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ABSTRACT 

A Micromechanical Approach to Modeling 

Partly Saturated Soils. (December 1986) 

Mark Jackson Lamborn, A. A. , Montgomery College; 

B. S. , Texas AAM University 

Chairman of Adv1sory Committee: Dr. Robert L. Lytton 

Constitutive equations are given wh1ch seek to represent the 

load-deformation behavior of soils. The so1 I is viewed as a two phase 

system. One phase represents the so11 particles as a collection of equal 

spheres in contact. The other phase, representing an air-water mixture, 

is contained i n the void space surroundi ng the equal spheres . Both 

phases are modeled as homogeneous, i sotropi c, 11 near elastic mater1 al s. 
The constitutive equati ons are developed thr ough thermodynam1c 

considerations and attempt to recognize actual deformati on mechani sms 

wh1ch are present on the microscale. In their f1nal form, the 

constitut1ve equations are in terms of material properties, particle 

si ze, degree of saturat1 on, some di mensi onless quantities, and the loads 

transm1tted by the indi v1dual part1cles. The determi nati on of the 

dimensi onless quant1ti es, requi red for the evaluation of the constitutive 

equations 1s d1scussed. Values for these dimensi onless quanti ti es are 

not available at present. Approxi mat1 ons for the loads transmi tted by 

indi vidual part1cles are gi ven. 
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CHAPTER I 

INTRODUCT'ION 

BACKGROUND 

Recently much work has been directed towards developing 

constitutive models to represent the complex load-deformation behavior 

of 

soils� 

. The models developed to date have primarily been for the 

special cases of dry and completely saturated soils . The use of these 

constitutive models in representing the behavior of partly saturated 

soils has resulted in inaccurate predictions of soil response. It is 

the intent of this research to formulate a constitutive model 

describing the behavior of partly saturated soils. 

There are essentially two approaches which have been used by those 

attempting to develop constitutive laws for soils . The fi rst approach 

is termed phenomenological modeling. Phenominological models may be 

defined as those concerned with describing material behavior on the 

size scale of the experi ment . For soils, thousands to millions of 

soil grains and pores would be included in a model representation of 

this type. Phenomenological methods or theories include empirical 

curve fitting, elastic theories, elastic-plastic theor'ies, and 

viscoelastic theories. These methods and continuum theories are 

concerned with describing the overall observable behavior of the soil 

The citations on these pages follow the style of the Journal of 
Geotechnical Engineerin Division, ASCE. 



mass. They are not concerned with describing the actual deformation 

mechanisms, which act on the level of the grains and pores which 

comprise the soil mass . The second type of approach is termed 

micromechanical modeling. This approach attempts to derive 

constitutive laws by considering the deformation mechanisms acting on 

a very small but representative sample of the material. For soils, a 

micromechanical model description might include one to hundreds of 

grains and pores in the model description. 

The primary problem with constitutive models representing soils, 

is a failure to describe all aspects of their load-deformation 

behavior. While a model may give reasonable predictions under one set 

of input, it may fail to predict the soil response under another set 

of input . With the present knowledge it appears that a consti tuti ve 

model representing all aspects of soil behavior may not be obtainable. 

This is due partly to a lack of understanding of the mechanisms 

causi ng soil deformation and partly due to the mathematical 

complexities one may encounter when modeling soils. A micromechanical 

approach to the constitutive modeling of soils may provide a better 

means to understand the soil load-deformation mechanisms . 

SCOPE OF WORK 

The purpose of the research studies contained in this report is to 

develop a constitutive model representing the load-deformation 

behavior of soils. The following types of investigations are 

contained in this report: 



a) Review of the available literature on previously developed 

constitutive models describing the load-deformatjon behavior 

of soils. 

b) Development of constitut1ve equations to represent the 

load-deformation behavior of partly saturated soils, under 

idealized cond1tions. The constitutive equations will be 

developed using a m1cromechanical approach, and will attempt 

to recognize some of the deformation mechanisms present on 

the microscale. 

NETHOD OF APPROACH AND ORGANIZATION 

The studies undertaken to achieve the stated objectives are 

described in the subsequent chapters. 

Chapter I I contains a brief description of exper1mental ly observed 

load-deformation behav1or of soils and a review of the approaches 

taken in the development of constitutive equations to describe th1 s 

behavior. 

Chapter III reviews the development of constitutive equations to 

predict the load-deformation behavior of an 1deali zed partly saturated 

soil system. 

Chapter IV contains some simple examples of predicting soil 

response with the newly developed const1tut1ve equations for the 

idealized partly saturated soil system. 

Chapter V contains conclusions and recommendations. 



CHAPTER II 

PREVIOUS WORK 

LOAD DEFORMATION BEHAVIOR OF SOILS 

When a soil mass is subjected to any arbitrary set of surface 

tracti ons, the result will be a volume deformation of the soil mass. 

The resulting displacement and stress fields within the soil mass wi 1 1 

depend on a number of variables. These variables include the type of 

loads applied, the stress history, and the chemical and physical 

properties of the soi 1 mass. 

Experimental observations of the response of a soi 1 mass to 

various applied loads has provided a great deal of information 

concerning the load-deformation behavior of soils. The information 

provided by experimental work wi 1 1 be discussed 

briefly� 

. 
Shown in Figure 2. 1 is a typical pressure vs. volumetric strain 

curve. This curve would be obtained by performing a lab test on a 

soil sample. The arrows appearing on the curve shown in Figure 2. 1 

indicate the load path taken. Initial loading of a soil mass results 

in a state of stress within the soil, which the soil experiences for 

the first time. In Figure 2. I, initial loading curves correspond to 

those lying between points I and 5, and points 7 and 8. When the soil 

particles are initially in a loose state, a small change in pressure 

may result in a large volume deformation. This is due to grain 

movement resulting in densification of the soil mass. Behavior of 

this type is shown as that portion of the curve connecting points I 



0 
0 

Volumetric Strain 

Figure 2. 1. -- Pressure Versus Volumetric Strain Curve for a 
Typical Soil. 



and 2 in Figure 2. 1. As the stress is increased past point 2 in 

Figure 2. 1, the soil will stiffen as repacking of the soil grains 

continues. At some intermediate stress level the soil may again soften 

as a result of fracturing and yielding of the soil grains. This 

behavior is illustrated by the portion of the curve lying between 

points 3 and 4 of Figure 2. 1. As the soil mass is loaded past point 4 

of Figure 2. 1, the soil will stiffen. When the minimum void ratio is 

reached, continued loading of the soil mass will result in failure; 

When an applied load is removed from a soil mass, rebound will 

normally occur resulting in an increase in soil volume. The stress 

path taken by the soil mass during unloading will typically be 

different from that taken for initial loading. 4 typical unloading 

curve is shown in Figure 2. 1 as that between points 5 and 6. It is 

shown in Figure 2. 1 that the stress occur ring within the soil mass is 

not a single valued function of strain. Instead the stress at a 

particular value of strain may be multi-valued and its magnitude at a 

particular time will depend on the load-deformation history of the 

soil 

The term reloading refers to the addition of a load to the soil 

mass which results in a stress state which the soil has previously 

experienced. A typical reload curve is shown in Figure Z. I as that 

portion of the curve connecting points 6 and 7. When a soil 

experiences an unload-reload cycle, there will in general be a volume 

change associated with this cycle. As shown in Figure 2. 1, the 

unload-reload cycle begins at point 5 and ends at point 7. The volume 



change which occurs during this cycle is proportional to the 

difference in the volumetric strains corresponding to points 5 and 7. 

When the reload path reaches point 7 of Figure 2. 1, continued loading 

will follow a path similar to that for initial loading. 

Soils also exhibit interesting behavior when loaded in simple 

shear. The behavior of soils when loaded in simple shear will depend 

on the initial void ratio of the soil. When a soil of an initially 

high void ratio is loaded in simple shear, a densification of the soil 

will result. This decrease in volume is due to particle 

rearrangement, yielding, and fracture. Densification continues with 

increased loading until a minimum void ratio is reached. Upon 

obtaining thi s minimum void ratio, continued loading will cause the 

soil to fail, with a dilation of the soi 1 mass usually associated with 

failure. The dilation of the soil mass occurs because, in order for 

the soil to fail, grains must ride over one another. Soils which 

exhibit the behavior just described are loose granular materials and 

normally consolidated clays. For soils of an initially low void 

ratio, the application of a simple shear loading will result in 

dilation of the soil mass. This is because the void ratio of the soil 

mass will be near its minimum value and for deformation to take place, 

the soil grains will have to slide over each other. Soils which show 

this type of behavior are dense sands and overconsolidated clays. 

Some typical stress-strain curves for different soils loaded in pure 

shear are shown in Figure 2. 2. 
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Figure 2. 2. -- Volumetric Strain Versus Shear Stress Curves 
for Some Typical Soils. 



For some soils, the total deformation resulting from the 

application of a load will not occur instantaneously, but rather it 
will occur over a period of time. This type of deformation is 

referred to as consolidation and is found to occur in silts and clays. 

Theories which predict the amount and rate of consolidation usually 

consider the soil to be saturated. The common assumption is that when 

a load is applied to the soil, it is initially transferred to the 

liquid phase present in the pores of the soil mass. This results in 

an increase in the pore pressure so that steady-state conditions in 

the pores no longer exist. Over a period of time, steady-state 

conditions will be obtained, requiring a flow of the liquid from the 

pores. This causes a dissipation of the pore pressures until 

hydrostatic pressure is achieved. As the pressure is dissipated from 

the pores, the load will be transferred to the soil grains resulting 

in consolidation of the soil mass. The permeability of the soil 

controls the rate at which liquid may flow from the pores thus 

controlling the rate at which consolidation takes place. The behavior 

described above is termed primary consolidation and is shown in Figure 

2. 3. 

Secondary consolidation, or creep is also shown in Figure 2. 3. 

Secondary consolidation is defined as the deformation which takes 

place after the pore pressures have reached steady state conditions. 

Theories exist for the prediction of secondary consolidation but to 

date, none have found general acceptance. 
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Figure 2. 3. -- Yolumetric Strain Uersus Log (time) for a 10 
Silt or Clay Under Constant Load. 



CONSTITUTIVE MODELS REPRESENTING SOIL BEHAVIOR 

Over the last two decades much work has been done to develop a 

constitutive model to represent the load-deformation behavior of 

soils. Thus far, most of these models are used to represent the 

behavior of dry or completely saturated soils. When these models have 

been used to represent the behavior of partly saturated soils, they 

yielded poor predictions of the soil response. However, these models 

are worthy of some attention, since they provide some insight to the 

approaches which have been taken to develop constitutive laws 

describing soil behavior. 

The problem of developing a constitutive model for soils has 

followed one of two approaches. These two approaches are termed 

phenomenological and micromechanica1 modeling. The following 

subsections will discuss the soil models obtained from these two 

approaches. 

Phenomenolo ical Models 

Phenomenological models may be defined as those concerned with 

describing behavior on the size scale of the experiment. These models 

treat the soil as a continuum including thousands to millions of soil 

grains and pores in the model representation. Phenomenological 

methods or theories include mathematical curve fitting, elasticity 

theory, plasticity theory, and vi scoelastici ty theory. Some soil 
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constitutive models developed from these methods or theories will be 

discussed. 

Em i ri cal Models. A great many models representing soil behavior 

have been developed using empirical curve fitting methods. This 

approach entai ls making a mathematical fit to experimental data. In 

this manner the response of the soil due to some specific input may be 

predicted. 

Many workers have taken the empirical approach to model the 

pressure-volume behavior of soils. Herrmann ( 12 ) has taken such an 

app'roach in introducing the "P- " description. In this model, the 

pressure was assumed to be a function of the specific volume, internal 

energy, and the porosi ty of the soil. The relationship Her rmann 

proposed is 

(v/o, u) (2. 1) 

where 

the pressure, 

the specific internal energy, 

the specific volume of the soil, and 

the porosity. 

The function f appearing in Equation 2. 1 was assumed to be that which 

relates pressure and volume for the soil particles. Car rol and Holt 
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(4) proposed that it is more reasonable to represent the 

pressure-volume relationship for soils by 

P = — f(v/G, U) 
1 (2. 2) 

When the pressure-volume relationship for the soil particles is known, 

the problem reduces to determining the function 

o = g(P) (2. 3) 

which gives the porosity as a function of pressure. The approach taken 

for this model was to use the Hie-Gruneisen equation of state (4) to 

relate the pressure to the specific internal energy and the specific 

volume, This equation is given by 

T 
P = P + (u-u ) 0 0 v 

(2. 4) 

where 

Tg = the Gruneisen ratio, 

Po = a reference pressure, and 

uo = a reference value of the specific internal energy. 

A polynomial fit was then used to determine the function q. 

Butkovich (3) developed a model relating the porosity to the applied 

pressure. The expression that was obtained i s given by 
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1-(l- — ) log (P) 1 p 

0 c 
log 

( e) 
1 c 

(2. 5) 

where 

oo = the initial porosity, 

Pc = the pressure required for pore closure to be complete, and 

Pe = the pressure required for the onset of pore closure. 

Equation 2. 5 is applicable for pressures within the range between Pe 

and Pc. For pressure less than Pe, the soil is assumed to behave 

elastically. For pressures greater than Pc, the pressure-volume 

relationship for the matrix material is used. In Butkovich's work, the 

pressure-volume relationship for the matrix material is assumed to be 

given by soil unloading data. A polynominal fit to initial loading 

data is used to determine the pressure volume relationship for 

pressures lying between Pe and Pc. Other empirical models describing 

the pressure-volume relationship of soils have been developed, but the 

models cited above are representative of this work. 

Other models have been developed which make mathematical fits to 

deviator stress-axial strain data, obtained from tri axial tests. The 

simplest model of this type is obtained by approximating the deviator 

stress versus axial strain curve by a series of piecewise linear 

curves. This type of approximation is shown in Figure 2. 4. More 

sophisticated mathematical fits such as hyperbolas and cubic splines 

have been made to deviator stress versus axial strain data. The most 
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Figure 2. 4. -- Piecewise Linear Approximation of Deviator Stress Uersus 
Axial Strain Curve Obtained from Triaxial Test. 
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popular of these methods has been the hyperbolic stress-strain model 

used in finite element representations of soil by Ouncan and Chang 

(8). This model is based on the discovery that the deviator stress 

versus axial strain curves for a number of soils could be approximated 

with sufficient accuracy by hyperbolas like that shown in Figure 2. 5. 

This hyperbola may be represented by 

11 

E. ~11 — 
33 11 

(2 6) 

where 

= the deviator stress, 

cll = the axial strain, and 

E = the initial tangent modulus. 
1 

Equation 2. 6 is the basis of the hyperbolic stress-strain model. 

Other empirical relations are used to account for the variation in 

soil stiffness strength with depth and different modulus values for 

loading and unloading. Because of these relationships, the hyperbolic 

model requires a large number of parameters for its use. 

There are some basic problems associated with soil models 

developed from empirical methods. First, an empirical model cannot be 

expected to provide reasonable predictions of soil behavior when the 

soil and — site conditions being modeled deviate greatly from those used 

to calibrate the model. Second, this type of model cannot be expected 

to provide any insight as to the actual physical deformation 



17 

E. 
1 

0 

0 Decrease in Axial Strain 

Figure 2. 5. -- Hyperbolic Approximation of Deviator Stress Uersus 
Axial Strain Curve Obtained From Triaxial Test. 
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mechanisms acting within the soil mass. Despite these shortcomings, 

empirical models are frequently used due to their simplicity. 

Nonlinear Elastic Models. Some models representing soil behavior 

have been developed using non-linear elasticity theories. These 

theories have not found widespread use since their predictions of 

unload behavior will not represent actual soil behavior. For cases 

where initial loading is of interest, nonlinear elasticity theories 

may provide reasonable predictions of soil response. 

Hyperelastic constitutive laws have been used to represent soil 

behavior. These models employ constitutive laws obtained by the 

differentiation of a strain energy function. Different orders of 

hyperelastic models are obtained by retaining the higher order 

derivatives obtained from the strain energy function. 

Truesdell (30) has proposed a rate theory which states that the 

rate of change of stress is a function of the rate of change of 

strain. This is known as the hypoelastic formulation. At present 

this formulation has not found much use in representing the 

load-deformation behavior of soils. 

Elastic-Plastic Models. The use of elastic-plastic continuum 

theory has found widespread use in soil modeling. Recently, many 

constitutive models for soils have been presented which use these 

theories. Genera)ly this type of model assumes a yield criterion of 

the form 
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P 
in which oi j and cij (i, j = 1, 2, 3) are the components of the stress 

and plastic strain tensors, respectively, referred to an orthogonal 

set of Cartesian axes (x;), and X is a work hardening parameter. 
P 

When the above equation is not satisfied [F ( oij cij X ) & 0], 
the material is said to behave elastically. When Equation 2. 7 is 

satisfied, the behavior is said to be elastic-plastic. Deformation 

when Equation 2. 7 is satisfied occurs as a combination, of elastic and 

plastic strains, prescribed by an assumed flow rule. The yield 

surface is typically described in principal stress space as shown in 

Figure 2. 6. The area contained by the yield surface is the region of 

elastic behavior. For a known stress point inside this region, the 

strains are found using elastic constitutive laws. When the stress 

point lies on the yield surface, the total strain is a combination of 

elastic and plastic strains. For a stress point lying on the yield 

surface, further loading may cause the surface to expand, translate, 

or both according to the work hardening rule assumed. Unloading may 

be elastic, or elastic-plastic. 

0 well known elastic-plastic soil model is that developed by 

Schofield and Wroth (26 ), and has been termed "Cam-clay. " This model 

accounts for the volume deformation and strain-hardening of soils. 

The basis of their model is an incremental flow rule which balances 

the irreversible work occurring during deformation against a mechanism 

for the frictional loss. Their flow rule is 



ZO 
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Figure 2. 6. -- TYpical Yield Surface in Principal Stress Space. 
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where 

kf 

pressure, 

volume, 

friction parameter, and 

measures of shear stress and shear strain, respectively. 

In Equation 2. 8 the superscript, P, denotes plastic portions of the 

quanti ties indicated. 

The elastic volume deformation during hydrostatic deformation is 

gi ven by 

g( — ) =-A i/ e AP 

1 P (2 g) 

where 

Ys = the volume of solids contained in the soil, 

AI = a constant, and 

the superscript e is used to denote the elastic portion of the 

quantity indicated. As yielding takes place, the total volume chanqe 

15 

ap 
A( — ) = -A2 — 

P (2. 10) 
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where A2 is a constant. The assumption of an associated flow rule 

gives the following equation of the yield surface. 

p* = log ( — ) e P 
(2. 11) 

Here P* is the intercept of the yield surface with the P axis as shown 

in Figure 2. 7. An important assumption of the "Cam-clay" model is 

that the plastic volume deformation during non-hydrostatic stress 

states is the same as for hydrostatic, but with the P replaced by P*. 

Thus the plastic volume deformati on is given by 

( ) (A2 Al) P* 
p op* 

's (2. 12) 

The Equations 2. 8, 2. 9 and 2. 10 form a system of equations from 

which strain increments may be determined from stress increments, or 

vice versa. The constants Al and A2 are determined experimentally. 

Hydrostatic loading corresponds to a movement along the P axis shown 

in Figure 2. 7. When yielding occurs, a non-hydrostatic loading will 

cause the yield surface to change in accordance with Equation 2. 8. 

Movement of the yield surface is shown in Figure 2. 7. The critical 

state line is shown in Figure 2. 7 as the line connecting points of 

zero slope for all possib'le yield surfaces. This separates yielding 

into densification and dilation. Densification with strain hardening 
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Figure 2. 7 -- Typical Yield Surfaces for "Cam Clay" Model. 
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occurs to the right of the critical state line while dilation with 

strain softening occurs to the left. 

The "Cam-clay" model has proved useful in representing soil 

behavior. However, in this model, elastic shear stresses and soil 

cohesion are completely neglected. The assumption of an associated 

flow rule is also made. This assumption results in a plastic strain 

vector normal to the yield surface. Works such as Nandl and Luque (17) 

and Frydman, et al. (9) have shown that normality of plastic flow is 

neither a mathematical necessity nor supported by experimental 

evidence. The "Cam-clay" model predicts no non-recoverable 

deformati ons for hydrostatic loadi ngs. This is not representati ve of 

soils. Unloading is elastic, which is not descriptive of actual soil 

behavior. 

Sand1er and Baron (21) have introduced the "cap" model to describe 

the behavior of soils. This model is based on a classical plasticity 

model, defined by a yield surface and a strain rate vector. The yield 

surface of this model is shown in Figure 2. 8. Inspection of this 

yield surface shows that three modes of soil behavior are possible. 

These being elastic, failure, and cap behavior . Elastic behavior 

occurs when the stress point lies in the region contained by the 

coordinate axes, the failure envelope, and the cap surface. The 

behavior in this region is considered to be linearly elastic. The 

failure mode of behavior occurs when the stress point lies on the 

failure envelope. The failure envelope is assumed to be fixed . The 

equation of the failure envelope is 
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~J ' = B - B exp (-3 B3P) 
2 1 (2. 13) 

where 

J2' = the second invariant of the deviatoric stress tensor, 

and 

BI, B2, 83 = material constants. 

The model assumes an associated flow rule so that the plastic 

strain du ri ng the failure mode of behavior is composed of a shear 

component and a dilatant component. The cap mode of behavior occu rs 

when the stress point lies on the cap surface, and moves it outward. 

The motion of the cap is related to the plastic strain by a hardening 

rule. The equation for the cap surface is 

(P — Pa) + 
g B4 IIJ2' = (Pb a (2. IZ) 

where 

II = the first invariant of the stress tensor, 

B4 = a constant, and 

Pa, Pb = the pressures at points a and b of Figure 2. 8, 

respectively. 

The cap is related to the strain history of the material through a 

strain hardening rule given by 
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P = 8 (1 - exp (-3 B5 Pb)) 
y 5 

where 

B5 and BB are material constants. 

Here c is related to the past strain history of the soil in the 
— p 

following manner. When the stress point lies on either the failure 
— p 

envelope or the cap surface, the value of c changes exactly as the 

plastic volumetric strain. For a stress point on the cap surface, the 

plastic strain rate vector will be directed as shown in Figure 2. 8. 

The position of the plastic strain rate vector implies that it 

consists of an irreversible decrease in volume in conjunction with an 

irreversible shear strain. This decrease in volume represents 

volumetric hysteresis observed in soil during compaction. As the cap 

moves outward, the compaction resulting from the associated flow will 

lead to an i nc rease i n the cap parameter c . By Equation 2. 15 thi s 
— p 

leads to an increase in Pb, resulting in a movement of the cap to the 

right. When the stress point lies on the failure surface, the plastic 

strain rate vector will be directed upwards and to the left as shown 

in Figure 2. 8. The plastic strain rate vector indicates an increase 

in volume associated with the movement along the failure surface. The 

dilatancy will lead to a decrease in the cap parameter c resulting in 
y 

a leftward movement of the cap by Equation 2. 15. The backward 
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movement of the cap is limited to the point where it intersects the 

stress point lying on the failure surface. 

The soil mode') just described is the basic cap model. 

Modifications to this basic cap model have been made to include 

viscous damping and strain hardening. The viscous cap model is used 

to represent materials which exhibit hystersis during cyclic loading. 

This model was formulated by introducing linear viscous damping into 

the elastic portion of the cap model. This model is shown in Figure 

2. 9. The parameters which define the non-plastic portion of the model 

are an instantaneous modulus Gf, a long term modulus Gs, and a 

relaxation time tr. The parameters Gs and tr are related to those 

shown in Figure 2. 9 by 

GfG 
G = ~+ (2. 16) 

"d( f s t r G f 
(2. 17 ) 

where 

Gv, Gf = the spring moduli for the model appearing in Figure 2. 9, 

and 

ud = a damping constant. 

The deviatoric stress-strain relationship for the viscous cap model is 

s. = 2G e. . + s ij ij 'v 2G e. . -s. . 
1J f 1J 

r 
(2. 18) 
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Figure 2. 9. -- Viscous Cap Model 
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where 

v 
ij' ij s. , e. . 

o s, e. . 
1J ' lj 

components of the deviatoric stress tensor and 

viscoelastic deviatoric strain tensor, respectively. 

rate of change of the components of the devi atoric 

stress tensor and viscoelastic deviatoric strain 

tensor, respectively. 

The parameters Gf, Gs, and tr appearing in the viscous cap model are 

determined from cyclic tri axial data. 

A kinematically hardening failure envelope has been added to the 

basic cap model by replacing the stress tensor o;J by (oij - ', J). 
Here o;j is a tensor whose components are memory parameters defining 

the translation of the failure surface in stress space. In the model 

it is assumed that kinematic hardening occurs only in shear, yielding 

the relation 

akk=0 (2. 19) 

In Equation 2. 19 and henceforth, a repeated index implies summation 

unless otherwise indicated. 

The kinematic hardening rule which governs the memory parameters 

ni J is of the form 

(2. 20) 
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where ei are the components of the deviatoric plastic strain tensor. P 

lj 

In order to represent the non-linear behavior of soils at or near 

failure, it is necessary to assume a non-linear hardening rule. A 

simple rule of this type which gives reasonable behavior at all stress 

levels is 

&x, . = Co F„e. . ij (2. 21) 

where 

o, , o. . Q. 
( ij — ij) iJ 

F = maximum 0, 1 

(~J'2 - N ) (2. 22) 

and 

C = a constant, 

Ny 
= a constant defi ni ng the size of the yield su rface, and 

J '2 = is given by Equation 2. 13. 

Here Fo is related to the proximity of the yield surface to the 

failure surface, and the location of the stress point of the yield 

surface. For n; j = 0, F wi 11 be equal to 1. 0. Therefore from o 

Equation 2. 21 it is found that C is the inelastic slope for the 

initial yielding of the material in shear. F will decrease for 

continued yielding and is equal to zero when the stress point reaches 
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the failure surface. Upon unloading from the failure surface, the 

value of F„will increase, reaching a value of 2 upon reyielding. 

As a final note, the cap model has been modified to represent the 

behavior of saturated soils using the effective stress approach. This 

modification is straightforward and is achieved by replacing the 

stress tensor, o;j, by the effective stress, o;j. The effective 

stress tensor is determined as 

I 

ij ij w ij (2. 23) 

in which Pw is the pore water pressure, and G;j is the Kronecker 

delta. 

Although the cap model has been used successfully to model several 

soils, there are some difficulties associated with it. A major 

problem is that a large number of parameters must be determined from 

experimental data and their determination may require special tests. 

Another problem is the assumption of an associated flow rule. This 

assumption is not necessarily correct for soils. 

Other elastic-plastic constitutive models for soils have been 

developed. The models may use different yield surfaces or a 

non-associated flow rule, but the methodology used to formulate these 

models is the same as those already described. 

Vi scoelastic models. Soils exhibit vi scoelastic behavior in that 

the response of a soi 1 to some specific input i s dependent on the 
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entire past history of input to the soil system. Viscoelastic theory 

can be used to. include rate and history effects in soil constitutive 

models. 

Nonlinear viscoelastic theory was used by Schapery and Riggins 

(23) in the development of cyclic constitutive equations for marine 

sediment. Only simple shear of the marine sediment was considered. 

The shear strain, clZ, was assumed to be related to the shear stress, 

a12, through a modified superposition integral given by 

t 
= G J(t-s) — ds 

df 
12 R ds 

0 

(2. 24) 

where 

GR 

f (olZ, Sd) 

an arbritary constant, 

the linear viscoelastic creep compliance, 

a damage parameter, and 

time. 

(2. 25) 

The damage parameter, Sd, is used to account for the effect of damage 

growth in the marine sediment. The damage parameter, Sd, depends on 

stress history. One form derived by Schapery (22) is 

(2. 26) 
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in which q is a positive constant, and the coefficient fl comes from 

the expression 

D q 
a = «1 loi2I 

(2. 27) 

where a is the damage growth rate and c is a positive constant. The 

term fl is positive and serves to define the ease at which defects 

will grow at a certain stress level. Predictions of the response of 

marine sediments undergoing simple shear were made using this theory. 

It was reported that the theory predicted the essential 

characteristics of the soil data under monotonic and periodic 

strai ni ng. 

Micromechanical Models 

Mechanistic modeling of soils has been approached from two 

different viewpoints. One approach has been to treat the soil as an 

assembleage of particles in contact as shown in Figure 2. 10. The 

particles within a soil mass are random in shape and size and to use 

this approach some assumptions as to size and shape must usually be 

made. Once a model representing the soi I mass has been chosen, the 

solution consists of representing the deformed geometry of the 

particles in contact. The other approach to mechanistic modeling has 

been to consider the soil to be composed of a matrix material 

containing voids as shown in Figure 2. 11. Here a solution to the 
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Soil Particle 

Void 

Figure 2. 10. -- Soil Viewed as an Assemblage of Particles in Contact. 
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Matrix Material 

Voi d 

Figure 2. 11. -- Soil Viewed as a Collection of Voids Contained in a 
Matrix Material. 
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problem consists of modeling the deformation of the voids contained in 

the matrix material. 

Mechanistic models have been formulated on two scales. One scale 

has been intermediate to that of the experiment and the grains and 

pores within the soil mass. While this scale may be very small 

compared to the scale of the experiment, it may be quite large in 

comparison to the size scale of the grains and pores. On this size 

scale the use of phenomenological theories may be necessary. This is 

because the behavior observed on this level may be that of many grains 

and pores and may best be described by the use of a phenomenological 

theory. The other scale which is used in mechanistic modeling is 

termed the micro-scale. On thi s level, models are formulated at the 

size scale of the grains and pores, and are concerned with describing 

the actual deformation mechanisms present at this level. 

The void deformation models have been formulated using both the 

intermediate and micro size scales. modeling of objects in contact 

has usually been done on the microscale. 

Contact Models. When a mass composed of a number of particles in 

contact is subjected to an externally applied load, the deformation 

resulting from the load is due to grain movement and grain 

deformation. The movement of the grains will be controlled by 

interparticle friction, cohesion between adjacent particles, and the 

initial porosity of the mass. The grain deformation will be greatest 

at areas of contact between adjacent grains, and may be elastic or 

elastic-plastic, depending on the stress level present in the grains. 
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In addition to that already mentioned, the grains may fracture thus 

increasing the number and shape of grains, and the number of contacts. 

Models seeking to describe this behavior usually consider the soil 

grains to be spherical in shape. The load-deformation behavior of the 

spheres themselves is considered to be that of an elastic material. 

Further simplifications are obtained by neglecting friction, cohesion, 

and tangential forces acting on the contacts between grains. With all 

these simpli fications, a logical step is to use Hertzian contact 

theory by which the movement of adjacent spheres relative to one 

another may be determined. Consider the two spheres in contact as 

shown in Figure 2. 12 . The x axis is pos i ti oned at the centerline of 

the contact. The solid lines represent the deformed configuration of 

the spheres while the dashed line represents the undeformed spheres. 

From Hertzian contact theory, the deformation along the centerline of 

contact for each sphere is given by 

37T(1-v] ) F 

SRcE1 
(2. 28a) 

u 
2 3n(1-u2)Fc 

2 

u3- 
8R E2 

(2. 28b) 

where 

U3 = the centerline displacement along the x3 axis, 

u = Poisson's ratio, 

E = Young's modulus, 
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Figure 2. 12. -- Geometry Considered in Hertz Prob1em 
of Contact Between Two Spheres. 
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Rc = the radius of the contact surface, and 

Fc = the force transmitted across the contact. 

The superscripts appearing on the displacement components and the 

subscripts on the Poisson's ratio and Young's moduli are used to 

denote quantities for spheres 1 and 2. The radius of the contact area 

between the spheres i s gi ven by 

(2. 29) 

where Rl and RZ are the radii of spheres 1 and 2, respectively. 

Using Equations 2. 28 and 2. 29, the deformation of an assemblage of 

spheres may be determined when the force transmitted across each 

contact is known. Ko and Scott (14) have solved this problem for 

assemblies of spheres in ideal packing configurations, under 

conditions of hydrostatic loading. Here all the spheres were 

considered to have equal radi i and the same material properties . They 

solved this problem for simple cubic (sc) and face centered cubic 

(fcc) packing configurations. Their solution is 

2/3 
3 c (1-v ) P (2. 30) 

where cp is a constant equal to 1 for sc packing and equal to /~2 1 

for fcc packing. 
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As seen from Equation 2. 30, the term cp accounts for the initial 

density of the mass giving smaller volumetric strains for the denser 

packing configuration. However, this model predicts larger than 

actual deformations for the sc configuration while predicting smaller 

than actual deformations for the fcc packing configuration. To 

correct this, Ko and Scott used a combination of sc and fcc blocks to 

achieve the initial porosity of the soil. By assuming a distribution 

of grain contact pressures and an effective contact radius, they 

generated pressure-volume relationships for sands of three initial 

porosities. The results they obtained are shown in Figure 2. 13 along 

with the limiting cases of sc and fcc packing configurations. A major 

shortcoming of Ko and Scott's model is that it is elastic and the path 

the soil takes during unloading will be the same as that for loading. 

Because of this fact, this model is incapable of accurately 

representing the load-deformation behavior of soils. Warren and 

Anderson (31) have formulated a contact model in which initially some 

of the spheres are not in contact. The pressure-volume relationship 

they obtained is 

Ng 3 (1-v ) P 
2 2 2/3 

V Nc E 
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Figure 2. 13. -- Pressure-Volume Relationships for 
Sands of Different Initial Porosities. 
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where 

Ng 
= the number of grains in a typical cross section, and 

Nc = the number of contacts transmitting force across a 

typical cross section. 

Initially all the grains are not in contact. As loading 

progresses, more grains come into contact. At some critical pressure, 

all grains make contact thus approaching a fcc packing configuration. 

It is apparent from Equation 2. 31 that as the number of contacts is 

increased, the amount of volume deformation resulting from an increase 

in pressure, wi 1 1 decrease. The model wi 1 1 predict unloading along a 

path di fferent from that of loading as long as the grains were not all 

initially in contact. The di fficulty with this model is the 

determination of the value of Nc. The variation in the value of Nc 

which occurs during loading, corresponds to the rigid body motion of 

the particles within the soil mass. This model does not attempt to 

describe the actual grain motion within the soil mass but rather the 

variation in the parameter Nc would have to be chosen so as to fit 

experimental data. 

Some models of granular media include friction of the contacts 

between grains. Rowe (20) has considered the shearing of various 

assemblages of spheres. Using a minimum energy criterion, he arrived 

at the str ess-di latancy equation 



tan 45' + ~ 
(2. 32) 

where 

o 1 = the maximum principal stress, 

o3 = the minimum principal stress, 

c 1 = the maximum principal strain, and 

4 u 
= the undrained angle of shearing resistance. 

The above equation holds only for the case when the intermedi ate 

principal stress is equal to the least principal stress. Rowe states 

that the angle &iu must be replaced by an effective angle of sheari ng 

resistance, 4', to match experimental data. Test conditions may be 
u 

created so that many values of the undrained anqle of shearing 

resistance, 4u, may be obtained for the same soil sample. However, 

with pore pressure measurements during the test, the value of the 

effective angle of shearing resistance may be determined. Thi s value 

has been found not to vary with test conditions. Equation 2. 32 does 

not account for compaction during non-hydrostatic loading. Therefore, 

it is not general enough to adequately represent actual soil behavior. 

garden, et al. (1) used Equation 2. 32 to formulate a plastic flow rule 

and a set of yield surfaces. They tested the behavior of sand in 

plane strain and found that the yield criterion and plastic potential 

did not coincide. This implies non-associativity of flow. However, it 

was found that the volumetric strain was suitably predicted by this 
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model. Nemat-Nasser (18) formulated a model to represent the behavior 

of granular material undergoing shear loading. This model is found to 

model dilation as well as densification which occurs during shear. 

This is done by defining the dilatancy angle 4 . The dilatancy angle 

defines the position of a microscopic shear plane, as shown in Figure 

2. 14. In this model it is assumed that the actual shearing takes 

place on many microscopic shear planes rather than on one macroscopic 

shear plane. From Figure 2. 14 it is clear that positive value of the 

dilatancy angle corresponds to an upward movement of the grains along 

the microscopic shear plane thus representing dilation. A negative 

value of the di1atancy angle will therefore represent dens& fication. 

To formulate the model, Nemat-Nasser considers a sample of soil for 

which failure takes place along one microscopic shear plane. 

The relationship between the shear and normal stresses acting on 

the macroscopic and microscopic shear planes was assumed to be that of 

a Mohr-Cou1omb material with no cohesion. These relationships are 

~ = o tan 4 (2. 33a) 

~* = o* tan 4* (2. 33b) 

where 

~ = the shear stress acting on the macroscopic shear plane, 
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Figure 2. 14. -- Relationship Between Macroscopic Shear Plane, 
Microscopic Shear Plane, and the Dilatancy 
Angle, 4d. 
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the normal stress acting on the macroscopic shear plane, 

$ = the angle of sheari ng resistance for the macroscopic shear 

plane, 

the shear stress acting on the microscopic shear plane, 

the normal stress acting on the microscopic shear plane, and 

4* = the angle of shearing resistance for the microscopic shear 

plane. 

~~Fta ~' ( p-I Q 
sing 

(2. 34a) 

tan 4* = tan (&-$) (2. 340) 

where 

F = the frictional force acting on the microscopic shear plane, 

and 

F = the total shear force acting on the macroscopic sample. 

The rate of energy dissipation per unit volume, which occurs as 

slippage takes place along a microscopic shear plane is 

0 

7 tan 4* cos(i-4) 
V 

sin4 sin&ad 
(2. 35) 

W = the rate of energy dissipation per uni t volume; 
0 
V = rate of volume change. 



The following approximations were made concerning W 

W =W +W (2. 36a) 

W' =~Y (2. 36b) 

o 

W I V sing cos$ (2. 36c) 

where V is the rate of shear deformation on the macroscopic sample. 

Combining Equation 2. 36 with Equation 2. 35 yields the following 

equation for the microscopic shear plane i. 

V 
1 i cos(4* + 4) sin 4 
U. —, cos $* 

1 7 
(2. 37 ) 

The volume fraction, V;, of the family of particles having a 

dilatancy angle, U;, is defined by 

V 

p'. (0). =- 
i V (2. 38) 

where pi is the volume fraction of family of particles havinq 

dilatancy angle U;. The restriction on pi is the following 

U+ j, p. (s)ds = 1 (2. 39) 
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In Equation 2. 39, 4+ and 4 - form the range of variat1on of the 

dilatancy angle &. Using Equations 2. 38 and 2. 39 in Equation 2. 37, 

Nemat-Nasser arrives at the final result. 

$+ 

V $ 
I y = cos4* j p(s) cos($*+s) sin(s) ds (2. 40) 

Equation 2 . 40 contains all experimentally observed behavior of 

granular mater1al in simple shear. However, the accuracy of the 

predict1ons made by Equation 2. 40 will depend on the chosen form of 

the distribution function, p(4 ). This distribution funct1on may be 

very difficult to determine for an actual so1 1 sample. Another 

shortcoming of this model is that the individual particles within the 

sample mass are cons1dered to be rigid. Wilkins (31) has taken a 

somewhat different approach to develop a theory for the shear strength 

of a granular med1um. He used an empirical curve fitting method and 

Rowes Equation 2. 32 to pred1ct the number of unstable contacts 1n a 

granular assemblage as a function of the stress ratio. According to 

this approach, when all the contacts on a gra1n become unstable, the 

grain 1s no longer considered to contribute to the system and it 

effectively becomes a void. When the number of voids not support1ng 

any stresses is equal 1n number to the particles which continue to 

carry loads, the medium is assumed to fail. Although this attempt is 

interesting, it becomes unattractive due to its emp1rical nature. 
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Yolume changes and stress-strain relations are neglected in Wilkin's 

formu1 ati on. 

Other contact models have been developed for which the plastic 

flow of the bodies in contact was considered to be important. Kakar 

and Chaklader (13) have solved this problem for spheres in a variety 

of packing configurations. In this model it is assumed that the 

particle surfaces which are not in contact remain spherical. They 

solved this problem for the case of a simple cubic packing. 

Assumptions made were that the volume of the spheres remains constant, 

the contacts transmit the load applied to the assembly, and that the 

material near the contact is in a state of uni axial stress. The 

material of the contacts was allowed to yield until the stress 

developed at the contacts was balanced by the applied pressure. The 

relationship that Kakar and Chaklader obtained is 

(2. 41) 

where Y = a yield par ameter. 

Equation 2. 41 is valid until the contact areas touch thus forming 

a new geometry. Figure 2. 15 shows the results obtained from this 

model along with those obtained from a Hertzian contact model for a 

simple cubic packing configuration. Figure 2. 15 shows that the 

yielding model predicts larger strains for a given load than that 

obtained from the elastic Hertzian contact model. The actual 
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Figure 2. 15. -- Results of Plastic Contact Model of Soils. 
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stress-strain curve will likely fall in between those shown since not 

all points within a sphere will yield at once. The actual behavior 

will be stiffer than that predicted by the complete yielding model 

as formulated by Kakar and Chaklader. 

Void Deformation Models. One approach to modeling soils has been 

to consider the soil as a mass composed of a matrix material and 

voids. The deformation resulting from the application of loads to a 

material of this type will depend on the materials making up the 

matrix and voids, the size and shape of the voids, and the volume 

fraction of the voids. A common assumption in using this approach to 

model soils is that the voids are either spherical or flat in shape. 

O'Connel and Budiansky (19) have considered the effect that flat cracks 

would have on the moduli of a material. The equation they obtained 

for the bulk modulus of such a materia) is 

1 
2 

(2. 42a) 

v=v 1- — d (2. 42b) 

1 3 
d = — 2 a 

V 
(2. 42c) 

where 

K = the bulk modulus of the material, 

d = the crack density, and 

a = the crack lenqth. 
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The subscript m appearing in Equations 2. 42 is used to denote matrix 

properties. 

Equations 2. 42 were developed by considering the cracks to contain 

only air. Equations 2. 42 indicate that a sufficiently large crack 

density would have a considerable effect on the material properties, 

while the cracks themselves may be of negligible volume. As the 

pressure is increased on such a material, the cracks would close and 

their effect would disappear. 

Other workers have considered the effects of spherical voids on 

material behavior. MacKenzie (16) has determined the effective bulk 

modulus for a materi al represented by a matr ix containing spherical 

voids. Henceforth the term effective will be used to precede material 

properties which are descriptive of the entire mass being considered. 

The geometry which MacKenzie considers is shown in Figure 2. 16. The 

porous material is modeled as a collection of spheres of matrix 

materi al, each containing a spherical voi d. Under thi s geometrical 

assumption, the problem reduces to that of determining the solution 

for one of these composite spheres with a uni form radial pressure 

acting on its boundary. The term composite refers to the material 

composed of both matrix and voids. The expression MacKenzie obtained 

for the ef fee ti ve bulk modulus of such a mater i al i s gi ven by 

1 V m 
3 V 

K V K VG VV-U 
(2. 43) 
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Figure 2. 16. -- Geometry Used in Spherical Void Models. 
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where 

G = the shear modulus and the subscript m is used to denote 

properties of the matrix material. 

Equation 2. 43 was developed under the assumption that air was 

contained in the voids. Hashin (10, 11) has determined upper and lower 

bounds for the effective bulk and shear moduli of an elastic matrix 

material which contains spherical inclusions of another elastic 

material. The geometry that is considered is that shown in Figure 

2. 16. The upper and lower bounds were determined from the theorems of 

minimum potential energy and minimum Complementary energy. The upper 

and lower bounds that were determined for the effective bulk modulus 

coincided. This result is given by 

(K — K ) (4G + 3 K ) C 

K=K 4Gy3K+3 K KC 
p m p p 

(2. 44) 

where Cp = the volume fraction of the inclusions and the subscript p 

is used to denote properties of the inclusions. 

The upper and lower bounds which Hashin obtained for the effective 

shear modulus were not equal. However, the expression for the 

effective shear modulus can be reqarded as a good approximation 

whenever the bounds are close together. The expression is 

15 (1 - & ) Gm (G - Gm) C 

G 7 - 5u + 2 4 - 5u G - G C (2. 45) 



56 

The bounds determined by Hashin have found success in approximating 

the effective elastic moduli of composite materials. As seen in these 

results, the effect of a material other than air present within the 

voids may be accounted for. 

Some spherical void models have been developed which account for 

the plastic yielding of the matrix material. Torre (29) has developed 

such a model. The result which he obtained is 

p = 
3 

Y log ( — 
T) (2. 46) 

where 

(2. 47) 

Y = the yield stress of the matrix material 

A problem with Equation 2. 46 is that the matrix material is 

considered to be fully plastic. A model should be able to describe 

elastic as well as plastic phases, which occur for both loading and 

unloading. A step toward including both elastic and plastic phases is 

to prescribe a work-hardening rule for the matrix material. Chadwick 

(6) has developed such a model. Certain essential parts of this model 

remain in integral form making it difficult to use. Car rol and Holt 

(5) as well as Chu and Hashin (7) have taken a di fferent approach 

which simplifies the results. Considering the same spherical pore 



57 

geometry, they derive the pressure-volume relationship for the 

composite material by temporarily assuming that the matrix material is 

incompressible. Carrol and Holt then go on to use an empirical 

relationship to describe the pressure volume relationship for the 

matrix material. The empirical relationship for the matrix material 

is that given by Equation 2. 2. The results Carrol and Holt obtain for 

the pressure-volume relationship of a mass composed of an ideally 

elastic-plastic matrix material containing voids is given by 

4Gm (no - n) 
(2. 48a) 

ZG 2G n rZG (n -n)1 
P = — + Y 

' ' + Y log 
i~Y ~ J 

' (nl' n nZ) (2. 48b) 

P = — log ( ) , (n & n& 1) ZY 2 n 
e (n-1 ) (2. 48c) 
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o u 
m (2. 48g) 

where Vmo = the initial volume of the matrix material 

There are two problems associated with using Equations 2. 48 to 

represent soil behavior. First, the parameters obtained by using 

Equations 2. 42 to describe the pressure-volume relationship of the 

matrix material have very little to do with the actual behavior of the 

soils grains. Second, soils exhibit a pronounced reverse yielding 

during unloading which is not predicted by Equations 2. 48. Bhatt, et 

al. (2) attempted to remove these difficulties by making the matrix a 

Mohr-Coulomb material. The yield criterion for the matrix material is 

gi ven by 

(1+D) o -o — Y=0 
1 3 (2. 49) 

where D = a constant. 

Using the yield critetion given by Equation 2. 49, the results 

obtained by Bhatt, et al. are given by 

m ( o -n) , (no& o o) 3331 (2. 50a) 
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2G o 
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The parameter &2 Is deter mined from the equation below. 

(2. 51) 

Defining the value of n when unloading is initiated as o*, the 

following relationships hold when unloading takes place in the fu)1y 

plastic state. 

2D 
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(2. 52a) 
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m o* - Y' 2G 

(2. 52b) 

3+0 
~+0 

T' = T ( — '), ~0 ( —, ) (2. 52c) 

Equations 2. 52 must be solved numerically to obtai n the 

pressure-volume relationship during unloading. There was good 

agreement between Bhatt's model and experimental results. Some 

problems with the model just described have been recognized. The 

predicted high pressure compressibility is often too low and low 

pressure behavior is not adequately represented. Schatz, et al. (25) 

has modified Bhatt's model to allow for the curvature of the 

Mohr-Coulomb failure surface. The failure criterion which Schatz, et 

al. incorporates into Bhatt's model is 

3 Ul t Lll t o 1 o (2. 53) 

where cult = the ultimate strength of the matrix material, and 

Yo = the yield stress for a ol=0 condition. 

Another modification which Schatz, et al. incorporated into Bhatt's 

model was to include the effect of flat cracks on the bulk modulus of 

the matrix material. This modification of the bulk modulus is given 

by 
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(2. 54a) 

K K ' 1 m' — c 
(2, 54b) 

where 

D = a constant, and 

Pcl = pressure required for complete crack closure. 

The modification given in Equation 2. 54 has the effect of dividing the 

voids into two populations. These being spherical voids which deform 

according to Equation 2 . 53, and flat cracks whi ch deform according to 

Equations 2. 54. The modifications just described have served to 

improve the predictions made by Bhatt's model, One problem with 

Bhatt ' s and Schatz ' s models are that neither allows for a distribution 

of pore sizes. An approach to account for the pore size variation in 

an actual material is to start with the ideally plastic spherical pore 

model and then allow for each sphere to have a different porosity, 

with the requirement that the total porosity be equal to that of the 

material being modeled. Kreher and Schopt ( 15) have developed such a 

model which considers only an ideally plastic matrix material . Their 

results for the pressure volume relationship of one pore is given by 
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where 

Vp = the current pore volume, and 

Vpo = the initial pore volume. 

The overbars in Equations 2. 55 denote averages taken over the entire 

volume of material being considered. The pressure-volume relationship 

for the entire material is determi ned by evaluating Equations 2 . 55 for 

all pores present in the material. A problem which is apparent for 

this model is the determination of the pore size distribution . 
Other spherical void deformation models have been developed; 

however, it would be too lengthy to give a description of all of these 

models here. The models thus far described in thi s secti on are 

representative of the work which has been done in thi s area. 

SUMMARY OF SOILS MODELS 

The soil models reviewed in the previous sections, with few 

exceptions, have only considered the pores within the soil mass to 

contain air. The modification of many of these models to represent 

saturated soil conditions is straightforward through the effective 

stress principle. However, many situations exist when the soil is 
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partly saturated. This condition presents a problem due to the 

complexity of having an air-water mixture present in the pores. One 

problem is that, as the pressure is increased, some of the air will be 

driven into solution. Due to this and the compressibility of the air 

phase, it is difficult to predict the pore pressure resulting from the 

application of a load. If the pore pressures could be predicted, the 

principle of effective stress could be used to model the partly 

saturated system. 

Phenomenological models have been used a great deal to model soil 

behavior. It would seem that empirical models obtained from curve 

fitting methods are undesirable for use as a constitutive model 

representing soil behavi or. These models should not be expected to 

yield reasonable results when used to repr esent conditions which 

deviate greatly from those by whi ch the model was calibrated . They 

also provide no understanding as to the actual deformation mechanisms 

acting within the soil mass. Elastic models are poor representations 

of soil behavior primarily due to their inability to predict unloading 

behavior. Elastic-plastic models have been used a great deal and 

provide reasonable results for many situations. While these models 

may work well, they often require a great many parameters and may be 

difficult to use in practice. There has been little work using 

viscoelastic models for soils. 

Micromechanical models attempt to deri ve constitutive laws from 

observing the actual mechanisms causing deformation of the 

microstructure. These models are favorable because of this reason. 
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As these deformation mechanisms are more fully understood, a better 

understanding of the complex behavior of soils will be achieved. 



65 

CHAPTER III 

MICROMECHANICAL MODEL FOR AN ELASTIC SOIL SYSTEM 

MODELING APPROACH 

A model to be used to represent the load-deformation behavior of a 

partly saturated soil, will be presented. The model views the soil as 

an assemblage of soil particles in contact. The soil particles are 

surrounded by an air-water mixture. The model views the soil 

particles and the air-water mixture as two different elastic phases. 

A micromechanical approach is used to derive constitutive equations 

describing the load deformation behavior of the two phase system. The 

micromechanical approach seeks to derive constitutive laws by 

observing the actual deformation mechanisums acting on a small 

representative volume of the material. The representative volume is 

chosen as the smallest volume of material which exhibits the 

load-deformation behavior of the material as a whole. If a sample 

volume, larger than the representative volume is considered, the 

load-deformation behavior of this volume will be the same as that for 

the representative volume. The material as a whole wi 1 1 contain of a 

large number of samples of representative volume size. Macroscopic 

quantities referenced to a representative volume are those which are 

observable on the size scale of the experiment. These macroscopic 

quantities will be assumed to be spacewise constant within the 

representative volume. If gradient fields are present in the sample 

as a whole, it is reasonable to assume that these fields are spacewise 
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constant within the representative volume, provided this volume is 

very small in comparison to the sample volume. Microscopic quantities 

referenced to a representative volume are those present in the 

different phases contained in this volume. These microscopic 

quantities may vary appreciably between the different phases contained 

in the representative volume. The macroscopic quantities referenced 

to a representative volume, will be viewed as volume averages of the 

microscopic quantities present in this volume. These ideas will be 

used to develop consitutive equations describing the load-deformation 

behavior of a two phase elastic system. 

The laws of thermodynamics provide a means of determining 

constitutive equations to descri be the load-deformation behavior of a 

representative volume of a two phase elastic system. These 

constitutive equations will be determined in terms of the actual 

load-deformation behavior of the elastic phases. Use of 

thermodynamics will also provide a means of properly handling the 

nonlinearities arising from the load-displacement behavior of 

particles in contact. 

MODEL GEOMETRY AND MATERIALS 

The elastic soil system will be modeled as a two phase elastic 

material. It will be assumed that both phases of the system are 

homogeneous, linear elastic materials. The two phases will have 

different material properties. 
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The soil particles wi 1 1 be represented as a collection of spheres 

of equal radii, in contact. All spheres will have the same material 

properties and constitute one phase of the system. This phase will be 

referred to as the particulate phase. The position of the spheres 

relative to one another will be restricted so that they are arranged 

in ideal packing configurations . The four ideal packing configurations 

to be considered are cubic, orthorhombic, tetrogonal-spheroidal, and 

rhombohedral . These packing configurations appear in Figure 3 . 1 

through Figure 3. 4. 

The air-water mixture wi 11 be represented by another elastic phase 

with different material properties than that of the particulate phase. 

This phase will be contained in the void space around the spheres and 

wi 11 be referred to as the mi xture phase. Only changes in the mean 

stress of the mixture phase will be considered. This represents a 

pressure change which might occur in an air-water mixture contained in 

the voids of an actual soil mass . Mi cromechani cs wi 1 1 be used to 

determine the pressure-volume relationship of the air-water mixture . 
The model used to represent the soil is shown in Figure 3. 5. 

The representative volume of the elastic soil system is taken to 

be the smallest volume which exhibits the load-deformation behavior of 

the system as a whole. As a result of the assumed geometry, the 

representative volume is a single sphere surrounded by a proportionate 

volume of the elastic mixture material. Due to the restriction that 

the spheres in the system are arranged in ideal packing 

configurations, each sphere will experience the same number of 

contacts with adjacent spheres. Each sphere will also be surrounded by 
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Figure 3. 1 -- Simple Cubic Packing Configuration. 



69 

Figure 3. 2 -- Orthorhombic Packing Configuration. 
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Figure 3. 3 -- Tetragonal - Spheroidal Packing 
Configuration. 



Figure 3. 4 -- Rhombohedra1 Packing Configuration. 
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Particulate Phase 

Mixture Phase 

Figure 3. 5 -- Elastic Soil System 
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an equal amount of the mixture phase. Because of this synvnetry, the 

load-deformation behavior of a single sphere and its surrounding 

mixture phase wi 1 1 be characteristic of the system as a whole. The 

volume fraction of the mixture phase contained in the representative 

volume will be equal to the volume fraction of the mixture phase 

contained in the system as a whole. 

THERMODYNAMICS OF ELASTIC SYSTEMS 

Constitutive equations describing the load-deformation behavior of 

a two phase elastic system wi 1 1 be devel oped . The constitutive 

equations will relate macroscopic quantities in terms of the actual 

deformation mechanisms acti ng on the micr oscal e, and the material 

properties of the two different elastic phases . These relationships 

wi 1 I be based on the load-deformation behavior of the representati ve 

volume, which is characteristic of the load deformation behavior of 

the system as a whole. The representative volume will constitute a 

closed thermodynamic system. 

The first and second laws of thermodynamics provide a means of 

determi ni ng the constitutive equations . The first law of 

thermodynamics is stated as follows: 

There exists a function of state, UT, called the internal 

energy, with the property that 

0 0 0 

WT + HT 
= 

UT (3. 1) 
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where 
0 

WT = the rate of total work done on the system, and 
0 

HT = the rate of heat addition to the system. 

The dot is used to denote derivatives with respect to time. The 

second law of thermodynamics is stated as follows: 

There exist two functions of state, ST, called the 

entropy, and T, called the absolute temperature, with 

the property that 

ST & HT 

T 

The second law of thermodynamics given by Equation 3. 2, may be written 

in a more convenient form by letting the entropy production, S ', be 

defined by 

ST 
— ST - 

HT 

T 

(3. 3) 

Use of Equations 3. 2 and 3. 3 allows the second law of thermodynamics 

to be stated as 

S' O (3. 4) 

It is Equations 3. 1 through 3. 4 which are used to derive the 

constitutive equations for a two phase elastic system. 



Sin le Phase Elastic S stem 

The first and second laws of thermodynamics, stated by Equat1ons 

3. 1 through 3. 4, will be applied to a closed system containing a 

single elastic phase. This will provide 1nformation useful in the 

development of the constitutive equations describing the 

load-deformation behavior of the two phase elastic system. 

Elastic materials are known to undergo reversible processes. A 

reversible process 1s one which at any t1me during the process, the 

system and the surrounding envi ronment may be returned to their 

initial states . This wi I 1 require that the entropy production gi ven 

by Equation 3. 3, equal zero. In real1ty, the reversible process 1s an 

idealization whi ch can never be realized by 

experiment� 

. However, 1t 

can be approximated very closely in some cases . Elastic materials 

undergo processes which are very closely approximated by reversible 

processes. 

The approach taken in using the fi rst and second laws of 

thermodynamics to determine constitutive relationships for an elastic 

material is like that of the inverse method of elasticity theory. 

Constitutive assumptions are- made concerning the independent and 

dependent variables and then checked to see 1f the desired solut1on is 

obtained. For an elastic material it is desired to check if the 

constitutive assumptions result in a entropy production equal to zero. 

For the single phase elastic material under consideration, it will 

be assumed that the 1ndependent variables are the absolute 
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temperature, T, and the strain tensor, e. . . The constitutive 
1J 

assumptions are 

U = U(ei , T) (3. 5) 

(3. 6) 

kl kl ij' (3. 7) 

where 

U = the internal energy per unit initial volume, 

5 = the entropy per unit initial volume, and 

o . . = the components of the stress tensor. 
1J 

It is further assumed that these quantities are spacewise constant 

within the system. The first and second laws of thermodynamics may be 

written on a per unit initial volume basis. In this form the first law 

is given by 

0 0 0 
W+H=U (3. 8) 

and the second law is given by 
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where 

S' =S-H 
T 

(3. 10) 

and 

W = the rate of work per unit initial volume done on the system, 

and 

H = the rate of heat addition per unit initial volume. 

It will be assumed that only mechanical work is done on the system and 

that inertial forces are negligible. The rate of work per unit 

initial volume, done on the system is 

W = o. . c. . 
1J 1J (3. 11) 

Combining Equations 3. 8 through 3. 11 yields the following equation. 

0 O 0 0 
TS' = TS — U+o. . c. . 

1J 1J (3. 12) 

The Helmholtz free energy per unit initial volume, F, is defined by 

F = U - TS (3. 13) 

According to Equations 3. 5 and 3. 6, the Helmholtz free energy per unit 

initial volume is of the form 

F = F (e. . , T) 
1J 

(3. 14) 
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Equations 3. 12, 3. 13 and 3. 14 may be combined to yield 

0 F 0 JF 
0 

TS' = [o. . - — '] c. - [5+ — '] T 
Jc iJ JT ij (3. 15) 

Equation 3. 15 can be used to determine constitutive relationships for 

the thermodynamic system characterized by Equations 3. 5, 3. 6, and 3. 7. 
0 0 

Consider a process where T & 0 and c. . = 0 for all i and j. Combining lj 
Equations 3. 9 and 3. 15 for this process yields 

- [5+ — ] &0 BF 
BT 

(3. 16 ) 

As a second process, consider the case where T & 0 and c . = 0 for all ij 
i and j. Combining Equations 3. 9 and 3. 15 yields 

[S+ — ] &0 (3. 17) 

In order for Equations 3. 16 and 3. 17 to both be satisfied, the 

following condition must hold. 

3F 5=-— 
BT 

(3. 18) 

Other special processes can be considered in which T = 0 and the 

components of the strain rate tensor, c , are varied one at a time. 
1J 

Consideration of these processes by Equations 3. 9 and 3. 15 will show 

that the following conditions must hold. 
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3F 
1J 3c ~ ~ 

(3. 19) 

Combining Equations 3. 15, 3. 18, and 3. 19 yields the following 

expression for the entropy production rate per unit initial volume. 

5'= 0 (3. 20) 

Equation 3. 20 is true for all processes involving the independent 

variables of the absolute temperature, T, and the strain tensor, c. . . 
1J 

Processes which obey Equation 3. 20 are reversible. As stated 

previously, elastic materials undergo reversible processes. 

Therefore, the constitutive assumptions given by Equations 3. 5, 3. 6, 

and 3. 7 are valid for an elastic material. 

The components of the compliance tensor give the change in a 

component of the stress tensor due to a unit change in a component of 

the strain tensor. The compliance tensor is defined as 

3o ~ ~ 

Jkl 
1J (3. 21) 

where 

C'lJkl = the components of the compliance tensor. 

As a result of the constitutive assumption given in Equation 3. 7, the 

compliance tensor will be a function of the absolute temperature, T, 

and the strain tensor, c . . The use of Equation 3. 19 in Equation 3. 21 1J 

gives the following alternate expression for the compliance tensor. 
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F 
iJk1 aci ac, 

(3. 22) 

The entropy, stress tensor, and compliance tensor of a single 

phase elastic material may be determined by Equations 3. 18, 3. 19, and 

3. 22, respectively. These quantities are expressed in terms of the 

Helmholtz free energy per unit initial volume, F, the absolute 

temperature, T, and the strain tensor, e. . . Cases may arise where the 1J 
stress tensor is known as an independent variable rather than the 

strain tensor. For these cases, expressions for quantities in terms of 

the stress tensor are desired. Toward this end, the Complementary 

free energy per unit initial volume, Fc, is defined to be 

F = o. . c. . — F c JJ 1J 
(3. 23) 

It is allowed that Equation 3. 8 be inverted and solved for the strain 

tensor in terms of the absolute temperature, T, and the stress tensor, 
0 This permits the following forms of the internal energy per unit 

initial volume, U, the entropy per unit initial volume, S, and the 

strain tensor, e. . . 1J 

U = U (a , T) (3. 24) 

5 = 5 (01 , T) (3. 25) 

kl kl 1J' (3. 26) 
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Equations 3. 24, 3. 25 and 3. 26 are to be viewed as constitutive 

assumptions in which the absolute temperature, T, and the stress 

tensor, o, have been chosen as the independent variables. In view 
1J 

of Equation 3. 14, the Complementary free energy per unit initial 

volume is of the form 

F = F (o , T) (3. 27) 

Combining Equations 3. 12, 3. 13, and 3. 23 yields 

TS' = F — o. . c. — TS c 1J 1J 
(3. 28) 

Due to the form of the Complementary free energy given by Equation 

3. 27, Equation 3. 28 may be rewritten as 

o BF 0 c}F o 
TS' =( -c. . ]o. . +[ — T-S) T ao. . ij ij a iJ 

(3. 29) 

8y considering special processes similar to those already mentioned, 

it can be shown that Equation 3. 29 is satisfied for all processes when 

the following two conditions are true. 

8F 
S =— c 

8T 
(3. 30) 
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Substitution of Equations 3. 30 and 3. 31 into Equation 3. 29 results in 

the following 

S'=0 (3. 32) 

For the constitutive assumptions given by Equations 3. 24, 3. 25, and 

3. 26, it was determined that the entropy production per unit initial 

volume is zero. Therefore, these assumptions are valid for an elastic 

material. 

The components of the stiffness tensor give the change in a 

component of the strain tensor, due to a unit change in a component of 

the stress tensor. The stiffness tensor is defined to be 

(3. 33) 

where 

SiJkl = the components of the stiffness tensor. 

In accordance with Equation 3. 26, the stiffness tensor will be a 

function of the absolute temperature, T, and the stress tensor, a. . . 
1J 

Combining Equations 3. 31 and 3. 33 given the following alternate 

expression for the stiffness tensor. 

3 F 
S c 

i jkl da . . 3okl ij kl 
(3. 34) 
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The results have shown that for an elastic material, for which the 

absolute temperature and strain tensor are known, the entropy, stress 

tensor, and compliance tensor may be determined when the Helmholtz 

fr ee energy is known. Similarly, for an elastic material for which 

the absolute temperature and the stress tensor are known, the entropy, 

strain tensor, and stiffness tensor may be determined when the 

Complementary free energy is known. The Helmholtz free energy and the 

Complementary free energy will be determined for an initially 

unstrained and unstressed elastic material under isothermal 

conditions. 

The Helmholtz free energy will be considered first. According to 

Equation 3. 19, the following may be obtained 

t t 

lj 0 
(3. 35) 

where 

t = the dummy variable of integration. 

Under isothermal conditions, Equation 3. 14 may be used to obtain 

0 F 0 
F = — c. . (3. 36) 

Substitution of Equation 3. 36 into Equation 3. 35, and integration of 

the left hand side of the equation yields 

t 
0 

F(t) — F(a) = / O. ~ E. ~ dt J 13 ij 
0 

(3. 37) 
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For an elastic body initially unstrained and unstressed the initial 

value of the Helmholtz free energy per unit volume, F(0), is equal to 

zero. Therefore, for these conditions Equation 3. 37 becomes 

(3. 38) 

The result given by Equation 3. 38 is that for an initially unstrained 

and unstressed elastic material under isothermal conditions, the 

Helmholtz free energy per unit volume is equal to the total mechanical 

work input to the elastic system. 

The Complementary free energy for the conditions previously stated 

may be determined in a similar manner. According to Equation 3. 31, 

the following may be obtained 

0 

(3. 39) 

Under isothermal conditions, Equation 3. 27 reduces to 

JF o 

F = — o. . 
c 

gal 
. . lj (3. 40) 

Substitution of Equation 3. 40 into Equation 3. 39 and integration of 

the left hand side of the equation gives 
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t 
F t = 

iJ ciJ Kt 

0 
(3. 41) 

For an initially unstrained and unstressed elastic material, the 

initial value of the complementary free energy per unit initial 

volume, Fc(0), is equal to zero. Therefore, Equation 3. 41 becomes 

t 
F (t) = o . c . dt 
c ) iJ iJ 

0 
(3. 42) 

The right hand side of Equation 3. 42 is called the Complementary work. 

As seen by Equation 3. 42, for an initially unstrained or unstressed 

elastic material under isothermal conditions, the Complementary free 

energy per unit initial volume is equal to the total Complementary 

work input to the system. 

If the material is linear elastic, the components of the 

compliance tensor, C;Jki, and the stiffness tensor, S;Jkl, are 

constants. For this case it is easy to verify that the Helmholtz free 

energy per unit initial volume given by Equation 3. 38, and the 

Complimentary free energy per unit initial volume given by Equation 

3. 42, are equal. 

Two Phase Elastic S stem 

The results of the previous subsection will be used to determine 

relationships for a two phase elastic system. The system to be 

considered will consist of a representative volume of a two phase 
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Phase 2 

Phase 1 

Figure 3. 6 -- Representative Volume of Two Phase 
Elastic Material 
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elastic material . The system is shown in Figure 3. 6 . The 

representative volume will constitute a closed system. 

In dealing with the two phase system, effective or average values 

of quantities will be expressed in terms of the actual values of these 

quantities occurring in the two different elastic phases. These 

effective quantities are to be viewed as those which would be 

observable on the size scale of the experiment. When the 

representative volume is small in comparison to the size scale of the 

experiment, effective quantities will appear spacewise constant 

throughout the volume. As an example of effective quantities consider 

a soil sample subjected to a triaxial test. If a small representative 

volume of the soil sample was examined, the experimentally observable 

stresses would appear constant throughout the volume. In the present 

terminology, the experimentally observable stress field would be the 

effective stress field. If the representative volume was viewed on 

the microscale, the stress field would be seen to vary throughout the 

different phases comprising the sample. It will be shown that under 

specific conditions, the effective quantities may be viewed as average 

values of these quantities, taken over the representative volume. In 

the work to follow, effective quantities for the representative volume 

will be denoted by an overbar. 

To develop relationships for the two phase elastic system, the 

effective strain tensor, c . , and the absolute temperature, T, will 7 i j 
first be chosen as the independent variables. It is assumed that no 

temperature gradients exist in the system. The effective quantities 
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will be assumed to be spacewise constant throuqhout the system. The 

constitutive assumptions are 

(3. 43) 

g=5(, , T) (3. 44 ) 

(3. 45) 

where 

u = the effective internal energy per unit initial volume, 

5 = the effective entropy per unit initial volume, and 

o . = the effective stress tensor. 1J 

The constitutive assumptions given by Equations 3. 43, 3. 44, and 3. 45 

are of the same form as those given by Equations 3. 5, 3. 6, and 3. 7. 

The system under consideration is elastic. The results of the previous 

subsection may be applied to the system to yield constitutive 

relationships for the effective quantities. The relationships which 

are of interest are 

BF (3. 46) 

BF O. . 
1J 

Bc ~ ~ 

(3. 47) 

B F 
ijkl 

ij kl 

(3. 48) 
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where 

F = the effective Helmholtz free energy per unit initial volume, 

and 

= the effective compl1ance tensor . 

It is desired to relate these effective quantities for the 

representative volume to the phase quantit1es. The two phases are 

elastic. The constitutive relationships for each phase are 

U = U (Eij, T) 

5 = 5 (E. , T) 

(3. 49) 

(3. 50) 

kl kl ij' 
(3. 51) 

where 

U = the internal energy per un1t initial volume for either 

phase, 

5 = the entropy per unit init1al volume for either phase, 

a. . = the stress tensor for either phase, and 1J 
= the stra1n tensor for either phase. 1J 

It will be assumed that the strain tensor for each phase, E , is 1J' 

expressible as 

kl kl ij' (3. 52) 
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Expressions for the effective quantities appearing in Equations 3. 46 

to 3. 48 may be obtained through a balance of the total internal energy 

of the system. The internal energy balance is given by 

'PV - Ul Vl + U2 V2 

where 1 j U d V 

~1 J 
Vl 

(3. 53) 

(3. 54) 

1) ~1 UdV 

V2 

(3. 55) 

and U = the effective internal energy per unit initial volume, 

= the initial volume of the system, 

V1 = the initial volume of phase 1, 

V2 = the initial volume of phase 2, and 

U = the internal energy per unit initial volume. 

Equation 3. 53 relates the total internal energy of the two phase 

system expressed in terms of the effective internal energy, to the 

same expressed in terms of the internal energies of the two phases. 

Solving Equation 3. 53 for U yields 

where 

1 1 2 2 (3. 56) 

Vl 
C 

1 V 

(3. 57) 

V2 
C 

V 

(3. 58) 
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The quantities Cl and Cz appearing in Equations 3. 57 and 3. 58 are the 

initial volume fractions of phases 1 and 2, respectively. The 

Helmholtz free energy per unit initial volume for phase n (n = 1, 2) is 

given by 

where 

7„=U -TS 

=7- S dV 1 

n J n 
n 

V 
n 

(3. 59) 

(3. 60) 

and Sn = the entropy per unit initial volume for phase n. 

Combining Equations 3 . 56 and 3 . 59 with Equations 3 . 12 and 3 . 20 written 

in terms of effective quantities yields 
D O 0 +oc. -C171+TS+TS] — C[f + i3 1 1 1 1 2 

TS2+Tg]=0 (3. 61) 

According to Equations 3. 49, 3. 50, and 3. 52, the Helmholtz free energy 

per unit initial volume for phase n (n = 1, 2) is expressible as 

F = F (ci , T) (3. 62) 

Substitution of Equation 3. 62 into Equation 3. 61 while applying the 

condi ti on given by Equation 3 . 18 to the entropi es of the two phases 

yields 
aF) 

Co. . - Cl- 
ad ~ ~ 

13 

aF 
-C — ]c. + 

2 — ij gc ~ ~ 

[5-C 
(3. 63) 

0 

C, Y2] 

Special processes may 

T=0 
now be considered to determine relationships 

between effective and phase quantities. As a special process consider 
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0 
the case where c. . =Q for all i and j. For this process, Equation 

1J 
3. 63 yields the condition 

K - CI YI - C2 T2 
* 0 (3. 64) 

In view of Equation 3. 64, the following condition must be true for 

Equation 3. 63 to be satisfied for all processes. 

aFI a F2 a. =C — +C ij 1 — 2 
lj ac . . 1J (3. 65) 

Equation 3. 65 relates the effective stress tensor to the Helmholtz 

fr ee energi es per uni t initial volume of the two phases, and the 

effective strain tensor. Equations 3. 47 and 3. 65 may be used to 

determine the relationship between the effective and phase, Helmholtz 

free energies per unit initial volume. This relationship is 

F = Cl F + C2 F 
1 1 

(3. 66) 

Equation 3. 66 states that the effective Helmhol tz free energy per unit 

initial volume is equal to an average of this quantity taken over the 

representative volume. The same type of relationship may be obtained 

for 5 by integrating Equation 3. 64 with respect to time. The 

relationship between the effective entropy per unit initial volume, 

and the phase entropies per unit initial volumes is 

Cl ~1 + C2 Y2 
(3. 67) 
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The forms of the effective quantities, F and S, given by Equations 

3. 66 and 3. 67 might have been defined as such from the assumption that 

the effective quantities are spacewise constant throughout the system. 

However, Equations 3. 66 and 3. 67 were arrived at through an energy 

equivalence and the assumption that no temperature gradients existed 

in the system as a whole. The resulting relationships given by 

Equations 3. 66 and 3. 67, correspond to the rule of mixtures. The 

effective compliance of the system, C;Jkl, may be determined from 

Equations 3 . 48 and 3 . 66 . Substitution of Equation 3 . 66 into Equation 

3. 48 yields the following expression for the effective compliance. 

Fl 
C. =C ijkl 1 

Bc(JBckl 

B F 
2 

2 
Bc, . J Bckl (3. 68) 

Relationships for effective quantities have been determined for 

the case when the effective strain tensor, c. , and the absolute 1J 

temperature T, are the independent variables. Cases will arise when 

the effective stress tensor, o. , is the independent variable rather 'I qjt 
than the effective strain tensor, c . Assuming that Equation 3. 45 ij' 
may be inverted to express o. in terms of c, Equations 3. 43, 3. 44 1J 1J' 
and 3. 45 may be rewritten as 

(3. 69) 

(3. 70) 
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kl kl ij' (3. 71) 

The constitutive assumptions given by Equations 3 . 69, 3. 70, and 3. 71 

are of the same form as those given by Equations 3. 24, 3. 25 and 3. 26. 

The relationships determined for the constitutive assumptions given by 

Equations 3. 24, 3. 25, and 3 . 26 will apply to the two phase elastic 

system under consideration. The relationships which are of interest 

are 

BF 
c 

5 =— 
aT 

F c 
ao 

IJ 

(3. 72) 

(3. 73) 

where 

3 F 
S. . c 

i jkl 
aoij aokl 

(3. 74) 

Fc = the effective Complementary free energy per unit initial 

volume and, 

SIJkl = the effective compliance tensor. 

The relationship between Fc and F is given by 

c IJ IJ (3. 75) 

For the effective stress tensor, o , and the absolute temperature, T, ij' 
chosen as the independent variables, the constitutive assumptions for 

each phase of the system are 

U = U (0 , T) lj (3. 76) 

S = 5 (o, T) (3. 77) 
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kl kl ij' (3. 78) 

It is further assumed that the stress tensor for each phase is 

expressible as 

kl kl ( ij' (3. 79) 

The Complementary free energy per unit initial volume for phase n of 

the system is given by 

(3. 80) 

where 

and 

(o. ~ c. -) = — o. . E. . dV 
1 

ij ij n V J ij ij 
n 

V 

(3. 81) 

Fcn = the Complementary free energy per unit initial volume for 

phase n, 

o. . = the stress tensor, and 
1J 

c. . = the strain tensor. lj 
Substitution of Equation 3. 80 into Equation 3. 61 yields 

o D 0 0 
TS - o. . c . . + C [T — TS — TS ] + ij ij 1 cl 1 1 

C2[pc2- T 52 
0 -TS]=0 

2 (3. 82 ) 

By virtue of Equations 3. 62, 3. 78, 3. 79, and 3. 80, the Complementary 

free energy per unit initial volume for phase n is of the form 
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(o. , T) 
cn cn ij' (3. 83) 

Use of Equation 3. 83 in Equation 3. 82 yields 

O 0 O 

Cl Yl cz Yz] 

aF 
2 

C — ]a. =0 
2 — iJ 

BU ~ ~ 

(3. 84) 

where the condition given by Equation 3. 30 has been applied to both 

phases of the system. By virtue of Equation 3. 64, for Equation 3. 84 

to be satisfied for all processes, the following condition must be 

true. 

BF cl = C ij 1 

ij 

aF 
2 + C 2— 

ij (3. 85) 

An alternate expression for the effective strain tensor is given by 

Equation 3. 73. Substitution of Equation 3. 73 in Equation 3. 85 will 

yield the following relationship. 

= Cl Fcl + Cz F (3. 86) 

Equation 3. 86 shows that the effective Complementary free energy for 

the system is equal to an average value of this quantity taken over 

the volume of the system. Substitution of Equation 3. 86 into Equation 

3. 74 yields the following expression for the effective stiffness of 

the system. 
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aF) — = C 
S 1 

i jkl ao . . aokl ij 

a F c2 
2 

ij kl 
(3. 87) 

Expressions have been obtained for effective quantities of a two 

phase elastic system with a spacewise constant temperature. These 

quantities are expressed in terms of the Helmhotz and Complementary 

free energies of the two elastic phases, and their initial volume 

fractions . Evaluation of the effective quantities also requires that 

the relationships given by Equations 3. 52 and 3. 78 be known. The 

evaluation of the effective quantities is simplified when the two 

phases are homogeneous linear elastic materials and the system 

undergoes only isothermal processes. If the system is initially 

unstrained or unstressed, the Helmholtz and Complementary free 

energies per unit initial volume for phase n are given by 

= F = I/2 (a. c . )n 
(3. 88) 

This simplification will be used to evaluate the effective quantities 

for the elastic soil system. 

CONSTITUTIVE EOUATIONS FOR ELASTIC SOIL SYSTEM 

Constitutive equations describing the load-deformation behavior of 

the idealized elastic soil system will be developed. The system 

consists of a particulate phase modeled by equal spheres in contact, 

and a mixture phase representing an air-water mixture. The elastic 



98 

soil system is shown in Figure 3. 5. In the work to follow both phases 

of the system will be modeled by homogeneous, linear elastic 

materials. It will further be assumed that the temperature is 

spacewise constant in the system and the system undergoes only 

isothermal processes. 

The results provided by the thermodynamics of the previous section 

can be used to relate macroscopic quantities for the two phase elastic 

soil system, to the phase quantities. In the development of these 

relationships, a representative volume of the two phase system is 

considered. For the elastic soil system, the representative volume 

consists of a single sphere surrounded by a volume of the air-water 

mixture. The representative volume of the elastic soil system is 

shown in Figure 3 . 7 . The macroscopic quantities which are of interest 

are the effective stress, effective strain, effective compliance, and 

effective stiffness tensors . The results of the previ ous section 

provide the following expressions for these quantities. 

O. ~ lj 
aF aFm 

c ~+c 
p — m 

ij iJ 
(3. 89) 

C. ij 
3)-; 

C ~c+ 
p — m ao. ~ 

1J 

ar 
cm 

30i 
. (3. 90) 

i jkl 
3 F 

jg kl 

3 F 
m 

3 ijgekl (3. gl) 

ijkl 

2— 
I F 

ij kl 

8 F 
C 

cm 
m 

1 jgcki 
(3. g2) 
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Particulate 
Phase 

lilxture 
Phase 

Figure 3. 7 -- Reoresentative Volume for Elastic Soil System. 
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In Equations 3. 89 through 3. 92, the subscript p has been used to 

denote the particulate phase represented by the equal spheres and the 

subscript m is used to denote the phase representing the air-water 

mixture. In order to evaluate Equations 3. 89 through 3. 92, it is 

necessary to evaluate the Helmholtz and Complementary free energies 

for the particulate and mixture phases. Since both phases are being 

modeled as homogeneous, linear elastic materials and the system 

undergoes only isothermal processes, Equation 3. 88 can be used to 

evaluate the Helmholtz and Complementary free energies for the phases. 

Equation 3. 88 yields 

F F = g (a~. ~. ) 
p cp 'IJ ij p 

FF=$(~. 
m cm ij ij m 

(3. 93) 

(3. 9a) 

where 

1 

V 
P 

J o c dV 

V 
P 

(3. 95) 

a, . c. 4V 
(3. 96 ) 

and Vp 
= the initial volume of the particulate phase contained in 

the representati ve volume, and 

Um = the initial volume of the mixture phase contained in the 

representative volume. 



The quantities expressed by Equations 3. 93 and 3. 94 are the strain 

energy densi ti es of the particulate and mixture phases, respectively, 

To evaluate these expressions it will be necessary to relate these 

quantities to either the effective stress tensor, o , or the 
1J ' 

effective strain tensor, e. . . In the work to follow it will be 
1J 

assumed that these relationships are known and Equations 3. 93 through 

3. 96 may be evaluated . In a later subsection the relationship between 

the effective stress or strain tensors and the strain energy density 

of the phases wi 1 1 be evaluated . 

Strain Energy Densit of the Particulate Phase 

The strain energy density of the particulate phase as well as the 

derivatives of this quantity required to determine the effective 

quantities of interest, will be determined. As previously mentioned, 

the particulate phase of the system consists of spheres of equal 

radii, arranged in ideal packing configurations. All spheres in the 

system will be modeled by isotropic, homogeneous, linear elastic 

materials. All spheres will be of the same material type. 

Due to the symmetry of the idealized elastic soil system, the 

representative volume consists of a single sphere surrounded by a 

specific amount of the material modeling the air-water mixture. 

Therefore the strain energy density of a single sphere is required. 

Calculation of the strain energy density requi res an elastic solution 

for the displacement and stress fields occurring in the sphere due to 
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applied surface tractions or surface displacements. Sternberg, 

Eubanks, and Sadowsky (27 ) determined the solution for a sphere with 

torsion-free rotational symmetry about the x3-axi s, in the absence of 

body forces. The sphere is shown in Figure 3. 8. Also appearing in 

Figure 3. 8 is the spherical coordinate system, (z), a2, a3) to which 

the solution is referenced . This solution will allow the evaluation 

of a number of important types of interactions between neighboring 

spheres and the mixture phase. The types of interactions to be 

considered are 

l. A uniform pressure applied to the surface of the sphere by 

the mixture phase. 

2. The contact between neighboring spheres. 

3. The mixture phase acting as a binder between neighboring 

spheres. 

These types of interactions will result in known surface tractions on 

a sphere. The relationship between these surface tracti ons and the 

effective stress tensor or the effective strain tensor is yet to be 

determined . For the present, it will be assumed that these 

relationships are known. 

The solution for a weightless, homogeneous, linear elastic sphere 

subject to torsion free synmetrlc surface tracti ons about the x3-axis 

will be presented in a form convenient for use. The solution for the 

stress tensor, a!. , and the strain tensor, c!. , referred to the lj 1J 

spherical coordinates, (zT, z2, a3), is given by 

o 2n-2 
= K [E u a-2n-1[A-2n-1]ij E u b-2n-2 

n=l 

[ 2n 2]ij] (3. 97) 
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K 2n-2 
Zn 1 -2n-1 ij " b-2n-2 

n=l n=o 

where 

(3. 98) 

(3. 99) 

and component stress solutions, 

am. bm 

component strain solutions, 

coefficients of superposition, 

the shear modulus, 

a constant determined from the surface 

tractions, and 

the radius of the sphere. 

The component stress solutions are given by 

[A 2n-ljll 2n(2n-1) P2 (3. 100a) 

[A 
1 2 2 

1-2n(2n-1) P2n 
(3. 100b) 

[A ] = -P' 
-2n-1 33 2n-1 (3. 100c) 
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[A 
2n 1]12 = -(2n-1)sin(zz)P' 

(3. 100d) 

[" 2. 1]23 
— ' (3. 100e) 

[ -2n-1 31 
(3. 100f) 

[B 2n-2]11 -(2n-1)[(2n+l)(2n-2)-2v]P2n (3. 100g) 

[B 2„ 2 ZZ 
" 2n ] = (2n+l)(4n +10n-7+2v)P -( »+ 2n+1 (3. 1QQh) 

[Ba ] = (2n+5-4v)P' -(4n+3)(2n+l)(l-2v) 2n (3. 100i) -2n-2 33 2n+1 

[B 2n-2 12 
= (4n +4n-1+2v)sin(z2 2n (3. 100j) 

( 3. 100I( ) 
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where 

dP 
m = ~o 

& = Poisson's ratio, and 

Pm ~ Legendre polynominals of order m. 

(3. 1001 ) 

In Equations 3. 100, the argument of Pm is cos (z2 ) and P' m is qi ven by 

(3. 101) 

The comPonent stress solutions, [)I ], . and [0 ], are symmetric 
m lj m ij' 

giving the condition 

(3. 102a) 

The component strain solutions are 

(3. 102b) 

I)II = n(2n (3. 103a) 

2 I 22 
I/2[P'2 1-2n(2n-l)P2n (3. 103b) 

[)I 2n I)33 
— -' ' 2n-I (3. 103c) 
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[I4 ] = -1/2(2n-1)sin(zZ)P'Zn 
-2n-1 12 

(3. 103d) 

«2. 1]23 
— ' (3. 103e) 

[ -2n-1]31 (3. 103 f ) 

0-Zn-2]11 1 2(2n+1) (2n-2+4v)PZn (3. 103g) 

[6 2 2]22 
= -1/2((2 +5-4v)P'2 

(2n+1)[(2n+1) + 2(n+1)(3-4v)]PZn) (3. 103h) 

[0-Zn-2]33 = -1/2[(4n&3)(2n+1)PZ 

(Zn+5-4 )P'2 , 1] 
(3. 103i) 

[8 
2 ] = 1/2[4n(n+1)-1+Zv]sin(z )P' - n-2 12 2 Zn (3. 103j) 

(3. 103k) 



107 

E 

-2n-2 31 (3. 1031) 

The component strain solutions, [A„] and [B ] , are symmetric ij m ij' 
giving the conditions 

(3. 104a) 

(3. 1045) 

The coeffi ci ents of superposition, am and bm, are 

(4n +4n-1+Zv)g +2(2n+l)(2n -n-1-&)n2 2 2 
Zn Zn 

-2n-1 2(2n-1)[4n +Zn+1+(4n+1)v] (3. 105a) 

$2 +2nnZ 

2[4n +Zn+1+(4n+1)u] (3. 105b) 

where CZnand nZn are constants determined from the sPecified surface 

tractions. The specified surface tractions for torsion-free 

rotational symmetry about the «3-axis are 
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oll R, cos(a2 11[cos(z2 

1(cos(a2)(cos(w a ) cos(a )(( os(a )(1 (3. 106a) 

12 ( R cos( a2)j = f12(cos( 2)j ~ 

-1 cos(a2) cos(n-a2), cos(e2)'cos(z2)&l (3. 106b) 

The constants, E2 and nzn, which result from the specified surface 
2n 

tractions are 

~4n+1 
2n 0 

1 

f 1(u)P (u)du, 
cos(z ) 

(n=0, 1, 2, . . . . ) (3. 107a) 

(4n+1) 
2n ~4n 2n&+7K 

1 

j f12(u) 
cos(~~) 

1-u P' (u)du, 

(n = 0, 1, 2, . . . . ) (3. 107b) 

Equations 3. 97 through 3. 107 provide an elastic solution for a 

weightless sphere subjected to surface tractions of the form given by 

Equations 3. 106. 

The solution thus far given is for a sphere with a single set of 

prescribed surface tractions, symmetric about a particular axi s . The 
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spheres in the system under consideration will be subject to multiple 

sets of surface tractions of the form given by Equations 3. 106. This 

is due to interactions with neighboring spheres and the mixture phase. 

The spheres in the system are linear elastic, and the principle of 

superposition may be used to determine the stress and strain fields 

due to multiple interactions. To apply the principle of 

superposition, all stress and strain fields resulting from a single 

interaction must be referenced to a single coordinate system. Toward 

this end a global coordinate system (Bl, Bp, 83) will be established. 

The solution for the set of surface tractions m, will be referenced to 

the spherical coordinate system (a], ag 23). The surface tractions m m m 

will have rotational symmetry about the x3-axis of the coordinate 

m m m 
system (xl, xg, x3). For a particular set of surface tractions m, the 

m m m (al, ag, z3) coordinates are related to the (xl, xg, x3) coordinates 

as indicated in Figure 3. 8. The angles Bm and 4m will define the 

(xl, xp, x3) coordinate system in relation to the global coordinate 

system as shown in Figure 3. 9. The stress and strain fields for the 

set of surface tractions m, referenced to the global coordinate 

system, (Bl, Bg, B3), are given by 

ij m ki lj (okl (3. 108a) 

( i )m aki al ( kl) (3. 108b) 

where 



x3 

I 

21 
Xp 

xl 

Figure 3. 8 -- Spherical Coordinate System, (z] ap 23) 
in Relation to Cartesian Coordinate System, 
(xl, xP, x3). 
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B„ x3 
n 

I 

I 

I 

1 'I y n 
x2 

I 

e 
2 

n 
xl 

Figure 3. 9 -- Cartesian Coordinate System, (xl, x2, x3), 
n n n 

in Relation to Cartesian Coordinate System 
(61, 92, 83). 



(o; ) = the stress tensor due to the set of surface 

tractions m, referred to the global coordinate 

system, and 

(cl j)m the strain tensor due to the set of surface 

tractions m, referred to the global coordinate 

system. 

The quantities alj are determined by 

m m 

ij ik kj (3. 109) 

where 

[bi. ] = 

si (2) o (z3) 
cos(e2 )cos(z3 ) 

- sin(r3 ) 

sin(z2 )sin(z3 ) 

cos(z2 )sin(z3 ) 

cos(Z3 ) 

cos(z2 ) 

-sin(z2 ) 

(3. 110) 

cos8 cosf 

cosa sing 

-sing 

sin&m 

cosf 
m 

sln8 cost 

sinB sini 
m m 

cosa (3. 111) 

Oetails of the transformations given by Equations 3. 108 through 3. 111 

are given in Appendix B. With the global stress and strain tensors 

for the set of surface tractions m, the total stress and strain 

tensors may be determined as 

(3. 112a) 



(3. 112h) 

where 

oij = the total stress tensor, 

c ij = the total strain tensor, and 

M = the total number of sets of surface tractions. 

The strain energy density of a single sphere, subject to M sets of 

surface tractions of the form given by Equations 3. 106, will not be 

determined from Equations 3. 93 and 3. 95 . As previously stated, the 

system is initially at rest and undergoes only isothermal processes. 

The strain energy density is equal to the Helmholtz Complementary free 

energies per unit initial volume. Therefore, according to Equations 

3. 93, 3. 95 and 3. 112a, the strain energy density for a sphere ir, the 

system is 

r 
~a, . c ~ J E (o, , ) E 

( ) dV 
(3. 113) 

P n=l &3 n m=1 ij m 

V 

where 

&p = the strain energy density of a single sphere, 

V = the initial volume of a single sphere, and 
P 

M = the total number of sets of surface tractions. 
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In Equations (3. 113), np is used to denote the strain energy 

density. It is equal to the Helmholtz free energy per unit initial 

volume for the conditions cited. Equation 3. 113 may be rewritten 

in the following form 

n = n + n 
P p p 

(3. 114a) 

where 

1 

2V 
p p r 

M 

m=1 ij m i' m 

V 
p 

(3. 114b) 

and 

r 
M M 

E Z Io ) (c ) dV 
m-1 n-1 ' ij m ij n 

V m=n 
p 

(3. 114c) 

The term && appearing in Equations 3. 114 is the sum of the strain 

energies per unit initial volume, resulttng from each set of 

surface tractions. The term vp appearing in Equations 3. 114 is the 

sum of the interaction strain energies per unit initial volume. The 

interaction strain energies being the strain energy determined for 
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the stress field from one set of surface tractions acting on the 

strain field from another set of surface tracti ons . 
The strain energy density of the particulate phase contained in 

the representative volume has been determined when the surface 

tractions are of the form given by Equations 3. 106. It will be 

required that certain derivatives of &p be known in order to 

determine effective quantities such as the effective stress, 

strain, compliance and stiffness tensors . The derivatives which 

wi 1 1 be of interest when the effective strain tensor is known are 

Bc 
i 
. BE ~ ~ ij ij (3. 115a) 

2— B21l ~a 
1J kl I j kl 

2 

B jB kl 

(3. 115b) 

For this case it is assumed that the relationship between the 

speci fied surface tracti ons and the effective strai n tensor are 

known. Equations 3. 114 are used to determine the derivatives 

appearing in Equations 3. 115 . These derivatives are 

M 

, '=~f . ', 
pq 

V 

ij m 

1J lll 

pq 

B( ; . ) + (o. . ) — " ' dV 1J m 

Bcpq (3. 116a) 
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3Tf 

Bc 
p 

1 
M M 3(g. . ) f E E ~(c. ) 

p J m=1 n= 1 Bc 
m=n pq 

V 

3( , )n 
( ) ~in 

Bc 
pq 

(3. 116b) 

2 — 
Q 3 n 

~ pq pq 

3 ( ) ijm( ") ijm ijm 

V 
p 

3 (c. . ) 
+ (g ) 

ij m ) dy ij m 
Bc B. J 

pq rs (3. 116c) 

2 — i 

BC BE. 
pq rs 

M M ( E E 

p J m=1 n=l 

V 
p 

32 ~ 

E 

~('i ~m 

ij n (c . ) 
Bc Bc 

pq rs 

BE BE 
pq rs BE BE rs 

' ('1 )n ) + ((y. . ) 3 " dy ij m — — 
J pq rs Bc Bc J (3. 116d) 
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In evaluating the derivatives of the global stress and strain 

tensors for surface tractions m, it is recognized that the only 

terms appearing the series solutions for these quantities which are 

dependent on the effective strain tensor, cij, are the constants, 

6 2„ and n2„. These constants are determined by the surface 

tractions and wi 11 change with respect to the effective strain 

tensor, cij. Using the chain rule of differentation and Equations 

3. 97 through 3. 112 yields the following expressions for the 

derivatives of (oi j )m and (c lj )m, which appear in Equations 3. 116 . 

ac r2k m acpq a(n2k m acpq 

cij m z f cij m 
3 E2k m ij m 2k m ) (3. 117b) 

oi ')m a(oi )m a (/2k)m 
2 

acpqacrs k=o 3 ~2k)m aepqa~rs 

a( i. ) 3 (n2k) 
2 

+ 

2k m pqa rs (3. 117c) 



ij)m 

BE BE 
pq rs 

Z 

k=o 

3(cl . )m 3 (n2k)ln 

2k)m pq rs 

t 
3(n2k)m BcpqB~rs (3. 117d) 

where 

(E2k)m (n2k)m the constants determined from the specified 

surface tractions for contact number m. 

The expressions given by Equations 3. 117 are evaluated by replacing 

the constants (E2k)m and (n2k)m, appearing in the series solutions for 

(aiJ)m and (eij)m, by the ProPer derivatives of these quantities. The 

substitutions in the series solutions to (o'; 
1 )„ and (c;J )m, necessary 

to evaluate Equations (3. 117) are summarized in Table 3. 1. 

The other case which will arise is that when the effective stress 

tensor, o;J, is known. For this case the derivatives of the strain 

energy density of the particulate phase, harp, which wi 1 1 be required 

are 

— i 
Bvr BTr Blr 

3oi Ba. . 3 i. ij (3. 118a) 

2— 2— 2 — ~ Bxo Bni 
3CJ BC/ 30 ~ ~ 30 (3. 118b) 
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Table 3. 1. Evaluation of Derivatives of the Global Stress and Strain 
Tensors with Respect to the Effective Strain Tensor, for 
a Single Set of Surface Tractions. 

Substitutions into series solutions for 
( ; ) and ( . ) 

Derivative 

Replace 

(Ezh)m 

by 

Replace 

(nZk)m 

by 

3(ai ) 

BE 
pq 

BE 
pq 

3(nzh) 

pq 

3(E, . ) 

3E 
pq 

(Ezk) 

3E 
pq 

'("zk). 

pq 

3(a, ) 

BF BE 
pq rs 

' «zk). 
3E BE 

pq rs 

2 

BE 3E 
pq rs 

3E 3E 
pq rs 

3 (zzk) 

BE BE 
pq rs 

' (nzk)m 

BE BE 
pq rs 
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To evaluate the derivatives appearing in Equations 3. 118, it is 

assumed that the relationship between the specified surface 

tractions and the effective stress tensor are known. Use of 

Equations 3. 114 result in the following expressions for the 

derivati ves appearing in Equations 3. 118. 

Bno 
1 

M &(oi' 
m 

Ba p m=1 Bv 
pq y 

p 

i')m 3(, . )) 3 
dV 

go (3. 1'lga) 

ao p 
2V 

(a(o, . ) 

p 

(3. 119b) 

2- 

ao aa rs 

1 

2V 
p 

&(o. . )m g(eij)m a (cjj)m 
13 (3. 119c) rs 
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aarr i 

aS, a 

M M 

( 2 z 
2V & m=1 n=l 

V m n 
P 

B2 ~&(; ), 
Ba Ba 

1J n 

pq rs 

B(ai )m B(c 

Ba Ba 

B(ai j)m B(ci ')n 

Ba Ba rs pq 

B2 
(a. . g 

( ij)n 1 dV 
iJ (3. 119d) 

In evaluating the derivat1ves of the global stress and strain tensors 

for surface tractions m, it is recogn1zed that the only terms 

appearing in the series solutions for these quantities wh1ch w111 

depend on the effective stress tensor, o;J, are the constants E and 
2n 

n2n. These constants are determined by the surface tractions and will 

change with respect to the effective stress tensor, a;J. Using the 

chain rule of differentiation and Equations 3. 97 through 3. 112 y1elds 

the following expressions for the derivatives of (o;J)m and (cij)m, 

which appear 1n Equation 3. 119. 

B(oi ) 

Ba 
pq 

E 

k=o 

B(. i. . ), 
B(E2k) 

B(E2k)m 

Ba 
pq 

'(a;J) '(n2k)m I 

B(n2k Ba f (3. 120a) 
2k m pq 

B( ; . ) 
Ba 

pq 

Z 
k=o 

B(cij ) 

Ba 

B(c. . ) B(n2k) 
+ ~i' m 2k m 

B(n2k) Bo (3. 120b) 2k m pq 
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3 (o. . ) 2 j a(a, ) 

pq pq rs 

(3. 120c) 

2k m + iJ m 2k m ) 
(3. 120d) 

The expressions given in Equations 3. 120 are evaluated by replacing 

the constants, (F2k)m and (nZk)m, appearing in the series solutions 

for (o;&)m and (c;&)m, by the proper derivatives of these 

quantities. The substitutions in the series solutions to (o'fj)m 

and (ci& )m, necessary to evaluate Equations 3. 120 are summarized in 

Table 3. 2. The constants, E2k and n2k, and their derivatives will be 

determined for the surface tractions under consideration. 

Surface Tractions Resultin From an Uniform Pressure Actin on the 

Surface of the S here 

The constants, 62n and n2n, which are determined from the 

specified surface tractions will be determined for the case of a 

uniform pressure, Pm, acting on the surface of a sphere. This 

situation is shown in Figure 3. 10. For this case the specified 

surface tracti ons of the form given by Equations 3 . 106 are 

oil'(R, cos(a2) -P , o&a2 m 

o)2'(R, cos(az)) = 0, o&a2&n 

(3. 121a) 

(3. 121b) 

The constants, E2n and n 2n, which result from these surface 

tracti ons are determined by Equations 3. 107 . For the surface 
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Table 3. 2. Evaluation of Derivatives of the Global Stress and Strain 
Tensors with Respect to the Effective Stress Tensor, for 
a Single Set of Surface Tractions. 

Substitutions into series solutions 
for (a. . ) and (c. . ) 

Derivative 

Replace 

(E2k)„ 
by 

Replace 

(n2k)m 
by 

3(o, . ;)m 

pq 

'«2k)m 

3opq 

3(n2h)m 

aopq 

3(ci )m 

aa 
pq 

3(E2k)m 

av 
pq 

3(nZk)m 

30 
pq 

a (o. . )„ 
aa 3o rs 30 30 rs 

3 «2, )m 

. 2 

aa aa rs 

a (;. )m 

3G 30 rs 

2 

aa aa rs 

2 

30 30 rs 
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P 

Figure 3. 10 -- Uniform Pressure P Acting on Surface 
m 

of Sphere. 
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tractions appearing in Equations 3. 121, the constants, E2n and 

n2n, are given by 

1 

-(4n+l)P P2 (s)ds, , n=0, 1, 2, . . . 
2n ~ mi 2n 

-1 

(3. 122a) 

n2n 0, n=1, 2, 3, (3. 122b) 

In Equations 3. 122, the constants Ko and e2, which appear in 

Equations 3. 107, have been taken as 1 and II /2, respectively. The 

integral appearing in Equation 3. 122a was extended to - II& a2 & 0 

so that the following orthogonality relationship for Legrendre 

polynominals could be employed. 

1 f. p(s) p(s)ds= 
1 

0, miln 

2 
2 +T' 

(3. 123) 

Evaluating Equation 3. 122a in accordance with Equation 3. 123 yields 

a p 
o nl 

(3. 124a) 

E2n 
~ 0, n=l, 2, 3, (3. 124b) 

The derivatives of F2n and rl2n, required to evaluate the terms 

appearing in Table 3. 1 are 

aZ , ap, 

"pq 

'E2n — " = 0, n=l, 2, 3, 
ac 

(3. 125a) 

(3. 125b) 
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Bnzn 
O, n 1, Z, 3, 

pq 
(3. 125c) 

a& 

BE BE 

B 2+ 
m 

Bc 
pq rs (3. 125d) 

B Qz„ 
2 

a'pq B'rs 
0, n=l, 2, 3, 

(3. 125e) 

a n 
= O n=l Z 3, 

pq rs 
(3. 1Z5f) 

The derivatives of (z„and nz„, required to evaluate the terms 

appearing in Table 3. 2 are 

B6 ap 

Ba 
(3. 126a) 

"zn = 0, n=1, 2, 3, 
Ba 

(3. 126b) 

nzn — = 0, n=1, 2, 3, 
Ba 

pq 
(3. 126c) 
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BE 

Ba Ba 
pq rs 

B P 
m 

c}0 BO 
pq 

(3. 126&1) 

B g2 
2 

BQ BQ 
pq rs 

0, n=!, 2, 3, 
(3. 126e) 

32 
n2n 

B&f 30 
0, n=l, 2, 3, 

(3. 126f) 

To evaluate the derivatives appearing in Equations 3. 125 and 3. 126, 

the relationship between the pressure, )sm, and the effective strain 

or stress tensors must be known. This relationship will be 

developed in a later section. 

Surface Tractions Resultin From the Contact Between Adjacent 

~Sheres 

The constants, 6 2n and n2n, which result from the specified 

surface tractions will be determined for the case of contact of a 

single sphere with two adjacent spheres. The spheres make contact 

along an axis of sy&mnetry as shown in Figure 3. 11. The constants 

62n and n2„will be determined for the center sphere shown in 

Figure 3. 11. Surface tractions of the form given by Equations 

3. 106 which result from the contact with two neighboring spheres 

are 
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n 

3 

Contact 
Surface 

n 

„n 
1 

/ 
/ 

/ 
/ ~ / 

n 
x2 

Figure 3. 11 -- Three Spheres in Contact Along an Axis 
of Symmetry. 
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2 — 1/2 2 
-K [cos (z2) - cos (a2)j ' cos (a ). p'a2 aZ ~ " 2- 2- 

I 

lT 
p 

(3. 127a) 

K [cos (z2)-cos (a2)] sin( 2)cos(z2), « 
2 a2 . o 2 2 — 1/2 

P, a2&a2&u-z2 (3. 127b) 

where 

K 
o 2E 

u(1-u ) 
and 

(3. 127c) 

z2 = the angle defining the contact surface as shown in Figure 

3. 11. 

Details of the determination of the surface tractions given in 

Equations 3. 127 appear in Appendix C. The surface tractions given 

by Equations 3. 127 exist only when the spheres appearing in Figure 

3. 11 are being pressed together by a compressive force. The angle, 

a2, defining the contact surface is dependent on the total 

compressive force transmitted through the contact. This dependence 

is given by 

(3. 128) 

where Fc = the total compressive force transmitted through the 

contact, 

u = Poisson's ratio, 
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E = Young's modulus, and 

R = the radius of the sphere. 

For the surface tracti ons given by Equations 3. 127, the constants 

E2n and n2n are given by 

1 

E2n 
= -(4n+'I) J s - cos (a2) 

2 2— 

cos(a2) 
s P2 (s)ds, 2 (3. 129a) 

n = 0 1, 2, . 
I 

I~nrl+ j s - cos (a2) (1-s )s P' (s)ds, 
(4n+1) f 2 2 — 2 

cos(a2) 
(3. 129b) 

n =1, 2, 3, 

where 

s = a dummy variable of integration. 

In determining the required derivatives of the constants 6 2n and 

n2n as given by Equations 3. 129, it is recognized that the angle, 

z2, which defines the contact surface varies with the compressive 

force Fc . The angle a2 is the only term appearing in Equations 

3. 129 which will vary with the effective strain and effective 

stress tensors. Using the chain rule of differentiation the 

derivatives required to evaluate the terms appearing in Table 3. I 
are 

2k 2k 2 

9 a(cos(a2)) 3 
pq 

(3. 130a) 
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n7k 

aE 3(cos(22)) 
pq 

(3. 130b) 

2 ' ~2k 

BE BErs 
pq 

2 (cpp(p ll a 2 pp 
BE rs 

ag2k a (cos( 2)) 

a(cos(z2)) aE 
pq rs 

a F2k 3(cos(z2)) 3(cos(R2)) 

(3. 130c) 

2 
"2k ' 

BE 3E 
pq rs BE 

pq 
BE rs 

a n2k 3(cos(z2)) a(cos(a2)) 

(3. 130d) 

+ 
3 (cos(z2)) 

a(cos(e2)) aE Ers pq rs 

The derivatives required to evaluate the terms appearing in Table 

3. 2 are 

3(cos(z2)) 

ao 3(cos(a2)) ao 
pq pq 

"Zk 2k 

30 3 (COS(22)) 

(3. 131 a) 

(3. 131b) 

2 

BG BG a (cos(z2) Bopq Bo 

~2k 3(cos( 2)) 3(cos(22)) (3. 131c) 

3~2k 
+ 

3(cos(z2)) 

a (cos(r2)) 

Ba Bo rs 
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2 2 
a 4&4 4 444 3(cos(eZ)) 3(cos(eZ)) (3. 131d) 

pq 
3o rs 

"2k 
+ 

3(cos(aZ)) 

3 (cos(e2)) 

pq rs 

The derivatives of EZk and nZk with respect to cos(aZ), may be 

determined using Equations 3. 129. Using Leib ni tz ' s rule for 

differentiation of an integral gives 

3EZk 
= (4k+1) cos a2 1-cos (aZ) 

3(cos(aZ)) 
1 

f - 4 ( 4) [444(4) ~ 4 t4I )1 4 2 2— 

cos(22) 

(3. 132 a) 

3nZk (4k+1)cos e2 

3(cos(aZ)) 2 

1 

f Z 2 — (3. 132b) 
s -cos (a ) P k(s) ds 

2 

cos(aZ) 
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2 ' '2k '~ 2k 2— 
+ (4k+1) cos (22) 

3 (COS(22)) Cos(22) (Cos(22)) 

~i-cos (s)) + 
[1 + P' k(1)] log 

Cos(22) 

1 
1 

~)-cos(so) 

1 
S -COS (22) + S 

2 2 — 
+ 

log 2 P'2k(s) + s P" (s) ds - j COS(22) 
2k 2k (3. 132c) 

Cos(22) 

snss (sk+)) ( s) 

s ( ( S)) ( s( s) ( s( s)) 

log 
~1-co ( s) + 1 

COS(22) 

1 

J -Cos (22) + S 
2 2— 

log 
COS(22) 

COS(22) 

P'2k(s) ds 
(3. 132d) 
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In order to evaluate Equations 3. 130 and 3. 131, the relationships 

between cos(«2 ) and the effective stress and strain tensors is 

required. An approximation for these relationships wi 11 be given in 

a later section. 

Surface Tracti ons Resultln From the Mixture Phase Actin as a 

Binder Between Adjacent S heres 

The constants, E2n and n2n, which result from the sPecified 

surface traction wi 11 be determined for the case of the mixture 

phase acting as a binder between adjacent spheres. The mixture 

phase acts as a binder between three spheres as shown i n Figure 

3. 12. The binder acts along an axis of symetry. Surface tracti ons 

of the form given by Equations 1. 106 which result from the 

situation shown in Figure 3. 12 are 

o 

Kb Fb co «2 o Iib si «2 [(1 — K )csc «2 P 

-"2 — "2 ' '2 — "2 —" J 2 2— 

0, «2&«2&«-«2 (3. 133a) 

o 
12 

-"b Fb sc IBb I «2 «2 [(1-K ) r. «2 P 

( 2) - os («2) + K), 0&«2&«2, n-« &«2« J 2 2— 

0, «2&«2&v-«2 (3. 133b) 
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Binder 
I'iaterial 

Sphere 

Fb 

Figure 3. 12 -- I'iixture Phase Acting as a Hinder 
Between Neighboring Spheres. 
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csc (z2) 

rrR ( 2/3 + (err - z2) sec(a2)] (3. 133c) 

(3. 133d) 

Sb 
= n/2 - (n/2 - a2 a2) 2 2 

(3. 133e) 

and 

R = the radius of the spheres, and 

Fb = the total force transmitted through the mixture phase, and 

a2 = the angle defining the surface area of the sphere on which 

the mixture phase acts, and 

= an angle defining the approximate direction of the surface 
b 

traction vector on the sphere. 

The surface tractions given by Equations 3. 133 are approximate. 

Details of the determination of the surface tractions given by 

Equations 3. 133 appear in Appendix D. To evaluate the surface 

tractions given by Equations 3. 133, the total force, Fb, transmitted 

by the mixture phase must be known. Cases may arise when the 

displacement between the spheres, 6, is known rather than the force, 

Fb. The force-displacement relationship for the mixture phase is 

Fb 
= kb6 (1, 34) 
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where 

kb = the elastic spring constant for the mixture phase. 

The spheres are assumed to be initially in contact under no load 

conditions. For this situation, the initial volume of the mixture 

phase for a single contact locations is given by 

(1-cos(a ))(2+cos(z2)) 
V = ZcR 1 - cos(a2) sin (a2) 

tan(z2) 
sec(r. ) - 1 ~ (s-2a2 s'n (n-2a2 

2 

+ 2/3 sec(a2)-I sin (n/2 - a2) (3. 135) 

The degree of saturation, Ds, is defined as the ratio of the volume of 

the mixture phase to the available volume for the mixture phase. In 

terms of the volume fractions of the two phases, the degree of 

saturation is 

C 

(3. 136) 

where 

Cm 
= the initial volume fraction of the mixture phase, and 

Cp = the initial volume fraction of the particle phase. 

The maximum values that the angle, a2, defining the surface area of 

the sphere covered by the binder material, are dependent on the sphere 

packing geometry. Maximum values of the angle, az for the different 
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packing configurations appear in Table 3. 3. The surface tractions 

given by Equations 3. 133 are valid for values of aR less than or equal 

to those listed in Table 3. 3. In the case that the volume of the 

mixture phase is greater than that given by Equation 3, 135, only the 

volume of material as qi ven by Equation 3. 135, for the maximum values 

of the angle, a2, appearing in Table 3. 3, will act as a binder between 

neighboring spheres. The remaining volume of the mixture phase will 

recognize changes in pressure only. 

The constants ERn and nRn, which arise from the surface tractions 

given by Equations 3. 133 are 

1 

Ezn 
= ( + )Pb [( + h( )) 5 - h(s)l[(x/2 - aR) sec(aR) 

cos(zR) 

+ 1 — 5 — cos (22)] PRn(s) d5 
2 2— 

(3. 137a) 

1 

F (1 + h(s))[(n/2 - a2 a2 + 1 

cos(aR) 

s - cos (aR) (1 - s )s P'2 (s) ds 2 2 — 2 
2n (3. 137b) 

where 

h(s) = cot [x/2 - (n/2 - aR)(cos (s)/aR) ] 
(3. 137c) 
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Table 3. 3. Maximum Values of the Degree of Saturation, D , 

and the Angle, a , for the Case of the Mixture 
m 

' 
Phase Acting as a Binder. 

Configuration 

Maximum Degree 
of Saturation 

D 

Maximum 
Angle 
— b a 

m 

Simple 
Cubic B%%d 45' 

Orthorhombic 1 1 % 3OQ 

Tetragonal- 
Spheroidal 20/ 30' 

Rhombohedral 32'%%d 30' 
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and 

s = a dummy variable of integration. 

For the surface tractions being considered, it is assumed that the 

angle e2 remains constant during deformation. Therefore, only the 

force transmitted by the mixture phase, Fb, is dependent on the global 

stress and strain tensors. In view of this, the derivatives of 

and n2n required to evaluate Table 3. 1 are given by 

B&2n &2n 
7 

b 

BFb , n=o, l, 2, 
BE 

(3. 138a) 

F 
Bc b 

pq 

=I, 2, 3, 
BE (3. 138b) 

2 ' &2n 

BE BF 
pq rs 

2n b , n=0, I, 2, 
F 

b Bc Bcr 
pq rs (3. 138c) 

2 
a nZ„ nZn 

Fb 
ers 

pq rs 

"b, n=1, 2, 3, 

pq rs 
(3. 138d) 
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The derivatives of &2n and n2n, required to evaluate Table 3. 2 are 

given by 

ag2n 

acT 

pq 

~2n "b 
= ~ — , n=0, 1, 2, 

b Ba 
pq 

(3. 139a) 

n2n "2n b , n=l, 2, 3, 

pq 
(3. 139b) 

2 
3 F2 

ao Bo 
pq rs 

2 
~2q b , n=0, 1, 2, 
F 

b ao ao 
pq rs 

(3. 139c) 

"dn2n n2n 

F 
Bo Bo b 

pq rs 

3 F 
b , n=l, 2, 3, 

30 30 
pq rs (3. 139d) 
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To evaluate Equations 3. 138 and 3. 139, the relationship between the 

force, Fb, and the effective stress or strain tensors must be known. 

This relationship will be developed in a later section. 

Strain Ener Densit of Mixture Phase 

The strain energy density of the mixture phase wi 11 be 

determined. Two cases have to be considered in determining the strain 

energy density. Case one represents an air-water mixture which exerts 

a uniform pressure on the spheres contained in the system. Case two 

represents the mixture phase acting as a cohesive material, binding 

neighboring spheres together. Combined, these two cases will model 

the mixture phase in both compressi on and tension. 

Mixture Phase in Com ression. The strain energy density of an 

air-water mixture in compression will be determined. The situation to 

be considered is shown in Figure 3. 13. The air-water mixture applies 

a uniform pressure on the surfaces of the spheres in the system. The 

air in the mixture is assumed to be occluded. The following four 

assumptions are made concerning the air-water mixture: 

l. Boyle's Law may be used to represent the pressure volume 

behavior of the air contained in the air-water mixture. 

2. Henry's Law may be used to determine the volume of dissolved 

air present in the liquid phase. 
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Occluded Air Bubble 

P 
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Figure 3. 13 -- Air-Water Mixture 
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3. When considering the compressibility of the air-water 

mixture, the compressibility of the water is negligible. 

4 . The surface tension present in the water phase surrounding 

the occluded air is negligible. 

Boyle's Law states that the product of the absolute pressure and 

volume of an ideal gas is constant under constant temperature. The 

form of Boyle's Law which will be employed is 

P V oa oa a a (3. 140) 

where Poa = the absolute initial air pressure, 

Yoa the ini ti a! volume of the ai r, 

Pa = the current absolute air pressure, and 

Va = the current volume of the air 

The form of Henry's Law which will be used states that the 

volume of dissolved air present in an air-water mixture is directly 

proportional to the total volume of water. This relationship is given 

by 

(3. 141) 

where Vd = the volume of dissolved air, 

Vw = the total volume of water, and 

kh = the coefficient of solubility. 
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Present in the free air of the air-water mixture will be 

saturated water vapor. Da1ton's division law shows that the saturated 

water vapor pressure does not obey Bayle's Law. However, the 

saturated water vapor pressure is usually very small and will be 

neglected. 

In obtaining an expression for the strain energy density of the 

air-water mixture, only isothermal processes will be considered. 

Under these conditions the Helmholtz free energy and the Complementary 

free energy of the mixture are equal to the strai n energy density. 

Equations 3. 94 and 3. 96 yield the following expressi on for the strain 

energy density of the air-water mixture. 

f . , „ 
m 

(3. 142) 

where &m = the strain energy density of the air-water mixture 

Vm = the initial volume of the air-water mixture 

As a result of the assumption that the surface tension of the 

water is negligible, the air and the water pressures present in the 

mixture are considered to be equal . This pressure is constant 

throughout the air-water mixture contained in the representative 

volume. The air-water mixture is subject to changes in the mean 

hydrostatic stress only. All principal stresses in the mixture are 

equa!. It is assumed that the air-water mixture is unstrained at 
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atmospheric pressure. For these conditions, Equation 3. 142 is 

evaluated as 

m =- 1/2 P c 
kk m w 

(3. 143a) 

where -Pw = /3 otk 1 m 

(3. 143b) 

and Pw = the gage pressure of the water phase, 

/3 kk = the mean hydrostatic stress of the mixture, and 

am 
ky = the volumetric strain of the mixture. 

Under the assumption that the compressibility of the water is 

negligible in comparison to that of the air, the volumetric strain of 

the air-water mixture may be determined in terms of the initial and 

final volumes of air. The total initial volume of the air in the 

mixture is 

V =V +V 
ao ab ad (3. 144) 
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where Vao = the total initial volume of air, 

Vab = the initial volume of free air in the form of occluded 

bubbles, and 

Vad = the initial volume of dissolved air. 

Using Henry' s Law as given by Equation 3. 141, Equation 3. 144 is 

rewritten as 

V = V + k V 
ao ab h 

(3. 145) 

where V„ = the volume of water present in the mixture. 

Combining Boyle's Law given by Equation 3. 140 with Equation 

3. 146, gives the following expression for the volume of air resulting 

from a change in the water pressure Pw. 

P 

V =[V +k V]- ~™p (3. 146) 

where Va = the current total volume of air, and 

Patm = atmospheric pressure. 

In Equation 3. 146, it is implied that the air-water mixture is 

unstrained at atmospheric pressure. The change in volume of the 
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mixture is determined as that for the air contained in the mi xture. 

The volumetric strain, okk, is given by 
m 

Vao ( ab h w w (3. 147 ) 

where Vm the initial volume of the mixture. 

Substitution of Equation 3. 147 into Equation 3. 143a gives the 

following expression for the strain energy density of the air-water 

mi xture. 

(V +k V) 2 

ab n w w 

(3. 148 ) 

Equation 3. 148 may be rewritten in terms of the degree of 

saturation as defined by Equation 3. 136. In determining the degree of 

saturation the volume of dissolved air is included in the total volume 

of water. Expressing Equation 3. 148 in terms of the initial degree of 

saturation, Dso, yields 

p2 

a atm 

(3. 149) 

For the thermodynamic conditions imposed on the system, the 

strain energy density given by Equation 3. 149, is equal to the 

Helmholtz and Complementary free energies of the mixture phase. 

Equation 3. 149 may be used to evaluate the derivatives of these 
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quantities which appear in Equations 3. 89 through 3. 92. The 

derivatives of interest are 

"m 

3c ~ ~ 1j 

31r 
m 

3E ~ ~ 

1J 

2PW P 3P 
+ 1/2 [1+ D + kh D ] [ — "- w] (3 150a) so so 

p 
W PW 

3F 
cm 

37r 
m 

30- . 
1J 

=1/2[1+D +k D ] 
2P P 3P 

[ W W ] W 

P ~P 3o. , (3. 150b) 
W W 1J 

ij kl 1J 3 kl 

2 32 
m "m 2P P 1/2[1+D+kD][- — 2]x 

P P 

2 
p 

W 

ij kl 

1 ZP P 3P 3P 
+ [1+0 +k D ] ~+~ — ( 150 ) 

W W W W 

P P P 3 3 
W W W 1J 

3 F 3 
cm "m 

3cr . j 30k 
1 

30 

2 P P 

1/2 [1 + D + kh D ] so h so 
p p 

W W 

32 P 
W 

ij kl 
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2P P BP Bp 
1 w w +[]+0 +k D ] =-~+= 

P p p Bo. . Bo (3. 150d) 
w w w ij kl 

where Pw = Pw + 1'atm (3. 150e) 

To evaluate the derivatives of the water pressure Pw, which 

appear in Equations 3. 150, the dependence of thi s quantity on either 

the effective strain tensor, o;j, or the effective stress tensor, c;j, 
must be known. One case which is simple to evaluate is when the 

inc rease in water and air pressures in the system have dissipated and 

the air and water pressures have returned to their initial states . 
For these conditions, all the derivatives of the water pressure, P„, 

appearing in Equations 3. 150 are equal to zero. For this case, the 

air-water mixture contributes nothing to the determination of the 

effective quantities. 

Mixture Phase Actin As a Binder 

The strain energy density of the mixture phase when it acts as a 

binder between neighboring spheres will be determined. For the 

thermodynamic conditions under consideration, the strain energy 

density wi 1 1 be equal to the work done per unit initial volume. The 

binder material is assumed to have the following force-displacement 

relationship: 



Fb - kb6 (3. 151) 

where Fb = the force transmitted by the bindet material, 

kb = the elastic spring constant for the binder material, and 

6 = the displacement between the sphere on which the binder 

material acts. 

The work per unit initial volume done on the binder material is 

W 
= — F 36 

1 

b V J b 
m o 

kb6 
2 

2 V 
m 

(3. 152) 

where Vm = the intial volume of the binder material 

The strain energy density of the binder material is equal to the work 

The strain energy density of the binder material is given by. 

k 6 F 
b b (3. 153) 
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The derivatives of the strain energy density as given by Equation 

3. 153, which are required to evaluate Equations 3. 89 through 3. 92 are 

aF 

ac ~ ~ 

1J ac ~ ~ 

Fb 3Fb 

k V 
b m 3ci (3. 154a) 

3F 
cm 

30 ~ ~ 

3 F 3 F 
m 

aoi b m aoiJ 1j (3. 154b) 

a F 
m 

Ek) 

2- 
a n 

m 

j 3 
k) 

2 

1 
aFb 3Fb b 

3 F 

+ 
b m ac. . 3c b m ac. . ac ij kl ij kl 

3 F 
cm m 1 b b+ b b 

2- 2 

k V - k Y — — (3 154d) aj "kl b j a„o a j 

Equations 3. 154 are in terms of the force Fb, Equation 3. 151 may be 

used to evaluate Equations 3. 154. The relationship between the force 

Fb or the displacement 5, and the effective stress and strain tensors 

must be known in order to evaluate Equations 3. 154. An approximate 

relationship will be given in a later section. 
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EVALUATION OF EFFECTIVE UANTITIES 

In this section the evaluation of the effective quantities is 

discussed. The equations required to determine the effective 

quantities wi 1 1 be presented in a manageable form. Estimations for 

determining the loads transmitted through particle contacts or the 

mixture material acting as a binder, wi 11 be given. 

To surmrrari ze the results of the previous sections, the equations 

which wi 11 be used to evaluate the effective quantities of interest 

are 

BTT 

o, =C ij p ac 
1J 

a7r 

+ C 

Bc ~ ~ (3. 155a) 

a1T 

=C P+ 
P Ba 

TJ 

a1T 

C 
m 

Bo ~ . (3. 155b) 

a 1T 

r. . =c~ 
iJkl p Bc ij kl 

2- 
a 7r 

r 
(3. 155c) 

a Tr 
2 

m 

a. . a aij kl 

an 2 

m 

ij kl (3. 155d) 



154 

where oij 

Zijkl 

Sijkl 

P 

Cp 

the effective stress tensor, 

the effective strain tensor, 

the effective compliance tensor, 

the effective stiffness tensor, 

the strain energy density of the particulate phase, 

the strain energy density of the mixture phase, 

the initial volume fraction of the particulate phase, 

and 

Cm the initial volume fraction of the mixture phase. 

Only the effective compliance and sti ffness tensors will be considered 

in the remainder of this section. Knowledge of these quantities will 

allow the determination of the effective stress and strain tensors. 

The relationship between these quantities is determined by integration 

of Equations 3. 155c and 3. 155d. These integrations yield the 

following relationships. 

ao. . = ij f kl 

i jkl kl 

c 
Kl 

(3. 156a) 

B, c. . ij (3. 156b) 
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where aol& = the change in a component of the effective stress tensor, 

« ij = the change in a component of the effective strain tensor, 

a'13 = the initial value of a component of the effective stress 

tensor, and 

e';& = the initial value of a component of the effective strai n 

tensor. 

The integrals appearing in Equations 3. 156 are necessary because the 

effective compliance tensor and effective stiffness tensor will be 

functions of the effective strain tensor and effective stress tensor, 

respectively. The reason for this is the non-linear 

force-displacement relationship for the surfaces of the spheres in 

contact. A suitable numerical technique must be used to evaluate the 

change in the effective stress and strain tensors, given by Equations 

3. 156 . The initial volume fractions of the particulate and mixture 

phases for the different packing configurations appear in Table 3. 4. 
These initial volume fractions are needed to evaluate the effective 

compliance and effective stiffness. 

The effective compliance and stiffness tensors will be referenced 

to the cartesion coordinates, (el, 82, 93) as defined previously. The 

location of pairs of contacts on a particular sphere in the system, 

are defined by the angles Bm and 4m, measured relative to the 

coordinates (91, 62, 83). The values of these angles for the 

different packing configurations are given in Table 3. 5. The 
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Table 3. 4. Initial Volume Fractions and Maximum Tensile Stressed 
Volume of the Mixture Phase for the Different Packing 
Configurations. 

Packing 
Configuration 

Initial Volume 
Fraction of 
Particle Phase 

C 
P 

Initial Volume 
Fraction of 
Mixture Phase 

C 
m 

Maximum Tensile 
Stressed Volume 
Fraction of Mix- 
ture Phase 

max 
m* 

Cubic 0. 52 0. 48 0. 038 

Orthorhombic 0, 61 0. 39 0. 043 

Tetragonal- 
Spheroidal 0. 69 0. 31 0. 062 

Rhombohedral 0. 75 0. 25 0. 08 

" Ds taken from Table 3. 3. 
max 



Table 3. 5. Angles Defining Location of Contact Pairs with Respect to Cartesian 
Coordinates (el, e2, e3). 

Angles Defining Locations of Contact Pairs 

Contact 
Pair 1 

Contact 
Pair 2 

Contact 
Pair 3 

Contact 
Pair 4 

Contact 
Pair 5 

Contact 
Pair 6 

Packing 
Configuration 0] 82 42 83 43 84 44 85 45 86 

Cubic 0' 0' 90' 0' 90' 90' 

Orthorhombic 45' 0 45' 90' 45' 180' 45' 270' 

Tetragonal- 
Spheroidal 35. 3' 30' 35. 3' 210' 90' 0' 90' 60' 90' 120' 

Rhombohedral 35. 3' 30' 35. 3' 150' 35. 3 270 90' 0' 90' 60' 90' 120' 
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effective compliance and stiffness tensors will be determined using 

the values of the angles, Bm and &m, listed in Table 3. 5. This in 

effect fixes the cartesian coordinates (81, ez, e3), with respect to a 

particular packing configuration. To determine the effective 

quantities with respect to a coordinate system other than (&1, 82, 

e3), tensor transformation laws may be employed. 

To evaluate the effective compliance and stiffness tensors, 

Equations 3. 155c and 3. 155d are rewritten as 

i jkl p i jkl m i jkl 
(3. 157a) 

'jkl p ijkl m ijkl = C S. P + C S. (3. 157b) 

2- 
3 TI 

cF. 
i jkl 

ij kl 
(3. 157c ) 

3 1T 
2- 

Cm 
m 

i jkl gc . . ac ij kl 
(3. 157d) 
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2- 
n 

sp. 
ijkl 

301J aokl (3. 157e) 

2- 
3 n 

Sm m 

aJkl 
ij kl (3. 157f) 

The quantities, C;Jkl and Cfjkl, are the effective compliances o5 the 
P 

P particulate and mi xture phases, respectively. The quantities, 5; Jkl 
m 

and S;Jkl, are the effective stiffnesses of the particulate and 

mixture phases, respectively. Simple expressions for these quantities 

will be given. 

Effective Com liance and Stiffness Tensors of Particulate Phase 

The effective compliance and stiffness tensor s of the particulate 
phase are determined as 

cp = (cp )' (c' ijkl ijkl ijkl (3. 158a) 

1 

ijkl ( ljkl) ' ('ljkl) 
(3. 158b) 

p 
where (C 1) = the contribution to the effective compliance of the ijk 

particulate phase by all sets of surface tractions, 
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P 

(Cijk)) = the contribution to the effective compliance of the 

particulate phase by all interactions between sets of 

surface tractions, 

(S;jkl) = the contribution to the effective stiffness of the o 

particulate phase by all sets of surface tractions, 

and 

P 
(Sijkl) the contribution to the effective stiffness of the 

particulate phase by all interactions between sets of 

surface tractions. 

The effecti ve quantities, (C-. ) and (S. . ) , are given by ijkl ijkl 

(K') a p ai aT 
(Cp ) ~ p 

m 
' 

m m 

ijkl o G m 

ij kl ij kl 

N 

ac 
n + 

n=l 

Nb 

a Cn (Kb ) 
(C 

b 

kl ij n=l 

aF „ aF „ Fb 
2 

ac, j aEkl 
' 

ac, . j aEkl (3. 159a) 
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(SP. . ) = Kn 

ijkl p 

' 'm 
2— 

p + 

ij kl 

ap 
m 

ao. ~ ij 

ap, 
+ 

kl 

IK j 
G 

n=l 

aC aC !C, )n 
+ 

a Cn 
2 

+ 

kl 

Nb 

n=l 

( b) aFb bn 

ij 

bn a F 

ij kl 

bn 

(3. 159b) 

where 

Ko (1-2u) 
p ~2+v (3. 159c) 

o 2E 
K c 2 x(1-v ) (3. 159d) 

o 
K 

b xR (3. 159e) 

and Pm the pressure of the mixture phase 

Cn the cosine of the angle z2. Defining contact surface n, 

Fbn 

Nc 

Nb 

the total force which is transmitted by the mixture phase 

acting as a binder at location n, 

the number contact type surface tractions, 

the number of binder type surface tractions, 
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G = the shear modulus of the particulate phase, 

E = Young's modulus of the particulate phase, 

v = 

Poisson� 
' s ratio for the particulate phase, and 

R = the radius of the spheres representing the particulate phase. 

The sum of the quantities Rc and Nb, which appear in Equations 3. 159, 

must be less than or equal to the total number of contact pairs. The 

case where this sum may be less than the total number of contact pairs 

would occur when a tensile load is present at a contact location where 

there is no mixture material acting as a binder. The terms (Ac)n, 

(gc)n, (Cc)n and (Db)n which appear in Equations 3. 159 are 

dimensi onless quantities for surface traction set n . They are 

determined from the series solution presented in the previous section. 

The quantities (Ac)n, (8c)n, and (Cc)n arise from contact type surface 

tractions for contact n. These quantities are determined as 

(A ) c n (fo)2y 
P 

Vp 

(3. 160a) 
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a(o ) 3(c )n 
(8 ) 

(Ka)2V 
p n 

Vp 

(3. 160b) 

3(" )n (. ') 
(C ) = ~n pqn 

dV 
(K ) V 

Vp 

(3. 160c) 

where (opq)n the stress tensor resulting from contact type surface 

traction n, and 

( cpq )n = the strain tensor resu1 ting from contact type sur face 

traction n. 

The quantity (Db)n arises from surface tractions where the mixture 

phase acts as a binder between neighboring spheres. This quantity is 

determined as 

b b 
dv (0) f ( pq) 

F (K IY 
b b p 

Vp 

(3. 161) 

where (opq )n the stress tensor resulting from binder type surface b 

tractions n, and 

(E pq )n the st ra i n tensor resu 1 ting f'rom bi nder type surface b 

tractions n. 
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The dimensi onless quantities given by Equations 3. 160 and 3. 161 are 

independent of the effective stress or strain tensors . The 

dimensionless quantities appearing in Equations 3. 160 and 3. 161 

require evaluation by use of a computer. The computer evaluation of 

these quantities is discussed in the next chapter. 

P . p The effective quantities (CiJkl)' and (Sljkl) are given by 

Nb 

Kt, K 

n=l 

2F 
(Db ) bn P , bn bpn m+ 

ac k) Ei j 

a p 
+ bn 

a ij a 
kl 

aF 
bn 

kl 

K K 
~b 

G 

N c 

n=l 

a 6 —, ac ap ac ap 
Cn P n m n m cp n m + — — + 

'j kl ij kl kl ij 
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2— 
+ cpn 

K K 
b c 

G 

Nb Nb 

m= 1 n= 1 

men 

[ 

2 

(p ) 
3 Fbm Fbn 3Fbm 3Fbn + 3Fbm 3Fbn 

bb mn 

ij kl ij kl kl ij 

N c 

G 

m=1 

men 

N c 
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ac ~ ~ 

1J 

ac , ) 
ac ac 3C aC 

m (8 ) m n m n 
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( cc)mn 
aZc 

m 

kl ij 

3 C 

+ cc nm + 

kl 

3Cn 3Cn 

(a ) ac . . 3E ij kl 
(3. 162a) 
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Nb Nb 

ij kl m= 1 n= 1 

m)n 

t 

bb)mn bm bn 

kl 

bm 
aF aFb 
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The terms appearing in Equations 3. 162 have all been previously 

defined except dimensionless quantities. The dimensionless quantity, 

(Dbp)n ari ses from the interaction between uni form pressure type 

surface tractions and binder type surface tractions for contact n. 

This quantity is given by 

(D ) b p bp n = 
(opq )n pq dV 

bn b p p 

Vp (3. 163) 

where ij = the strain tensor due to the uniform pressure, Pm, acting 
P, , 

on the surface of a sphere. 

The dimensionless quantities, (acp)n (Ccp)n and (Dcp)n arise from the 

interaction between uniform pressure type surface tr actions and 

contact type surface tractions for location n. These quantities are 

given by 

( cp)n = 

2P K K V 
m c p p 

Vp 

2 c) 

(3. 164a) 

c) (Ccp n = ( )n c dV 
pq 

2P K K V 
ln c p p 

3C 
n 

Vp (3. 164b) 
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cp)n = (o ) c dV 
pq n pq 

2P K K V 
m c p p 

Vp (3. 164c) 

The dimensionless quantities (Abc)mn, (Cbc)mn and (Dbc)mn arise from 

the interaction of binder type surface tractions for locat1on m, with 

contact type surface tractions for contact n. These quantities are 

gi ven by 

("bc)mn = 

2F K K V 
bm b c p 

Vp 

2 c 
I, b 

I 
pq m 

ac 
n 

(3. 165a) 

( bc) 

2F K K V 
bm b c p f 

c 

pq m 

(3. 165b) 
Vp 



170 

( bc)mn = 

2Fb b c bm 

Vp (3. 165c) 

The dimensionless quantity (Dbn)mn arises from the interaction of 

binder type surface tractions for location m, with binder type surface 

tractions for location n. This quantity is given by 

(o ) (c ) 4V 
pq m pq n 

2Fb Fb (Kb 

Vp 

(3. 166) 

The di mensi onless quantities ( Acc )mn, ( Bcc )mn and (C« )„„ arise from 

the interaction of contact type surface tractions at location m with 

contact type surface tractions at location n. These quantities are 

gi ven by 

(A )„ 
2 K ) V J 

2 c 
VV 

32 
pq m 

3C, 
Vp 

(3. 167a) 

(2 1" ~2( )„~(v )„ 
2(2 ) V 7 VC 2C„ 

Vp 
(3. 167b) 
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cc mn = (C ) G 

2(K ) V 

Vp 

8C 

(3. 167c) 

Values of the dimensionless quantities appearing in Equations 3. 163 

through 3. 167, require evaluation by a computer. Evaluation of these 

quantities is discussed in Chapter IV, The dimensionless quantities 

determined from the interactions between contact type and binder type 

surface tractions are dePendent on the angle, 8mn, which defines the 

location of the surface tractions of location m, with respect to the 

sur face traction at location n, or vice versa. Figure 3. 14 shows the 

angle 8mn in relation to the axes x3 and x3", which are axes of 

symmetry for the surface tracti ons at locations m and n, respectively. 
The possible locations for contact and binder type surface tracti ons 

with respect to the global coordinate system, (81, 82, 83), are 

determined by the angles, 8„and 4m, which appear in Table 3. 5. 
Tables 3. 6 through 3. 9 give values of 8mn for the different. surface 

traction locations for each of the packing configurations. 

The effective compliance and effective stiffness of the 

particulate phase may be determined using Equations 3. 158, 3. 159 and 

3. 162. To evaluate these quantities, the dependence of the pressure 

in the mixture phase, P„, the cosines of the contact angles, Cn, and 

the binder force, Fbn, on the effective stress and Strain tensors must 

be known. Approximate relations of this type will be given in a later 
section. 
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m 
x3 

e 
mn 

n 
x3 
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xm 
2 

m 

xl 

Figure 3. 14. -- Angle 6 Relatfve to x3' and x3 Coordinate Axes. m n 

mn 
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Table 3. 6. Yalues of the Angle e for Simple 
mn 

Cubic Packing Configuration. 

Surface Traction 
Location n 

Bl 41 B2 ~2 B3 ~3 

I: 
O 

E 
EJ 
Id C 

Id 

dl oI 
IO 
Id O 

Bl 0 

\tl 
1 

0 

B2 90' 

0' 

B3 90' 

90' 

0' 0' 90' 

QO 

90' 

90' 

90' 

QO 

90' 

0 90 9Q 

90' 

90' 

Qo 
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Table 3. 7. Yalues of the Angle 0 for prthorhombic 
mn 

Packing Configuration. 

Surface Traction 

Location n 

84 

45' 0' 45' 90' 45' 180' 45' 270' 

45 

0' 
00 GQ' 90' 60' 

82 45' 
O 

E 
y 9QO 

lO C 
O I— 

60' pO 60' 90' 

Ql nJ 
U U 
Itl 0 
5- 

V) 

83 45' 
90' 

180' 
60' QO 60' 

84 45' 
60' 

270' 
90' 60 QO 



Table 3. 8. Values of the Angle o for Spheroidal-Tetragonal Packing 
mn 

Configuration. 

Surface Traction 

Location n 

61 "1 2 ~2 3 ~3 4 ~4 5 ~5 

35 3o 30o 35 3o 21QO 90a Po gpo 60o 9QO 12Qo 

81 35'3 

1 
30 

00 70. 5' 60' 60' 90' 

210' 

63 90' 

0' 

84 90' 

g4 60' 

65 90' 

120' 

70. 5' 

60' 

60' 

90' 

QO 

90' 

60' 

60' 

90' 

00 

60' 

60' 

60 

60' 

60' 

60' 

60 

60 

6Q 

60 



Table 3. 9. Values of the Angle 6 for Rhombohedral Packing Configuration. 
mn 

Bl 35'3 

30' 

35. 3' 

Surface Traction 

Location n 

Bl l 1 2 ~2 3 ~3 4 ~4 5 ~5 6 ~6 

35 3o 3Po 35 3o ]50o 35 3o 270o 90o Po gpo 60o 9Qo ]20o 

00 60' 60 60' 60' 90' 

O B 
E 

U 

5- o 43 r 

v 
IU Q 4 

4'4 

B5 

150' 

35. 3' 

270' 

90' 

00 

90' 

6Q 

90' 

6Q 

6Q 

6Q 

60' 

00 

60' 

6Q 

90' 

60 

QO 

90' 

6Q 

60' 

90 

00 

60 

90' 

60' 

60' 

00 

60' 

60 

60' 

60' 

120' 
90' 60' 6Q' 60' 60' 00 
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Effective Com liance and Stiffness of Mixture Phase 

The effective compliance and stiffness of the mixture phase must 

be determined for two types of conditions. One condition is when the 
mixture phase exists in the void space around the spheres in the 

system at a pressure Pm. The other condition is when it acts as a 

binder between neighboring spheres. For the case when the mixture 

phase fills the void space and is subject to a pressure Pm, Equations 

3. 150 give expressions for the effective compliance and stiffness of 
the mixture. These equations yield 

Cijkl 1/2 1 + D + 
kh 

2— 
a p 1+D +k D 

1 2P 
+ so h so 

BG. 3G-. (J &j (p + p t ) (p + p t ) m atm m atm 

p 
2 

m (3. 168a) 
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5. jk 1 
I/2 

( 
m atm) 

— 2 
p 

m 

at x 

3 P 
m 

aaki t 

1+D +k D 
so h so 

2P 
m 

— 2 
m 

ar ar 
m m 

aoij BGk] 
(3. 168b) 

where Dso = the initial degree of saturation, 

kh = solubility coefficient, and 

Patm = atmospheric pressure. 

Equations 3. 168 differ in appearance from Equations 3. 150 in that the 

water pressure, Pw, has been replaced by the mixture pressure Pm. 

These two are equal since surface tension has been neglected. 

When the mixture phase acts as a binder Equations 3. 154 gives 

expressions for the effective compliance and stiffness of the mixture 

phase. Equations 3. 1 54 apply to one surface traction location wher e 

the mixture material acts as a binder. Using these expressions the 

effective compliance and stiffness of the mi xtu re phase for these 

conditions are 

Nb 

1 

ijkl 
V kb 

bn 
3 

bn bn bn 
2 

n=l kl 
' ' 

I&1 lj Ij 

(3. 169a) 
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N 

1 

i jkl 
V kb 

n=l 

(3. 169b) 

where Vm = the total volume of the mixture phase, 

kn = the elastic spring constant for the mixture phase, 

Nb = the total number of binder type surface tractions, and 

Fbn = the total force transmitted by the mixture material at 

location n. 

If the displacement between spheres is known, Equations 3. 151 may be 

used to evaluate Equations 3. 169. 

To evaluate Equations 3. 168, the dependence of the mixture 

pressure, Pm, on the effective stress tensor or the effective strain 

tensor must be known. To evaluate Equations 3. 169, the dependence of 

the force transmitted by the binder, Fb, on the effective stress or 

strain tensor must be known. These relationships wi 11 be approximated 

in the subsequent section. 
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RELATIONSHIP OF SURFACE TRACTIONS TO GLOBAL OUANTITIES 

In this section, parameters needed to evaluate the surface 

tractions present on a single sphere will be related to the effective 

stress and effective strain tensors. To evaluate the effective 

quantities of the system as a whole, it is assumed that either the 

effective stress tensor or effective strain tensor is known. When one 

of these effective quantities is known, the results of the previous 

section may be used to determine the effective compliance tensor when 

the effective strain tensor is known, or the effective stiffness 

tensor when the effective stress tensor is known. The effective 

quantity which is known will be that which is observable on the 

macroscale. These being the macroscopically observable stress or 

strain fields. 

Contact and Binder T e Surface Tractions When the Effective Strain 

Tensor is Known 

In this section the parameters needed to evaluate contact and 

binder type surface tractions will be related to the effective strain 

tensor. The relationships to be developed would be used when the 

macroscopically observable strain field, ci j is known. 

To determine the relationships between the surface tractions 

present in the system on a sphere and the effective strain tensor, a 

single sphere which surface tracti ons at location n is considered. 

The location n is defined relative to the Cartesian coordinates, 



(Bl 62, 03)' by the angles, Bn and 0n, as shown in Figure 3. 15. The 

n n n Cartesian coordinates, (xl, x2, x3), are local Cartesian coordinates 

n for location n. The x3 axis is an axis of symmetry for the surface 

tractions at location n. The transformation laws given in Appendix 8 

may be used to determine the effective strain tensor relative to the 
n n n 

Cartesian coordinates (xl, x2, x3). In particular, the component of 
n 

the effective strain tensor along the x3 axis is desired. This strain 

component is given by 

. 2 2 — . 2 . 2 — 2 
( 33)n sin B cos g cl 1 

+ s&n B„sin y c22 + cos 8 c33 

2 sin B sin g cos g c + 2 sin B cos B «s 0 c13 + 
n n 12 n n n 

2 sin Bn cos Bn sin 0 

(3. 170) 

where (c33)n = the component of the strain tensor along the x3 

coordinate axis, and 

ci& = the components of the effective strain tensor. 

To determine the displacement across the sphere along the x3 axis, 

Equation 3. 170 may be integrated with respect to the coordinate x3. 

Performing the integration gives 
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('u3)n— 

-R (3. 171a) 

where (au ) =(u ) (R) „(u ) ( R) 

(3. 171b) 

and (u3)n = the displacement in the x3 coordinate direction, and 

R = the radius of the sphere. 

Equation 3. 171a assumes that the effective strain tensor is spacewise 

constant throughout the representative volume. The quantity (u3)n is 
n 

the displacement along the x3 axis, across the sphere. The 

displacement at each surface of the sphere, (x3 = + R) will be half 
n 

of (u3)n. Therefore, the displacement at x3 = R is 

(U3) — R (c33) 

n 
x = R 

3 (3, 172) 

Equation 3. 172 will be used to determine parameters for contact and 

binder type surface tracti ons for the case when the effective strain 

tensor, c;&, is known. 
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For contact type surface tractions, the solution to the contact 

problem given in Appendix C are used to determine the relationship 

between the angle, (z2)n, defining the contact surface for contact n, 

and the displacement given by Equation 3. 172. The displacement given 

by Equation 3. 172 will be that at the center of the contact region. 

The angle (a2)n is related to this displacement by 

(22) = sin 
g 

)u3 I 

-1 

R (3. 173) 

In Equation 3. 173, the absolute value of (u3)n is necessary since 

this quantity is negative. This displacement must be negative for a 

contact type surface traction to exist. The derivatives of Equation 

3. 173 which are required to evaluate the effective compliance tensor 

are 

n 1 R 1/2 tan (a ) ( 3 n 

Bc . . 2R j(u3)„i Bc ~ ~ (3. 174a) 

2 
BCn 1 R R 

1 j kl 4R ( ) 

'72 tan (a2)„ 

3 
( ) 

B(u3)n B(u3 n 
n 

ij (3. 174b) 

where Cn = the cosine of the angle (z2)n. 
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The derivatives of (u3 )n appearing in Equations 3. 174 are given in 

Table 3. 10. 

For binder type surface tractions, the solution given in Appendix 

0 is used to determine the relationship between the force, Fbn, 

transmitted by the binder at location n, and the displacement, 6n, 

between adjacent spheres. This relationship is given as 

Fbm 
= 

kb 'n (3. 175) 

where kb = the elastic spring constant for the material acting as a 

binder. 

The displacement, en, between neighboring spheres will be equal to 

twice the di splacement (U3 )„, gi ven by Equation 3. 172. Equation 3. 175 

riiay be rewritten as 

Fb 
= 2 kb (u3) (3. 176) 

The derivatives of Equation 3. 176 whi ch are required to evaluate the 

effective compliance are 

F 
bn 

ac 
b 

ac . . iJ (3. 177a) 

8 Fb 
2 

n 

acij a kl 
(3. 177b) 

Table 3. 10 may be used to evaluate Equations 3. 177. 



185 

Table 3. 10. Derivatives of (u3) with Respect 3 n 

to Effective Strain Tensor. 

q(u3) 

ac ~ ~ 

1J 

R sin 8n cos 2 

12 R sin 8n sin g cos Q„ n 

13 R sin 8 cos 8 cos 4 
n n n 

21 R sin 8 sin g cos Q 
2 

n n n 

'22 R sin 8 sin 2 
n n 

'23 R sin 8 cos 8 sin g 
n n n 

31 R s~n 8 cos 8 cos 
n 

'32 R sin 8 cos 8 sin 4„ n n 

'33 R cos 8 
n 
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Contact and Binder T e Surface Tracti ons When the Effective Stress 

Tensor is Known 

In this section the parameters needed to evaluate contact and 

binder type surface tracti ons will be related to the effective stress 

tensor. These relationships would be used when the macroscopically 

observable stress field, alj, is known. 

The surface tracti ons at location n, as defined in Figure 3. 15, 

wi 1 1 be related to the effective stress tensor o;j . The effective 

stress tensor, oij, is known relative to the Cartesian coordinates 

( 81, 82, 83 ), as shown in Figure 3. 15. The solutions given for the 

contact and binder type surface tractions are in terms of the total 

force transmitted between adjacent spheres. In both cases, the total 
n force is directed along the x3 coordinate axis shown in Figure 3. 15. 

The force transmitted between spheres will be approximated as 

(F3) (K ) R (o33) (3. 178) 

where (F3)„ 
n 

the total force directed along the x3 coordinate axis, 

R2 the radius of the sphere, and 

the component of the effective stress tensor directed 
n 

along the x3 coordinate axis. 

The term, (Ka)n, appearing in Equation 3. 178 is a factor which depends 

on the packing geometry of the system. These constants depend on the 
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area transmitting the stress, (o33)n between adjacent spheres at 

location n. Values of (Kn) for the different packing configurations 

are given in Table 3. 11. The stress, (o33)n, may be determined using 

the transformation laws given in Appendix B. The stress (o33)n ls 

given by 

(0- ) = sin 8 cos 0 oil + »n 8 » n 4 o22 
2 2 — 2 . 2 

33 n n n 1 n n 

+cos8o33+2sinSsin 4 cos4no)2 2 — 2 
n 33 n n 

+ 2 sin 8 cos 8 «s 'Pn o13 + 2 sin 8 cos 8 sin q o n n n 
n n n 23 

(3. 179) 

where the angles, 8n and yn, are shown in Figure 3. 15. 

For contact type su rface tr actions, Equation 3. 128 gives the 

relationship between the angle, (z2)n, defining the contact surface at 

location n, and the force, Fc, transmitted by the contact. In terms 

of the force (F3)n, given by Equation 3. 178, this relationship is 

-1 
(a2) = sin 

2 n 

3(1-u )l(F3)nl 

4R E 
(3. 180) 

where E = Young's Modulus for the sphere, and 

u = poisson's ratio for the sphere. 



188 

Table 3. 11. Factors for the Different Packing Configurations. 

Packing 
Configuration 

(Ka)n 
Factor 

Simple 
Cubic 

Orthorhombic 2. 83 

Tetragonal 
Spheroidal 

2. 33 

Rhombohedral 2. 0 



189 

Equation 3. 180 may be used to determine the derivatives requi red to 

evaluate the expressions for the effective stiffness. These 

derivatives are 

ac 
n 

ZnR K iJ C 

2 RZK' 
c 

2/3 
tan (a2)n a(F3)n 

ao 1J 

(3. 181a) 

ac -1 
n 

ao. . aokl ZnR K 
2 o 

ij kl c 

2nR K 
C 

31«3 n 

2/3 a2(F ) tan a2)n 3 n + 
aa. . aokl 1J 

2 RZK o 2/3 
c ('2). 

27IR K 3I(F3) 

ZnR K 
2 c tan (aZ) 

ao ~ ~ 

1J kl (3. 181b) 

o 2 

C 
n(1-u ) (3. 18lc) 

The derivatives of (F3)n with respect to the effective stress tensor, 

o;J, are determined using Equations 3. 178 and 3. 179. These 

derivatives are given in Table 3. 12. 

For binder type sur face tractions, the force transmitted by the 

mixture phase is that given by Equation 3. 178. Rewriting Equation 
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Table 3. 1Z. Derivatives of (F3) with Respect 3 n 

to Effective Stress Tensor. 

ao . . 1J 

(K ) R sin 8 cos 

'12 (Ka)n R sin 8 sin 4 cos 0 2 2 

13 (K ) R sin 8 cos 8 cos Q 

21 (K ) R sin 8 sin g„ cos g 

'22 (K ) R sin 8n sin 2 

'23 (Ka)n R sin l3n cos 8 sin p 

31 (Ka)n R sin 8 cos 8 cos 0 
2 

'32 (Ka)n R sin 8 cos Bn sin 0n 
2 

'33 (K ) R cos 8 



3. 178 in terms of the force, Fbn, transmitted by the binder at 

location n, gives 

F = (F ) = (K ) R (o33) (3. 182 ) 

The derivatives required for evaluation of the effective stiffness are 

a(F3), 

30 ~ ~ (3. 183a) 

2 
a F 

'j kl 

8 (F3) 

ij kl (3. 183b) 

The derivatives appearing in Equation 3. 183a are evaluated from Table 



192 

CHAPTER IV 

RESULTS 

In this chapter the numerical determination of the dimensionless 

quantities, required to evaluate the expressions for the effective 

compliance and stiffness tensors contained in Chapter III, will be 

reviewed. Results for some of the di mensi onless quantities will be 

presented and their validity discussed. 

The dimensionless constants which appear in Chapter III were 

evaluated using numerical integration techniques. The numerical 

integrations were performed on a computer. The integrals 

which involve the prescribed surface tractions present on the spheres in 

the system were evaluated using an eighty point, Gauss type integration 

formula. This integration method approximates these one-dimensional 

i nteg rais by 

b 

f (s) 

a 

N 
P 

ds = W f (s ) 

n=l 

(4. 1) 
a&s &b, n=l, 2, . . . , N 

where sn = integration point n; 

Wn = weight factor n; and 

Np 
= the number of integration points. 
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For the problem under consideration, the integral appearing in Equation 

4. 1 is that involving the prescribed surface tractions. 

The volume i ntegrals which are required to evaluate the dimensi onless 

quantities appearing in Chapter I I I, were evaluated using a spherical 

product formula. The spherical product formula used was for the 

three-dimensional sphere and is given by Stroud (28 ). The spherical 

product formula transforms three dimensional volume integrals into the 

products of three one dimensional integrals. Gauss type integration 

formulae are used to approximate the one-dimensional integrals. The 

final result is an integration formula of the type 

f 
f (e, , 8 , 83) dnl 

V 

N 

P 

Wn ln' 82n' 83n 

n=l 

o&3 + o + 8 &R , n=l, 2, 2 2 2 2 

ln Zn "3n ' ' ' ' '' 
P 

where Vs = the volume of the sphere; and 

(Gin, 02n, 83n) = the global coordinates for inteqration Point n. 

The other terms appearing in Equation 4. 2 have the same meanings as 

those in Equation 4. 1. Spherical product formulae for the three 

dimensional sphere are available in (28 ) usi nq m i ntegrat i on poi nts 
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where m = 2, 3, . . . . These formulae provide exact solutions to the 

integral appearing in Equation 4. 2 when f (81, Ilz, 83) is a polynominal 

of order 2m-1 or less. 

Equations 4. 1 and 4. 2 were used in a computer program to evaluate the 

dimensionless quantities appearing in Chapter III. 
In evaluating the dimensi onless quantities, two factors were 

recognized as having a significant effect on the calculated results. 

lhese two factors are 

1. The number of terms taken in the series solution for the 

axisymmetric sphere. 

2. The number of integration points used to evaluate the volume 

integrals by Equation 4. 2. 

Addressing the first of these factors, inspection of the series 

solution in Chapter III shows that when evaluated at the center of tne 

sphere, only one non-zero term remai ns i n the seri es. Therefore, at the 

center of the sphere the solution as obtained using a single term in the 

series. The number of terms in the series which is required for 

convergence to the correct result increases as the series is evaluated at 

points farther away from the origin. The maximum number of terms 

required in the series to converge to the correct result will occur on 

the surface of the sphere. The series solution was checked to determine 

the number of terms required . to yield a calculated result within five 

percent of a known result, when evaluated on the surface of the sphere. 

The surface tractions used in this check were that of a uniform pressure 

acting over a portion of the sphere as shown in Figure 4. 1. Analysis 
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Uniform Pressure 

Sphere 

Figure 4. 1. -- Uniform Pressure Acting Over a 
Portion of a Sphere. 
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showed that approximately thirty terms in the series were required for 

calculated results within five percent of the actual. The computer 

program employed to evaluate the dimensionless quantities used fifty 

terms in the series solution. 

The other factor that affected the results of the computer program 

was the number of integration points used to evaluate the volume 

integrals in Equation 4. 2. To study the dependence of the computer 

results on the number of integration points, the contact problem 

appearing in Figure 3. 9 was used. A non-dimensi onali zed measure of the 

volume averaged strain energy density was determined for the center 

sphere of this configuration, using the computer program. This quantity 

was determined as 

G 

d 2(K Iv c p 
Y 

P 

c. . dY (4. 3a) 

a 2E 
C 21 H(1-V (4. 3b) 

and E = Young's modulus; 

G = the shear modulus; 

Yp = the sphere volume; 

o; = the stress tensor due to contact type su rface tractions; c 

C c . = the strain tensor due to contact type sur face tractions; and 1J 

u = 

Poisson� 

' 
s ratio. 
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The quantity, ud, given by Equation 4. 3a was determined using 512, 

1000, and 1728 integration points in Equat1 on 4. 2. The computer results 

for different contact surfaces and a Poisson's rat1o of 0. 3, appear in 

Figure 4. 2. Figure 4. 2 shows that the quantity ud increases as the 

number of integrat1on points increases. The rate of increase of ud with 

respect to the number of integrations points, Np, is greatest for small 

contact surfaces. This suggests that the computer results for the larger 

values of the contact surfaces are closer to the true values, for a given 

number of integration po1nts. 

In summary, the accuracy of the computer results depend on the two 

factors previously mentioned. The number of integrat1on po1nts used to 

evaluate Equation 4. 2 appears to have the largest effect on the computer 

results. Since for m integration points, Equat1on 4. 2 gives exact 

resu1ts for polynom1nals of order 2m-l or less, it stands to reason that 

increasing the number of integration points would prov1de more accurate 

results. This 1s because term m of the series solut1on involves 

polynominals of order 2m. Unfortunately, as the number of integrations 

points is increased, computer costs are also greatly 1ncreased. At the 

time of this wr1 ting, funds were unava1 1 able to study the problem of 

obtai ni nq accu r ate computer results. As a result the evaluat1 on of the 

dimens1onless quantit1es appearing in Chapter III was not performed. 

The dimensionless quant1ties which result in a single pa1r of either 

contact or binder type surface tractions were determ1ned us1ng 172B 

integration po1nts in Equation 4. 2. The dimensionless quantities 

resulting from a single set of contact type surface tractions are given 
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Figure 4. 2. -- Dependence of Non-Dimensionalized I'ieasure of Strain 
Energy Density on the Number of Integration Points 
Used in the Numerical Volume Integration Technique. 
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by Equations 3. 160. Graphs of these quantities appear in Figures 4. 3, 

4. 4 and 4. 5. The di mensionless quantity resulting from a single set of 

binder type surface tractions is given by Equation 3. 161. A graph of 

this quantity appear s in Figure 4. 6. As previously stated, the accuracy 

of the results appearing in Figures 4. 3 through 4. 6 are questionable. 

The computer program used to obtain the results shown in Figures 4. 2 

to 4. 6 is contained in Appendix E. 
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for Various Values of a2 2n 
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Figure 4. 5. -- Dilnensionless 0uantity (C ) Versus Poisson's Ratio 

for Various Va1ues of z2n. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

Expressions for the effective compliance and effective stiffness have 

been developed for an 1dealized two phase system. The ideal1zed system 

consi sts of equal spheres in contact, surrounded by an air-water mixture. 

The effective compliance and stiffness tensor are expressed in terms of 

the initial volume fractions of the two phases, the material properties 

of the two phases, dimensionless quantities dependent on the surface 

tractions present on the spheres in the system, and functions describing 

the loads transmitted between spheres in the system. When the effective 

strain input to the system is known the effective compliance tensor may 

be determined, allowing calculation of the effective stress response . 
When the effective stress input to the system is known the effective 

stiffness tensor may be determined, allowing the calculat1on of the 

effective strain response. The constitutive equations were developed by 

treating the two phase system as a homogeneous, non-linear elastic body. 

The constitutive equations were developed using mi cromechanics . They 

seek to recognize actual deformation mechanisms wh1ch act on the 

microscale. Since the constitut1ve equations were developed using 

mic romechanics, they should find applicability to two phase systems other 

than soils. The approx1mations made in the development of the 

constitut1ve equations dealt with the geometry, the phase materials, and 

the stress distributions present in the idealized two phase system. If a 

particular system may be represented by the idealized two phase system, 

then the const1tuti ve equations given in this paper should apply. 
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Highway materials are systems for which the constitutive equations 

developed here may apply. 

In the development of the constitutive equations, non-symmetric shear 

stresses, with respect to the centers of the contact areas between 

adjacent spheres, were neglected. Neglect of these stresses represents a 

correction to the expressions obtained for the effective compliance and 

stiffness tensors. Solutions for the stresses and displacements due to 

shear loading of this type on the contact surfaces are available. They 

may be used to determine a partial correction to the expressions obtained 

for the effective compliance and stiffness tensors. To obtain the full 

correction, the effect of the interaction of a su rface traction of this 

type with all other surface tractions must be evaluated. This would 

require an elastic solution for a sphere subject to non-symmetric shear 

loadings on a surface of contact. This problem was not considered. 

A recommendation for future work would first be to investigate the 

accurate determination of the di mensi onl ess quantities required for the 

evaluation of the effective properties. These dimensionless quantities 

must be determined so that the behavior of the constitutive equations may 

be observed. The computer program contained in Appendix E may be used 

for this purpose. The correction to the effective compliance and 

stiffness tensors, due to non-symmetric shear stresses on contact 

surfaces needs investigation. A finite element computer code may provide 

a relatively i nexpensi ve means of determining the significance of this 

correction. The expressions for the effective compliance and stiffness 

are dependent on functions which approximate the loads transmitted 

between adjacent spheres in the system. The quality of these 
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approximations needs investigation. Better approximations may be 

possible. These approximate functions wi 11 allow that the expressions 

for the effective compliance and stiffness tensors be fitted or 

calibrated to data. 

Further recommendations for future work would be to apply a 

Correspondence Principle to the model so that viscoelastic material could 

be modeled . This would entail representi ng the particulate phase of the 

soil system by a viscoelastic material. Because of the non-linear 

force-displacement relationship present on surfaces in contact, a 

non-linear Correspondence Principle would have to be employed . 
Correspondence principles of this type are given by Schapery (28 ) . 
Application of such a Correspondence Principle is worthy of 

investigation. 
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APPENDIX A 

The following notations were used: 

(Ab ) = dimensionless quantity resulting from the 
bc mn 

interaction between binder type surface tracti ons 

at location m and contact type surface tracti ons at 

location n; 

(A ) = di mensionless quantity resulting from contact type c n 

surface tractions at location n; 

(A ) = dimensionless quantity resultinq from the 
cc mn 

interaction between contact type surface tractions 

at locations m and n; 

(A ) = di mensi onl ess quanti ty resulting from the 
cp n 

interaction between uni form pressure type sur face 

tractions and contact type sur face tractions at 

location n; 

L'm~ij 

~ m~ij 

Al, A2 

component strain solution; 

component stress solution; 

constants in "Cam Clay" model; 

crack length; 

rate of damage growth; 



213 

am = coefficient of superposition; 

m 

a;& = transformation matrix; 

(Bc)n = dimensionless quantity resulting from contact type 

surface tractions at location n; 

(Bcc)mn = dimensionless quantity resulting from the 

interaction between contact type surface tractions 

at locations m and n; 

component strain solution; 

component stress solution; 

B, . (i=1, 2, . . . , 6) constants in cap model; 

b coefficient of superposition; 

bm 
13 

transformation matrix; 

( bc)mn dimensionless quantity resulting from the 

interaction between binder type surface tractions 

at location m and contact type surface tractions at 

location n; 

(C )n = dimensionless quantity resulting from contact type 

surface tractions at location n; 
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(C ) = dimensionless quantity resulting from the 
cc aln 

interaction of contact type surface tractions at 

locations m and n; 

( c)n dimensionless quantity resulting from the 

interaction between pressure type surface tractions 

and contact type surface tractions at location n; 

ijkl compliance tensor; 

C. . ijkl effective compliance tensor; 

Cm 
ijkl effective compliance tensor of mixture phase; 

cp. ijkl effective compliance tensor of particulate phase; 

contribution to the effective compliance of the 

particulate phase by interactions between surface 

tractions at different locations; 

p 0 
(C;jki) = contribution to the effective compliance of the 

particulate phase by all surface tractions; 

= initial volume fraction of mixture phase; 

= cosine of the angle z2n, . 

C = initial volume fraction of particulate phase; 
P 

Cl, C2 = constants; 

= constant; 
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positive constant; 

transformation matrix; 

P 
a constant; 

a constant; 

dimensionless quantity resulting from binder type 

surface tracti ons at location n; 

bb mn 
d1mensionless quantity resulting from the 

interaction between hinder type surface tractions 

at locations m and n; 

bc mn 
dimens1onless quantity resulting from the 

interaction between binder type surface tractions 

at location m and contact type surface tractions at 

location n; 

bp n 
dimensionless quantity resulting from the 

interaction between pressure type surface tractions 

and binder type surface tractions at location n; 

~ cp~n 
d1mensionless quantity resulting from the 

interaction between pressure type surface tractions 

and contact type surface tract1ons at location n; 

0 = degree of saturation; 
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d = crack density; 

E = Young's modulus; 

E. = initial tangent modulus; 
1 

F = Helmholtz free energy per unit initial volume; 

F = frictional force on macroscopic shear plane; 

F* = frictional force on microscopic shear plane; 

F = force transmitted by binder material at location n; 
bn 

F 
c 

Complementary free energy per unit initial volume; 

F 
cm 

volume averaged Complementary free energy per unit 

initial volume for mixture phase: 

= volume averaged Complementary free energy per unit 
cp 

initial volume for particulate phase; 

F = volume averaged Helmholtz free energy per unit 
m 

initial volume for mixture phase; 

volume aver aged Helmholtz free energy per unit 
P 

initial volume for particulate phase; 

F = a constant; 0 

f. = coefficient; 
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G = shear modulus; 

Gf = instantaneous modulus for cap model; 

G„ = spring modulus for cap model; 

v 
= long term modulus for cap model; 

& = heat addition to system per unit initial volume; 

Nt = total heat addition to system; 

&; = first invariant of stress tensor; 

" = linear vi scoelastic creep compliance; 

= second invariant of the deviatoric stress tensor; 

& = bulk modulus; 

= constant for binder type surface tractions; 

0 = constant for contact type surface tractions; 

= constant for pressure type surface tractions; 

= constant for binder type surface tractions; 

kf = friction parameter; 

k = coefficient of solubility; 

N = number of binder type surface tractions on a single 

sphere; 
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= number of contact type surface tracti ons on a single 
c 

sphere; 

N 
= number of grains in a typical cross section; 

9 

N 
= parameter in cap model; 

Y 

P = pressure; 

Pa 'b pressures used as parameters in cap model; 

'a current absolute air pressure; 

ao 
ini ti al absolute ai r pressure; 

atm 
atmospheric pressure; 

pressure required for complete pore closure; 

p pressure required for the onset of pore closure; 

p 

pressure present in mixture phase; 

reference pressure; 

'w water pressure; 

p; volume fraction of particles having dilatancy 

angle g;; 

q = positive constant; 

R = sphere radius; 
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R = radius of contact surface; 
c 

S = entropy per unit initial volume; 

S' = entropy production per unit initial volume; 

S = effective entropy per unit initial volume; 

P' = effective entropy production per unit initial 

volume; 

Sd damage parameter; 

S. . 
i jkl stiffness tensor; 

S ijkl effective stiffness tensor; 

ijkl effective stiffness tensor for mixture phase; 

sp. 
i jkl effective stiffness tensor for particulate phase; 

contribution to the effective stiffness tensor of 

the particulate phase by all the interactions 

between surface tractions; 

(S klI 
contribution to the effective stiffness tensor of 

the particulate phase by all surface tractions; 

S 
m 

volume averaged entropy per unit initial volume for 

mixture phase; 
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Y = volume averaged entropy per unit initial volume for 
P 

particulate phase; 

S = total entropy; 

5't = total entropy production; 

s. . = deviatoric stress tensor; 
1J 

absolute temperature; 

T 
g 

Gruneisen ratio; 

time; 

t = relaxation time; 
r 

0 = internal energy per unit initial volume; 

total internal energy; 

specific internal energy; 

u. 
i 

components of displacement vector; 

u reference value of specific internal energy; 

~ 3~n displacement along x3 coordinate axis; n 

total volume; 

V = current volume of air in mixture phase; 
a 
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Vao initial volume of air in mixture phase; 

Vd-- initial volume of dissolved air in mixture phase; 

Vdo = initial volume of dissolved air in mixture phase; 

m 
total volume of mixture phase; 

p 
= total volume of particulate phase; 

Vs = total volume of single sphere; 

V volume of water in mixture phase; 

specific volume; 

work per unit initial volume; 

total work; 

'b work done on binder material; 

n n n (xl, x2, x3) Cartesian coordinate system for contact n; 

yield parameter; 

n n n (zl, z2, z3) spherical coordinate system for contact n; 

porosi ty; 

i ni ti al por os i ty; 

'n angle defining the location of contact pair n with 

respect to the global coordinates (&1, &2, e3); 
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o = measure of shear strain; 

Y = time rate of shear deformation; 

6 = displacement between adjacent spheres; 

= Kronecker delta; 1J 

= components of the strain tensor; 1J 

cij = components of the effective strain tensor; 

I 

= components of the strain tensor referenced to the ij 
spherical coordinate system (al, a2, aJ); 

m . = components of the strain tensor due to uniform 1j 
pressure type surface tractions; 

&;j = components of the plastic strain tensor; P 

b 
(c;j)n = components of the strain tensor due to binder type 

surface tractions at location n; 

c 
(c;J)n = components of the strain tensor due to contact type 

surface tractions at location n; 

cy = parameter in cap model 

ei = maximum principle strain; 
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(e33) = the components of the strain tensor directed along 
33 n 

the xn coordinate axis; 

n = constant determined from the type of surface 
m 

tractions; 

e 
mn 

angle defining the location of the x coordinate 
3 

axes with respect to the x3 coordinate axes; 

1' 2' 3 
global Cartesian coordinate system; 

damping coefficient; 

Poisson's ratio; 

= constant determined from the type of surface 
m 

tractions; 

volume averaged str ai n energy densi ty of mixture 

phase; 

volume averaged strain energy density of particulate 

phase; 

— 1 

p 
the contributation to the volume averaged strain 

energy density of the particulate phase due to the 

interaction between surface tractions at different 

locations; 
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= the contributati on to the volume aver aged strain 
P 

energy density of the part icul ate phase due to al 1 

sets of surface tr actions; 

radial coordinate for contact and binder type 

surface tractions; 

normal stress acting on mac roscopic shear plane; 

normal stress acting on microscopic shear plane; 

o = components of the stress tensor; 
1 j 

components of the effective stress tensor; 

components of the stress tensor referenced to the 

spheri ca 1 coo r di nate system ( z], z2, z3 ); 

= components of the stress tensor due to uniform 
1 J 

pressure type sur f ace tr acti ons; 

(a ) 
= components of the stress tensor due to binder type 

i j n 

surface tracti ons at 1 ocati on n; 

c 
(o; J )n = components of the stress tensor due to contact type 

surface tractions at location n; 

o 
1 

= maximum principle stress; 

o3 = least principle stress; 
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normal stress to the plane, xn = constant; 

shear stress on macroscopic shear plane; 

shear stress on microscopic shear plane; 

angle of shearing resistance for macroscopic shear 

plane; 

di latancy angle; 

angle of shearing resistance for microscopic shear 

plane; 

undrained angle of shearing resi stance; 

u 
effective undrained angle of shearing resistance; 

work hardening parameter; 

= angle defining the location of contact pair n with 
n 

respect to the global coordinates (81, BZ, 93). 
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APPENOIX 8 

Equations to transform second order tensors referred to a 

spherical coordinate system, into the same referred to a Cartesian 

coordinate system, will be developed. The second order tensor 

field is assumed to be known and referred to a spherical coordinate 

system («I, «2, «3). The Cartesian coordinate system (xl, x2, x3) 

is related to the spherical coordinate system, («I, «2, «3) by the 

mapping 

xl = «I sin(az)cos(«3) 

x2 = «I sin(«2)sin(«3) 

X3 = «Icos(«2) 

(B. la) 

(B. lb) 

(B. lc) 

The spherical coordinate system, («I, «2, «3), is shown relative to 

the Cartesian coordinate system, (xl, x2, x3) in Figure 3. 8. 

Another Cartesian coordinate system, (BI, 82, 83), will be defined 

relative to the Cartesian coordinate system, (xl, x2, x3), as shown 

in Figure 3. 9. The Cartesian coordinate system (BI, 82, e3), is 

related to the Cartesian coordinate system ( xl, x2, x3 ) by the 

mapping 

81 = xl cos8 cos( — x2 sing + x3 sin8 cost 

82 = x cos8 sing + x2 cosQ + x3 sin8 sing 
2 1 

= -x sin8 + x3 cos8 
3 I 

(8. 2a) 

(8. 2b) 

(8. 2c) 
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It is desired to determine the second order tensor referred to the 

Cartesian coordinates, (BI, B2, 63). In determining the 

transformati on equations we wi I I use AI& to denote the physical 

components of a second order tensor and BI& to denote the tensorial 

components of a second order tensor. Only the tensorial components 

transform according to tensor transform laws. The distinction 

between physical and tensorial components will only be necessary 

when dealing with a tensor referred to the spherical coordinates, 

(aT, z2, z3). For tensors referred to a Cartesian coordinate 

system, the physical and tensorial components are the same. The 

following rules regarding tensor notation wi 11 be followed. 

l. A superscript denotes a contravariant tensor. 

2. A subscript denotes a covariant tensor. 

3. A repeated index- implies summation from I to 3 unless 

otherwise indicated. 

In addition to these rules, when referring to the physical 

components of a tensor only subscripts will be used. This is 

because for coordinate systems other than Cartesian, the physical 

components of a tensor are not a tensor quantity. Therefore their 

notation is arbitrary. For a tensor referred to a Cartesian 

coordinate system, a covariant tensor is equal to its counterpart 

contravariant tensor, the components of which in turn are equal 

to the physical components of the tensor. When referring to second 

order tensors relative to the three coordinate systems, primes will 

denote tensors referred to the coordinates (zl, z2, a3), overbars will 
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denote tensors referred to the coordinates (xl, x2, x3), and the 

absence of either will denote tensors referred to the coordinates 

(Bl, 92, 83). The second order tensor referred to the Cartesian 

coordinates (xl, x2, x3) will be determined when the physical 

components of the tensor, referred to the spherical coordinates, 

(zl, z2, z3) are known. The base vectors of the coordinate system, 

(xl, x2, x3) with respect to the coordinate system, (zl, z2, z3), 

are 

Bx ~ j- a. = — e. 
i Bz, j (BE 3) 

where a; = the base vectors in coordinate direction z; 

e; = the unit vector in coordinate direction x;. 
Use of Equations B. l and B. 3 yield the following expressions for 

the base vectors a; . 

al sin(z2)cos(z3)el + sin(z2)sin(z3)e + 

cos(z2)e3 (B. 4a) 

a2 icos(z2)cos(z3)el + zlcos(z2)sin(z3)e 3 2 

zlsin(z2)e3 (B. 4b) 

&3 -zlsin(z2)sin(z3)el + zlsin(z2)cos(z3)e2 (B. 4c) 

The metric tensor, g;j, of the coordinate system (zl, z2, z3) is 

determined by 
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g. . = a. ' a. 
1J 1 J (8 5) 

Use of Equations 8. 4 and Equation 8. 5 yields the following for the 

metric tensor g;J. 

1 0 

0 (1) 
0 (zi) sin (z2) 

2. 2 
(8. 6) 

The tensorial components, 8'J, are related to the physical 

components A'ij, by 

8'. 
1J 

A'. . 

V gi, V9&& 

(no sum on & or J) 
(8. 7) 

To determine the tensor field, F J, the transformation law for a 

contravariant tensor of order two is used. The transformation law 

is 

, kl 8" = 8 
ak Bal 

(8. 8) 

Combining Equations 8. 1. , 8. 6, and 8. 8 will yield the following 

expression for the tensor FJ referred to the Cartesian coordinates 

(xl~ x2~ x3) 

8 = bk' blJ A 
(B. g) 

where 
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sin(Z2)cos(a3) sin(a2)sin(z3) cos(Z2) 

cos(p )cox(z ) cos(a )sin(a ) -sin(a2) (B 10) 
-sin(z3) cos(z3) 0 

The second order tensor, 8'3 will now be determined relative to the 

coordinates (81, 82, 83). The base vectors of the coordinate system 

(81 82 83), with respect to the coordinate system (xl, x2, x3) 

are determined by 

aej 
b. = — e. 

i Bx ~ j (8. 11) 

where b; = the base vectors in coordinate directions x;, and 

e; = the unit vector in coordinate direction 8;. 
Use of Equations B . 2 and B . 11 yield the following expressions for 

the base vectors b 

bl 

b2 

b3 

cos8cosiei + cos8sinqe2 - sin8e3 

s) i l co i 2 

sinBcoseel + sin8sinee2 + cos8e3 

(B. l2a) 

(B. 12b) 

(8. 12c) 

The metric tensor, g;j, of the coordinate system (x1, x2, x3) is 

determined by 

g. . = b. b ij i j (B. 13) 

Combining Equations B. 12 and B. 13 yields the following for the 

metric tense) g; j. 
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g. . = 0 I 0 
(8. 14) 

For the coordinate system (el, 82, 83), the tensorial components, 

8'j, related to the physical components, A;j, by 

(no sum on i or j) 
V'~;; V'gjj (8. 15) 

From Equations 8. 14 and 8. 15 it is seen that for a Cartesian 

coordinate system, the tensorial and physical components of a 

tensor are equal. In view of this, the transformation law for a 

second order contravariant tensor may be used to determine Aij, as 

follows 

i 
' -kl 

I j axk 3xl (8. 16) 

Combining Equations 8. 2 and 8. 16 yields the following expression 

for the tensor A;j. 

— kl A. =c. cl 8 
ij ki (8. 17) 

where 

cosBcos4 -sing sin8cosg 

cos8siny cosy sinBsint 

-sin8 0 cos8 (8. 18) 
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Equations B. 9 and B. 17 may be combined to obtai n 

A, . j = aik ajl A'kl (B. 19) 

where 

j ik kj 
(B. 20) 

Equations B. lg and 8. 20 relate a second order tensor referred to 

the Cartesian coordinate system (61, eZ, 83) to the same referred 

to the spherical coordinate system (a1, zz, z3). This 

transformation may be used provided the relationships given by 

Equations B. l and B. 2 are known. 
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APPENDIX C 

The Hertz solution for the pressure occurring between two 

spherical bodies in contact will be given. The force-displacement 

relationship for the center of the contact area wi 11 be determined. 

The problem under consideration is shown in Figure C. l. The two 

spherical bodies shown in Figure C . I are of equal radii and have 

the same material properties. Both materials are homogeneous, 

linear elastic. In Figure C. l, the coordinate directions yl and y2 

are considered positive when directed from the center of the 

contact surface toward the centers of spheres I and 2, 

respectively. When there is no pressure between the two spheres, 

the coordinates yl and y2, for the surfaces of spheres I and 2 are 

given by 

R + R 
1 y2 R- 

where 

R = the radius of the spheres, and 

p = the distance from the center of the contact surface to a 

point on the surface of either sphere. 

When p is small in comparison to R, a Taylor series expansion 

about p = 0 may be used to approximate the distances yI and yZ, 

given by Equation C. l. Retaining the first two terms of the series 

gives 
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Sphere 1 

Sphere 2 

Y2 

Contact 
Surface 

Figure C. l -- Geometry for Hertz Contact Problem. 
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2 
0 

yl y2 2 R (C. 2) 

When the spheres appearing in Figure C. l are pressed together by a 

compressive force, contact will be made over a small circular 

surface. As the spheres are pressed together, the distance betwee~ 

two points lying on the surface of the spheres, at a distance 

from the center of the contact surface will diminish by 

where 

(w, + w2) 

(wl + w2) 
p = o 

(C. 3) 

(C. 4) 

and wl = the displacement of the surface of sphere 1 in the 

direction yl, due to local deformation, and 

w2 = the displacement of the surface of sphere 2 in the 

direction y2, due to local deformation. 

For points lying within the surface of contact, the following 

relationship is obtained from Equations C. 2 and C. 3 . 
2 

0 
(wl ' "2) yl y2 R (C. 5) 

When considering local deformation within the contact surface, the 

spheres may be considered to be represented by a half-space. The 

solution for the displacement occurring on the surface of a half 

space due to a distributed load may be employed to determine the 

displacements, wy and w2, Figure C. 2 shows a point A lying within 

a contact surface of radius p. The contact surface is considered 

to lie on the surface of a half space. A pressure p, resulting 
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e 
A 

s s 

Figure C. 2 -- Geometry for Distributed Load on a 
Halfspace. 
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from the compression of the two spheres acts normal to the contact 

surface . Employing the solution for a distributed load acting on 

the surface of a halfspace, the local deformati ons wy and wz are 

gi ven by 

rr 
-~(l v J P (s, i) ds 

wl 
— 

2 
— 

„E 
(C. 6) 

where 

s, g = the coordinates defined in Figure C. 2, and 

0 = the loaded area, corresponding to the contact surface. 

Substitution of Equation C. 6 into Equation C. 5 yields 

2 

2 (l-v ) P (s, e) ds di = r, 
2 rr P . E JJ R 

(C. 7) 

The problem is now to determine the pressure distribution, P(s, g), 

which satisfies Equation C. 7. The pressure distribution which 

satisfies Equation C. 7 is that of an elliptical cap acting over the 

contact surface. Consider the chord BC appearing in Figure C. 2. 

The pressure distribution along this chord would appear as that 

shown in Figure C. 3. The maximum pressure along this chord is 

gi ven by 

Po 
(i) =— 

0 a 
p - p sin n 1r 

2 — — 2 
(C. B) 

where 
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(s, y) 

o(C) 

B A 

Figure C. 3 -- Pressure Distribution Along Chord BC of 
Circular Loaded Area. 
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Po = the pressure acting on the center of the contact region. 

The pressure distribution along the chord BC of Figure C. 3 is given 

by 

p ('e) =Lee 
pcose 

p cos e - (s-pcose) -2 2 2 

(C. g) 

where 

psine = psine (C. 10) 

The variable s may be expressed as 

s = pcos2t + pcos$ cose, o ( e (C. 11) 

Substitution of Equations C. B, C. g, C. 10 and C. ll into Equation C. 7 

gives 

2 P ~2(1- (-2 2, . „2 
E p (C. 12) 

2 

R 

p 

Integration of Equation C. 12 gives the following result. 

2 (1-v ) Po v p 
2 p -2 2 2 

— E 2 R (C. 13) 

Equation C. 13 shows that Equation C. 7 is satisfied by an elliptical 

pressure distribution acting on the contact surface provided the 

radius of the contact surface, p, and the displacement, C, are 

given by 

2 P ~1- 2 
p 2E 

(C. 14) 
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2 1- (C. 15) 

The constant Po appearing in Equations C. 14 and C. 15 is determined 

by setting the integral of the pressure distribution taken over the 

contact surface equal to the -total compressive force, Fc. The 

pressure distribution over the contact surface is 

P -2 2 

p(p) =- 
P 

(C. 16) 

For equilibrium of the spheres the following condition must hold 

p 

n 0 

ndp =F (C. 17) 

Integration of Equation C. 17 and then solving for Po gives 

3 F 
c 

0 = 
2 

2 n p 
(C. I8) 

Equations C. 6, C. g, C. 10, and C. ll may be used to determine the 

local deformations, w1 and w2, of points on the surfaces of spheres 

1 and 2, contained in the contact surface. The local deformations 

are 

1- [F - ] 2 P -2 2 

wl 
= 

w2 4PE (C. 19) 
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To determine the force-displacement relationship at the center of 

the contact surface ( p = o), Equations C. 14, C. 18 and C. 19 are 

combined to yield 

(C. 20) 

Equation C. 20 shows that the force-displacement relationship on the 

contact surface is given by a power-law. 

The results for the pressure distribution resulting from two 

spheres in contact will now be used to determine the surface 

tractions which result from the contact of a single sphere with the 

two neighboring spheres, along an axis of symmetry. The sphere 

configuraton under consideration is shown in Figure C. 4. The 

coordinates (xl, x2, x3) are a Cartesian coordinate system whose 

origin is located at the center of the middle sphere as shown in 

Figure C. 4. Also shown in Figure C. 4 are the spherical 

coordinates, (zi, z2, z3). The coordinates (xl, x2, x3) are related to 

the coordinates (al, z2, a3) by the mapping 

xl = al sin(z2) cos(z3) (C. 2la) 

a] sin(a2)sin(a3) (C. 21b) 

x3a]cos(a2) 
(C. 2lc) 

Quantities referred to the (xl, x2, x3) coordinates will be denoted 

by a hat (") and quantities referred to the (zi, a2, a3) coordinates 
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„n 
3 

Contact 
Surface 

n 

n 
x1 

I 
/ 

/ 
w / 

n 
x2 

Figure C. 4 -- Three Spheres in Contact A1ong an Axis 
of Symmetry. 
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will be denoted by a prime. The pressure distribution on the 

contact surfaces of the center sphere will act along the x3 

coordinate axis. Using Equations C. 14 and C. 17, the surface 

tractions on the center sphere are given by 

v 
2 o3= v(l-v)R 3 

xl - x2 
2 2 -2 

xl + x2 & P 

2 2 -2 (G ) 
xl + x2 & P 

To determine the surface tractions given by Equations (C. 21) in the 

coordinate system (al a2 a3), the following relationship exists 

between the stresses referenced to the two coordinate systems. 

2 
o33 cos (22) (C. 23) 

= 8 sin (z2) cos (z7) (C. 24) 

Using Equations C. 21, C. 22, C. 23, and C. 24, the surface tractions 

referred to the coordinates (zl, e2, e3 ) are given by 

-2E 
v (1-v ) 

2 
cos (z2) - cos (z2) os (z2), V 2 2 — 2 

0 

0 & jz & j2~ n — j2 & 22 & n 

a2 & n - 22 (C. 25) 
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cos (22) - cos (22) 
w (1-v ) 

sin (22), 

12 cos(22), 2 2 2 2 

2 2 
- 22 (C. 26) 

where 

22 Sl ll 
R 

(C. 27) 

Equations C. 25, C. 26 and C. 27 define the surface tractions on the 

center sphere of Figure C. 4 referred to the spherical coordinates 

(21 ~22 ~23) ~ 
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APPENDIX D 

The case of a material acting as a binder between equal 

spheres will be considered. Figure D. I shows two spheres being 

held together by a material acting as a binder. The initial 

position of the spheres is shown in Fi qure D. Ia . In this position 

the spheres are touching. A portion of the surfaces of the 

spheres is covered by another material which acts as a binder. It 

will be assumed that the binder material has perfect cohesion with 

the spheres. There is no slippage between this material and the 

surfaces of the spheres, as the spheres are displaced relative to 

one another . The surface area of the spheres which i s covered by 

the binder material is described by the angle a2. In Figure D. lb, 

the spheres are shown displaced relative to one another. The 

surfaces of the spheres which were touching are displaced a 

distance 6, due to the load Fb. The load displacement 

relationship for the binder material is assumed to be given by 

Fb 
= Kb6 (D. 1'I 

where 

Kb = the elastic sprinq constant for the binder material. 

The angle a2, shown in Figure D. l remains constant as the spheres 

are displaced. It is assumed that the vectors that are normal to the 

surface of the binder material and the surfaces of the sphere, are 

parallel for all points located by the angle e2. The surface 

tractions present on the spheres when the system is displaced will 
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Fb 

Fb 

(b) 

Figure D. l -- Mixture Material Acting as a Binder 
Between Neighboring Spheres. 
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be determined . The surface tracti ons to be determined are 

approximate. The approximate solution wi I I be obtained by 

considering a singlesphere and half of the binder material as 

shown in Figure D. Z. Appearing in Figure D. 2 are the radial 

coordinates, Pb and Ps . These are used to describe points on the 

plane, x3 = R + 6/2, and the surface of the sphere. Also shown in 

Figure 0. 2 are two strips of the binder material . One strip is 

located at the outer edge(Ps=Ps, pb=Pb)of the binder and one 

stri p is I ocated at the center (Pb = Ps = 0 ) of the binder . These 

strips have rotational symmetry about the x3 axis. The binder 

material as a whole wi I I be viewed as a col 1 ection of these strips 

thus forming a series of concentric rings. When the spheres are 

di spl aced as shown in Figure D. lb, the outer strip of binder 

material wi 1 1 experience a greater di splacement than that at the 

center. The load i s to be viewed as being transferred through the 

strips to the sphere. The force-displacement relationship for the 

binder materi al I s I I near. A greater portion of the load wi I I be 

transferred through the outer strip since it undergoes the larger 

displacement. It will be assumed that the stress, o33, occurring 

on the x3=R+ 6/2 plane, in the x3 coordinate di rection, varies 

elliptically with respect to the coordi nate pb. The assumed 

stress distr ibution is 

033(x3R+ 6/Z)=&a[I — 1-(b/Pb)] +on(O. Z) 
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Qb 

Center 
Strip 

Pb 
6/2 

P 
s 

Outer 
Strip 

's 

Figure D. 2 -- Geometry for Determining the Surface 
Tractions on a Single Sphere Due to 
the Mixture Phase Acting as a Binder 
Material. 
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The constants, ha and ao, are to he interpreted as shown in Figure 

D. 3. The constants ho and oo may be related to each other by 

considering the displacements of the outer and center strips of 

the binder material. The linear load-displacement relationship 

allows the following relationship. 

o 
o o+ho a 

4 (Pb = o) d (Pb = Pb) 
(D. 3) 

where 

d = the displacement of the strips of the binder material. 

The displacement of the binder material at the center (Pb = 0) is 

equal to 6/2 . Through geometry considerations, the displacement 

of the binder material at the outer edge (pb = pb) is 

4 (p = p ) = 1/2 6 (1/2n — zZ) sec (zZ) 
b b 

(D. 4) 

The relationship between &o and o'o is given by 

aa = [(1/Zv - zZ) sec (zZ) - 1] oo 

substitution of Equation D. 5 into Equation D. Z yields 

(D. 5) 

o33(x3=R+ 6/2)=o[1 -(1/Z. -zZ)«c(zZ) 
0 

(1/2 - 2) sec (z2) ' Pb — b (0. 6) 

The total force, Fb, transmitted by the binder is given by 
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'33 

ob 

Figure D. 3 -- Stress Distribution at Center of Mixture 
Phase Which Acts as a Binder. 
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Pb FZ f o33(x3R6/2)pdp(0 
0 

Integration of Equation D. 7 yields the following relationship 

between the force Fb, and the constant 

Fb b o [2/3 + (I/2 - 
zZ se aZ 

(0. 8) 

Through geometry considerations, the radius, pb is determined to 

be 
pb 

= [R + 6/2] [tan (aZ) — sec (aZ)] + R 

(D. g) 

Equations D. l and D. 8 may be used to relate the constant ao to the 

relative displacement between spheres, 6 . 
To determine the surface tractions which result on the 

surface of the sphere, the stri p of the binder material shown i n 

Figure D. 4 is considered. The loads acting on the sides of the 

ring will be assumed to be self-equilibrating in the x3 coordinate 

di r ecti on . The coordinates ph and ps, defi ne the position of the 

ring with respect to the x3 axis on the plane, x3 = R + 6/2, and 

the surface of the sphere, respectively. The relationship between 

the coordinates, Pb and Ps is 

where 

Pb 

Pb 

p = R sin (a2) s 

(0. 10) 

(D. ll) 

and pb is given by Equation D. g. The force dFb, shown in Figure 

0. 4 acts parallel to the x3 coordinate axis on the plane, x3 = R + 

6/2. The magnitude of dFb is 
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dFb 

'b I 

dFb 

Strip of Binder 
Material 

Surface of Sphere 

dFb 

Figure D. 4 -- Forces Acting on Strip of Binder Material. 
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dFb "33 (X3 = R + 6/2) nb ' b oc 
(D. 12) 

where 

d&c = an infinitesimal rotation about the x3 coordinate axis . 

The vertical force, dFs, acting on the stri p because of cohesion v 

of the binder to the surface of the sphere must be such that 

equilibrium in the x3 coordinate direction is satisfied . 
Therefore, dFs is given by 

V 

dFV = dF = o33 (x3 R sin (22)Ps dos 
s b (0. 13) 

Combining Equations D. 10, 0. 13, and D. 14 give the following stress 

distribution acting on the surface of the sphere. 

2 

33 (x3 = R sin (a2)) = ( b) o33 (x3 R + 6/2) (D. 14) 

Combining Equations 0. 6, D. 10 and D. 14 gives the fol1owinq 

expression for the stress, o33, acting on the surface of the 

sphere. 

2 

(nb 
33 3 2 o j 

o" (x = R sin (a )) 

1 - ( s/p ) + (l/2 - 42) sec ( 2) b — b (D. 15) / s 
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As shown in Fiqure D. 3, the total force, dFs, on the lower portion 

of the strip acts at an angle, 0 F, to the x3 = R sin (zZ), plane. 

The horizontal component of this force is determined as 

F = F cot e 
v 

s s F (0. 16) 

The force Fsh will cause a compressive stress to be exerted on the 

sphere by the binder material. This stress will act in the Qs 

coordi nate direction . This stress is gi ven by 

F 
ii 

a (x3 = R sin (a2)) = s 
QQ 

Q de dx 
s c 3 (D. 17) 

Combining equations D. 13, 0. 15, 0. 16, and D. 17 yields 

2 2 

v(x3Rsi (22))obcoteF 
QQ 3 2 0 

Qs 

[1 — (1/Zv - z2) 

s 2 2 
) 

(0. 18) 

The anql e, DF, will vary from 6/2 at Qs = 0 to aZ at Qs = R 

sin (aZ). It will be assumed that the angle BF, is closely 

approximated as 

(n ) ( 2/e ) 
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The stress components given by Equations 0. 15 and D. lR are the 

surface tractions exerted on the sphere by the binder. The stress 

components relative to the spherical coordinate system, (al, z2, 

a3), as shown in Figure 3. 8, will be determined. The non-zero 

components of the stress tensor relative to this coordinate 

system, which act on the surface of the sphere are 

oil al = R) = o33 ( 3 R sin (a2)) cos (a2) 

0 ( x 
3 

R s i n ( a 
2 ) ) s i n ( a 

2 ) 
2 

pp 

o & a2 & a2 (D. 20) 

o)2 (zl = R) = — [o33 ( 3 
in (a2)) 

Q ( x 
3 

R s 1 n ( a 
2 ) ) ] s i n ( a ) pp 

cos (22) o (D. 21) 

where 

the components of the stress tensor relative to the 1J 

(al, a2, a3) coordinate axes. 

Combining Equations D. 15, D. 18, D. 2 0 and 0. 21 yields the fo I 1 owi ng 

expressions for the surface stresses on the sphere. 
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o' (a = R) = o — [cos (a2)-cot (ef)sin (a2)] b 2 2 2 
oil 1 o 

Ps 

[1-(t - a2) sec(72)]csc(a2) cos (a2) - cos (a2) I- 2 2— 

+ (j - 22) sec(a2) , 0 22 a2 (D. 22) 

2 
Pb (, , = R) = . 12 o 
Ps 

csc (a ) [1 - (4& - a2) 

sec(a )] csc(a ) ccs (a ) — cos (z ) + (&& — a2) sec(a2) 2 2— 
2 2 2 2 

co (a2)~ (D. 23) 

Equations D. 22 and D. 2 3 are the approximate solution to the 
I 

non-zero components of the stress tensor, oi&, which act on the 

surface of a sphere, due to the cohesion of the sphere with the 

binder material. 
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APPENDIK E 

Contained is a copy of a computer program which may be used to 

calculate the dimensionless quantities required for the evaluation of the 

effective compliance and stiffness tensor. 



THIS PROGRAM WILL CALCULATE INTERACTION AND NON-INTERACTION CONSTANTS 

REQUIRED FOR THE EVALUATION OF THE EFFECTIVE COMPLIANCE AND 

STIPFNESS TENSORS. THIS VERSION OF THE PROGRAM IS SET UP FOR CONTACT 

TYPE SURFACE TRACTIONS. ZT HAY BE MODIFIED TO CONSIDER BINDER 
SURFACE TRACTIONS OR BINDER~NTACT INTERACTIONS. THIS MODIFICATION 

REQUIRES USE OF THE SUBROUTINE BTCON TO REPLACE SUBROUTINE DTCON OR 

FOR THE CASE OF BINDER TYPE SURFACE TRACTIONS OR USE OF SUBROUTINE 

BTCON IN CONJUNCTION WITH SUBROUTINE DTCON FOR BINDER-CONTACT I~IDES. 

IMPLICIT REAL*8(A-H, O-Z) 
REAL*8 EC1(70)iDEC1(70)IDDEC1(70)IZNC1(70)rDNC1(70)IDDNC1(70) 
REAL*8 EC(70)rDEC(70)rDDEC(70)rZNC(70)rDNC(70)rDDNC(70)rANC(68) 
REAL~8 DANC(68), DDANC(68), DBNC(68), BNC(68), DDBNC(68), CNANG1(2) 
REAL 8 CNANG2(2)rTRANRR(3r3)rSCORD(1728r4)rTRANSR(3r3) ~ TT(4) 
REAL 8 DTT(4)rDDTT(4)rT(1728r6)rDT(1728r6)rDDT(1728r6)iE(1728r6) 
REAL*8 DE(1728, 6), DDE(1728, 6), EE(4), DEE(4), DDEE(4) 
DO 5 I=1, 1728 
READ(1, 100)(SCORD(I, J), J=l, 4) 

5 CONTINUE 

100 FORMAT(1X, 4(2X, E15. 8)) 
CNANG1 ( 1 ) =0 . 
CNANG1(2)=0. 
CNANG2(1)=3. 14159/3 *2. 
CNANG2(2)=0. 
WRITE(2r 150)CNANG1( 1) r CNANG1(2) r CNANG2 ( 1) r CNANG2(2) 

150 FORMAT(' ', 'ANG(1, 1) = ', F6. 2, /, ' ', 'ANG(1, 2) = ', F6. 2, 
/r r ANG(2r 1) rP6 2 ~ / ANG(2 2) F6 ~ 2 ~ / / /) 
ANG1=0. 0 
DO 50 II=1, 8 
ANG1=ANG1+1. 
CANG1=DCOS (ANG1*3. 14159/180) 
CALL DTCON(CANGlrEClrDEClrDDEClrZNClrDNClrDDNC1) 
DO 40 I=1, ll 
NSFLG=O 
POIS=(I-1)*. 05 
IF (POIS. EQ. . S) POIS . 499 
CALL COFSUP(POISrEClrDEClrDDEClrZNClrDNClrDDNClrANCrDANCrDDANCi 
BNC, DBNC, DDBNC) 
CALL GTRANS(CNANG1, TRANRR) 
DO 10 J=1, 1728 
CALL LCOORD(SCORD(Jrl)rSCORD(J ~ 2)rSCORD(J ~ 3)rTRANRRrSCRDlrSCRD2r 
SCRD3) 
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10 

20 

30 
40 
50 

CALL TRNSSR( SCRD1, SCRD2, SCRD3, TRANRR, TRANSR) 

CALL NOMDIM(NSFLGr SCRD1 ~ SCRD2 r ANCg DANCg DDANCr BMCr DBNCr 
DDBNC g PO I 5 r TT g DTT g DDTT ) 
CALL CGLOB ( Jg TTr DTT ~ DDTTg TRANSRr TRANRRg Tr DTr DDT) 
CONTINUE 
NSFLG=1 
ANG2=0. 
DO 30 J=1, 8 
ANG2 =ANG2+1 . 
CANG2=DCOS(ANG2*3. 14159/180) 
CALL DTCON(CANG2 g ECr DECr DDECg ZNCg DNCr DDNC) 
CALL COFSUP ( POISg ECg DECg DDSC g ZNCg DNCgDDNCr ANCr DANCr DDANCr BNCr DBNCg 

DDBNC) 
CALI GTRANS(CNAMG2, TRANRR) 

DO 20 K 1, 1728 
CALL LCOORD(SCORD(Krl)rSCORD(Kr2)rSCORD(Kr3)r~rSCRDlrSCRD2 ~ 

SCRD3) 
CALL TRNSSR(SCRD1, SCRD2, SCRD3, TRANRR, TRANSR) 
CALL NONDIM(NSFLG SCRD1 SCRD2 ANCrDANC DDANCrBNCgDBMC 

DDBNC, POIS, EEgDEE, DDEE) 
CALL CGLOB (Kr EE r DEE r DDEE r TRANSRr TRANRRr E r DE r DDE ) 
CONTINUE 
CALL ENCON( JrANG1 rANG2r POISr SCORDr TrDTrDDTrErDE ~ DDE) 
CONTINUE 
CONTINUE 
CONTINUE 

STOP 
END 

SUBROUTINE DTCON(CANGrECrDECrDDECrZNCrDNCrDDNC) 
IMPLICIT REAL*8(A-Hr0-2) 
REAL*8 EC(70), DEC(70), DDEC(70), ZNC(70), DNC(70), DDNC(70), XIP(80) 
REAL*8 YIP(80)rTPN(140)rTDPN(140)rF1(80, 70)rF2(80r70)rF3(80r70) 
REAL*8 F5(80r70)rF6(80r70)rPN(140)rDPN(140)rDDPN(140)rWGT(80) 
REAL*8 F4(80, 70) 

ASSIGN INTEGRATION POINTS ON INTERVAL -1 TO 1. USE EIGHTY POINT 
GAUSSIAN INTERGRATION. 

XIP( 1) =. 0195113832 
XIP(3)=. 0585044371 
XIP(5)=. 0974083984 
XIP(7)=. 1361640228 
XIP(9)=. 1747122918 
XIP(11)=. 2129945028 

ZIP�(13) 

=. 2509523583 
XIP(15)=. 2885280548 
XIP(17)=. 3256643707 
XIP(19)=. 3623047534 
XIP(21)= ~ 3983934058 
XIP(23)=. 4338753708 
XIP(25)=. 4686966151 
XIP(27)=. 5028041118 



XIP(29)=. 5361459208 
XZP(31)=. 5686712681 
XIP(33)=. 6003306228 
XZP(35)~. 6310757730 
XZP(37)=. 6608598989 
XIP(39)=. 6896376443 
XZP(41)~. 7173651853 
XIP(43)=. 7440002975 
XIP(45)=, 7695024201 
XZP(47)~. 7938327175 
XIP(49)=. 8169541386 
XIP(51)=. 8388314735 
XIP(53)=. 8594314066 
XIP(55) . 8787225676 
XIP(57)=. 8966755794 
XIP(59)=. 9132631025 
XIP(61)=. 9284598771 
XIP(63) . 9422427613 
XIP(65)=. 9545907663 
XIP(67)=. 9654850890 
XIP(69)=. 9749091405 
XIP(71)=. 9828485727 
XZP(73)=. 9892913024 
XIP(75)=. 9942275409 
XIP(77)=. 9976498643 
XIP(79)=. 9995538226 

C 
C ASSIGN WEIGHT VALUES 

C 
WGT(1)=. 0390178136 
WGT(3)=. 0389583959 
WGT(5)=. 0388396510 
WGT(7)=. 0386617597 
WGT(9)=. 0384249930 
WGT(11)=. 0381297113 
WGT(13)=. 0377763643 
WGT(15) =. 0373654902 
WGT(17 ) =. 0368977146 
WGT(19)=. 0363737499 
WGT(21)=. 0357943939 
WGT(23)=. 0351605290 
WGT(25)=. 0344731204 
WGT(27)=. 0337332149 
WGT(29)=. 0329419393 
WGT(31)=. 0321004986 
WGT(33)=. 0312101741 
WGT(35)=. 0302723217 
WGT(37)=. 0292883695 
WGT(39) =. 0282598160 
WGT(41)=. 0271882275 
WGT(43)=. 0260752357 
WGT(45)=. 0249225357 
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WGT(47)=. 0237318828 
WGT(49)=. 0225050902 
WGT(51)=. 0212440261 
WGT(53)= ~ 0199506108 
WGT(55) . 0186268142 
WGT(57)=. 0172746520 
WGT( 59) =. 0158961835 
WGT(61)=. 0144935080 
WGT(63)=. 0130687615 
WGT(65) =. 0116241141 
WGT(67)=. 0101617660 
WGT(69)=. 0086839452 
WGT(71)=. 0071929047 
WGT(73)=. 0056909224 
WGT(75) =. 0041803131 
WGT(77)=. 0026635335 
WGT(79) =. 0011449500 

C 
C ASSIGN INTEGRATION POINTS AND WEIGHTS TO EVEN ARRAY ELEMENTS 

C 
DO 5 I=2, 80, 2 
XIP(I) =(-1) *ZIP( I-1) 
WGT(I) =WGT( I-1) 
CONTINUE 

INTERPOLATE TO DETERMINE INTEGRATION POINTS ON THE INTERVAL OF 

INTEREST 

10 
C 
C 
C 
C 

DO 10 I=1, 80 
YIP(I)=(1-CANG)*XIP(I)/2. +(I+CANG)/2. 
CONTINUE 

CALL SUBROUTINE TO DETERMINE VALUE OF LEGRENDRE POLYNOMINALS AND 

DERIVATIVES EVALUATED AT l. 
ARG=1. 
CALL POLY(ARG, TPN, TDPN) 

DETERMINE INTEGRALS REQUIRED FOR EVALUATION OF THE CONSTANTS 

RESULTING FROM THE STRESS BOUNDARY CONDITIONS FOR SPHERES IN 

CONTACT. 

DO 30 I=1, 80 

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNOMINALS AND DERIVATIVES 
EVALUATED AT INTEGRATION POINT YIP(I). 

ARG=YIP(I) 
CALL POLY(ARGrPNrDPN) 
CALL DDPOLY(ARG, DPN, DDPN) 

EVALUATE FUNCTIONS CONTAINED IN INTEGRALS. 
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DO 20 J»1, 70 
K=2»J-1 
Fl(I, J)=DSQRT(YIP(I)*»2-CANG 2)"YIP(I)**2*PN(K) 
F2(I, J) DSQRT(YIP(I)* 2-CANG**2)*(1-YIP(I)*»2)»YIP(I)*DPN(K) 
F3(lrJ)=DSQRT(YIP(1)»»2MG»»2)»(PN(K)+YIP(I)»DPN(K)) 
F4(I, J)=DLOG((DSQRT(YIP(I) »2-CANG* 2)+TIP(I))/CANG)*(2» 
DPN(K)+YIP(I)*DDPN(K)) 
F5(I, J)=DSQRT(YIP( I)"»2-CANG»»2)*PN(K) 
P6( I, J) =DLOG( (DSQRT(YIP( I) * "2-CANG»*2)+YIP( I ) ) /CANG) *DPN(K) 

20 CONTINUE 
30 CONTINUE 

ZERO OUT ARRAYS CONTAINING CONSTANTS. 

DO 40 I=1, 70 
EC(I)=0. 
DEC(I)=0. 
DDEC(I)=0. 
ZNC(I)=0. 
DNC(I)=0. 
DDNC(I)=0. 

40 CONTINUE 

DETERMINE CONSTANTS. 

DO 60 I=1, 70 
K=2*I-1 
L=I-1 
DO 50 J=1, 80 
EC(I)=EC(I)+(1-CANG)/2. »WGT(J)»F1(J, I) 
DEC(I)=DEC(I)+(1-CANG)/2. »WGT(J)*F3(J, I) 
DDEC(I)=DDEC(I)+(1-CANG)/2. *WGT(J)*F4(J, I) 
IF(I. EQ. 1) GOTO 50 
ZNC(I)=ZNC(I)+(1-CANG)/2. *WGT(J)*F2(J, I) 
DNC(I)=DNC(I)+(1-CANG)/2. *WGT(J)"F5(J, I) 
DDNC(I)=DDNC(I)+(1-CANG)/2. *WGT(J)*F6(J, I) 

50 CONTINUE 
EC(I)=EC(I)*(4*L+1)*(-1) 
DEC(I)=(DEC(I)*(-1)+DSQRT(1-CANG*»2))»CANG*(4»L+1) 
DDEC(I)=(DDEC(I)*(-1)-1. /DSQRT(1-CANG»*2)+(1+TDPN(K))*DL 
(1-CANG"»2)+1. )/CANG))»(4"L+1)*CANG**2+DEC(I)/CANG 
IF(I. EQ. 1) GOTO 60 
ZNC(I)=ZNC(I)*(4*L+1)/4. /L/(2*L+1) 
DNC(I) =DNC(I)*(4*L+1)»CANG/2. »(-1) 
DDNC ( I ) = ( DDNC ( I ) * ( -1 ) +D 

LOG� 

( ( DSQRT ( 1 . -CANG" *2 ) + 1 . ) /CANG ) ) 
CANG**2/2. +DNC(I)/CANG 

60 CONTINUE 
RETURN 

END 

SUBROUTINE COFSUP(POIS, EC, DEC, DDEC, ZNC, DNC, DDNCr 

ANCrDANCrDDANCrBNCrDBNCrDDBNC) 

OG((DSQRT 

*(4*L+1)* 



263 

IMPLICIT REAL~S(A-H, O-Z) 
REAL*8 EC(70)DODEC(70)iDDEC(70) ZNC(70)iDNC(70) ~ DDNC(70) ANC(68) 
REAL 8 DDANC(68), BNC(68), DBNC(68), DDBNC(68), DANC(68) 

DETERMINE COEFFICIENTS OF SUPERPOSITION FOR STRESS SOLUTION 

20 

DO 20 I=1, 68 
J=Z-1 
Al=(4~I~~2+4"I-I+2*POIS)/2. /(2*I-I)/(4"I**2+2*I+I+(4*1+1)"POIS) 
A2=2. *(2~I+1)~(2*1~*2-I-Z-POZS)/2. /(2~I-I)/(4"1*~2+2~1+1+(4~I+I) 

POIS) 
Bl=l. /2 /(4*J**2+2*J+I+(4~J+1)"POIS) 
B2=2*J/2. /(4~J* 2+2*J+1+(4*J+l)*POZS) 
ANC(I)=AZTEC(I+I)+A2~2NC(I+I) 
DANC(I)=A1*DEC(I+1)+A2"DNC(I+1) 
DDANC(I)=AZ~DDEC(I+I)+A2~DDNC(I+I) 
BNC(I)=81"EC(I)+B2*2NC(I) 
DBNC(I)=BI*DEC(I)+B2~DNC(I) 
DDBNC(I)=BI~DDEC(I)+B2~DDNC(I) 
RETURN 

END 

SUBROUTINE GTRANS(CNANG, TRANRR) 

IMPLICIT REAL*8(A-H, O-Z) 
REAL*8 CNANG(2), TRANRR(3, 3) 

DETERMINE TRANSFORMATION MATRIX TO GO FROM LOCAL RECTANGULAR 

COORDINATES TO GLOBAL RECTANGULAR COORDINATES 

TRANRR ( 1 r 1 ) =DCOS (CNANG ( 1 ) ) DCO5 ( CNANG ( 2 ) ) 
TRANRR( 1, 2) =DCOS(CHANG(1) ) *DSIN(CNANG(2) ) 
TRANRR(1, 3) =-DSIN(CNANG(1) ) 
TRANRR(2, 1)=-DSIN(CNANG(2)) 
TRANRR(2, 2)=DCOS(CNANG(2)) 
TRANK(2, 3)=0, 
TRANRR(3, 1)=DSIN(CNANG(1))*DCOS(CNANG(2)) 
TRANRR(3, 2) =DSIN(CHANG(1) ) DSIN(CHANG(2) ) 
TRANRR(3, 3) =DCOS(CHANG(1) ) 
RETURN 

END 

SUBROUTINE TRNSSR( SC1, SC2, SC3, TRANK, TRANSR) 

IMPLICIT REAL 8(A-H, O-Z) 
REAL*8 TRANSR(3, 3), TRANRR(3, 3) 

C 
C 
C 
C 

80 TRANSR(1, 1)=DSIN(SC2) DCOS(SC3) 
TRANSR(1, 2)=DSZN(SC2) DSIN(SC3) 
TRANSR(1, 3)=DCOS(SC2) 
TRANSR(2, 1)=DCOS(SC2) DCOS(SC3) 
TRANSR(2, 2)=DCOS(SC2)*DSIN(SC3) 
TRANSR(2, 3)=-DSIN(SC2) 

DETERMINE TRANSPORMATION MATRIX TO GO FROM LOCAL SPHERICAL 

COORDINATES TO LOCAL RECTANGULAR COORDINATES 
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TRANSR(3, 1)=-DSIN(SC3) 
TRANSR(3, 2)=DCOS(SC3) 
TRANSR(3, 3)re. 
RETURN 

END 

SUBROUTINE NONDIM(NSFLGrSClrSC2rANCrDANCrDDANCrBNCrDBNCr 
DDBNC r POI 5 ~ TE r DTE ~ DDTE ) 
IMPLICIT REAL*8(A-H, O-Z) 
REAL~8 BT(4)rBE(4), DTE(4)'rAE(4) 
REAL 8 ANC(68), DANC(68), DDANC(68), BNC(68), DBNC(68) 
REAL*8 DDBNC(68), TE(4) 
REAL*8 DDTE(4) 
REAL 8 AT(4)rPN(140)rDPN(140) 

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNQMINALS AND THEIR 
DERIVATIVES AT INTEGRATION POINT JJ 

ARG=DCOS(SC2) 
CALL POLY(ARGrPN ~ DPN) 

DETERMINE NON-DIMENSIONAL IZED QUANTITIES FOR INTEGRATION POINT 

M, AND CONTACT N. 

18 

DO 18 LE=1, 4 
TE(LK)=0. 
DTE(LK)=0. 
DDTE(LK)=0. 
CONTINUE 

DO 30 I=1, 68 
J=I-1 
K=I+1 
AT(1)=2"I~(2*I-1)*PN(2*I+1) 
AT(2)=DPN(2 I)-2 I"(2 I-1)"PN(2*I+1) 
AT(3)=DPN(2*I)*(-1) 
AT( 4) =(-1) *(2*I-1) *DSIN(SC2) *DPN(2*I+1) 
AE(1)=. 5*AT(1) 
AE(2)=. 5~AT(2) 
AE(3)=. 5*AT(3) 
AE(4)=. 5*AT(4) 
BT(1)=(-1)~(2~J+1)*((2*J+1)*(2*J-2)-2*POIS)*PN(2~1-I) 
BT(2)=((2*J+I)"(4~J**2+10~J+7-2*POIS)*PN(2~1-1)-(2"J+5-4*POIS) 
*DPN(2*I)) 
BT(3)=(2~J+5-4~POIS)*DPN(2*I)-(4~J+3)*(2*J+1)~(1-2*POIS)* 
PN(2*I-1) 
BT(4) (4*J 2+4~J-I+2*POIS)"DSIN(SC2)*DPN(2*I-I) 
BE(1)=(-. 5)*(2*J+1) *2*(2*J-2+4*POIS) PN(2"I-1) 
BE(2)=(-, 5)"((2*J+5-4*POIS)*DPN(2*I)-(2*J+1)*((2*J+1)~*2+2* 
(J+1)*(3-4 POIS))*PN(2*I-1)) 
BE(3)=(-. 5)~((4*J+3)*(2*J+1)~PN(2"I-I)-(2*J+5-4*POIS)*DPN(2*I)) 
BE(4)=. 5*BT(4) 
DO 60 L=1, 4 
IF(NSFLG. EQ. 1) GOTO 20 
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DETERMINE STRESSES IN SPHERICAL COORDINATES 

TE(L)=TE(L)+SC1*"(2~J) (ANC(I)* 
AT(L)+BNC(I)*BT(L)) 
DTE(L)=DTE(L)+SC1*~(2*J)*(DANC(I)* 
AT(L)+DBNC(I)~BT(L)) 
DDTE(L)=DDTE(L)+SC1~*(2*J)~(DDANC(I)* 
AT(L)+DDBNC(I)*BT(L)) 
GOTO 60 

DETERMINE STRAINS IN SPHERICAL COORDINATES 

20 TE(L)=TE(L)+SC1**(2 J)~(ANC(I)" 
AE(L)+BNC(I)*BE(L)) 
DTE(L)=DTE(L)+SC1**(2*J)*(BANC(Z)" 
AE(L)+DBNC(I)*BE(L)) 
DDTE ( L ) =DDTE ( L ) +SC1*( 2" J ) * 
(DDANC(I)*AE(L)+DDBNC(I)*BE(L)) 

60 CONTINUE 
30 CONTINUE 

RETURN 

END 

SUBROUTINE CGLOB(JJ, TE, DTE, DDTE, TRANSR, TRANRR, GTE, DOTE, DDGTE) 

IMPLICIT REAL*8(A-H, O-Z) 
REAL"8 TE(4), DTE(4), DDTE(4), TRANSR(3, 3) 
REAL"8 TRANRR(3, 3), GTE(1728, 6), DGTE(1728, 6), DDGTE(1728, 6) 
REAL*8 TMAT(3, 3), TMAT1(3, 3) 
REAL"8 TMAT2(3, 3), TMAT3(3, 3) 

ZERO OUT TEMPORARY ARRAYS AND GLOBAL ARRAYS 

DO 10 1=1, 3 
DO 5 J=1, 3 
THAT(I, J)=0. 
TMAT1(I, J)=0. 
TMAT2(I, J)=0. 
TMAT3(I, J)=0. 

5 CONTINUE 

10 CONTINUE 
DO 35 I=1, 6 
GTE(JJ, I) =0. 
DGTE(JJ, I)=0. 
DDGTE(JJ, I)=0. 

35 CONTINUE 

DETERMINE TEMPORARY ARRAY THAT( ) AS THE PRODUCT OF THE 

TRANSFORMATION MATRICES. 

DO 50 I=1, 3 
DO 45 J=1, 3 
DO 40 K=1, 3 



266 

40 TMAT( I ~ J ) TMAT ( I r J ) +TRANSR( I, K) *TRANRR(K, J) 
45 CONTINUE 

50 CONTINUE 

DETERMINE ARRAY TAMT4( ) TO PRE MULTIPLY STRESS AND STRAIN TENSORS 

DO 54 I=1, 3 
DO 52 J~1, 3 

52 TRANSR( J r I) TNAT(I r J) 
54 CONTINUE 

DETERMINE GLOBAL QUANTITIES 

DO 60 I=1, 3 
TMAT1( I, 1) =TRANSR( I, 1) *TE(1)+TRANSR( I, 2) *TE(4) 
TMAT2(I, I) =TRANSR( I r I) *DTE(1)+TRANSR( I, 2) *DTE(4) 
TMAT3(I, 1)-ZRANSR(I, 1)*DDTE(1)+TRANSR(lr2)~DDTE(4) 
TMAT1(lri) ZRANSR( Ill)*TE(4)+TRANSR(Ir2)*TE(2) 
TMAT2(I, 2)=TRANSR(I, 1)*DTE(4)+TRANSR(I, 2)"DTE(2) 
TMAT3(I, 2) TRANSR(I, 1)*DDTE(4)+TRANSR(I, 2) DDTE(2) 
TMAT1(I, 3)-ZRANSR(I, 3)*TE(3) 
TMAT2(I, 3)=TRANSR(I, 3)*DTE(3) 
TMAT3(I, 3)=TRANSR(I, 3)"DDTE(3) 

60 CONTINUE 

GTE(JJ, 1)=TMAT1(1, 1)*TMAT(1, 1)+TMAT1(1, 2)"TMAT(2, 1)+TMAT1(1, 3)* 
TMAT(3, 1) 
DGTE(JJ, 1)=TMAT2(1, 1)"TMAT(1, 1)+TMAT2(1, 2)*TMAT(2, 1)+TMAT2(1, 3) 
TMAT(3, 1) 
DDGTE(JJr 1)=TMAT3(lrl)*TMAT(lrl)+TMAT3(lr2)*TMAT(2 ' 1)+TMAT3(lr3)* 
TMAT(3, 1) 
GTE(JJ, 4)=TMAT1(1, 1)"TMAT(1, 2)+TMAT1(1, 2)*TMAT(2, 2)+TMAT1(1, 3)* 
TMAT(3, 2) 
GTE(JJr2)=TMAT1(2rl)~TMAT(lr2)+TMAT1(2r2)~TMAT(2r2)+TMATI(2r3)* 
TMAT(3, 2) 
DGTE ( J J r 4 ) =TMAT2 ( 1 ~ 1 ) *TMAT ( 1 r 2 ) +TMAT 2 ( 1 r 2 ) *TMAT ( 2 r 2 ) +TMAT 2 ( 1 r 3 ) * 
TMAT(3, 2) 
DOTE(JJr2)=TMAT2(2 ' 1)*TMAT(1 ~ 2)+TMAT2(2r2)*TMAT(2 ' 2)+TMAT2(2r3) 
TMAT(3, 2) 
DDGTE(JJ, 4)=TMAT3(1, 1) TMAT(1, 2)+TMAT3(1, 2)*TMAT(2, 2)+TMAT3(1, 3)* 
TMAT(3, 2) 
DDGTE(JJr2)=TMAT3(2rl)~TMAT(lr2)+TMAT3(2r2)~TMAT(2r2)+TMAT3(2r3)* 
TMAT(3, 2) 
GTE(JJ, 5)=TMAT1(1, 1)"TMAT(1, 3)+TMAT1(1, 2)*TMAT(2, 3)+TMAT1(1, 3)* 
TMAT(3, 3) 
GTE( JJr 6) =TMAT1(2r 1) *TMAT(lr 3)+TMAT1(2r 2) *TMAT(2 ~ 3)+TMAT1(2r 3) * 
TMAT(3r3) 
GTE(JJ, 3)=TMAT1(3, 1) TMAT(1, 3)+TMAT1(3, 2)*TMAT(2, 3)+TMAT1(3, 3)" 
TMAT(3, 3) 
DOTE(JJr5)=TMAT2(lrl)+TMAT(lr3)+TMAT2(I ~ 2)*TMAT(2r3)+TMAT2(lr3)* 
TMAT(3, 3) 
DGTE(JJ, 6)=TMAT2(2, 1)*TMAT(1, 3)+TMAT2(2r2)*TMAT(2, 3)+TMAT2(2, 3)* 
TMAT(3, 3) 
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10 
20 

30 

100 
200 
300 

400 

DGTE(JJ, 3)-ZNAT2(3, 1)*TMAT(1, 3)+TMAT2(3, 2)*TMAT(2i3)+TMAT2(3, 3)* 
THAT(3, 3) 
DDGTE(JJ, 5)-IMAT3(lr 1) TMAT(1, 3)+TMAT3(1, 2)*THAT(2, 3)+TMAT3(l, 3)* 
THAT(3, 3) 
DDGTE(JJ, 6)=TMAT3(2, 1) TMAT(1, 3)+TMAT3(2r2) THAT(2, 3)+TMAT3(2, 3) 
THAT(3r3) 
DDGTE(JJ, 3)=TMAT3(3, 1)*TMAT(1, 3)+TMAT3(3, 2)*TMAT(2, 3)+TMAT3(3r3)* 
THAT(3, 3) 
RETURN 

END 

SUBROUTINE ENCON(JJrANGliANG2rPOIS ~ SCORDrTrDTrDDTrErDErDDE) 
IMPLICIT REAL*8(A-H, O-Z) 
REAL*8 SCORD(1728, 4), T(1728, 6), DT(1728, 6), DDT(1728, 6), E(1728, 6) 
REAL*8 DE(1728, 6), DDE(1728, 6) 
U=O. 
DU1=0. 
DU2=0. 
DDU1=0. 
DDU12=0. 
DDU2=0. 
DO 20 I=1, 1728 
TEMP=. 5*SCORD(I, 4)*3. /4. /3. 14159 
DO 10 J=1, 6 
IF(J. EQ. 4) TEMP=TEMP*2 
V=U+T(IrJ)*E(IrJ)*TEMP 
DU1=DU1+DT(IiJ)*E(liJ)"TEMP 
DU2=DU2+T(liJ)*DE(lrJ)~TEMP 
DDU1=DDU 1+DDT ( I r J ) *E ( I i J ) *TEMP 
DDU12=DDU12+DT(I, J)*DE(I, J)*TEMP 
DDU2=DDU2+T(I, J)*DDE(I, J)*TEMP 
CONTINUE 
CONTINUE 

IF(JJ. NE. 1) GOTO 30 
WRITE(2, 100) 
WRITE(2, 200)ANG1, POIS 
WRITE(2, 300) 
CONTINUE 
WRITE ( 2 g 400) ANG2 g U ~ DU 1 ~ DU2 i DDU 1 g DDU 12 i DDU2 

FORMAT ( 1 g T 1 0 g INTERACTION ENERGY CONSTANTS ) 
PORMAT(' ', T10, 'ANGLE 1:', F5. 2, /, ' ', T10, 'POISSOINS RATIO:', F5. 3) 
FORMAT( 0 r T34i DU r T48r DU r T61r DDU r T75r DDU r T91r DDU r/r r 

T2i ANGLE 2 g T21g 0 g T33g DC1 g T47 i DC2 r T61i DC1 i T75 ~ DC12 

T91, 'DC2') 
PORMAT( T3 F5 ' 2 T10g6(2XrE12 ~ 5)) 
RETURN 

END 

SUBROUTINE POLY(ARG, PN, DPN) 
IMPLICIT REAL"8(A-H, O-Z) 
REAL*8 PN(140), DPN(140) 

DETERMINE LEGRENDRE POLYNOMINALS 
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PN(1)=1. 
PN(2)=ARG 
DO 10 1=3, 140 
J=I-1 

10 PN(I)=((2*J-I)"ARG~PN(J)-(J-1)*PN(J-I))/J 

DETERMINE DERIVATIVES OF LEGRENDRE POLYNQMINALS 

DPN(1)=0. 
DPN(2) =1. 
DO 20 1=3, 140 
J=I-1 

20 DPN(I)=((2*J-1)*(PN(J)+ARG~DPN(J))-(J-I)"DPN(J-I))/J 
RETURN 
END 

SUBROUTINE DDPOLY(ARG, DPN, DDPN) 
IMPLICIT REAL*8(A-H, O-Z) 
REAL~8 DPN(140), DDPN(140) 
DDPN(1)=0. 
DDPN(2)=0. 
DO 10 1=3, 140 
J=I-1 
DDPN(I)=((2*J-1)*(2*DPN(J)+ARG*DDPN(J))-(J-1)*DDPN(J-1))/J 

10 CONTINUE 
RETURN 

END 

SUBROUTINE LCOORD(SC1~SC2~SC3gTRAlG& SCRDl(SCRD2 ~ SCRD3) 
IMPLICIT REAL*8 (A-H, O-Z) 
REAL*8 TRANRR(3, 3) 

DETERMINE GLOBAL RECTANGULAR COORDINATES 

X1=SC1 DSIN(SC2)"DCOS(SC3) 
X2=SC1*DSIN(SC2)*DSIN(SC3) 
X3=SC1*DCOS(SC2) 

DETERMINE LOCAL RECTANGULAR COORDINATES 

Zl=X1*TRANK(1, 1)+X2*TRANRR(1, 2)+X3*TRANRR(1, 3) 
Z2=X1*TRANRR(2, 1)+X2 TRANRR(2, 2)+X3 TRANRR(2, 3) 
Z3=X1 TRANRR(3, 1)+X2 TRANRR(3, 2)+X3"TRANRR(3, 3) 

DETERMINE LOCAL SPHERICAL COORDINATES 

SCRDI=DSQRT(21*~2+22"*2+23~~2) 
SCRD2=DARCOS(23/SCRD1) 
SCRD3=DATAN2(Z2, Z1) 
RETURN 
END 



BELOW IS A LIST1NG OF SUBROUTINE BTCON. THIS SUBROUTINE IS 
USED WHEN DETERMINING NON-DZMENSIONALIZED QUANTITIES FOR 

BINDER TYPE SURFACE TRACTIONS. THIS SUBROUTINE REPLACES 

SUBROUTINE DTCON WHEN ONLY BINDER TYPE SURFACE TRACTIONS ARE 

CONSIDERED. THIS SUBROUTINE IS USED ZN CONJUNCTION WITH 

SUBROUTINE DTCON WHEN BINDER-CONTACT INTERACTIONS ARE BEING 
CONSIDERED. 

SUBROUTINE BTCON(CANG, EC, DEC, DDEC, ZNC, DNC, DDNC) 

IMPLICIT REAL"8(A-H, O-Z) 
REAL*8 EC(70), DEC(70), DDEC(70), ZNC(70), DNC(70), DDNC(70), XIP(80) 
REAL*8 YIP(80), TPN(140), TDPN(140), F1(80, 70), F2(80, 70), F3(80, 70) 
REAL*8 F5(80 ~ 70) y F6(80' 70) i PN( 140) (DPN( 140) DDPN(140) iWGT(80) 
REAL*8 F4(80, 70) 

ASSIGN INTEGRATION POINTS ON INTERVAL -1 TO 1. USE EIGHTY POINT 

GAUSSIAN ZNTERGRATZON. 

XIP(1)=. 0195113832 
XIP(3)=. 0585044371 
XIP(5)=. 0974083984 
XIP(7)=. 1361640228 
XIP(9)=. 1747122918 
XZP(11)=. 2129945028 
XZP(13)=. 2509523583 
XIP(15)=. 2885280548 
XIP(17)=. 3256643707 
XIP(19)=. 3623047534 
XIP(21)=. 3983934058 
XIP(23)=. 4338753708 
XIP(25)=, 4686966151 
XIP(27)~. 5028041118 
XIP(29)=. 5361459208 
XIP(31)=. 5686712681 
XIP(33)=. 6003306228 
XIP(35)=. 6310757730 
XIP(37)=. 6608598989 
XIP(39)=. 6896376443 

NIP� 

(41) =. 7173651853 
XIP(43)=. 7440002975 
XIP(45)=. 7695024201 
XIP(47)=. 7938327175 
XIP(49)=. 8169541386 



ZIP(51)=. 8388314735 
XIP(53)~. 8594314066 
ZIP(55)=. 8787225676 
XIP(57)=. 8966755794 
XIP(59)=. 9132631025 
XIP(61)=. 9284598771 
XIP(63)~. 9422427613 
XIP(65)=. 9545907663 
XIP(67)=. 9654850890 
XIP(69)=. 9749091405 
XIP(71)=. 9828485727 
ZIP(73) =. 9892913024 
XIP(75)=, 9942275409 
ZIP(77) . 9976498643 
XIP(79)=. 9995538226 

C 
C ASSIGN WEIGHT VALUES 

C 
WGT(1) = ~ 0390178136 
WGT(3)=. 0389583959 
WGT(5)=. 0388396510 
WGT(7)=. 0386617597 
WGT(9)=. 0384249930 
WGT(11)=. 0381297113 
WGT(13)=. 0377763643 
WGT(15)=. 0373654902 
WGT(17)=, 0368977146 
WGT(19)=. 0363737499 
WGT(21)=. 0357943939 
WGT(23)=. 0351605290 
WGT(25)=. 0344731204 
WGT(27)=. 0337332149 
WGT(29) =. 0329419393 
WGT(31)=. 0321004986 
WGT(33)=. 0312101741 
WGT(35)=. 0302723217 
WGT(37)=. 0292883695 
WGT(39)=. 0282598160 
WGT(41)=. 0271882275 
WGT(43)=. 0260752357' 
WGT(45)=. 0249225357 
WGT(47)=. 0237318828 
WGT(49)=. 0225050902 
WGT(51)=. 0212440261 
WGT(53) =. 0199506108 
WGT(55)=. 0186268142 
WGT(57)=. 0172746520 
WGT(59)=. 0158961835 
WGT(61) . 0144935080 
WGT(63)=. 0130687615 
WGT(65)=. 0116241141 
WGT (67) =. 0101617660 
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WGT(69)~. 0086839452 
WGT(71) =. 0071929047 
WGT(73)=. 0056909224 
WGT(75)=. 0041803131 
WGT(77)=. 0026635335 
WGT(79)=. 0011449500 

C 
C ASSIGN INTEGRATION POINTS AND WEIGHTS TO EVEN ARRAY ELEMENTS 

C 
DO 5 1=2r80r2 
XIP(I)=(-1)"XZP(I-1) 
WGT(I)=WGT(Z-1) 
CONTINUE 

INTERPOLATE TO DETERMINE INTEGRATION POINTS ON THE INTERVAL OF 

INTEREST 

DO 10 I=1, 80 
YIP(I)=(1-CANG)~XIP(1)/2. +(I+CANG)/2. 

10 CONTINUE 

C 
C CALL SUBROUTINE TO DETERMINE VALUE OF LEGRENDRE POLYNOMINALS AND 

C DERIVATIVES EVALUATED AT l. 
C 

ARG=1. 
CALL POLY(ARG, TPN, TDPN) 

DETERMINE INTEGRALS REQUIRED FOR EVALUATION OF THE CONSTANTS 

RESULTING FROM THE STRESS BOUNDARY CONDITIONS FOR SPHERES IN 
CONTACT. 

DO 30 I=1, 80 

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNOMINALS AND DERIVATIVES 

EVALUATED AT INTEGRATION POINT YIP(I). 

ARG=YIP( I) 
CALL POLY (ARGr PN r DPN) 
CALL DDPOLY(ARGr DPNr DDPN) 

EVALUATE FUNCTIONS CONTAINED IN INTEGRALS. 

DO 20 J=1, 70 
K=2*J-1 
DIANG DARCOS(CANG) 
KB=1. /(1. -CANG**2)/(2. /3. +(3. 14159/2-DZANG)/CANG) 
HSARG=3. 14159/2-(3. 14159/2-DIANG)*(DARCOS(YIP(I))/DIANG)**2 
HS=1. /(DTAN(HSARG))**2 
Fl( I, J) =( (1. +HS) YIP( I) **2-HS) *( (3. 14159/2-DIANG) /CANG+1- 
DSQRT(YIP(I)*~2~G"~2))~PN(K)*KB 
F2(I, J)=(-1)*(1+HS)*((3. 14159/2-DIANG)/CANG+1-DSQRT(YIP(I) 2- 
CANG"~2))*(1. -YIP(I)~*2)~ZIP(1)*DPN(K)*KB 
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F3(I, J)=F1(I, J) 
F4(I~J) Fl(ltj) 
F5(I, J)MF2(I, J) 
F6(I ~ J) F2(lgJ) 

20 CONTINUE 

30 CONTINUE 

ZERO OUT ARRAYS CONTAINING CONSTANTS. 

DO 40 I=1, 70 
EC(I)=0. 
DEC( I) 0. 
DDEC(I)=0. 
ZNC(l)=0. 
DNC(I)=0. 
DDNC(I)~0. 

40 CONTINUE 

DETERMINE CONSTANTS. 

DO 60 I=1, 70 
K=2*I-I 
L=I-1 
DO 50 J=1, 80 
EC(I)=EC(I)+(I-CANG)/2. *WGT(J)*F1(J(I) 
DEC(I)=DEC(I)+(1-CANG)/2, *WGT(J)*F3(J, I) 
DDEC(I)=DDEC(I)+(1-CANG)/2. *WGT(J)*F4(J, I) 
IF(I. EQ. 1) GOTO 50 
ZNC(I)=ZNC(I)+(1-CANG)/2. *WGT(J)"F2(J, I) 
DNC(I)=DNC(I)+(I-CANG)/2. ~WGT(J)*F5(J, I) 
DDNC(I)=DDNC(I)+(1-CANG)/2. *WGT(J)*F6(J, I) 

50 CONTINUE 
EC(I)=EC(I)*(4*L+1) 
DEC(I)=DEC(I)*(4*L+1) 
DDEC(I)=DDEC(I)*(4*L+1) 
IF(I, EQ. 1) GOTO 60 
ZNC(I)=ZNC(I)*(4"L+1)/4. /L/(2*L+1) 
DNC( I)=DNC(I)*(4*L+1)/4. /L/(2"L+1) 
DDNC(I)=DDNC(I)*(4*L+1)/4. /L/(2*L+1) 

60 CONTINUE 

RETURN 
END 
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