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ABSTRACT 

Standard Cell Implementation of the Micro-Control Unit 

For A Prolog Unification Coprocessor. (May 1988) 

Habibollah Golnabi, B. S. , Texas A&M University 

Chairman of Advisory Committee: Dr. Karen Watson 

This work contains the standard cell implementation of the micro-control 

unit for a prolog unification coprocessor using Mentor Graphics software package. 

Standard cell design tools have been interfaced with custom layout facilities to 

achieve the complete chip design. The performance of the micro-control unit has 

been compared to that of Parikh's functional simulation. 
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CHAPTER I 

INTRODUCTION 

The increasing importance of Artificial Intelligence (AI) has led to an extensive 

research with the logic-programming language Prolog [5]. Many expert systems 

being developed are implemented in Prolog because of its automatic backtracking 

control and internal data-base management facilities. 

The Japanese Fifth Generation Computer Systems (FGCS) project has con- 

tributed significantly to the development of Prolog systems, in particular, to a, Pro- 

log unification hardware unit. In the future, high performance Prolog machines are 

going to play an important role in real time applications such as knowledge-based 

systems, natural-language processing and robotics. Prolog provides an appropriate 

base for implementation of a powerful hardware system using highly parallel ar- 

chitectures and VLSI technology [18]. Since the execution mechanism of Prolog is 

very much different from other conventional languages, there is a need to further 

investigate its potentials. 

At present, Prolog is run on conventional "Von Neumann" machines, which 

slow down the execution rate [7]. One major source for the slow execution is the 

unifiy function. This function spends 55-70% of the total query processing time 

[19]. High performance Prolog machines are being developed in order to reduce the 

processing time of the unify function. The execution time can be reduced in two 

ways, (1) by reducing the total number of calls to the unify function, and (2) by 

designing a unification coprocessor replacing the unify function. This unification 

coprocessor can be employed in conjunction with a host processor on any computer 

system. 

Journal model is IEEE Transactions ou Computers. 



Unification is one of the vital operations in Prolog systems, and is based on the 

Resolution Principle [11]. The implementation of the unification has a great effect on 

the organization and performance of Prolog systems. In formal terms, Unifiction is a 

process that finds substitutions of terms f' or variables to make expressions identical. 

The process of unification is analogous to that of finding a common denominator 

for fractions [20]. 

A. Objective 

The objective of this work is to accomplish the following two tasks: 

(1) To design and implement the micro-control unit proposed by P. Parikh [9] using 

standard cell layout. The major reason for choosing P. Parikh's architecture 

[9] is that his coprocessor improves the execution speed for the unify function 

by 12'Fo-16% over the coprocessor designed by R. Gollakota. [3]. 

(2) To interface custom layout facilities with standard cell design tools on the 

Apollo workstation to achieve the complete chip design. The Mentor Graphics 

software package includes a subpakage called the IDEA station. This station 

contains a component cell library, the Schematic Capture tool, and QUICKSIM 

(a simulation tool). The Mentor Graphics CELL station is used to describe 

the physical layout of the standard cells. Chip elements not built from stan- 

dard cells, such as memory devices, are implemented with the Mentor Graphics 

CHIP station using CHIPGRAPH (a layout editor). These customized compo- 

nents in this project are then incoporated into the CELL station by developing 

a set of software tools. The CELL JAODEL file and CELL%1ST file have been 

developed to convert cells in the CHIP GRAPH data. base into the cells in CELL 

sation data base. Finally, a Technology File (TF) and a Process Definition File 



(PDF) have been developed to convert Caltech Intermediate Format to Mentor 

Caltech Intermediate Format (MCIF-Chipgraph format) or vice versa. This is 

needed due to the lack of the CHIP GRAPH's design rule checker. Therefore, el- 

ements developed in CHIPGRAPH can ultimately be sent to MAGIC, a layout 

editor which has a design rule checker. 

B. Previous Research 

The first hardware unification unit was developed by S. Lien. He designed a 

simple unification chip called UNIF to implement Robinson's original unification 

algorithm [11]. This chip was never implemented. 

J. Oldfield [7] and a team of researchers at Syracuse University are attempting 

to develop a unification coprocessor called Syracuse Unification Machine (SUM) 

based on the work done by S. Lien. The hardware unit consists of the LAMBDA 

Lisp machine which represents expressions by the combination of a tag and a 

pointer. SUM identifies the type of an expression from a tag field and proceeds 

by binding agents using Content Addressable Memory (CAM) for binding variable- 

to-expressions. 

N. S. Woo [19] has developed a microprogrammed hardware unification unit at 

ATkT Bell Laboratories. Woo has demonstrated that his coprocessor in conjunction 

with a host processor significantly reduces the unification execution time. 

A systolic-like architecture has been suggested to implement unification by 

Shobatake and Aiso [13]. Symbols are used instead of pointers by having a line 

of symbols and the arity of each symbol to represent the structure of terms on 

uniformly structured hardware cells. A broadcast bus is used in this design to 

search variables in a parallel fashion. The systolic algorithm is responsible for easy 



execution of copying structures during the unification process. 

The Parallel Inference Engine (PIE) is part of the Japanese Fifth Generation 

Computer Systems (FGCS) project. This system is being developed by Moto-Oka 

et. al. at the University of Tokyo [4]. It uses the goal rewriting model based on OR- 

parallelism [1] in which goals are independent of each other and stored in a goal 

poo!. Each unify processor in this system fetches a goal, unifies it with definition 

clauses, and generates new goals. The PIE has a highly modular architecture. 

A Sequential Inference Machine (SIM) has been developed as a part of the 

Japanese Fifth Generation computer systems (FGCS) project [18]. The SIM consists 

of two main parts: a sequential inference machine and a high speed Prolog machine. 

The unification unit is an integral part of this machine. CPU is designed on a pipe- 

lined local parallelism basis and a Current Mode Logic (CML) circuit is used to 

speed up the processor. Currently, this project has not been completed. 

A Sequential Prolog Machine (PEK) is being developed by Tamura et. al. at 

Kobe University, Japan [15]. This machine is designed mainly for unification and 

backtracking. The PEK theoretically achieves a very high performance level of more 

than 100K logical inferences per second (LIPS). 

A hardware unification unit called UNIFIC is designed and simulated by 

Ram Gollakota [3] under the supervision of Dr. Karan Watson at Texas A&M 

University. This architecture uses one internal data bus and makes use of Content 

Addressable Memory (CAM) to improve coprocessor speed. This design has not 

been implemented. 

A second Prolog unification coprocessor designed by P. Parikh [9] under the 

supervision ol' Dr. Karan Watson at Texas ASM University. The architecture is 

designed at functional level and simulated using a hardware description language 



(ISPS). Two data buses are used to expedite the internal data transfer and hence, 

to reduce the execution time of the unification coprocessor. In fact, it was shown 

that this coprocessor increases the execution speed by about 12%-16% over the 

coprocessor designed by R. Gollakota [3]. The controller portion of the UNIFIC is 

designed at system level but has not been implemented. 



CHAPTER II 

FUNCTIONAL DESCRIPTION OF THE UNIFIC 

The architecture of the UNIFIC was designed by P. Parikh [9] at the I'unctional 

level. He has shown that his coprocessor significantly reduces the execution time of 

the "unify" function of the prolog interpreter. For this reason, his architecture has 

been selected to be implemented by standard cell VLSI design. 

A. Data Formats of the UNIFIC 

Prolog uses four different types of data: constant, variable, function and list. 

The UNIFIC uses 32 bit data format. The MSB is bit 31 and the LSB is represented 

by bit 0. The d'ata described by P. Parikh [9] is divided further into different fields, 

DTAG, CID, BO, ARITY. 

B. Block Digram of the UNIFIC Execution Unit 

The UNIFIC has two internal data buses, input/output registers, data and 

memory address registers, stack registers and stack pointer, a LIFO stack& micro- 

control unit, a Content Addressable Memory (CAM) with an attached Random 

Access Memory (RAM) and an Arithmetic Logic Unit (ALU). The block diagram 

of the UNIFIC execution unit is shown in Fig. 1. The UNIFIC uses two 32 bit 

wide internal data buses, A and B, which are used for transfer of data through the 

unification coprocessor. 

Registers 

DIN and DOUT 



They are 32 bit data registers used for communicating with the outside world. 

Data input register (DIN) and data, output register (DOUT) are connected to 

the external data bus and internally connected to the data buses A and B, 

respectively. Data read from the external memory comes to DIN and data to 

be written to the external memory goes to DOUT. 

AO 

AO is a 14 bit address register connected to the external data bus. Internally 

AO is connected to both the buses A and B. Any transfer to the AO register 

signals a data transfer to the on-chip bus controller for the external bus. This 

bus controller postpones the execution of the next state of the micro-instruction 

until the external transfer is complete. 

DR1 and DR2 

These are each 32 bit wide registers connected to both buses A and B. The 

micro-control unit has the ability to selectively decode any of the bits in the 

registers. 

DTEMP1 and DTEMP2 

The temporary data registers DTEMP1 and DTEMP2 are each 32 bits wide. 

DTEMP1 and DTEMP2 are connected to both the internal buses A and B. 

These registers store the data coming into DIN only. 

MAR1 and MAR2 

These two are memory address registers. They are each 14 bits wide, enabling 

them to access 16k memory. They are connected to both the internal buses A 

and B. MAR1 can only read from the bus B. MAR1 has the address of terms 

in Expression 1 and MAR2 has the address of terms in Experssion 2. 

ARITY 



EXTERNAL OATA BUS 

EXTERNAL AOORESS BUS 

DOUT AO DIN 

~QR 1 DR2 

DTEMP2 DTEMP1 

MAR2 

C- 
BM BMP 

BMR 

stack 

SP ARITY 

SR 

Fig. I Block Diagram of the UNIFIC Execution Urit 



Arity is a 4 bit register connected to the internal bus A. The first four bits of 

the pseudo-instruction contains the number of terms in the expressions. These 

bits are loaded into the ARITY register from DTEMPI in the initial phase 

of processing. The arity is decremented after the completion of unification of 

each term in the expressions. When dealing with functions, the arity of the 

expression is stored in the stack, and the arity of a I'unction is stored in the 

A RIT Y re gi ster. 

This is a 4 bit buffer connected to the ALU and the internal bus A. The ALU 

performs a 32 bit logical comparison and the result is stored in Tl. If the result 

of the comparison is fa1se, then the process of unification has failed at one of 

its steps. 

Stack 

The stack is organized on a Last In First Out (LIFO) register stack. It is 14 

bits wide and has a depth of 32 words. The contents of ARITY, MAR1 and MAR2 

are pushed onto the stack whenever two functions are to be unified. The contents 

are pushed onto the stack only if ARITY is non-zero. 

Stack Registers and Stack Pointer 

The Stack Register (SR) is a 14 bit buffer connected to both the stack 

and the internal bus A. The Stack Pointer (SP) is 6 bits wide with a local 

incrementer/decrementer. It is connected directly to the stack. 

Binding Memory 

The Binding Memory (BM) is responsible for binding variables. It is 32 bits 

wide and has a Content Addressable Memory (CAM) and a Random Access Memory 
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(RAM). The upper 16 bits are part of the CAM and the lower 16 bits is the RAM. 

The Binding Memory Pointer (BMP) is a 4 bit wide register connected to the 

BM and the internal bus A. The Binding Memory Register (BMR) is a 32 bit 

wide register which acts as a buffer between the BM and the data buses A and 

B. The upper 16 bits of the BMR and the BM are always compared. If the result 

of comparison is true, then data can be exchanged between that particular BM 

location and the BMR. Also, if a match occurs, the BMP points to the particular 

location. This provides a good speed advantage for the UNIFIC in searching for 

the bindings of variables. The CAM part of the BM, is used to store the variable 

identifiers. The RAM part can be used to determine if the variable is bound. The 

uppermost two bits of the RAM indicate bound status, if the variable is bound, the 

remaining lower 14 bits of the RAM is the pointer to the term to which it is bound. 

Arithmetic Logic Unit (ALU) 

The ALU performs only a 32 bit logical comparison of two registers ALUA and 

ALUB. The result of the operation is fed back to the micro-control unit via buffer 

Tl. If the result of the comparison is false, then the process of unification has failed 

at one of its steps. This terminates further processing in the UNIFIC and send a 

fail signal to the host processor. 

C. Micro-Control Unit 

The micro-control unit is the heart of the UNIFIC. It consists of the following 

parts: microsequencer, array, combinational logic, instruction decode, control store, 

and micro-instruction register. Fig. 2 depicts the functional diagram of the micro- 

control unit. 
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Microsequencer 

The microsequencer (mSEQUENCER)is responsible for providing the infor- 

mation about the next instruction to be executed during the next microcycle. It 

consists of a multiplexer (MUX), a micro-program counter (mPC), the micro-stack 

(mSTACK), the micro-stack pointer (mSP), the nROM, and three special purpose 

registers namely mPCO, DATA, and REG. The micro-program counter holds the 

next micro-instruction address and is incremented by one at each microcycie during 

sequential operation. It is loaded with parallel input data when branching occurs via 

"jump" or "call" in the micro-program. The micro-stack stores the address of the 

micro-instruction when "call" micro-operation is executed. This micro-instruction 

stored on the micro-stack is executed when "return" micro-operation is executed. 

The block diagram of the microsequencer is given in Fig. 3. 

Array 

The array is a mapping-table circuit which generates the starting address of' 

the micro-subroutine or the branch address by decoding the inputs. The address 

generated by this way is stored in REG. There are two types of branch occurring in 

the micro-program. One is the conditional branch, which appears in REG, and the 

other is direct branch. In case of the direct branch, the next address is stored in 

DATA. Depending upon the STATE field in the micro-instruction, one of these four 

registers, viz. micro-program counter, micro-stack, REG and DATA, is selected for 

the next address of the micro-instruction. 

Combinational Logic 

This routine generates thirty three signals R(33:1) by receiving input from 

DR1, DR2, and other registers employed in the UNIFIC. These signals are decoded 
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by the array at each microcycle. The information regarding all these signals are 

obtained by P. Parikh [9]. The block diagram of the subroutines describing the 

combinational logic (COMB LOGIC) is given in Fig. 4. 

Instruction Decode 

Fig. 5 depicts the functional decoding scheme of the instruction decode 

(INSRJ3ECODE). It essentially decodes different fields from the micro-insruction 

register. The outputs from the instruction decode are the STATE field, the FLAG 

field, the ADDRESS field, and the control signals. 

Control Store 

The control store is a read-only memory that stores the micro-program. It 

is basically made up of a PLA with 39 bits wide and 70 words long . Each 

micro-instruction stored in the PLA is divided into 14 fields. Fields 1 through 

9 occupy upper 27 bits and control normal micro-operations such as data transfer 

and arithmetic operation. Field 10 controls the decoding signals and determines 

the next address of the micro-instruction. Fields 11 and 14 control writing to 

and reading from the memory respectively. Field 12 determines the next micro- 

instruction to be executed. It determines whether sequential operation, conditional 

branch, call to a micro-subroutine, return from a micro-subroutine or a direct jump 

is to be performed in the micro-prugrai. If a direct jump is required, the branching 

address in the coded form is stored in the micro-instruction itself. The field holding 

the coded address is decoded and nROM determines the next address to jump to. 

All these fields are decoded in parallel. 

Micro-Instruction Register 

The micro-instruction register (mIR) holds the current micro-instruction being 
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executed. The different fields in the micro-instruction register are decoded simul- 

taneously and the control signals for the micro-operation are generated. 
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CHAPTER III 

DESIGN HIERARCHY OF THE MICRO-CONTROL UNIT 

This section presents the standard cell design process on the Mentor Graphics 

workstation. The design of a standard cell consists of three major steps: schematic 

capture, circuit simulation, and physical layout. 

A. Schematic Capture 

During schematic capture, the logic of the micro-control uzut is defined. The 

symbols in the logic components library are used to implement the micro-control 

unit schematic. Logic symbols built on the Mentor Graphics IDEA station contain 

the information necessary to drive the simulation and physical layout tools. The 

process flow of the IDEA station is shown in Fig. 6. 

NETwork and SYMbol EDitors 

NETwork EDitor (NETED) and SYMbol EDitor (SYMED) are employed to 

capture the circuit shematic of the micro-control unit. The symbols created for 

different components in SYMED are connected together in NETED to form the 

logic circuit. 

MOSISNXPAND COMP 

Due to the hierarchical design capabilities of SYMED and NETED, schemat- 

ics of the micro-control unit must be flattened (expanded) before netlisting. MO- 

SIS EXPAND COMP generates an expanded design file (COMP. EREL) at the com- 

ponent level (not at the gate level). 
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Fig. 6 The IDEA Station Process Flow 
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MOSIS J)ESIGN CHECKER 

This software does a design rule check of the expanded schematic of the micro- 

control unit based on a set of technology specific rules. These design rules consist 

of fanout checking, net current (fan in) checking, external net checking, and unused 

pins checking. The design checker is run after expanding the micro-control unit 

with MOSIS EXPAND COMP. 

MOSIS EXPAND J3ESIGN 

This software expands the schematic of the micro-control unit at gate level. It 

also assures that all properties needed for simulation (QUICKSIM) are flattened 

and included in the database file (DESIGN. EREL). 

MOSIS ADD DELAY 

This software modifies the circuit's delay characteristics based on a number 

of possible inputs, the most significant of which is actual wire length delays. The 

performance of a circuit varies considerably due to many factors including physical 

layout, processing parameters, operating voltage, operating temperature, and die 

size. It is the function of ADD DELAY to help evaluate the design's performance 

based on known relationships between these characteristics and the timing behavior 

of the technology. After ADD DELAY is run, the micro-control unit is resimulated 

using QUICKSIM software to determine the effects. 

B. Circuit Simulation 

Simulation uses the connectivity data. from the schematic and the timing 

information from the logic library to model the circuit's logical function. It analyzes 
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the internal gate delays of a circuit and uses the information to predict the circuit's 

behavior. 

QUICKSIM 

This software provided with the Mentor Graphics IDEA station is utilized to 

simulate the micro-control unit. It invokes DESIGN. EREL file and does a logic and 

timing analysis of the design before any layout is performed. 

C. Physical Layout 

In physical layout, connectivity data is used to implement a chip's design using 

the technology design rules to place defined patterns of connectivity (known as 

physical macros). Then net routing connects the macros of the design. The Mentor 

Graphics CELL Station, a system of software tools for standard cell chip design, is 

used to do the layout of the micro-control unit. The placement and routing can be 

performed either automatically or through interactive graphics. The process flow 

of the CELL station is given in Fig. 7. 

LOGIC ENTRY 

This command extracts the connectivity information from the design file 

(DESIGN. EREL) generated by the command MOSIS EXPAND COMP and creates 

the physical design file (DESIGN. PRM) used by the other CELL station commands. 

CELLFLOOR 

Based on the netlist file (DESIGN. PRM) which contains cell library and 

floorplan parameters, CELLFLOOR automatically generates a minimum area chip 

floorplan that has enough sites for all the cell instances in the netlist. It provides 
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enough feedthrough tracks and also satisfies constraints imposed by floorplan 

parameters. 

CELLPLACE 

Based on the floorplan, CELLPLACE automatically performs a global place- 

ment followed by a detailed placement of the cells. 

CELLPOWER 

The power nets are routed before the signal nets because the former have more 

stringent layout constraint. CELLPOWER automatically routes the power nets. 

CELLROUTE 

CELLROUTE performs global routing, which is followed by detailed routing 

of the signal nets. 

CELLSQUEEZE 

This command identifies and removes unused horizontal tracks in the channels 

to minimize the chip area. 

MINROUTE 

It performs post-routing processing tasks such as minimizing the use of poly in 

the routes. 

CELLVERIFY 

CELLVERIFY serves as a final check on the validity of the layout produced 

by the CELL Station. It also checks design rule violations and the electrical 

connectivity. 
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PREGRAPH 

It generates a "working file" for editing purposes. This command is needed 

when running an automaiic program. 

CELLGRAPH 

CELLGRAPH is CELL station's interactive graphics editor. It allows manual 

editing of the placement and wiring of a physical design. It can be used at any 

point in the CELL Station processing sequence, after CELLFLOOR, to examine 

or alter the physical design file data. The output of CELLGRAPH is a final chip 

layout file. The chip layout file is then converted to the GDSII stream format by 

GDSII OUTPUT software. MOSIS uses this file to fabricate the micro-control unit. 

D. Chipgraph 

This is a graphic editor that supports the physical layout of integrated circuits. 

CHIPGRAPH is a part of CHIP station, one of the Mentor Graphics workstation. 

The mico-control unit memory cells are implemented with CHIPGRAPH. The 

cells are then incorprated into the CELL station database by set of software tools 

explained below. The process flow oi' the CHIP station is depicted in Fig. 8. 

MCIF READ and MCIF WRITE 

MCIF READ converts Caltech Intermediate Format (CIF) file into CHIP- 

GRAPH database (MCIF). This software is needed since CHIPGRAPH has no 

design rule checker. MCIF READ requires a Process Definition File (PDF) and 

a standard CIF file. These two technology files have been generated as will be 

discussed in Chapter Vl. 
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MCIF WRITE converts a CHIPGRAPH database to CIF file with the same 

technology file requirements as MCIF READ software. 

BUILD J IB 

This software reads the CHIPGRAPH database and extracts the cell informa- 

tion for the CELL station database, BUILD LIB reads CELL J IST file to determine 

which cells to convert and interprets the data in each cell using s. CELL MODEL 

file. Both of these files have been written for the micro-control unit memory cells 

which will be discussed in Chapter VI. BUILD LIB generates the block file for the 

CELL station database as shown in Fig. 2. 

TDF CHIP JNPUT 

Befor running BUILD LIB to create the block file section of the CELL station 

database, TDF CHIP JNPUT program is run to read the ASCII chip file and create 

s, binary file. This file contain the design rule data for the CELL station database. 

Having obtained both chip file and block file oi' memory cells, LOGICMNTRY is 

used to incorprate these cells into the standard cell design of the micro-control unit. 



27 

CHAPTER IV 

OPERATION OF THE MICRO-CONTROL UNIT 

In this chapter the operation of the micro-control unit is described. The 

micro-control unit of the UNIFIC is responsible for the proper functioning of the 

coprocessor. It retrieves micro-instructions from the control store and generates 

control signals based on these micro-instructions. 

The UNIFIC uses a two-phase clocking scheme (9j. However, the micro-control 

unit uses a three-phase scheme, Phil, Phi2 and Phi2bar as shown in Fig. 9. The 

sequence of events occurring during each phase is explained in the following sections. 

A. Phase I 

I) The incremented value of the micro-progrszn counter is loaded into the inicro- 

program counter. It now holds the address of the micro-instruction to be 

executed in sequence. 

2) The control fields from the ndcro-instruction register are decoded and appro- 

priate control signals are generated. Data transfer from registers to data buses 

takes place during this phase. Control signals to transfer data from data buses 

to registers are generated simultaneously& however, this data, transfer takes 

place only during the second phase of clock. 

The address field of the control word decides the next micro-word to be loaded 

into the micro-instruction register. The micro-instructions deciding this are 

'sequential branch' (SEQ), 'conditional branch' (BC), 'call', 'return' (RTN), 

and 'jump' (JMP). 

~ In sequential branching, the next micro-word to the present one in the control 

ROM is to be loaded into the micro-instruction register. The micro-program 
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counter holds the address of the next micro-word. 

~ When 'conditional branch' is executed, the next micro-instruction to be loaded 

is determined by decoding the FLAG field. The appropriate data is loaded into 

the register REG. 

~ When 'call' is encountered, the contents of the micro-program counter are saved 

on the micro-stack and the micro-stack pointer is incremented by one, The 

micro-instruction 'call' is of two types: 'conditional call' (BC/CALL), and 

'direct call' (CALL). During 'direct call', the register DATA is loaded from the 

NROM. The ADDRESS field decides which data to be loaded while 'conditional 

call' is essentially same as 'conditional branch' except for the fact that the 

micro-program counter contents are saved in the case of 'conditional call'. 

~ The micro-instruction 'return' decrements the micro-stack pointer by one. 

~ 'Jump' is similar to 'direct call' but the micro-program counter contents are 

not saved. 

B. Phase II 

I) During the second phase, the data transfer from registers to data buses takes 

place. The appropriate control signals are already generated during the first 

phase. 

2) The contents of the micro-program counter are loaded into the incrementer snd 

incremented by one. 

3) The multiplexer selects the data to be loaded into the ROM address register. 

There are four registers to be selected from. They are DATA, micro-program 

counter, micro-stack, and REG. The contents of the micro-program counter 

are loaded in the case of a 'sequential branch'. Execution of the micro- 



30 

instruction 'return' initiates the loading of the micro-stack pointed to by the 

micro-stack pointer. The REG contents are loaded when 'conditional branch' 

or 'conditional call' is encountered. In the remaining two cases of 'direct call' 

and 'jump', DATA is loaded into the control store. 

C, Phase III 

The control word is loaded into the micro-instruction register at the leading 

edge of Phi2bar. 
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CHAPTER V 

CIRCUIT DESCRIPTION OF THE MICRO-CONTROL UNIT 

In this chapter, the Mentor Graphics component library developed by the 

MOSIS Engineers was a major initiative to design the micro-control unit at gate 

level. The NETwork EDitor (NETED) and the SYMbol EDitor (SYMED), a system 

of software tools on the IDEA Station, have been used to caputre the micro-control 

unit at the functional level and the gate level. The component library contains 

primitive gates such as AND, OR, NAND, NOR, and etc. Due to lack of the 

transistor cells in this library, memory cells such as RAM, ROM, and PLA had to 

be implemented with the CHIPGRAPH software of the CHIP station. It should 

be noted that the micro-control unit has been designed in a hierarchical fashion. 

Fig. 10 depicts the root symbol of the micro-control unit. 

The different sections of the Micro-control unit are discussed below. 

A. Two Phase Clock 

A two phase non-overlapping clock is designed for the micro-control unit. This 

clock can be thought of as a three phase clock by inverting phi2 since the micro- 

instruction register uses phi2bar. The circuit is shown in Fig. 11. 

B. Combinational Logic 

The FLAG fields, F(15:0), in conjunction with the information from the data 

registers and binding memory register decide the next word to be loaded into REG. 

There are thirty three signals produced which are R(33:1). The Instruction Set 

Processor (ISP) description of each routine generating these signals is obtained by 

P. Parikh [9]. Next, the routines employed in the COMB LOGIC are described. 
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TAGDECODE 

The fields CID1(1:0) and CID2(1:0) are decoded with the enable signal F(1). 

The signal is enabled when F(1) is active. The fields DTAG1(1:0) and DTAG2(l:0) 

use decoders shown in Fig. 12. The outputs signals generated are D(16:1). 

SETCAMBIT 

Refer to Fig. 13. According to certain combinations of the decoded sig- 

nals D(16:1) from TAGDECODE routine, the following signals are generated. 

The signals R(6:4) and R(27:22) are produced when F(0) and F(7:6) are ac- 

tive, respectively. The signal R(31) is generated by enabling F(11). The signals 

DTAG2(1:0)=DTAG1(1:0)=11 and CID2(1:0)=CID1(1:0)=11 signifies the opera- 

tion is successful; that is, signal S U is logic 1. 

CAMSRCH 

The routine CAMSRCH is implemented and the output signals are generated 

when the following occur. The signals BMR(15:14) from the Binding Memory 

Register (BMR) and MATCH signal from Content Addressable Memory (CAM) 

decide which one of the signals (R(13:8)) is generated providing either F(2) or F(3) is 

enabled. The signal MATCH enables the data transfer between the binding memory 

and the register BMR. The circuit is shown in Fig. 14. The signal DEC. BOUND. VV, 

F4 1, is true when F(3) is active and either BMR(15:14)=00 or BMR(15:14)=01. 

DECODE. SR. SP. ARITY 

Fig. 15 shows the implementation of this routine. The signal F(10) enables the 

SR input to the 4-input OR gates. When the content of SR(13:0) is zero, the AND 

gates for generating R(20) and STOP are enabled. If SP(5:0) is also zero, then 
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R(20) will be logic 1, otherwise the STOP signal is generated. The signal R(21) is 

enabled il'either SR(13:8) or ARITY(3:0) is non-zero. The signal REDY is enabled 

if ARITY(3:0) and SP(5:0) both are zero. 

DEC. BOUND. VV 

This routine is implemented with logic gates shown in Fig. 16. The signals 

R(19:14) are generated when the signal F4( 1) from CAMSRCH routine is logic 1 

and certain combinations of DTAG2(1:0), DTAG1(1:0), B01, and B02 occur. 

DEC. BOUND. VC 

DEC. BOUND. VC generates the following signals. The signal FAIL is activated 

if F(9) is enabled and Z flag from ALU is disabled. The signal R(30) is active 

providing ARITY(3:0) is non-zero and both Z flag and signal F(9) is logic 1. 

However, if ARITY(3:0) is logic 0, the signal R(20) is generated. If B01 is zero, 

then R(28) is logic 1, otherwise R(29) signal is activated providing F(8) is enabled. 

The signals R(32) and R(33) are generated if BMR(15:14) is 10 and both F(12) and 

F(13) is enabled, respectively. The schematic of this routine is given in Fig. 17. 

C. Instruction Decode 

The current micro-instruction held in the micro- instruction register is decoded 

by instruction decode (INSTRXIEC) routine. The outputs ADDR(7:0), S(3:0), and 

F(15:0) generated from DEC 1, and DECQ routines are used in the micro-control 

unit itself to decide the next instruction to be executed. The gate level description 

of DEC 1 and DECA are shown in Fig. 18 and Fig. 19, respectively. Whereas, the 

outputs CNRL(83:0) generated from other six decoders are control signals shown 

in Figs. 20-25. 
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D. Microsequencer 

The microsequencer (rnSEQUENCER) decodes different fields like ADDRESS 

(ADDR(7:0)), FLAG (F(15:0)), and STATE (S(3:0)) and selects the proper data 

from mSTACK, mPC, REG or DATA. The different sections of mSEQUENCER 

are implemented as follows. 

Micro-Stack Pointer 

A 3-bit synchronous up/down binary counter is designed as the micro-stack 

pointer (mSP). It maintains a fully- independent clock circuit and can be used as a 

register as well. The input is enabled when the STATE fields, S(1) or S(2), is high. 

The up/down mode of counting is decided by the inputs S(2:1) as follows. 

~ S(2:1)=00 disables the counter. 

~ S(2:1)=10 signifies counting up sequence. 

~ S(2:1)=01 signifies counting down sequence. 

~ S(2:1)=11 condition is not possible. 

Fig. 26 shows the implementation of the design. 

Micro-Stack 

A gx7 Static Random Access Memory (SRAM) is designed and implemented as 

a micro-stack (mSTACK). The outputs from the micro-stack pointer are connected 

to the address inputs (ADR(2:0)). The read/write mode depends on the signal S(1) 

and S(2) as follows. 

~ S(2:1)=00 signifies power down inode. 

~ S(2:1)=10 signifies write operation. 

~ S(2:1)=01 signifies read opertion. 

~ S(2:1)=11 condition is not possible. 
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The micro-stack is enabled when S(1) is active, otherwise it remains in the 

power down mode. The data inputs and data outputs are bi-directional. They are 

connected to the outputs from the micro-program counter and are connected to the 

PLA inputs. A 4:1 design rule was followed for dimensioning of the transistors in the 

micro-stack design. The following is a listing of the W/L ratios for the transistors 

throughout the design. 

~ Address Bu/Jers: PMOS-10/5, NMOS-5/10 

~ Address Decoders: PMOS-50/5, NMOS-5/10 

~ Data Bugersi PMOS-10/5, NMOS-5/10 

~ Memory Cells: PMOS-10/5, NMOS-5/10 

~ Pass Gates: PMOS-10/5, NMOS-5/10 at all locations. 

As seen in the listing for the address decoders, the PMOS W/L ratio is quite 

large compared to the other transistor dimensions. This is due to the fact that the 

decoders are configured as 4-input NOR gates whose channel lengths add to give 

an efFective length of 20. Therefore, a 5:1 design rule was followed in this case. The 

following is a listing of the transistor counts of the micro-stack. 

~ Address Buyers: 14 (3 total; includes enable inverter). 

~ Address Decoders: 30 (8 total). 

~ Data Bugersi 84 (7 total). 

~ Memory Cells: 336 (56 total). 

A schematic of the micro-stack spacing locations of each component, followed 

by the transistor level design of each component is shown in Figs. 27-30. The 

physical layout description of the micro-stack will be discussed in Chapter VI. 

Micro-Program Counter 

A 7-bit binary counter with input registers (mPCI) and seven bit registers 
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(mPCO) are designed to function as a micro-program counter. The counter/register 

is enabled as soon as the UNIFIC becomes active; that is; the signal REDY is logic 

0. The same clock is used for the counter as well as the register. The counter state, 

hence, will equal the previous contents plus one when the clock arrives. The contents 

are cleared when the STOP signal is logic 1. The inputs to the register come from 

the outputs of the micro- stack. The registers are loaded when S(1) is enabled. The 

outputs of the mPCI go to the inputs of micro-stack and to mPCO. The mPCO 

register is enabled when the signal P C is active, The gate level description of 

mPCI, followed by mPCO are shown in Figs. 31-32. 

Register DATA 

Fig. 33 shows the design of a 7-bit register implemented as a register DATA. The 

register data is loaded from nROM when the address field in the micro-instruction 

contains a non-zero value. 

nROM 

A Read-Only Memory (ROM) is designed so as to implement DATA. The 

address decoder of the ROM is designed at the gate level. The memory cell array 

portion of the ROM (basically an OR-matrix of a PLA) has been generated using the 

PLA generator available on the Apollo workstation. The circuit is shown in Fig. 34 

and the memory array table is given in Appendix C. The four bits of the address 

field Q(4r1) from the micro-instruction register are connected to the address inputs 

of the nROM. It is enabled when S(3) is logic 1 or S(2) and A(0) are both high. The 

outputs of the nROM are connected to the inputs (DTI(6:0)) of register DATA. The 

register data is selected providing DATA signal is enabled. The implementation of 

the nROM will be discussed in Chapter VI. 
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Register REG 

The signals F(15:0) in conjuction with the information from the data registers 

decide the next word to be loaded into REG. The register REG is selected when 

R G signal is active. The outputs REG(6:0) are fed into the input of micro-progrszn 

counter, PDSR(6:0). The design of the register REG is shown in Fig. 35. 

Multiplexer 

This routine generates the DATA, the P C, and the R G signals according to 

the STATE field (S(3:2), S(0)), the FLAG field (F(0)), and the ADDRESS field 

(A(0)). The ciruit is given in Fig. 36. 

E. Array 

The signals R(33:1) generated by combinational logic routine are fed to the 

inputs of an array. This array is nothing but a mapping table shown in Appendix C. 

The instruction set processor (ISP) description of each routine generating these 

signals is obtained by P. Parikh [9]. This array can also be described as an OR, - 

matrix of a PLA. The PLA generator provided with the Apollo workstation has 

been employed to implement the array which will be discussed in Chapter VI. The 

data selected from this array is loaded into the register REG when R G is active. 

The outputs REG(6:0) are connected to the inputs of the PLA. 

F. Control Store 

The control store is designed so as to be implemented by a PLA. It has 7 inputs 

and 39 outputs. The equation for each output is obtained by P. Parikh [9', . The 

function F(0) corresponds to the MSB of the control word while F(38) is the LSB. 
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The EQNTOTT software on the Apollo workstation hss been utilized to convert 

the output equations into the AND and OR matrix data for the PLA, Then, the 

ESPRESSO (a boolean minimizer software) has been run to minimize the product 

terms of the PLA. The result is shown in Appendix C. Note that in this table the 

AND plane data is given in square brackets while the OR plane data is given in 

its true form. The anal minimized PLA has 7 inputs, 70 product terms, and 39 

outputs. The implementation of the PLA will be described in Chapter VI. 

G. Micro-Instruction Register 

A 39 bit register is designed to function as a micro-instruction register (mIR). 

It is always enabled and is loaded at the rising edge of PHI1. The circuit diagram 

of the micro-instrution register is depicted in Fig. 37. 



66 

CC 
m 

M 
CI 

GI 39:0 

oa 
Na 

7:0 

C 
o 

C 
5 

3 a a 

I 
I CCI 

CCI 

m 

a 3 
is 

a I 23 a a 
F 

13 a 

aa 

o 
0)a 

a 
a 

15 

12 

a 

20 

Ea 5 

0) 
3 

a CO 

a 

a C5 

o 

ia 

I )a 

ol 

0 

0' 

10 

5 a 
a F 

a 
C la 

a 

sa 
10 

C5 

10 

3 
CO I a 5 

Sa a 

7: 0 

ICI 

IC 

CI 0 

o a 
17 

m 
CCI 

03 iS 

Oa I 

a a 
IO 

CCI 

m 

Cl 

o 
a CU 

m 
I a 

)0 )39: 0 

0 (39: 0) 
155 ~ 

A 

13is 

15557 

A. 
131 

15155 
A 

131 

PHI BBAR 

lail 0 

103O 



CHAPTER VI 

LAYOUT DESCRIPTION OF THE MICRO-CONTROL UNIT 

In this chapter, the layout description of the micro- control unit is given. The 

component cell library developed by the MOSIS Engineers was a major initiative 

to design the micro-control unit at the gate level. The Mentor Graphics CELL 

Station has been utilized to implement the physical layout of standard cells. Since 

the component library contains only primitive gates, memory cells have been 

implemented with CHIPGRAPH (a part of the CHIP station). These cells have 

then been incorporated into the CELL station by a set of software tools within the 

Mentor Graphics. 

A. Cell Station Process Flow 

The CELL station consists of consists of three sections: inputs, processing 

modules and output. 

Inputs 

The CELL station requires two inputs: process design rules, and logic input. 

Process Design Rules 

The process design rules define chip technology. It sets constraints such as grid 

and track spacing, power voltage and wire style. This input is contained in the 

CELL station technology directory. 

Logic Input 

As mentioned earlier in Chapter III, a logical design file (DESIGN. EREL) was 

created by expanding the micro-control unit. This file contains all the necessary 

information to be used for the layout process. 
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Processing Modules 

These modules are a set of automatic programs used for the layout process 

of the micro-control unit. Typically, these programs handle most of the work. 

However, CELLGRAPH has utilized for interactive editing. The physical layout 

tools employed for the implementation of the standard cells of the design are 

described below: 

LOGICNNTRY 

This is the flrst step in the layout process of a standard cell design of the micro- 

control unit. The physical design file was created from an expanded logical 

design file by LOGIC ENTRY software. This file was used by standard cell 

layout applications which collect output from all subsequent layout operations 

performed on the micro-control unit. Completion of LOGIC ENTRY sets up 

the next step, generation of the floorplan for the design. 

CELLFLOOR 

The floorplan of the circuit was automatically generated by CELLFLOOR 

program. EDIT PARMS (an interactive program) was used to modify the 

floorplan parameters. 

CELLPLACE 

The placed standard cells of the micro-control unit has been generated by 

CELLPLACE program. The macros in the micro-control unit were placed 

automatically. 

CELLPOWER 

The power nets of the micro-control unit were routed by CELLPOWER 

program (an automatic program). 

CELLROUTE 
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The placed standard cells of the micro-control unit was globaly routed and 

followed by detailed routing of the signal nets. 

CELLSQUEEZE 

It is the function of CELLSQUEEZE to remove excess tracks of the routing 

channels of the micro-control unit. 

MINROUTE 

It minimizes the amount of poly used in the micro-control unit by post-routing. 

Fig. 38 illustrates the micro-control unit after MINROUTE. 

CELLVERIFY 

It does a final check on the validity of the layout produced by CELL station. 

Such as, design rule violations and the electrical connectivity. CELLGRAPH 

was used for interactive editing of the micro-control unit whenever it was 

needed. 

Output 

At the end of the layout process, the chip file was converted into Calma GDSII 

format by GDSII OUTPUT program for fabrication. 

B. Chip Station Process Flow 

As mentioned earlier in Chapter III, The micro-control unit memory cells have 

been implemented with the CHIP station using CHIPGRAPH layout editor. Due 

to the lack of CHIPGRAPH's design rule checker, the cells have been checked using 

MAGIC layout editor. To carry out this task, a process definition file is written for 

the MCIF program to convert a CIF file to CHIPGRAPH database or vice versa. 

Since MAGIC's CIF file had some layer conflictions with the standard CIF file, a 

technology file is written so that it, is compatible with the standard CIF required for 
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Fig. 38 Standard Cell Design of the Micro-Control Unit 
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the MCIF prograin. Having implemented all the memory cells, a CELLJtfODEL 

file and a CELL J, IST file are written for BUILD JIB and TDF CHIP JNPUT 

softwares to convert cells in CHIP GRAPH database into the cells in the CELL sation 

database. The CELL station's LOGIC ENTRY software is utilized to incorporate 

these cells into the micro-control unit standard cells. APPENDIX A Contains all 

the mentioned technology files. Next, The different sections of the memory cells are 

discussed. 

Array 

This array is basically an OR-matrix of a PLA. The PLA generator on the 

Apollo workstation has been employed to implement the array. The layout has 

been checked with MAGIC's design rule checker and converted to CHIPGRAPH 

database by the above mentioned technology files. The layout of the array is given 

in Fig. 39. 

Micro-Stack 

Micro-stack was designed at transistor level and implemented using CHIP- 

GRAPH. The layout of the micro-stack is shown in Fig. 40. The micro-stack layout 

was converted from CHIPGRAPH to MAGIC by MCIF program for design rule 

check. After completion, the CIF file was converted back to the CHIPGRAPH 

format. 

nROM 

Fig. 41 shows the implementation of the PLA. As mentioned earlier, the address 

decoder of the nROM was designed at the gate level. The memory cell array of the 

nROM was implemented using the PLA generator (MPLA) software. After checking 

the layout by MAGIC, the file is converted to CHIPGRAPH database as before. 
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Fig. 40 The Micro-Stack Layout 
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PLA 

The EQUNTOTT software of the Apollo workstation has been utilized to 

convert the output equations into the AND and OR matrix data for the PLA. The 

ESPRESSO (a boolean minimizer) pregram has been run to minimize the product 

terms of the PLA. The PLA layout has then been generated by the MPLA program. 

The layout was fully checked for design rule violations and is given in Fig. 42. 
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Fig. 42 The PLA Layout 
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CHAPTER VII 

SIMULATION RESULTS AND CONCLUSIONS 

In this chapter, the simulation results of the micro-control unit are presented. 

The performance of the micro-control unit is compared with Parikh's functional 

simulation [9]. The steps accomplished to facilitate a more comprehensive digital 

design capability by mixing both standard cell and custom design are summarized. 

Finally suggestions for future work is given. 

A. Simulation Results 

Due to fact that the MOSIS component library does not provide transistor 

cells, the micro-control unit was designed in a hierarchical fashion described by the 

following two simulation tools: 

I) IDEA station's QUICKSIM software for gate level sections. 

2) SPICE for micro-stack, array, nROM, and PLA. 

As a result, the micro-control unit was not simulated as a complete system. 

Table I shows the results obtained for two expressions with an increasing number 

of terms. These results agree with Parikh's functional simulation. Because the 

execution unit of the UNIFIC has not been layed out, the simulated results of 

unification of terms with increasing number of nested function arguments still 

rely on the functional assumptions made in Parikh's work. All of the gate level 

simulations of the micro-control unit are given in Appendix B. The information 

from the simulations shows that the actually UNIFIC chip, in a CMOS layout, 

should easily perform as well as functional simulations have predicted. 



TABLE I. 
Simulation Results f' or Two Expressions 

vcith Increasing Number of Terlns 

Arity 

10 

12 

13 

14 

15 

16 

Expression 
1 

rl&rg 
+1»' '+3 
+1 "&+4 
+1»" +5 

rl!" &+6 

+»" &x7 

+1» " +6 

+1& ' '!+9 
+1» '" +9 

+1&" &eg 

y» yl 
+1&" &*9 

y» "&ys 

+1»" eg 

y»" &y4 

+1&" &+9 

yl » "' yS 

+1» +9 

y». "& ys 

Zl &Kg 

Expression 
2 

A, 
Al, Ag 

Al, . . . , As 

Al, . . . , A4 

Al, . . . , As 

Al, . . . , As 
A». . . , A7 

Al, . . . , A, 
A» . . . , Ag 

A» . . . , Ag 

Bl 
A». . . , Ag 

Bl, Br 
Al, . . . , Ag 

Bl, . . . , Bs 
Al, . . . , Ag 

B». . . , B, 
A». . . , A9 

Bl, ". , Bs 
Al, , Ag 

Bl, . . . , B, 
Al, . . . , Ag 

Time (ps) 

1. 9 
3. 65 

7. 3 
9. 1 

10. 9 
12. 7 

14. 5 
16. 3 
18. 1 

19. 9 

21. 7 

23. 5 

25. 3 

27. 1 

28. 9 
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B. Conclusions 

The goal of this work was to design the micro-control unit using Mentor 

Graphics software package, and to interface custom layout facilities with standard 

cell design tools. The results obtained for the unification process strongly agrees 

with Parikh's work. As a result of designing the UNIFIC micro-control unit 

tools to incorporate custom layout into the standard cell design on the Apollo 

workstations was accomplished . Employing the technology files, CELL LIST and 

CELL MODEL files, given in Appendix A, allow the merger of standard cell tools 

from the Mentor Graphics with custom design tools, either the Mentor Graphics or 

magic, for comprehensive system designs. The following extensions are suggested 

for future work: 

I) Design the execution unit of the UNIFIC. 

2) Implement the UNIFIC by interfacing the existing micro-control unit with the 

execution unit using standard cell layout. 

3) Enhance the simulation tools for more convenient merger of standard cell and 

customized designs. 

4) Provide user Friendly interfaces for guidance between the standard cell func- 

tions and custom I'unctions. 
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'i e 

This technology file is ritten to generate a 

standard CIF file from the MAGIC cn ironment 

for thc MCIF conversion program. Cifoutput 

and Cifinput routines sre combined with the 

scmos. iech20 file to accomplish this teak. 

tech 

kludge 

end 

Cifoutput routioe. , 

cifoutput 

style lambd mt. g(chipgraph) 
seal factor 150 25 

layer CWF pwell 

bloat -or ndifi;ndc, nfet ' 750 

bloat -or psc, ppd 450 

grow 450 
shrinli 450 

cairns 41 I 

layer CMS m2, m2c/m2, pad/m2 

labels m2 

cairns 51 1 

layer CMF p d 

o 150 

ml, m2c/ml, pc/mi, ndc/ml, pdc/ml, ppcont/ml, nncont/ml, pad/ml 
labels ml, m2c/ml, pc/ml, ndc/ml, pdc/ml, ppcont/ml, nncont/ml, pad/ml 
calma 49 1 

layer CPG po ly, p /acitve, nfet, pfei 

labels p*iy, nfct, pfet 

c lms461 
lay r CAN ndiff, nfet, ndc, nncon1 

labels ndiff 

cairns 42 1 

I yer CAP pdiff, pfet, pdc, ppcont 

I b ls pditf 

cairns 43 I 

layer CVA ped 

shrink 450 

cairns 50 I 

1 y rCVAm2c 
squares 150 300 450 
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shrink 600 

or glass 

cairns 52 1 

1 y r XP p d 

end 

Cifinput routine. . . 

ciftnput 

style lambdan2. 5(cbtpgrapb) 
scalefactor 150 
layer pwell CWP 

labels CWP 

1 ye m2 CMS 

labels CMS 

layer tnl CMF 

labels CMF 

layer poly CPG 

labels CPG 
layer ndiff CAN 

lab I* CAN 

layer pdifl CAP 
labels CAP 

layer pfet CPG 

and CAP 

layer nfet, CAN 

and CPG 

and CWP 

layer m2c CVA 

grow 225 

ehrinlt 75 

and CMS 

and CMF 

layer nncont CC 

grow 1 50 

and CAN 

and CMF 

1 yer pdc CC 

grow 150 

and CAP 
and CMF 

layer ndc CC 

grow 150 
and CAN 

and CWP 

nd CMF 
layer ppcont CC 

g * 150 
and CAP 



and CWP 
and CMF 

layer pc CC 
150 

d CPG 
and CMF 

layer glass COG 

layer pad CMF 
shrink 150 

nd CMS 

shrink 450 

and CVA 

shrink 150 
and COG 

gros $00 
and XP 

cairns CWP 41 

cairns CAN 42 

cairns CAP 45 e 

cairns CPG 4$ 

cairns CC 47 * 

lma CMF 40 * 

cairns CVA 50 

cairns 

cairns 

end 

Ch45 51 

COG 52 e 



¹* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - — - - - - - . - - . - 
This is a Process Definition File (PDF) written for converting 

standard CIP file int, o CHIPGRAPH dat bas ¹¹- 
ATTRIBUTE DOMAIN ¹ 

¹ Transparency ( transparent, opaque, xor, no border ) ¹ Pattern ( none, solid, 'b'. . 's' ) ¹ Pill color ¹ Fillmolor 
( red, green, blue, yellow, magenta, cyan, black, white, 

purple, gray, 'light blue', 'yellow green', pink, beige ) ¹ Line color ( red, green, blue, yellow, rnagcnt, cyan, bl ck, whit ¹ Line color 

¹Ln ntyl ¹ Linc idth ¹ Text color 

purple, gray, 'light. blue', 'yellow green', pink, beige ) 

( solid, dotted, short dash, long d sh ) 
1. . $2 

( red, greco, blue, yellow, magenta, cyan, black, white, ¹ Text, color purple, gray, 'light blue', 'yellow green', pink, beige ) 

iranscripiing on 

Lo ding double m 1, 1 CMOS process definitioa 

D fault minimum resolution: 0. 001 microns 

transcripting oif 

define process KLUDGE 0. 001 micron 

define layer name cwp 1 -shape -path -instance p I li 

d fin I y n me cwp. ext 41 -perim ter -port 

deiinc layer name cap 8 -shape -paih -instance -pin 

define layer n ine cap xt 48 -p ri t r -po* 
define layer name can 4 -shape -path -instance -pin 
define layer name can. xt 44 -perimeter -port 
deiine layer name cpg t! -shape -path -instance -pin 

define layer name cpg. ext 48 -perimeter -port 
define layer name cc 7 ~ shape -path -instance -pin 

define layer name cc. ext 47 -perime1er -port 
d 0 1 y n mi 8 -sh pe -path -instan -pi 

define layer nam mi. ext, 40 -per meter -port 

defin layer name cms 9 -shape -path -insiancc -pin 

define layer name cms. ext 49 -perimeter -port 

define chas cwp 

define alias cap 

define alias cen 

d fine li pg 

define alias cc 

d fin ali 

define alias cms 
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~ *me useful I y r groups 

define layer group trans c p cep cen cc cpg 
dcfine Iiyer group int cmf cc cms ¹ 

physical layer groups 

define phy ical layer group PW cwp cwp. ext 

deiine physical layer group ND c n an. ext 

defin phy 
' I layer group PO cpg cpg. cxt 

define physical layer group PD cap cap, ext 

delinc physical lay r group CO cc cc. ext 

define physical layer group Ml «mf cmf. ext 

define physical layer group M2 cms cms. e t 

Define Minimum Layer Widths: 

minimum width PW I 

minimum width PD 4 

minimum idth PO 3 

minimum width ND 4 

minimum width CO 4 

mimmum width Ml 3 

minimum width M2 4 

Dfi Sp gkul 

minimum spacing cpg cpg 3, 0 

minimum spacing cpg cap 4. 0 

minimum spacing cpg can 4. 0 

minimum spacing cml' cmf 3. 0 

m»m sp c 3 * c 5. 0 

minimum spacing can can 4. 0 

rninirn m p ci 3 p ap 4 0 

minimum spacing cap cwp 4, 0 

attributes for layers 

define layer attributes normal c p hll color yellow 

hne color yellow line style long d sh line idth 1 pattern none 

define layer tir but s normal cpg fill color red 

I n color r d lin ntyle solid 

define I yer attribut s norm I can 

bne color meg nte lincuttylc sohd 

line olor green linemtylc solid 

define layer attributes normal Clip 

line width 1 pattern sohd 

fill color green 

line width 1 pattern solid 

fill olo m*g nta 

Ii ldth 1 pattern solid 

define layer ettnbutes normal cc lill olo tan 

lmemolor tan linemtyle solid I idth I pattern solid 
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deR I y r ttribuies normal cml fill color blue 

line color bl li styl solid iin width 1 p tt rn o 

d*fin I y ttributes no rmal cms fill color purple 

line. color purple li * tyl* olid lin idth I patt, 

deAne layer attributes normal p. xt Allmolor y llo 

line color yellow linc style long dash linc width I pattern none 

d fine layer ati, ribuics normal cpg. exi, fill color red 

Ime colo r r d lin wtyle solid line width 1 pattern none 

define layer ttnbutes normal can. ext Allmolor green 

line color gr en lin wtyle solid line width 1 pattern none 

define layer attributes normal cap. ext All color magenta 

hne xolor magenta Iinewtyl solid lin . n idth I pattern «one 

define layer attributes normal cc. cxt fill color tan 

Iinexotor tan linemtyle solid line width I pattern none 

define layer attributes normal cmf. ext All color blue 

linemolor blue linemtyle solid line width I pattern none 

define layer attributes normal cms. ext Atlxolor purple 

line color purple linewtyle solid Ime width I pattern m 

define layer attributes sclccted cwp All color yello 

Itnexotor yellow Iincwtylc long dash linc width 3 

define layer attributes selcctcd cpg Altxolor rcd 
I'n color red Iincuttyle sohd line width 3 

define lay r atiribui s selecied can AIIxolor green 

line color green linemtyle solid lin idth 3 

define layer attribui, I ied p fill olor rn 3 nt 

line color magenta linemtylc solid line vridth 3 

define layer atiributes selected cc Allmolor tsn 

hnemolor ian Imcwtyie solid linc v idth 3 

d An I y r attributes selected cmf lill color blue 

line color bl lin style solid line width 3 

define layer attrii t * I t d fill oto p pl 

line color p rpl linewtyle solid line vridth 3 

define layer attributes selected cwp ext All color yello 

line color yellow lincwtylc long dash linc idth 3 

define layer attributes selected cpg. ext Altxolor rcd 

line olor red linemtyle solid line width 3 

define layer attributes s I cted can. ext Allxolor green 

hne color gr en Iinewtylc sohd hnc width 3 

define layer attrlbut I ct d ap. cxt All *Io m 3 nt 

line color magenta ltnextyte solid line width 3 

define layer attributes selected cc. ext fill color tan 

Itnexolor tan ltnewtylc solid 

d fi I y r attnbuies selecied cmf. ext filtxoloi blue 

li * ole blue hne style sohd hne width 3 

d A I y r sttnbutes selected cms. exi fill color purple 

line coin p pl I n tyle olid lin width 3 
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attributes for item cise es 

d fi it m atiributes normal instance 

define item attributes normal pin 

define item attributes normal port 

define item attributes norm l p rim t r 

define item attribute s*l ted nstance 

define item attributes selected pin 

d fine iiem attributes selected por\ 

definc item attributes selected perimeter 

transcripting on 

Process definition loaded. 

transcripting off 

dtr d menu /idea/united/cds. cmosrnenu 

tincntyle solid pattern none 

linemtyle solid pattern none 

lin style olid patt 
lin wtyt sol d p ii rn non 

linemtyle solid pattern none 

lincatytc solid pattern none 

lineatyte solid pattern none 

Hnewtylc solid pattern none 
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The CELL MODEL file o i in the mo dels of PLA, ARRAY, 

nROM, and RAM vrhich BUILD UP uses to convert thc shapes 

m CHIPGRAPH d t b s to p ns and bio kag in th CELL 

station database. The model file is s set of statements 

hich gi 1 y r nd location data for the p n 

Next, the Process Definition File (kfudgcy. bin) is 

*¹ loaded for PLA, ARRAY, and nROM models. 

MACMODEL PROCESS=//sl/u/golnabi/memory cells/liludge2. bin 

¹¹ PLA model. . . 

BEGIN MODEI NAME=CELLPLA 

BEGIN POWER NAME=VDD 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS 

PHYPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 

BEGIN POWER NAME=VSS 

DEFINE LEVEL=I LAYERS=23 PORM=PORTS th 

PH YPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 

BEGIN SIGNAL 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS 

DEPINE LEVEL=2 LAYERS=32 FORM=PORTS fc 

PHYPROP=PHY PIN LOGPROF=PIN DIRPROP=PINTYPE 

END SIGNAL 

BEGIN BLOCKAGE 

DEFINE LEVEL=I LAYERS=23 FORM=EACH SHAPE 

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE 

END BLOCKAGE 

END MODEL 



ARRAY model. . . . 

BEGIN MODEL NAME=CELLARRAY 

BEGIN POWER NAME=VDD 

DEFINE LEVEL=1 LAYERS=2S FORM=PORTS 
PHYPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 

BEGIN POWER NAME=VSS 

DEFINE LEVEL=1 LAYERS=28 FORM=PORTS Ir 

PHYPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 

BEGIN SIGNAL 

DEFINE LEVEL=1 LAYERS=2S FORM=PORTS 

DEFINE LEVEL=2 LAYERS=32 FORM=PORTS Sr 

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE 
END SIGNAL 

BEGIN BLOCKAGE 

DEFINE LEVEL=I LAYERS=28 FORM=EACH SHAPE 

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE 

END BLOCKAGE 

END MODEL 

nROM mod I. . . . 

BEGIN MODEL NAME=CELLNROM 

BEGIN POWER NAME=VDD 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS 

PHYPROF=POWER PIN DIRPROP=PINTYPE 
END POWER 

BEGIN POWER NAME=VSS 

DEFINE LEVEL=1 LAYERS=28 FORM=PORTS L 
PHYPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 

BEGIN SIGNAL 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS 

DEFINE LEVEL=2 LAYERS=32 FORM=PORTS dr 

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE 

END SIGNAL 

BEGIN BLOCKAGE 

DEFINE LEVEL=1 LAYERS=28 FORM=EACH SHAPE 

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE 

END BLOCKAGE 

END MODEL 

END MACMODEL 

The PDF fil* ' lorded for RAM mod I 



MACMODEL PROCESSm//sl/u/golnsbi/m«m* I *lls/ mosi gin 

BEGIN MODEL NAME=CELLRAM 
BEGIN POWER NAME=VDD 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS 
PHYPROP=POWER PIN DIRPROP=PINTYPE 

END POWER 
BEGIN POWER NAME=VSS 

DEFINE LEVEL=I LAYERS=28 FORM=PORTS lL 

PHYPROP=POWER PIN DIRPROP=PINTYPE 
END POWER 

BEGIN SIGNAL 

DEFINE LEVELml LAYERS=28 FORM=PORTS 
DEFINE LEVEL=2 LAYERS=32 FORM=PORTS gs 

PHYPROP=PHY PIN LOGPROP=PIN DIRPROP=PINTYPE 
END SIGNAL 

BEGIN BLOCKA. GE 
DEFINE LEVEL=I LAYERS=28 FORM=EACH SHAPE 

DEFINE LEVEL=2 LAYERS=32 FORM=EACH SHAPE 

END BLOCKAGE 
END MODEL 

END MACMODEL 
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The CELLOIST S)e contains a list of PLA, ARRAY, nROM, 

and RAM lls which BUILD UP program con arts from their 

CHIPGRAPH representation to thc CELL et tion form t 

CELLLIST 
BEGIN PHYLIB LIBRARY=cell version=l & 

SEARCHm//sl/u/golnabi/pta/memory cells 

DEFINE CELLNAME=((PLA, 0. 0, O. O, N)) MODEL=CELLPLA k 
NAMEw&PHY COMP LOGNAMEm&COMP & 

CLASS=&COMPTYPE PLACETYPm&PLACETYPE 
DEFINE CELLNAME=[(ARRAY, 0. 0, 0. 0, N)) MODEL=CEILARRAY k 

NAME=&PRY COMP LOGNAME=&COMP k 
CLASSw&COMPTYPE PLACETYP=kPLACETYPE 

DEFINE CELLNAME=((NIIOM, 0. 0, 0. 0, N)) MODELmCELLNROM k 
NAMEc &PHY COMP LOGNAMEm&COMP k 
CLASS=&COMPTYPE PLACETYP=&PLACETYPE 

DEFINE CELLNAME=((RAM, 0. 0, 0. 0, N)) MODEL=CELLRAM & 
NAMEm&PHY COMP LOGNAME=kCOMP k 
CLASS=&COMPTYPE PLACETYP=kPLACETYPE 

END PHYLIB 
END CELLLIST 
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AP P END IX B 

GATE LEVEL SIMULATION OF THE MICRO-CONTROL UNIT 



SIM Force statcm nts for COMB LOGIC Routine. 

Set clock period for ISO)OS, and look 

for a change at the output signals R(33:1). . 

clock period 100 

for PH12 0 0 -R 

force PH12 I 50 . R 

Sct inpui ~ for runmng stmulation. . . 

check -aosptlte 

force F 0002 0 ¹¹ Enable F(1) signal. . . 

¹¹ Generate R(1) signal. . . 

force CID1 0 0 

foccc CID2 0 0 

force DTAG1 3 0 

force DTAG2 3 0 ¹ ¹¹ Gencraie R(2) signal. . . . 

force CIDI 1 100 

force CID2 I 100 

Generate R(3) signal. . . 

force CIDI 2 200 

force CID2 2 200 

Gcneratc R(3) stgnal, 

force F 0202 300 ¹¹ Enable F(0) sigaal. . . 

force Z 0 300 ¹¹ Disable Z Sag. . 

¹¹ The operation is succeeded. . 

force CID1 3 300 

force CID'I 3 300 

The operation is failed. . . . 
¹ 
force DTAG2 1 400 

force DTAG1 1 500 

force DTAG2 3 500 
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force F 0001 600 tgtf En blc F(0) signal. . . 

force DTAG1 2 600 

force DTAG2 2 600 

G nerate R(5) stgnal. . . 

for DTAG2 3 700 

cgtg Generate R(6) sign l. . 

force DTAGl 3 800 

force DTAG2 2 800 

G aerate R(5) signal. . 

force DTAG1 2 900 

force DTAG2 1 900 

Generate R(6) stgnal. . 

for DTAG1 1 1000 

force DTAG2 2 1000 

Generate R(7) signal. . 

force F 0000 1100 tgg Initlalise F(15:0) eigr ls. . . 
force DTAG2 1 1100 

for DTAG2 0 1200 

force F 0004 1200 tgg Dtsablc all signals but F(4) sig al. . . 

Ccnerate R(8) signal. . 

force MATCH 1 1200 
force BMR 2 1200 

G rat R(9) stgnal, , 

force BMR 3 1300 

force F 0008 1400 tfgt F(8) stgnal ts settee, 

force MATCH 1 1400 

Generate R(12) stgnal. . . 

fo rce BMR 3 1400 

Generate R(11) signal. . . 

force BMR 2 1500 

force MATCH 0 1600 



G n 1 R(131 stgnal 

(orts F 0008 1600 

C'cn rate R(10) signal. . . 

force F 0004 1700 ¹¹ Enable F(6) ignal. . 
¹ 

Generate R(14) signal, . 

force F 0010 1800 ¹¹ F(4) is logic I 

force DTAG1 2 1800 

force DTAG2 2 1800 

force BO1 0 ISOO 

force BO2 0 1S00 ¹ ¹¹ G nerate R(15) signal. . . 

¹ 
force BOI I 1900 

¹¹ Generate R(16) signal. . . . 

force BOI 0 2000 

fo c BO2 1 2000 

Gener t R(17) s gnal. . . 

force BOI I '2100 

Generate R(18) signal. . 

¹ 
f* * DTAG1 3 2200 

BO2 0 2200 

force DTAG1 1 2400 

fo r * B02 0 2400 

fore BO2 1 2500 
¹¹ R(18) is generated. . . ¹¹ R(19) is generated. . . 

¹¹ Generate R(19) signal. . . ¹ 
force BO2 I 2300 

¹¹ REDY signal i 1 lo gic 1 and STOP signal is acro. . . 

force ARITY 0 2600 

force F 0420 2600 

fo ce SP 0 2600 
¹¹ F(5) and F(10) are boih acti c. . . 

G i R(20 j stgnsl . . 



force SR 0 2700 

force SP I 2800 

¹¹ Generate R(21) signal. . . 

force ARITY 1 2900 

force SR 1 2900 

Generate R(22) signal. . . 

fore F 0060 3000 

for DTAGI 3 3000 
force DTAG2 2 3000 

¹¹ All the signals sre disabled but F(6). . 

¹ ¹¹ Generate R(23) signal. . . 

force DTAGI 2 3100 

¹¹ Generate R(24) signal 

force DTAGI I 3200 

Generate R(25) signal. . 

force F 0080 3300 
DTAG1 2 3300 

force DTAG2 3 3300 

¹¹ Enable F(7) signal. . . 

Gencratc R(28) s gnal. . . 

fo rce DTAG2 2 3e00 

Generate R(27) signal 

¹¹ Thc signal FAIL ¹¹ is a ti ted. . . 

force DTAG2 I 3500 

force F 0200 3800 

force ARITY 0 3800 

force Z I 3600 

Generat» R(30) signal. . 

force Z 0 3700 

Generatr R(28) ign 1 

force F 0100 3800 

force BOI 0 3600 
¹¹ F(8) ts at l*gi I 
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Gener t* R(29) signal 

force 801 1 3900 

R(32) and R(33) signal generated. 

force F 1000 4000 

fore BMR 2 4000 

force F 2000 4100 

Specify th RUN time. . . 

run 4300 

¹¹ The quickeim traces Ble contains the waveform traces. . . 

plot tree comb Jogic/quiclteim traces ~ replace 

The output Blc (quicksirnJist) contains thc logic info rmation. . . 

wntc hst comb Jogic/quicksim Jist -replace 

¹ ¹¹ Upon finish, Erst thc QUICKSIM environment. . . 

Crit ¹ ¹ ¹ 
* SIM Force statements for mIR and InsrMccodc Routine 

* 
Set clock period for 100NS, and look 

for a ch ng at th» output signals F(lsio), 
ADDR(7:0), S(3io), nd CNRL(33i0). . . 

clock period 100 

fore PHI2BAR 0 0 -R 

force PHI2BAR 1 50 -R 

Note that ll the signals er» represent d 

as buses with th i HEX alucs to make the 

the simulation task si r, i. e. , QI ie a 39 bit ide. . 

Thc values of QI d her«are the outputs fro thc PLA. . 

S t puts for running simulation. . . 
¹ 
check -no p k 

for c QI O 0 
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force Ql 16 8808000 100 

force QI 0001104001 200 

force QI 6000168000 300 

¹¹ PDSR(6 0)=01 
*¹ PDSR(6 0)=02 

PDSR(6 0)=03 
PDSA(6:0)=04 ¹¹ PDSR(6;0)=05 
P D 8 A ( 6: 0 ) = 06 

PDSR(6:0)=09 ¹¹ PDSR(8:0)=OB ¹¹ pDsR(e 0)=oc ¹¹ PDSR(e. O)=OE ¹¹ PDSR(6:0)=OF ¹¹ PDSR(6:0)=11 ¹¹ PDSR(6;0)=12 ¹¹ PDSR(6:0)=13 ¹¹ PDSR(6:0)=14 ¹¹ PDSR(8:0)=15 ¹¹ PDSR(S:0)=16 ¹¹ PDSR(6;0)=IS 
41¹ PDSR(6:0)=IA ¹¹ PDSR(8. 0)=IB ¹¹ PDSR(6. 0)=IC ¹¹ PDSR(6. 0)=ID ¹¹ PDSA(e. o)=IE ¹¹ PDSR(8:0)=IF ¹¹ PDSR(6:0)=20 ¹¹ PDSR(6:0)=21 ¹¹ PDSR(6:0)=22 ¹¹ PDSR(6:0)=23 ¹¹ PDSR(6:0)=24 ¹¹ PDSR(6:0)=25 ¹¹ PDSR(6:0)=26 ¹¹ PDsR(e. o)=?7 

PDSR(6 0)=26 ¹¹ PDSR(6 0)=2A ¹¹ PDSR(6:0)=2B ¹¹ PDSR(6 0)=2C ¹¹ PDSR(6 0)=2D ¹¹ PDSR(6:0)=2E ¹¹ PDSR(6:0)=2F ¹¹ PDSR(6:0)=SO ¹¹ PDSR(e:0)=31 ¹¹ PDSR(6:0)=32 ¹¹ PDSR(6:0)=33 ¹¹ PDSR(6:0)=34 

¹¹ PDSR(6:0)=35 ¹¹ PDSR(6:0)=36 ¹¹ PDSR(6 O)=37 

*¹ PDSR(6 0)=38 
¹ PDSR(6:0)=3A 

QI 7007000000 

QI 500220DDDI 

Ql osooooeooo 

Ql 0000000100 

QI 0800160062 

fo rce 

force 

force 

force 

fo 

force 

force 

400 

500 

600 

700 

800 

Ql 0100160062 

Ql 1980160062 

900 

1000 

force Ql 3000004001 1100 

force 

force 

force 

for e 

force 

fore 

1200 QI 02AEOOD055 

QI 0028C08016 

QI 3040C38000 

QI 0012000D20 

QI 4S?041 CDAO 

QI D020e07see 

1300 

1400 

1500 

1800 

1700 

force 
force 

force 

force 

force 

force 

force 

force 
force 

force 

for e 

force 

QI 002D000740 

QI 026901COSO 

1900 
2000 

2100 QI 0022007500 

Ql 5505D60D62 

QI 3000004001 
2200 

230D 

2400 QI 002E008054 

QI 0000000800 2500 

QI 582D200740 

QI 482101CBE6 

QI 5205160062 

QI 0260005001 

QI 0028E08016 

QI ODOIDB8640 

Ql ooolDBee4o 

2600 

2700 

2800 

2900 

3000 

fo 3100 
force 

fore 

force 

force 

force 

force 

fore 

fore 

force 
force 

3200 

QI 0001DB8640 

QI 020041COE4 

3300 
3400 

3500 QI 2DDOC40062 

QI 2380160000 

QI 0000000900 

QI 6860000050 

QI ooeleoooso 

3600 

3700 

3800 

3900 

QI 0060400050 

QI 3B040E8000 
4000 

4100 

force QI 7307A00068 4200 

force 

force 

force 

fo 

QI 0750000000 

QI 0058800072 

QI 005B000072 

QI 7058000A40 

4300 

4400 

4500 

4600 

fo e QI 0002600500 4700 

lo QI 003820004A 4800 

forcr QI 023800004A 4900 

force Ql 487041COE4 1800 



force QI 0438000000 
fo r Ql 0010600020 
force QI 003100006C 
Cor e QI 303000004C 

5000 ¹¹ PDSR(6:0)=3B 
5100 ¹¹ PDSR(6io)=3C 
5200 ¹¹ PDSR(6io)=3D 
53OO ¹¹ PDSR(sio)=3E 

force 

for e 

force 

Corce 

force 

force 

force 

force 

force 

QI 4038000000 

QI 0012000020 

Ql 1FOSOOOO2O 

QI 1818EODOOI 

QI 002E008000 

QI 0000030COO 

QI 00080EAOOO 

QI 0007003020 

Ql 0007003400 

5400 

5500 

5600 

5700 

5800 

5900 

6000 
6100 
6200 

¹¹ PDSA(6. 0)=3F ¹¹ PDSR(sio)=40 ¹¹ PDSR(8 0)=41 ¹¹ PDSR(sio)=42 ¹¹ PDSR(sio)=43 ¹¹ PDSR(6io)=44 ¹ PDSR(6:0)=45 ¹¹ PDSR(6:0)=46 ¹¹ PDSR(6:0)=47 
Cores Ql 0498EOD001 6300 ¹¹ PDSA(Sio)=48 
force QI 0028E08000 6400 
force Ql 00060EAOOO 8500 

Cores QI 0007003400 6800 
force QI 0640000020 6700 

Corcc Ql 0750000020 6800 

Ql 0080030300 6900 

¹ ¹ PD S R(6. 0) = 4A ¹¹ PDSR(sio)=4B ¹¹ PDSR(6:0)=4C ¹¹ PDSA(8:0)=4D ¹¹ PDSR(oiO)=4E ¹¹ PDSR(6:0)=4F 

¹¹ Specify the RUN time. . . 

run 7000NS 

¹¹ The wa cform t r lo ted on quicksim iraces Sle. . 

plot trace comb logic/quicksim traces -r pl ce 

¹¹ The output file contaming thc logic inCormation. . . 

writ I st combdogic/quicksim dist -replace 

Upon Snmb, Ex t the QUICKSIM environment. . 

ex I '1 

¹ ¹ 
SIM Force siaiemcnts for mPCI and mPCO Aoutinc. 

Set clock p rind Co 100NS 

PHIl is used for ounting h PH12 

is used Cor loading th gist ont nts 

into mPCO. . . 

lo k p nod 100 
force PHII 1 0 -REPEAT 
Co PHIZ O 40 -REPEAT 



force PHI2 0 0 -REPEAT 
for~e PHI2 1 50 -REPEAT 
force PHI2 0 90 -REPEAT 

S t put for running simulation. 

check -noepik» 

Cores REDY 0 0 ¹¹ s I, up t, h lo d ng ~ quence. . . 

Cores STOP 0 0 

force STOP 1 30 
¹¹ Initial(ac the rcgistcr ont t ¹¹ 

¹¹ The regist, ers are loaded iC one of ¹¹ the Cour etgnals is enabled. . . 

Cores R G 0 

Cores S(1) 1 

Corcc DATA 0 

force P C 0 

¹¹ the registers are loaded 

sttmulate the tnpute PDSR(gt0) end loolt 

for a change at, thc outputs PO(6:0). . . . 

fo rce PDSR 02 0 

force PDSR IE 100 

Cores PDSR 20 200 

Cores PDSR 2O 300 

force PDSR 3B e00 

1 «p th ountmg s quencc 

force REDY I 100 

Thc counter stet. is now equal 

to the previous register contents plus onc. . . 

fore P O 1 S00 ¹¹ the new register contents are loaded into mPOO. . 

Sp ICy th RUN tim 

run 500 

¹¹ The qutcksim traces file contatns the waveform traces. . . 

plot tree«mPCI/qutcksim traces -replace 

The output Sl (q i k im Jist) ont ' 
s th logic informatton. . 

nte ltst mPCI/qutck m Jtst -rcpl e 



103 

Upon fintsh, Ex(t thc QUICff S)M cn ironmenl. . . 

xtl 

SIM Force stet. ements for mSP Routine. 

Set clock penod for 100NS, and look 

for counting seq *ncaa of lh outputs ADDR(2:0) 

clock period 100 
force PHll 0 0 -R 

force PH11 1 50 -R 

Set inputs for running simulation. . . 

S(2:1)=1 will nable lhc counter. . . 
check . nosplke 

force STOP 0 0 dttg tnitialtse thc counter. . . . 

force STOP 1 30 0!dt set up the counting condition. . . 

Counting down sequence 

force S 1 100 
force S 1 200 ggt ADDR(2:0)=7 
force 5 1 300 
force S 1 400 

force S 1 500 

fores S 1 600 

force S I 700 

for 5 1 000 

for S 1 900 5272 ADDR(2:0)=0 

Counting up scqucnce, 

fore«S 2 1000 dttg ADDR(2:0)=1 
force S 2 1100 
force S 2 1200 

for c S 2 1300 

force 5 2 1400 
fo rce 5 2 1500 

force S 2 1600 720! ADDR(2:0)=7 

Specify the RUN ttme. 

run 1700NS 

Thw 1'o t *lo t*donqkt t *dl 
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plot trace mgp/quicksim tre . rcplac 

The output Sle cont n' g the logic information 

rite lt t mSP/quickstmdisl -replace 

¹¹ Upon 6 ish, Extt the QUICESIM environment. . 

exit 

SIM Force statements for Address Decoder 

portion of the nROM. 

Set clock period for IOONS, and loolt 

Cor a change at the output signals IN(15, 0). . . 

clock p riod 100 
Cores PHII 0 0 -R 

force PH11 1 50 -R 

Sct inputs for runnmg simulation. 

Inputs are Q(4:I). . . 
check -nospike 

fo rce Q 0 0 ¹¹ IN(15:0)=0001 
for Q I 30 ¹¹ IN(15:0)=0002 
fore* Q 2 60 ¹¹ IN(15. 0)=0004 
force Q 3 90 ¹¹ IN(15:0)=0008 
force Q 4 120 ¹¹ IN(15 0)=0010 
force Q 5 150 

force Q 6 180 

IN(1$:0)=0020 
IN(1$:0)=00@0 

for Q 7 210 jj!¹ IN(15:0)=0080 
force Q 3 240 ¹¹ IN(1S:0)=0100 
fo r Q 9 270 ¹¹ IN(15;0)=0200 
Cores Q A 300 

Cores Q B 330 

force Q C 360 

fore» Q D 390 
farce Q E 420 

force Q F 450 

¹¹ IN(15 0)=0400 ¹¹ IN(15:0)=0800 ¹¹ IN(15:0)=1000 ¹¹ IN(15 0)=2000 ¹¹ IN(15 0)=4000 ¹¹ IN(15tO)=8000 

¹¹ Sp* fy th RUN time. . 

run 460 

Th«quickstm traces Sle cont th w veform traces. . 

plot tr ce rnIR/qujckstm trace. ~ repl 



The output file (quicksiindmt) contmn th logic information. . 

it list mIR/quick im dist -replace 

Upon finish, Exit ihe QUICKSIM en ironment. . . 

CX)t 

SIM Force statements for regl ter DATA. 

Sct clock p nod for 100NS, and look 

for a change t thc o tput signals DT(6:0). . . 

clock period 100 

force PHII 0 0 -R 

force PHII 1 50 -R 

Set inpuis fo r running simulation 

inputs are DTI(di0). . 

check -nospikc 

force DATA 0 0 

for DTI 00 0 

fo DTI OE 100 
force DTI 23 200 

¹¹ Enahlc the register DATA. . ¹¹ DT(gio)=00 ¹¹ DT(6. 0)=OE ¹¹ DT(6:0)=23 

Specify th RUN time. . 

run 250NS 

The quicksim traces file contains the aveform traces. . . 

plot trace DATA/q icksim traces -replace 

¹ 
Thc output lil (qui kstmdist) contains the logic information. 

write list DATA/qutcksimdist -replace 

Upon fimsh, Exit the QUICKSIM en ironmcnt. . . 

xit 

SIM Force st tern nt. Io g st RED. 
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Set clock penod for 100NS, and look 

fof a change at the out. p t s gn ls REG(6:0). . 

clock p«riod 100 

force PHII 0 0 -R 

force PHII I 50 -R 

Sct inputs for runmng simulation 

Inputs ar REGI(6i0). . . 

check -nospikc 

force R G 0 0 

force REGI 10 0 

Enable the rcgistcr REG. 

tktg REG(8 0)=10 
force REGI 2E '100 tggt REG(8:0)=2B 
force REGI 3C 200 tggt REG(6:0)=3C 
force REGI 33 300 dtgt REG(8:0)=83 

sgtg Specify the RUIV time. . 

run 330NS 

tktk The quicksim Jraces file contains thc vvavcform traces. . . 

plot trace REG/quicksirn tr e -r pl e 

Thc output file (quicksim Jist) cont m th logic informaUon. , . 

rit lisi REG/quicksim Jist, -replace 

Upon fini h, Exit the QUICXSIM environment. . . 

c x i t. 

SIM Force statements for MUX. 

set inputs for simulation 

The 5(3i2), 5(0), A(0), and F(0) signals are thc inputs. 

Th outputs from the MUX are P C, R G, and DATA signals, , 

check -nospike 

force F(0) 0 20 

for 5(0) 0 20 

force A(0) I 50 

for 5(3 2) 3 30 

force 5(3 2) 2 60 

gtk P C signal is active. . 

(33( R G signai is ective . . 

DATA 8 I is tiv 
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¹¹ Sp tty I. he RUN time. . 

run 100NS 

Th* qui ksi ur ces Sle contains thc waveform traces. . . 

plot irace MUX/quicksim traces -replace 

Thc output Rl* (quicksimSist) contains th logic information. . 

rit Ii t MUX/quicksim Sist -replace 

¹¹ Upon finish, Exit the QUtCKSIM environment, . . . 

exit 
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THE NROM, ARRAY, AND PLA MEMORY ARRAYS 
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The Memory Cell Array oI th aROM 

[ 01] DTI(ero)=01 
0000001 

[ 02] DTI(6ro)=02 
0000010 

[ os] DTI(e:o)=os 
000001 1 

[ 04] DTI(6ro)=04 
0000100 

[ 05) DTI(6. 0)=05 
0000101 

[ 06] DTI(S:0)=06 
00001 I 0 

[ 07] DTI(6:0)=07 
00001 I I 

[ 06] DTI(6:0)=08 
000011 I 

[ 06] DTI(ero)=06 
0001001 

[ OA] DTI(6:0)=10 
0001010 

[ OB] DTI(6:0)=11 
0001011 

[ OC] DTI(6;0)=12 
0001100 

[ 0D] DTI(e:o)=15 
0001101 

[ OE] DTI(6:0)=14 
0001 I 1 0 

[ OF] DTI(6. 0)=15 
0001110 

[ lo] DTI(6 o)=re 
0001111 



The Mapping Tahl* of Ihe Array 

[ 01] rag=07 
00001 1 1 

[ 02] rag=08 
0001000 

[ 03] rag=09 
0001001 

[ 04] rcg=lO 
0001 01 0 

[ 05] rag=23 
0010111 

[ 06] rag=29 
0011101 

[07] r. g=34 
0100010 

[ 08] rag=54 
0110110 

[ 09) rag=55 
01 1 01 I 1 

[ OA] rag=58 
0111010 

[ OB] rag=60 
0111100 

[ OC] r 8=81 
0111101 

[ OD] r g=64 
1000000 

[ OE[ res=13 
0001101 

[ OF] r 8=17 
0010001 

[ 10] rag=19 
00 I 00 1 1 

[ 11] rag=22 
0010110 

[ 12] rag=31 
001 1 1 1 1 

[ 13] rag=33 
01 00001 

[ 14] rag=41 
0101001 



The Mapping Table of the Array ( nti u 8) 

[ 15] rcg=01 
0000001 

[ 16] regna 50 

0 1 1 00 1 0 

[ 17] rag=51 
0 1 1 00 1 1 

[ 10] rag=52 
0110100 

[ 19] rag=46 
00 1 101 0 

[ 1A] rag=47 
0101111 

[ 1B] rag=48 
0110000 

[ 1C] rag=26 
0011010 

f 1D] rag=28 
001 1 1 00 

( 1E) rag=39 
0100111 

[ tF] rcg=65 
1 0 0 000 1 

[ 20] rag=67 
1000011 

[ 21) rag=71 
1000111 
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Thc Control Store Ustng a PLA 

[ 00] getexpO 

00001 I 

[ 01] getexpl 
OOOODO 

[ 02) fetopt 
I I 00 00 

[ 03] letop2 

00 I I I I 000 I 0000000 I 0000000000 0000 I 

D00000001 000000000100000000D DOOOO 

000000000000101 I 01 000000000000001 

I I 10000000001 I I 000000000000000000000DO I 

f 04] fctopg 
I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I D 0 0 0 0 I I 0 I D 0 0 0 0 0 0 0 0 0 0 0 

f 03] I tope 
0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ 00] tagdecode 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 D I 0 0 0 0 0 0 0 I 

I 07] «onintl 

0 0 0 I 0 D 0 I 0 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 D 0 0 0 D 0 I I D 0 0 I I 

[ 08] contttl 

0 0 I 0 0 0 I 0 D 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 0 0 0 D 0 I I 0 0 D I I 

f 00] conatml 
001 I 00 

[ OA] var arl 
I I 0 0 0 0 0 0 0 0 0 0 I 0 I I 0 0 0 0 0 D 0 0 0 0 I I 0 0 0 I I 

0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 I 0 0 0 0 0 0 0 0 D 0 0 0 0 0 

[ OB] rvar2 

0 0 0 0 0 I 0 I 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I I 0 I 0 0 0 D D I 0 I 0 I 0 0 

[ OC] varvar3 

00000 0000 I 01 0 00 I I I 00 00 0 I 00 D000000 D I 0 I I I 

[ OD] unbnd I 
01 I 000001000000 I 100001 I I OOD000000000001 

[ OE] unbndvv2 

0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ OF] unbndvv3 

I 0 0 I 0 0 0 0 I I I 0 0 0 0 0 I 0 D 0 0 0 I I I 0 0 0 D 0 0 I 0 0 0 0 0 0 I 

[ 10] unbnd 

0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 I I D 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 I 

[ 11] onebndvvl 

0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 I I 0 0 0 0 I I I 0 0 0 0 I I 0 0 I 0 0 0 0 D I 

[ 12] onebnd v2 

I DOI 00001 I 10000010000011 1000DOOI I I 001 Dl 

[ 13] t obnd I 

0 0 0 0 0 0 0 0 0 I 0 I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 I I I 0 I 0 0 0 0 0 I 

[ 14] t obndvv2 

0 0 0 0 0 I 0 0 I I 0 I 0 0 I 0 0 0 0 0 0 0 I I I 0 0 0 0 0 0 I 0 0 0 0 0 0 I 



The Control Store Ueing PLA (continu d) 

[ 15] t ob dvv3 

0 0 0 0 0 0 0 0 0 I 0 0 0 I 0 D 0 0 0 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 I 

[ 16] bthbndvvl 

I D I 0 I 0 I D 0 0 0 0 I 0 I I I 0 I 0 I I 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 I I 

f 17] arco I 

0 I I 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

[ 18] rcon2 

0 0 0 0 0 0 0 0 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 0 I 0 I 0 I 

I IS] varcon3 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 D 0 I 0 0 0 0 0 0 0 0 0 0 I 

[ IA] unbnd cl 
0 I I 0 0000 I 0 I I 0 I 00 I 000 0 D 00 00 0 I I I 0 I 0 0000 I 0 

[ 18] «nbadvc2 

I D 0 I 0 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 0 0 I I I 0 0 I 0 I I I I I 0 0 I I I 

[ I C] bndvcl 

I 01 00 I 0D OOOO I 01 ODD I 0 I I 000000 D0001 I 000 I I 

[ ID] convarl 

0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 0 0 D 0 0 

[ IE] conv r2 

0000000001010001 I 1000001 D0000000001 01 I I 

[ IF] unbndevl 

0 0 0 0 0 0 0 0 0 D 0 0 0 0 I I I 0 I I 0 I I I 0 0 0 0 I I 0 0 I 0 0 0 0 0 I 

I 20] «nbndc 2 

0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 I I I 0 0 0 0 0 0 I I I 0 0 I 0 I 

[ 21] bound vl 

0 I 0 I I 0 I 0 0 0 0 0 0 0 0 I I 0 I 0 I 0 0 0 0 0 0 0 0 0 D 0 I I 0 0 0 I I 

f 22] funfunl 

0 I 0 0 0 I I I 0 0 0 0 0 0 0 D 0 D I 0 I I 0 0 6 D D 0 D 0 0 0 0 0 0 0 0 0 I 

[ 23] dec. z. arity 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 I 

[ 26] pu hl 
I I 0 I 0 0 0 0 I I 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 I 0 I 0 0 0 I 

[ 25] pueh2 

0 0 0 0 0 0 0 0 I I 0 0 0 0 I 0 I I 0 0 0 0 0 0 D 0 D 0 0 0 0 0 I 0 I 0 0 0 I 

[ 26] pueh3 

000000 
[ 27] funfun2 

01 I I 01 

001 I 00000010000000000000001 01 DD0 I 

I I 0 0 0 0 I 0 0 0 0 0 0 I I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ 28] funfun3 
'I I I 0 0 I I 0 0 0 0 0 I I I I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 I 0 0 I 

f 29] popl 
00001 I I 01010000000000000000000000000001 
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The Contro l Store Using PLA (co tinued) 

[ 2A) pop2 
0 0 0 0 0 0 0 0 I 0 I I 0 0 0 I 0 0 D D 0 0 D D 0 0 0 0 D D 0 0 I 0 I 0 0 I I 

[ 2B) pop3 
0 0 0 0 0 0 0 0 I 0 I I 0 I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 I I 

IIC] P Pe 

I I I 00 000 I 01 I 0000000000000001 01 00 I 00 00 0 I 

[ ID] incmarl 
0 0 0 0 0 0 0 0 0 D 0 0 0 I 0 0 I I 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 0 I 

[ 2E] setcsmbitl I 
0000000001 I I ODOOD I ODDDDOOOOD00001 I 0101 I 

[ 2F) sctcambit12 
000001 0101 I 100000000DD00000000001 I 0101 I 

[ 30) setcambit13 

0 0 0 0 I 0 0 0 0 I I I 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ 31) setcambitlt 
D 0 D 0 0 0 0 0 0 0 I 0 0 0 0 0 I I 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 I 0 0 0 0 I 

[ 32] setcambit21 

0 0 0 0 0 0 D D D I I D 0 0 I D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 0 I I 0 I 

[ 33] seteambil22 

0 I I 00000 01 I 00000 000000000000 D0001 I 0 I I 0 I 

[ 34] setcambit23 

I 0 0 D 0 D 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 I 

[ 35] seteambit24 

0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 D 0 I 

[ 30] pr bndl 

I 01 I I I 11 DO I I 0000000D00000000000001 00001 
f 37] \empbndll 

I 01 I 0000001 I 0001 I 1000001 101 000000000000 
[ 30] tcmpbnd12 

0 0 0 0 0 0 0 0 0 I 0 I I I 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ 39] t mpbound13 
000000000000000000000110000110D00100001 

[ 3A] addcntl1 
0 0 0 0 0 0 D 0 0 0 0 I 0 0 0 0 0 0 0 I I I 0 I 0 I 0 0 0 0 0 0 0 0 0 0 0 0 I 

[ 3B] addcnt12 

D0000000 
( SC) prcbound2 

00000000 
[ 3D] tempbound21 

00001 001 

0 0 0 0 I I I 0 0 0 0 0 0 0 0 0 0 I I 0 0 0 0 0 0 I 0 0 D 0 I 

0 0 D 0 I I I 0 0 0 0 0 0 0 0 D 0 I I 0 I 0 0 0 0 0 0 D 0 0 I 

001 I DOD I I 1000001 I 01 000000000000 
( 3E] t mpbound22 

0000000001010001 I 1000001 000000000000001 



Th Co ntro l Store Ustn3 PLA (contmucd) 

[ 3P) t mphound23 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 D 0 0 0 0 1 

[ 40) addent21 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 

41] addent22 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 D 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 1 

[ 42) push 

0 0 0 0 1 1 0 1 1 D 0 1 0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

[ 43] pop 
0 0 0 0 1 1 1 D 1 0 1 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

[ 44] cams rchl 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D 0 0 1 1 0 0 0 0 0 0 1 0 0 0 D 0 0 0 0 1 

[ 45] camsearch2 

0 0 0 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 D 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 
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