decoded in parallel.

Micro-Instruction Register

The micro-instruction register (mIR) holds the current micro-instruction being

15

M

LL
20

ISI 0

(33: 32) 00. 20

0
0

CJ
CC

Ifl

4 X

CJ .)
X

F (3: 2)
F (13: 12)

IX IS

F4 1

Ul IU

Ul
X
IU

bl

4 0 0

O Ul
tU A

t 6
tt

CJ

CCI

0

m a. &- moo
I
— IU

tX CD tZ

27: 2

CCI

«C

I—
8 LLI

CI7

7: 6

F (7: e)
II

F (11)
0

F (B)

() (2: e)
D (3)

F (4)

C3

CO

IJJ
C3

Ul

0
CC Ul

Ul 0
IU

2I: 20

SIII 0

0
IS

g 0
D

tU

LLJ

C)
C&

LLJ

C0 0 0 0

CI 0
0 0

F (1)

F (5)

F (ie)

CJ
LIJ
C3

C

Itl

CC IL
Ul Ut

IU
CL 0 0
IU

0
IU 4

z
Ll

C

ICI X

X
tQ

OOOO

N N
CD CD O O

C «M M
I — I — CJ CJ
O O

IO

0

O O 0
I)i m

CL 7-
ID

tt

N w CJ
O O
tQ ID

Ca

Ca
Ca

ICI CK
N Ca m

CI
IN W CII

3: !Sag
N

CO

"221 (J N

Q
aIas Ã

CS

Q3 N

I N ea: s

LLI

CI o

17: 12

N "
ISI

Q
LLI

o
CI o

~:31 N
LLI

CI

CI " erc 5

CC 'R

11: 3
3

Ul

LLI
CI

N ''
51c 3

o u CC

acaa N

o

: I
CC

IK
CC
O

5121
LLI

CI

SI35:2

CC 3

(3B: 0)

17

executed. The different fields in the micro-instruction register are decoded simul-

taneously and the control signals for the micro-operation are generated.

18

CHAPTER III

DESIGN HIERARCHY OF THE MICRO-CONTROL UNIT

This section presents the standard cell design process on the Mentor Graphics

workstation. The design of a standard cell consists of three major steps: schematic

capture, circuit simulation, and physical layout.

A. Schematic Capture

During schematic capture, the logic of the micro-control uzut is defined. The

symbols in the logic components library are used to implement the micro-control

unit schematic. Logic symbols built on the Mentor Graphics IDEA station contain

the information necessary to drive the simulation and physical layout tools. The

process flow of the IDEA station is shown in Fig. 6.

NETwork and SYMbol EDitors

NETwork EDitor (NETED) and SYMbol EDitor (SYMED) are employed to

capture the circuit shematic of the micro-control unit. The symbols created for

different components in SYMED are connected together in NETED to form the

logic circuit.

MOSISNXPAND COMP

Due to the hierarchical design capabilities of SYMED and NETED, schemat-

ics of the micro-control unit must be flattened (expanded) before netlisting. MO-

SIS EXPAND COMP generates an expanded design file (COMP. EREL) at the com-

ponent level (not at the gate level).

19

SYMED

SCHEMATIC
CAPTURE

MOSIS NETED

MOSIS EXPAND COMP

DESIGN M — —
MOS IS DESIGN CHECKER

EXPANSION

MOSIS EXPAND DESIGN

Circuit
imulat ion

GUICKSIM

Fig. 6 The IDEA Station Process Flow

20

MOSIS J)ESIGN CHECKER

This software does a design rule check of the expanded schematic of the micro-

control unit based on a set of technology specific rules. These design rules consist

of fanout checking, net current (fan in) checking, external net checking, and unused

pins checking. The design checker is run after expanding the micro-control unit

with MOSIS EXPAND COMP.

MOSIS EXPAND J3ESIGN

This software expands the schematic of the micro-control unit at gate level. It

also assures that all properties needed for simulation (QUICKSIM) are flattened

and included in the database file (DESIGN. EREL).

MOSIS ADD DELAY

This software modifies the circuit's delay characteristics based on a number

of possible inputs, the most significant of which is actual wire length delays. The

performance of a circuit varies considerably due to many factors including physical

layout, processing parameters, operating voltage, operating temperature, and die

size. It is the function of ADD DELAY to help evaluate the design's performance

based on known relationships between these characteristics and the timing behavior

of the technology. After ADD DELAY is run, the micro-control unit is resimulated

using QUICKSIM software to determine the effects.

B. Circuit Simulation

Simulation uses the connectivity data. from the schematic and the timing

information from the logic library to model the circuit's logical function. It analyzes

21

the internal gate delays of a circuit and uses the information to predict the circuit's

behavior.

QUICKSIM

This software provided with the Mentor Graphics IDEA station is utilized to

simulate the micro-control unit. It invokes DESIGN. EREL file and does a logic and

timing analysis of the design before any layout is performed.

C. Physical Layout

In physical layout, connectivity data is used to implement a chip's design using

the technology design rules to place defined patterns of connectivity (known as

physical macros). Then net routing connects the macros of the design. The Mentor

Graphics CELL Station, a system of software tools for standard cell chip design, is

used to do the layout of the micro-control unit. The placement and routing can be

performed either automatically or through interactive graphics. The process flow

of the CELL station is given in Fig. 7.

LOGIC ENTRY

This command extracts the connectivity information from the design file

(DESIGN. EREL) generated by the command MOSIS EXPAND COMP and creates

the physical design file (DESIGN. PRM) used by the other CELL station commands.

CELLFLOOR

Based on the netlist file (DESIGN. PRM) which contains cell library and

floorplan parameters, CELLFLOOR automatically generates a minimum area chip

floorplan that has enough sites for all the cell instances in the netlist. It provides

22

LOGIC ENTRY / CELLGRAPH

CELLFLQQR
/

/
PREGRAPH

CELLPLACE
PHYSICAL

LAYOUT CELLVERIFY

CELLPOWER

/

/

CELLROUTE

MINRQUTE

CELLSGUEEZE
--z — ~

Fig. 7 The CELL Station Process Flow

enough feedthrough tracks and also satisfies constraints imposed by floorplan

parameters.

CELLPLACE

Based on the floorplan, CELLPLACE automatically performs a global place-

ment followed by a detailed placement of the cells.

CELLPOWER

The power nets are routed before the signal nets because the former have more

stringent layout constraint. CELLPOWER automatically routes the power nets.

CELLROUTE

CELLROUTE performs global routing, which is followed by detailed routing

of the signal nets.

CELLSQUEEZE

This command identifies and removes unused horizontal tracks in the channels

to minimize the chip area.

MINROUTE

It performs post-routing processing tasks such as minimizing the use of poly in

the routes.

CELLVERIFY

CELLVERIFY serves as a final check on the validity of the layout produced

by the CELL Station. It also checks design rule violations and the electrical

connectivity.

24

PREGRAPH

It generates a "working file" for editing purposes. This command is needed

when running an automaiic program.

CELLGRAPH

CELLGRAPH is CELL station's interactive graphics editor. It allows manual

editing of the placement and wiring of a physical design. It can be used at any

point in the CELL Station processing sequence, after CELLFLOOR, to examine

or alter the physical design file data. The output of CELLGRAPH is a final chip

layout file. The chip layout file is then converted to the GDSII stream format by

GDSII OUTPUT software. MOSIS uses this file to fabricate the micro-control unit.

D. Chipgraph

This is a graphic editor that supports the physical layout of integrated circuits.

CHIPGRAPH is a part of CHIP station, one of the Mentor Graphics workstation.

The mico-control unit memory cells are implemented with CHIPGRAPH. The

cells are then incorprated into the CELL station database by set of software tools

explained below. The process flow oi' the CHIP station is depicted in Fig. 8.

MCIF READ and MCIF WRITE

MCIF READ converts Caltech Intermediate Format (CIF) file into CHIP-

GRAPH database (MCIF). This software is needed since CHIPGRAPH has no

design rule checker. MCIF READ requires a Process Definition File (PDF) and

a standard CIF file. These two technology files have been generated as will be

discussed in Chapter Vl.

25

MAGIC MCIF CHIPGRAPH
Database

CL

M

CL
M

iL
Cl
i—

BUILD LIB

CELL MODEL

CELL LIST

Chip File Block File

CELL Station Database

Fig 8 The CHIP Station Process Flow

MCIF WRITE converts a CHIPGRAPH database to CIF file with the same

technology file requirements as MCIF READ software.

BUILD J IB

This software reads the CHIPGRAPH database and extracts the cell informa-

tion for the CELL station database, BUILD LIB reads CELL J IST file to determine

which cells to convert and interprets the data in each cell using s. CELL MODEL

file. Both of these files have been written for the micro-control unit memory cells

which will be discussed in Chapter VI. BUILD LIB generates the block file for the

CELL station database as shown in Fig. 2.

TDF CHIP JNPUT

Befor running BUILD LIB to create the block file section of the CELL station

database, TDF CHIP JNPUT program is run to read the ASCII chip file and create

s, binary file. This file contain the design rule data for the CELL station database.

Having obtained both chip file and block file oi' memory cells, LOGICMNTRY is

used to incorprate these cells into the standard cell design of the micro-control unit.

27

CHAPTER IV

OPERATION OF THE MICRO-CONTROL UNIT

In this chapter the operation of the micro-control unit is described. The

micro-control unit of the UNIFIC is responsible for the proper functioning of the

coprocessor. It retrieves micro-instructions from the control store and generates

control signals based on these micro-instructions.

The UNIFIC uses a two-phase clocking scheme (9j. However, the micro-control

unit uses a three-phase scheme, Phil, Phi2 and Phi2bar as shown in Fig. 9. The

sequence of events occurring during each phase is explained in the following sections.

A. Phase I

I) The incremented value of the micro-progrszn counter is loaded into the inicro-

program counter. It now holds the address of the micro-instruction to be

executed in sequence.

2) The control fields from the ndcro-instruction register are decoded and appro-

priate control signals are generated. Data transfer from registers to data buses

takes place during this phase. Control signals to transfer data from data buses

to registers are generated simultaneously& however, this data, transfer takes

place only during the second phase of clock.

The address field of the control word decides the next micro-word to be loaded

into the micro-instruction register. The micro-instructions deciding this are

'sequential branch' (SEQ), 'conditional branch' (BC), 'call', 'return' (RTN),

and 'jump' (JMP).

~ In sequential branching, the next micro-word to the present one in the control

ROM is to be loaded into the micro-instruction register. The micro-program

28

ioVS 60US

PHI i

PHI2

PHI2

Fig. 9 Clocking Scheme of the Micro-Control Unit

29

counter holds the address of the next micro-word.

~ When 'conditional branch' is executed, the next micro-instruction to be loaded

is determined by decoding the FLAG field. The appropriate data is loaded into

the register REG.

~ When 'call' is encountered, the contents of the micro-program counter are saved

on the micro-stack and the micro-stack pointer is incremented by one, The

micro-instruction 'call' is of two types: 'conditional call' (BC/CALL), and

'direct call' (CALL). During 'direct call', the register DATA is loaded from the

NROM. The ADDRESS field decides which data to be loaded while 'conditional

call' is essentially same as 'conditional branch' except for the fact that the

micro-program counter contents are saved in the case of 'conditional call'.

~ The micro-instruction 'return' decrements the micro-stack pointer by one.

~ 'Jump' is similar to 'direct call' but the micro-program counter contents are

not saved.

B. Phase II

I) During the second phase, the data transfer from registers to data buses takes

place. The appropriate control signals are already generated during the first

phase.

2) The contents of the micro-program counter are loaded into the incrementer snd

incremented by one.

3) The multiplexer selects the data to be loaded into the ROM address register.

There are four registers to be selected from. They are DATA, micro-program

counter, micro-stack, and REG. The contents of the micro-program counter

are loaded in the case of a 'sequential branch'. Execution of the micro-

30

instruction 'return' initiates the loading of the micro-stack pointed to by the

micro-stack pointer. The REG contents are loaded when 'conditional branch'

or 'conditional call' is encountered. In the remaining two cases of 'direct call'

and 'jump', DATA is loaded into the control store.

C, Phase III

The control word is loaded into the micro-instruction register at the leading

edge of Phi2bar.

31

CHAPTER V

CIRCUIT DESCRIPTION OF THE MICRO-CONTROL UNIT

In this chapter, the Mentor Graphics component library developed by the

MOSIS Engineers was a major initiative to design the micro-control unit at gate

level. The NETwork EDitor (NETED) and the SYMbol EDitor (SYMED), a system

of software tools on the IDEA Station, have been used to caputre the micro-control

unit at the functional level and the gate level. The component library contains

primitive gates such as AND, OR, NAND, NOR, and etc. Due to lack of the

transistor cells in this library, memory cells such as RAM, ROM, and PLA had to

be implemented with the CHIPGRAPH software of the CHIP station. It should

be noted that the micro-control unit has been designed in a hierarchical fashion.

Fig. 10 depicts the root symbol of the micro-control unit.

The different sections of the Micro-control unit are discussed below.

A. Two Phase Clock

A two phase non-overlapping clock is designed for the micro-control unit. This

clock can be thought of as a three phase clock by inverting phi2 since the micro-

instruction register uses phi2bar. The circuit is shown in Fig. 11.

B. Combinational Logic

The FLAG fields, F(15:0), in conjunction with the information from the data

registers and binding memory register decide the next word to be loaded into REG.

There are thirty three signals produced which are R(33:1). The Instruction Set

Processor (ISP) description of each routine generating these signals is obtained by

P. Parikh [9]. Next, the routines employed in the COMB LOGIC are described.

32

CLK

BMR (15: 14)
ARITY(3: 0)

SP (5: 0)
SR (13'. 0)

802
801

CI02 (1: 0)
CI01 (1: 0)

DTAG2 (1: 0)

DTAG1 (1: 0)

I1
I2
IS

EL
I4
I5

C3
I6 U M 2 I7
I 8 (Z
Ig O
10

I11
I12

00

IO

01
02
03
04
05
06
07

08

FAIL
MATCH

CNRL(83' 0)
AODR (7: 0)
ALUA

SU

REOY
STOP

READ

WRITE

Fig. 10 Root Symbol of the Micro-Control Unit

33

CLK
PHI I

PHI2

Fig. 11 Two Phase Clock

34

TAGDECODE

The fields CID1(1:0) and CID2(1:0) are decoded with the enable signal F(1).

The signal is enabled when F(1) is active. The fields DTAG1(1:0) and DTAG2(l:0)

use decoders shown in Fig. 12. The outputs signals generated are D(16:1).

SETCAMBIT

Refer to Fig. 13. According to certain combinations of the decoded sig-

nals D(16:1) from TAGDECODE routine, the following signals are generated.

The signals R(6:4) and R(27:22) are produced when F(0) and F(7:6) are ac-

tive, respectively. The signal R(31) is generated by enabling F(11). The signals

DTAG2(1:0)=DTAG1(1:0)=11 and CID2(1:0)=CID1(1:0)=11 signifies the opera-

tion is successful; that is, signal S U is logic 1.

CAMSRCH

The routine CAMSRCH is implemented and the output signals are generated

when the following occur. The signals BMR(15:14) from the Binding Memory

Register (BMR) and MATCH signal from Content Addressable Memory (CAM)

decide which one of the signals (R(13:8)) is generated providing either F(2) or F(3) is

enabled. The signal MATCH enables the data transfer between the binding memory

and the register BMR. The circuit is shown in Fig. 14. The signal DEC. BOUND. VV,

F4 1, is true when F(3) is active and either BMR(15:14)=00 or BMR(15:14)=01.

DECODE. SR. SP. ARITY

Fig. 15 shows the implementation of this routine. The signal F(10) enables the

SR input to the 4-input OR gates. When the content of SR(13:0) is zero, the AND

gates for generating R(20) and STOP are enabled. If SP(5:0) is also zero, then

35

i ceo

DTAG2(1: 0) seeo

310 SSO

seeo

310 310
seeo

1660

DTAG1 (1: 0) i ceo

3 10 910
1660

CID2 (1: 0)

310

910

310

310

910

ieeo

1670

1670

seso

0 (16: 1)
IS)
(-)
O

C4
A
U

310 910
1670

310
F (1)

310
1670

CID1 (1: 0)
310 310

I

1670

1670

910 310
1670

36

1 ceo 1660

1080 lese

!060 1060

leeo
1660

lees

N
N

mNr
IZ tZ 16

1660

leeo

1660

1660

N
lV

N
CQ

V
Cx1

1070

1060

1660

1600 1060

1080
1060

leeo

N
61

N

K

1600
FAIL
SU

37

IC IC

C
Cl

I
o
Cl

D
IC
Cl

C

W CI

C

R(20) will be logic 1, otherwise the STOP signal is generated. The signal R(21) is

enabled il'either SR(13:8) or ARITY(3:0) is non-zero. The signal REDY is enabled

if ARITY(3:0) and SP(5:0) both are zero.

DEC. BOUND. VV

This routine is implemented with logic gates shown in Fig. 16. The signals

R(19:14) are generated when the signal F4(1) from CAMSRCH routine is logic 1

and certain combinations of DTAG2(1:0), DTAG1(1:0), B01, and B02 occur.

DEC. BOUND. VC

DEC. BOUND. VC generates the following signals. The signal FAIL is activated

if F(9) is enabled and Z flag from ALU is disabled. The signal R(30) is active

providing ARITY(3:0) is non-zero and both Z flag and signal F(9) is logic 1.

However, if ARITY(3:0) is logic 0, the signal R(20) is generated. If B01 is zero,

then R(28) is logic 1, otherwise R(29) signal is activated providing F(8) is enabled.

The signals R(32) and R(33) are generated if BMR(15:14) is 10 and both F(12) and

F(13) is enabled, respectively. The schematic of this routine is given in Fig. 17.

C. Instruction Decode

The current micro-instruction held in the micro- instruction register is decoded

by instruction decode (INSTRXIEC) routine. The outputs ADDR(7:0), S(3:0), and

F(15:0) generated from DEC 1, and DECQ routines are used in the micro-control

unit itself to decide the next instruction to be executed. The gate level description

of DEC 1 and DECA are shown in Fig. 18 and Fig. 19, respectively. Whereas, the

outputs CNRL(83:0) generated from other six decoders are control signals shown

in Figs. 20-25.

320

1 7

17 310

07 0

97
1

Q.
07

1670

1910

310

1660 STOP

Ct
Al

1660

07

07
1910 32O leee

10

1660 AEOY

1910

oo o
07

0

161O

F (5)

40

OI

D
IO
O Ol 0

C4

A

O
CQ

A

C

IO IO

III
O 0
tD OI

41

C&
m

SO ae ae

A

O

A

m

I-
M
(K

o
ID

42

1660

~ISSD

520

520

520

520

I ceo

1660

520 52D
Ieeo

1680

IZ
CI
OI

\660

520 520

1680

520 520
01

~1880

Ieeo

520 520

168D

Iseo

43

leeo

loco

loco

leso

010 310
1800

310 310

loco

loco

10 310 31O
loco

lseo

310
1

310
1

loco

leeo

1800

loco

loco

jlseo

1600

44

1870

7070

7070

C7

520 aao

0070

007O

CS

520

aao

520

020

i070

0070

7070

a I
CC
2:
CJ

cca

7070

1670

7870

7 ~ 520 520

2070

707O

020 520

7070

ca
520 520

007O

7670

45

1060

lo

eoo

520

520

1seo

1000

i
Co

IX 'X
CD

lseo

1670
U

A

le70

1670

2 520 620
1070

1070

2 520 520

1670

1 520 020

leoo

a

1870

46

1870

1870

87
07

IZ 2:
CJ

1070

520 aao

107O

70

520 520

1870

520 520

1670

1070

47

6880

0880

0$$0

0880

800 $10

0880

1880

810 800

800 860

1880

8
0880

U
FQ 4

0880

$00 860
0880

oeeo

0680

0880

0880

a

BASSO

6680

Iseo

1000

1600

I ceo

310 310
1080

1000

310

~ II

310

~ 6 I ceo

310 310
1000

1060

310 310
Iseo

I ceo

Iseo

1680

Ieeo

I ceo

1000

49

~ieeo

ieee

0830

ieeo

300
0

oi0
ieeo

oio 300

ieoo

ei
ID

IZ 'Z
Ei

0

7 oie elo

ieeo

ioeo

ieeo

aio 310
0

ieeo

ioeo

il
i080

ieeo

0800

ieeo

ieeo

50

D. Microsequencer

The microsequencer (rnSEQUENCER) decodes different fields like ADDRESS

(ADDR(7:0)), FLAG (F(15:0)), and STATE (S(3:0)) and selects the proper data

from mSTACK, mPC, REG or DATA. The different sections of mSEQUENCER

are implemented as follows.

Micro-Stack Pointer

A 3-bit synchronous up/down binary counter is designed as the micro-stack

pointer (mSP). It maintains a fully- independent clock circuit and can be used as a

register as well. The input is enabled when the STATE fields, S(1) or S(2), is high.

The up/down mode of counting is decided by the inputs S(2:1) as follows.

~ S(2:1)=00 disables the counter.

~ S(2:1)=10 signifies counting up sequence.

~ S(2:1)=01 signifies counting down sequence.

~ S(2:1)=11 condition is not possible.

Fig. 26 shows the implementation of the design.

Micro-Stack

A gx7 Static Random Access Memory (SRAM) is designed and implemented as

a micro-stack (mSTACK). The outputs from the micro-stack pointer are connected

to the address inputs (ADR(2:0)). The read/write mode depends on the signal S(1)

and S(2) as follows.

~ S(2:1)=00 signifies power down inode.

~ S(2:1)=10 signifies write operation.

~ S(2:1)=01 signifies read opertion.

~ S(2:1)=11 condition is not possible.

51

7070

370 7070

Ie70

Ie7o

3070
3600

Ieeo Ieeo

370

Ie7o

7680

ho

00

1000

370

k
0

0$

M
X
O.

CL
07

III

52

The micro-stack is enabled when S(1) is active, otherwise it remains in the

power down mode. The data inputs and data outputs are bi-directional. They are

connected to the outputs from the micro-program counter and are connected to the

PLA inputs. A 4:1 design rule was followed for dimensioning of the transistors in the

micro-stack design. The following is a listing of the W/L ratios for the transistors

throughout the design.

~ Address Bu/Jers: PMOS-10/5, NMOS-5/10

~ Address Decoders: PMOS-50/5, NMOS-5/10

~ Data Bugersi PMOS-10/5, NMOS-5/10

~ Memory Cells: PMOS-10/5, NMOS-5/10

~ Pass Gates: PMOS-10/5, NMOS-5/10 at all locations.

As seen in the listing for the address decoders, the PMOS W/L ratio is quite

large compared to the other transistor dimensions. This is due to the fact that the

decoders are configured as 4-input NOR gates whose channel lengths add to give

an efFective length of 20. Therefore, a 5:1 design rule was followed in this case. The

following is a listing of the transistor counts of the micro-stack.

~ Address Buyers: 14 (3 total; includes enable inverter).

~ Address Decoders: 30 (8 total).

~ Data Bugersi 84 (7 total).

~ Memory Cells: 336 (56 total).

A schematic of the micro-stack spacing locations of each component, followed

by the transistor level design of each component is shown in Figs. 27-30. The

physical layout description of the micro-stack will be discussed in Chapter VI.

Micro-Program Counter

A 7-bit binary counter with input registers (mPCI) and seven bit registers

53

ADDRESS
SUFFERS ADDRESS DECDDERS

MEMORY CELL ARRAY

Fig, 27 Layout Spacing of the Micro-Stack

54

50/5

A2 04 A2 (50/5

AI 04 AI (50/5

Ao 04 Ao (50/5

)SE4041 404 SELEC1

5/104 5/IOQ /IO S/IO

5)

A In VCC

Q Io/5

AIh ((

5/ I 0

~ IO/S

I

b)

Fig. 28 Micro-Stack

a) Address Decoder b) Address BuR'er

55

VCC

IO/5 IO/5

5/5 5/5
08T)5)

5/ I 0 5/IO

RESORT ROV SELECT RESORT AOV SELECT

Fig. 29 Memory Cell of the Micro-Stack

56

VCC

10/5 10/5

51&
5/5 5/6

WT (H)

5/10 5/10

VCC

PH

0/0 (L((10/6

10/5
5/10

5/10

5/5

5/5
)CT (L(

PHI I

Fig. 30 Data. BufFer of the Micro-Stack

57

(mPCO) are designed to function as a micro-program counter. The counter/register

is enabled as soon as the UNIFIC becomes active; that is; the signal REDY is logic

0. The same clock is used for the counter as well as the register. The counter state,

hence, will equal the previous contents plus one when the clock arrives. The contents

are cleared when the STOP signal is logic 1. The inputs to the register come from

the outputs of the micro- stack. The registers are loaded when S(1) is enabled. The

outputs of the mPCI go to the inputs of micro-stack and to mPCO. The mPCO

register is enabled when the signal P C is active, The gate level description of

mPCI, followed by mPCO are shown in Figs. 31-32.

Register DATA

Fig. 33 shows the design of a 7-bit register implemented as a register DATA. The

register data is loaded from nROM when the address field in the micro-instruction

contains a non-zero value.

nROM

A Read-Only Memory (ROM) is designed so as to implement DATA. The

address decoder of the ROM is designed at the gate level. The memory cell array

portion of the ROM (basically an OR-matrix of a PLA) has been generated using the

PLA generator available on the Apollo workstation. The circuit is shown in Fig. 34

and the memory array table is given in Appendix C. The four bits of the address

field Q(4r1) from the micro-instruction register are connected to the address inputs

of the nROM. It is enabled when S(3) is logic 1 or S(2) and A(0) are both high. The

outputs of the nROM are connected to the inputs (DTI(6:0)) of register DATA. The

register data is selected providing DATA signal is enabled. The implementation of

the nROM will be discussed in Chapter VI.

58

P C

60

IO

IO

OO

n

o

O D
n a

6
O
IA C

O

0

O

IO

M

IO
OI

O.

I
«I
CI

leeo

loco
IA

Z.

1680

91D

31D

310

310

310

910

loco'

1680

1680

1680

1680

leeo

8
X tt
tL' '8

Ce

'8
Ct

8
Cl

tll

tt

IO

M

Cl

tO

tt

C
IE ttt X

ZXX
I

31D 310
1

1680

1680

Ill
M M
Z 9:
Q 0.

leeo

1680

1680

leeo

Ill O
rri

III

1 6~80

62

Register REG

The signals F(15:0) in conjuction with the information from the data registers

decide the next word to be loaded into REG. The register REG is selected when

R G signal is active. The outputs REG(6:0) are fed into the input of micro-progrszn

counter, PDSR(6:0). The design of the register REG is shown in Fig. 35.

Multiplexer

This routine generates the DATA, the P C, and the R G signals according to

the STATE field (S(3:2), S(0)), the FLAG field (F(0)), and the ADDRESS field

(A(0)). The ciruit is given in Fig. 36.

E. Array

The signals R(33:1) generated by combinational logic routine are fed to the

inputs of an array. This array is nothing but a mapping table shown in Appendix C.

The instruction set processor (ISP) description of each routine generating these

signals is obtained by P. Parikh [9]. This array can also be described as an OR, -

matrix of a PLA. The PLA generator provided with the Apollo workstation has

been employed to implement the array which will be discussed in Chapter VI. The

data selected from this array is loaded into the register REG when R G is active.

The outputs REG(6:0) are connected to the inputs of the PLA.

F. Control Store

The control store is designed so as to be implemented by a PLA. It has 7 inputs

and 39 outputs. The equation for each output is obtained by P. Parikh [9', . The

function F(0) corresponds to the MSB of the control word while F(38) is the LSB.

C o
IC

Cl
Cl

Cl X

JC

Cl
C

CJ

tl

CJ

a
lC

ID

CC
IJJ
CL'

IC

64

~ I I-
I

CI

II

II
C4

C
lO

O
IO

O 0
IO UI

65

The EQNTOTT software on the Apollo workstation hss been utilized to convert

the output equations into the AND and OR matrix data for the PLA, Then, the

ESPRESSO (a boolean minimizer software) has been run to minimize the product

terms of the PLA. The result is shown in Appendix C. Note that in this table the

AND plane data is given in square brackets while the OR plane data is given in

its true form. The anal minimized PLA has 7 inputs, 70 product terms, and 39

outputs. The implementation of the PLA will be described in Chapter VI.

G. Micro-Instruction Register

A 39 bit register is designed to function as a micro-instruction register (mIR).

It is always enabled and is loaded at the rising edge of PHI1. The circuit diagram

of the micro-instrution register is depicted in Fig. 37.

66

CC
m

M
CI

GI 39:0

oa
Na

7:0

C
o

C
5

3 a a

I
I CCI

CCI

m

a 3
is

a I 23 a a
F

13 a

aa

o
0)a

a
a

15

12

a

20

Ea 5

0)
3

a CO

a

a C5

o

ia

I)a

ol

0

0'

10

5 a
a F

a
C la

a

sa
10

C5

10

3
CO I a 5

Sa a

7: 0

ICI

IC

CI 0

o a
17

m
CCI

03 iS

Oa I

a a
IO

CCI

m

Cl

o
a CU

m
I a

)0)39: 0

0 (39: 0)
155 ~

A

13is

15557

A.
131

15155
A

131

PHI BBAR

lail 0

103O

CHAPTER VI

LAYOUT DESCRIPTION OF THE MICRO-CONTROL UNIT

In this chapter, the layout description of the micro- control unit is given. The

component cell library developed by the MOSIS Engineers was a major initiative

to design the micro-control unit at the gate level. The Mentor Graphics CELL

Station has been utilized to implement the physical layout of standard cells. Since

the component library contains only primitive gates, memory cells have been

implemented with CHIPGRAPH (a part of the CHIP station). These cells have

then been incorporated into the CELL station by a set of software tools within the

Mentor Graphics.

A. Cell Station Process Flow

The CELL station consists of consists of three sections: inputs, processing

modules and output.

Inputs

The CELL station requires two inputs: process design rules, and logic input.

Process Design Rules

The process design rules define chip technology. It sets constraints such as grid

and track spacing, power voltage and wire style. This input is contained in the

CELL station technology directory.

Logic Input

As mentioned earlier in Chapter III, a logical design file (DESIGN. EREL) was

created by expanding the micro-control unit. This file contains all the necessary

information to be used for the layout process.

68

Processing Modules

These modules are a set of automatic programs used for the layout process

of the micro-control unit. Typically, these programs handle most of the work.

However, CELLGRAPH has utilized for interactive editing. The physical layout

tools employed for the implementation of the standard cells of the design are

described below:

LOGICNNTRY

This is the flrst step in the layout process of a standard cell design of the micro-

control unit. The physical design file was created from an expanded logical

design file by LOGIC ENTRY software. This file was used by standard cell

layout applications which collect output from all subsequent layout operations

performed on the micro-control unit. Completion of LOGIC ENTRY sets up

the next step, generation of the floorplan for the design.

CELLFLOOR

The floorplan of the circuit was automatically generated by CELLFLOOR

program. EDIT PARMS (an interactive program) was used to modify the

floorplan parameters.

CELLPLACE

The placed standard cells of the micro-control unit has been generated by

CELLPLACE program. The macros in the micro-control unit were placed

automatically.

CELLPOWER

The power nets of the micro-control unit were routed by CELLPOWER

program (an automatic program).

CELLROUTE

69

The placed standard cells of the micro-control unit was globaly routed and

followed by detailed routing of the signal nets.

CELLSQUEEZE

It is the function of CELLSQUEEZE to remove excess tracks of the routing

channels of the micro-control unit.

MINROUTE

It minimizes the amount of poly used in the micro-control unit by post-routing.

Fig. 38 illustrates the micro-control unit after MINROUTE.

CELLVERIFY

It does a final check on the validity of the layout produced by CELL station.

Such as, design rule violations and the electrical connectivity. CELLGRAPH

was used for interactive editing of the micro-control unit whenever it was

needed.

Output

At the end of the layout process, the chip file was converted into Calma GDSII

format by GDSII OUTPUT program for fabrication.

B. Chip Station Process Flow

As mentioned earlier in Chapter III, The micro-control unit memory cells have

been implemented with the CHIP station using CHIPGRAPH layout editor. Due

to the lack of CHIPGRAPH's design rule checker, the cells have been checked using

MAGIC layout editor. To carry out this task, a process definition file is written for

the MCIF program to convert a CIF file to CHIPGRAPH database or vice versa.

Since MAGIC's CIF file had some layer conflictions with the standard CIF file, a

technology file is written so that it, is compatible with the standard CIF required for

70

V U P V ~ 4 P C ~ V

a%%\\a

Fig. 38 Standard Cell Design of the Micro-Control Unit

71

the MCIF prograin. Having implemented all the memory cells, a CELLJtfODEL

file and a CELL J, IST file are written for BUILD JIB and TDF CHIP JNPUT

softwares to convert cells in CHIP GRAPH database into the cells in the CELL sation

database. The CELL station's LOGIC ENTRY software is utilized to incorporate

these cells into the micro-control unit standard cells. APPENDIX A Contains all

the mentioned technology files. Next, The different sections of the memory cells are

discussed.

Array

This array is basically an OR-matrix of a PLA. The PLA generator on the

Apollo workstation has been employed to implement the array. The layout has

been checked with MAGIC's design rule checker and converted to CHIPGRAPH

database by the above mentioned technology files. The layout of the array is given

in Fig. 39.

Micro-Stack

Micro-stack was designed at transistor level and implemented using CHIP-

GRAPH. The layout of the micro-stack is shown in Fig. 40. The micro-stack layout

was converted from CHIPGRAPH to MAGIC by MCIF program for design rule

check. After completion, the CIF file was converted back to the CHIPGRAPH

format.

nROM

Fig. 41 shows the implementation of the PLA. As mentioned earlier, the address

decoder of the nROM was designed at the gate level. The memory cell array of the

nROM was implemented using the PLA generator (MPLA) software. After checking

the layout by MAGIC, the file is converted to CHIPGRAPH database as before.

I!4-:i:::I--I---I:::I:-:I. -:I- I--:II:. ". I-. l. -. l:, ::. I', 'I:-'I-\: Is l~, ,

ge j j f selj i 4IRI ~ e ii S i» „. . . , '. ::— a.

ISOSC f14 S'%Os ~ g» ~ ~ g j ~ lee ~ SNP', g~ -- ~

- . iU~KQM~X55kQiQ~kQ;14'

tl

f

73

Fig. 40 The Micro-Stack Layout

««. n S Sa S. WSSS ' 'aa I ' I. ' IIIMIIIIMIIIIR«awallkaakllllkl II
Sna ~ . ~ames II"~l maa ~I ~l ~l Ma. ma I' aml ~ S n L'

Im'R]Vl":BV4 'r~a- I

ILMI II ~l'~a.

«~a~
IIOMI IIIMS

I
I

Sl
II
(I
'- ~

; Ysii¹iiiiffiiifiiiifi!aaiiiaiiiifiiVir;-;:~ Ig ~EE

= I, 'Allf. r I —.

I '

'I
I
I,

II
),
I', anni an ~

':,
' :'Illa

nnnannnml: M ~ I j' II
I,

MI
lal 8
al Mia l'
I

I

='Illsfclf l~
PI, L=I:
=;:I, AIEf. r
=, ;. I . 'I4-'f rl«

PS~I; — iCals

=;jilaf-'. f I, ,
=, '. $54'-. 'f rl.

=, ;TW-:. I r,
~ 84. . =. . ::-'=. .

=, . 1«e f. rl
=-I A:. = fr, .

'. sf ICrl.

I

I

a~~ ls=, --.

s ~

I s
I

I', '
I

I I,
I

I . ' san ann~a
Ill
I

'
C a I I

51 '!. 'ryfi%wnmi i, , '-:'::= '
::I ai asiillmlmsamammmsi"':-'l il("! i=:-!! j ~ ~ aasnsaamsaasssannsssnnsmla '-

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEla

~ ~

75

PLA

The EQUNTOTT software of the Apollo workstation has been utilized to

convert the output equations into the AND and OR matrix data for the PLA. The

ESPRESSO (a boolean minimizer) pregram has been run to minimize the product

terms of the PLA. The PLA layout has then been generated by the MPLA program.

The layout was fully checked for design rule violations and is given in Fig. 42.

76

Fig. 42 The PLA Layout

77

CHAPTER VII

SIMULATION RESULTS AND CONCLUSIONS

In this chapter, the simulation results of the micro-control unit are presented.

The performance of the micro-control unit is compared with Parikh's functional

simulation [9]. The steps accomplished to facilitate a more comprehensive digital

design capability by mixing both standard cell and custom design are summarized.

Finally suggestions for future work is given.

A. Simulation Results

Due to fact that the MOSIS component library does not provide transistor

cells, the micro-control unit was designed in a hierarchical fashion described by the

following two simulation tools:

I) IDEA station's QUICKSIM software for gate level sections.

2) SPICE for micro-stack, array, nROM, and PLA.

As a result, the micro-control unit was not simulated as a complete system.

Table I shows the results obtained for two expressions with an increasing number

of terms. These results agree with Parikh's functional simulation. Because the

execution unit of the UNIFIC has not been layed out, the simulated results of

unification of terms with increasing number of nested function arguments still

rely on the functional assumptions made in Parikh's work. All of the gate level

simulations of the micro-control unit are given in Appendix B. The information

from the simulations shows that the actually UNIFIC chip, in a CMOS layout,

should easily perform as well as functional simulations have predicted.

TABLE I.
Simulation Results f' or Two Expressions

vcith Increasing Number of Terlns

Arity

10

12

13

14

15

16

Expression
1

rl&rg
+1»' '+3
+1 "&+4
+1»" +5

rl!" &+6

+»" &x7

+1» " +6

+1& ' '!+9
+1» '" +9

+1&" &eg

y» yl
+1&" &*9

y» "&ys

+1»" eg

y»" &y4

+1&" &+9

yl » "' yS

+1» +9

y». "& ys

Zl &Kg

Expression
2

A,
Al, Ag

Al, . . . , As

Al, . . . , A4

Al, . . . , As

Al, . . . , As
A». . . , A7

Al, . . . , A,
A» . . . , Ag

A» . . . , Ag

Bl
A». . . , Ag

Bl, Br
Al, . . . , Ag

Bl, . . . , Bs
Al, . . . , Ag

B». . . , B,
A». . . , A9

Bl, ". , Bs
Al, , Ag

Bl, . . . , B,
Al, . . . , Ag

Time (ps)

1. 9
3. 65

7. 3
9. 1

10. 9
12. 7

14. 5
16. 3
18. 1

19. 9

21. 7

23. 5

25. 3

27. 1

28. 9

79

B. Conclusions

The goal of this work was to design the micro-control unit using Mentor

Graphics software package, and to interface custom layout facilities with standard

cell design tools. The results obtained for the unification process strongly agrees

with Parikh's work. As a result of designing the UNIFIC micro-control unit

tools to incorporate custom layout into the standard cell design on the Apollo

workstations was accomplished . Employing the technology files, CELL LIST and

CELL MODEL files, given in Appendix A, allow the merger of standard cell tools

from the Mentor Graphics with custom design tools, either the Mentor Graphics or

magic, for comprehensive system designs. The following extensions are suggested

for future work:

I) Design the execution unit of the UNIFIC.

2) Implement the UNIFIC by interfacing the existing micro-control unit with the

execution unit using standard cell layout.

3) Enhance the simulation tools for more convenient merger of standard cell and

customized designs.

4) Provide user Friendly interfaces for guidance between the standard cell func-

tions and custom I'unctions.

80

REFERENCES

J. Crammond, "A Comparative Study of Unification Algorithms for OR-
Parallel Execution of Logic Languages, " IEEE Transactions On Computers,
C-34, 911-917, October 1985.

T. P. Dobry, A. M. Despain, Y. N. Patt, "Performance Studies of a Prolog Ma-
chine Architecture, " in Proceedings of the Igth Annual International Sympo-
sium on Computer Architecture, Boston, Massachusetts, June 17-i9, 1985, pp.
180-190.

R. Gollakota, "Design, Simulation and Analysis of A Coprocessor for the
Unification Algorithm, " Research Report, Master's Thesis, Department of
Electrical Engineering, Texas A&M University, May 1985.

T. Moto-aka, H. Tanaka, H. Aida, K. Hirata, T. Maruyama, "The Architecture
of a Parallel Inference Engine-PIE, " in Proceedings of the International Con-
ference on Fifth Generation Computer Systems, Tokyo, Japan, November 6-9,
1984, pp. 479-488.

N. J. Nilsson, Principles of Artificial Intelhgence. Palo Alto, CA: Tioga Pub-
lishing Company, 1980.

R. Nakazaki, et al. , "Design of a High-speed Prolog Machine (HPM), " in Pro-
ceedings of the 18th Annual International Symposium on Computer Architec-
tuve, Boston, Massachusetts, June 17-19, 1985, pp. 191-197.

J. V. Oldfield, "Logic Programs and an Experimental Architecture For Their
Execution, " IEE Proceedings, 133, 163-167, May 1986.

C. A. Papachristou, R. Rashid, S. B. Gambhir, "VLSI Design of a PLA Based
Microcontrol Scheme, " in Proceedings of IEEE International Conference on
Computer Design: VLSIin Computers, Port Chester, New York, October 8-
11, 1984, pp. 771-777.

P. Parikh, "VLSI design of the controller for the UNIFIC, A Prolog unifica-
tion coprocessor, " Research Report, Master's Thesis, Department of Electrical
Engineering, Texas A&M University, May 1987.

C. G. Ponder, Y. N. Patt, "Alternative Proposals for Implementing Prolog
Concurrently and Implications Regarding Their Respective Microarchitecture, "
in Proceedings of the Seventeenth Annual Microprogramming Workshop, New
Orleans, Louisiana, 1984, pp. 192-203.

J. Robinson, "A Machine-Oriented Logic Based on the Resolution Principle, "
Journal of ACM, 10, no. 1, 23-41, January 1965.

81

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

P. Robinson, "The SUM: an AI coprocessor, " Byte, 10 (6), 169-180, 1985.

S. Shobatake, H. Aiso, "A Unification Processor Based on a Uniformly Struc-
tured Cellular Hardware, " in Pv oceedivigs of the 19th Annual International Sym-
posium on Computer Architecture, Tokyo, Japan, June 2-5, 1986, pp. 140-148.

K. Taki, et al, "Hardware Design and Implementation of the Personal Sequen-
tial Inference Machine (PSI), " in Proceedings of the International Conference
on. Fifth Generation Computer Systems, Tokyo, Japan, November 6-9, 1984,
pp. 398-409.

N. Tamura, K. Wada, H. Matsuda, Y. Kaneda, S. Maekawa, "Sequential
Prolog Machine PEK, " in Proceedings of the International Conference on Fifth
Generation Covnputer Systems, Tokyo, Japan, November 6-9, 1984, pp. 542-
550.

E. Tick, "Sequential Prolog Machine: Image and Host Architectures, " in
Proceedings of the Seeenteenth Annual Itficroprogvnmming Workshop, New
Orleans, Louisiana, February 1984, pp. 204-206.

E. Tick, H. D. Warren, "Towards a Pipelined PROLOG Processor, " in Proceed-
ings of the International Symposium on Logic Pvogramming, Atlantic City, N J,
1984, pp. 29-40.

S. Uchidav T. Yokoi, "Sequential Inference Machine: SIM-Progress Report, "
in Pvoceedings of the International Conference on Fifth Generation Computer
Systenis, Tokyo, Japan, November 6-9, 1984, pp. 58-69.

N. S. Woo, "A Hardware Unification Unit: Design and Analysis, " in Pvoceed-
ings of the Igth Annual International Symposium, on Covnputer Architecture,
Boston, Massachusetts, June 17-19, 1985, pp. 198-205.

M. Yokota, et al. , "A Microprogrammed Interpreter for the Personal Sequential
Inference Machine, " in Proceedings of the International Conferevice on Fifth
Generation Compute~ Systems, Tokyo, Japan, November 6-9, 1984, pp. 410-
418.

P. R. Cohen and E. D. Feigenbaum, The Handbooh of Artificial Intelligence.
Vol. 3 Stanford: William Kaufmann, Inc. , 1982.

APPENDIX A

THE TECHNOLOGY, CELLMODEL, AND CELL LIST FILES

83

'i e

This technology file is ritten to generate a

standard CIF file from the MAGIC cn ironment

for thc MCIF conversion program. Cifoutput

and Cifinput routines sre combined with the

scmos. iech20 file to accomplish this teak.

tech

kludge

end

Cifoutput routioe. ,

cifoutput

style lambd mt. g(chipgraph)
seal factor 150 25

layer CWF pwell

bloat -or ndifi;ndc, nfet ' 750

bloat -or psc, ppd 450

grow 450
shrinli 450

cairns 41 I

layer CMS m2, m2c/m2, pad/m2

labels m2

cairns 51 1

layer CMF p d

o 150

ml, m2c/ml, pc/mi, ndc/ml, pdc/ml, ppcont/ml, nncont/ml, pad/ml
labels ml, m2c/ml, pc/ml, ndc/ml, pdc/ml, ppcont/ml, nncont/ml, pad/ml
calma 49 1

layer CPG po ly, p /acitve, nfet, pfei

labels p*iy, nfct, pfet

c lms461
lay r CAN ndiff, nfet, ndc, nncon1

labels ndiff

cairns 42 1

I yer CAP pdiff, pfet, pdc, ppcont

I b ls pditf

cairns 43 I

layer CVA ped

shrink 450

cairns 50 I

1 y rCVAm2c
squares 150 300 450

84

shrink 600

or glass

cairns 52 1

1 y r XP p d

end

Cifinput routine. . .

ciftnput

style lambdan2. 5(cbtpgrapb)
scalefactor 150
layer pwell CWP

labels CWP

1 ye m2 CMS

labels CMS

layer tnl CMF

labels CMF

layer poly CPG

labels CPG
layer ndiff CAN

lab I* CAN

layer pdifl CAP
labels CAP

layer pfet CPG

and CAP

layer nfet, CAN

and CPG

and CWP

layer m2c CVA

grow 225

ehrinlt 75

and CMS

and CMF

layer nncont CC

grow 1 50

and CAN

and CMF

1 yer pdc CC

grow 150

and CAP
and CMF

layer ndc CC

grow 150
and CAN

and CWP

nd CMF
layer ppcont CC

g * 150
and CAP

and CWP
and CMF

layer pc CC
150

d CPG
and CMF

layer glass COG

layer pad CMF
shrink 150

nd CMS

shrink 450

and CVA

shrink 150
and COG

gros $00
and XP

cairns CWP 41

cairns CAN 42

cairns CAP 45 e

cairns CPG 4$

cairns CC 47 *

lma CMF 40 *

cairns CVA 50

cairns

cairns

end

Ch45 51

COG 52 e

¹* - — - - - - - . - - . -
This is a Process Definition File (PDF) written for converting

standard CIP file int, o CHIPGRAPH dat bas ¹¹-
ATTRIBUTE DOMAIN ¹

¹ Transparency (transparent, opaque, xor, no border) ¹ Pattern (none, solid, 'b'. . 's') ¹ Pill color ¹ Fillmolor
(red, green, blue, yellow, magenta, cyan, black, white,

purple, gray, 'light blue', 'yellow green', pink, beige) ¹ Line color (red, green, blue, yellow, rnagcnt, cyan, bl ck, whit ¹ Line color

¹Ln ntyl ¹ Linc idth ¹ Text color

purple, gray, 'light. blue', 'yellow green', pink, beige)

(solid, dotted, short dash, long d sh)
1. . $2

(red, greco, blue, yellow, magenta, cyan, black, white, ¹ Text, color purple, gray, 'light blue', 'yellow green', pink, beige)

iranscripiing on

Lo ding double m 1, 1 CMOS process definitioa

D fault minimum resolution: 0. 001 microns

transcripting oif

define process KLUDGE 0. 001 micron

define layer name cwp 1 -shape -path -instance p I li

d fin I y n me cwp. ext 41 -perim ter -port

deiinc layer name cap 8 -shape -paih -instance -pin

define layer n ine cap xt 48 -p ri t r -po*
define layer name can 4 -shape -path -instance -pin
define layer name can. xt 44 -perimeter -port
deiine layer name cpg t! -shape -path -instance -pin

define layer name cpg. ext 48 -perimeter -port
define layer name cc 7 ~ shape -path -instance -pin

define layer name cc. ext 47 -perime1er -port
d 0 1 y n mi 8 -sh pe -path -instan -pi

define layer nam mi. ext, 40 -per meter -port

defin layer name cms 9 -shape -path -insiancc -pin

define layer name cms. ext 49 -perimeter -port

define chas cwp

define alias cap

define alias cen

d fine li pg

define alias cc

d fin ali

define alias cms

84

~ *me useful I y r groups

define layer group trans c p cep cen cc cpg
dcfine Iiyer group int cmf cc cms ¹

physical layer groups

define phy ical layer group PW cwp cwp. ext

deiine physical layer group ND c n an. ext

defin phy
' I layer group PO cpg cpg. cxt

define physical layer group PD cap cap, ext

delinc physical lay r group CO cc cc. ext

define physical layer group Ml «mf cmf. ext

define physical layer group M2 cms cms. e t

Define Minimum Layer Widths:

minimum width PW I

minimum width PD 4

minimum idth PO 3

minimum width ND 4

minimum width CO 4

mimmum width Ml 3

minimum width M2 4

Dfi Sp gkul

minimum spacing cpg cpg 3, 0

minimum spacing cpg cap 4. 0

minimum spacing cpg can 4. 0

minimum spacing cml' cmf 3. 0

m»m sp c 3 * c 5. 0

minimum spacing can can 4. 0

rninirn m p ci 3 p ap 4 0

minimum spacing cap cwp 4, 0

attributes for layers

define layer attributes normal c p hll color yellow

hne color yellow line style long d sh line idth 1 pattern none

define layer tir but s normal cpg fill color red

I n color r d lin ntyle solid

define I yer attribut s norm I can

bne color meg nte lincuttylc sohd

line olor green linemtylc solid

define layer attributes normal Clip

line width 1 pattern sohd

fill color green

line width 1 pattern solid

fill olo m*g nta

Ii ldth 1 pattern solid

define layer ettnbutes normal cc lill olo tan

lmemolor tan linemtyle solid I idth I pattern solid

88

deR I y r ttribuies normal cml fill color blue

line color bl li styl solid iin width 1 p tt rn o

d*fin I y ttributes no rmal cms fill color purple

line. color purple li * tyl* olid lin idth I patt,

deAne layer attributes normal p. xt Allmolor y llo

line color yellow linc style long dash linc width I pattern none

d fine layer ati, ribuics normal cpg. exi, fill color red

Ime colo r r d lin wtyle solid line width 1 pattern none

define layer ttnbutes normal can. ext Allmolor green

line color gr en lin wtyle solid line width 1 pattern none

define layer attributes normal cap. ext All color magenta

hne xolor magenta Iinewtyl solid lin . n idth I pattern «one

define layer attributes normal cc. cxt fill color tan

Iinexotor tan linemtyle solid line width I pattern none

define layer attributes normal cmf. ext All color blue

linemolor blue linemtyle solid line width I pattern none

define layer attributes normal cms. ext Atlxolor purple

line color purple linewtyle solid Ime width I pattern m

define layer attributes sclccted cwp All color yello

Itnexotor yellow Iincwtylc long dash linc width 3

define layer attributes selcctcd cpg Altxolor rcd
I'n color red Iincuttyle sohd line width 3

define lay r atiribui s selecied can AIIxolor green

line color green linemtyle solid lin idth 3

define layer attribui, I ied p fill olor rn 3 nt

line color magenta linemtylc solid line vridth 3

define layer atiributes selected cc Allmolor tsn

hnemolor ian Imcwtyie solid linc v idth 3

d An I y r attributes selected cmf lill color blue

line color bl lin style solid line width 3

define layer attrii t * I t d fill oto p pl

line color p rpl linewtyle solid line vridth 3

define layer attributes selected cwp ext All color yello

line color yellow lincwtylc long dash linc idth 3

define layer attributes selected cpg. ext Altxolor rcd

line olor red linemtyle solid line width 3

define layer attributes s I cted can. ext Allxolor green

hne color gr en Iinewtylc sohd hnc width 3

define layer attrlbut I ct d ap. cxt All *Io m 3 nt

line color magenta ltnextyte solid line width 3

define layer attributes selected cc. ext fill color tan

Itnexolor tan ltnewtylc solid

d fi I y r attnbuies selecied cmf. ext filtxoloi blue

li * ole blue hne style sohd hne width 3

d A I y r sttnbutes selected cms. exi fill color purple

line coin p pl I n tyle olid lin width 3

89

attributes for item cise es

d fi it m atiributes normal instance

define item attributes normal pin

define item attributes normal port

define item attributes norm l p rim t r

define item attribute s*l ted nstance

define item attributes selected pin

d fine iiem attributes selected por\

definc item attributes selected perimeter

transcripting on

Process definition loaded.

transcripting off

dtr d menu /idea/united/cds. cmosrnenu

tincntyle solid pattern none

linemtyle solid pattern none

lin style olid patt
lin wtyt sol d p ii rn non

linemtyle solid pattern none

lincatytc solid pattern none

lineatyte solid pattern none

Hnewtylc solid pattern none

90

The CELL MODEL file o i in the mo dels of PLA, ARRAY,

nROM, and RAM vrhich BUILD UP uses to convert thc shapes

m CHIPGRAPH d t b s to p ns and bio kag in th CELL

station database. The model file is s set of statements

hich gi 1 y r nd location data for the p n

Next, the Process Definition File (kfudgcy. bin) is

*¹ loaded for PLA, ARRAY, and nROM models.

MACMODEL PROCESS=//sl/u/golnabi/memory cells/liludge2. bin

¹¹ PLA model. . .

BEGIN MODEI NAME=CELLPLA

BEGIN POWER NAME=VDD

DEFINE LEVEL=I LAYERS=28 FORM=PORTS

PHYPROP=POWER PIN DIRPROP=PINTYPE

END POWER

BEGIN POWER NAME=VSS

DEFINE LEVEL=I LAYERS=23 PORM=PORTS th

PH YPROP=POWER PIN DIRPROP=PINTYPE

END POWER

BEGIN SIGNAL

DEFINE LEVEL=I LAYERS=28 FORM=PORTS

DEPINE LEVEL=2 LAYERS=32 FORM=PORTS fc

PHYPROP=PHY PIN LOGPROF=PIN DIRPROP=PINTYPE

END SIGNAL

BEGIN BLOCKAGE

DEFINE LEVEL=I LAYERS=23 FORM=EACH SHAPE

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE

END BLOCKAGE

END MODEL

ARRAY model. . . .

BEGIN MODEL NAME=CELLARRAY

BEGIN POWER NAME=VDD

DEFINE LEVEL=1 LAYERS=2S FORM=PORTS
PHYPROP=POWER PIN DIRPROP=PINTYPE

END POWER

BEGIN POWER NAME=VSS

DEFINE LEVEL=1 LAYERS=28 FORM=PORTS Ir

PHYPROP=POWER PIN DIRPROP=PINTYPE

END POWER

BEGIN SIGNAL

DEFINE LEVEL=1 LAYERS=2S FORM=PORTS

DEFINE LEVEL=2 LAYERS=32 FORM=PORTS Sr

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE
END SIGNAL

BEGIN BLOCKAGE

DEFINE LEVEL=I LAYERS=28 FORM=EACH SHAPE

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE

END BLOCKAGE

END MODEL

nROM mod I. . . .

BEGIN MODEL NAME=CELLNROM

BEGIN POWER NAME=VDD

DEFINE LEVEL=I LAYERS=28 FORM=PORTS

PHYPROF=POWER PIN DIRPROP=PINTYPE
END POWER

BEGIN POWER NAME=VSS

DEFINE LEVEL=1 LAYERS=28 FORM=PORTS L
PHYPROP=POWER PIN DIRPROP=PINTYPE

END POWER

BEGIN SIGNAL

DEFINE LEVEL=I LAYERS=28 FORM=PORTS

DEFINE LEVEL=2 LAYERS=32 FORM=PORTS dr

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE

END SIGNAL

BEGIN BLOCKAGE

DEFINE LEVEL=1 LAYERS=28 FORM=EACH SHAPE

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE

END BLOCKAGE

END MODEL

END MACMODEL

The PDF fil* ' lorded for RAM mod I

MACMODEL PROCESSm//sl/u/golnsbi/m«m* I *lls/ mosi gin

BEGIN MODEL NAME=CELLRAM
BEGIN POWER NAME=VDD

DEFINE LEVEL=I LAYERS=28 FORM=PORTS
PHYPROP=POWER PIN DIRPROP=PINTYPE

END POWER
BEGIN POWER NAME=VSS

DEFINE LEVEL=I LAYERS=28 FORM=PORTS lL

PHYPROP=POWER PIN DIRPROP=PINTYPE
END POWER

BEGIN SIGNAL

DEFINE LEVELml LAYERS=28 FORM=PORTS
DEFINE LEVEL=2 LAYERS=32 FORM=PORTS gs

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE
END SIGNAL

BEGIN BLOCKA. GE
DEFINE LEVEL=I LAYERS=28 FORM=EACH SHAPE

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE

END BLOCKAGE
END MODEL

END MACMODEL

93

The CELLOIST S)e contains a list of PLA, ARRAY, nROM,

and RAM lls which BUILD UP program con arts from their

CHIPGRAPH representation to thc CELL et tion form t

CELLLIST
BEGIN PHYLIB LIBRARY=cell version=l &

SEARCHm//sl/u/golnabi/pta/memory cells

DEFINE CELLNAME=((PLA, 0. 0, O. O, N)) MODEL=CELLPLA k
NAMEw&PHY COMP LOGNAMEm&COMP &

CLASS=&COMPTYPE PLACETYPm&PLACETYPE
DEFINE CELLNAME=[(ARRAY, 0. 0, 0. 0, N)) MODEL=CEILARRAY k

NAME=&PRY COMP LOGNAME=&COMP k
CLASSw&COMPTYPE PLACETYP=kPLACETYPE

DEFINE CELLNAME=((NIIOM, 0. 0, 0. 0, N)) MODELmCELLNROM k
NAMEc &PHY COMP LOGNAMEm&COMP k
CLASS=&COMPTYPE PLACETYP=&PLACETYPE

DEFINE CELLNAME=((RAM, 0. 0, 0. 0, N)) MODEL=CELLRAM &
NAMEm&PHY COMP LOGNAME=kCOMP k
CLASS=&COMPTYPE PLACETYP=kPLACETYPE

END PHYLIB
END CELLLIST

94

AP P END IX B

GATE LEVEL SIMULATION OF THE MICRO-CONTROL UNIT

SIM Force statcm nts for COMB LOGIC Routine.

Set clock period for ISO)OS, and look

for a change at the output signals R(33:1). .

clock period 100

for PH12 0 0 -R

force PH12 I 50 . R

Sct inpui ~ for runmng stmulation. . .

check -aosptlte

force F 0002 0 ¹¹ Enable F(1) signal. . .

¹¹ Generate R(1) signal. . .

force CID1 0 0

foccc CID2 0 0

force DTAG1 3 0

force DTAG2 3 0 ¹ ¹¹ Gencraie R(2) signal. . . .

force CIDI 1 100

force CID2 I 100

Generate R(3) signal. . .

force CIDI 2 200

force CID2 2 200

Gcneratc R(3) stgnal,

force F 0202 300 ¹¹ Enable F(0) sigaal. . .

force Z 0 300 ¹¹ Disable Z Sag. .

¹¹ The operation is succeeded. .

force CID1 3 300

force CID'I 3 300

The operation is failed. . . .
¹
force DTAG2 1 400

force DTAG1 1 500

force DTAG2 3 500

96

force F 0001 600 tgtf En blc F(0) signal. . .

force DTAG1 2 600

force DTAG2 2 600

G nerate R(5) stgnal. . .

for DTAG2 3 700

cgtg Generate R(6) sign l. .

force DTAGl 3 800

force DTAG2 2 800

G aerate R(5) signal. .

force DTAG1 2 900

force DTAG2 1 900

Generate R(6) stgnal. .

for DTAG1 1 1000

force DTAG2 2 1000

Generate R(7) signal. .

force F 0000 1100 tgg Initlalise F(15:0) eigr ls. . .
force DTAG2 1 1100

for DTAG2 0 1200

force F 0004 1200 tgg Dtsablc all signals but F(4) sig al. . .

Ccnerate R(8) signal. .

force MATCH 1 1200
force BMR 2 1200

G rat R(9) stgnal, ,

force BMR 3 1300

force F 0008 1400 tfgt F(8) stgnal ts settee,

force MATCH 1 1400

Generate R(12) stgnal. . .

fo rce BMR 3 1400

Generate R(11) signal. . .

force BMR 2 1500

force MATCH 0 1600

G n 1 R(131 stgnal

(orts F 0008 1600

C'cn rate R(10) signal. . .

force F 0004 1700 ¹¹ Enable F(6) ignal. .
¹

Generate R(14) signal, .

force F 0010 1800 ¹¹ F(4) is logic I

force DTAG1 2 1800

force DTAG2 2 1800

force BO1 0 ISOO

force BO2 0 1S00 ¹ ¹¹ G nerate R(15) signal. . .

¹
force BOI I 1900

¹¹ Generate R(16) signal. . . .

force BOI 0 2000

fo c BO2 1 2000

Gener t R(17) s gnal. . .

force BOI I '2100

Generate R(18) signal. .

¹
f* * DTAG1 3 2200

BO2 0 2200

force DTAG1 1 2400

fo r * B02 0 2400

fore BO2 1 2500
¹¹ R(18) is generated. . . ¹¹ R(19) is generated. . .

¹¹ Generate R(19) signal. . . ¹
force BO2 I 2300

¹¹ REDY signal i 1 lo gic 1 and STOP signal is acro. . .

force ARITY 0 2600

force F 0420 2600

fo ce SP 0 2600
¹¹ F(5) and F(10) are boih acti c. . .

G i R(20 j stgnsl . .

force SR 0 2700

force SP I 2800

¹¹ Generate R(21) signal. . .

force ARITY 1 2900

force SR 1 2900

Generate R(22) signal. . .

fore F 0060 3000

for DTAGI 3 3000
force DTAG2 2 3000

¹¹ All the signals sre disabled but F(6). .

¹ ¹¹ Generate R(23) signal. . .

force DTAGI 2 3100

¹¹ Generate R(24) signal

force DTAGI I 3200

Generate R(25) signal. .

force F 0080 3300
DTAG1 2 3300

force DTAG2 3 3300

¹¹ Enable F(7) signal. . .

Gencratc R(28) s gnal. . .

fo rce DTAG2 2 3e00

Generate R(27) signal

¹¹ Thc signal FAIL ¹¹ is a ti ted. . .

force DTAG2 I 3500

force F 0200 3800

force ARITY 0 3800

force Z I 3600

Generat» R(30) signal. .

force Z 0 3700

Generatr R(28) ign 1

force F 0100 3800

force BOI 0 3600
¹¹ F(8) ts at l*gi I

99

Gener t* R(29) signal

force 801 1 3900

R(32) and R(33) signal generated.

force F 1000 4000

fore BMR 2 4000

force F 2000 4100

Specify th RUN time. . .

run 4300

¹¹ The quickeim traces Ble contains the waveform traces. . .

plot tree comb Jogic/quiclteim traces ~ replace

The output Blc (quicksirnJist) contains thc logic info rmation. . .

wntc hst comb Jogic/quicksim Jist -replace

¹ ¹¹ Upon finish, Erst thc QUICKSIM environment. . .

Crit ¹ ¹ ¹
* SIM Force statements for mIR and InsrMccodc Routine

*
Set clock period for 100NS, and look

for a ch ng at th» output signals F(lsio),
ADDR(7:0), S(3io), nd CNRL(33i0). . .

clock period 100

fore PHI2BAR 0 0 -R

force PHI2BAR 1 50 -R

Note that ll the signals er» represent d

as buses with th i HEX alucs to make the

the simulation task si r, i. e. , QI ie a 39 bit ide. .

Thc values of QI d her«are the outputs fro thc PLA. .

S t puts for running simulation. . .
¹
check -no p k

for c QI O 0

100

force Ql 16 8808000 100

force QI 0001104001 200

force QI 6000168000 300

¹¹ PDSR(6 0)=01
*¹ PDSR(6 0)=02

PDSR(6 0)=03
PDSA(6:0)=04 ¹¹ PDSR(6;0)=05
P D 8 A (6: 0) = 06

PDSR(6:0)=09 ¹¹ PDSR(8:0)=OB ¹¹ pDsR(e 0)=oc ¹¹ PDSR(e. O)=OE ¹¹ PDSR(6:0)=OF ¹¹ PDSR(6:0)=11 ¹¹ PDSR(6;0)=12 ¹¹ PDSR(6:0)=13 ¹¹ PDSR(6:0)=14 ¹¹ PDSR(8:0)=15 ¹¹ PDSR(S:0)=16 ¹¹ PDSR(6;0)=IS
41¹ PDSR(6:0)=IA ¹¹ PDSR(8. 0)=IB ¹¹ PDSR(6. 0)=IC ¹¹ PDSR(6. 0)=ID ¹¹ PDSA(e. o)=IE ¹¹ PDSR(8:0)=IF ¹¹ PDSR(6:0)=20 ¹¹ PDSR(6:0)=21 ¹¹ PDSR(6:0)=22 ¹¹ PDSR(6:0)=23 ¹¹ PDSR(6:0)=24 ¹¹ PDSR(6:0)=25 ¹¹ PDSR(6:0)=26 ¹¹ PDsR(e. o)=?7

PDSR(6 0)=26 ¹¹ PDSR(6 0)=2A ¹¹ PDSR(6:0)=2B ¹¹ PDSR(6 0)=2C ¹¹ PDSR(6 0)=2D ¹¹ PDSR(6:0)=2E ¹¹ PDSR(6:0)=2F ¹¹ PDSR(6:0)=SO ¹¹ PDSR(e:0)=31 ¹¹ PDSR(6:0)=32 ¹¹ PDSR(6:0)=33 ¹¹ PDSR(6:0)=34

¹¹ PDSR(6:0)=35 ¹¹ PDSR(6:0)=36 ¹¹ PDSR(6 O)=37

*¹ PDSR(6 0)=38
¹ PDSR(6:0)=3A

QI 7007000000

QI 500220DDDI

Ql osooooeooo

Ql 0000000100

QI 0800160062

fo rce

force

force

force

fo

force

force

400

500

600

700

800

Ql 0100160062

Ql 1980160062

900

1000

force Ql 3000004001 1100

force

force

force

for e

force

fore

1200 QI 02AEOOD055

QI 0028C08016

QI 3040C38000

QI 0012000D20

QI 4S?041 CDAO

QI D020e07see

1300

1400

1500

1800

1700

force
force

force

force

force

force

force

force
force

force

for e

force

QI 002D000740

QI 026901COSO

1900
2000

2100 QI 0022007500

Ql 5505D60D62

QI 3000004001
2200

230D

2400 QI 002E008054

QI 0000000800 2500

QI 582D200740

QI 482101CBE6

QI 5205160062

QI 0260005001

QI 0028E08016

QI ODOIDB8640

Ql ooolDBee4o

2600

2700

2800

2900

3000

fo 3100
force

fore

force

force

force

force

fore

fore

force
force

3200

QI 0001DB8640

QI 020041COE4

3300
3400

3500 QI 2DDOC40062

QI 2380160000

QI 0000000900

QI 6860000050

QI ooeleoooso

3600

3700

3800

3900

QI 0060400050

QI 3B040E8000
4000

4100

force QI 7307A00068 4200

force

force

force

fo

QI 0750000000

QI 0058800072

QI 005B000072

QI 7058000A40

4300

4400

4500

4600

fo e QI 0002600500 4700

lo QI 003820004A 4800

forcr QI 023800004A 4900

force Ql 487041COE4 1800

force QI 0438000000
fo r Ql 0010600020
force QI 003100006C
Cor e QI 303000004C

5000 ¹¹ PDSR(6:0)=3B
5100 ¹¹ PDSR(6io)=3C
5200 ¹¹ PDSR(6io)=3D
53OO ¹¹ PDSR(sio)=3E

force

for e

force

Corce

force

force

force

force

force

QI 4038000000

QI 0012000020

Ql 1FOSOOOO2O

QI 1818EODOOI

QI 002E008000

QI 0000030COO

QI 00080EAOOO

QI 0007003020

Ql 0007003400

5400

5500

5600

5700

5800

5900

6000
6100
6200

¹¹ PDSA(6. 0)=3F ¹¹ PDSR(sio)=40 ¹¹ PDSR(8 0)=41 ¹¹ PDSR(sio)=42 ¹¹ PDSR(sio)=43 ¹¹ PDSR(6io)=44 ¹ PDSR(6:0)=45 ¹¹ PDSR(6:0)=46 ¹¹ PDSR(6:0)=47
Cores Ql 0498EOD001 6300 ¹¹ PDSA(Sio)=48
force QI 0028E08000 6400
force Ql 00060EAOOO 8500

Cores QI 0007003400 6800
force QI 0640000020 6700

Corcc Ql 0750000020 6800

Ql 0080030300 6900

¹ ¹ PD S R(6. 0) = 4A ¹¹ PDSR(sio)=4B ¹¹ PDSR(6:0)=4C ¹¹ PDSA(8:0)=4D ¹¹ PDSR(oiO)=4E ¹¹ PDSR(6:0)=4F

¹¹ Specify the RUN time. . .

run 7000NS

¹¹ The wa cform t r lo ted on quicksim iraces Sle. .

plot trace comb logic/quicksim traces -r pl ce

¹¹ The output file contaming thc logic inCormation. . .

writ I st combdogic/quicksim dist -replace

Upon Snmb, Ex t the QUICKSIM environment. .

ex I '1

¹ ¹
SIM Force siaiemcnts for mPCI and mPCO Aoutinc.

Set clock p rind Co 100NS

PHIl is used for ounting h PH12

is used Cor loading th gist ont nts

into mPCO. . .

lo k p nod 100
force PHII 1 0 -REPEAT
Co PHIZ O 40 -REPEAT

force PHI2 0 0 -REPEAT
for~e PHI2 1 50 -REPEAT
force PHI2 0 90 -REPEAT

S t put for running simulation.

check -noepik»

Cores REDY 0 0 ¹¹ s I, up t, h lo d ng ~ quence. . .

Cores STOP 0 0

force STOP 1 30
¹¹ Initial(ac the rcgistcr ont t ¹¹

¹¹ The regist, ers are loaded iC one of ¹¹ the Cour etgnals is enabled. . .

Cores R G 0

Cores S(1) 1

Corcc DATA 0

force P C 0

¹¹ the registers are loaded

sttmulate the tnpute PDSR(gt0) end loolt

for a change at, thc outputs PO(6:0). . . .

fo rce PDSR 02 0

force PDSR IE 100

Cores PDSR 20 200

Cores PDSR 2O 300

force PDSR 3B e00

1 «p th ountmg s quencc

force REDY I 100

Thc counter stet. is now equal

to the previous register contents plus onc. . .

fore P O 1 S00 ¹¹ the new register contents are loaded into mPOO. .

Sp ICy th RUN tim

run 500

¹¹ The qutcksim traces file contatns the waveform traces. . .

plot tree«mPCI/qutcksim traces -replace

The output Sl (q i k im Jist) ont '
s th logic informatton. .

nte ltst mPCI/qutck m Jtst -rcpl e

103

Upon fintsh, Ex(t thc QUICff S)M cn ironmenl. . .

xtl

SIM Force stet. ements for mSP Routine.

Set clock penod for 100NS, and look

for counting seq *ncaa of lh outputs ADDR(2:0)

clock period 100
force PHll 0 0 -R

force PH11 1 50 -R

Set inputs for running simulation. . .

S(2:1)=1 will nable lhc counter. . .
check . nosplke

force STOP 0 0 dttg tnitialtse thc counter. . . .

force STOP 1 30 0!dt set up the counting condition. . .

Counting down sequence

force S 1 100
force S 1 200 ggt ADDR(2:0)=7
force 5 1 300
force S 1 400

force S 1 500

fores S 1 600

force S I 700

for 5 1 000

for S 1 900 5272 ADDR(2:0)=0

Counting up scqucnce,

fore«S 2 1000 dttg ADDR(2:0)=1
force S 2 1100
force S 2 1200

for c S 2 1300

force 5 2 1400
fo rce 5 2 1500

force S 2 1600 720! ADDR(2:0)=7

Specify the RUN ttme.

run 1700NS

Thw 1'o t *lo t*donqkt t *dl

104

plot trace mgp/quicksim tre . rcplac

The output Sle cont n' g the logic information

rite lt t mSP/quickstmdisl -replace

¹¹ Upon 6 ish, Extt the QUICESIM environment. .

exit

SIM Force statements for Address Decoder

portion of the nROM.

Set clock period for IOONS, and loolt

Cor a change at the output signals IN(15, 0). . .

clock p riod 100
Cores PHII 0 0 -R

force PH11 1 50 -R

Sct inputs for runnmg simulation.

Inputs are Q(4:I). . .
check -nospike

fo rce Q 0 0 ¹¹ IN(15:0)=0001
for Q I 30 ¹¹ IN(15:0)=0002
fore* Q 2 60 ¹¹ IN(15. 0)=0004
force Q 3 90 ¹¹ IN(15:0)=0008
force Q 4 120 ¹¹ IN(15 0)=0010
force Q 5 150

force Q 6 180

IN(1$:0)=0020
IN(1$:0)=00@0

for Q 7 210 jj!¹ IN(15:0)=0080
force Q 3 240 ¹¹ IN(1S:0)=0100
fo r Q 9 270 ¹¹ IN(15;0)=0200
Cores Q A 300

Cores Q B 330

force Q C 360

fore» Q D 390
farce Q E 420

force Q F 450

¹¹ IN(15 0)=0400 ¹¹ IN(15:0)=0800 ¹¹ IN(15:0)=1000 ¹¹ IN(15 0)=2000 ¹¹ IN(15 0)=4000 ¹¹ IN(15tO)=8000

¹¹ Sp* fy th RUN time. .

run 460

Th«quickstm traces Sle cont th w veform traces. .

plot tr ce rnIR/qujckstm trace. ~ repl

The output file (quicksiindmt) contmn th logic information. .

it list mIR/quick im dist -replace

Upon finish, Exit ihe QUICKSIM en ironment. . .

CX)t

SIM Force statements for regl ter DATA.

Sct clock p nod for 100NS, and look

for a change t thc o tput signals DT(6:0). . .

clock period 100

force PHII 0 0 -R

force PHII 1 50 -R

Set inpuis fo r running simulation

inputs are DTI(di0). .

check -nospikc

force DATA 0 0

for DTI 00 0

fo DTI OE 100
force DTI 23 200

¹¹ Enahlc the register DATA. . ¹¹ DT(gio)=00 ¹¹ DT(6. 0)=OE ¹¹ DT(6:0)=23

Specify th RUN time. .

run 250NS

The quicksim traces file contains the aveform traces. . .

plot trace DATA/q icksim traces -replace

¹
Thc output lil (qui kstmdist) contains the logic information.

write list DATA/qutcksimdist -replace

Upon fimsh, Exit the QUICKSIM en ironmcnt. . .

xit

SIM Force st tern nt. Io g st RED.

106

Set clock penod for 100NS, and look

fof a change at the out. p t s gn ls REG(6:0). .

clock p«riod 100

force PHII 0 0 -R

force PHII I 50 -R

Sct inputs for runmng simulation

Inputs ar REGI(6i0). . .

check -nospikc

force R G 0 0

force REGI 10 0

Enable the rcgistcr REG.

tktg REG(8 0)=10
force REGI 2E '100 tggt REG(8:0)=2B
force REGI 3C 200 tggt REG(6:0)=3C
force REGI 33 300 dtgt REG(8:0)=83

sgtg Specify the RUIV time. .

run 330NS

tktk The quicksim Jraces file contains thc vvavcform traces. . .

plot trace REG/quicksirn tr e -r pl e

Thc output file (quicksim Jist) cont m th logic informaUon. , .

rit lisi REG/quicksim Jist, -replace

Upon fini h, Exit the QUICXSIM environment. . .

c x i t.

SIM Force statements for MUX.

set inputs for simulation

The 5(3i2), 5(0), A(0), and F(0) signals are thc inputs.

Th outputs from the MUX are P C, R G, and DATA signals, ,

check -nospike

force F(0) 0 20

for 5(0) 0 20

force A(0) I 50

for 5(3 2) 3 30

force 5(3 2) 2 60

gtk P C signal is active. .

(33(R G signai is ective . .

DATA 8 I is tiv

107

¹¹ Sp tty I. he RUN time. .

run 100NS

Th* qui ksi ur ces Sle contains thc waveform traces. . .

plot irace MUX/quicksim traces -replace

Thc output Rl* (quicksimSist) contains th logic information. .

rit Ii t MUX/quicksim Sist -replace

¹¹ Upon finish, Exit the QUtCKSIM environment, . . .

exit

APPENDIX C

108

THE NROM, ARRAY, AND PLA MEMORY ARRAYS

109

The Memory Cell Array oI th aROM

[01] DTI(ero)=01
0000001

[02] DTI(6ro)=02
0000010

[os] DTI(e:o)=os
000001 1

[04] DTI(6ro)=04
0000100

[05) DTI(6. 0)=05
0000101

[06] DTI(S:0)=06
00001 I 0

[07] DTI(6:0)=07
00001 I I

[06] DTI(6:0)=08
000011 I

[06] DTI(ero)=06
0001001

[OA] DTI(6:0)=10
0001010

[OB] DTI(6:0)=11
0001011

[OC] DTI(6;0)=12
0001100

[0D] DTI(e:o)=15
0001101

[OE] DTI(6:0)=14
0001 I 1 0

[OF] DTI(6. 0)=15
0001110

[lo] DTI(6 o)=re
0001111

The Mapping Tahl* of Ihe Array

[01] rag=07
00001 1 1

[02] rag=08
0001000

[03] rag=09
0001001

[04] rcg=lO
0001 01 0

[05] rag=23
0010111

[06] rag=29
0011101

[07] r. g=34
0100010

[08] rag=54
0110110

[09) rag=55
01 1 01 I 1

[OA] rag=58
0111010

[OB] rag=60
0111100

[OC] r 8=81
0111101

[OD] r g=64
1000000

[OE[res=13
0001101

[OF] r 8=17
0010001

[10] rag=19
00 I 00 1 1

[11] rag=22
0010110

[12] rag=31
001 1 1 1 1

[13] rag=33
01 00001

[14] rag=41
0101001

The Mapping Table of the Array (nti u 8)

[15] rcg=01
0000001

[16] regna 50

0 1 1 00 1 0

[17] rag=51
0 1 1 00 1 1

[10] rag=52
0110100

[19] rag=46
00 1 101 0

[1A] rag=47
0101111

[1B] rag=48
0110000

[1C] rag=26
0011010

f 1D] rag=28
001 1 1 00

(1E) rag=39
0100111

[tF] rcg=65
1 0 0 000 1

[20] rag=67
1000011

[21) rag=71
1000111

112

Thc Control Store Ustng a PLA

[00] getexpO

00001 I

[01] getexpl
OOOODO

[02) fetopt
I I 00 00

[03] letop2

00 I I I I 000 I 0000000 I 0000000000 0000 I

D00000001 000000000100000000D DOOOO

000000000000101 I 01 000000000000001

I I 10000000001 I I 000000000000000000000DO I

f 04] fctopg
I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I D 0 0 0 0 I I 0 I D 0 0 0 0 0 0 0 0 0 0 0

f 03] I tope
0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

[00] tagdecode

0 D 0 0 0 0 0 0 0 0 D I 0 0 0 0 0 0 0 I

I 07] «onintl

0 0 0 I 0 D 0 I 0 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 D 0 0 0 D 0 I I D 0 0 I I

[08] contttl

0 0 I 0 0 0 I 0 D 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 D 0 I I 0 0 D I I

f 00] conatml
001 I 00

[OA] var arl
I I 0 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 D 0 0 0 0 I I 0 0 0 I I

0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 I 0 0 0 0 0 0 0 0 D 0 0 0 0 0

[OB] rvar2

0 0 0 0 0 I 0 I 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I I 0 I 0 0 0 D D I 0 I 0 I 0 0

[OC] varvar3

00000 0000 I 01 0 00 I I I 00 00 0 I 00 D000000 D I 0 I I I

[OD] unbnd I
01 I 000001000000 I 100001 I I OOD000000000001

[OE] unbndvv2

0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 I

[OF] unbndvv3

I 0 0 I 0 0 0 0 I I I 0 0 0 0 0 I 0 D 0 0 0 I I I 0 0 0 D 0 0 I 0 0 0 0 0 0 I

[10] unbnd

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 I I D 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 I

[11] onebndvvl

0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 I I 0 0 0 0 I I I 0 0 0 0 I I 0 0 I 0 0 0 0 D I

[12] onebnd v2

I DOI 00001 I 10000010000011 1000DOOI I I 001 Dl

[13] t obnd I

0 0 0 0 0 0 0 0 0 I 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 I 0 0 0 0 0 I

[14] t obndvv2

0 0 0 0 0 I 0 0 I I 0 I 0 0 I 0 0 0 0 0 0 0 I I I 0 0 0 0 0 0 I 0 0 0 0 0 0 I

The Control Store Ueing PLA (continu d)

[15] t ob dvv3

0 0 0 0 0 0 0 0 0 I 0 0 0 I 0 D 0 0 0 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 I

[16] bthbndvvl

I D I 0 I 0 I D 0 0 0 0 I 0 I I I 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 I I

f 17] arco I

0 I I 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0

[18] rcon2

0 0 0 0 0 0 0 0 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 I 0 I 0 I

I IS] varcon3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 D 0 I 0 0 0 0 0 0 0 0 0 0 I

[IA] unbnd cl
0 I I 0 0000 I 0 I I 0 I 00 I 000 0 D 00 00 0 I I I 0 I 0 0000 I 0

[18] «nbadvc2

I D 0 I 0 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 0 0 I I I 0 0 I 0 I I I I I 0 0 I I I

[I C] bndvcl

I 01 00 I 0D OOOO I 01 ODD I 0 I I 000000 D0001 I 000 I I

[ID] convarl

0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 D 0 0

[IE] conv r2

0000000001010001 I 1000001 D0000000001 01 I I

[IF] unbndevl

0 0 0 0 0 0 0 0 0 D 0 0 0 0 I I I 0 I I 0 I I I 0 0 0 0 I I 0 0 I 0 0 0 0 0 I

I 20] «nbndc 2

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I I I 0 0 0 0 0 0 I I I 0 0 I 0 I

[21] bound vl

0 I 0 I I 0 I 0 0 0 0 0 0 0 0 I I 0 I 0 I 0 0 0 0 0 0 0 0 0 D 0 I I 0 0 0 I I

f 22] funfunl

0 I 0 0 0 I I I 0 0 0 0 0 0 0 D 0 D I 0 I I 0 0 6 D D 0 D 0 0 0 0 0 0 0 0 0 I

[23] dec. z. arity

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 I

[26] pu hl
I I 0 I 0 0 0 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 I 0 I 0 0 0 I

[25] pueh2

0 0 0 0 0 0 0 0 I I 0 0 0 0 I 0 I I 0 0 0 0 0 0 D 0 D 0 0 0 0 0 I 0 I 0 0 0 I

[26] pueh3

000000
[27] funfun2

01 I I 01

001 I 00000010000000000000001 01 DD0 I

I I 0 0 0 0 I 0 0 0 0 0 0 I I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

[28] funfun3
'I I I 0 0 I I 0 0 0 0 0 I I I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 I 0 0 I

f 29] popl
00001 I I 01010000000000000000000000000001

114

The Contro l Store Using PLA (co tinued)

[2A) pop2
0 0 0 0 0 0 0 0 I 0 I I 0 0 0 I 0 0 D D 0 0 D D 0 0 0 0 D D 0 0 I 0 I 0 0 I I

[2B) pop3
0 0 0 0 0 0 0 0 I 0 I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 I I

IIC] P Pe

I I I 00 000 I 01 I 0000000000000001 01 00 I 00 00 0 I

[ID] incmarl
0 0 0 0 0 0 0 0 0 D 0 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 I

[2E] setcsmbitl I
0000000001 I I ODOOD I ODDDDOOOOD00001 I 0101 I

[2F) sctcambit12
000001 0101 I 100000000DD00000000001 I 0101 I

[30) setcambit13

0 0 0 0 I 0 0 0 0 I I I 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

[31) setcambitlt
D 0 D 0 0 0 0 0 0 0 I 0 0 0 0 0 I I 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 I 0 0 0 0 I

[32] setcambit21

0 0 0 0 0 0 D D D I I D 0 0 I D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 I I 0 I

[33] seteambil22

0 I I 00000 01 I 00000 000000000000 D0001 I 0 I I 0 I

[34] setcambit23

I 0 0 D 0 D 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 I

[35] seteambit24

0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 D 0 I

[30] pr bndl

I 01 I I I 11 DO I I 0000000D00000000000001 00001
f 37] \empbndll

I 01 I 0000001 I 0001 I 1000001 101 000000000000
[30] tcmpbnd12

0 0 0 0 0 0 0 0 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I

[39] t mpbound13
000000000000000000000110000110D00100001

[3A] addcntl1
0 0 0 0 0 0 D 0 0 0 0 I 0 0 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 I

[3B] addcnt12

D0000000
(SC) prcbound2

00000000
[3D] tempbound21

00001 001

0 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 I 0 0 D 0 I

0 0 D 0 I I I 0 0 0 0 0 0 0 0 D 0 I I 0 I 0 0 0 0 0 0 D 0 0 I

001 I DOD I I 1000001 I 01 000000000000
(3E] t mpbound22

0000000001010001 I 1000001 000000000000001

Th Co ntro l Store Ustn3 PLA (contmucd)

[3P) t mphound23

0 1 1 0 0 0 0 1 1 0 1 0 0 D 0 0 0 0 1

[40) addent21

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

41] addent22

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 D 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1

[42) push

0 0 0 0 1 1 0 1 1 D 0 1 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

[43] pop
0 0 0 0 1 1 1 D 1 0 1 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

[44] cams rchl

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 1 1 0 0 0 0 0 0 1 0 0 0 D 0 0 0 0 1

[45] camsearch2

0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 D 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

116

VITA

The author of this thesis, Habibollah Golnabi, was born on September 16, 1959

in Tehran, Iran. He received the B. S. and M. S. degrees in Electrical Engineering

from Texas AkM University in 1985 and 1988, respectively. His areas of interest

include the microprocessor system and memory designs. The author can be

contacted at 11006 Listi Drive, Dallas, Texas 75238.

