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ABSTRACT 

Riser Response to Oirectional Seas. (August 1985) 

Gerard Lewis McCoy III, B. S. , Texas A & M University 

Chairman of Advisory Committee: Or. John M. Niedzwecki 

This thesis examines the dynamic response of a coupled 

vessel/riser system to directional seas. The introduction of 

directional seas into the analysis provides a truer representation 

than unidirectional sea conditions and reduces the overdesign typical 

of riser analyses. 

A planar riser model is developed to calcu late displacements and 

stresses, the solution being performed in the frequency domain using 

finite element methods. Model verification is provided through a 

direct comparison with an API bulletin on marine risers. 

Inherent in the frequency domain solution is the assumption of 

linearity. The drag force term, being non-linear, requires 

linearization. Two linearization methods will be compared to find the 

effects on displacements and stresses. 

Recent findings have indicated the importance of vessel motion on 

riser dynamics. Effects of vessel phasing on displacements and 

stresses are compared and discussed. 

The directional displacements and stresses are calculated for a 

low energy sea and a storm sea. The magnitude of directional 

spreading is varied in order to ascertain the effects of degree of 



directional spread. The response characteristics of a cylindrical 

floating platform and a typical dr illship are compared. The use of a 

directional sea is found to decrease maximum displacements and 

stresses along the riser. With this knowledge available riser 

over design can be minimized. 
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I. INTROOUCT ION 

Offshore oil and gas exploration has been occurring since the 

early twentieth century. Typical structures for those times were 

placed in water depths usually less than 50 feet. These structures 

were knowingly overdesigned since the offshore environmental forces 

were not well understood. In an effort to minimize overdesign, 

research into offshore environmental forces and structures able to 

withstand those forces was undertaken. With a better understanding of 

the offshore environment, structure design can be optimized so as to 

ys~~d thc most e onomical choice for the type situation fo be 

encountered. Current oil and gas exploration is occurring or is 

planned for water depths approaching 5, 000 feet. Fixed jacket 

structures, gravity platforms, and jack-up rigs are used in depths of 

up to 1, 000 feet beyond which they become uneconomical to deploy. One 

of the most economical methods for oil and gas exploration beyond 300 

feet of water is a drillship or floating platform coupled with a riser 

system. 

A riser is best described as the structural link between the 

surface vessel and the seafloor. The surface vessel can be a 

drillship, semi-submersible, or possibly a tension leg platform. A 

telescoping pipe with a ball joint at the lower end is the top 

The citations on the following pages follow the style of 
Ocean Engineering- An International Journal of Research and 
Development. . 



connection to the riser. The bottom of the riser is connected to a 

blow-out-preventer at the seafloor. A tensioner on the surface vessel 

is used to provide a tension to the riser. The surface vessel is 

constrained in surge and sway motions by either a dynamic positioning 

system or by mooring lines. Fig. 1 depicts a planar riser system 

responding to a unidirectional wave. 

The numerical model of the riser is based upon theoretical 

considerations of a tensioned beam-column element. Finite element 

methods are used to take into account the lateral stiffness of the 

riser . The lateral stiffness of the riser is approximated by bending 

and geometric stiffness contributions. The mass distribution along 

the ri ser is accounted for through a lumped mass model which includes 

the steel mass, mud mass, and the effective added mass of the fluid. 

Hydrodynamic damping and equivalent viscous damping are taken into 

account. The viscous damping is assumed to be proportional to the 

mass and stiffness matrices in order to decouple the equations of 

motion. Oamping ratios for each mode of vibration are given from 

which the equivalent viscous damping matrix is constructed. 

The riser responds to the offshore environmental forces and the 

vessel motions. Norison's equation is used to transform the wave and 

current kinematics into forces acting on the riser system. Within the 

frequency domain solution lies the assumption of linearity; thus, the 

non-linear drag term in the wave force equation must be linearized. 

Two methods, one by Borgman(1969a) and one by Krolikowsky and 

Gay( 1980), are currently available for this. Horgman (1969a ) first 



Fig. 1. Riser Response to a Unidirectional Wave 



presented a linearization solution which provided the basis for most 

frequency domain riser analyses. He presented the method of 

equivalent linearization which minimizes the mean square error between 

the linearized approximation and the actual non-linear form. The 

method presented by Krolikowsky and Gay(1980) expands the drag force 

term in a Fourier series in order to minimize the mean square error. 

This method has not been incorporated in many riser analyses due to 

its recent development. The vessel motion effects are accounted for 

by forcing the riser's top end to respond as the vessel does, a 

dynamic boundary condition. Response amplitude operators are used to 

describe the vessel motion. 

The unidirectional riser analysis is the standard analysis 

approach used by industry while few directional analyses are 

performed. Most riser response research has concentrated on planar 

responses due to unidirectional design waves. Chakrabarti and 

Frampton(1982) give an overview of many riser analyses previously 

published, the majority of which are unidirectional, planar analyses. 

The information summarized in their paper starts with the early 

project Mohole studies. The major conclusion which was stressed 

throughout the article was that a dynamic analysis is essential for 

deep water riser analyses. The frequency domain dynamic solution is 

used more often than t. he time history or random vibration solution. 

The frequency domain solution is used in this thesis. 

Despite being the standard analysis approach used by industry, 

the unidirectional response does not represent the true response due 



to short crested, confused seas. Difficulty with describing 

directional seas has been par t of the problem. With recent 

advancements regar ding directional sea kinematic descriptions it is 

possible to calculate directional responses. 

Directional waves and corresponding wave kinematics can now be 

accurately described using a linear wave theory with an appropriate 

wave spreading function. Comparisons with field studies have confirmed 

this(Forrista)1 et al. , 1978). Accurate descriptions of wave 

kinematics were shown to be more dependent upon directionality than on 

the degree of non-linearity of the wave. What this means is that more 

accurate results are obtained using a linear wave theory with an 

appropriate spreading function as opposed to a unidirectional high 

order non-linear wave theory. 

Due to the previous inability to describe directional sea 

conditions there has not been much literature published about 

directional riser responses. The few existing three-dimensional riser 

analyses focus on the methodology for treatment of the directional 

seas. Host papers reviewed, see Table 1, skirted the directional seas 

issue and studied orthogonal responses due to a resolved 

unidirectional wave. Gardner and Kotch(1976), Gnone et al. (1975), and 

Paulling(1975) have all completed three-dimensional riser response 

studies. All studies treat the wave force by the same method. Each 

chooses a unidirectional wave from which a wave force is calculated 

along the riser length. The force is then resolved into two 

orthogonal components. Responses in each orthogonal plane are then 



Table 1. References of Three Dimensional Dynamic Analyses 

Investigation 
Dynamic 
Solution 
Type 

Spatial 
Solution 
Technique 

Wave 
Force 
Input 

Gardner and 
Kotch(1976) 

Time 
History 

Finite 
Element 

Resolved 
Unidirectional 

Gnone, 
Signorelli, 

and 
Giuliano 

(1975) 

Frequency 
Domain & 

Time 
History 

Finite 
Element 

Resolved 
Unidirectional 

Paulling 
(1979) 

Frequency 
Domain 

Finite 
Element 

Resolved 
Unidirectional 

Berge and 
Penzien(1974) 

Random 
Vibrations 

not 
specified Directional 



calculated. The difficulty with this method lies in t, he treatment of 

the wave force. At best this method is an approximation to the 

directional wave force transmitted to the riser. Serge and 

Penzien(1974) calculate tower responses due to directional seas. The 

directional spectrum is calculated by separating the 

frequency-dependent parts from the directional-dependent parts. This 

allows use of an accepted spectral density with an appropriate 

spreading function. The Pierson-Hoskowitz amplitude spectrum was used 

in conjunction with a circular normal spreading function. Although 

the method was applied to an offshore tower and not a riser, the basic 

approach is still applicable to riser problems. 

The directional response of the riser is found by integration of 

various unidirectional responses around a mean wave direction. The 

wave kinematics in each direction are calculated using a linear wave 

theory with a spreading function. The unidirectional response for 

each direction is calculated based upon the wave kinematics for that 

direction. Fig. 2 depicts a directional riser response system. 

The purpose of this thesis is to investigate riser response to 

directional seas. Oirectional seas allow a truer representation of 

the wave kinematics found in random short crested seas. 

Correspondingly, the wave forces and riser responses are more 

accurate. Thus, some aspects of overdesign may be minimized. 

Oifferences between unidirectional and directional seas will be 

discussed. Typical design waves, usually from long period swell, do 

not exhibit as much directional spread as shorter period waves. Seas 



Fig. 2. Riser Response to a Directional Sea 



of low energy content usually exhibit a large amount of directional 

spread; thus, the largest impact for directional seas representation 

is expected in the description of low energy seas. 

Two drag force linearization methods will be discussed and 

results for each method will be compared. Since each method has the 

same motive, to match the actual non-linear drag form as closely as 

possible, the merits of each will be evident through a direct 

comparison. 

The vessel motion effects on the riser response are seen to play 

an important role. The effects of vessel phasing with respect to the 

wave crest are to be investigated through comparisons using different 

values for the phasing angle. 
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II. DEVELOPMENT OF THE MATHEMATICAL AND NUMERICAL MODELS 

This chapter contains t, he derivation of the planar riser motion 

equations. The finite element equations are calculated based upon the 

riser equations of motion. Once the elemental equations are known the 

eigen analysis is performed. Calculation of the current and wave 

forces is accomplished using two different linearization methods. 

The directional sea spectrum is defined by a unidirectional wave 

spectrum in conjunction with a directional spreading function. 

Calculation of the directional responses due to a directional spectrum 

is possible once the unidirectional responses for different directions 

are known. 

Finite Element Re resentation 

Gardner and Kotch ( 1976) presented a deri vation of the riser 

equation of motion based upon 8er nou ill-Euler beam theory whereby 

lateral displacements are controlled prima ily by bending and not 

shear. Only the results are present. ed here since the derivation is 

available in the article. The equilibrium equation can be expressed 

as 

where 

f = (m+m )y + EIy'''' — Ty'' — T'y' 
a 

T = T + T'z 
0 



With the equilibrium equation known the total energy is available. 

The total energy of a uniform beam segment is the summation of the 

kinetic energy and the elastic strain energy, 

L 

KE + SE = j(m+m )(y)' + jEI(y' ')' + j(T +T'z) (y')' dz . (3) 

0 

The principle of stationarity of the total energy is used to obtain 

the finite element equations. The lateral displacement can be 

represented by the summation of four deformation functions known as 

the cubic Hermitian polynomials, 

4 

y =Z H. y. 
i=1 

(4) 

where 

and 

HI 
= I 3(z/L) + 2(z/L) 2 3 

H2 
= z[ I-(z/L) ] 2 

H3 
= 3(z/I ) 

— 2(z/L) 2 3 

2 

H = — j (z/L) -I ] 4 

(5a) 

(5b) 

(5c) 

(5d) 

for the configuration 

y2 
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Mass Matrix 

A lumped mass formulation is used to represent the mass of the 

riser system. The assumption of zero rotational inertia provides a 

mass matrix with translational degrees of freedom only. With zero 

mass for the rotational modes the matrix becomes 

1 0 0 0 
(m + m )L 0 0 0 0 

[m]TOT 0 0 1 0 
2 0 0 0 0 

Stiffness Matrix 

The stiffness matrix is derived by applying the principle of 

minimization of strain energy, 

L L 
3'SE 

k. . = EI H. '' H'. ' dz + T H'. H'. dz 

i j 0 

+ T' z H. 'H! dz 
i j 

where T is the tension at the lower end of the element. The bending 0 

stiffness matrix so formed is 
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6 3L -6 3L 
2EI 3L 2L' -3L L' 

[k]E( = ~ -6 -3L 6 -3L 
L 3L L' -3L 2L' 

The initial constant tension stiffness matrix is 

T 

[k]T 
30L 

36 3L -36 
3L 4L' -3L 

-36 -3L 36 
3L -L' -3L 

3L 
-L' 
-3L 
4L' 

The varying tension stiffness matrix accounts for the linear variation 

of the tension along the element length, 

3/5 L/10 -3/5 0 
L/10 L'/30 -L/10 -L'/60 

[k]T = T' -3/5 -L/10 3/5 0 
0 -Lz /60 0 L' /10 

(10) 

The complete stiffness matrix is the summation of the bending 

stiffness, initial constant tension stiffness, and the varying tension 

stiffness, 

(k]TOT [k]E( + [k]T + [k]7 
0 

Damping Hatrix 

Equivalent viscous damping is used as part of this analysis. 

Hydrodynamic damping is also used in this analysis, it arises only 

when relative motion is considered. The hydrodynamic damping will be 

further discussed with the wave force derivation. An equivalent 
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percentage of critical damping is input for the viscous damping to be 

used. The input allows different percentages of critical damping to 

be applied to any mode of vibration. The viscous damping can be 

formed through uncoupling the equations of motion by introducing modal 

transformations(paz, 1980). This provides a diagonal matrix whereby 

each diagonal term represents a mode which can be assigned a 

percentage of critical damping, 

[a] [C]M[4] = Zw„8, . 4, = [A] 
1 

(12) 

The damping matrix can be calculated by 

[C]M = [4] [A] [e] (13) 

The advantage of orthogonality gives the following expression which is 

equivalent but computationally more efficient, 

[C]M = [M] E 28{we {e. }{4 . } [M] (&4) 

Eigen Analysis 

The eigen analysis is performed in order to calculate the natural 

frequencies and mode shapes for the riser. They are needed for 

various reasons. One reason is that the aforementioned equivalent 
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viscous damping analysis makes use of the results. Secondly, if the 

natural frequencies fall within the expected zone of significant wave 

energy then a dynamic analysis would be warranted. The eigen analysis 

provides this needed information. 

The undamped natural frequencies and mode shapes are solved using 

the characteristic equation(Bathe, 1982). A numerical procedure 

becomes essential for a 4 X 4 matrix or larger. Various iterative 

schemes are available for this purpose such as matrix deflation, the 

Jacobi method, and the Householder method. These procedures are well 

documented in many numerical analysis books, such as Bathe(1982). 

The generalized Jacobi method(paz, 1980) is used in this thesis to 

obtain the natural frequencies and normalized mode shapes. 

Current and Wave Forces 

The current and wave forces are evaluated through the well known 

Nor ison's equation. Linearization of the non-linear drag term is 

accomplished by two methods. The first linearization method to be 

presented was first introduced by Borgman(1969a). The second 

linearization method was developed by Krolikowsky and Bay(1980). 

The wave force equation can be written as 

f = — , 'npC D'u - )xp(C -1)D'y + — , 'pDC (u +u -y))u +u -y( 
m w m 

' d w c w c (&5) 

The first term represents the inertial force due to the fluid 

acceleration around the riser. The second term represents a force 
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contribution which is a function of riser acceleration only, it is not 

dependent on the wave kinematics. Therefore, it is shifted to the 

left side of the equations of motion and is represented as an 

additional mass contribution; thus, the term added mass. The third 

term is the non-linear drag term which gives rise to the relative 

motion aspect of the riser problem. The non-linear drag requires the 

riser velocity value but the riser velocity is a resu1t of the solved 

equations of motion, it is not known beforehand. This creates an 

iterative process for solving the equations of motion. 

The wave kinematics are assumed as steady state harmonic motions. 

For solution convenience complex notation is used. The wave velocity 

is derived from linear wave theory as 

iwt 
(16) 

where 

and 

Hkg cosh kh 

u 

2w cosh kd 

e = cos wt + i sin wt 
iwt 

(17) 

It is understood that the real part of the solution is to be used. 

8orgman Linearization Procedure 

The drag force per unit length is given as 
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«ag 
- )Po 

d ( ' -y) Iu +u -yl (19) 

The first assumption Borgman made in his linearization was that the 

mean value of the velocity was equal to zero; thus, the current 

effects would have to be handled separately from the wave effects. 

The results are linearly superimposed, a dynamic part and a static 

part, 

= kp d (u -y) )u -y) + kp Bd u )u (20) 

Separating the two components introduces the major source of error 

with this method. Borgman's linearization method uses a least squares 

linear estimate equating the variance with the root mean square value. 

The result is 

I 
os 

)pDCd (u -y) ]u„-y] = )pDCd u -yt 8/v] (uw-y) . (21) 
~ rms 

Real notation becomes more convenient for the calculation of the root 

mean square value of the relative velocity, 

2v/w 

(22) 

where 

and 

u = u coswt = real part of u e 
iwt 

w 0 0 (23) 
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y = a coswt - b sinwt = real part of (a+bi)e iwt (24) 

with a+bi representing the assumed complex form of the riser 

displacement. The result of the root mean squar e value is 

1 
u -y = — (u +bw)' + (aw)' 

rms 
(25) 

The complete drag force becomes 

f = )POC — I(u +bw)' +(aw)'I (u -y) + )pOC u )u d g d 
2 I o I d c c (26) 

Krolikowsky and Gay Linearization Procedure 

This li nearization method uses a Fourier series representation 

which allows proper inclusion of the current effects. Recalling the 

drag term, equation (19), 

)pOC (u +u -y) )u +u -y) drag ' d w c w c (19) 

The li nearization method provides a drag term of final form 

drag 
= )P d 1(u y) + )P d zu (27) 

where 8& and 82 are evaluated through the linearization method. 

Again, real notation becomes more convenient. Equations (23) and (24) 

are combined to obtain 

u -y = (u +bw) coswt + aw sinwt 
w 0 (28) 
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which can be rewritten as 

wher e 

u -y = A sin(wtW3) 
w 

A = (u +bw)' + (aw)'J 

(29) 

(30) 

and 
u +bw 

tan 8 = 0 

aw 
(31) 

Thus, 

fd = zpOCd A sin(wt+8) + u A sin(wt+8) + u . (32) drag ' d cj c 

The Fourier series representation is written as 

f = C + t C cos n(wt+8) + z 0 sin n(wt+8) (33) drag o „ 1 
n n 

where 
Zw/w 

w 

C = — f dt 
o 

2 I 
drag (34a) 

Z~/w 
w 

C = — f cos n(wt+8) dt 
n 

) 
drag 

0 

(34b) 

and 
Zw/w 

w 

0 = — f sin n(wt+8) dt 
n 

( 
drag 

0 

(34c) 
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for nial. Only the first order term is used since higher harmonics are 

assumed to supply small contributions. The integrations give 

constants of: 

for u 2A; c 
C = )pDCd ()A' + u ') (35a) 

for u &A; 

A' 
zl 1 I l) 

C =, 'pDC — I1+2(u /A)')sin (u /A) + 3(u /A) [1-(u /A)'I, (35b) c c c 

for all u c' 
C1=0 (36) 

for u aA; c 
Dl 

= )pDCd 2Au c (37a) 

for u &A; c 

BA' 1 3 

D1 = )pDCd — 
~ 

1+ (u /A)' 1-(u /A)' + -(u /A)sin (u /A) . (37b) 1 d 
3 

) 
' c c 

2 
c c 

IJ 

After the constants are r einserted into the Fourier series 

representation the drag force term in final form becomes, from 

equation (27), 

)P d 1( y) + )P d 2 (27) 

where for u 2A; c 

81 = ZU 

82 = (A'/2u ) + u c c 

(38a) 

(38b) 
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and for u &A; c 

BA 3 
8 = — Il+$(u /A)'1ll-(u /A)'1 + — (u /A)sin (u /A), (39a) 

r 
82 = — 

I1+2(u /A) 'J sin (u /A) + 3(u /A) [1-(u /A) 'J . (39b) 
vu 

c 

After the linearization of the drag force is performed the drag 

term can be split into two contributions, a drag due to the water 

velocity and a drag due to the structure velocity. The drag due to 

the structure velocity is shifted to the left side of the equations as 

a hydrodynamic damping contribution. The relative motion assumption 

is the cause of the hydrodynamic damping contribution. For a riser 

analysis the relative motion and hydrodynamic damping are important 

assumptions. Without relative motion considerations the displacements 

and stresses are usually overpredicted. 

Directional Seas 

Knowledge of wave kinematics is essential to the proper wave 

force calculation upon a riser. Typical unidirectional waves tend to 

over predict flow ki nemati cs . Using a higher-order wave theory to 

better match the flow kinematics did not improve results much when 

compared to actual measurements. But, Forristall et al. (1978) used a 

linear wave theory combined with a directional spreading function to 
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match measured velocities and accelerations very closely. The flow 

kinematics matched better than when a high order unidirectional theory 

was used. 

The directional spectrum is assumed to be separable and can be 

expressed as the product of a unidirectional wave energy spectrum and 

a directional spreading function, 

E(w, ~) = E(w)0(~) (40) 

Fig. 3 provides a good picture for the concept. The directional 

spreading function is designed to distribute but not alter the total 

wave energy content. Since the total energy content is not altered 

but only redistributed over direction then the following integral 

results, 

E(w) = E(w, ~) d~ (41) 

With this known an additional property of directional seas may be 

derived, 

0(~) d~ = 1 (42) 

Various directional spreading functions have been proposed over 

time. The difficulty arises of describing an appropriate spreading 

function since the true directional spread of ocean waters is random 



90' 

Eiw, 8) 

0 

90' 

Fig. 3. Directional Energy Spectrum 
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and is based upon many different parameters. A cosine power spreading 

function is a popular choice for several reasons. The cosine power 

spreading function is rather straightforward and its few parameters 

are easily handled . The degree of directional spreading is easily 

accommodated with a specified concentration factor. The concentration 

factor can easily be specified to approximate a unidirectional 

spectrum as opposed to a directional spectrum. The cosine power 

spreading function has been shown to provide a good fit when compared 

to actual measurements. These reasons provide the impetus for 

choosing the cosine power spreading function from Forristall et 

al. (1978), 

D() = 
2 I' (s+1) 

cos [j( - )j 
x D(2s+1) 

(43) 

where D(+) exists for 
( 

- 
( 

s v. Borgman( 1969b) presented an 

alternative spreading function, 

22' r (s 1) 
D() = cos (+- ) 

v D(2s+1) 
(44) 

where D(~) exists only for )~-~) s z'x. Additionally, 

(45) 

An additional simplification results when the concentrat ion factor is 

an integer, 
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r(n) = (n-l)! (46) 

where n is any integer. The resulting expression for an integer valued 

concentration factor is 

(s')' 
o( ) = cos ( - ) 

2s 

x (2s)! 
(47) 

The larger the concentration factor the more concentrated the 

spreading function becomes. Theoretically, as the concentration 

factor approaches infinity the dir ectionally spread sea approaches the 

unidirectional sea. 

The unidirectional energy spectrum chosen for this thesis is the 

Pierson-Moskowitz spectrum from Comstock(1967) which is of the form 

. 0081g 2 -. 74g 
4 

E(w) = — exp 
5 y4 4 

(48) 

The Pierson-Moskowitz spectrum has been shown to adequately describe 

the wave energy as a function of wind velocity and wave frequency. 

The properties of the spectrum are available knowing the derivation of 

the energy spectrum. For this spectrum the significant wave height is 

related to the spectral area, 

H =4 [m]' 
s 0 (49) 
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where 

m = E(w) dw (50) 

Recall that the directional energy spectrum, E(w, ~), contains an 

equivalent amount of energy as the unidirectional energy spectrum, 

E(w); thus, the spectral volume under the directional energy 

spectrum(see Fig. 3) is equivalent to the spectral area under the 

unidirectional energy spectrum. The resulting equivalent expression 

for m is 
0 

m = E(w, ~) d~ dw (51) 

Res onses and Numerical Procedures 

Basic Procedure 

The addition of the mass, damping, and stiffness element matrices 

provides the global constraining matrix equations of motion. The 

nodal forces and corresponding global force array are calculated 

through integration of the wave and current forces per unit length. 

Numerical integration is used due to the complexity of integrating the 

force per unit length exactly. While the commonly used Simpson's rule 

is an adequate method, more efficient methods of numerical integration 
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exist. Numerical quadrature techniques, as described in Bathe(1982), 

are used. Ten-point Gaussian quadrature is the technique used and it 

is capable of integrating up to a nineteenth order polynomial exactly; 

thus, only ten points are required for integration of the force along 

a specified element. The final matrix equations of motion are 

[M7{y} + [cj(y} + [Ic]{y} = {F) (52) 

where 
[G] = [C]M + [C)M (53) 

The steady state harmonic displacements of the riser are assumed of 

the complex form 

iwt 
0 (54) 

Using this complex notation along with the complex notation of the 

water particle velocity provides an e term on both sides of the iwt 

equations of motion. The term can be cancelled from both sides thus 

eliminating the time component. The complex nodal displacements are 

solved for in this manner. 

The time-invariant displacement can be solved for separately from 

the time-dependent displacement. Superposition of both displacements 

provides the total displacement. 

The static displacement is the displacement due to the current 

effects and the proposed static offset. It depends upon the stiffness 

matrix only and does not include inertial or damping effects. The top 

node of the riser is assumed to have a static offset equal to an input 
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percentage of the water depth. The penalty method(Bathe, 1982) is 

used to constrict the top node of the riser to the specified offset. 

The current force effects are accounted for simultaneously. The 

penalty method provides an error contribution since the current force 

on the top node of the riser is essentially negated through the 

penalty method formulation. The consequences of this error are minor 

when one considers that vessel motion is the dominating contribution 

for riser motion at its top end. The static displacement is 

calculated through this method. 

The time-dependent motion of the riser is solved while accounting 

for the time-varying forces and inertial, damping, and stiffness 

effects. Yessel motion at the riser 's top end is accounted for 

through the used of response amplitude operators with appropriate 

phasing at a specified wave period. These input data are available 

from ship motion programs and the methods for obtaining them are not 

discussed here. As with the static case, the penalty method is used 

to constrict the riser top end motion to the vessel motion; thus, the 

wave force contribution at the top end of the riser is negated. The 

inclusion of damping effects provides a complex matrix since a 

component ninety degrees out of phase is included. Inverting this 

complex matrix(which accounts for the mass, damping, and stiffness) 

and multiplication with complex forces provides the complex 

displacements. The process described here is an iterative process 

since the hydrodynamic damping and the wave force are dependent upon 

the riser velocity. Convergence within a specified limit is usually 
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reached in three to ten iterations. 

The complex dynamic displacement is linearly superimposed to the 

static displacement to find the total displacement. For each case 

involving a static offset there wi 11 be a maximum displacement and a 

minimum displacement. Once the displacements are known then bending 

stresses can be calculated. 

Bending stresses within a ri ser can be calculated through various 

methods. The most common method uses the stress-strain matrix, a 

result of finite element analysis, in order to calculate the stresses. 

The stress-strain matrix requires the resulting deflecti ons and 

rotations. In the analysis used for this thesis, condensation is used 

to reduce the total number of degrees of freedom. The problem results 

in rotational degrees of freedom being condensed out; thus, 

calculation of the stresses from the stress-strain matrix is not 

possible. Another method, one which is used in this thesis, makes use 

of geometrical considerations in order to obtain the stresses. 

The method, presented by Morgan(1975), calculates the radius of 

curvature along the riser from which the bending stress is calculated. 

Once the radius of curvature is known then the moment is calculated 

from 

EI 
M 

R 

(55) 

Finally, the str ess is found from 
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My 

0 

I 
(56) 

The method assumes that no element stretching exists. Hending 

stresses are calculated along the riser from this method. The maximum 

bending stresses are recorded along the riser length giving rise to an 

envelope. This is accomplished by passing the steady state wave by 

the riser and continuously calculating the bending stresses as the 

wave passes. 

Directional Response Considerations 

In order to calculate responses in irregular seas a few 

assumptions must be made. The first is that an irregular sea can be 

considered as being a summation of many small amplitude regular waves. 

5econdly, the sum of the responses to these regular waves is equal to 

the response due to the sum of the waves. A third assumption is that 

the response at each wave period is linearly proportional to the wave 

height. Model tests have confirmed these assumptions(Minkenberg and 

Die, 1974) for vessels in small amplitude waves and it is possible to 

extend these assumptions to include a riser. 

The first step in applying the foregoing assumptions into 

calculating responses is to discretize the spectrum into a number of 

regular waves. The basic procedure is well outlined(Comstock, 1967) 

for a vessel response calculation. The directional spectrum is 

discretized into an adequate number of frequencies and directions. 
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Osing more discretizations will give better results although using too 

many may become costly. The wave height for each discretized volume 

is calculated by 

H = 2 2E(w. , + )swan 
J J' J 

(57) 

where 6w and 6~ are differential increments of frequency and 

direction. Fig. 3 shows a discretized volume of the directional 

spectrum. Knowledge of the wave height, wave period, and vessel 

response amplitude operator for the specific period and direction 

provides the needed information to obtain a unidirectional, planar 

riser response. Once the riser response is calculated a transfer 

function can be obtained for the vessel/riser system versus wave 

height, 

(58) 

The transfer function is of the form of a riser peak -to-peak response 

divided by the wave height. The assumption of linear response with 

wave height must be maintained, though, and this presented a problem. 

The drag force term in Horison's equation provides a squared wave 

height term. The li nearization methods incorporated i n this thesis do 

not provide a linear response with wave height but other li nearization 

methods are available which do. This problem had to be addressed. 

Before changing linearization methods to account for a linear wave 

height much thought was given to the effects of eliminating drag 

altogether. As was mentioned earlier, riser response to directional 
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seas is considered to have a large impact for low energy seas, not for 

high energy design waves. With small wave heights the wave force 

becomes inertially dominated; thus, the drag can be neglected. 

Narshall(1976) observed for wave height-to-diameter ratios less than 4 

that neglecting the drag force term altogether will result in errors 

less than 5X. This provides a firm basis for neglecting the drag for 

the small waves typical in low energy seas. Should the wave heights 

increase and drag forces begin to dominate then the drag force would 

have to be linearized by other methods incorporating a linear wave 

height term. 

By neglecting the drag force the relative motion consideration is 

lost. This is an undesirable result since the hydrodynamic damping 

contribution is very significant for waves near the riser natural 

frequencies. Without the inclusion of some type of damping the 

results could be useless. Thus, account had to be made of damping. 

As was mentioned earlier, the ability to use an equivalent viscous 

damping is available. This solves the problem of accounting for the 

hydrodynamic damping which is unavailable without relative motion. 

Now another problem arises as to what the percentage of critical 

damping should be. By comparing computer runs with and without 

hydrodynamic damping the equivalent percentage of critical damping was 

evaluated. Typical values of 15% to 20K of critical damping were 

observed. It was recognized that these values are sensitive to wave 

height and period. The commonly used values of 3X - 5X were for fixed 

installations where the effects of relative motion are usually small. 
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8ut, the riser is a dynamically oscillating structure with large 

displacements and velocities so the high percentages of critical 

damping are not unexpected. 

Once the transfer function of the vessel/riser system is known 

for each period and d1rection then the direct1onal displacement 

spectrum can be obtained. The volume under the directional 

displacement spectrum is then used to prov1de statistical 

displacements. The volume is 

2 
S = TF(w. , ~. ) E(w. , ~. ) d~ dw 

X 
I I 

J' J J' J 
0 

(59) 

wher e 

TF(w . , ~ . ) = the modulus of TF(w . , ~ . ) J' J 

The integration is performed by using Simpson's one-third rule. The 

significant displacement is then available us1ng the appropriate 

Rayleigh constant for the Pierson-Noskowitz spectrum used. The 

significant displacement represents the peak-to-peak displacement, 

R . = 4 (S )) 
slg x 

(60) 

Once the significant displacement for each node is known then the 

stresses can be determined. A problem arises in the frequency domain 

in that all phas1ng information is lost. Only the magn1tudes of the 

displacements are known. This thesis assumes that the significant 

displacements occur at the same time. Although the assumption is not 
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necessarily correct it does represent a fairly good approximation. 

The stresses are based upon the significant nodal displacements and 

are calculated by the same method as for the unidirectional, planar 

riser cases. 
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III. NUMERICAL RESULTS 

Com arison With API Codes 

The riser model used for this study was based on a unidirectional 

wave model described in an American Petroleum Institute(API from here 

on) bulletin on marine risers(API, 1977). The bulletin's function was 

to compare eight industrial riser programs. Results from the 

submitted cases varied but an overall pattern was produced. The API 

bulletin now provides a basis from which other marine riser programs 

can be compared. Comparison with the API codes is used in order to 

verify the riser computer program written for this thesis. 

Two cases were used to verify the ri ser model, one at 500 feet of 

water depth and one at 1500 feet of water depth. The API data for the 

cases is presented in Table 2. The displacements and bending stresses 

for each case are compared with the API results. 

The displacements and bending stresses for t. he 500-foot water 

depth are shown in Figs. 4 and 5. The displacement curves represent 

the minimum and maximum excursions of the riser during its steady 

state response. For example, for the riser top end, the static offset 

is 15 feet with a dynamic displacement of -'2 feet; thus, a 13-foot 

minimum displacement and a 17-foot maximum displacement. The bending 

stress curve represents the maximum bending stress at each node during 

the riser steady state response. The maximum stresses don' t 
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Table 2. Riser Properties 

500 ft and 1500 ft Water De ths 

Riser Outside Diameter 

Riser Inside Diameter 

Riser Nodulus of Elasticity 

Drilling Nud 

Weight in Air of 50' Pipe Joint 

Sea Water Specific Weight 

SWL to Riser Support Ring 

Seafloor to Lower Ball Joint 

16. 00 in 

14. 75 in 

30 X 10 psi 

89. 8 lb/ft 

8621 lb 

64 lb/ft 

50. 0 ft 

30. 0 ft 

Drag Coefficient 

Inertia Coefficient 

Effective Diameter for Wave Force 

0. 7 

1. 5 

26. 0 in 

Static Offset('X of Water Depth) 3. 0/ 

Current: 

Wave Height 

Wave Period 

knot at SWL, zero at lower ball joint 

20. 0 ft 

9. 0 secs 

4. 0 ft Vessel Surge Amplitude(Peak to Peak) 

Vessel Surge Phase Angle(Vessel Lags Wave Crest) 15' 

Riser Length 

Top Tension 

500 ft Water De th 

520 

120 kips 

1500 ft Water De th 

1520 ft 

290 kips 
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necessarily occur at the same time, though. This provides an envelope 

of expected maximum bending stresses. Results of the 500-foot water 

depth compare well except for near the top of the riser. This is due 

to the assumed boundary condition locations along the riser. For this 

riser study it was assumed that the riser would be pinned at the 

seafloor and would extend to the still water level only, a riser 

length of 500 feet. The riser cases submitted for the API study 

assumed the riser to be pinned at the lower balljoint, 30 feet above 

the seafloor, with an extension to the slip ring, 50 feet above the 

still water level, a length of 520 feet. The minor disparity in the 

results near the riser top are accounted by this reason. The 

assumption is not a poor one for a few reasons. The first is that the 

results still agree well throughout the remaining riser length. 

Secondly, the maximum bending stresses are the most important values 

needed from a ri ser analysis and the maximums occur near the bottom 

for the majority of dynamic riser analyses. Results compare very well 

near the bottom so the maximum values are preserved. Thirdly, and 

maybe the most important reason, the essence of the thesis involves 

comparisons and as long as the riser model is consistent then the 

comparisons won't be affected. Note t. hat the disparity of bending 

stress near the riser top end is not as great for the 1500-foot water 

depth case, Figs. 6 and 7. This is as expected since a 30-foot 

differ ence in the blow-out-preventer to seafloor clearance is a 

smaller error for a 1500-foot water depth than for a 500-foot water 

depth. Note that results compare very well for the 1500-foot case as 
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with the 500-foot case. Based upon the two comparison cases it is 

evident that an acceptable riser model has been developed. 

It should be reiterated that in this study the stress 

distribution along the riser is evaluated using only the nodal 

displacements. The procedure used is accurate in regions where the 

curvature is discernable. However, in situations where two 

consecutive finite elements are nearly parallel the evaluation of the 

radius of curvature is quite sensitive and very susceptible to err or. 

This was observed in the stress calculation near the ball joint 

connected to the lower marine riser package. Since this is a 

localized numerical problem, it in no way affects the stress 

evaluation in the critical regions. However, the numerical values in 

the region where this occurred were adjusted to reflect the expected 

values. 

For the remainder of the results the 500-foot water depth case is 

to be used. This is primarily because many existing vessel/riser 

systems are currently being utilized in water depths of approximately 

500 feet. 

Vessel Phasin Com arison Cases 

Of particular importance to many frequency domain riser analyses 

is the topic of vessel phasing with respect to the wave. Some riser 

analyses, especially stochastic analyses, ignore or are unable to 

account for vessel phasing with respect to the wave. Three test cases 
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are examined in order to account for the effect of vessel phasing. 

The three cases are for a vessel lagging the wave crest by 90', a 

vessel lagging the wave crest by 45', and a vessel in phase with the 

wave crest, O'. The resulting displacements and stresses for the 

three cases are compared in Figs. 8 and 9. It is evident that a wide 

disparity is present between the three cases. The bending stresses 

located 125 feet from the seafloor vary widely with the 0 vessel 

phase value being more than twice the value of the 90 vessel lag 

value. In this sense it is observed that phasing is important. 8ut, 

for the riser analyses which don't account for the phasing the maximum 

values are preserved. Cases in which the vessel led the wave crest by 

45' and 90 were examined but were not presented since they closely 

resembled the 0' phasing case. Although slightly larger values were 

observed, the differences in response over the 0' phasing case were 

very small, not nearly as pronounced as the response differences 

between the 0' phase and lagging cases. This is a result of the 

increased hydrodynamic damping due to the larger wave forces for the 

vessel lead cases. Thus, the assumption of using no phasing will not 

necessarily provide the true results but will almost always provide 

the worst cases to be encountered. When performing a fatigue analysis 

vessel phasing would be of importance since low stress, high cycle 

runs are performed . Accurate di splacements and stresses are required 

in those instances, not the expected maximum values. If the desired 

results are the maximum values then using 0' vessel phasing will 

provide them. 
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Linearization Nethod Com arison Cases 

As previously discussed, when using a solution in the frequency 

domain the drag force requires linearization. The objective of the 

linearization is to fit the actual non-linear form of the drag force 

as closely as possible. Horgman's(1969a) method is compared against 

the newer, more accurate, method proposed by Krolikowsky and 

Gay(1980). The essential difference between the two methods is that 

with Borgman's analysis the current must be accounted for separately 

from the wave while Krolikowsky 's analysis allows for direct 

wave-current coupling interaction. Since the actual environment 

exhibits wave-current interaction effects Krolikowsky's method seems 

more reasonable. He demonstrated this to be true while comparing his 

technique and Hor gman 
's technique against the actual non-linear form 

of the drag force. Kr olikowsky made some sensitivity analyses 

exploring critical regions where each method converged or diverged 

around the actual non-linear drag force form. The sensitivity 

parameter was u /A. Recalling equation (30), c 
1 

2 2TZ 
A = (u +bw) + (aw) 

J 
(30) 

where a+bi is the structural displacement. A value of u /A = 1 
c 

provided the point at which the Krolikowsky method converged closely 

to the actual non-linear form while the Horgman method diverged 

heavily. 
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Figs. 10 and 11 present the results of comparing the two 

linearization methods. Three cases of u IA were examined; = j, = I, 
and = 2. Borgman's method is seen to underpredict the displacements 

and stresses when compared with Krolikowsky's method. This is an 

expected result since the force from Borgman's method is generally 

smaller. It is noticed that the stresses near the riser bottom are 

almost identical for both cases. This may indicate that bottom 

stresses may be mostly due to other factors besides wave and current 

forces, such as the specified offset and vessel motion. Thus, bottom 

stresses are similar for each method. Near the riser top end is where 

wide disparities result. It is evident that stresses near the riser 

top are controlled to a large par t by wave and current forces since 

the stresses differ significantly for each method. The linearization 

method of Krolikowsky's provides the greater stresses; thus, if 

stresses near the riser top are of importance then the Krolikowsky 

linearization method is a must. Probably the most important 

conclusion regarding the results lies with the ascertainment of the 

maximum expected stress. For most riser analyses the maximum bending 

stress occurs near the bottom of the ri ser. Using the linearization 

method of Krolikowsky's tends to increase the top end stresses. The 

top end stresses may increase enough to become the maximum stresses 

occurring in the riser. This can be of great importance to the 

overall design. With Borgman's method providing smaller top end 

stresses the maxi mum stress may be unaccounted for. Thus, concern i s 

warranted when top end stresses begin to approach maximum stress 
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values usually located near the riser bottom. With the use of 

Krolikowsky's linearization method the top end stresses may exceed the 

bottom stresses in the riser. 

Oirectional Sea Res onses 

The directional sea responses are based upon essentially the same 

riser data as presented in Table 2. However, a few differences exist 

which warrant discussion. 

When calculating directional riser responses some 

three-dimensional aspects are included. The question arises as to the 

form of the ocean currents. Three-dimensional currents exist but 

difficulties arise when trying to quantify them. AIso, resolving a 

given three-dimensional current into various directional planes might 

contribute significant errors since procedural uncertainties exist. 

Better knowledge of three-dimensional currents is needed before 

accurate planar configurations can be determined. Oue to the 

uncertainties regarding three-dimensional currents it was decided to 

neglect all current effects. Once accurate data is available then 

further research on the effects can be performed. 

Similar arguments exi st for the proposed static offset. 

Inclusion of a static offset in a specified plane is difficult to 

define from a three-dimensional viewpoint. No stati c offset was used 

for the directional response cases. 

For the steady state unidirectional waves a significant wave 
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height and period were specified as inputs. These quantities are now 

a function of the Pierson-Noskowitz wave energy spectrum. The wind 

speed measured 64 feet above the still water level is the input used 

to describe the spectrum. The spectral shape is then used to 

determine the significant wave height and period. Wind speeds of 20 

knots and 40 knots are used for the sensitivity cases. The 20-knot 

wind would supply a low energy sea while the 40-knot wind would supply 

a storm sea. A 20-knot wind would have a significant wave height of 

7. 4 feet and a period of 5. 3 seconds. A 40-knot wind would have a 

significant wave height of 29. 6 feet and a period of 10. 7 seconds. 

The most significant factor affecting the directional riser 

response is the vessel motion. Two different types of vessels are 

compared for the directional cases, a cylindrical platform and a 

dri 1 lshi p. Response amplitude operators(RAO) for the vessels are 

given in Fig, 12 . The surge case represents the maximum response 

direction and the vessels are symmetric around that direction. The 

RAO values located +45' around the surge direction are supplied. 

Information was unavailable regarding the +90 RAO values. In 

response to this the +90 RAO values were assumed to be identical to 

the +45 RAO values. Vessel phasing information with respect to the 

wave crest was also unavailable so values of 0' phase were used. The 

surge direction was assumed to be the wave mean peak energy direction 

since this represents the worst-case direction. RAO values between 

the given 0' and +45' curves were obtained using linear interpolation. 

In reponse to the neglected drag force the drag coefficient had 
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to be set equal to zero. This nullifies all drag force and relative 

motion considerations. As a consequence to this all cases with 

significant drag force effects must be carefully scrutinized. Since 

the relative motion aspect is also negated careful consideration must 

be given to the percentage of critical damping which is an input. 

This damping is intended to supply an equivalent viscous damping 

accounting for the loss of hydrodynamic damping. The damping 

contribution is important and it must be used to correctly account for 

the loss of hydrodynamic damping ordinarily available through relative 

motion. A value of 15K of critical is used for the test cases. In 

actuality, the percentage of critical damping is dependent upon many 

different parameters such as wave height and period. 

The degree of wave spreading is determined by the specified 

concentration factor. Three distinct wave spreading cases were 

examined in these test cases. Concentration factors of I, 3, and Z5 

were chosen based upon correlation with available gulf of sexi co data. 

Factors equal to I and 3 represent directionally-spread seas while a 

factor of Z5 essentially represents a unidirectional wave. Fig. 13 

shows the variation in angular spread of each. 

The first sensitivity analysis involves a comparison between a 

cylindrical platform and a dri llship. The cylindrical platform has 

similar RAO values in all directions while the drillship has varying 

RAO values over direction. The cylindrical platform RAO values are 

from the surge curve in Fig. IZ while the drillship uses the RAO 

values interpolated around the sur ge cur ve. The wave mean peak 
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direction was assumed to act in the surge direction, the worst-case 

direction for each vessel. Figs. 14, 15, 16, and 17 show the 

displacements and stresses for the 20-knot and 40-knot cases. The 

directional sea displacement figures represent one-half of the 

peak-to-peak displacement. The cylindrical platform displacements and 

stresses are higher than those of the drillship. This is as expected 

since the surge RAO values represent the worst-case direction and the 

cylindrical platform has these worst-case RAO values in all 

directions. RAO values for the drillship are smaller away from the 

surge direction. Had the wave mean peak direction been chosen as 

another direction, such as sway, then the trends would not have been 

the same. But, design and fatigue analyses are tested on a worst-case 

direction so justification exists for choosing the wave mean peak 

direction equal to the worst-case direction. Note that the results 

for the drillship depend upon the degree of spread of the waves. This 

is not the case for the cylindrical platform, though. Since the 

cylindrical platform has similar RAO values in all directions then 

altering the spread of the waves will not alter the significant 

responses. Recall that the spreading function merely redistributes 

energy over direction, it does not alter the total energy content. 

Thus, similar results would be obtained using any spreading 

concentration factor for the cylindrical platform case. Conclusively, 

the drillship has smaller displacements and stresses than the 

cylindrical platform for the wave mean peak direction aligned with the 

worst-case RAO values. 
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The second sensitivity analysis involves a comparison between the 

degree of wave spreading. Figs. 14, 15, 16, and 17 also show the 

results of these cases. The results do vary for the effects of wave 

spread on the dri llship. The responses for a largely spread sea are 

smaller than for a concentrated sea. This is as expected since the 

drillship RAO values decrease away from the surge direction, also the 

wave mean peak direction. Integration of these smaller response 

energies provides a smaller total response. For the case of a 

concentrated sea the wave tends to act as a unidirectional sea. Since 

the drillship RAO values are larger towards the mean peak direction of 

the unidirectional wave then the total responses wi 1 1 be larger. This 

is reflected in the results. As the concentration factor increases 

then the directional sea approaches the unidirectional sea. Should 

the worst-case dri llship RAO values exist along the mean peak 

direction of the wave then the worst-case results are expected. Note 

that all these results are dependent upon the largest drillship RAO 

values being aligned along the mean peak direction of the sea. 

The responses for the 40-knot wind case appear reasonable but 

they deserve additional discussion. Recall that the drag force and 

hydrodynamic damping effects are neglected. This could be a source of 

significant error for the 40-knot wind case where drag effects may be 

important. The loss of the drag force contribution is important but 

it is felt that the loss of the hydrodynamic damping may be the key 

consideration. For forcing frequencies near the vessellriser natural 

frequencies inadequate damping can be a detrimental factor. Without 
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sufficient damping the results could be misleading and worthless, The 

importance of choosing an appropriate equivalent viscous damping 

percentage is 
stressed� 

. For dynamic problems dealing with large 

displacements and large velocities the equivalent viscous damping 

percentage can be as high as 30K and even beyond. 

Another interesting note to be discussed involves the 20-knot 

wind case. The displacements near the top end decrease before 

increasing, an extra inflection point. An extra inflection point also 

occurs in the bending stress curve as a result of this. This may be 

explained as a resulting vibration of the second mode. The deflected 

shape of the displacement curve resembles the second mode eigenvector 

shape. It was noted that the vessellriser system's second natural 

frequency approximated the significant period of the 20-knot energy 

spectrum, thus, the excitation of the second mode. Since no 

appreciable wave energy was located near the first natural frequency 

of the system this mode of vibration was not excited. This is an 

important consideration to keep in mind when low energy seas are being 

considered as the primary type of wave excitation. An adequate number 

of lower modes must be included. 
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IV. SUMMARY AND CONCLUSIONS 

This thesis investigated riser response to directional seas. 

Unidirectional model verification was achieved through a comparison 

with API codes. Effects of vessel phasing and drag force 

linearization methods were studied. Results dealing with different 

vessels and the effects of directional spreading were obtained. 

The planar model was verified with the API codes for a 

unidirectional wave. Displacements and stresses for two cases, water 

depths of 500 ft and 1500 ft, were compared with published API 

results. The results compared favorably with the exception of minor 

disparities due to the assumed boundary condition locations. 

The effects of vessel phasing on riser responses were studied. 

Displacements and stresses varied for the three cases. A 90 vessel 

lag provided the smallest, response while a 0' vessel lag provided the 

largest response. Responses for the vessel leading t. he wave crest 

approximated the 0' results. If accurate responses are desired then 

the vessel phasing effects are important. If the maximum expected 

values are desired then vessel phasing can be neglected since a 0 

phase provides the worst case results. Based on t, his investigation it 

is apparent that vessel phasing characteristics are a significant 

factor for design considerations. 

Two drag force linear i zat i on methods wer e compared in order to 

ascertain the effects of each. Borgman 's(1969a ) technique represents 
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the original method while the Krolikowsky and Gay(1980) technique 

represents the updated method. Top end responses differ for the two 

techniques with the larger responses provided by the Kr olikowsky and 

Gay(1980) method. Hottom responses in the riser are similar for both 

techniques. This would lead to the conclusion that bottom responses 

are affected more by offset and vessel motion as opposed to wave 

forces. The wave forces are noticed to play an important role in the 

top end responses, though. If the top end responses become 

significant then the more reasonable technique from Krol ikowsky and 

Gay(1980) is recommended. 

The directional responses were obtained using a Pierson-Hoskowitz 

wave energy spectrum in conjunction with a cosine power spreading 

function. Responses were obtained for two cases, a ZO-knot wind and a 

40-knot wind. The wave mean peak direction was aligned with the 

worst-case vessel response direction. Note that the results are based 

upon this orientation and any other orientation would provide 

different results. 

Cylindrica1 platform responses were compared with drillship 

responses. The dri llship responses were smaller than the cylindrical 

platform responses. The reason for this is that the cylindrical 

p1atfor m had the worst-case RAO values in all directions while the RAO 

values for the dri llship decreased away from the wave mean peak 

direction. 

The effect of directional spreading showed that smaller responses 

were obtained for larger amounts of directional spread. This is a 



result of the drillship RAO values decreasing away from the wave mean 

peak direction. 

An interesting result appeared for the 20-knot wind case. Double 

inflection points occurred in the response curves indicating an 

excitation of the second mode of vibration. This is logical since the 

significant period of the 20-knot spectrum closely approximated the 

second natural frequency of the vessel/riser system. 

The drag effects for the directional responses wer e neglected in 

order to satisfy the requirements of linear spectral techniques. The 

drag force contribution was lost altogether and the hydrodynamic 

damping contribution was accounted for through the use of an 

equivalent viscous damping. Small wave height, inertially dominated 

forces are able to satisfactorially circumvent this assumption as long 

as an appropriate equivalent viscous damping percentage is used. This 

is portrayed through the 20-knot wind case. Results from cases with 

significant drag effects deserve careful judgement as to the validity 

of the results. This is portrayed through the 40-knot wind case. 

Difficulty arose when deciding on an appropriate equivalent percentage 

of critical damping since the percentage of critical is dependent upon 

many parameters such as wave height and period. 

Uncertainties exist as to the directional configurations due to 

three-dimensional currents and offsets. For these reasons both 

current and offset effects were neglected in the directional response 

calculations. With adequate knowledge of three-dimensional currents 

and offets their inclusion in directional responses is possible. 
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The area of fatigue has the most to benefit from directional sea 

representations. Fatigue lives are traditionally based upon 

unidirectional seas in a worst-case response direction. Accounting 

for the large directional spread in the low energy seas could 

substantially increase fatigue lives. 
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APPENDIX. NOMENCLATURE 

[A] 

BI 

B 

C 
0 

Cd 

C 
m 

C 

(C] 

[C]M 

[C]M 

D 
n 

D( ) 

E(w) 

E(w, ~) 

real part of complex displacement y 0 

modulus of the water/riser relative motion 

[a] [C]M[a] 

imaginary part of complex displacement y 0 

drag force linearization coefficient 

drag force linearization coefficient 

Fourier series coefficient 

drag coefficient for wave force 

inertial covf"i~ient for wave force 

Fourier series coefficient 

global damping matrix 

hydrodynamic damping matrix of riser system 

equivalent viscous damping matrix of riser system 

water depth 

effective diameter for wave force calculation 

Fourier series coefficient 

directional spreading function 

riser modulus of elasticity 

unidirectional wave energy spectrum 

directional wave energy spectrum 

E(w. , ~. ) J' J 

f 

the wave energy at frequency w . and direction ~ . 
J J 

total force per unit length on the riser 

f 
drag drag force per unit length on the riser 
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(F] global force array on riser 

acceleration due to gravity 

distance above seabed 

H 
n 

H 
s 

wave height 

n cubic Hermitian polynomial function th 

significant wave height 

ij 
[k]E1 

[k ]T 
0 

[k ]7, 

]707 

[K] 

KE 

[m]7O7 

m 
a 

m 
0 

riser moment of inertia 

wave number 

row and j column of [k ]TOT 
. th . th 

element bending stiffness matrix 

element constant tension stiffness matrix 

element varying tension stiffness matrix 

total stiffness matrix of element 

global stiffness matrix of riser system 

kinetic energy 

length of element 

total mass matrix of element 

steel mass plus mud mass per unit length 

added mass per unit length 

volume under the directional wave energy spectrum 
or area under the unidirectional wave energy spectrum 

[M] 

moment along the riser 

global mass matrix of riser system 

number of modes 
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rms 

R slg 

SE 

S 
x 

mass density of sea water 

root mean square 

radius of curvature along the riser 

significant peak-to-peak riser displacement 

concentration factor 

strain energy 

volume under the directional displacement spectrum 

time 

TF(w. , ~. ) J' J 
transfer function of riser system at frequency w. 

and direction 
J 

effective tension along riser 

u 
c 

u 
w 

u 
w 

U 

w n. 
1 

y; 

yo 

initial constant effective tension at z=O of element 

varying tension per unit length along riser 

current velocity 

wave particle velocity 

wave particle acceleration 

amplitude of wave particle velocity 

wind speed 64 feet above sea surface (ft/sec) 

wave frequency in rads/sec 

natural frequency of mode i in rads/sec 

nodal displacements and rotations for an element 

complex riser response of form a + bi 

riser acceleration 

riser velocity 

riser displacement 

distance from neutral axis to outer edge of riser 



71 

z = vertical coordinate along length of riser element 

! = factorial 

S = modal damping parameter(X of critical/100) for mode i 
1 

6 . . = Kronecker delta function = ) for i equal to j 1J = 0 for i not equal to j 
[a] = the normalized modal matrix obtained from 

the eigen analysis 

(0 ) = normalized eigenvector for mode i 
1 

phasing angle 

pi 

( )' 

bending stress along the riser 

gamma function 

angle about the mean peak direction 

angle of mean peak direction 

d( )/dz 
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