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ABSTRACT

A Micromechanical Approach to Modeling
Partly Saturated Soils. (December 1986)
Mark Jackson Lamborn, A.A., Montgomery College;
B.S., Texas AZM University

Chairman of Advisory Committee: Or. Robert L. Lytton

Constitutive equations are given which seek to represent the
load-deformation behavior of soils. The soil is viewed as a two phase
system. One phase represents the soil particles as a collection of equal
spheres in contact. The other phase, representing an air-water mixture,
is contained in the void space surrounding the equal spheres. Both
phases are modeled as homogeneous, isotropic, linear elastic materials.
The constitutive equations are developed through thermodynamic
considerations and attempt to recognize actual deformation mechanisms
which are present on the microscale. In their final form, the
constitutive equations are in terms of material properties, particle
size, degree of saturation, some dimensionless quantities, and the loads
transmitted by the individual particles. The determination of the
dimensionless quantities, required for the evaluation of the constitutive
equations s discussed, Values for these dimensionless quantities are
not available at present. Approximations for the loads transmitted by

individual particles are given.
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CHAPTER 1
INTRODUCTION
BACKGROUND

Recently much work has been directed towards developing
constitutive models to represent the complex load-deformation behavior
of soils. The models developed to date have primarily been for the
special cases of dry and completely saturated soils. The use of these
constitutive models in representing the behavior of partly saturated
soils has resulted in inaccurate predictions of soil response. It is
the intent of this research to formulate a constitutive model
describing the behavior of partly saturated soils.

There are essentially two approaches which have been used by those
attempting to develop constitutive laws for soils. The first approach
is termed phenomenological modeling. Phenominological models may be
defined as those concerned with describing material behavior on the
size scale of the experiment. For soils, thousands to millions of
soil grains and pores would be included in a model representation of
this type. Phenomenological methods or theories include empirical
curve fitting, elastic theories, elastic-plastic theories, and
viscoelastic theories. These methods and continuum theories are

concerned with describing the overall observable behavior of the soil

The citations on these pages follow the style of the Journal of
Geotechnical Engineering Divisjon, ASCE.,




mass. They are not concerned with describing the actual deformation
mechanisms, which act on the level of the grains and pores which
comprise the soil mass. The second type of approach is termed
micromechanical modeling. ihis approach attempts to derive
constitutive laws by considering the deformation mechanisms acting on
a very small but representative sample of the material. For soils, a
micromechanical model description might include one to hundreds of
grains and pores in the model description.

The primary problem with constitutive models representing soils,
is a failure to describe all aspects of their load-deformation
behavior. wWhile a model may give reasonable predictions under one set
of input, it may fail to predict the soil response under another set
of input. With the present knowledge it appears that a constitutive
model representing all aspects of soil behavior may not be obtainable.
This is due partly to a lack of understanding of the mechanisms
causing soil deformation and partly due to the mathematical
complexities one may encounter when modeling soils. A micromechanical
approach to the constitutive modeling of soils may provide a better

means to understand the soil load-deformation mechanisms.

SCOPE OF WORK

The purpose of the research studies contained in this report is to
develop a constitutive model representing the load-deformation
behavior of soils. The following types of investigations are

contained in this report:



a) Review of the available literature on previously developed
constitutive models describing the load-deformation behavior
of soils.

b) Development of constitutive equations to represent the
load-deformation behavior of partly saturated soils, under
idealized conditions. The constitutive equations will be
developed using a micromechanical approach, and will attempt
to recognize some of the deformation mechanisms present on

the micreoscale.

METHOD OF APPROACH AND ORGANIZATION

The studies undertaken to achieve the stated objectives are
described in the subsequent chapters.

Chapter II contains a brief description of experimentally observed
load-deformation behavior of soils and a review of the approaches
taken in the development of constitutive equations to describe this
behavior.

Chapter III reviews the development of constitutive equations to
predict the load-deformation behavior of an idealized partly saturated
soil system.

Chapter IV contains some simple examples of predicting soil
response with the newly developed constitutive equations for the
idealized partly saturated soil system.

Chapter V contains conclusions and recommendations.



CHAPTER 1II

PREVIOUS WORK
LOAD DEFORMATION BEHAVIOR OF SOILS

When a soil mass is subjected to any arbitrary set of surface
tractions, the result will be a volume deformation of the soil mass.
The resulting displacement and stress fields within the soil mass will
depend on a number of variables., These variables include the type of
Toads applied, the stress history, and the chemical and physical
properties of the soil mass,

Experimental observations of the response of a soil mass to
various applied loads has provided a great deal of information
concerning the load-deformation behavior of soils. The information
provided by experimental work will be discussed briefly.

Shown in Figure 2.1 is a typical pressure vs. volumetric strain
curve. This curve would be obtained by performing a lab test on a
soil sample. The arrows appearing on the curve shown in Figure 2.1
indicate the load path taken. Initial loading of a soil mass results
in a state of stress within the soil, which the soil experiences for
the first time. 1In Figure 2.1, initial loading curves correspond to
those lying between points 1 and 5, and points 7 and 8. When the soil
particles are initially in a loose state, a small cﬁange in pressure
may result in a large volume deformation. This is due to grain
movement resulting in densification of the soil mass. Behavior of

this type is shown as that portion of the curve connecting points 1
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and 2 in Figure 2.1, As the stress is increased past point 2 in
Figure 2.1, the soil will stiffen as repacking of the soil grains
continues. At some intermediate stress level the soil may again soften
as a result of fracturing and yielding of the soil grains. This
behavior is illustrated by the portion of the curve lying between
points 3 and 4 of Figure 2,1, As the soil mass is loaded past point 4
of Figure 2.1, the scil will stiffen. When the minimum void ratio is
reached, continued loading of the soil mass will result in failure:

When an applied load is removed from a soil mass, rebound will
normally occur resulting in an increase in soil volume. The stress
path taken by the soil mass during unloading will typically be
different from that taken for initial loading. A typical unloading
curve is shown in Figure 2.1 as that between points 5 and 6. It is
shown in Figure 2.1 that the stress occurring within the soil mass is
not a single valued function of strain. Instead the stress at a
particular value of strain may be multi-valued and its magnitude at a
particular time will depend on the load-deformation history of the
soil.

The term reloading refers to the addition of a load to the soil
mass which results in a stress state which the soil has previously
experienced. A typical reload curve is shown in Figure 2.1 as that
portion of the curve connecting points 6 and 7. When a soil
experiences an unload-reload cycle, there will in general be a volume
change associated with this cycle. As shown in Figure 2.1, the

unload-reload cycle begins at point 5 and ends at point 7. The volume



change which occurs during this cycle is proportional to the
difference in the volumetric strains corresponding to points 5 and 7.
When the reload path reaches point 7 of Figure 2.1, continued loading
will follow a path similar to that for initial loading.

Soils also exhibit interesting behavior when loaded in simple
shear. The behavior of soils when loaded in simple shear will depend
on the initial void ratio of the soil. When a soil of an initially
high void ratio is loaded in simple shear, a densification of the soil
will result. This decrease in volume is due to particle
rearrangement, yielding, and fracture, Densification continues with
increased Toading until a minimum void ratio is reached. Upon
obtaining this minimum void ratio, continued Toading will cause the
soil to fail, with a dilation of the soil mass usually associated with
failure. The dilation of the soil mass occurs because, in order for
the soil to fail, grains must ride over one another. Soils which
exhibit the behavior just described are loose granular materials and
normally consolidated clays. For soils of an initially low void
ratio, the application of a simple shear loading will result in
dilation of the soil mass. This is because the void ratio of the soil
mass will be near its minimum value and for deformation to take place,
the soil grains will have to slide over each other. Soils which show
this type of behavior are dense sands and overconsolidated clays.
Some typical stress-strain curves for different‘ soils loaded in pure

shear are shown in Figure 2.2.
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For some soils, the total deformation resulting from the
application of a_load will not occur instantaneously, but rather it
will occur over a period of time. This type of deformation is
referred to as consolidation and is found to occur in silts and clays.
Theories which predict the amount and rate of consolidation usually
consider the soil to be saturated. The common assumption is that when
a load is applied to the soil, it is initially transferred to the
liquid phase present in the pores of the soil mass. This results in
an increase in the pore pressure so that steady-state conditions in
the pores no longer exist. Over a period of time, steady-state
conditions will be obtained, requiring a flow of the liquid from the
pores. This causes a dissipation of the pore pressures until
hydrostatic pressure is achieved. As the pressure is dissipated from
the pores, the load will be transferred to the soil grains resulting
in consolidation of the soil mass. The permeability of the soil
controls the rate at which liquid may flow from the pores thus
controlling the rate at which consolidation takes place. The behavior
described above is termed primary consolidation and is shown in Figure
2.3.

Secondary consolidation, or creep is also shown in Figure 2.3.
Secondary consolidation is defined as the deformation which takes
place after the pore pressures have reached steady state conditions.
Theories exist for the prediction of secondary conselidation but to

date, none have found general acceptance.
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CONSTITUTIVE MODELS REPRESENTING SOIL BEHAVIOR

Over the last two dgcades much work has been done to develop a
constitutive model to represent the load-deformation behavior of
soils. Thus far, most of these models are used to represent the
behavior of dry or completely saturated soils. When these models have
been used to represent the behavior of partly saturated soils, they
yielded poor predictions of the soil response. However, these models
are worthy of some attention, since they provide some insight to the
approaches which have been taken to develop constitutive laws
describing soil behavior.

The problem of developing a constitutive model for soils has
followed one of two approaches., These two approaches are termed
phenomenological and micromechanical modeling, The following
subsections will discuss the soil models obtained from these two

approaches.

Phenomenological Models

Phenomenological models may be defined as those concerned with
describing behavior on the size scale of the experiment. These models
treat the soil as a continuum including thousands to millions of soil
grains and pores in the model representation. Phenomenological
methods or theories include mathematical curve fitting, elasticity

theory, plasticity theory, and viscoelasticity theory., Some soil



constitutive models developed from these methods or theories will be
discussed. -

Empirical Models. A great many models representing soil behavior
have been developed using empirical curve fitting method§. This
approach entails making a mathematical fit to experimental data. In
this manner the response of the soil due to some specific input may be
predicted.

Many workers have taken the empirical approach to model the
pressure-volume behavior of soils. Herrmann (12) has taken such an
approach in introducing the “P- " description. In this model, the
pressure was assumed to be a function of the specific volume, internal
energy, and the porosity of the soil. The relationship Herrmann

proposed is
P =1 (v/a,u) (2.1)

where
P = the pressure,
u = the specific internal energy,
v = the specific volume of the scil, and

a = the porosity.

The function f appearing in Equation 2.1 was assumed to be that which

relates pressure and volume for the soil particles. Carrol and Holt



(4) proposed that it is more reasonable to represent the

pressure-volume relationship for soils by
Pel flv/au (2.2)
a o, .

When the pressure-volume relationship for the soil particles is known,

the problem reduces to détermining the function
a = g{P) (2.3)

which gives the porosity as a function of pressure. The approach taken
for this model was to use the Mie-Gruneisen equation of state (4) to
relate the pressure to the specific internal energy and the specific

volume, This equation is given by
Tg
P = P+ (u-ug) g (2.4)

where
Tg = the Gruneisen ratio,
Po = a reference pressure, and

up = a reference value of the specific internal energy.

A polynomial fit was then used to determine the function g.
Butkovich (3) developed a model relating the porosity to the applied

pressure. The expression that was obtained is given by
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where
@ = the initial porosity,
Pe = the pressure required for pore closure to be complete, and

Pe = the pressure required for the onset of pore closure.

Equation 2.5 is applicable for pressures within the range between Pg
and P.. For pressure less than Po, the soil is assumed to behave
elastically. For pressures greater than P., the pressure-volume
relationship for the matrix material is used. In Butkavﬁch's work, the
pressure-volume relationship for the matrix material is assumed to be
given by soil unloading data. A polynominal fit to initial loading
data is used to determine the pressure volume relationship for
pressures lying between Pp and Pc. Other empirical models describing
the pressure-volume relationship of soils have been developed, but the
models cited above are representative of this work.

Other models have been developed which make mathematical fits to
deviator stress-axial strain data, obtained from triaxial tests. The
simplest model of this type is obtained by approximating the deviator
stress versus axial strain curve by a series of piecewise linear
curves, This type of approximation is shown in Figure 2.4, More
sophisticated mathematical fits such as hyperbolas and cubic splines

have been made to deviator stress versus axial strain data. The most
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Figure 2.4. -- Piecewise Linear Approximation of Deviator Stress Versus
Axial Strain Curve Obtained from Triaxial Test.



popular of these methods has been the hyperbolic stress-strain model
used in finite element representations of soil by Duncan and Chang
(8). This model is based on the discovery that the deviator stress
versus axial strain curves for a number of soils could be approximated
with sufficient accuracy by hyperbolas like that shown in Figure 2.5.
This hyperbola may be represented by
£
_ 1
(o9-033) = T, T (2.6)
B Ton o) e
where
(0”—033) = the deviator stress,
e = the axial strain, and

£ o= the initial tangent modulus.

Equation 2.6 is the basis of the hyperbolic stress-strain model.
Other empirical relations are used to account for the variation in
soil stiffness strength with depth and different modulus values for
loading and unloading. Because of these relationships, the hyperbolic
model requires a large number of parameters for its use.

There are some basic problems associated with soil models
developed from empirical methods. First, an empirical model cannot be
expected to provide reasonable predictions of soil behavior when the
soil and—site conditions being modeled deviate greatly from those used
to calibrate the model. Second, this type of model cannot be expected

to provide any insight as to the actual physical deformation
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Figure 2.5. -- Hyperbolic Approximation of Deviator Stress Versus
Axial Strain Curve Obtained From Triaxial Test.



mechanisms acting within the soil mass. Despite these shortcomings,
empirical models are frequently used due to their simplicity.

Nonlinear Elastic Models. Some models representing soil behavior
have been developed using non-linear elasticity theories. These
theories have not found widespread use since their predictions of
unload behavior will not represent actual soil behavior. For cases
where initial Toading is of interest, nonlinear elasticity theories
may provide reasonable predictions of soil response.

Hyperelastic constitutive laws have been used to represent soil
behavior. These models employ constitutive laws obtained by the
differentiation of a strain energy function. Different orders of
hyperelastic models are obtained by retaining the higher order
derivatives obtained from the strain energy function.

Truesdell (30) has proposed a rate theory which states that the
rate of change of stress is a function of the rate of change of
strain. This is known as the hypoelastic formulation. At present
this formulation has not found much use in representing the
Toad-deformation behavior of soils.

Elastic-Plastic Models. The use of elastic-plastic continuum

theory has found widespread use in soil modeling. Recently, many
constitutive models for soils have been presented which use these
theor‘w‘es; Generally this type of model assumes a yield criterion of
the form

4 =
Flogy eig0 x) = 0 (2.7)



in which ojj and e?j (i,j = 1,2,3) are the components of the stress
and plastic strain tensors, respectively, referred to an orthogonal
set of Cartesian axes (xj), and X is a work hardening parameter.

when the above equation is not satisfied [F (oijs e?j,x) < 0],
the material is said to behave elastically. When Equation 2.7 is
satisfied, the behavior is said to be elastic-plastic. Deformation
when Equation 2.7 is satisfied occurs as a combination, of elastic and
plastic strains, prescribed by an assumed flow rule. The yield
surface is typically described in principal stress space as shown in
Figure 2.6. The area contained by the yield surface is the region of
elastic behavior. For a known stress point inside this region, the
strains are found using elastic constitutive laws. When the stress
point lies on the yield surface, the total strain is a combination of
elastic and plastic strains. For a stress point lying on the yield
surface, further loading may cause the surface to expand, translate,
or both according to the work hardening rule assumed. Unloading may
be etastic, or elastic-plastic.

A well known elastic-plastic soil model is that developed by
Schofield and Wroth (26), and has been termed “Cam-clay." This model
accounts for the volume deformation and strain-hardening of soils.
The basis of their model is an incremental flow rule which balances
the irreversible work occurring during deformation against a mechanism

for the frictional loss. Their flow rule is
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Ty e’ sk Play |
(2.8)
where
P = pressure,
v = volume,
k¢ = friction parameter, and
TY = measures of shear stress and shear strain, respectively.

In Equation 2.8 the superscript, P, denotes plastic portions of the
quantities indicated.

The elastic volume deformation during hydrostatic deformation is
given by

Ve _ . AP
SR (2.9)

where
Vg = the volume of solids contained in the soil,

A1 = a constant, and

the superscript e is used to denote the elastic portion of the
quantity indicated. As yielding takes place, the total volume change
is

v
Voo, 20
A("s zF (2.10)
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where A is a constant. The assumption of an associated flow rule

gives the following equation of the yield surface.

k‘}’ log, (59 (2.11)
Here P* is the intercept of the yield surface with the P axis as shown
in Figure 2.7. An important assumption of the "Cam-clay" model is
that the plastic volume deformation during non-hydrostatic stress
states is the same as for hydrostatic, but with the P replaced by P*.
Thus the plastic volume deformation is given by

_ AP*

P
)= -y - A) T (2.12)

A(L

The Equations 2.8, 2.9 and 2.10 form a system of equations from
which strain increments may be determined from stress increments, or
vice versa. The constants A} and Ay are determined experimentally.
Hydrostatic loading corresponds to a movement along the P axis shown
in Figure 2.7. When yielding occurs, a non-hydrostatic loading will
cause the yield surface to change in accordance with Equation 2.8.
Movement of the yield surface is shown in Figure 2.7, The critical
state Jine is shown in Figure 2.7 as the 1ine connecting points of
zero slope for all possible yield surfaces. This separates yielding

into densification and dilation. Densification with strain hardening
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Figure 2.7 -- Typical Yield Surfaces for "Cam Clay" Model.
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occurs tp the right of the critical state line while dilation with
strain softening occurs to the Teft.

The “Cam-clay" model has proved useful in representing soil
behavior, However, in this model, elastic shear stresses and soil
cohesion are completely neglected. The assumption of an associated
flow rule is also made, This assumption results in a plastic strain
vector normal to the yield surface. Works such as Mandi and Luque (17)
and Frydman, et al. (9) have shown that normality of plastic flow is
neither a mathematical necessity nor supported by experimental
evidence. The “Cam-clay"” medel predicts no non-recoverable
deformations for hydrostatic Toadings. This is not representative of
soils. Un]oéding is elastic, which is not descriptive of actual soil
behavior.

Sandler and Baron (21) have introduced the “cap" model to describe
the behavior of soils, This model is based on a classical plasticity
model, defined by a yield surface and a strain rate vector. The yield
surface of this model is shown in Figure 2.8, Inspection of this
yield surface shows that three modes of soil behavior are possible.
These being elastic, failure, and cap behavior. Elastic behavior
occurs when the stress point lies in the region contained by the
coordinate axes, the failure envelope, and the cap surface. The
behavior in this region is considered to be linearly elastic. The
failure mode of behavior occurs when the stress point lies on the
failure envelope. The failure envelope is assumed to be fixed. The

equation of the failure envelope is
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Figure 2.8. -- Yield Surface for "Cap" Modei.
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B, - B, exp (-3 B4P)

1 (2.13)

where
Jg' = the second invariant of the deviatoric stress tensor,
and

B1.,82,B3 = material constants.

The model assumes an associated flow rule so that the plastic
strain during the failure mode of behavior is composed of a shear
component and a dilatant component. The cap mode of behavior occurs
when the stress point lies on the cap surface, and moves it outward.
The motion of the cap is related to the plastic strain by a hardening

rule. The equation for the cap surface is

1 . 2
(P - Pa) + g B4 1]‘)2 = (Pb - Pa) (2.14)
where
Ih = the first invariant of the stress tensor,
By = a constant, and

Pa, Pp = the pressures at points a and b of Figure 2.8,

respectively.

The cap is related to the strain history of the material through a

strain hardening rule given by
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EyP = By (1 - exp (-3 B¢ Pp))

(2.15)

where

Bs and Bg are material constants.

Here E; is related to the past strain history of the soil in the
following manner. When the stress point lies on either the-faﬂure
envelope or the cap surface, the value of E; changes exactly as the
plastic volumetric strain. For a stress point on the cap surface, the
plastic strain rate vector will be directed as shown in Figure 2.8.
The position of the plastic strain rate vector implies that it
consists of an irreversible decrease in volume in conjunction with an
irreversible shear strain. This decrease in volume represents
volumetric hysteresis observed in soil during compaction. As the cap
moves outward, the compaction resulting from the associated flow will
lead to an increase in the cap parameter ES . By Eguation 2.15 this
leads to an increase in Py, resulting in a movement of the cap to the
right. When the stress point lies on the failure surface, the plastic
strain rate vector will be directed upwards and to the left as shown
in Figure 2.8. The plastic strain rate vector indicates an increase
in volume associated with the movement along the failure surface. The
dilatancy will lead to a decrease in the cap parameter ES resulting in

a leftward movement of the cap by Equation 2.15. The backward
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movement of the cap is limited to the point where it intersects the
stress point lying on the failure surface.

The soil model! just described is the basic cap model.
Modifications to this basic cap model have been made to include
viscous damping and strain hardening. The viscous cap model is used
to represent materials which exhibit hystersis during cyclic loading.
This model was formulated by introducing linear viscous damping into
the elastic portion of the cap model. This model is shown in Figure
2.9. The parameters which define the non-plastic portion of the model
are an instantaneous modulus Gf, a long term modulus Gg, and a
relaxation time t.. The parameters Gg and t, are related to those

shown in Figure 2.9 by

v
6T T, (2.16)
-6
. - ‘_‘d(sz s) (2.17)
r Gf

where

Gy, Gf = the spring moduli for the model appearing in Figure 2.9,
and
ud = a damping constant.

The deviatoric stress-strain relationship for the viscous cap model is

(2.18)
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Figure 2.9. -- Viscous Cap Model.
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where
sij’ e‘ilj = components of the deviatoric stress tensor and
viscoelastic deviatoric strain tensor, respectively.
;ij’ z.ij = rate of change of the components of the deviatoric

stress tensor and viscoelastic deviatoric strain

tensor, respectively.

The parameters Gf, Gg, and tp appearing in the viscous cap model are
determined from cyclic triaxial data.

A kinematically hardening failure envelope has been added to the
basic cap model by replacing the stress tensor 0jj by ("ij - 0‘13-).
Here 0jj is a tensor whose components are memory parameters defining
the translation of the failure surface in stress space. In the model
it is assumed that kinematic hardening occurs only in shear, yielding

the relation

agk = 0 {2.19)

In Equation 2.19 and henceforth, a repeated index implies summation
unless otherwise indicated.

The kinematic hardening rule which governs the memory parametérs
ajj is of the form

. p
a5 = Figia (0450450084508 (2.20)
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where e:j are the components of the deviatoric plastic strain tensor.
In order to represent the non-linear behavior of soils at or near

failure, it is necessary to assume a non-linear hardening rule. A

simple rule of this type which gives reasonable behavior at all stress

Tevels is

= P
Ay = Co Foy &y

(2.21)
where
(%3 - i)
F_ = maximum |0, 1 -
o 2 N VT, - ) (2.22)
Y 2 Yy
and
C = a constant,

Ny = a constant defining the size of the yield surface, and

J'2 = is given by Equation 2.13,

Here F, is related to the proximity of the yield surface to the
failure surface, and the location of the stress point of the yield
surface. For ajj = 0, Fu will be equal to 1.0. Therefare from
Equation 2,21 it is found that Cu is the inelastic slope for the
initial yielding of the material in shear. FOL will decrease for

continued yielding and is equal to zero when the stress point reaches



the failure surface. Upon unloading from the failure surface, the
value of F, will increase, reaching a value of 2 upon reyielding,

As a final note, the cap model has been modified to represent the
behavior of saturated soils using the effective stress approach. This
modification is straightforward and is achieved by replacing the
stress tensor, ojj, by.the effective stress, Oilj. The effective
stress tensor is determined as

T35 = %i T Py (2.23)

in which Py is the pore water pressure, and 5ij is the Kronecker
delta.

Although the cap model has been used successfully to model several
soils, there are some difficulties associated with it. A major
problem is that a large number of parameters must be determined from
experimental data and their determination may require special tests.
Another problem is the assumption of an associated flow rule. This
assumption is not necessarily correct for soils.

Other elastic-plastic constitutive models for soils have been
developed. The models may use different yield surfaces or a
non-associated flow rule, but the methodology used to formulate these
models is the same as those already described.

Viscoelastic Models. Soils exhibit viscoelastic behavior in that

the response of a soil to some specific input is dependent on the
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entire past history of input to the soil system, Viscoelastic theory
can be used to-include rate and history effects in soil constitutive
models.

Nonlinear viscoelastic theory was used by Schapery and Riggins
(23) in the development of cyclic constitutive equations for marine
sediment, Only simple shear of the marine sédiment was considered.
The shear strain, €12, was assumed to be related to the shear stress,

a12, through a modified superposition integral given by

t
0 = G fJ(t-s) LI (2.24)
o
where
f= f (012, Sq) (2.25)

GR = an arbritary constant,
J = the linear viscoelastic creep compliance,

Sq4 = a damage parameter, and

t = time.
The damage parameter, Sq, is used to account for the effect of damage

growth in the marine sediment. The damage parameter, S4, depends on

stress history. One form derived by Schapery (22) is

t
Sq = f\g‘zl 9 ar (2.26)
]
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in which q is a positive constant, and the coefficient f] comes from
the expression

. a
a = cfylog,l
1712 (2.27)

where ; is the damage growth rate and ¢ is a positive constant. The
term f) is positive and serves to define the ease at which defects
will grow at a certain stress level, Predictions of the response of
marine sediments undergoing simple shear were made using this theory.
It was reported that the theory vpredicted the essential
characteristics of the soil data under monotonic and periodic

straining.

Micromechanical Models

Mechanistic modeling of soils has been approached from two
different viewpoints. One approach has been to treat the soil as an
assembleage of particles in contact as shown in Figure 2.10. The
particles within a soil mass are random in shape and size and to use
this approach some assumptions as to size and shape must usually be
made. Once a model representing the soil mass has been chosen, the
solution consists of representing the deformed geometry of the
particles in contact. The other approach to mechanistic modeling has
been to consider the soil to be composed of a matrix material

containing voids as shown in Figure 2.11. Here a solution to the
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Soil Particle

Void

Figure 2.10. -- Soil Viewed as an Assemblage of Particles in Contact.
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Matrix Material

Void

Figure 2.11. -~ Soil Viewed as a Collection of Voids Contained in a
Matrix Material.



problem consists of modeling the deformation of the voids contained in

the matrix material,

Mechanistic models have been formulated on two scales. One scale
has been intermediate to that of the experiment and the grains and
pores within the soil mass. While this scale may be very small
compared to the scale of the experiment, it may be quite large in
comparison to the size scale of the grains and pores. On this size
scale the use of phenomenological theories may be necessary. This is
because the behavior observed on this level may be that of many grains
and pores and may best be described by the use of a phenomenological
theory. The other scale which is used in mechanistic modeling is
termed the micro-scale. On this level, models are formulated at the
size scale of the grains and pores, and are concerned with describing
the actual deformation mechanisms present at this level.

The void deformation models have been formulated using both the
intermediate and micro size scales. Modeling of objects in contact
has usually been done on the microscale.

Contact Models. When a mass composed of a number of particles in
contact is subjected to an externally applied load, the deformation
resulting from the load is due to grain movement and grain
deformation. The movement of the grains will be controlled by
interparticle friction, cohesion between adjacent particles, and the.
initial porosity of the mass. The grain deformation will be greatest
at areas of contact between adjacent grains, and may be elastic or

elastic-plastic, depending on the stress level present in the grains.
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In addition to that already mentioned, the grains may fracture thus
increasing the number and shape of grains, and the number of contacts.
Models seeking to describe this behavior usually consider the soil
grains to be spherical in shape. The load-deformation behavior of the
spheres themselves is considered to be that of an elastic material.
Further simplifications are obtained by neglecting friction, cohesion,
and tangential forces acting on the contacts between grains. With all
these simplifications, a logical step is to use Hertzian contact
theory by which the movement of adjacent spheres relative to one
another may be determined. Consider the two spheres in contact as
shown in Figure 2.12. The x axis is positioned at the centerline of
the contact. The solid lines represent the deformed configuration of
the spheres while the dashed line represents the undeformed spheres.
From Hertzian contact theory, the deformation along the centerline of

contact for each sphere is given by

2
u; - 3n0-v)Fe (2.28a)
§RCEW

2
u§ = 3n(1-v5)F¢ (2.28b)

§RCE2

where
u3 = the centerline displacement along the x3 axis,
v = Poisson's ratio,

E = Young's modulus,
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Sohere 1

Sphere 2

Figure 2.12. -- Geometry Considered in Hertz Problem
of Contact Between Two Spheres.
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Rc = the radius of the contact surface, and

Fe = the force transmitted across the contact.

The superscripts appearing on the displacement components and the
subscripts on the Poisson's ratio and Young's moduli are used to
denote quantities for spheres 1 and 2, The radius of the contact area

between the spheres is given by

2 2 /3
S EEIE RSN (ke L 1) (2.29)
et |T TR\ 5 .

where Ry and Ry are the radii of spheres 1 and 2, respectively.

Using Equations 2,28 and 2.29, the deformation of an assemblage of
spheres may be determined when the force transmitted across each
contact is known. Ko and Scott (14) have solved this problem for
assemblies of spheres in ideal packing configurations, under
conditions of hydrostatic loading. Here all the spheres were
considered to have equal radii and the same material properties. They
solved this problem for simple cubic {sc) and face centered cubic

(fcc) packing configurations. Their solution is

o g 23
TN B {2.30)
T £

where <p is a constant equal to 1 for sc packing and equal to 1/\/ 2

for fcc packing.



As seen from Equation 2.30, the term ¢p accounts for the initial
density of the mass giving smaller volumetric strains for the denser
packing configuration. However, this model predicts larger than
actual deformations for the sc configuration while predicting smaller
than actual deformations for the fcc packing configuration. To
correct this, Ko and Scott used a combination of sc and fcc blocks to
achieve the initial porosity of the soil. By assuming a distribution
of grain contact pressures and an effective contact radius, they
generated pressure-volume relationships for sands of three initial
porosities. The results they obtained are shown in Figure 2.13 along
with the limiting cases of sc and fcc packing configurations. A major
shortcoming of Ko and Scott's model is that it is elastic and the path
the soil takes during unloading will be the same as that for loading.
Because of this fact, this model is incapable of accurately
representing the load-deformation behavior of soils. Warren and
Anderson (31) have formulated a contact model in which initially some
of the spheres are not in contact. The pressure-volume relationship
they obtained is

(2.31)

&L (N_g) 2 3 (1_\)2) P 2/3
v e [

a1
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Figure 2.13. -- Pressure-Yolume Relationships for

Sands of Different Initial Porosities.



where

Ng = the number of grains in a typical cross section, and

Ne = the number of contacts transmitting force across a

typical cross section. )

Initially all the grains are not in contact. As Toading
progresses, more grains come into contact. At some critical pressure,
all grains make contact thus approaching a fcc packing configuration.
It is apparent from Equation 2,31 that as the number of contacts is
increased, the amount of volume deformation resulting from an increase
in pressure, will decrease. The model will predict unloading along a
path different from that of loading as long as the grains were not all
initially in contact. The difficulty with this model is the
determination of the value of Nc. The variation in the value of N¢
which occurs during loading, corresponds to the rigid body motion of
the particles within the soil mass. This model does not attempt to
describe the actual grain motion within the soil mass but rather the
variation in the parameter N. would have to be chosen so as to fit
experimental data.

Some modets of granular media include friction of the contacts
between grains. Rowe (20} has cdnsidered the shearing of various
assemblages of spheres. Using a minimum energy criterion, he arrived

at the stress-dilatancy equation
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1. {1+ %kk ( o, Ou
% = (T) tan {45° + T)

(2.32)

where
g1 = the maximum principal stress,
o3 = the minimum principal stress,
€1 = the maximum principal strain, and

¢y = the undrained angle of shearing resistance.

The above equation holds only for the case when the intermediate
principal stress is equal to the least principal stress. Rowe states
that the angle ¢, must be replaced by an effective angle of shearing
resistance, d)"], to match experimental data. Test conditions may be
created so that many values of the undrained angle of shearing
resistance, ¢y, may be obtained for the same soil sample. However,
with pore pressure measurements during the test, the value of the
effective angle of shearing resistance may be determined. .This value
has been found not to vary with test conditions, Equation 2.32 does
not account for compaction during non-hydrostatic loading. Therefore,
it is not general enough to adequately represent actual soil behavior.
Barden, et al. (1) used Equation 2,32 to formulate a plastic flow rule
and a set of yield surfaces. They tested the behavior of sand in
plane strain and found that the yield criterion and plastic potential
did not coincide. This implies non-associativity of flow, However, it

was found that the volumetric strain was suitably predicted by this
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model. Nemat-Nasser (18) formulated a model to represent the behavior
of granular material undergoing shear loading. This model is found to
model dilation as well as densification which occurs during shear.
This is done by defining the dilatancy angle a . The dilatancy angle
defines the position of a microscopic shear plane, as shown in Figure
2.14. In this model it is assumed that the actual shearing takes
place on many microscopic shear planes rather than on one macroscopic
shear plane. From Figure 2.14 it is clear that positive value of the
dilatancy angle corresponds to an upward movement of the grains along
the microscopic shear plane thus representing dilation. A negative
value of the dilatancy angle will therefore represent densification.
To formulate the model, Nemat-Nasser considers a sample of soil for
which failure takes place along one microscopic shear plane.

The relationship between the shear and normal stresses acting on
the macroscopic and microscopic shear planes was assumed to be that of

a Mohr-Coulomb material with no cohesion. These relationships are

T tan @ (2.33a)

Il
"

T = o* tan ¢* (2.33b)

where

T = the shear stress acting on the macroscopic shear plane,
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Macroscopic
Shear Plane by

Microscopic Shear Plane

Figure 2.14. -- Relationship Between Macroscopic Shear Plane,
Microscopic Shear Plane, and the Dilatancy
Angle, d’d'



47

0 = the normal stress acting on the macroscopic shear plane,
? = the angle of shearing resistance for the macroscopic shear
plane,
T* = the shear stress acting on the microscopic shear plane,
o* = the normal stress acting on the microscopic shear plane, and
¢* = the angle of shearing resistance for the microscopic shear
plane,
_ F tan ¢* ~o*
F* ¢* (cos(P-0*) (2.342)
s5ing
tan ¢* = tan (¢-9) (2.34b)
where

F* = the frictional force acting on the microscopic shear plane,
and

= the total shear force acting on the macroscopic sample.

aul

The rate of energy dissipation per unit volume, which occurs as

slippage takes place along a microscopic shear plane is

G _ T tan ¢* cos(-8) V
sind sind v (2.35)
W = the rate of energy dissipation per unit volume;
o
V = rate of volume change.
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The following approximations were made concerning W

o o o
WEW Fu" (2.36a)
o
W' =Ty (2.36b)
o
pwe T %
sing cosd (2.36¢)

where % is the rate of shear deformation on the macroscopic sample.
Combining Equation 2.36 with Equation 2.35 yields the following

equation for the microscopic shear plane i.

o
1 Vi _ cos{¢* + &) sin ®
v 1(_ Cos 4% (2.37)

The volume fraction, Vi, of the family of particles having a

dilatancy angle, ;i, is defined by

~ Vi
py (8} =y (2.38)
where pj is the volume fraction of family of particles having
dilatancy angle ¢j. The restriction on pj is the following
+
(2.39)

4
[ pi(s)ds =1
¢



In Equation 2.39, ¢+ and ¢ - form the range of variation of the
dilatancy angle ¢. Using Equations 2.38 and 2.39 in Equation 2.37,

Nemat-Nasser arrives at the final result.

o $+
%%: cos@*[ p(s) cos(¢*+s) sin(s) ds (2.40)
¢~

Equation 2.40 contains all experimentally observed behavior of
granular material in simple shear. However, the accuracy of the
predictions made by Equation 2.40 will depend on the chosen form of
the distribution function, p(‘;). This distribution function may be
very .difficuit to determine for an actual soil sample. Another
shortcoming of this model is that the individual particles within the
sample mass are considered to be rigid. Wilkins (31) has taken a
somewhat different approach to develop a theory for the shear strength
of a granular medium. He used an empirical curve fitting method and
Rowes Equation 2.32 to predict the number of unstable contacts in a
granular assemblage as a function of the stress ratio. According to
this approach, when all the contacts on a grain become unstable, the
grain is no longer considered to contribute to the system and it
effectively becomes a void. When the number of voids not supporting
any stresses is equal in number to the particles which continue to
carry loads, the medium is assumed to fail. Although this attempt is

interesting, it becomes unattractive due to its empirical nature.
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Volume changes and stress-strain relations are neglected in Wilkin's
formulation,

Other contact models have been developed for which the plastic
flow of the bodies in contact was considered to be important. Kakar
and Chaklader (13) have solved this problem for spheres in a variety
of packing configurations. In this model it is assumed that the
particle surfaces which are not in contact remain spherical. They
solved this problem for the case of a simple cubic packing.
Assumptions made were that the volume of the spheres remains constant,
the contacts transmit the load applied to the assembly, and that the
material near the contact is in a state of uniaxial stress. The
material of the contacts was allowed to yield until the stress
developed at the contacts was balanced by the applied pressure. The

relationship that Kakar and Chaklader obtained is
3/2
AV 6P 4p
7'3[“(] 'Z[W”] -1 (2.01)

where Y = a yield parameter.

Equation 2.41 is valid until the contact areas touch thus forming
a new geometry, Ffigure 2.15 shows the results obtained from this
model along with those obtained from a Hertzian contact model for a
simple cubic packing configuration, Figure 2,15 shows that the
yielding model predicts larger strains for a given load than that

obtained from the elastic Hertzian contact model. The actual
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Figure 2.15. -- Results of Plastic Contact Model
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stress-strain curve will likely fall in between those shown since not
all points within a sphere will yield at once. The actual behavior
will be stiffer than that predicted by the complete yielding model
as formulated by Kakar and Chaklader.

Void Deformation Models. One approach to modeling soils has been

to consider the soil as a mass composed of a matrix material and
voids. The deformation resulting from the application of loads to a
material of this type will depend on the materials making up the
matrix and voids, the size and shape of the voids, and the volume
fraction of the voids. A common assumption in using this approach to
model soils is that the voids are either spherical or flat in shape.
0'Connel and Budiansky (19) have considered the effect that flat cracks
would have on the moduli of a material. The equation they obtained

for the bulk modulus of such a material is

K oLq o168 (1),

Ko 5 (1= (2.423)

v=\)m[1 Lgd] (2.42b)

d=1 5a’ (2.42¢)
where

K = the bulk modulus of the material,"
d = the crack density, and

a = the crack length.
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The subscript m appearing in Equations 2.42 is used to denote matrix
properties.

Equations 2.42 were developed by considering the cracks to contain
only air, Equations 2.42 indicate that a sufficiently large crack
density would have a considerable effect on the material properties,
while the cracks themselves may be of negligible volume. As the
pressure is increased on such a material, the cracks would close and
their effect would disappear.

Other workers have considered the effects of spherical voids on
material behavior. MacKenzie (16) has determined the effective bulk
modulus for a material represented by a matrix containing spherical
voids. Henceforth the term effective will be used to precede material
properties which are descriptive of the entire mass being considered.
The geometry which MacKenzie considers is shown in Figure 2.16. The
porous material is modeled as a collection of spheres of matrix
material, each containing a spherical void. Under this geometrical
assumption, the problem reduces to that of determining the solution
for one of these composite spheres with a uniform radial pressure
acting on its boundary. The term composite refers to the material
composed of both matrix and voids. The expression MacKenzie obtained

for the effective bulk modulus of such a material is given by

3V
v, m . (2.,43)




Figure 2.16.

Spherical Yoid

Matrix Material

-- Geometry Used in Spherical Void Models.
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where

G = the shear modulus and the subscript m is used to denote

properties of the matrix material.

Equation 2.43 was developed under the assumption that air was
contained in the voids. Hashin (10,11) has determined upper and lower
bounds for the effective bulk and shear moduli of an elastic matrix
material which contains spherical inclusions of another elastic
material. The geometry that is considered is that shown in Figure
2.16. The upper and lower bounds were determined from the theorems of
minimum potential energy and minimum Complementary energy. The upper
and lower bounds that were determined for the effective bulk modulus
coincided. This result is given by

K=K+(K—Km)(4Gm+3Km)CC .
m aﬁm+3Kp+3(Km—KD)p (2.44)

where Cp = the volume fraction of the inclusions and the subscript p
is used to denote properties of the inclusions.

The upper and Tower bounds which Hashin obtained for the effective
shear modulus were not equal. However, the expression for the
effective shear modulus can be regarded as a good approximation
whenever the bounds are close together. The expression is

15 (1 - vp) Gy (6, - Gy) ©
6= 7o, T 28 - 5o (6, - G Cfl S (2.85)
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The bounds determined by Hashin have found success in approximating
the effective elastic moduli of composite materials. As seen in these
results, the effect of a material other than air present within the
voids may be accounted for.

Some spherical void models have been developed which account for
the plastic yielding of the matrix material. Torre (29) has developed

such a model. The result which he obtained is

P =2 10g, (ﬁT) (2.46)

where

v 4
we L (2.47)

m

Y = the yield stress of the matrix material.

A problem with Equation 2.46 is that the matrix material is
considered to be fully plastic. A model should be able to describe
elastic as well as plastic phases, which occur for both loading and
unloading. A step toward including both elastic and plastic phases is
to prescribe a work-hardening rule for the matrix material. Chadwick
(6) has developed such a model. Certain essential parts of this model
remain in integral form making it difficult to use. Carrol and Holt
(5) as well as Chu and Hashin (7) have taken a different approach

which simplifies the results. Considering the same spherical pore



geometry, they derive the pressure-volume relationship for the
composite material by temporarily assuming that the matrix material is
incumpressib{e. Carrol and Holt then go on to use an empirical
relationship to describe the pressure volume relationship for the
matrix material, The empirical relationship for the matrix material
is that given by Equation 2.2. The results Carrol and Holt obtain for
the pressure-volume relationship of a mass composed of an ideally

elastic-plastic matrix material containing voids is given by

4G, (g -
P = j—)_am o(t ‘3 T a) s (a0> o> q]) (2.48a)
26 26 a 26 (o -a)
0 5
P=—+ ¥ - —I04 Tog, [Tma- o @ o) (2.480)
p =2 109, (%) s (o> a2 1) : (2.48¢)
v
mo
o = (2.484)
0 VI11
_ B oy
M Ty (2.48e)

S T, FY (2.487)
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(2.48g)
where Vpo = the initial volume of the matrix material.

There are two problems associated with using Equations 2.48 to
represent soil behavior. First, the parameters obtained by using
Equations 2.42 to describe the pressure-volume relationship of the
matrix material have very little to do with the actual behavior of the
soils grains. Second, soils exhibit a pronounced reverse yielding
during unloading which is not predicted by Equations 2.48. Bhatt, et
al. (2) attempted to remove these difficulties by making the matrix a
Mohr-Coulomb material. The yield criterion for the matrix material is

given by

(1+D)0]-03—Y=0 (2.49)
where D = a constant.,

Using the yield criterion given by Equation 2.49, the results

obtained by Bhatt, et al. are given bj

n (% -a) , (85> @> a) (2.50a)

b= 3afo -
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3
a6, (o - Ot){Ot [ %, (o) - u)] T3 s 1}

RO Y-
( 20
26 (o, -a) 20 +3
+ % mV (oco- - ]] s {og> o> o)
' (2.50b)
£ ( 1)
Y o 3 - 'I] > o>
p = T
o (2.500)
w - ZGm % 4 ¥
VR Y (2.50d)
The parameter o is determined from the equation below.
20
1+ =
%y (a5 - ap) - %2 3 (2.51)
’m - [u’z_—'l'] )

Defining the value of o when unloading is initiated as o*, the
following relationships hold when unloading takes place in the fully

plastic state,

(2.52a)
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@ (2.52b)
El
R P S - «
ey [(E) + oy @ ] (2.52c)

Equations 2,52 must be solved numerically to obtain the
pressure-volume relationship during unloading. There was good
agreement between Bhatt's model and experimental results. Some
problems with the model just described have been recognized. The
predicted higﬁ pressure compressibility is often too Tow and low
pressure behavior is not adequately represented. Schatz, et al. (25)
has modified Bhatt's model to allow for the curvature of the
Mohr-Coulomb failure surface. The failure criterion which Schatz, et

al. incorporates into Bhatt's model is

9173 7 e * (o - Yo) exp (og/ay) (2.53)
where gy1¢ = the ultimate strength of the matrix material, and

Yo = the yield stress for a 01=0 condition.

Another modification which Schatz, et al. incorporated into Bhatt's
model was to include the effect of flat cracks on the bulk modulus of
the matrix material, This modification of the bulk modulus is given

by
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K P
K .- [1 - ] P <p (2.54a)
Km Fa 4 cl
K=Ky P>Py (2.54b)
where
D = a constant, and

Pc1 = pressure required for complete crack closure.

The modification given in Equation 2.54 has the effect of dividing the
voids into two populations. These being spherical voids which deform
according to Equation 2.53, and flat cracks which deform according to
Equations 2,54, The modifications just described have served to
improve the predictions made by Bhatt's model. One problem with
Bhatt's and Schatz's models are that neither allows for a distribution
of pore sizes. An approach to account for the pore size variation in
an actual material is to start with the ideally plastic spherical pore
model and then allow for each sphere to have a different porosity,
with the requirement that the total porosity be equal to that of the
material being modeled. Kreher and Schopt (15) have developed such a
model which considers only an ideally plastic matrix material. Their

results for the pressure volume relationship of one pore is given by
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where
Vp = the current pore volume, and

Vpy = the initial pore volume.

The overbars in Equations 2.55 denote averages taken over the entire
volume of material being considered. The pressure-volume relationship
for the entire material is determined by evaluating Equations 2.55 for
all pores present in the material. A problem which is apparent for
this model is the determination of the pore size distribution.

Other spherical void deformation models have been developed;
however, it would be too lengthy to give a description of all of these
models here. The models thus far described in this section are

representative of the work which has been done in this area.

SUMMARY OF SOILS MODELS

The soil models reviewed in the previous sections, with few
exceptions, have only considered the pores within the soil mass to
contain air. The modification of many of these models to represent
saturated soil conditions is straightforward through the effective

stress principle. However, many situations exist when the soil is
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partly saturated. This condition presents a problem due to the
complexity of having an air-water mixture present in the pores. One
problem is that, as the pressure is increased, some of the air will be
driven into solution. Due to this and the compressibility of the air
phase, it is difficult to predict the pore pressure resulting from the
application of a load. If the pore pressures could be predicted, the
principle of effective stress could be used to model the partly
saturated system.

Phenomenological models have been used a great deal to model soil
behavior. It would seem that empirical models obtained from curve
fitting methods are undesirable for use as a constitutive model
representing soil behavior. These models should not be expected to
yield reasonable results when used to represent conditions which
deviate greatly from those by which the model was calibrated. They
also provide no understanding as to the actual deformation mechanisms
acting within the soil mass. Elastic models are poor representations
of soil behavior primarily due to their inability to predict unloading
behavior. Elastic-plastic models have been used a great deal and
provide reasonable results for many situations. While these models
may work well, they often require a great many parameters and may be
difficult to use in practice. There has been little work using
viscoelastic models for soils.

Micromechanical models attempt to derive constitutive laws from
observing the actual mechanisms causing deformation of the

microstructure. These models are favorable because of this reason.
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As these deformation mechanisms are more fully understood, a better

understanding of the complex behavior of soils will be achieved.
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CHAPTER I11
MICROMECHANICAL MODEL FOR AN ELASTIC SOIL SYSTEM
MODELING APPROACH

A model to be used to represent the load-deformation behavior of a
partly saturated soil, will be presented. The model views the soil as
an assemblage of soil particles in contact. The soil particles are
surrounded by an air-water mixture. The model views the soil
particles and the air-water mixture as two different elastic phases.
A micromechanical approach is used to derive constitutive equations
describing the load deformation behavior of the two phase system. The
micromechanical approach seeks to derive constitutive laws by
observing the actual deformation mechanisums acting on a small
representative volume of the material. The representative volume is
chosen as the smallest volume of material which exhibits the
load-deformation behavior of the material as a whole. If a sample
volume, larger than the representative volume is considered, the
load-deformation behavior of this volume will be the same as that for
the representative volume. The material as a whole will contain of a
large number of samples of representative volume size. Macroscopic
quantities referenced to a representative volume are those which are
observable on the size scale of the experiment. These macroscopic
quantities will be assumed to be spacewise constant within the
representative volume, If gradient fields are present in the sample

as a whole, it is reasonable to assume that these fields are spacewise



constant within the representative volume, provided this volume is
very small in comparison to the sample volume. Microscopic quantities
referenced to a representative volume are those present in the

di fferent phases contained in this volume. These microscopic
quantities may vary appreciably between the different phases contained
in the representative volume. The macroscopic quantities referenced
to a representative volume, will be viewed as volume averages of the
microscopic quantities present in this volume. These ideas will be
used to develop consitutive equations describing the load-deformation
behavior of a two phase elastic system.

The laws of thermodynamics provide a means of determining
constitutive equations to describe the load-deformation behavior of a
representative volume of a two phase elastic system, These
constitutive equations will be determined in terms of the actual
lToad-deformation behavior of the elastic phases. Use of
thermodynamics will also provide a means of properly handiing the
nonlinearities arising from the load-displacement behavior of

particles in contact.

MODEL GEOMETRY AND MATERIALS

The elastic soil system will be modeled as a two phase elastic
material. It will be assumed that both phases of the system are
homogeneous, linear elastic materials. The two phases will have

different material properties.
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The soil particles wﬁ] be represented as a collection of spheres
of equal radii, in contact. A1l spheres will have the same material
properties and constitute one phase of the system. This phase will be
referred to as the particulate phase. The position of the spheres
relative to one another will be restricted so that they are arranged
in ideal packing configurations. The four ideal packing configurations
to be considered are cubic, orthorhombic, tetrogonal-spheroidal, and
rhombohedral. These packing configurations appear in Figure 3.1
through Figure 3.4,

The air-water mixture will be represented by another elastic phase
with different material properties than that of the particulate phase.
This phase will be contained in the void space around the spheres and
will be referred to as the mixture phase, Only changes in the mean
stress of the mixture phase will be considered. This represents a
pressure change which might occur in an air-water mixture contained in
the voids of an actual soil mass. Micromechanics will be used to
determine the pressure-volume relationship of the air-water mixture.
The model used to represent the soil is shown in Figure 3.5.

The representative volume of the elastic soil system is taken to
be the smallest volume which exhibits the load-deformation behavior of
the system as a whole. As a result of the assumed geometry, the
representative volume is a single sphere surrounded by a proportionate
volume of the elastic mixture material. Due to the restriction that
the spheres in the system are arranged in ideal packing
configurations, each sphere will experience the same number of

contacts with adjacent spheres. Each sphere will also be surrounded by



Figure 3.1 -- Simple Cubic Packing Configuration.
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Figure 3.2 -- Orthorhombic Packing Configuration.
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Figure 3.3 -- Tetragonal - Spheroidal Packing
Configuration.
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Figure 3.4 -- Rhombohedral Packing Configuration.
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Particulate Phase

Mixture Phase

Figure 3.5 -- Elastic Soil System
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an equal amount of the mixture phase. Because of this symmetry, the
load-deformation behavior of a single sphere and its surrounding

- mixture phase will be characteristic of the‘ system as a whole. The
volume fraction of the mixture phase contained in the represeﬁtative
volume will be equal to the volume fraction of the mixture phase

contained in the system as a whole.

THERMODYNAMICS OF ELASTIC SYSTEMS

Constitutive equations describing the load-deformation behavior of
a two phase elastic system will be developed. The constitutive
equations will relate macroscopic quantities in terms of the actual
deformation mechanisms acting on the microscale, and the material
properties of the two different elastic phases. These relationships
will be based on the load-deformation behavior of the representative
volume, which is characteristic of the load deformation behavior of
the system as a whole. The representative volume will constitute a
closed thermodynamic system.

The first and second laws of thermodynamics provide a means of
determining the constitutive equations. The first law of
thermodynamics is stated as follows:

There exists a function of state, Ur, called the internal
energy, with the property that

o o

°
wT + HT = UT {3.1)
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where .
o
Wr = the rate of total work done on the system, and

o
HT = the rate of heat addition to the system.
The

The dot is used to denote derivatives with respect to time.

second law of thermodynamics is stated as follows:
There exist two functions of state, ST, calied the
entropy, and T, called the absolute temperature, with

the property that
(3.2)

o
-
Iv
-5

The second law of thermodynamics given by Equation 3.2, may be written

in a more convenient form by letting the entropy production, ST , be
defined by
(3.3)
Use of Equations 3.2 and 3.3 allows the secend law of thermodynamics

to be stated as
(3.4)

o
2
v
<]

It is Equations 3.1 through 3.4 which are used to derive the

constitutive equations for a two phase elastic system.
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Single Phase Elastic System

The first and second laws of thermodynamics, stated by Equations
3.1 through 3.4, will be applied to a closed system containing a
single elastic phase. This will provide information useful in the
development of the constitutive equations describing the
load-deformation behavior of thev two phase elastic system.

Elastic materials are known to undergo reversible processes. A
reversible process is one which at any time during the process, the
system and the surrounding environment may be returned to their
initial states. This will require that the entropy production given
by Equation 3.3, equal zero. In reality, the reversible process is an
idealization which can never be realized by experiment. However, it
can be approximated very closely in some cases. Elastic materials
undergo processes which are very closely approximated by reversible
processes.

The approach taken in using the first and second laws of
thermodynamics to determine constitutive relationships for an elastic
material is like that of the inverse method of elasticity theory.
Constitutive assumptions are-made concerning the independent and
dependent variables and then checked to see if the desired solution is
obtained. For an elastic material it is desired to check if the
constitutive assumptions result in a entropy production equal to zero.

For the single phase elastic material under consideration, it will

be assumed that the independent variables are the absolute



temperature, T, and the strain tensor, eij' The constitutive

assumptions are

U= U(eij, T (3.5)
S =slegp T (3.6)
9 = O (Eij’ T) (3.7)

where
U = the internal energy per unit initial volume,
S = the entropy per unit initial volume, and
cij = the components of the stress tensor.
It is further assumed that these quantities are spacewise constant
within the system. The first and second laws of thermodynamics may be

written on a per unit initial volume basis. In this form the first law

is given by
o o o
W+H=U (3.8}

and the second law is given by

s >0 (3.9)
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where
° o o
$'=S-H (3.10)
T
and
:( = the rate of work per unit initial volume done on the system,

and
l?i = the rate of heat addition per unit initial volume.
It will be assumed that only mechanical work is done on the system and
that inertial forces are negligible. The rate of work per unit

initial volume, done on the system is

Wo=os ey (3.11)

o
o
o

TSV =TS - U + o.. o.. (3.12)
The Helmholtz free energy per unit initial volume, F, is defined by
F=U-Ts (3.13)

According to Equations 3.5 and 3.6, the Helmholtz free energy per unit

initial volume is of the form

FeFleg, N (3.14)



Equations 3.12, 3.13 and 3.14 may be combined to yield

T afo,. -E 38 cgs+ 1T

37 ey 4 Bl (3.15)
Equation 3,15 can be used to determine constitutive relationships for
the thermodynamic system characterized by Equations 3.5, 3.6, and 3.7.
Consider a process where % > 0 and g'ij =0 for all 1 and j. Combining

Equations 3.9 and 3.15 for this process yields
F.
-5+ 850 (3.16)

° o
As a second process, consider the case where T < 0 and eij= 0 for all

i and j. Combining Equations 3.9 and 3.15 yields
3F
o8 .17
[s + BT] >0 (3.17)

In order for Equations 3.16 and 3.17 to both be satisfied, the

following condition must hold.
(3.18)

Other special processes can be considered in which T-0 and the
components of the strain rate tensor, 2”, are varied one at a time.
Consideration of these processes by Equations 3.9 and 3.15 will show

that the following conditions must hold.
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9% = E- (3.19)
Combining Equations 3.15, 3.18, and 3.19 yields the following

expression for the entropy production rate per unit initial volume.
st = 0 (3.20)

Equation 3.20 is true for all processes involving the independent
variables of the absolute temperature, T, and the strain tensor, Eij'
Processes which obey Equation 3.20 are reversible. As stated
previously, elastic materials undergo reversible processes.
Therefore, the constitutive assumptions given by Equations 3.5, 3.6,
and 3.7 are valid for an elastic material.

The components of the compliance tensor give the change in a
companent of the stress tensor due to a unit change in a component of

the strain tensor. The compliance tensor is defined as

Coopq = a—nu (3.21)
ikl 3,
where

Cijk1 = the components of the compliance tensor.
As a result of the constitutive assumption given in Equation 3.7, the
compliance tensor will be a function of the absolute temperature, T,
and the strain tensor, Eij' The use of Equation 3.19 in Eqﬁation 3.21

gives the following alternate expression for the compliance tensor.
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o%F (3.22)

Cija1 = o

The entropy, stress tensor, and compliance tensor of a single
phase elastic material may be determined by Equations 3.18, 3.19, and
3.22, respectively. These quantities are expressed in terms of the
Helmholtz free energy per unit initial volume, F, the absolute
temperature, T, and the strain tensor, sij' Cases may arise where the
stress tensor is known as an independent variable rather than the
strain tensor. For these cases, expressions for quantities in terms of
the stress tensor are desired. Toward this end, the Complementary

free energy per unit initial volume, F., is defined to be
F =0, 8. -F (3.23)

It is allowed that Equation 3.8 be inverted and solved for the strain
tensor in terms of the absolute temperature, T, and the stress tensor,
aij- This permits the following forms of the internal energy per unit
initial volume, U, the entropy per unit initial volume, S, and the

strain tensor, €55

U=y (crij, T) (3.24)
$=95 (aij, T) (3.25)
€ = & (oij' T) (3.26)
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Equations 3.24, 3.25 and 3.26 are to be viewed as constitutive
assumptions in which the absolute temperature, T, and the stress
tensor, c’ij' have been chosen as the independent variables. In view
of Equation 3.14, the Complementary free energy per unit initial

volume is of the form

Fo = Fe (og50 T) (3.27)
Combining Equations 3.12, 3.13, and 3.23 yields

TS' = F - 0.:.¢e.: - TS (3.28)

Due to the form of the Complementary free energy given by Equatiocn

3.27, Equation 3.28 may be rewritten as

o aFc ° aFC °

¢ = - -
TS [acij el oy *bgr -1 T (3.29)
By considering special processes similar to those already mentioned,
it can be shown that Equation 3.29 is satisfied for all processes when

the following two conditions are true.

oF

= C
S =3¢ (3.30)

= £ (3.31)



Substitution of Equations 3.30 and 3.31 into Equation 3.29 results in

the following

(3.32)

wo
"
o

For the constitutive assumptions given by Equations 3.24, 3.25, and
3.26, it was determined that the entropy production per unit initial
volume is zero. Therefore, these assumptions are valid for an elastic
material.

The components of the stiffness tensor give the change in a
component of the strain tensor, due to a unit change in a component of
the stress tensor. The stiffness tensor is defined to be

e, .
Sk T ﬁ (3.33)
where

Sijk1 = the components of the stiffness tensor.

In accordance with Equation 3.26, the stiffness tensor will be a
function of the absolute temperature, T, and the stress tensor, Uij'
Combining Equations 3.31 and 3.33 given the following alternate

expression for the stiffness tensor.

BZF

Siiq = O (3.34)
ijkt aﬂijackl
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The results have shown that for an elastic material, for which the
absotute temperature and strain tensor are known, the entropy, stress
tensor, and compliance tensor may be determined when the Helmholtz
free energy is known. Similarly, for an elastic material for which
the absolute temperature and the stress tensor are known, the entropy,
strain tensor, and stiffness tensor may be determined when the
Complement;ry free energy is known. The Helmholtz free energy and the
Complementary free energy will be determined for an initially
unstrained and unstressed elastic material under isothermal
conditions.

The Helmholtz free energy will be considered first, According to

Equation 3.19, the following may be obtained

t t
aF ° T =

/ag. g5 9t / o5 ey O (3.35)

0 [+]

t = the dummy variable of integration.

Under isothermal conditions, Equation 3.14 may be used to obtain

A
= c.. (3.36)
61‘] 1]

Substitution of Equation 3.36 into Equation 3,35, and integration of

the left hand side of the equation yields

t
F(t) - F(O) = / s Zij dt (3.37)
o



For an elastic body initially unstrained and unstressed the initial
value of the Helmholtz free energy per unit volume, F(0), is equal to
zero. Therefore, for these conditions Equation 3,37 becomes
t
° —
F(t) = f % €45 dt (3.38)
0
The result given by Equation 3.38 is that for an initially unstrained
and unstressed elastic material under isothermal conditicns, the
Helmholtz free energy per unit volume is equal to the total mechanical
work input to the elastic system.
The Complementary free energy for the conditions previously stated
may be determined in a similar manner. According to Equation 3.31,

the following may be obtained

t
F 0 - o =
. e s dE
s Ot de / %3 i (3.39)
ij
0 Q

F o=ty (3.40)

Substitution of Equation 3.40 into Equation 3.39 and integration of

the left hand side of the equation gives
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t
Fc(t) - FC(U) =f 9%i Sij at . (3.41)
0

For an initially unstrained and unstressed elastic material, the
initial value of the complementary free energy per unit initial

volume, Fc(0), is equal to zero. Therefore, Equation 3.41 becomes

t
°
Flt) =f oigey € (3.42)

[
The right hand side of Equation 3.42 is called the Complementary work.
As seen by Equation 3.42, for an initially unstrained or unstressed
elastic material under isothermal conditions, the Complementary free
energy per unit initial volume is equal to the total Complementary
work input to the system.

If the material is linear elastic, the components of the
compliance tensor, Cjjk1, and the stiffness tensor, Sijky, are
constants. For this case it is easy to verify that the Helmholtz free
energy per unit initial volume given by Equation 3.38, and the
Complimentary free energy per unit initial volume given by Equation

3.42, are equal.

Two Phase Elastic System
The results of the previous subsection will be used to determine
relationships for a two phase elastic system. The system to be

considered will consist of a representative volume of a two phase
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elastic material. The system is shown in Figure 3.6. The
representative volume will constitute a closed system.

In dealing with the two phase system, effective or average values
of quantities will be expressed in terms of the actual values of these
quantities occurring in the two different elastic phases. These
effective quantities are to be viewed as those which would be
observable on the size scale of the experiment. When the
representative volume is small in comparison to the size scale of the
experiment, effective quantities will appear spacewise constant
throughout the volume. As an example of effective quantities consider
a soil sample subjected to a triaxial test. If a small representative
volume of the soil sample was examined, the experimentally observable
stresses would appear constant throughout the volume. In the present
terminology, the experimentally observable stress field would be the
effective stress field. If the representative volume was viewed on
the microscale, the stress field would be seen to vary throughout the
different phases comprising the sample. It will be shown that under
specific conditions, the effective quantities may be viewed as average
values of these quantities, taken over the representative volume. In
the work to follow, effective quantities for the representative volume
will be denoted by an overbar.

To develop relationships for the two phase elastic system, the
effective strain tensor, ?, and the absolute temperature, T, will
first be chosen as the independent variables. It is assumed that no

temperature gradients exist in-the system. The effective quantities
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will be assumed to be spacewise constant throughout the system. The

constitutive assumptions are

o — (3.43)
U=0(; N
< — 3.44
$:365. D (3.44)
S =5 e D (3.45)
where
T = the effective internal energy per unit initial volume,

S = the effective entropy per unit initial volume, and
Uij
The constitutive assumptions given by Equations 3.43, 3.44, and 3.45

= the effective stress tensor.

"are of the same form as those given by Equations 3.5, 3.6, and 3.7.
The system under consideration is elastic. The results of the previous
subsection may be applied to the system to yield constitutive
relationships for the effective quantities. The relationships which

are of interest are

aF
3--% (3.46)
R a;F (3.47)
13
2%F (3.48)
13k1
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where
F = the effective Helmholtz free energy per unit initial volume,
and

cijkl = the effective compliance tensor.

It is desired to relate these effective quantities for the
representative volume to the phase quantities. The two phases are

elastic. The constitutive relationships for each phase are

U=U(e5 T (3.49)

§=5 (Eij' T)
(3.50)

%1 = o (55 T)

(3.51)
where
U = the internal energy per unit initial volume for either
phase,
S = the entropy per unit initial volume for either phase,
ij = the stress tensor for either phase, and
ij T the strain tensor for either phase.
It will be assumed th;t the strain tensor for each phase, E].j, is
expressible as
(3.52)

G ECTIRY
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Expressions for the effective quantities appearing in Equations 3.46
to 3.48 may be obtained through a balance of the total internal energy

of the system. The internal energy balance is given by

W=Tv+0, Y

(3.53)
where 1
T = V" f udv as)
Vi *
g, = ! ] udv
2 V; (3.55)
V2

and U = the effective internal energy per unit initial volume,
Yy = the initial volume of the system,
¥y = the initial volume of phase 1,
V2 = the initial volume of phase 2, and
U = the internal energy per unit initial volume.
Equation 3.53 relates the total internal energy of the two phase
system expressed in terms of the effective internal energy, to the
same expressed in terms of the internal energies of the two phases.

Solving Equation 3,53 for § yields

T=¢ 0 +C 0, (3.56)
where
v (3.57)
co= L
177
V2 (3.58)
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The quantities Cy and Cp appearing in Equations 3.57 and 3.58 are the
initial volume fractions of phases 1 and 2, respectively. The

Helmholtz free energy per unit initial volume for phase n (n = 1,2) is

given by
=0, -T5, (3.59)
where
1
’5,.’\7; [ S, dv ) (3.60)
Ya

and §n = the entropy per unit initial volume for phase n.
Combining Equations 3.56 and 3.59 with Equations 3.12 and 3.20 written

in terms of effective quantities yields

o _ o o o ° o
TS + TR [Fy + TS + 151 - ¢, [F, +

Ts, + 18,1 =0 (3.61)
According to Equations 3.49, 3,50, and 3.52, the Helmholtz free energy
per unit initial volume for phase n {n = 1,2) is expressible as
Fn = Fn (q, T) (3.62)
Substitution of Equation 3.62 into Equation 3.61 while applying the

condition given by Equation 3.18 to the entropies of the two phases

yields
aF al-'2 o o °
Cutag Teglwrboan-
ij 1 (3.63)
€, 551T1=0

Special processes may now be considered to determine relationships

between effective and phase quantities. As a special process consider
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the case where cij=0 for all i and j. For this process, Equation
3.63 yields the condition

° ° °

5.5 -6%0 (3.64)

In view of Equation 3.64, the following condition must be true for

Equation 3.63 to be satisfied for all processes.

o..=0C, — —£
o ¥ 2 5, (3.65)

Equation 3.65 relates the effective stress tensor to the Helmholtz
free energies per unit initial volume of the two phases, and the
effective strain tensor. Equations 3.47 and 3.65 may be used to
determine the relationship between the effective and phase, Helmholtz
free energies per unit initial volume. This relationship is

?:C] A ?2 (3.66)
Equation 3.66 states that the effective Helmholtz free energy per unit
initial volume is equal to an average of this quantity taken over the
representative volume. The same type of relationship may be obtained
for S by integrating Equation 3.64 with respect to time. The
relationship between the effective entropy per unit initial volume,
and the phase entropies per unit initial volumes is

= (3.67)
5= 51 + ¢, '52



The forms of the effective quantities, T and -S_, given by Equations
3.66 and 3.67 might have been defined as such from the assumption that
the effective quantities are spacewise constant throughout the system.
However, Equations 3.66 and 3.67 were arrived at through an energy
equivalence and the assumption that no temperature gradients existed
in the system as a whole. The resulting relationships given by
Equations 3.66 and 3.67, correspond to the rule of mixtures. The
effective compliance of the system, E\'jkl’ may be determined from
Equations 3.48 and 3.66, Substitution of Equation 3.66 into Equation

3.48 yields the following expression for the effective compliance.
2= 2=

_ aF, . a°F,

C.. =C —_— —_—

ijkl 1 - = 2 = 3.68
Bsijae” aeijask] ( )

Relationships for effective quantities have been determined for

the case when the effective strain tensor, Eij’ and the absolute
temperature T, are the independent variables. Cases will arise when
the effective stress tensor, Eij’ is the independent variable rather

:+ Assuming that Equation 3.45

than the effective strain tensor, E].J

may be inverted to express 51.3. in terms of Eij’ Equations 3.43, 3.44

and 3.45 may be rewritten as
U=1 (o, T (3.69)

ERRRCHIRE (3.70)
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B = G (g T (3.71)
The constitutive assumptions given by Equations 3.69, 3.70, and 3.71
are of the same form as those given by Equations 3,24, 3.25 and 3.26.
The relationships determined for the constitutive assumptions given by
Equations 3.24, 3.25, and 3.26 will apply to the two phase elastic

system under consideration. The relationships which are of interest

are
oF
S5 (.72)
aT -
F
(3.73)
_ 3°F
S, = —CE— (3.74)
ijKkl = —
301.j Bok-l
where

Fc = the effective Complementary free energy per unit initial
volume and,
Sijk1 = the effective compliance tensor.

The relationship between F; and F is given by

=.F ’ (3.75)

Fe = %5 &

c ij

3 and the absolute temperature, T,

chosen as the independent variables, the constitutive assumptions for

For the effective stress tensor, 31

each phase of the system are

U=y (cij, T) (3.76)

wn

=S (oij’ T (3.77)
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= g (035, T) (3.78)

It is further assumed that the stress tensor for each phase is
expressible as

o = % (G55 T (3.79)

The Complementary free energy per unit initial volume for phase n of

the system is given by

= (g.: €..) - 3.80
rcn (oij eij)n Fn ( )
where .
(0..€.:) =L g.. €., dV
1713 v i3 iy (3.81)
v
n
and

Fep = the Complementary free energy per unit initial volume for

phase n,
oij = the stress tensor, and
eij = the strain tensor,

Substitution of Equation 3.80 into Equation 3.61 yields

v.o. T Foo-T5 - 1%
- %4 ij +C1 [ ol —TS] -TS]] +

wile

o e
Gl -T5 -T50=0 (3.82)

By virtue of Equations 3.62, 3,78, 3.79, and 3.80, the Complementary

free energy per unit initial volume for phase n is of the form
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Fon ™ Fen G50 D (3.83)

Use of Equation 3.83 in Equation 3.82 yields
oF

£ % - cl
B - 8T ;- ==L
. 3G -
_ ij
Ty e
¢, aTT] 90 (3.84)

UiJ

where the condition given by Equation 3.30 has been applied to both
phases of the system. By virtue of Equation 3.64, for Equation 3.84
to be satisfied for all processes, the following coridition must be

true.

30, . 39, (3.85)

An alternate expression for the effective strain tensor is given by
fquation 3.73. Substitution of Equation 3,73 in Equation 3.85 wil
yield the following relationship.

FooCFa+ Ty (3.86)
Equation 3.86 shows that the effective Complementary free energy for
the system is equal to an average value of this quantity taken over
the volume of the system. Substitution of Equation 3,86 into Equation
3.74 yields the following expression for the effective stiffness of

the system.
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2= 25
. Fa L. fe

C
5ij 1 5. .95, 2 3., % 3.87
ijkd 30, {39y 305 39 ( )

Expressions have been obtained for effezgtive quantities of a two
phase elastic system with a spacewise constant temperature, Tﬁese
quantities are expressed in terms of the Helmhotz and Complementary
free energies of the two elastic phases, and their initial volume
fractions. Evaluation of the effective quantities also requires that
the relationships given by Equations 3.52 and 3.78 be known. The
evaluation of the effective quantities is simplified when the two
phases are homogeneous linear elastic materials and the system
undergoes only isothermal processes. If the system is initially
unstrained or unstressed, the Helmholtz and Complementary free
energies per unit initial volume for phase n are given by
(3.88)

Fo=Fop = 72 (o35 c‘-j)n

This simplification will be used to evaluate the effective quantities

for the elastic soil system.

CONSTITUTIVE EQUATIQNS FOR ELASTIC SOIL SYSTEM

Constitutive equations describing the lToad-deformation behavior of
the idealized elastic soil system will be developed. The system
consists of a particulate phase modeled by equal spheres in contact,

and a mixture phase representing an air-water mixture. The elastic
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s0il system is shown in Figure 3.5. In the work to follow both phases
of the system will be modeled by homogeneous, linear elastic
materials. It will further be assumed that the temperature is
spacewise constant in the system and the system undergoes only
isothermal processes.

The results provided by the thermodynamics of the previous section
can be used to relate macroscopic quantities for the two phase elastic
soil system, to the phase quantities. In the development of these
re'lavtionships, a representative volume of the two phase system is
considered. For the elastic soil system, the representative volume
consists of a single sphere surrounded by a volume of the air-water
mixture. The representative volume of the elastic soil system is
shown in Figure 3.7. The macroscopic quantities which are of interest
are the effective stress, effective strain, effective compliance, and
effective stiffness tensors. The results of the previous section

provide the following expressions for these quantities.

oF, oF
G, =C —+c O 3.89)
ij [ m .= (
aeij 35‘-J~
aF aF
- cp cm
i3 %= th = (3.90)
301.j acij
2 2
a°F a°F
T =C — P s —®
WK e s, ™ aE . ae (3.91)
1i%K 1%
2 2F
= — P _cm
Sigm=¢ +¢ (3.92)

P 5T .3c m o= aE
aeijaek'l 3eijack]



Particulate
Phase

Mixture
Phase

Figure 3.7 -- Representative Volume for Elastic Soil System.
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In Equations 3.8% through 3.92, the subscript p has been used to
denote the particulate phase represented by the equal spheres and the
subscript m is used to denote the phase representing the air-water
mixture. In order to evaluate Equations 3.89 through 3.92, it is
necessary to evaluate the Helmholtz and Complementary free energies
for the particulate and mixture phases, Since both phases are being
madeled as homogeneous, linear elastic materials and the system
undergoes only isothermal processes, Equation 3.88 can be used to
evaluate the Helmholtz and Complementary free energies for the phases.

Equation 3.88 yields

Fp = Fw =4 (cijeij)p (3.93)
[ Fom = 4 (aijc-ij)m (3.90)
where
21 (3.95)
©Fisde T Y, J R
)

_1 (3.96)
(on i m V; / aij:ﬁdv
V

and Vp = the initial volume of the particulate phase contained in
the representative volume, and
Vp = the initial volume of the mixture phase contained in the

representative volume.
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The quantities expressed by Equations 3.93 and 3.94 are the strain
energy densities of the particulate and mixture phases, respectively,
To evaluate these expressions it will be necessary to relate these
50 o° the
effective strain _tensor, Eij‘ In the work to follow it will be
assumed that these relationships are known and Equations 3.93 through

quantities to either the effective stress tensor, o

3.96 may be evaluated. In a later subsection the relationship between
the effective stress or strain tensors and the strain energy density

of the phases will be evaluated.

Strain Energy Density of the Particulate Phase

The strain energy density of the pa‘rticulate phase as well as the
derivatives of this quantity required to determine the effective
quantities of interest, will be determined. As previously mentioned,
the particulate phase of the system consists of spheres of equal
radii, arranged in ideal packing configurations. A1l spheres in the
system will be modeled by isotropic, homogeneous, linear elastic
materials. All spheres will be of the same material type.

Due to the symmetry of the idealized elastic soil system, the
representative volume consists of a single sphere surrounded by a
specific amount of the material modeling the air-water mixture.
Therefore the strain energy density of a single sphere is required.
Calculation of the strain energy density requires an elastic solution

for the displacement and stress fields occurring in the sphere due to
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applied surface tractions or surface displacements. Sternberg,
Eubanks, and Sadowsky (27) determined the solution for a sphere with
torsion-free rotational symmetry about the x3-axis, in the absence of
body forces. The sphere is shown in Figure 3.8. Also appearing in
Figure 3.8 is the spherical coordinate system, (21, 22, 23) to which
the solution is referenced, This solution will allow the evaluation
of a number of important types of interactions between neighboring
spheres and the mixture phase. The types of interactions to be
considered are

1. A uniform pressure applied to the surface of the sphere by

the mixture phase.

2. The contact between neighboring spheres.

3. The mixture phase acting as a binder between neighboring

spheres.
These types of interactions will result in known surface tractions on
a sphere. The relationship between these surface tractions and the
effective stress tensor or the effective strain tensor is yet to be
determined. For the present, it will be assumed that these
relationships are known.

The solution for a weightless, homogeneous, linear elastic spherer
subject to torsion free symmetric surface tractions about the x3-axis
will be presented in a form convenient for use. The solution for the
stress tensor, szj’ and the strain tensor, s;j, referred to the

spﬁer'ical coordinates, (21, 23, 23), is given by

_ O = 2n-2 o 2n
oy =K [£=] T PR L O Y IV b-2n2

[B(-JEn-ZJij] {3.97)



K% 2n-2 € b 2n
L= ot
€T 8 [ﬁﬂ ¥ a»Zn-l[‘\-Zn-'I]u E=D ¥ p-2n-2
€
(85027453 (3.98)
where
2
w= EL (3.99)
o o _ .
and [Am]’ij’[Bm]ij = component stress solutions,
¢ €155 o . X
[Am]ij’{Bm]” component strain solutions,

am’bm = coefficients of superposition,
G = the shear modulus,
K = a constant determined from the surface
tractions, and
R = the radius of the sphere.

The component stress solutions are given by
4
(Rlpqdyy = 2n(2n-1) pyp (3.100a)

A%, .1,, =P, -2n{2n-1) P
-2n-1 2? 2n-1 ) 2n (3.100b)

g - '
(A o013 = Pony (3.100¢)



(A%, 11;, = -(2n-1)sin(z,)P"
on-1912 (2n 1)51n(zz)P 20

o
[A-Zn-l]23 =0

a
(A on1lyy = 0

o
(8 50001y = ~(2n-1)[(2n+1)(2n-2)-201P,

o - 2 '
[8%,,_51p = (2nt1)(4n £10n-7420)P, -(20¥5-40)P 50y

(89, o133 = (20+5-4u}P "5 L0 ~(4nt3)(2n41)(1-201Py,

a
[8%n.21y7 = (4nZan-142v)sin(z )0t 5

5 -
[8%0-213 = 0

(3.1004)

(3.100e)

(3.100f)

(3.1009)

(3.100h)

(3.1001)

(3.1003)

(3.100k)



dp
pr = .
m Elcos(zzﬂ
where
v = Poisson's ratio, and

Pm = Legendre polynominals of order m.
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(3.1001)

In Equations 3.100, the argument of Pm is cos (22) and P'm is given by

o .
(8302131 = ©

(3.101)

The component stress solutions, [A%]ij and [B;]ij, are symmetric

giving the condition

(Al = (ARl
(el = (Blys

The component strain solutions are

€ = -
“-Zn—llll = a(2n-1)Py,

(A gnlap = 1/2LP g q-2n(2n-1)P50)

€ = p!
[A—Zn-1]33 12 Plann

(3.102a)

(3.102b)

{3.103a)

(3.103b)

(3.103¢)



[A 5, ]p = -1/2(2n-T)sin(zp}P o,

€ =
(A 201323 = 0

€ =
(A 2n-1d3 = 0

[Bon-zjn = '1/2(2"*])2(2H-2+4v)P2n »

€ '
(8550 0)pp = ~V/20(2045-40)P", -

(2n+1)[(2n+])2+ 2(n+1)(3-49)1P, )

(8_5, 5135 = -172[(4n+3) (2n+1)P, -

(2418 3]

(850205 = 1/2[4n(n+1)-142v]sin(

€
(8 2n-21p3 = 0

zz)P'Zn

(3.103d)

(3.103e)

(3.103f)

(3.103g)

(3.103h)

(3.1031)

(3.1033)

(3.103k)
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€
(B n.2l31 = © (3.1031)
The component strain solutions, [A;]ij and [B;]ij, are symmetric

giving the conditions

tAndis = ARy {3.1042)
085 = (Bodjs (3.104b)

The coefficients of superposition, ap and by, are

(4nP+an-1420)E, +2(2041) (207 -n-1-vdny,

a -
-2n-i 2(20-1)[4n+2n+1+(4n+1 )v] (3.1052)
b £2n*2M2n

202 T ST 2o iiaat Yol

202 HranZiont1+(4nt1)v] (3.105b)

where EZHand N2n are constants determined from the specified surface
tractions. The specified surface tractions for torsion-free

rotational symmetry about the 23-axis are
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o}y [Ricos(z,)] = fqlcos(z,)],

_licos(zz)icos(w-iz). cos(i;)icos(zz)g (3.106a)

oi, [Ricos(z,)] = £ [cos(z,)],

~1zcos(z,)<cos(n-37,), cos(Z;)cos(z,)<1 (3.106b)

The constants, EZn and nzn, which result from the specified surface

tractions are

1

_ (4n+1

g?n'i_ul L fp(u)Py,(u)du,
K <:os(z2

(n=0,1,2,...) (3.107a)

- _E.% f f]Z(u) 1-u2 P'Zn(u)du.
cos(zy)

(n=0,1,2,...) (3.107b)

Equations 3.97 through 3,107 provide an elastic solution for a
weightless sphere subjected to surface tractions of the form given by
Equations 3.106.

The solution thus far given is for a sphere with a single set of

prescribed surface tractions, symmetric about a particular axis. The



109

spheres in the system under consideration will be subject to multiple
sets of surface tractions of the form given by Equations 3.106. This
is due to interactions with neighboring spheres and the mixture phase.
The spheres in the system are linear elastic, and the principle of
superposition may be used to determine the stress and strain fields
due to multiple interactions. To apply the principle of
superposition, all stress and strain fields resulting from a single
interaction must be referenced to a single coordinate system. Toward
this end a global coordinate system (81, €7, 83) will be established.
The solution for the set of surface tractions m, will be referenced to
the spherical coordinate system (ET, z?, a?). The surface tractions
will have rotational symmetry about the x3-axis of the coordinate
system (xT, xg, xg). For a particular set of surface tractions m, the
(21, 2p, 23) coordinates are related to the (xT, xg, xg) coordinates
as indicated in Figure 3.8. The angles Bp and ¥ will define the
(x1, x2, x3) coordinate system in relation to the global coordinate
system as shown in Figure 3.9. The stress and strain fields for the
set of surface tractions m, referenced to the global coordinate

system, (0], 82, 03), are given by

R I | '
(o430 = 3¢y 215 (of1)q (3.108a)
(egg0m = gy a7 (el (3.108b)

where
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X1

Figure 3.8 -- Spherical Coordinate System, (z], 2, 33)

in Relation to Cartesian Coordinate System,
(Xq5 %5 X3).



Figure 3.9 -- Cartesian Coordinate System, (x?, xg, xg),

in Relation to Cartesian Coordinate System
(61, 92, 63).

m
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(°ij)m = the stress tensor due to the set of surface
tractions m, referred to the global coordinate
system, and

(e44)p = the strain tensor due to the set of surface
tractions m, referred to the global coordinate
system.

The quantities ajj are determined by

o = ok < (3.109)

where

sin(z,Mcos(2,")  sin(zMsin(z,™)  coslz,")
[bi?J = cos(zzm)cos(£3m)

- sin(zam) cos(zam) 0 (3.110)

cos(z,"sin(z;™ -sin(zzm)

COSB, COSY, -sing,  sing cosey
m
[cij] = cosg siny, cosy, sing siny,

3.171)
-sing 0 coss,, (

Details of the transformations given by Equations 3.108 through 3.111
are given in Appendix B. With the global stress and strain tensors
for the set of surface tractions m, the total stress and strain
tensors may be determined as

M

%5 = 1 loggdy (3.112a)
m=1 )



n3

m=1 (3.112b)

where

ojj = the total stress tensor,

€{j = the total strain tensor, and

M = the total number of sets of surface tractions.

The strain energy density of a single sphere, subject to M sets of
surface tractions of the form given by Equations 3.106, will not be
determined from Equations 3.93 and 3.95, As previously stated, the
system is initially at rest and undergoes only isothermal processes.
The strain energy density is equal to the Helmholtz Complementary free
energies per unit initial volume. Therefore, according to Equations
3.93, 3.95 and 3.112a, the strain energy density for a sphere in the

system is

M

. 3.113
1 Cigh ﬁﬂ (e55hn &V (3.113)

- .1 |
7 Tiigly W, f
. v
where
?p = the strain energy density of a single sphere,
V. = the initial volume of a single sphere, and

p
M = the total number of sets of surface tractions.
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In Equations (3.113), Tp is used to denote the strain energy
density. It is equal to the Helmholtz free energy per unit initial
volume for the conditions cited. Equation 3.113 may be rewritten

in the following form

T Fp’ (3.114a)
where
. M
. B
e f e (@ig)nless)ndV (3.114b)
Vp
and
Moo
. (3.114¢)
=1 z z
AR f LT (ot
Vp =n

The term ?5 appearing in Equations 3.114 is the sum of the strain
energies per unit initial volume, resulting from each set of

surface tractions. The term ?g appearing in Equations 3.114 is the
sum of the interaction strain energies per unit initial volume. The

interaction strain energies being the strain energy determined for



the stress field from one set of surface tractions acting on the
strain field from another set of surface ‘tractions.

The strain energy density of the particulate phase contained in
the representative volume, has been determined when the surface
tractions are of the form given by Equations 3.106. It will be
required that certain derivatives of Fp be known in order to
determine effective quantities such as the effective stress,
strain, compliance and stiffness tensors, . The derivatives which

will be of interest when the effective strain tensor is known are

m 3 am_i
iP_= _°+—£

N " 3.1
a0 5 ¥, (3.115a)
s 825 © =R 3.115b
B M G
39”36“ aeijaek'l aeijaek]

For this case it is assumed that the relationship between the
specified surface tractions and the effective strain tensor are
known. Equations 3.114 are used to determine the derivatives

appearing in Equations 3.115. These derivatives are

M
b 3(0;.)
p _ 1 z 3
3 Np f {'"” a; = eyl
Pq v 2]

p

3
(04300 (EE) m} dv )
¥ (3.116a)
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“p. zr]

e p
Pq

3pqepq

a2

aqu € rs

Pq~"p
P
3 (EiJ)m
(o450n dv
aep asrs

Bz(ai.)
m=1 n=1 Bepqéers

. M oM
‘,2%;/ Iz {——-—_J—E(eij)n

v
p

, 2ogghn Blegydy | 20350 2E5)

3qu 3eps g aepq

116

(3.116b)

(3.116¢)

(3.116d)



In evaluating the derivatives of the global stress and strain
tensors for surface tractions m, it is recognized that the only
terms appearing the series solutions for these quantities which are
dependent on the effective strain tensor, g,-j, are the constants,
E2n and Ngn. These constants are determined by the surface
tractions and will change with respect to the effective strain
tensor, E‘U' Using the chain rule of differentation and Equations
3.97 through 3.112 yields the following expressions for the

derivatives of (Oij)m and (E-;j)m, which appear in Equations 3.116.

— k=0

Q(Gij)m - ; { a(uu)m B(EZk) a(cu)m 9("Zn)m} (3.117a)
*pq Hepdn.  3q a(”ka g

egydy 3 {a(eu)m e, 2E450n Ay } (3.117b)

a% a(ng)m aepq a(n2k n aepq
2 2
@ ] s 3
? (U\J) . (ui )m (E'dk)
Bepqaers k=0 » a(cZk)m aepqazrs

2
, 23hn gy

a(n2k)m aapqaers {3.117¢}

nz
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3eydn 2y )y

3ng )y a:pqaa

(3.117d)

where

(EZk)"" ("2k)"‘ = the constants determined from the specified

surface tractions for contact number m.

The expressions given i)y Equations 3.117 are evaluated by replacing
the constants (Epi)m and (npy)m, appearing in the series solutions for
("ij)m and (€jj)m, by the proper derivatives of these quantities. The
substitutions in the series solutions to ("ij)rn and (€jj)p, necessary
to evaluate Equations (3.117) are summarized in Table 3.1.

The other case which will arise is that when the effective stress
tensor, Eij, is known. For this case the derivatives of the strain

energy density of the particulate phase, in, which will be required

are

— —0 —i

3 9 am,

. . Ip

a"'lj a"’ij acij (3.118a)
2— 2 2 .
3 1rp . k) 1rpo . 3 wpl

aaijaa“ aoijaa“ acijaa‘d (3.118b)



Table 3.1. Evaluation of Derivatives of the Global Stress and Strain
Tensors with Respect to the Effective Strain Tensor, for
a Single Set of Surface Tractions.

Substitutions into series solutions for
(aﬁ)m and (Eid)m
Replace Replace
(g )m (ngy )m
Derivative by by
oggly g )y By dn
aepq Bepq azpq
a(eij)m ey )y 3y )
Bepq aqu Bqu
2 2 2
3 (Gij)rn 3 (Ezk)m 3 (”Zk)m
Sepqasrs aquaers aepqaers
2 2 2
2 (eij)m ? (Ezk)m 8 (nzk)m
e qaers aapqaers Bepqaers

ng
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To evaluate the derivatives appearing in Equations 3.118, it is
assumed that the re'létionship between the specified surface
tractions and the effective stress tensor are knnwr‘u Use of
Equations 3.114 result in the following expressions for the

derivatives appearing in Equations 3.118,

T o M 3(a; )
g T gy,
0 Py ™ %pq
p
aless)
ey )y —1 "'} av .
3.119
pq (3.119)
_ MM
ety f Lor a(0,5) () +
— v m=1 n=1 o i’
39pq Py mén Pq
3{e;s)
@4 aoﬁn } @ {3.119b)
Pq
2 M 2
T o _a / T a(u”) (o) +
39,30 o, "™ % w wm
Pars P v, pq s
EIC )m 3e,:) Bz(e )I11
ij m o, ) ij d
oo AT (3.119¢)
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2= L] M 2
S A
Emp— m=1 n=1 ——e ij'n
aapt:l aﬂrs P Vp mn 30pq aars
a(qi;j);m‘ 3(:”)"‘ . a(uij)m 3(51.)" .
I-)apq Sars aars aapq

2
(o5 Cigh | av
a_ 30 (3.119d)

3%q 2rs

In evaluating the derivatives of the global stress and strain tensors
for surface tractions m, it is recognized that the only terms
appearing in the series solutions for these quantities which will
depend on the effective stress tensor, Eij, are the constants EZn and
Non- These constants are determined by the surface tractions and will
change with respect to the effective stress tensor, 313'. Using the
chain rule of differentiation and Equations 3.97 through 3.112 yields
the following expressions for the derivatives of (9jj)m and (€ij)m,

which appear in Equation 3,119,

ICHR S { Aoy 3lEy)n . 3(o;5)m 3(ngn

ey a‘op—q 3ngy )y aﬁ} (3.120a)

a(eij)m i 5 { egghy ey ), . Aegs) Angdy
=0

gy 3, Any)y an:} (3.120b)
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o 2 2
Ployyy . { Aol ey , 2054k 2 (o) } (3.120¢)
acpqaors =0 a(EZk)m aopqaors a(nZk) aa 30
az(a i) E) (: az(e ) a(e 3 (5 (3.120d)
i _ { il 8 i3 2km§~ .
aapqacrs G(EZK)M L qaors a(g2k n aqpq 3

The expressions given in Equations 3.120 are evaluated by replacing
the constants, (£ax)y and (nok)m, appearing in the series solutions
for (9j;)m and {(ejj)m, by the proper derivatives of these
quantities. The substitutions in the series solutions to (f’ij)m
and (Eij)m. necessary to evaluate Equations 3.120 are summarized in
Table 3.2. The constants, £p and npy, and their derivatives will be

determined for the surface tractions under consideration.

Surface Tractions Resulting From an Uniform Pressure Acting on the

Surface of the Sphere

The constants, £ and N2p, which are determined from the

specified surface tractions will be determined for the case of a
uniform pressure, 3,“, acting on the surface of a sphere. This
situation is shown in Figure 3.10. For this case the specified
surface tractions of the form given by Equations 3.106 are

917" (Rycos(z,) = B, o<z <r (3.121a)
012" (R,cos(z,)) = 0, ogzy<n (3.121b)
The constants, &2 and Npp, which result from these surface

tractions are determined by Equations 3.107. For the surface



Table 3.2. Evaluation of Derivatives of the Global Stress and Strain
Tensors with Respect to the Effective Stress Tensor, for
a Single Set of Surface Tractions.

Substitutions into series solutions
for (°1j)m and (Eij)m
Replace Replace
{Ea)m (ngie)m
Derivative by by
I gy Iy 3Ny )y
Bqu eopq acpq
e i)n ey I 3lny )
36 L= o
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Figure 3.10 -- Uniform Pressure Pm Acting on Surface
of Sphere.
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tractions appearing in Equations 3.121, the constants, £pp and

n2n, are given by

1

gz“ = -(4n+1 )?mf P2n(s)ds,;,n=0,l,2,..... (3.122a)
-1

gy ® 0, 1=1,2,3,..... (3.122b)

In Equations 3.122, the constants KO and :_2, which appear in
Equations 3.107, have been taken as 1 and T /2, respectively. The
integral appearing in Equation 3,122a was extended to - m< B < 0
so that the following orthogonality relationship for Legrendre

polynominals could be employed.

1 G, m¢n
f PAS)P(s)ds =9 e (3.123)
1 nt

Evaluating Equation 3.122a in accordance with Eguation 3.123 yields

£ - -p (3.124a)

Eop = 0, n=1,2,3,..... (3.124b)

The derivatives of &2 and ngp, required to evaluate the terms

appearing in Table 3.1 are

3aE aFm
— (3.125a)
a5
14 :
2n _ =
G 0, m=1,2,3,...... (3.125b)

Pq
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an
220 2 0, n=1,2,3,..... (3.1250)
e . C
%pq
azeo BZF,H
—_— (3.125d)
aawagrs a:maers
2
3
g, w123
aepqaers (3.125¢)

Y-S T 3.125F
aepq Bcrs ( )

The derivatives of £, and npp, required to evaluate the terms

appearing in Table 3.2 are

2 - (3.126a)
o g

g pa

13

2 - g, pe1,2,3,..... (3.126b)
a0, '

an,

n
=0, n=1,2,3......
" (3.126¢)
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3 EO R ) Pm

agacrs aupqacrs (3.126d)
2

g

2N .0, n=1,2,3,.....

3%q %%rs (3.126¢)
aZ"Zn

—="_ =0, n=1,2,3,.....
aqpq g (3.126f)

To evaluate the derivatives appearing in Equations 3.125 and 3.126,
the relationship between the pressure, Py, and the effective strain
or stress tensors must be known. This relationship will be

developed in a later section.

Surface Tractions Resulting From the Contact Between Adjacent
Spheres

The constants, £ pn and npp, which result from the specified
surface tractions will be determined for the case of contact of a
single sphere with two adjacent spheres. The spheres make contact
along an axis of syﬁmetry as shown in Figure 3,11. The constants
&n and nvgn will be determined for the center sphere shown in
Figure 3.11, Surface tractions of the form given by Equations
3.106 which result from the contact with two neighboring spheres

are
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Contact
Surface
n

n
x
n
x2

Figure 3.11 -- Three Spheres in Contact Along an Axis
of Symmetry.
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o -K°[cosz(zz) - cosz(iz)].'/2 cosz(zz). 0<2,<F,, n-Ty<E,<n

1t _ _
0 2,<@ n-2,
greT2 (3.1272)
Ka[cosz(zz)-cosz(z—z)]]/zsin(zz)COS(Ez).Oiigiiz s T -Ey<Ry<T
%2 - _ _
0, zpszpin-z, (3.127b)
where
K = 2E
ey (3.127¢)
and

22 = the angle defining the contact surface as shown in Figure
3.11.
Details of the determination of the surface tractions given in
Equations 3.127 appear in Appendix C. The surface tractions given
by Equations 3.127 exist only when the spheres appearing in Figure
3.11 are being pressed together by a compressive force. The angle,
52, defining the contact surface is dependent on the total

compressive force transmitted through the contact. This dependence

is given by
R AR LA
gy = sin 7;—‘2— (3.128)

where Fc = the total compressive force transmitted through the
contact,

v = Poisson's ratio,
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E = Young's modulus, and
R = the radius of the sphere.
For the surface tractions given by Equations 3,127, the constants

€2n and npp are given by

= -(4n+1) j Js? - cos (22) s PZ (s)ds, (3.129a)

cos(zz)
n=20,1,2,.....
Np,= ,(‘4";1) f lz. cos?(5) (1-s%)s Py, (s)ds,  (3.1290)
cos(,)
=1,2,3,.....
where

s = a durmy variable of integration.

In determining the required derivétives of the constants £2p and
n2n as given by Equations 3.129, it is recognized that the angle,
77, which defines the contact surface varies with the compressive
force Fc. The angle 2 is the only term appearing in Equations
3.129 which will vary with the effective strain and effective
stress tensors. Using the chain rule of differentiation the
derivatives required to evaluate the terms appearing in Table 3.1

are

Moy . 3y a(cos(iz))

¥ 3 g €
qu (cosﬁz) ) aepq

{3.130a)
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anZk L B"ZK
aq 3(cos(z,))

3(cos(zy))

—_—
“pq

3252k ) azezk alcos(Z,)) 3lcos(E,))
ey, Pleos(E)) e 9y
Ay, az(cos(gz))
a(cos(z,)) a'e; ¥ g

2 2
Mgy ¥ My

a(cos(z,)) 3(cos(E,))

p—— 7 — — p—
aquasrs 3 (cos(iz)) Bepq 32!"5
2 —_
any 3%(cos(2,))

3(cos(z,))

aepqasrs

(3.130b)

(3.130¢)

(3.130d)

The derivatives required to evaluate the terms appearing in Table

3.2 are

i T

a(cos(3,))

% a(cos(z,)) 3%
gy gy 3(cos(2,))
30, a{cos(z,)) 3954

Pq

3(cos(z,)) a(cos(z,))

2 2
Y ¥Ex
——— =7 =
30305 2 (cos(z,)
3
. 2

a(cos(iz))

T o
22(cos(z,))

Bapq aars

(3.131a)

(3.131b)

(3.131¢)
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aznZk . a2n2k a{cos(z,)) a(cos(3,)) (3.131d)
— — "% = — —
acpqaars E) (cos(zz)) aupq do, ¢
an, 2% (cos(E,))
+ 2k 2

a(cos(z,)) aqq_ao—r:

The derivatives of £p¢ and npx with respect to cos(Zp), may be
determined using Equations 3,129. Using Leibnitz's rule for

differentiation of an integral gives

__E%_ = (4k+1) cos(z,) Jl-cosz(iz)
3(cos(3,))
1
- [Jsz-cosz(iz) [PZk(s)+PsZk(s)] ds

cos(Ez)

(3.132a)

1
-y 3.132b
By (ak+1)cos(z,) / fsz-cosz(Ez) ka(s) ds ( )

Z. ) 2
3(cos(12)) cos(iz)



2
6k

1

% 2k

az(cos(iz)) cos(%,)

[1 + Py (1)] Tog, [

- f loge

L+ (4k41) cosz(?z){
(cos(z,))

! [Jsz-cosz(iz) +s

Jl-cosz(iz) + 1] 1

cos(z,)

J 1-cos(z,)

H 2Piyls) +s P"zk(S)] ds} (3.132¢)

_ cos(z,)
cos(zz)

3252k } 1 Mgy . (4k+1) cosz(gz)
az(cos(fz)) (cos(iz) (cos(iz)) 2

J'I-cosz('z_z) +1
loge —_—_—

cos(?z)

1

- f 'Ioge

cos('iz)

|

N 2-t:osz(iz)

cos(?z)

+s]| o
:l Prals) ds} (3.1324)
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In order to evaluate Equations 3.130 and 3.131, the relationships
between cos{Zp) and the effective stress and strain tensors is
required. An approximation for these relationships will be given in

a later section.

Surface Tractions Resulting From the Mixture Phase Acting as a

Binder Between Adjacent Spheres

The constants, £2p and ngq, which result from the specified

surface traction will be determined for the case of the mixture
phase acting as a binder between adjacent spheres. The mixture
phase acts as a binder between three spheres as shown in Figure
3.12. The binder acts along an axis of symetry. Surface tractions
of the form given by Equations 1.106 which result from the

situation shown in Figure 3.12 are
K Foloos(zy) - cot?(By) sin(2)1L(1 - K Jesc(F,)
o '_ 2 2,— - -
ne Jcos (25) - cos®(z,) + Kp], 0<2,<F,, m-2,<E)y<T
0, Epzpcn-ry (3.133)
2 —
K, TFpesc(8,) s1n(12)cos(zz)[(1-l<p) csc(z,)

s ' ' 2 2= - -
12 cos®(z,) - cos™(T,) +Kp], 0<2)<z,, w-Fy<z,m

0, Tyszycn-3, (3.133b)
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Binder
Material

Sphere

Figure 3.12 -- Mixture Phase Acting as a Binder
Between Neighboring Spheres.
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o cscz(iz)
A wR2[2/3 + (31 - EZ) sec('z-z)] (3.133¢)
K = (im ~7,) sec(z,) (3.1334)
B, = /2 - (n/2 - Ty (!2/52)2 (3.133¢)

and

£
"

the radius of the spheres, and

Fp = the total force transmitted through the mixture phase, and

2o = the angle defining the surface area of the sphere on which
the mixture phase acts, and

Ob = an angle defining the approximate direction of the surface

traction vector on the sphere.

The surface tractions given by Equations 3.133 are approximate.
Details of the determination of the surface tractions given by
Equations 3.133 appear in Appendix D. To evaluate the surface
tractions given by Equations 3.133, the total force, Fp, transmitted
by the mixture phase must be known. Cases may arise when the

displacement between the spheres,$ , is known rather than the force,

Fh. The force-displacement relationship for the mixture phase is

= 1.34
k8 (1.38)
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where

kp = the elastic spring constant for the mixture phase.
The spheres are assumed to be initially in contact under no load
conditions. For this situation, the initial volume of the mixture

phase for a single contact locations is given by

" (1-cos(z,))(2+cos(z,))
Vo = 2 {[ 1 - cos(iz)] [ sinz(?z) 2 2 ]

6
_ tan(z,) _ . _
- [sec(zz) -1 ] [—2——— (r-2%, - sin (n-22,)

+2/3 [sec(iz)-l] sind(n/2 - Ez)} (3.135)

The degree of saturation, Dg, is defined as the ratio of the volume of
the mixture phase to the available volume for the mixture phase. In
terms of the volume fractions of the two phases, the degree of

saturation is

D = T (3.136)
where
Cy = the initial volume fraction of the mixture phase, and
Cp = the initial volume fraction of the particle phase,
The maximum values that the angle, 2z, defining the surface area of
the sphere covered by the binder material, are dependent on the sphere

packing geometry. Maximum values of the angle, ;2 for the different
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packing configurations appear in Table 3,3, The surface tractions
given by Equations 3.133 are valid for values of 2 less than or equal
to those listed in Table 3.3. In the case that the volume of the
mixture phase is greater than that given by Equation 3,135, only the
volume of material as given by Equation 3.135, for the maximum values
of the angle, 2, appearing in Table 3.3, will act as a binder between
neighboring spheres. The remaining volume of the mixture phase will
recognize changes in pressure only.

The constants Epp and n2qn, which arise from the surface tractions
given by Equations 3.133 are

1

€ (4n+])Fb/[(l +0(s) §7 - n(s)I(n/2 - Fy) sec(E,)

cos(Ez)

o1 - I - cos(z))] py(s) ds

(3.137a)
1
ngn = F0H1) rbf (1 + h(sDLR/2 - F,) sec (5) + 1
cas(?z)
O cosz(ié) O - s Pt (s) ds (3.137b)

where

h(s) = cot? [w/2 - (a/2 - F)lcos (1521
(3.137¢)



Table 3.3.

Maximum Values of the Degree of Saturation, Ds‘

and the Angle, Emb, for the Case of the Mixture
Phase Acting as a Binder.

Maximum Degree MR;1T:m

of Saturation b
Configuration Ds Zm
Simple °
Cubic 8% 45
Orthorhombic 1% 30°
Tetragonal- o
Spheroidal 20% 30
Rhombohedral 32% 30°




and

s = a dummy varijable of integration.
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For the surface tractions being considered, it is assumed that the

angle 72 remains constant during deformation. Therefore, only the

force transmitted by the mixture phase, Fy, is dependent on the global

stress and strain tensors. In view of this, the derivatives of £y,

and Tp, required to evaluate Table 3.1 are given by
%o - &2n oF

%€ 'b & _

Pq Pq

, n=0, 1, 2, .....

¥an _M2n Fb , ne1, 2, 3, el

€ b % __
pq pq
2 2
38 - E2n 4 Fb ,n=0, 1,2, .....
3% Be_r; F110 € Se
¥ngn St b n=1,2,3 e

—— F,_
a‘p'qaers b aapqaers

(3.138a)

(3.138b)

(3.138¢)

(3.138d)
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The derivatives of &2n and npp, required to evaluate Table 3.2 are

given by

3E. g, dF,
2n _ "2n b =
_Zen -Ta—' n=0, 1, 2, ve.nn

I o __ (3.139a)
2] P
Man ;_Z_n Fy nel, 2, 3, cenes
36 b 3
Pq “pa (3.139b)
2 2
Eon _;2_1\ Ty =0, 1, 2, .....
—_— 55 (3.139¢)
acpqaors b Bopqaurs
an n, 9%F
2n 2n b n=1, 2, 3, .....
" F. —
36_ 90 b 36_a
pq TS Pq rs (3.139d)
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To evaluate Equations 3.138 and 3.139, the relationship between the
force, Fp, and the effective stress or strain tensors must be known.

This relationship will be developed in a later section.

Strain Energy Density of Mixture Phase

The strain energy density of the mixture phase will be
determined. Two cases have to be considered in determining the strain
‘energy density. Case on‘e represents an air-water mixture which exerts
a uniform pressure on the spheres contained in the system. Case two
represents the mixture phase acting as a cohesive material, binding
neighboring spheres together. Combined, these two cases will model

the mixture phase in both compression and tension.

Mixture Phase in Compression. The strain energy density of an

air-water mixture in compression will be determined. The situation to
be considered is shown in Figure 3.13. The air-water mixture applies
a uniform pressure on the surfaces of the spheres in the system. The
air in the mixture is assumed to be occluded. The following four
assumptions are made concerning the air-water mixture:
1. Boyle's Law may be used to represent the pressure volume
behavior of the air contained in the air-water mixture.
2. Henry's Law may be used to determine the volume of dissolved

air present in-the liquid phase.
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3. When considering the compressibility of the air-water
mixture, the compressibility of the water is negligible.
4. The surface tension present in the water phase surrounding
the occluded air is negligible.
Bayle's Law states that the product of the absolute pressure and
volume of an ideal gas is constant under constant temperature. The

form of Boyle's Law which will be employed is

Poa Yoa = Pa a (3.140)

<
]
<

where P, = the absolute initial air pressure,
Voa = the initial volume of the air,
Pa = the current absolute air pressure, and

V3 = the current volume of the air

The form of Henry's Law which will be used states that the
volume of dissolved air present in an air-water mixture is directly

proportional to the total volume of water. This relationship is given

by
Vg = kn Vy (3.141)

where Vq = the volume of dissolved air,

Vy = the total volume of water, and

kn = the coefficient of solubility.
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Present in the free air of the air-water mixture will be
saturated water vapor. Dalton's division law shows that the saturated
water vapor pressure does not obey Boyle's Law. However, the
saturated water vapor pressure is ysually very small and will be
neglected.

In obtaining an expression for the strain energy density of the
air-water mixture, only isothermal processes will be considered.
Under these conditions the Helmholtz free energy and the Complementary
free energy of the mixture are equal to the strain energy density.
Equations 3.94 and 3.96 yield the following expression for the strain

energy density of the air-water mixture.

=

935 €439 (3.142)

where Ty = the strain energy density of the air-water mixture

Vp = the initial volume of the air-water mixture

As a result of the assumption that the surface tension of the
water is negligible, the air and the water pressures present in the
mixture are considered to be equal. This pressure is constant
throughout the air-water mixture contained in the representative
volume; The air-water mixture is subject to changes in the mean
hydrostatic stress only. All principal stresses in the mixture are

equal. It is assumed that the air-water mixture is unstrained at
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atmospheric pressure. For these conditions, Equation 3,142 is

evaluated as

(3.143a)

_ m
T == 1/2 Pw € kk

where -P, = 3 G;Tk
(3.143b)

and Py = the gage pressure of the water phase,
‘/3‘3& = the mean hydrostatic stress of the mixture, and

m
Ukk = the volumetric strain of the mixture.

Under the assumption that the compressibility of the water is
negligible in comparison to that of the air, the volumetric strain of
the air-water mixture may be determined in terms of the initial and
final volumes of air. The total initial volume of the air in the

mixture is

Y (3.144)

Vao ab ad
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where Va, = the total initial volume of air,
Vap = the initial volume of free air in the form of occluded
bubbles, and

Vad = the initial volume of dissolved air.

Using Henry's Law as given by Equation 3.141, Equation 3.144 is

rewritten as

(3.145)
=V + kh \

Vao = Yap W

where V,, = the volume of water present in the mixture.

Combining Boyle's Law given by Equation 3.140 with Equation
3,146, gives the following expression for the volume of air resulting
from a change in the water pressure P.

(3.146)

v, = [v

] Patm
a W(E, + P

+ k_V
n atm

ab )

where V3 = the current total volume of air, and

Patm = atmospheric pressure.

In Equation 3.146, it is implied that the air-water mixture is

unstrained at atmospheric pressure. The change in volume of the
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mixture is determined as that for the air contained in the mixture.

The volumetric strain, Grﬂk, is given by

v, -V (v, *+k V) P
mo__a_ ‘ao_ _‘‘ab_h ‘w o (3.147)
ki m o Vo (w+Patm

where Vp = the initial volume of the mixture.

Substitution of Equation 3.147 into Equation 3.143a gives the
following expression for the strain energy density of the air-water
mixture.

2
T =2 (vab * kn Vw) Pw

m
vw (PW + patm)

(3.148)

Equation 3.148 may be rewritten in terms of the degree of
saturation as defined by Equation 3.136. In determining the degree of
saturation the volume of dissolved air is included in the total volume
of water. Expressing Equation 3.148 in terms of the initial degree of
saturation, Dgg, yields

P

Tn = M2 LT * D5+ D) gy

a atm

(3.149)

For the thermodynamic conditions imposed on the system, the
strain energy density given by Equation 3.149, is equal to the
Helmholtz and Complementary free energies of the mixture phasa.

Equation 3,149 may be used to evaluate the derivatives of these
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quantities which appear in Equations 3.89 through 3.92. The
derivatives of interest are
aF am 2 p2 P
m _ 7w W W W
= = +1/2 [1 + Dso + kh Dso] ['3—— - [3_2] e (3.150a)
ij ij W " ij
aF, 3T P2 30
em _ "'m_ w w W
= =Y [1+0,+k O] [ - 5] ——
- - S0 h “so 5 5 —
Qoij 5.5 P, pw aaij (3.150b)
o%F, of 2p p?
—— s T2 [0 4k D] [Tk
de,. o 3., Oe nso
ij Tkl ij “ k1 w W
2 2
3¢p 1 2P P 3P AP
W W W W W
- -+ [+ Dso + k".[)sn] [ ﬁ_ - ? + _p—a- ] = = (3.150¢)
€ij %K1 W W W ij k1
o 2
2= 2= 2P P 2 3° P,
3°F Tm w W w
. ®m_ -y2[1+D +k O J|l=—-5| T
so h “so o o
Pw Pw 3”13‘ aok1

3615 B0y 3945 39
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1
+ [0+ Dy + Ky D] H
W

(3.150d)

where Py = Py + Patp (3.150e)

To evaluate the derivatives of the water pressure Pw, which
appear in Equations 3.150, the dependence of this quantity on either
the effective strain tensor, oij, or the effective stress tensor, €43,
must be known. One case which is simple to evaluate is when the
increase in water and air pressures in the system have dissipated and
the air and water pressures have returned to their initial states.
For these conditions, all the derivatives of the water pressure, Pys
appearing in Equations 3.150 are equal to zero. For this case, the
air-water mixture contributes nothing to the determination of the

effective quantities.

Mixture Phase Acting As a Binder

The strain energy density of the mixture phase when it acts as a
binder between neighboring spheres will be determined. For the
thermodynamic conditions under consideration, the strain energy
density will be equal to the work done per unit initial volume. The
binder material is assumed to have the following force-displacement

relationship:
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= 151
Fp = k8 (3.151)

where Fp, = the force transmitted by the binder material,
kh = the elastic spring constant for the binder material, and
8§ = the displacement between the sphere on which the binder

material acts.

The work per unit initial volume done on the binder material is

s 2
1 okt
wb=v_ , Fb 35:7? (3.152)

where Vg = the intial volume of the binder material

The strain energy density of the binder material is equal to the work

Wh. The strain energy density of the binder material is given by,

. ket R
IV TRV (3.153)



The derivatives of the strain energy density as given by Equation

3.153, which are required to evaluate Equations 3.89 through 3.92 are

3 F“1 - anm . Fb an
- o ==
BEU aeij b 'm aeij (3.154a)
= Z kv _
acu aeij b 'm 3"1‘3’ (3.154b)
2 2- H
FL ATy aFy aF, P
s ar . sr..a. KV : ke Voo 5z, ez, (3.154¢)
Bsij Bek] Beij ng] b m aEij azk] b 'm aEij 3€k1
2 2% o, oF , F o%F
Fem ™ . 1 b b+ 'b b
s . a5, %V 5 Ko Vi o5 a5 . (3.154d
35 80y AByy Ay b oM 35ps doyy b m 3Gy 85,7 ¢ )

Equations 3.154 are in terms of the force Fy, Equation 3.151 may be
used to evaluate Equations 3.154. The relationship between the force
Fp or the displacement §, and the effective stress and strain tensors
must be known in order to evaluate Equations 3.154. An approximate

relationship will be given in a later. section.
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EVALUATION OF EFFECTIVE QUANTITIES

In this section the evaluation of the effective quantities is

discussed. The equations required to determine the effective

quantities will be presented in a manageable form. Estimations for

determining the loads transmitted through particle contacts or the

mixture material acting as a binder, will be given.

To summarize the results of the previous sections, the equations

which will be used to evaluate the effective quantities of interest

are

an aT
-]J - Cp -p + Cm m
aeij 8513
an am
fo=C B Cp—
R 3. 36, ;
1] 1]
2% o
Com = © —L v,
ij P aaij sekl aaij a:k1
2 2
3w atm
ST By ——

(3.155a)

(3.155b)

(3.155¢)

(3.155d)
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where Fij = the effective stress tensor,
€jj = the effective strain tensor,

Cigkl = th

§1‘jk1 = the effective stiffness tensor,

effective compliance tensor,

]

Tp = the strain energy density of the particulate phase,

Tm = the strain energy density of the mixture phase,

Cp = the initial volume fraction of the particulate phase,
and

initial volume fraction of the mixture phase.

o
3
"
s
=4
o

Only the effective compliance and stiffness tensors will be considered
in the remainder of this section. Knowledge of these quantities will
allow the determination of the effective stress and strain tensors.
The relationship between these quantities is determined by integration
of Equations 3.155c and 3.155d. These integrations yield the

following relationships.

- ek] —_—

A4y = Cij1 %k
—_ ) (3.156a)
£
U

8y = Skt B (3.156b)
T
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where AEij = the change in a component of the effective stress tensor,

AE” = the change in a component of the effective strain tensor,

G°ij = the initial value of a component of the effective stress
tensor, and

€% j = the initial value of a component of the effective strain

tensor,

The integrals appearing in Equations 3.156 are necessary because the
effective compliance tensor and effective stiffness tensor will be
functions of the effective strain tensor and effective stress tensor,
respectively. The reason for this is the non-linear
force-displacement relationship for the surfaces of the spheres in
contact. A suitable numerical technique must be used to evaluate the
change in the effective stress and strain tensors, given by Equations
3.156. The initial volume fractions of the particulate and mixture
phases for the different packing configurations appear in Table 3.4.
These initial volume fractions are needed to evaluate the effective
compliance and effective stiffness.

The effective compliance and stiffness tensors will be referenced
to the cartesion coordinates, (67, 82, 83) as defined previously. The
Tocation of pairs of contacts on a particular sphere in the system,
are defined by the angles By and Yy, measured relative to the
coordinates (87, 8y, 63). The values of these angles for the

different packing configurations are given in Table 3.5. The
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Table 3.4. Initial Volume Fractions and Maximum Tensile Stressed
Volume of the Mixture Phase for the Different Packing
Configurations.

Initial Volume
Fraction of

Initial Yolume
Fraction of

Maximum Tensile
Stressed Volume
Fraction of Mix-

Packing Particée Phase MixturE Phase tufssl)’hasec .
Configuration (] m max ~m
Cubic 0.52 0.48 0.038
Orthorhombic 0.61 0.39 0.043
Tetragonal-

Spheroidal 0.69 0.31 0.062
Rhombohedral 9.75 0.25 0.08

* Ds x taken from Table 3.3.

ma.



Table 3.5. Angles Defining Location of Contact Pairs with Respect to Cartesian
Coordinates (e], 695 63).

Angles Defining Locations of Contact Pairs

Contact Contact Contact Contact Contact Contact
Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
. Packing
Configuration By V1 B2 Vo B3 V3 By ¥y By V5 B Vg
Cubic 0°  0° 90° 0° 90° 90° - - - - - -
Orthorhombic 45° 0° 45°  90° 45° 180° 45° 270° - - - -
Tetragonal-
Spheroidal 35.3° 30° 35.3° 210° 90° 0° 90° 60° 90° 120° - -
Rhombohedral 35.3° 30° 35.3° 150° 35.3° 270° 90° O0° 90° 60° 90° 120°

451
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effective compliance and stiffness tensors will be determined using
the values of the angles, By and ¥, Tisted in Table 3.5. This in
effect fixes the cartesian coordinates (87, 87, 63), with respect to a
particular packing configuration. To determine the effective
quantities with respect to a coordinate system other than (81, 62,
83), tensor transformation laws may be employed.

To evaluate the effective compliance and stiffness tensors,

Equations 3.155¢ and 3.155d are rewritten as

- P om
Cijar = G gk * Ga G

(3.157a)
- — —
Sisk1 = G Sigk1 * G Sigka {3.157b)
2-
—_ am
P, = —2P
ijkl 3., 38 (3.157¢)
ki
2=
—_— 3 m
m = m
cHik1 - (3.157d)
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2-
A
13kt 9, 34 (3.157e)
2-
STH . 3 o
KT T
45 (3.157F)

The quantities, ngkl and C,ﬁjk], are the effective compliances oE the
particulate and mixture phases, respectively. The quantities, S',?J-k]
and STJ-“, are the effective stiffnesses of the particulate and
mixture phases, respectively. Simple expressions for these quantities

will be given.

Effective Compliance and Stiffness Tensors of Particulate Phase

The effective compliance and stiffness tensors of the particulate

phase are determined as

P[P o P i
ik = Czip)” * (Cyp) (3.158a)

P = (s )0 (P
ikl ijk1 ijk1 (3.158b)

4 +
where (Cijkl)o = the contribution to the effective compliance of the

particulate phase by all sets of surface tractions,
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(C?jk])ﬁ = the contribution to the effective compliance of the
particulate phase by all interactions between sets of
surface tractions,

(S?jkl)‘) = the contribution to the effective stiffness of the
particulate phase by all sets of surface tractions,
and

(S?jkl)i = the contribution to the effective stiffness of the
particulate phase by all interactions between sets of

surface tractions.

; e T )
T )0 0
he effective quantities, (cukl) and (S'ijkl) , are given by

2 25 5
(x%) P 3P 3P
P - 7 m m m
(cijk])o —GE Pm ga_ " + - _3' +
“i5 %l %y % ‘
N
C
0y2 3C 3
k) (), + (B —2 0+
G 3€ 3e
k1 k1
n=1
N
b
e azcn (x,%)? E:
C + —
c’'n - G =
aeij aek] n=1
2
o) Fp, F r P
b'n - - bn - -
asij 3, acij 3L, (3.159a)



2o
_ o7 oy
(s?.,)° = ¢ 7 m__ .o B
ijk1 p m 35,5 Wy W4y Ee
N, ,
Z ( 2%
(ch)z (Ac)n * (Bc)n aCn _.acn + «Cc)n __n___ *
T ) 3545 345
=
Ny \
(kyo)? Oy Fon Fpn, FFon Fon
b = = e (3.159b)
- %55 0% P45
where
«© - 52 (3.159¢)
o _ _2E
< L0 (3.159d)
1
g _ —_—
=2
B (3.159)

and Py = the pressure of the mixture phase
Cn = the cosine of the angle Z). Defining contact surface n,
Fon = the total force which is transmitted by the mixture phase
acting as a binder at location n,
N¢ = the number contact type surface tractions,

Np = the number of binder type surface tractions,

161
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G = the shear modulus of the particulate phase,
E = Young's modulus of the particulate phase,
- v = Poisson's ratio for the particulate phase, and

R = the radius of the spheres representing the particulate phase.

The sum of the quantities N. and My, which appear in Equations 3.159,
must be less than or equal to the total number of contact pairs. The
case where this sum may be less than the total number of contact pairs
would occur when a tensile load is present at a contact location where
there is no mixture material acting as a binder. The terms (Ac)ns
(Bedns (Cclp and (Dp)n which appear in Equations 3.159 are
dimensionless quantities for surface traction set n. They are
determined from the series solution presented in the previous section.
The quantities (Ac)n, (Bc)y, and (Cc)p arise from contact type surface

tractions for contact n. These quantities are determined as

a(o, ) c
G pq ‘n (e;), dV

. pq’n (3.160a)
(Ac)n (KO)ZVP aan

Vp
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3(0 i(EEQ)" W

(8.) 3C
AT ) v " (3.160b)

(c,) a(a Cq)" dv
¢ 7
! (KU) Vj (3.160¢)

where (°|g€l)n = the stress tensor resulting from contact type surface
traction n, and
(eﬁq)n = the strain tensor resulting from contact type surface

traction n.

The quantity (Dp)n arises from surface tractions where the mixture
phase acts as a binder between neighboring spheres. This quantity is

determined as

b
). dv
D, Pq n ‘Epa’n
®u)n - Fy c’) v, f (3.161)

where (o qu)" = the stress tensor resulting from binder type surface
tractions n, and
(qub)n = the strain tensor resulting from binder type surface

tractions n.
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The dimensionless quantities given by Equations 3.160 and 3.161 are
independent of the effective stress or strain tensors. The

‘dimensionless quantities appearing in Equations 3.160 and 3,181

require evaluation by use of a computer. The computer evaluation of

these quantities is discussed in the next chapter.

) o ]
The effective quantities, (Cijk1)' and (S':jkl)i- are given by

N

b
g, o 2
S Ky~ K 3°F JF,
() = 2 2 : Opply | o0 Py Zon
G n=1 aaij aek] aa”
3P 3P 2% 3F
mo_,_m o, an m bn 4
aek] scij aeu BEH aem
Ne
k9K ° Z ac I
b (Acp)n -n - Pn  *
G =t ) BEH 3&k1
(Ccp)n 3 Cn p—m . GCn BPm . 3Cn BPm
asij 3Ek1 aeij ae“ Bek] aeij



b b
2 g, @
2% K, %K
(Oc)n n Lok D
€45 % 6 =1 el
m#n
2%F F o oF, oF oF, o
(Dbh)mn bm bn . 7 bm bn bm bn
a:‘.j £ 3?1.1. ¥ ¥ BE‘ij

2 2 e e
3°F, °
Fom —bn + (Kc) E E (A_)
— o= cc’'mn
G
n=1

acij 3Ek]
m=1
mEn
el 3C
3, 3Ch . (Bcc)mn Con n +3Cm n .
agij EE ’aeij ask] aeld Bzij
2 2
?°C 3°C
(Ceedmn — T+ (Cecdnm 1 +
aeij aek] aaij Sek-l
SC" 3Cn
(A.)

+

(3.162a)
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g, O
LKk 2: 3F,
(S?-kl)1 -bP (Dbp)n bn
J G n=1 Soij Bok]
o, P oy, Py ¢ 3Ty
Zbn om0+ T ———— +
301',]' aok] aokl Mij Mij 30”
N
c
K o K c N N
CG £ Z (Acp)n g— g_ . (Ccp)n
nel iy B
325 P 3en Py Sn
—— il I
3045 30y acij £ 30, acij
Ny N
25 k98 2
Oy 2Py . . Z
o 0, G
i3 " e
(cbc)mn
% C
bm n . Fom LN .
Sdij aok] BU” ack] agk.l 8013
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\ N b
0y2
Opcdan ¥ Fom ) Z :
30, : 0, G .
L m=l n=1
min
(Dbb)mn Fpm an Fpm Ban+
BGU ack'l ack] 3"1’;3
Nc Nc
2 gy2
Fom 3 an ¥ (Kc ) E E
30, . 30, G
1§ m=1 n=1
m=n
(A ) 3 oC (B.)
cc’mn 7rn _m . cclmn
Bdij ack]
aC, aC aC aC (c..)
m _n . _rn n . celmn
3cij BUH BGH acij
2 2 .
3y ¥ (Ccc)nm e, . (Acc)nm L, 0
acij 3014 auﬁj 301 auij aok] (3.162b)
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The terms appearing in Equations 3,162 have all been previously
defined except dimensionless quantities. The dimensionless quantity,
(Dbp)n: arises from the interaction between uniform pressure type
surface tractions and binder type surface tractions for contact n.

This quantity is given by

i} - G b (1]
( bp)" e f (cpq In €pq v
2F, K LA

v (3.163)

where ?j = the strain tensor due to the uniform pressure, Pms acting

on the surface of a sphere.

The dimensionless quantities, (Acp)", (Ccp)n and (Dcp],. arise from the
interaction between uniform pressure type surface tractions and

contact type surface tractions for location n. These quantities are

given by
(Acp)n = f #lo qu dv
U ag
LA A | (3.1642)
P
C
(Cepln = s f o dn P v
o g
Pk RV ac,
Vp

(3.164b)



Vp (3.164c)

The dimensionless quantities (Apc)mn. (Chc)mn and (Dpc)mn arise from
the interaction of binder type surface tractions for location m, with

contact type surface tractions for contact n. These quantities are

given by
2 c
(Abc)mn = 6 f (qu)m m dv
e L 0.0 . 2
3C,
n
? Vp (3.165a)
c
e G DA
g o
Fon X K Yp 2 (3.165b)
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(C,.) . G b c
bc’mn = — /‘ (e ’IJ)m (Uij )n dv
2FmK c Vp

Vo (3.165¢)

The dimensionless quantity (Dpp)mn arises from the interaction of
binder type surface tractions for location m, with binder type surface

tractions for location n. This quantity is given by

Yon = & b b

b =

n’mn _ (qu Jn (qu)n av
2Ry For (K )2 v,

vp

(D

(3.166)
The dimensionless quantities (Acc)mn, (Bec)mn and {Cecdmn arise from
the interaction of contact type surface tractions at location m with

contact type surface tractions at location n. These quantities are

given by
2 c
A = s f 3 (:Eg n (e pq)m
3°C
20k v m (3.167a)
(Bedmn = opdn (epgdn v
2(K ac, aC

n (3.167b)
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(3.167¢)

Values of the dimensionless quantities appearing in Equations 3,163
through 3.167, require evaluation by a cbmputer. Evaluation of these
quantities is discussed in Chapter IV. The dimensionless quantities
determined from the interactions between contact type and binder type
surface tractions are dependent on the angle, Omn, which defines the
location of the surface tractions of location m, with respect to the

surface traction at location n, or vice versa. Figure 3.14 shows the

angle gpmn in relation to the axes x3m and x3", which are axes of
symmetry for the surface tractions at locations m and n, respectively,
The possible locations for contact and binder type surface tractions
with respect to the global coordinate system, (01, 82, 83), are
determined by the angles, Bm and yp, which appear in Table 3.5.
Tables 3.6 through 3.9 give values of Omn for the different surface
traction locations for each of the packing configurations.

The effective compliance and effective stiffness of the
particulate phase may be determined using Equations 3.158, 3,159 and
3.162. To evaluate these quantities, the dependence of the pressure
in the mixture phase, Pm, the cosines of the contact angies, Cp, and
the binder force, Fpy, on the effective stress and strain tensors must
be known, Approximate relations of this type will be given in a later

section.
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Figure 3.14. -- Angle O Relative to xg‘ and xg Coordinate Axes.
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Table 3.6. Values of the Angle emn for Simple
Cubic Packing Configuration.

Surface Traction

Surface Traction

Location m

vy 90°

Location n
A Yo B 3
0°  0°  90°  ©0°  90°  90°
B, 0°
- 0° 99° 90°
¥ 0°
8, 90°
_— 90° 0° 90°
[ a°
8y 90°
90° 90° 0°




Surface Traction

Location m

Table 3.7. Values of the Angle emn for Orthorhombic
Packing Configuration.

Surface Traction

Location n
Bl n B ¥ B By Y
45°  0° 45°  90° 45° 180° 45° 270°
8 45°
0° 60° 90° 60°
¥ 0°
By 45°
60° 0° 60° 90°
v, 90°
By 45°
_— 90° 60° 0° 60°
Vg 180°
By 45°
_ 60° 90° 60° 0°
270°
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Table 3.8. Values of the Angle Oon for Spheroidal-Tetragonal Packing
Configuration.

Surface Traction
Location n

By W B Yy B3 vz By Wy B g

35.3° 30°  35.3° 210° 90° 0° 90°  60° 90° 120°

8 35.3°

_— 0° 70.5° 60° 60° 90°
12} 30°

62 35.3°

_ 70.5° 0° 90° 60° © 60°
v,  210°

B3 90°

-_ 60° 90° 0° 60° 60°
¥y 0°

By 90°

_— 60° 60° 60° 60° 60°
Yy 60°

Bg 90°

- 90° 60° 60° 60° 60°
12 120°

GLL



Surface Traction

Table 3.9. Values of the Angle emn for Rhombohedral Packing Configuration.

Surface Traction

Location n

B ¥ By Wy By Yy By ¥, By ¥s  Bg g

35.3° 30° 35.3° 150° 35.3° 270° 90° 0° 90°  60° 90° _120°
B 35.3°

a7 0° 60° 60° 60° 60° 90°
1 30°
B,  36.3°

2 T 60° 0° 60° 60° 90° 60°
v,  150°
By  365.3°

e 3 77 60° 60° 0° 90° 60° 60°
5wy 270°
B og  %0°

s A 60° 60° 90° 0° 60° 60°
vy o
8 90°

it T 60° 90° 60° 60° 0° 60°
vy 60°
90°

fe 90° 60° 60° 60° 60° 0°
Vg 120°

oLl
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Effective Compliance and Stiffness of Mixture Phase

The effective compliance and stiffness of the mixture phase must
be determined for two types of conditions. One condition is when the
mixture phase exists in the void space around the spheres in the
system at a pressure Pp. The other condition is when it acts as a
binder between neighboring spheres. For the case when the mixture
phase fills the void space and is subject to a pressure Pp, Equations
3.150 give expressions for the effective compliance and stiffness of

the mixture. These equations yield

m -
Cijkl =172 T+ Dso + kh DSo m E— m 5
(P; *+ Patm) (pm * Patm)
2—
3P 1 2P
m_ 1+Uso+kh05° — -—m )
8 ij i (Pm + Patm) (Pm * Patm)
-2 — —
. P CL (3.1682)
— 3 _ =
(P + Pagm? %5 ey
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=— 52
m _ 2P P
ST = 12 |10 4k B _n _ ,
(Pm * Patm) Pnt F'a'cm) X
2—
3P 1 2P
n_ 14D+ K, Dy _ m -
%945 (P * Patm! (P * Patn)
7 P AP
m mo_m
3 - vy (3.168b)
(P + Patm) 3945 30y,

where Dgo = the initial degree of saturation,
kp = solubility coefficient, and

Patm = atmospheric pressure.

Equations 3.168 differ in appearance from Equations 3.150 in that the
water pressure, Py, has been replaced by the mixture pressure Pp.
These two are equal since surface tension has been neglected.

When the mixture phase acts as a binder Equations 3.154 gives
expressions for the effective compliance and stiffness of the mixture
phase. Equations 3.154 apply to one surface traction location where
the mixture material acts as a binder. Using these expressions the
effective compliance and stiffness of the mixture phase for these

conditions are
!

b
i 2
m 21 aF, oF £ 3°F,
cijkl = E 7bn _hn 4+ bn _ bﬁ
Vv 1 Beij BEH 9E ;& aaH

n= N

(3.169a)



179

(3.169b)

where Vy = the total volume of the mixture phase,
kn = the elastic spring constant for the mixture phase,
Nob = the total number of binder type surface tractions, and
Fbn = the total force transmitted by the mixture material at

Tocation n.

If the displacement between spheres is known, Equations 3.151 may be
used to evaluate Equations 3,169,

To evaluate Equations 3.168, the dependence of the mixture
pressure, Py, on the effective stress tensor or the effective strain
tensor must be known. To evaluate Equations 3.169, the dependence of
the force transmitted by the binder, Fy, on the effective stress or
strain tensor must be known. These relationships will be approximated

in the subsequent section.
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RELATIONSHIP QF SURFACE TRACTIONS TO GLOBAL QUANTITIES

In this section, parameters needed to evaluate the surface
tractions present on a single sphere will be related to the effective
stress and effective strain tensors. To evaluate the effective
quantities of the system as a whole, it is assumed that either the
effective stress tensor or effective strain tensor is known. When one
of these effective quantities is known, the results of the previous
section may be used to determine the effective compliance tensor when
the effective strain tensor is known, or the effective stiffness
tensor when the effective stress tensor is known. The effective
quantity which is known will be that which is observable on the
macroscale. These being the macroscopically observable stress or

strain fields.

Contact and Binder Type Surface Tractions When the Effective Strain

Tensor is Known

In this section the parameters needed to evaluate contact and
binder type surface tractions will be related to the effective strain
tensor. The relationships to be developed would be used when the
macroscopically observable strain field, €jj, is known.

To determine the relationships between the surface tractions
present in the system on a sphere and the effective strain tensor, a
single sphere which surface tractions at location n is considered.

The location n is defined relative to the Cartesian coordinates,
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(87, 92, 83) by the angles, By and ¥, as shown in Figure 3.15. The
Cartesian coordinates, (xr. xg, xg), are local Cartesian coordinates
for location n. The x;? axis is an axis of symmetry for the surface
tractions at location n. The transformation laws given in Appendix 8
may be used to determine the effective strain tensor relative to the
Cartesian coordinates (x?, xrg‘, xg). In particular, the component of
the effective strain tensor along the xr3‘ axis is desired. This strain

component is given by

(633)" = sin2 En c052 ¥, (:_.” + s'in2 By sin2 ¥y EZZ + c052 8, 333 +

2 sin? 8, siny, cos ¥ By + 2 sin B cos B cos ¥y T3t

2 sin B, cos B, sin g, €_23
(3.170)
where (e33)n = the component of the strain tensor along the x3
coordinate axis, and

Eij = the components of the effective strain tensor.

To determine the displacement across the sphere along the x3 axis,
Equation 3.170 may be integrated with respect to the coordinate x3.

Performing the integration gives
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R

(a03),, = / Gag)y dy = 2R (555),
R (3.171a)

where  (ady), =(uz)(R) -(Uz){-R)
(3.171b)

and (d3)p = the displacement in the x3 coordinate direction, and

R = the radius of the sphere.

Equation 3.171a assumes that the effective strain tensor is spacewise
constant throughout the representative volume. The quantity (03)" is
the displacement along the xg axis, across the sphere. The
displacement at each surface of the sphere, (xgn =+ R) will be half

n
of (3)n. Therefore, the displacement at x3 = R is

(ughy = R gy
=R (3.172)
Equation 3.172 will be used to determine parameters for contact and

binder type surface tractions for the case when the effective strain

tensor, €jj, is known,
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For contact type surface tractions, the solution to the contact
problem given in Appendix C are used to determine the relationship
between the angle, (?2),-., defining the contact surface for contact n,
and the displacement given by Equation 3,172, The displacement given
by Equation 3.172 will be that at the center of the contact region.

The angle (Zp), is related to this displacement by

(5,), = sin”! 151
R (3.173)

In Equation 3.173, the absolute value of (63)n is necessary since

this quantity is negative, This displacement must be negative for a
contact type surface traction to exist. The derivatives of Equation
3.173 which are required to evaluate the effective compliance tensor

are

€ R Ve tan (5, Yl

3Eij 2R I(u3)n{ 851j> ~ (3.174a)
2 -
ac, L R R 2 tan (z,),

Ty Fa w (), [tug)

R u alu
- sec? (&), 3lugy _(ua_)“
Ty %y (3.174b)

where Cp = the cosine of the angle (Zp),.



The derivatives of (Gg )n appearing in Equations 3,174 are given in
Table 3.10.

For binder type surface tractions, the solution given in Appendix
D is used to determine the relationship between the force, Fpq,
transmitted by the binder at location n, and the displacement, Sy

between adjacent spheres, This relationship is given as

Fom = kb 5 (3.175)

where ky = the elastic spring constant for the material acting as a

binder.

The displacement,sy, between neighboring spheres will be equal to
twice the displacement (U3)y, given by Equation 3.172. Equation 3.175

may be rewritten as

an =2 kb (u3)n (3.176)

The derivatives of Equation 3.176 which are required to evaluate the

effective compliance are

Fon . 2k 3ug)y
= .
%55 €15 (3.177a)
2
3°F
— bn - 0
Bc].j aek]

(3.177b)

Table 3.10 may be used to evaluate Equations 3.177.



Table 3.10. Derijvatives of (u3)'| with Respect
to Effective Strain Tensor.
a(u3)n
E'ij as”
BN R sin? By cos? 8
_ 2 .
€12 R sin Bn sin "un cos wn
E'|3 R sin B8 cos B cos ¢
n n n
EZ] R s1'n2 8 siny_ cos y
n n n
22 R sin 8, sin? v,
€, : :
23 R sin B, cos B sin ¥
E. . i
31 R sin 8 cos B, cos ¥,
€ s :
32 R sin B cos B sin v,
€33 R cos? 8

n
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Contact and Binder Type Surface Tractions When the Effective Stress

Tensor _is Known

In this section the parameters needed to evaluate contact and
binder type surface tractions will be related to the effective stress
tensor. These relationships would be used when the macroscopically
observable stress field, Tjj, is known. -

The surface tractions at location n, as defined in Figure 3.15,
will be related to the effective stress tensor Eij- The effective
stress tensor, Gjj, is known relative to the Cartesian coordinates
(81, 82, 83), as shown in Figure 3.15. The solutions given for the
contact and binder type surface tractions are in terms of the total
force transmitted between adjacent spheres. In both cases, the total
force is directed along the x:r.;] coordinate axis shown in Figure 3.15.

The force transmitted between spheres will be approximated as
() = () R (35)
3’n a’n 33'n (3.178)

n
where (F3)y = the total force directed along the x3 coordinate axis,

R% = the radius of the sphere, and
(c§3)n = the component of the effective stress tensor directed
along the xg coordinate axis.

The term, (Kz)p, appearing in Equation 3,178 is a factor which depends

on the packing geometry of the system. These constants depend on the
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area transmitting the stress, (;33),1, between adjacent spheres at
location n. Values of (Kn) for the different packing configurations
are given in Table 3.11., The stress, (033),,, may be determined using
the transformation laws given in Appendix B, The stress (033),1 is

given by

2 a,, +

(053)n = sin? [ cos2 ¥, oy * sin2 B sin® v, Ty,

+ cos? B, O33 + 2 sin B, sin ¥, cos by Tp *
+2 sin B, cos B c0s b Tz 4 5 cip 8, cos 8, sin ¥ Tp3

(3.179)

where the angles, gn and yn, are shown in Figure 3.15.

For contact type surface tractions, Equation 3.128 gives the
relationship between the angle, (Ez)n, defining the contact surface at
location n, and the force, Fc, transmitted by the contact. In terms

of the force (Eg)n, given by Equation 3.178, this relationship is

0-D1F, L VP

(zz)n = sin 5
4R° £

(3.180)

where E = Young's Modulus for the sphere, and

v = Poisson's ratio for the sphere.



188

Table 3.11. Factors for the Different Packing Configurations.

Packing (Ka)n
Configuration Factor
Simple 4
Cubic
Orthorhombic 2.83
Tetragonal
Spheroidal 2.33
Rhombohedral 2.0
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Equation 3.180 may be used to determine the derivatives required to

evaluate the expressions for the effective stiffness, These
derivatives are
[, 2 2/3 _ P

aCn - ! 2R Kc tan (zz)rl a(F3)n

= 2, 0 3 ~

30” 2mRK, 3[(F3)"| ) aoij

(3.181a)
2 - 2, o 2/3 _ 2,0
%, 1 [‘zm K, tan (3,),, 3(Fy),
2 0 =z — —
3045 30y ZwR 3|(F3)n! 355 0y
2 2/3

1 2nR°K sec 3(52)
T n
2nR°K, 3|(F3) |

2,0 1/3 z -
-2 ZmR7K tan (Ez)n (F3)n (F3)y
KHUPY 361.3. 39, (3.181b)
Kco 3 2E -
w(1-98) (3.181c)

The derivatives of (FB)" with respect to the effective stress tensor,

Gij, are determined using Equations 3.178 and 3.179. These

derivatives are given in Table 3.12.

For binder type surface tractions, the force transmitted by the

mixture phase is that given by Equation 3.178. Rewriting Equation



Table 3.12. Derivatives of (Ea)n with Respect
to Effective Stress Tensor.

Eij auij

M (KD R? sin By cos? Yy

N (Ka)q RZ sin’ 8, sin v, cos b,
Sz (Ka)n RZ sin B, COS B, COS ¥
CA (), R? sin? B, sin v, cos y
S (k) RZ sin? B sin? Vo

7% Ky RZ sin B, cos B8, sin v,
CA (K,), RE sin g, cos g, cos ¥,
632 (K3, g2 sin B, cos By sin g,

Ty (K,), B cos? 8,
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3.178 in terms of the force, Fpy, transmitted by the binder at

location n, gives

Fon = (F3)y = (K), B (o3)

bn 3'n a’‘n 33'n (3.182)
The derivatives required for evaluation of the effective stiffness are

Fpo LGV

305 a5 (3.183a)
2 2,2
3935 3945 %9 (3.183b)

The derivatives appearing in Equationr 3.183a are evaluated from Table

3.12.
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CHAPTER IV

RESULTS

In this chapter the numerical determination of the dimensionless
quantities, required to evaluate the expressions for the effective
compliance and stiffness tensors contained in Chapter III, will be
reviewed. Results for some of the dimensionless quantities will be
presented and their validity discussed.

The dimensionless constants which appear in Chapter III were
evaluated using numerical integration techniques. The numerical
integrations were performed on a computer. The integrals
which involve the prescribed surface tractions present on the spheres in
the system were evaluated using an eighty point, Gauss type integration
formula. This integration method approximates these one-dimensional

integrals by

b NP
f(s)ds = an f(spy)
a n=1
a<sn<b, n=1, 2, ..., Np (.1

where sy = integration point n;
Wn = weight factor n; and

Np = the number of integration points.
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For the problem under consideration, the integral appearing in Equation
4.1 is that involving the prescribed surface tractions.

The volume integrais which are required to evaluate the dimensionless
quantities appearing in Chapter III, were evaluated using a spherical
product formula. The spherical product formula used was for the
three-dimensional sphere and is given by Stroud (21;). The spherical
product formula transforms three dimensional volume integrals into the
products of three one dimensional integrals. Gauss type integration
formulae are used to approximate the one-dimensional integrals. The

final result is an integration formula of the type

(8, 8, 83) doy By doy =

A

s
N
P
E wn f (sln’ %20 BKn)
n=1
2,42 2 2, n= N 4.2
0cay ¥ Op + 83, RT, =1, 2, L, (4.2)
where Vg = the volume of the sphere; and

(81n, B2n. H3n) = the global coordinates for integration point n.

The other terms appearing in Equation 4.2 have the same meanings as
those in Equation 4.1. Spherical product formulae for the three

3

dimensional sphere are available in (28) using m’ integration points
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where m = 2, 3,... . These formulae provide exact solutions to the
integral appearing in Equation 4.2 when f (871, 62, 63) is a polynominal
of order 2m-1 or less.

Equations 4.1 and 4,2 were used in-a computer program to evaluate the
dimensionless quantities appearing in Chapter III.

In evaluating the dimensionless quantities, two factors were
recognized as having a significant effect on the calculated results.
These two factors are

1. The number of terms taken in the serie; solution for the

axisymmetric sphere.

2. The number of integration points used to evaluate the volume

integrals by Equation 4.2.

Addressing the first of these factors, inspection of the series
solution in Chapter IIT shows that when evaluated at the center of the
sphere, only one non-zero term remains in the series. Therefore, at the
center of the sphere the solution as obtained using a single term in the
series. The number of terms in the series which is required for
convergence to the correct result increases as the series is evaluated at
points farther away from the origin. The maximum number of terms
required in the series to converge to the correct result will occur on
the surface of the sphere. The series solution was checked to determine
the number of terms required to yield a calculated result within five
percent of a known result, when evaluated on the surface of the sphere.
"The surface tractions used in this check were that of a uniform pressure

acting over a portion of the sphere as shown in Figure 4.1. Analysis
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Uniform Pressure

Sphere

Figure 4.1. -- Uniform Pressure Acting Over a
Portion of a Sphere.
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showed that approximately thirty terms in the series were required for
calculated results within five percent of the actual. The computer
program employed to evaluate the dimensionless quantities used fifty
terms in the series solution.

The other factor that affected the results of the computer program
was the number of integration points used to evaluate the volume
integrals in Equation 4.2. To study the dependence of the computer
results on the number of integration points, the contact problem
appearing in Figure 3.9 was used. A non-dimensionalized measure of the
volume averaged strain energy density was determined for the center
sphere of this configuration, using the computer program. This quantity

was determined as

~ G c c
Spp—_ S ef v (4.3a)
2k 9
e’
V
P

a 2E

Ko
¢ ﬂ('\-\lz} (4.3b)

and E = Young's modulus;
G = the shear modulus:

Vp = the sphere volume;

"?j = the stress tensor due to contact type surface tractions;
egj = the strain tensor due to contact type surface tractions; and

v = Poisson's ratio.
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The quantity, mq, given by Equation 4.3a was determined using 512,
1000, and 1728 integration points in Equation 4.2. The computer results
for different contact surfaces and a Poisson's ratio of 0.3, appear in
Figure 4.2. Figure 4.2 shows that the quantity ng increases as the
number of integration points increases. The rate of increase of mq with
respect to the number of integrations points, Np, is greatest for small
contact surfaces. This suggests that the computer results for the larger
values of the contact surfaces are closer to the true values, for a given
number of integration points.

In summary, the accuracy of the computer results depend on the two
factors previously mentioned. The number of integration points used to

evaluate Equation 4.2 appears to have the largest effect on the computer

results. Since for m integration points, Equation 4.2 gives exact
results for polynominals of order 2m-1 or less, it stands to reason that
increasing the number of integration points would provide more accurate
results. This is because term m of the series solution involves
polynominals of order 2m. Unfortunately, as the number of integrations
points is increased, computer costs are also greatly increased. At the
time of this writing, funds were unavailable to study the problem of
obtaining accurate computer results, As a result the evaluation of the
dimensionless quantities appearing in Chapter III was not performed.
The dimensionless quantities which result ini a single pair of either
contact or binder type surface tractions were determined using 1728
integration points in Equation 4.2. The dimensionless quantities

resulting from a single set of contact type surface tractions are given
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by Equations 3.160. Graphs of these quantities appear in Figures 4.3,
4.4 and 4.5, The dimensionless quantity resulting from a single set of
binder type surface tractions is given by Equation 3.161. A graph of
this quantity appears in Figure 4.6. As previously stated, the accuracy
of the results appearing in Figures 4,3 through 4.6 are questionable.
The computer program used to obtain the results shown in Figures 4.2

to 4.6 is contained in Appendix E.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Expressions for the effective compliance and effective stiffness have
been developed for an idealized two phase system. The idealized system
consists of equal spheres in contact, surrounded by an air-water mixture.
The effective compliance and stiffness tensor are expressed in terms of
the initial volume fractions of the two phases, the material properties
of the two phases, dimensionless quantities dependent on the surface
tractions present on the spheres in the system, and functions describing
the loads transmitted between spheres in the system. When the effective
strain input to the system is known the effective compliance tensor may
be determined, allowing calculation of the effective stress response.
When the effective stress input to the system is known the effective
stiffness tensor may be determined, allowing the calculation of the
effective strain response. The constitutive equations were developed by
treating the two phase system as a homogeneous, non-linear elastic body.

The constitutive equations were developed using micromechanics. They
seek to recognize ac;qal deformation mechanisms which act on the
microscale. Since the constitutive equations were developed using
micromechanics, they should find app\i;ability to two phase systems other
than soils. The approximations made in the development of the
constitutive equations dealt with the geometry, the phase materials, and
the stress distributions present invthe idealized two phase system. If a
particular system may be represented by the idealized two phase system,

then the constitutive equations given in this paper should apply.
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Highway materials are systems for which the constitutive equations
developed here may apply.

In the development of the constitutive equations, non-symmetric shear
stresses, with respect to the centers of the contact areas between
adjacent spheres, were neglected. Neglect of these stresses represents a
correction to the expressions obtained for the effective compliance and
stiffness tensors. Solutions for the stresses and displacements due to
shear loading of this type on the contact surfaces are available. They
may be used t-o determine a partial correction to the expressions obtained
for the effective compliance and stiffness tensors., To obtain the full
correction, the effect of the interaction of a surface traction of this
type with all other surface tractions must be evaluated. This would
require an elastic solution for a sphere subject to non-symmetric shear
loadings on a surface of contact. This problem was not considered.

A recommendation for future work would first be to investigate the
accurate determination of the dimensionless quantities required for the
evaluation of the effective properties. These dimensionless quantities
must be determined so that the behavior of the constitutive equations may
be observed. The computer program contained in Appendix E may be used
for this purpose. The correction to the effective compliance and
stiffness tensors, due to non-symmetric shear stresses on contact
surfaces needs investigation. A finite element computer code may provide
a relatively inexpensive means of determining the significance of this
correction. The expressions for the effective compliance and stiffness
are dependent on functions which approximate the loads transmitted

between adjacent spheres in the system. The quality of these
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approximations needs investigation. Better approximations may be
possible. These approximate functions will allow that the expressions
for the effective compliance and stiffness tensors be fitted or
calibrated to data.

Further recommendations for future work would be to apply a
Correspondence Principle to the model so that viscoelastic material could
be modeled. This would entail representing the particulate phase of the
soil system by a viscoelastic material. Because of the non-linear
force-displacement relationship present on surfaces in contact, a
non-linear Correspondence Principle would have to be employed.
Correspondence principles of this type are given by Schapery (28).
Application of such a Correspondence Principle is worthy of

investigation.
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APPENDIX A

The following notations were used:

(Abc)mn

(A.)

c'n

—
e
n

cc’mn

) =

cp’n

(a5
(A

A Ay

a =

wo

dimensionless quantity resulting from the
interaction between binder type surface tractions
at location m and contact type surface tractions at

location n;

dimensionless quantity resulting from contact type

surface tractions at location n;

dimensionless quantity resulting from the
interaction between contact type surface tractions

at locations m and n;

dimensionless quantity resulting from the
interaction between uniform pressure type surface
tractions and contact type surface tractions at

Tocation n;

component strain solution;

component stress solution;

constants in "Cam Clay" model;

crack length;

rate of damage growth;
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a_ = coefficient of superposition;

mn s :
a:: = transformation matrix;

(8.)

c'n

dimensionless quantity resulting from contact type

surface tractions at location n;

(Bcc)mn = dimensionless quantity resulting from the
interaction between contact type surface tractions

at locations m and n;
[B::n]ij = component strain solution;

[B%Jij = component stress solution;

B, (i=1,2,...,6)

i constants in cap model;

bm = coefficient of superposition;
m X .
bij = transformation matrix;
(cbc)mn = dimensionless quantity resulting from the

interaction between binder type surface tractions
at location m and contact type surface tractions at

Tocation n;

(Cc)n = dimensionless quantity resulting from contact type

surface tractions at location n;



cc'mn

cp’n

ijkl

ijk1

mn
Gk

P
REM

p i
(G

p o
(Cijk])

10 G2
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dimensionless quantity resulting from the
interaction of contact type surface tractions at

Tocations m and n;

dimensionless quantity resulting from the
interaction between pressure type surface tractions

and contact type surface tractions at location n;
compliance tensor;

effective cdmpliance tensor;

effective compliance tensor of mixture phase;
effective compliance tensor of particulate phase;

contribution to the effective compliance of the
particulate phase by interactions between surface

tractions at different locations;

contribution to the effective compliance of the

particulate phase by all surface tractions; L
initial volume fraction of mixture phase;

cosine of the angle zgp;

jnitial volume fraction of particulate phase;
constants;

constant;
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(Dbc)mn

(O

Dcp n

w
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positive constant;

transformation matrix;

a constant;

a constant;

dimensionless quantity resulting from binder type

surface tractions at location n;

dimensionless quantity resulting from the
interaction between binder type surface tractions

at locations m and n;

= dimensionless quantity resulting from the

interaction between binder type surface tractions
at location m and contact type surface tractions at

location n;

dimensionless quantity resulting from the
interaction between pressure type surface tractions

and binder type surface tractions at location n;

dimensionless quantity resulting from the
interaction between pressure type surface tractions

and contact type surface tractions at location n;

degree of saturation;
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crack density;

Young's modulus;

initial tangent modulus;

Helmholtz free energy per unit initial volume;
ffictionﬂ force on macros_copic shear plane;
frictional force on microscopic shear plane;

force transmitted by binder material at location n:
Complementary free energy per unit initial volume;

volume averaged Complementary free energy per unit

initial volume for mixture phase;

volume averaged Complementary free energy per unit

initial volume for particulate phase;

volume averaged Helmholtz free energy per unit

initial volume for mixture phase;

volume averaged Helmholtz free energy per unit

initial volume for particulate phase;
a constant;

coefficient;
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shear modulus;

instantaneous modulus for cap model;

spring modulus for cap model;

Tong term modulus for cap model;

heat addition to system per unit initial volume;
total heat addition to system;

first invariant of stress tensor;

linear viscoelastic creep compliance;

second invariant of the deviatoric stress tensor;
bulk modulus;

constant for binder type surface tractions;
constant for contact type surface tractions;
constant for pressure type surface tractions;
constant for binder type surface tractions;
friction parameter;

coefficient of solubility;

number of binder type surface tractions on a single

sphere;
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number of contact type surface tractions on a single

sphere;
number of grains in a typical cross section;
parameter in cap model;

pressure;

= pressures used as parameters in cap model;

current absolute air pressure;

initial absolute air pressure;

= atmospheric pressure;

pressure required for complete pore closure;
pressure required for the onset of pore closure;

pressure present in mixture phase;

reference pressure;
water pressure;

volume fraction of particles having dilatancy

angle ¢j;
positive constant;

sphere radius;
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radius of contact surface;

entropy per unit initial Yo'lume;

entropy production per unit initial volume;
effective entropy per unit ini;ial volume;

effective entropy production per unit initial

volume;

damage parameter;

= stiffness tensor;

effective stiffness tensor;

= effective stiffness tensor for mixture phase:

= effective stiffness tensor for particulate phase;

= contribution to the effective stiffness tensor of

the particulate phase by all the interactions

between surface tractions;

contribution to the effective stiffness tensor of

the particulate phase by all surface tractions;

volume averaged entropy per unit initial volume for

mixture phase;
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volume averaged entropy per unit initial volume for

particulate phase;

total entropy;

total entropy production;

deviatoric stress tensor;

absolute temperature;

Gruneisen ratio;

time;

relaxation time;

internal energy per unit initial volume;
total internal energy;

specific internal energy;

components of displacement vector;
reference value of specific internal energy;
displacement along x; coordinate axis;
total volume;

current volume of air in mixture phase;



Vau

Wy

n.n.n
(x7:%5,%3)

n_n._n
(z7,25,23)

"

n

w

u
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initial volume of air in mixture phase‘;

initial volume of dissolved air in mixture phase;
initial volume of dissolved air in mixture phase;
total volume of mixture phase;

total volume of particulate phase;

total volume of single sphere;

volume of water in mixture phase;

specific volume;

work per unit initial volume;

total work;

work done on binder material;

Cartesian coordinate system for contact nj

yield parameter;

spherical coordinate system for contact n;
porosity;

initial porosity;

angle defining the location of contact pair n with

respect to the global coordinates (87, 92, ©3):
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measure of shear strain;

time rate of shear deformation;

displacement between adjacent spheres;

Kronecker delta;

= components of the strain tensor;

components of the effective strain tensor;

= components of the strain tensor referenced to the

spherical coordinate system (27, Zp, 23);

components of the strain tensor due to uniform

pressure type surface tractions;

components of the plastic strain tensor;

= components of the strain tensor due to binder type

surface tractions at location n;

= components of the strain tensor due to contact type

surface tractions at location n;

parameter in cap model;

maximum principle strain;
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(533)" = the components of the strain tensor directed along
the xg coordinate axis;
T = constant determined from the type of surface
tractions;
emn = angle defining the location of the xg‘ coordinate
axes with respect to the xg coordinate axes;

(61,62,83) = global Cartesian coordinate system;

= damping coefficient;

Hd

v = Poisson's ratio;

En = constant determined from the type of surface
tractions;

Fm = volume averaged strain energy density of mixture
phase;

?p = volume averaged strain energy density of particulate

phase;

7. = the contributation to the volume averaged strain
energy density of the particulate phase due to the
interaction between surface tractions at different

Tocations;
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‘Usb

the contributation to the volume averaged strain
energy density of the particulate phase due to all

sets of surface tractions;

o = radial coordinate for contact and binder type

surface tractions;

T = normal stress acting on macroscopic shear plane;
o% = normal stress acting on microscopic shear plane;
9 = components of the stress tensor;
f‘]ﬁ components of the effective stress tensor;

;j = components of the stress tensor referenced to the

spherical coordinate system (zy, 22, 23);

o = components of the stress tensor due to uniform

pressure type surface tractions;

(°1?)n components of the stress tensor due to binder type
surface tractions at location n;

c
(0” n = components of the stress tensor due to contact type

surface tractions at location n;
0= maximum principle stress;

Teast principle stress;

Q
w
"
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normal stress to the plane, x; = constant;

n
3
shear stress on macroscopic shear plane;

shear stress on microscopic shear plane;

angle of shearing resistance for macroscopic shear

plane;
dilatancy angle;

angle of shearing resistance for microscopic shear

plane;

undrained angle of shearing resistance;
effective undrained angle of shearing resistance;
work hardening parameter;

angle defining the location of contact pair n with

respect to the global coordinates (87, 672, 83).



APPENDIX B

Equations to transform second order tensors referred to a
spherical coordinate system, intc the same referred to a Cartesian
coordinate system, will be developed. The second order tensor
field is assumed to be known and referred to a spherical coordinate
system (21, z2, 23). The Cartesian coordinate system (x1, x2, x3)

is related to the spherical coordinate system, (z), 22, #3) by the

mapping
x1 = 21 sin(zp)cos{z3) (B.1a)
xp = 21 sin(ep)sin(z3) (B.1b)
x3 = #1c0s(2p) {B.1c)

The spherical coordinate system, (21, 2, 23), is shown relative to
the Cartesian coordinate system, (x1, x2, x3) in Figure 3.8.
Another Cartesian coordinate system, (a1, 82, 83), will be defined
relative to the Cartesian coordinate system, (x], x2, x3), as shown
in Figure 3.9. The Cartesian coordinate system (81, 82, 63), is

related to the Cartesian coordinate system (xy, x2, x3) by the

mapping
8y = x; COSB COSY - X, sing + x4 sing cosy (B.2a)
8, = x; COSB STk + Xy COSY + x5 sing siny (B.2b)

= - i B.2c
65 = -x; sing + x5 cosé ( )
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It is desired to determine the second order tensor referred to the
Cartesian coardinates, (81, 82, 63). In determining the
transformation equations we will use Ajj to denote the physical
components of a second order tensor and Bij to denote the tensorial
components of a second order tensor. Only the tensorial components
transform according to tensor transform laws. The distinction
between physical and tensorial components will only be necessary
when dealing with a tensor referred to the spherical coordinates,
(21, 22, 23). For tensors referred to a Cartesian coordinate
system, the physical and tensorial components are the same. The
following rules regarding tensor notation will be followed.

1. A superscript denotes a contravariant tensor.

2. A subscript denotes a covariant tensor.

3. A repeated index implies summation from 1 to 3 unless

otherwise indicated.

In addition to these rules, when referring to the physical
components of a tensor only subscripts will be used. This is
because for coordinate systems other than Cartesian, the physical
components of a tensor are not a tensor quantity. Therefore their
notation is arbitrary. For a tensor referred to a Cartesian
coordinate system, a covariant tensor is equal to its counterpart
contravariant tensor, the components of which in turn are equal
to the physical components of the tensor. When referring to second
order tensors relative to the three coordinate systems, primes will

denote tensors referred to the coordinates (z], 2y, 23), overbars will



denote tensors referred to the coordinates (x1, x2, x3), and the
absence of either will denote tensors referred to the coordinates
(81, 82, 83). The second order tensor referred to the Cartesian
coordinates (xj, x2, x3) will be determined when the physical
components of the tensor, referred to the spherical coordinates,
(21, 22, 23) are known. The base vectors of the coordinate system,

(x1, x2, x3) with respect to the coordinate system, (z), 23, #3),

are
s
7. ==—L¢ (8.3)
ioeEy d
where 2; = the base vectors in coordinate direction zj.

31 = the unit vector in coordinate direction xj.
Use of Equations B.l and B.3 yield the following expressions for

the base vectors aj.

a = sin(iz)cos(zs)é-l + sin(zz)sin(z3)§2 +

::os(zz)é3 (B.4a)
52 = zlcos(zz)cos(z3)€] + z1cos(zz)sin(23)§2 -

z]sin(zz)E3 (B.4b)
33 = -z1sin(22)s1’n(23)§1 + z.ls.'in(zz)cos(aa)é2 (B.4c)

‘
The metric tensor, 9ijs of the coordinate system (21, 22, #3) is

determined by
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9578 7% (8.5)

Use of Equations B,4 and Equation B.5 yields the following for the

metric tensor gilj.

1 0
Byt |0 @t 0 (8.6)
0 (21)%sin%(z,)

The tensorial cbmponents, B'ij, are related to the physical
components A'ij, by
AL,

B! 13 (no sum on i or j)

o V9ii Vij; .7

To determine the tensor field, Eij, the transformation law for a
contravariant tensor of order two is used, The transformation law
is

gl - B,kl i
(8.8)
Combining Equations B.1., B.6, and B.8 will yield the following
expression for the tensor B referred to the Cartesian coordinates

(x1, x2, x3).

. (8.9)
i3 _ '
B = by byy Ay

where
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sin(z,)cos(z;) sin(z,)sin(z;) cos(z,)
[bij] = cos(zz)cox(z3) cos(zz)sin(z3) -sin(zz) (8.10)
-sin(zz) cos(z3)

The second order tensor, B1J will now be determined relative to the
coordinates (81, 8, 83). The base vectors of the coordinate system
(91, ®2, ©3), with respect to the coordinate system (x1, X2, x3)

are determined by

8y .
b, = 3 &5 (B.11)
where Ei = the base vectors in coordinate directions xj, and
@; = the unit vector in coordinate direction 6j.
Use of Equations B.2 and B.11 yield the following expressions for

the base vectors bs.

51 = cosscosw;] + cosBsinpe, - sinfeg (B.12a)
32 = -sinbe; + cosve, (8.12b)
E3 = sinacoswg-l + sinBsinwgz + cospey (B.12c)

The metric tensor, Eij, of the coordinate system (x1, x2, x3) is
determined by

955 = by T by (8.13)

Combining Equations B.12 and B.13 yields the following for the

metric temsor gij.
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—oo0
[ ———

i
[

"
—
co—
o—o

(B.14)

For the coordinate system (8], 82, 63), the tensorial components,

Bi-j, related to the physical components, Ajj, by

. A,
B =——__ (nosumoniorj) (8.15)
Vi Vg :

From Equations B.14 and B.15 it is seen that for a Cartesian
coordinate system, the tensorial and physical components of a
tensor are equal. In view of this, the transformation law for a
second order contravariant tensor may be used to determine Ajj, as
follows
aei 90 ;

ij =K1 j
A =B =B
i Xy 9% (8.16)

Combining Equations B.2 and B.16 yields the following expression

for the tensor Ajj.

=1

= : . B
R ™ % 13 (8.17)
where
cosBcosy -siny sinBcosy
[cij] = cosBsiny cosy sinBsing

-sinB 0 cosB (8.18)



Equations B.9 and B.17 may be combined to obtain
. A
A = %k A Ma (8.19)

where
(B.20)

255 = Dik O
Equations B.19 and B.20 relate a second order tensor referred to
the Cartesian coordinate system (91, 62, 63) to the same referred
to the spherical coordinate system (21, 22, 23). This
transformation may be used provided the relationships given by

Equations B.1 and B.2 are known.
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APPENDIX C

The Hertz solution for the pressure occurring between two
spherical bodies in contact will be given, The force-displacement
relationship for the center of the contact area will be determined.
The problem under consideration is shown in Figure C.1. The two
spherical bodies shown in Figure C.1 are of equal radii and have
the same material properties. Both materials are homogeneous,
Tinear elastic. In Figure C.1, the coordinate directions y; and y2
are considered positive when directed from the center of the
contact surface toward the centers of spheres 1 and 2,
respectively. When there is no pressure between the two spheres,
the coordinates yy and yp, for the surfaces of spheres 1 and 2 are

given by

y]=y2=k_,/*r—zR_o (c.1)

where
R = the radius of the spheres, and
o = the distance from the center of the contact surface to a
point on the surface of either sphere.
When p is small in comparison to R, a Taylor series expansion
about p = 0 may be used to approximate the distances y1 and y2,
given by Equation C.1. Retaining the first two terms of the series

gives



Sphere 1

‘ Contact

Surface

Sphere 2

Figure C.1 -- Geometry for Hertz Contact Problem.
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2
1=Y2° 3R (c.2)

o

when the spheres appearing in Figure C.1 are pressed together by a
compressive force, contact will be made over a small circular
surface. As the spheres are pressed together, the distance between
two points lying on the surface of the spheres, at a distance
from the center of the contact surface will diminish by
g - (W o) (€.3)
where
g = (wy +wy) o= (c.4)
and w] = the displacement of the surface of sphere 1 in the
direction yj, due to local deformation, and
wp = the displacement of the surface of sphere 2 in the
direction 170 due to local deformation.

For points lying within the surface of contact, the following

relationship is obtained from Equations C.2 and C.3.
- oz

g- (W twy) =Yt Y TR (©.5)
when considering local deformation withi.n the contact surface, the
spheres may be considered to be represented by a half-space. The
solution for the displacement occurring on the surface of a half
space due to a distributed load may be employed to determine the
displacements, w] and wp. Figure C.2 shows a point A lying within
a contact surface of radius P. The contact surface is considered

to lie on the surface of a half space. A pressure P, resulting
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Figure C.2 -- Geometry for Distributed Load on a
Halfspace.
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from the compression of the two spheres acts normal to the contact
surface. Employing the solution for a distributed load acting on

the surface of a halfspace, the local deformations w; and wp are

2
=£1-TglffP(s.¢) ds do
Q

given by

(C.6)

where
s,¢ = the coordinates defined in Figure C.2, and
Q = the loaded area, corresponding to the contact surface.

Substitution of Equation C.6 into Equation C.5 yields
2
I v ) ,/i/p P (s,s) ds d¢ =
(C.7)

The problem is now to determine the pressure distribution, P(s,$),
which satisfies Equation C.7. The pressure distribution which
satisfies Equation C.7 is that of an elliptical cap acting over the
contact surface. Consider the chord BC appearing in Figure C.2.
The pressure distribution along this chord would appear as that
shown in Figure C.3. The maximum pressure along this chord is

given by

- 3 s m
P (=22 i -etsie L -Fsecy o

where
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(s, ¢)

Po(e) |-

figure C.3 ~- Pressure Distribution Along Chord BC of
Circular Loaded Area.
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Po = the pressure acting on the center of the contact region.

The pressure distribution along the chord BC of Figure C.3 is given

by
P
P {ss¢) = :°—(-ﬂ ocos‘e - (S—pCOSd))Z
pcoss (€.9)
where
psing = psing (€.10)

The variable s may be expressed as

S = pCOS¢ + PCOSH COSO, 0 < O < 7 (c.11)

Substitution of Equations C.8, C.9, C.10 and C.ll1 into Equation C.7

gives
2,P
M_M ff (32 - 52 sin% §) sin® o dede
nEo (c.12)
p2
=c- g
Integration of Equation C.12 gives the following result.
2(1-02) Po WSZ _"22_ =;.£
EE 2 4 R (C.13)

Equation C.13 shows that Equation C.7 is satisfied by an elliptical
pressure distribution acting on the contact surface provided the

radius of the contact surface, p, and the displacement, z, are

given by
4
- 1 (2R 0
L 7E

(C.14)
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(C.15)

The constant Py appearing in Equations C.14 and C.15 is determined
by setting the integral of the pressure distribution taken over the
contact surface equal to the -total compressive force, Fc. The

pressure distribution over the contact surface is

P (p) = (€.16)

o
lo

For equilibrium of the spheres the following condition must hold

o
//P (o) da = 21IP0 / I/ 52 - 02 pdp =Fc (c.17)
Q ]

o
Integration of Equation C.17 and then solving for P, gives

Py fe
238 (c.18)
Equations €.6, C.9, C.10, and C.11 may be used to determine the
local deformations, w; and wp, of points on the surfaces of spheres
1 and 2, contained in the contact surface. The local deformations
are

m 1-\:22 Po [ 252 - 92]

Wy =W, =
17 % =
40 E (c.19)
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To determine the force-displacement relationship at the center of
the contact surface (p = o), Equations C.14, C.18 and C.19 are

combined to yield

1-v!

o F 123
_ 3 c
¥looo* [ I3 ] 7z (c.20)

Equation C,20 shows that the force-displacement relationship on the
contact surface is given by a power-law.

The results for the pressure distribution resulting from two
spheres in contact will now be used to determine the surface
tractions which result from the contact of a single sphere with the
two neiéhbom’ng spheres, along an axis of symmetry. The sphere
configuraton under consideration is shown in Figure C.4. The
coordinates (xj,xp,x3) are a Cartesian coordinate system whase
origin is located at the center of the middle sphere as shown in
Figure C.4. Also shown in Figure C.4 are the spherical
coordinates, (27,2z2,23). The coordinates (x1,x2,x3) are related to

the coordinates (z],2p,23) by the mapping

X, = #; sin(zy) cos(z;) (c.21a)
X, = 2y sin(az)sin(z3) (C.21b)
X, = 2, cos(z,)

3 ! 2 (C.21¢)

Quantities referred to the (x1,x2,x3) coordinates will be denoted

by a hat (*) and quantities referred to the (11,32,33) coordinates

24



Contact
Surface
n

Figure C.4 -- Three Spheres in Contact Along an Axis
of Symmetry.
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will be denoted by a prime. The pressure distribution on the
contact surfaces of the center sphere will act along the x3
coordinate axis. Using Equations C.14 and C.17, the surface

tractions on the center sphere are given by

3
33 s 2 .2 (c.22)
>p

To determine the surface tractions given by Equations (C.21) in the
coordinate system (2),2p,23), the following relationship exists
between the stresses referenced to the two coordinate systems.
ol =<; c052 (2,) (C.23)
1 33 2 R
0jp = 833 sin (22) cos (zp) (c.2a)
Using Equations C.21, C.22, C.23, and C.24, the surface tractions

referred to the coordinates (21,22,23) are given by

-2E \/cos2 (25) - cos? (Ez) (:052(22).,

‘ = 0 <2y <2y, M- 2y <8y T

o N '2-2 < gy <m- EZ {C.25)
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LVCOSZ (z;) - cos® ( 2) sin (22),

(1.9
2" cos(gz),OiEZf_Ez,Tl--i-ziiz:ﬂ

o . g, cv-2  (.26)

where

z, = sin? <T§_> (C.27)

Equations C.25, C.26 and C.27 define the surface tractions on the

center sphere of Figure C.4 referred to the spherical coordinates

(21,22,23).
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APPENDLX D

The case of a material acting as a binder between equal
spheres will be considered. Figure D.1 shows two spheres being
held together by a material acting as a binder. The initial
position of the spheres is shown in Figure D.la. In this position
the spheres are touching. A portion of the surfaces of the
spheres is covered by another material which acts as a binder. It
will be assumed that the binder material has perfect cohesion with
the spheres. There is no slippage between this material and the
surfaces of the spheres, as the spheres are displaced relative to
one another. The surface area of the spheres which is covered by
the binder material is described by the angle Ez. In Figure D.1b,
the spheres are shown displaced relative to one another. The
surfaces of the spheres which were touching are displaced a
distance ¢, due to the load F,. The load displacement

relationship for the binder material is assumed to be given by

= K6 (0.1)
where
Kp = the elastic spring constant for the binder material.
The angle 7, shown in Figure D,1 remains constant as the spheres
are displaced. It is assumed that the vectors that are normal to the
surface of the binder material and the surfaces of the sphere, are
parallel for all points located by the angle 32. The surface

tractions present on the spheres when the system is displaced will
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Figure D.T -- Mixture Material Acting as a Binder
Between Neighboring Spheres.



be determined, The surface tractions to be determined are
approximate, The approximate solution will be obtained by
considering a single sphere and half of the binder material as
shown in Figure D.2. Appearing in Figure D.2 are the radial
coordinates, P, and Pg. These are used to describe points on the
plane, x3 = R + 8/2, and the surface of the sphere. Also shown in
Figure D.2 are two strips of the binder material. One strip is
located at the outer edge (Pg = Pg, Pp = Pp) of the binder and one
strip is located at the center (pp = pg = 0) of the binder. These
strips have rotational symmetry about the x3 axis. The binder
material as a whole will be viewed as a collection of these strips
thus forming a series of concentric rings. When the spheres are
displaced as shown in Figure D.lb, the outer strip of binder
material will experience a greater displacement than that at the
center, The load is to be viewed as being transferred through the
strips to the sphere. The force-displacement relationship for the
binder material is linear. A greater portion of the load will be
transferred through the outer strip since it undergoes the larger
displacement. It will be assumed that the stress, 533, occurring
on the x3 = R+3/2 plane, in the x3 coordinate direction, varies
elliptically with respect to the coordinate op. The assumed

stress distribution is

o3y (xg = R+ 8/2) = 80 [1 - V1 - (Po/o)7 1+ o (9.2)



Center

°p

Strip

Figure D.2 -- Geometry for Determining the Surface
Tractions on a Single Sphere Due to
the Mixture Phase Acting as a Binder
Material.

8/y

Outer
Strip
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The constants, Ac and gy, are to be interpreted as shown in Figure
D.3. The constants Ac and o, may be related to each other by
considering the displacements of the outer and center strips of
the binder material. The linear load-displacement relationship

allows the following relationship.

% _ % + a0

¢ (o = 0) d (o = Fy) (0-3)

where

d = the displacement of the strips of the binder material.
The displacement of the binder material at the center (P = 0) is
equal to &/2. Through geometry considerations, the displacement

of the binder material at the outer edge (py = op) is

_ - (D.4)

d (py=0,) = 2 5 (/2m - z,) sec (2,)

The relationship between 40 and o, is given by
a0 = [(1/2% - 32) sec (7,) - 11 g5 (D.5)

substitution of Equation D.5 into Equation D.2 yields
033 (xg = R+ 8/2) = o {[1 - (1/2n - &) sec ()] +

(1/2x - &,) sec (iz)} s Py 2 Pp (0.6)

The total force, Fp, transmitted by the binder is given by
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b

Figure D.3 -- Stress Distribution at Center of Mixture
Phase Which Acts as a Binder.
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0.

b
Fb=2n I
o

033 (X3 =R +8/2) o, dog (0.7)

Integration of Equation D.7 yields the following relationship
between the force Fh, and the constant o,
Fy = 55 9 [2/3+ (2 - ) sec (3,)]
(D.8)
Through geometry ccns‘iderations; the radius, Eb, is determined to
be
Sb = [R + /2] [tan (EZ) - sec (ie)] + R
(D.9)
Equations D.1 and D.8 may be used to relate the constant oy to the
relative displacement between spheres, S,

To determine the surface tractions which result on the
surface of the sphere, the strip of the binder material shown in
Figure D.4 is considered. The loads acting on the sides of the
ring will be assumed to be self-equilibrating in the x3 coordinate
direction. The coordinates,k ph and pg, define the position of the
ring with respect to the x3 axis on the plane, x3 = R + &/2, and
the surface of the sphere, respectively. The relationship between

the coordinates, pp and pg, is

Py = Py

—"_b— Q (0.10)
where

Bg = Rsin (3)) (0.11)

and py is given by Equation D.9. The force dFp, shown in Figure
D.4 acts parallel to the x3 coordinate axis on the plane, x3 = R +

§/2. The magnitude of dfp is
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dF,

oy

i Strip of Binder
Material

n
]
Surface of Sphere

Figure D.4 -- Forces Acting on Strip of Binder Material.



dF, = 03, (x5 = R + 8/2) o, do, d8
b 33 3 ) b b T (0.12)

where

déc = an infinitesimal rotation about the x3j coordinate axis.
The vertical force, dF‘S’, acting on the strip because of cohesion
of the binder to the surface of the sphere must be such that
equilibrium in the x3 coordinate direction is satisfied.
Therefore, sz is given by

dFY = dF = 0} %, = R sin (25)p, do  do
H b 33 (x5 2'Ps "Ps Ve (0.13)

Combining Equations D.10, D.13, and D.14 give the following stress

distribution acting on the surface of the sphere.

-\ 2
033 (x5 = R sin (z,)) = (%) o3y (xg = R+ &/2)  (0.14)
s

Combining Equations D.6, D.10 and D.14 gives the following
expression for the stress, ¢33, acting on the surface of the

sphere.

o2
o33 (x3 = Rsin (2,)) =9, (be> - (/20 - 2y) sec(?;)]

m + (1/2n - 22) sec (25) 5 5 Pp i‘;b (D.15)
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As shown in Figure D.3, the total force, dFg, on the lower portion
of the strip acts at an angle, Of, to the x3 = R sin (22), plane.
The horizontal component of this force is determined as

g h

—’FVCO",Q
s s

f (0.16)

The force Fsh will cause a compressive stress to be exerted on the
sphere by the binder material. This stress will act in the pg
coordinate direction. This stress is given by

- F h

s
og dec dxy

= R sin (2,)) =
%p (%3 (% (D.17)

Combining equations D.13, D.15, 0.16, and D.17 yields

o2 2
9pp (X3 = Rsin (7)) = -0 (E > COWF{ [1- (Ver - &)

Ps

S

V1 - (95/55)2 + (1/2n - 52) sec (Ez)} ) o <5y

(0.18)

The angle, of, will vary from 6/2 at pg = 0 to 2p at pg = R
sin (282). It will be assumed that the angle Bf, is closely
approximated as

b= - (-5 (i)’
(D.19)
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The stress components given by Equations D.15 and D.18 are the
surface tractions exerted on the sphere by the binder. The stress
components relative to the spherical coordinate system, (2], 22,
23), as shown in Figure 3.8, will be determined. The non-zero
components of the stress tensor relative to this coordinate

system, which act on the surface of the sphere are

ofy (2y =R} =053 (x5 = R sin (g,)) cos? (z,) +
0o (X3 = R sin (2,)) sin? (z,)

Loz, <y (0.20)

%12 (E'\ =R) = - [033 (X3 =R sin (zz)) -

a (x3 = R sin (22))] sin (zz)

[]e)
cos (2,) @ <y < & (D.21)
where -
.. = the components of the stress tensor relative to the

(21, 22, 23) coordinate axes.
Combining Equations D.15, D.18, D.20 and D.21 yields the following

expressions for the surface stresses on the sphere.



5.\2
ofy (8 =R} =0, (f—b) [cosz(az)-cotz(ef)sinz(52)]
DS

{[]-(in - 7,) sec(F,)]esc(z,) 5052(22) _ CDSZ(EZ)

+ (i - 7)) sec(?z)} ) 0c2,<E, 0.22)

—\2
o1 (27 =R) = Oo(j—b) cscz(gz){['l -G -

fs
z 5,) Jecs(zy) — cost(3,) + (4n = 3,) sec(d,)
sec(z,)] csc(z,) vees™(z,) - cos (3,) + (4m - 7,) sec(z,
s’in(zz) cos(zz), 032522 0.2

Equations D.22 and D.23 are the approximate solution to the

'
non-zero components of the stress tensor, Tij» which act on the
surface of a sphere, due to the cohesion of the sphere with the

binder material.
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APPENDIX E

Contained is a copy of a computer program which may be used to
calculate the dimensionless quantities required for the evaluation of the

effective compliance and stiffness tensor.
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THIS PROGRAM WILL CALCULATE INTERACTION AND NON-INTERACTION CONSTANTS
REQUIRED FOR THE EVALUATION OF THE EFFECTIVE COMPLIANCE AND
STIFFNESS TENSORS. THIS VERSION OF THE PROGRAM IS SET UP FOR CONTACT
TYPE SURFACE TRACTIONS. IT MAY BE MODIFIED TO CONSIDER BINDER
SURFACE TRACTIONS OR BINDER-CONTACT INTERACTIONS. THIS MODIFICATION
REQUIRES USE OF THE SUBROUTINE BTCON TO REPLRCE SUBROUTINE DTCON OR
FOR THE CASE OF BINDER TYPE SURFACE TRACTIONS OR USE OF SUBROUTINE
BTCON IN CONJUNCTION WITH SUBROUTINE DTCON FOR BINDER-CONTACT
INTERACTIONS.

IMPLICIT REAL*8(A-H,0-2)
REAL*8 EC1(70),DEC1(70),DDEC1(70),2NC1(70),DNC1(70),DDNC1(70)
REAL*8 EC(70),DEC(70),DDEC(70),2ZNC(70),DNC(70),DDNC(70),ANC(68)
REAL*8 DANC(68),DDANC(68),DBNC(68),BNC(68),DDBNC(68),CNANGL(2)
REAL*8 CNANG2(2),TRANRR(3,3),SCORD(1728,4),TRANSR(3,3),TT(4)
REAL*8 DTT(4),DDTT(4),T(1728,6),DT(1728,6),DDT(1728,6),E(1728,6)
REAL*8 DE(1728,6),DDE(1728,6),EE(4),DEE(4),DDEE(4)
DO 5 I=1,1728
READ(1,100) (SCORD(I,J),J=1,4)
CONTINUE
100 FORMAT(1X,4(2X,E15.8))
CNANGL(1)=0
CNANGL1(2 .
CNANG2(1)=3.14159/3.*2.
CNANG2(2)=0.
WRITE(2,150)CNANG1(1),CNANGL(2),CNANG2(1),CNANG2(2)
150 FORMAT(' ','ANG(1,1) = ',F6.2,/,' ','ANG(1,2) = ',F6.2,
/' ' 'BNG(2,1) = ',F6.2,/," ','ANG(2,2) = ',F6.2,/,/,/)
ANG1=0.0
DO 50 II=1,8
ANG1=ANG1+1l.
CANG1=DCOS(ANG1*3.14159/180)
CALL DTCON(CANG1,EC1,DEC1,DDEC1,2NC1,DNC1,DDNC1)
DO 40 I=1,11
NSFLG=0
POIS=(I-1)*.05
IF (POIS.EQ..5) POIS=.499
CALL COFSUP(POIS,EC1,DEC1,DDECL,ZNC1,DNC1,DDNCL,ANC, DANC, DDANC,
BNC, DBNC, DDBNC)
CALL GTRANS(CNANGL, TRANRR)
DO 10 J=1,1728
CALL LCOORD(SCORD(J,1),SCORD(J,2),SCORD(J,3),TRANRR, SCRD1, SCRD2,
SCRD3)

w




noan

10

20

30
40
50
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CALL TRNSSR{SCRD1,SCRDZ,SCRD3, TRANRR, TRANSR)

CALL NONDIM(NSFLG,SCRD1,SCRD2,ANC,DANC, DDANC,BNC,DBNC,

DDBNC, POIS,TT,DTT, DDTT)

CALL CGLOB(J,TT,DTT,DDTT, TRANSR, TRANRR, T,DT,DDT)

CONTINUE

NSFLG=1

ANG2=0.

DO 30 J=1,8

ANG2=ANG2+1.

CANG2=DCOS (ANG2*3.14159/180)

CALL DTCON(CANG2,EC,DEC, DDEC, ZNC, DNC, DDNC)

CALL COFSUP(POIS,EC,DEC, DDEC,ZNC, DNC,DDNC, ANC, DANC, DDANC, BNC, DBNC,
DDBENC)

CALL GTRANS(CNANG2,TRANRR)

DO 20 K=1,1728

CALL LCOORD(SCORD(X,1),SCORD(K,2),SCORD(K, 3),TRANRR, SCRD1, SCRD2,
SCRD3)

CALL TRNSSR(SCRD1,SCRDZ,SCRD3, TRANRR, TRANSR)

CALL NONDIM(NSFLG,SCRD1,SCRD2,ANC,DANC,DDANC, BNC, DBNC,

DDBNC, POIS, EE,DEE, DDEE)

CALL CGLOB(K,EE,DEE,DDEE,TRANSR, TRANRR,E, DE,DDE)

CONTINUE

CALL ENCON(J,ANG1,ANG2,POIS, SCORD,T,DT,DDT, E,DE, DDE)

CONTINUE

CONTINUE

CONTINUE

STOP

END

SUBROUTINE DTCON(CANG,EC,DEC,DDEC, ZNC,DNC,DDNC)

IMPLICIT REAL*B(A-H,0-2)

REAL*8 EC(70),DEC(70),DDEC(70),2NC(70),DNC(70),DDNC(70),XIP(80)
REAL*8 YIP(80),TPN(140),TDPN(140),F1(80,70),F2(80,70),F3(80,70)
REAL*8 F5(80,70),F6(80,70),PN(140),DPN(140),DDPN(140),WGT(80)
REAL*8 F4(80,70)

ASSIGN INTEGRATION POINTS ON INTERVAL -1 TO 1. USE EIGHTY POINT
GAUSSIAN INTERGRATION.

XIP(1)=.0195113832
XIP(3)=.0585044371
XIP(5)=.0974083984
XIP(7)=.1361640228
XIP(9)=.1747122918
XIP(11)=.2129945028
XIP(13)=.2509523583
XIP(15)=.2885280548
XIP(17)=.3256643707
3623047534
3983934058
4338753708
4686966151
.5028041118
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X1P(29)=.5361459208
XIP(31)=.5686712681
XIP(33)=,6003306228
XIP(35)=.6310757730
XIP(37)=.6608598989
XIP(39)=.6896376443
XIP(41)=.7173651853
XIP(43)=.7440002975
XIP(45)=,7695024201
XIP(47)=.7938327175
XIP(49)=.8169541386
XIP(51)=.8388314735
XIP(53)=.8594314066
XIP(55)=.8787225676
XIP(57)=.8966755794
XIP(59)=.9132631025
XIP(61)=.9284598771
XIP(63)=,9422427613
XIP(65)=.9545907663
XIP(67)=.9654850890
XIP(69)=.9749091405
XIP(71)=.9828485727
XIP(73)=.9892913024
XIP(75)=.9942275409
XIP(77)=.9976498643
XIP(79)=.9995538226

C ASSIGN WEIGHT VALUES

C

WGT(1)=.0390178136

WGT(3)=.0389583959

WGT(5)=.0388396510

WGT(7)=.0386617597

WGT(9)=.0384249930

WGT(11)=.0381297113
WGT(13)=.0377763643
WGT(15)=.0373654902
WGT{17)=.0368977146
WGT(19)=.0363737499
WGT(21)=.0357943939
WGT(23)=.0351605290
WGT(25)=.0344731204
WGT(27)=.0337332149
WGT(29)=.0329419393
WGT(31)=.0321004986
WGT(33)=,0312101741
WGT(35)=.0302723217
WGT(37)=.0292883695
WGT(39)=,0282598160
WGT(41)=.0271882275
WGT(43)=.0260752357
WGT(45)=.0249225357
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WGT(47)=.0237318828
WGT(49)=.0225050902
WGT(51)=.0212440261
WGT{(53)=.0199506108
WGT(55)=.0186268142
WGT(57)=.0172746520
WGT(59)=.0158961835
WGT(61)=.0144935080
WGT(63)=.0130687615
WGT(65)=.0116241141
WGT(67)=.0101617660
WGT(69)=.0086839452
WGT(71)=.0071929047
WGT(73)=.0056909224
WGT(75)=,0041803131
WGT(77)=.0026635335
WGT(79)=.0011449500

ASSIGN INTEGRATION PQINTS AND WEIGHTS TO EVEN ARRAY ELEMENTS

wn

10

WGT(I)=WGT(I-1)
CONTINUE

INTERPOLATE TC DETERMINE INTEGRATION POINTS ON THE INTERVAL OF
INTEREST

DO 10 I=1,80
YIP(I)=(1-CRNG)*XIP(I)/2.+(1+CANG)/2.
CONTINUE

CALL SUBROUTINE TQO DETERMINE VALUE OF LEGRENDRE POLYNOMINALS AND
DERIVATIVES EVALUATED AT 1.

ARG=1.
CALL POLY({ARG,TPN, TDPN)

DETERMINE INTEGRALS REQUIRED FOR EVALUATION OF THE CONSTANTS
RESULTING FROM THE STRESS BOUNDARY CONDITIONS FOR SPHERES IN
CONTACT.

DO 30 I=1,80

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNOMINALS AND DERIVATIVES
EVALUATED AT INTEGRATION POINT YIP(I).

ARG=YIP(I)
CALL POLY(ARG,PN,DPN)
CALL DDPOLY(ARG,DPN,DDPN)

EVALUATE FUNCTIONS CONTAINED IN INTEGRALS.
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DO 20 3=1,70

K=2*J~1

F1(I,J)=DSQRT(YIP(I)**2-CANG**2)*YIP(I)**2*PN(K)
F2(I,J)=DSQRT(YIP(I)**2-CANG**2)*(1-YIP(I)**2)*¥YIP(I)*DEN(K)
F3(I,J)=DSQRT(YIP(I)**2-CANG**2)*(PN(K)+YIP(I)*DPN(K))
F4(I,J)=DLOG((DSQRT(YIP(I)**2-CANG**2)+YIP(I))/CANG)*(2*
DPN(K)+YIP(I)*DDPN(K))
F5(I,J)=DSQRT(YIP(I)**2-CANG**2)*PN(K)
F6(I,J)=DLOG((DSQRT(YIP(I)**2-CANG**2)+YIP(I))/CANG)*DPN(K)
CONTINUE

CONTINUE

ZERO OUT ARRAYS CONTAINING CONSTANTS.

DO 40 1=1,70
EC(I)=0.
DEC(I)=0.
DDEC(I)=0.
ZNC(I1)=0.
DNC(I)=0.
DDNC(I)=0.
CONTINUE

DETERMINE CONSTANTS.

DO 60 1=1,70

K=2*I-1

L=I-1

DO 50 J=1,80
EC(I)=EC(I)+(1-CANG)/2.*WGT(J)*F1(J,I)
DEC(I)=DEC(I)+(1-CANG)/2.*WGT(J)*F3(J,1)
DDEC(I)=DDEC(I)+(1-CANG)/2.*WGT(J)*F4(J,I)
IF(I.EQ.1l) GOTO 50
ZNC(I)=ZNC(I)+(1-CANG)/2.*WGT(J)*F2(J,I)
DNC(I)=DNC(I)+(1-CANG)/2.*WGT(J)*F5(J, 1)
DDNC(I)=DDNC(I)+(1-CANG)/2.*WGT(J)*F6(J,1)
CONTINUE

EC(I)=EC(I)*(4*L+1)*(-1)
DEC(I)=(DEC(I)*(-1)+DSQRT(1-CANG**2))*CANG* (4*L+1)
DDEC(I)=(DDEC(I)*(~1)~1./DSQRT(1-CANG**2)+(1+TDPN(K)) *DLOG((DSQRT
(1-CANG**2)+1.)/CANG) )* (4*L+1) *CANG**2+DEC(I)/CANG
IF(I.EQ.1) GOTO 60
2ZNC(I)=ZNC(I)*(4*L+1)/4./L/(2*L+1)
DNC(I)=DNC(I)*{4*L+1)*CANG/2.*(-1)
DDNC(I)=(DDNC(I)*(-1)+DLOG( (DSQRT(1,-CANG**2)+1.)/CANG))*(4*L+1)>
CANG**2/2.+DNC(I)/CANG

CONTINUE

RETURN

END

SUBROUTINE COFSUP(POIS, EC, DEC,DDEC, ZNC,DNC,DDNC,
ANC, DANC, DDANC, BNC, DBNC,, DDBNC)
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IMPLICIT REAL*8(A-H,0-Z)
REAL*8 EC(70),DEC(70),DDEC(70),2ZNC(70),DNC(70),DDNC(70),ANC(68)
REAL*8 DDANC(68),BNC(68),DBNC(68),DDBNC(68),DANC(68)

DETERMINE COEFFICIENTS OF SUPERPOSITION FOR STRESS SOLUTION

DO 20 I=1,68

J=1-1
Rl=(4*I**2+4*I-1+2%POIS)/2./(2*I~1)/(4*I**2+2*I+1+(4*I+1)*POIS)
RA2=2.%(2*T+1)*(2*I**2~I-1-POIS)/2./(2*I~-1)/(4*I**2+2*I+1+(4*I+1)
*POIS)

Bl=1./2./(4*J**2+2*J+1+(4*J+1) *POIS)
B2=2*J/2./(4*I**2+2*J+1+(4*J+1) *POIS)
ANC(I)=AL*EC(I+1)+R2*ZNC(I+1)

DANC(I)=A1*DEC(I+1)+A2*DNC(I+1)
DDANC(I)=A1*DDEC(I+1)+A2*DDNC(I+1)

BNC(I)=BLl*EC(I)+B2*2NC(I)

DBNC(I)=B1*DEC(I)+B2*DNC(I)

DDBNC(I)=B1*DDEC(I)+B2*DDNC(I)

RETURN

END

SUBROUTINE GTRANS(CNANG, TRANRR)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 CNANG(2),TRANRR(3,3)

DETERMINE TRANSFORMATION MATRIX TO GO FROM LOCAL RECTANGULAR
COORDINATES TC GLOBAL RECTANGULAR COORDINATES

TRANRR(1,1)=DCOS(CNANG(1) ) *DCOS (CNANG(2))
0S(CNANG(1) ) *DSIN(CNANG(2))
DSIN(CNANG(1))
DSIN(CNANG(2))
TRANRR(2,2)=DCOS(CNANG(2))

TRANRR(2,3)=0.

TRANRR( 3, 1)=DSIN(CNANG(1))*DCOS(CNANG(2))
TRANRR(3,2)=DSIN(CNANG(1) ) *DSIN{CNANG(2))
TRANRR( 3, 3)=DCOS (CNANG(1))

RETURN

END

SUBROUTINE TRNSSR(SC1,SC2,SC3, TRANRR, TRANSR)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 TRANSR(3,3),TRANRR(3,3)

DETERMINE TRANSFORMATION MATRIX TO GO FROM LOCAL SPHERICAL
COORDINATES TO LOCAL RECTANGULAR COORDINATES

TRANSR(1,1)=DSIN(SC2)*DCOS({SC3)
TRANSR(1,2)=DSIN(SC2)*DSIN(SC3)
TRANSR(1, 3)=DCOS(SC2)

TRANSR(Z, 1)=DCOS(SC2) *DCOS(SC3)
TRANSR(2,2)=DCOS(SC2) *DSIN(SC3)
TRANSR(2, 3)=-DSIN(5C2)
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TRANSR(3,1)=-DSIN(SC3)

TRANSR(3,2)=DCOS5(SC3)

TRANSR(3,3)=0.

RETURN

END

SUBROUTINE NONDIM(NSFLG,SC1,SC2,ANC,DANC,DDANC, BNC,DBNC,
DDBNC, POIS, TE,DTE,DDTE)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 BT(4),BE(4),DTE(4),AE(4)

REAL*8 ANC(68),DANC(68),DDANC(68),BNC(68),DBNC(68)
REAL*8 DDBNC(68),TE(4)

REAL*8 DDTE(4)

REAL*8 AT(4),PN(140),DPN(140)

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNOMINALS AND THEIR
DERIVATIVES AT INTEGRATION POINT JJ

ARG=DCOS(SC2)
CALL POLY(ARG,PN,DPN)

DETERMINE NON-DIMENSIONALIZED QUANTITIES FOR INTEGRATION POINT
M, AND CONTACT N.

DO 18 LK=1,4

TE(LK)=0.

DTE(LK)=0.

DDTE(LK)=0.

CONTINUE

DO 30 I=1,68

J=I-1

K=I+1

AT(1)=2*I*(2*I-1)*BN(2*I+1)
AT(2)=DPN(2*I)-2*I"(2*I-1)*PN(2*I+1)

AT(3)=DPN(2*I)*(-1)

AT(4)=(=1)*(2*I-1)*DSIN(SC2)*DPN(2*I+1)

AE(1)=.5*AT(1)

RE(2)=,5%AT(2)

RE(3)=.5*AT(3)

AE(4)=.5*AT(4)
BT(1)=(=1)*(2*J+1)*((2*J+1)*(2*J-2)-2*POIS) *PN(2*I-1)
BT(2)=((2*J+1)*(4*J**2+10*J+7-2*POIS) *EN(2*I-1)-(2*J+5-4*POIS)
*DPN(2*I1}))
BT(3)=(2*J+5-4*POIS)*DPN(2*1)-(4*J+3)*(2*J+1)*(1-2*POIS)*
PN(2*I-1)

BT(4)=(4*I**2+4*J-1+2%POIS) *DSIN(SC2)*DPN(2*I-1)
BE(1)=(~.5)*(2*J+1) **2*(2*J-2+4*POIS) *PN(2*I-1)
BE(2)=(=,5)*((2*J+5-4*POIS) *DPN(2*I) = (2*J+1) *((2*J+1) **2+2*
(J+1)*(3-4*POIS) ) *PN(2*I-1))
BE(3)=(~.5)*((4*J+3)*(2*T+1)*PN(2*I-1)-(2*J+5-4*POIS) *DPN(2*1))
BE(4)=.5*BT(4)

DO 60 L=1,4

IF(NSFLG.EQ.1) GOTO 20
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DETERMINE STRESSES IN SPHERICAL COORDINATES

TE(L)=TE(L)+SCL**(2*J)* (ANC(I)*
AT(L)+BNC(I)*BT(L))
DTE(L)=DTE(L)+SC1**(2*J)*(DANC(I)*
AT(L)+DBNC(I)*BT(L))
DDTE(L)=DDTE(L)+SC1**(2*J)*(DDANC(I)*
AT(L)+DDBNC(I)*BT(L))

GOTO 60

DETERMINE STRAINS IN SPHERICAL COORDINATES -

20 TE(L)=TE(L)+SC1**(2*J)*(ANC(I)*
AE(L)+BNC(I)*BE(L))
DTE(L)=DTE(L)+SC1**(2*J)* (DANC(I)*
AE(L)+DBNC(I)*BE(L))
DDTE(L)=DDTE(L)+SCL**(2*J)*
(DDANC(1)*AE(L)+DDBNC(I)*BE(L))

60 CONTINUE

30 CONTINUE
RETURN
END

SUBROUTINE CGLOB(JJ,TE,DTE,DDTE, TRANSR, TRANRR, GTE, DGTE, DDGTE)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 TE(4),DTE(4),DDTE(4),TRANSR(3,3)

REAL*8 TRANRR(3,3),GTE(1728,6),DGTE(1728,6),DDGTE(1728,86)
REAL*8 TMAT(3,3),TMAT1(3,3)

REAL*8 TMAT2(3,3),TMAT3(3,3)

ZERO OUT TEMPORARY ARRAYS AND GLOBAL ARRAYS

DO 10 1=1,3
DO 5 J=1,3
TMAT(I,J)=0.
TMAT1(I,J)=0.
TMAT2(I,J)=0. -
TMAT3(I,J)=0.
CONTINUE
CONTINUE

DO 35 I=1,6
GIE(JJ,I)=0.
DGTE(JJ, 1)=0.
DDGTE(JJ,I)=0.
35 CONTINUE

.
ou

DETERMINE TEMPORARY ARRAY TMAT( ) AS THE PRODUCT OF THE
TRANSFORMATION MATRICES.

DO 50 I=1,3
DO 45 3
DO 40 K=1,3
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TMAT(I,J)=TMAT(I,J)+TRANSR(I,K) *TRANER(K,J)
CONTINUE
CONTINUE

DETERMINE ARRAY TAMT4( ) TO PRE MULTIPLY STRESS AND STRAIN TENSORS

DO 54 I=1,3

DO 52 J=1,3
TRANSR(J, I)=TMAT(I,J)
CONTINUE

DETERMINE GLOBAL QUANTITIES

Do 60 I=1,3

TMAT1(I,1)=TRANSR(I,1)*TE(1)+TRANSR(I,2)*TE(4)
TMAT2(I,1)=TRANSR(I,1)*DTE(1)+TRANSR(I,2)*DTE(4)
TMAT3(I,1)=TRANSR(I,1)*DDTE(1)+TRANSR(I,2)*DDTE(4)
TMAT1(I,2)=TRANSR(I,1)*TE(4)+TRANSR(I,2)*TE(2)
TMAT2(I,2)=TRANSR(I,1)*DTE(4)+TRANSR(I,2)*DTE(2)
TMAT3(I,2)=TRANSR(I,1)*DDTE(4)+TRANSR(I,2)*DDTE(2)

TMATL(I, 3)=TRANSR(I, 3)*TE(3)

TMAT2(I,3)=TRANSR(I, 3)*DTE(3)

TMAT3(I,3)=TRANSR(I,3)*DDTE(3)

CONTINUE
GTE(JJ,1)=TMAT1(1,1)*TMAT(1,1)+TMAT1(1,2)*TMAT(2,1)+TMAT1(1,3)*
TMAT(3,1)
DGTE(JJ,1)=TMAT2(1,1)*TMAT(1,1)+TMAT2(1,2)*TMAT(2,1)+TMAT2(1,3)*
TMAT(3,1)
DDGTE(JJ,1)=TMAT3(1,1)*TMAT(1,1)+TMAT3(1,2)*TMAT(2,1)+TMAT3(1,3)*
TMAT(3,1)

GTE(JJ, 4)=TMAT1(1,1)*TMAT(1,2)+TMATL1(1,2)*TMAT(2,2)+TMAT1(1,3)™
TMAT(3,2)
GTE(JJ,2)=TMAT1(2,1)*TMAT(1,2)+TMAT1(2,2)*TMAT(2,2)+TMATL(2,3)}*
TMAT(3,2)

DGTE(JJ, 4)=TMAT2(1, 1) *IMAT(1,2)+TMAT2(1,2) *IMAT(2,2)+TMAT2(1,3)*
TMAT(3,2)
DGTE(JJ,2)=TMAT2(2,1)*TMAT(1,2)+TMAT2(2,2)*TMAT(2,2)+TMAT2(2,3)*
TMAT(3,2)

DDGTE(JJ, 4)=TMAT3(1,1)*TMAT(1,2)+TMAT3(1,2)*TMAT(2,2)+TMRT3(1,3)*
TMAT(3,2)

DDGTE(JJ, 2)=TMAT3(2, 1) *IMAT(1,2) +TMAT3(2,2) *TMAT(2,2) +TMAT3(2, 3}
TMAT(3,2)
GTE(JJ,5)=TMATL1(1,1)*TMAT(1,3)+TMATL(1,2)*TMAT(2,3)+TMAT1(1,3)*
TMAT(3,3)
GTE(JJ,6)=TMAT1(2,1)*TMAT(1,3)+TMAT1(2,2)*TMAT(2,3)+IMAT1(2,3)*
TMAT(3,3)

GTE(JJ,3)=TMAT1(3,1)*TMAT(1, 3)+TMAT1(3,2)*TMAT(2,3)+TMAT1(3,3)~
TMAT(3,3)
DGTE(JJ,5)=TMAT2(1,1)*TMAT(1,3)+TMAT2(1,2)*TMAT(2, 3) +TMAT2(1,3)*
TMAT(3,3)

DGTE(JJ, 6)=TMAT2(2,1) *TMAT(L,3)+TMAT2(2,2) *TMAT(2, 3) +TMAT2(2,3)*
TMAT(3,3)
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DGTE(JJ, 3)=TMAT2(3, 1) *TMAT(1, 3)+IMAT2(3,2) *TMAT(2,3) +TMAT2(3,3)*
TMAT(3,3)

DDGTE(:TJ,S)=MT3(1, 1)*TMAT(L,3)+TMAT3(1,2) *TMAT(2, 3)+TMAT3(1,3)*
TMAT(3,3)

DDGTE(JJ, 6)=TMAT3(2, 1) *IMAT(1, 3) +TMAT3(2,2) *TMAT(2, 3)+TMAT3(2,3)*

" TMAT(3, 3)

DDGTE(JJ, 3)=TMAT3(3,1)*TMAT(1, 3) +TMAT3(3,2) *TMAT(2, 3) +TMAT3(3,3)*
TMAT(3,3) .
RETURN

END .

SUBROUTINE ENCON(JJ,ANGl,ANG2,POIS,SCORD,T,DT,DDT,E,DE,DDE)
IMPLICIT REAL*8(A-H,0-2)

REAL*8 SCORD(1728,4),T(1728,6),DT(1728,6),DDT(1728,6),E(1728,6)
REAL*8 DE(1728,6),DDE(1728,6)

DDU12=0.

DDU2=0.

DO 20 I=1,1728

TEMP=,5*SCORD(I, 4)*3./4./3.14159

D0 10 J=1,6

IF{J.EQ.4) TEMP=TEMP*2

U=U+T(I,J)*E(I,J)*TEMP

DU1=DU1+DT(I,J)*E(1,J)*TEMP

DU2=DU2+T(I,J)*DE(I,J)*TEMP

DDUL=DDUL+DDT(I,J)*E(I,J)*TEMP
DDU12=DDU12+DT(I,J)*DE(I,J) *TEMP

DDU2=DDU2+T(I,J)*DDE(I,J) *TEMP

CONTINUE

CONTINUE

IF(JJ.NE.1l) GOTO 30

WRITE(2,100)

WRITE(2,200)ANG1, POIS

WRITE(2,300)

CONTINUE

WRITE(2, 400)ANG2,U,DU1,DU2,DDUL, DDUL2, DDU2

FORMAT( '1',T10, ' INTERACTION ENERGY CONSTANTS')

FORMAT(' ',T10,'ANGLE 1:',F5.2,/,' ',T10, ‘POISSOINS RATIO:',F5.3)
FORMAT('0",T34,'DU’,T48,'DU’,T61, 'DDU',T75, 'DDY",T9L, 'DDU’,/," ',
T2, 'ANGLE 2',T21,'U',T33,'DCl',T47,'DC2',T61, 'DCL',T75, 'DC12',
T91, 'DC2')

FORMAT(' ',T3,F5.2,Tl0,6(2X,E12.5))

RETURN

END

SUBROUTINE POLY(ARG,PN,DPN)
IMPLICIT RERL*8(A-H,0-Z)
REAL*8 PN(140),DPN(140)

DETERMINE LEGRENDRE POLYNOMINALS
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PN(1)=1.
PN(2)=ARG
DO 10 I=3,140
J=I-1
10 PN(I)=((2*J-1)*ARG*PN(J)-(J-1)*PN(J-1))/J

DETERMINE DERIVATIVES OF LEGRENDRE POLYNOMINALS

DPN{1)=0.
DEN(2)=1.
DO 20 I=3,140
J=1-1
20 DPN(I)=((2*J=1)*(BN(J)+ARG*DEN(J))=(J-1) *DEN(J-1))/J
RETURN

END

SUBROUTINE DDPOLY(ARG,DPN,DDFN)

IMPLICIT REAL*8(A-H,0-2)

REAL*8 DPN(140),DDPN(140)

DDPN(1)=0.

DDEN(2)=0.

DO 10 I=3,140

J=I-1

DDPN(I)=((2*J~1)*(2*DPN(J)+ARG*DDPN(J})-(J-1)*DDPN(J-1))/J
10 CONTINUE

RETURN

END

SUBROUTINE LCOORD(SC1,SC2,SC3, TRANRR,SCRD1,SCRD2, SCRD3)

IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 TRANRR(3,3)

DETERMINE GLOBAL RECTANGULAR COORDINATES
X1=SC1*DSIN(SC2)*DCOS(SC3)
X2=SCL*DSIN(SC2)*DSIN(SC3)

X3=SC1*DCOS(SC2)

DETERMINE LOCAL RECTANGULAR COORDINATES

Z1=X1"TRANRR(l,1)+X2*TRANRR(1,2)+X3*TRANRR(1,3)

Z2=X1* (2,1)+X2 (2,2)+X3 (2,3
23=X1*TRANRR(3,1)+X2*TRANRR(3,2)+X3*TRANRR(3, 3)

DETERMINE LOCAL SPHERICAL COORDINATES

SCRD1=DSQRT(Z1**2+22**2+23**2)
SCRD2=DARCOS (Z3/SCRD1)
SCRD3=DATAN2(Z2,Z1)

RETURN

END
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BELOW IS A LISTING OF SUBROUTINE BTCON. THIS SUBROUTINE IS
USED WHEN DETERMINING NON-DIMENSIONALIZED QUANTITIES FOR
BINDER TYPE SURFACE TRACTIONS. THIS SUBROUTINE REPLACES
SUBROUTINE DTCON WHEN ONLY BINDER TYPE SURFACE TRACTIONS ARE
CONSIDERED, THIS SUBROUTINE IS USED IN CONJUNCTION WITH
SUBROUTINE DTCON WHEN BINDER-CONTACT INTERACTIONS ARE BEING
CONSIDERED.

SUBROUTINE BTCON(CANG, EC,DEC, DDEC, ZNC, DNC, DDNC)

IMPLICIT REAL*8(A-H,0-Z)

REAL*8 EC(70),DEC(70),DDEC(70),2NC(70),DNC(70),DDNC(70),XIP(80)
REAL*8 YIP(80),TPN(140),TDPN(140),F1(80,70),F2(80,70),F3(80,70)
REAL*8 F5(80,70),F6(80,70),PN(140),DPN(140),DDPN(140),WGT(80)
REAL*8 F4(80,70)

ASSIGN INTEGRATION POINTS ON INTERVAL -1 TO 1. USE EIGHTY POINT
GAUSSIAN INTERGRATION.

nnnNno

XIP(1)=.0195113832
XIP(3)=.0585044371
XIP(5)=.097408398¢4
XIP(7)=.1361640228

XIP(17)=.3256643707
XIP(19)=.3623047534
XIP(21)=.3983934058
XIP(23)=.4338753708
XIP(25)=.4686966151
XIP(27)=.5028041118
XIP(29)=.5361459208
XIP(31)=.5686712681
XIP(33)=.6003306228
XIP(35)=.6310757730
XIP(37)=.6608598989
XIP(39)=.6896376443
XIP(41)=.7173651853
XIP(43)=.7440002975
XIP(45)=.7695024201
XIP(47)=.7938327175
XIP(49)=.8169541386




XIP(51)=.8388314735
XIP(53)=.8594314066
XIP(55)=.8787225676
XIP(57)=.8966755794
XIP(59)=.9132631025
XIP(61)=.9284598771
XIP(63)=.9422427613
XIP(65)=.9545907663
XIP(67)=.9654850890
9749091405
9828485727
9892913024
XIP(75)=.9942275409
XIP(77)=.9976498643
XIP(79)=.9995538226

[«
C ASSIGN WEIGHT VALUES
C

WGT(1)=.0390178136
WGT(3)=.0389583959
WGT(5)=.0388396510
WGT(7)=.0386617597
WGT(9)=.0384249930

WGT(23)=.0351605290
WGT(25)=.0344731204
WGT(27)=.0337332149
WGT(29)=.0329419393

WGT(41)=.0271882275

WGT(43)=.0260752357"

WGT(53)=.0199506108
WGT(55)=.0186268142
WGT(57)=.,0172746520
WGT(59)=.0158961835
WGT(61)=.0144935080
WGT(63)=.0130687615
WGT(65)=.0116241141
WGT(67)=.0101617660
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WGT(69)=.0086839452
WGT(71)=.0071929047
WGT(73)=.0056909224
WGT(75)=.0041803131
WGT(77)=.0026635335
WET(79)=.0011449500

ASSIGN INTEGRATION POINTS AND WEIGHTS TO EVEN ARRAY ELEMENTS

w

10

DO 5 I=2,80,2
XIP(I)=(~-1)*XIP(I-1)
WGT(I)=WGT(I-1)
CONTINUE

INTERPOLATE TO DETERMINE INTEGRATION POINTS ON THE INTERVAL OF
INTEREST

DO 10 I=1,80
YIP(I)=(1-CANG)*XIP(I)/2.+(1+CANG)/2.
CONTINUE

CALL SUBROUTINE TO DETERMINE VALUE OF LEGRENDRE POLYNOMINALS AND
DERIVATIVES EVALUATED AT 1.

ARG=1.
CALL POLY(ARG, TPN, TDPN)

DETERMINE INTEGRALS REQUIRED FOR EVALUATION OF THE CONSTANTS
RESULTING FROM THE STRESS BOUNDARY CONDITIONS FOR SPHERES IN
CONTACT .

DO 30 I=1,80

CALL SUBROUTINE TO DETERMINE LEGRENDRE POLYNOMINALS AND DERIVATIVES
EVALUATED AT INTEGRATION POINT YIP(I).

ARG=YIP(I)
CALL POLY (ARG, PN,DPN)
CALL DDPOLY (ARG, DPEN,DDEN)

EVALUATE FUNCTIONS CONTAINED IN INTEGRALS.

DO 20 J=1,70

K=2*%J-1

DIANG=DARCOS (CANG)
KB=1./(1.-CANG**2)/(2./3.+(3.14159/2~-DIANG)/CANG)
HSARG=3.14159/2-(3.14159/2-DIANG) *(DARCOS(YIP(I))/DIANG) **2
HS=1./(DTAN(HSARG))**2
F1(I,J)=((1.+HS)*YIP(I)**2-HS)*((3.14159/2-DIANG)/CANG+1~
DSQRT(YIP(I)**2-CANG**2)) PN (K)*KB
F2(I,3)=(-1)*(1+HS)*((3.14159/2-DIANG) /CANG+L1-DSQRT(YIP(I)**2~
CANG**2))*(1.-YIP(I)**2)*YIP(I)*DEN(K)*KB
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20
30

40

50

60

F3(1,J)=F1(I,J)
F4(1,J3)=F1(I,J)
F5(I,J3)=F2(1,J)
F6(I,J)=F2(I,J)
CONTINUE
CONTINUE

ZERO OUT ARRAYS CONTAINING CONSTANTS.

DO 40 I=1,70
EC(I)=0.
DEC(I1)=0.
DDEC(I)=0.
ZNC(I)=0.
DNC(I)=0.
DDNC(I)=0.
CONTINUE

DETERMINE CONSTANTS.

DO 60 1=1,70

K=2*I-1

L=I-1

DQ 50 J=1,80
EC(I)=EC(I)+(1-CANG)/2.*WGT(J)*F1(J,I)
DEC(I)=DEC(I)+(1-CANG)/2.*WGT(J)*F3(J,I)
DDEC(I)=DDEC(I)+(1-CANG)/2.*WGT(J)*F4(J,I)
IF(I.EQ.1) GOTO 50
ZNC(1)=2NC(I)+(1-CANG)/2.*WGT(J)*F2(J,I)
DNC(I)=DNC(I)+(1-CANG)/2.*WGT(J)*F5(J,I)
DDNC( I)=DDNC(I)+(1-CANG)/2.*WGT(J)*F6(J,I)
CONTINUE

EC(I)=EC(I)*(4*L+1)
DEC(I)=DEC(I)*(4*L+1)
DDEC(I)=DDEC(I)*(4*L+1)

IF(I.EQ.1) GOTO 60
ZNC(I)=ZNC(I)*(4*L+1)/4./L/(2*L+1)
DNC(I)=DNC(I)*(4*L+1)/4./L/(2*L+1)
DDNC(I)=DDNC(I)*(4*L+1)/4./L/(2*L+1)
CONTINUE

RETURN

END
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