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ABSTRACT

Riser Response to Directional Seas. (August 1985
Gerard Lewis McCoy III, B.S., Texas A & M University

Chairman of Advisory Committee: Dr. John M, Niedzwecki

This thesis examines the dynamic response of a coupled
vessel/riser system to directional seas. The introduction of
directional seas into the analysis provides a truer representation
than unidirectional sea conditions and reduces the overdesign typical
of riser analyses.

A planar riser model is develaped to calculate displacements and
stresses, the solution being performed in the frequency domain using
finite element methods. Model verification is provided through a
direct comparison with an API bulletin on marine risers.

Inherent in the frequency domain soTution is the assumption of
linearity. The drag force term, being non-linear, requires
linearization. Two linearization methods will be compared to find the
effects on displacements and stresses.

Recent findings have indicated the importance of vessel motion on
riser dynamics. Effects of vessel phasing on displacements and
stresses are compared and discussed.

The directional displacements and stresses are calculated for a
Tow energy sea and a storm sea. The magnitude of directional

spreading is varied in order to ascertain the effects of degree of




directional spread. The response characteristics of a cylindrical
floating platform and a typical drillship are compared. The use of a
directional sea is found to decrease maximum displacements and
stresses along the riser. With this knowledge available riser

overdesign can be minimized.
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[. INTRODUCTION

Offshore 01l and gas exploration has been occurring since the
early twentieth century. Typical structures for those times were
placed in water depths usually less than 50 feet. These structures
were knowingly overdesigned since the offshore environmental forces
were not well understood. In an effort to minimize overdesign,
research into offshore environmental forces and structures able to
withstand those forces was undertaken. With a better understanding of
the offshare environment, structure design can be optimized so as to
yield thc rnost economical choice for the type situation to be
encountered. Current oil and gas exploration is occurring or is
planned for water depths approaching 5,000 feet. Fixed jacket
structures, gravity platforms, and jack-up rigs are used in depths of
up to 1,000 feet beyond which they become uneconomical to deploy. One
of the most economical methods for oil and gas exploration beyond 300
feet of water is a drillship or floating platform coupled with a riser
system.

A riser is best described as the structural link between the
surface vessel and the seafloor. The surface vessel can be a
drillship, semi-submersible, or possibly a tension leg platform. A
telescoping pipe with a ball joint at the lower end is the top
The citations on the following pages follow the style of

Ocean Engineering- An International Journal of Research and
Development..



connection to the riser, The bottom of the riser is connected to a
blow-out-preventer at the seafloor. A tensioner on the surface vessel
is used to provide a tension to the riser. The surface vessel is
constrained in surge and sway motions by either a dynamic positioning
system or by mooring lines. Fig. 1 depicts a planar riser system
responding to a unidirectional wave.

The numerical model of the riser is based upon theoretical
considerations of a tensioned beam-column element. Finite element
methods are used to take into account the lateral stiffness of the
riser. The lateral stiffness of the riser is approximated by bending
and geometric stiffness contributions. The mass distribution along
the riser is accounted for through a lumped mass model which includes
the steel mass, mud mass, and the effective added mass of the fluid.
Hydrodynamic damping and equivalent viscous damping are taken into
account. The viscous damping is assumed to be proportional to the
mass and stiffness matrices in order to decouple the equations of
motion. Damping ratios for each mode of vibration are given from
which the equivalent viscous damping matrix is constructed.

The riser responds to the offshore environmental forces and the
vessel motions. Morison's equation is used to transform the wave and
current kinematics into forces acting on the riser system. Within the
frequency domain solution Ties the assumption of linearity; thus, the
non-linear drag term in the wave force equation must be linearized.
Two methods, one by Borgman(1969a) and one by Krolikowsky and

Gay(1980), are currently available for this. Borgman(1969a) first



Fig. 1. Riser Response to a Unidirectional Wave



presented a linearization solution which provided the basis for most
frequency domain riser analyses. He presented the method of
equivalent linearization which minimizes the mean square error between
the linearized approximation and the actual non-linear form. The
method presented by Krolikowsky and Gay(1980) expands the drag force
term in a Fourier series in order to minimize the mean square error
This method has not been incorporated in many riser analyses due to
its recent development. The vessel motion effects are accounted for
by forcing the riser's top end to respend as the vessel does, a
dynamic boundary condition. Response amplitude operators are used to
describe the vessel motion.

The unidirectional riser analysis is the standard analysis
approach used by industry while few directional analyses are
performed. Most riser response research has concentrated on planar
responses due to unidirectional design waves. Chakrabarti and
Frampton(1982) give an overview of many riser analyses previously
published, the majority of which are unidirectional, planar analyses.
The information summarized in their paper starts with the early
project Mohole studies. The major conclusion which was stressed
throughout the article was that a dynamic analysis is essential for
deep water riser analyses. The frequency domain dynamic solution is
used more often than the time history or random vibration solution.
The frequency domain solution is used in this thesis.

Despite being the standard analysis approach used by industry,

the unidirectional response does not represent the true response due



to short crested, confused seas. Difficulty with describing
directional seas has been part of the problem. With recent
advancements regarding directional sea kinematic descriptions it is
possible to calculate directional responses.

Directional waves and corresponding wave kinematics can now be
accurately described using a Tinear wave theory with an appropriate
wave spreading function. Comparisons with field studies have confirmed
this(Forristall et al., 1978). Accurate descriptions of wave
kinematics were shown to be more dependent upon directionality than on
the degree of non-linearity of the wave. What this means is that more
accurate results are obtained using a linear wave theory with an
appropriate spreading function as opposed to a unidirectional high
order non-linear wave theory.

Due to the previous inability to describe directional sea
conditions there has not been much literature published about
directional riser responses. The few existing three-dimensional riser
analyses focus on the methodology for treatment of the directional
seas. Most papers reviewed, see Table 1, skirted the directional seas
issue and studied orthogonal responses due to a resolved
unidirectional wave. Gardner and Kotch(1976), Gnone et al.(1975), and
Paulling(1975) have all completed three-dimensional riser response
studies. A1l studies treat the wave force by the same method. Each
chooses a unidirectional wave from which a wave force is calculated
along the riser length. The force is then resolved into two

orthogonal components. Responses in each orthogonal plane are then



Table 1. References of Three Dimensional Dynamic Analyses

Dynamic Spatial Wave
Investigation Solution Solution Force
Type Technique Input
Gardner and Time Finite Resolved
Kotch(1976) History Element Unidirectional
Gnone, Frequency
Signorelli, Domain & Finite Resolved
and Time Element Unidirectional
Giuliano History
(1975)
Paulling Frequency Finite Resolved
(1979) Domain Element Unidirectional
Berge and Random not
Penzien(1974) | Vibrations specified Directional




calculated. The difficulty with this method lies in the treatment of
the wave force. At best this method is an approximation to the
directional wave force transmitted to the riser. Berge and
Penzien{1974) calculate tower responses due to directional seas. The
directional spectrum is calculated by separating the
frequency-dependent parts from the directional-dependent parts. This
allows use of an accepted spectral density with an appropriate
spreading function. The Pierson-Moskowitz amplitude spectrum was used
in conjunction with a circular normal spreading function. Although
the method was applied to an offshore tower and not a riser, the basic
approach is still applicable to riser problems.

The directional response of the riser is found by integration of
various unidirectional responses around a mean wave direction. The
wave kinematics in each direction are calculated using a linear wave
theory with a spreading function. The unidirectional response for
each direction is calculated based upon the wave kinematics for that
direction. Fig. 2 depicts a directional riser response system.

The purpose of this thesis is to investigate riser response to
directional seas. Directional seas allow a truer representation of
the wave kinematics found in random short crested seas.
Correspondingly, the wave forces and riser responses are more
accurate. Thus, some aspects of overdesign may be minimized.

Differences between unidirectional and directional seas will be
discussed. Typical design waves, usually from long peried swell, do

not exhibit as much directional spread as shorter period waves. Seas



Fig. 2. Riser Response to a Directional Sea



of Tow energy content usually exhibit a large amount of directional
spread; thus, the largest impact for directional seas representation
is expected in the description of low energy seas.

Two drag force Tinearization methods will be discussed and
results for each method will be compared. Since each method has the
same motive, to match the actual non-linear drag form as closely as
possible, the merits of each will be evident through a direct
comparison.

The vessel motion effects on the riser response are seen to play
an important role. The effects of vessel phasing with respect to the
wave crest are to be investigated through comparisons using different

values for the phasing angle.



IT1. DEVELOPMENT OF THE MATHEMATICAL AND NUMERICAL MODELS

This chapter contains the derivation of the planar riser motion
equations. The finite element equations are calculated based upon the
riser equations of motion. Once the elemental equations are known the
eigen analysis is performed, Calculation of the current and wave
forces is accomplished using two different linearization methods.

The directional sea spectrum is defined by a unidirectional wave
spectrum in conjunction with a directional spreading function.
Calculation of the directional responses due to a directional spectrum
is possible once the unidirectional responses for different directions

are known.

Finite Element Representation

Gardner and Kotch(1976) presented a derivation of the riser
equation of motion based upon Bernoulli-Euler beam theory whereby
lateral displacements are controlled primarily by bending and not
shear. 0Only the results are presented here since the derivation is
available in the article. The equilibrium equation can be expressed

as

£ = (m*ma)i CEDy T S Tyt - Ty (1)

where
T=T1 +T'z . (2)
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With the equilibrium equation known the total energy is available
The total energy of a uniform beam segment is the summation of the

kinetic energy and the elastic strain energy,

L
KE + SE ' [imen) )+ 1)t + im0 @ . @)
0
The principle of stationarity of the total energy is used to obtain
the finite element equations. The lateral displacement can be
represented by the summation of four deformation functions known as

the cubic Hermitian polynomials,

4
y =i§1 Hiyi (4)
where
Hy=1-3 2 3
=1 -3z w2z’ (52)
Hy = 2[ 1-(z/1) ]2 , (5b)
Hy = 3(2/0)% - 2(2/0)° (5¢)
and
22
Hy=— 1 (z/L) 17, (5d)
L

for the configuration

z=L i}-» y
3
Ya
z=0 }- 2
Y

2



Mass Matrix

A lumped mass formulation is used to represent the mass of the
riser system. The assumption of zero rotational inertia provides a
mass matrix with translational degrees of freedom only. With zero

mass for the rotational modes the matrix becomes

. (6)

Stiffness Matrix
The stiffness matrix is derived by applying the principle of
minimization of strain energy,

L L
k.‘=-————:—EIJH1!' Hy' dz*TOJ Hi M dz
i

+T‘[2H1!dez. %)

where T0 is the tension at the lower end of the element. The bending

stiffness matrix so formed is



6 3L

2E1 3L 2L

[kle; = -6 -3L

BLTT3 o s

The initial constant tension stiffness
36 3L

To 3L 4L

[kl; =—==>|-36 -3

o 30L L -2

The varying tension stiffness matrix accounts

-6 3L
-3 L
6 -3L (8)
-3t 212
matrix is
-36 3L
-3L -L?
36 -3l | . (9)
-3L 4L

for the linear variation

of the tension along the element length,

3/6  L/10
L/10 L*/30
-3/5 -L/10

[klr, =T
T 0 -L7/60

-3/5 0

-L/10 -L*/60
3/5 0 . (10)
0 L#/10

The complete stiffness matrix is the summation of the bending

stiffness, initial constant tension stiffness, and the varying tension

stiffness,

(Klror = Klgy * Ky + Ky -

Damping Matrix

(11)

Equivalent viscous damping is used as part of this analysis.

Hydrodynamic damping is also used in this analysis, it arises only

when relative motion is considered.

further discussed with the wave force derivation.

The hydrodynamic damping will be

An equivalent

13



percentage of critical damping is input for the viscous damping to be
used. The input allows different percentages of critical damping to
be applied to any mode of vibration. The viscous damping can be
formed through uncoupling the equations of motion by introducing modal
transformations(Paz, 1980). This provides a diagonal matrix whereby
each diagonal term represents a mode which can be assigned a

percentage of critical damping,

T = =
[21'[CIyle] = aniaiaij = [A] . (12)
The damping matrix can be calculated by
T
_ -1 -1
[Cly = | [e] [A] [e1 " . (13)

The advantage of orthogonality gives the following expression which is

equivalent but computationally more efficient,
N T
(Cly = M) | E 284y (931005} | O] (19)

Eigen Analysis

The eigen analysis is performed in order to calculate the natural
frequencies and mode shapes for the riser. They are needed for

various reasons. One reason is that the aforementioned equivalent

14



viscous damping analysis makes use of the results. Secondly, if the
natural frequencies fall within the expected zone of significant wave
energy then a dynamic analysis would be warranted. The eigen analysis
provides this needed information.

The undamped natural frequencies and mode shapes are solved using
the characteristic equation(Bathe, 1982). A numerical procedure
becomes essential for a 4 X 4 matrix or larger. Various iterative
schemes are available for this purpose such as matrix deflation, the
Jacobi method, and the Householder method. These procedures are well
documented in many numerical analysis books, such as Bathe(1982).

The generalized Jacobi method(Paz, 1980) is used in this thesis to

obtain the natural frequencies and normalized mode shapes

Current and Wave Forces

The current and wave forces are evaluated through the well known
Morison's equation. Linearization of the non-linear drag term is
accomplished by two methods. The first linearization method to be
presented was first introduced by Borgman(1969a). The second
linearization method was developed by Krolikowsky and Gay(1980).

The wave force equation can be written as

£ = 4mpC 070, - wp(C-1)D7F + 4pOC, (u, bu ) [u tu -F] . (15)

The first term represents the inertial force due to the fluid

acceleration around the riser. The second term represents a force



contribution which is a function of riser acceleration only, it is not
dependent on the wave kinematics. Therefore, it is shifted to the
left side of the equations of motion and is represented as an
additional mass contribution; thus, the term added mass. The third
term is the non-linear drag term which gives rise to the relative
motion aspect of the riser problem. The non-linear drag requires the
riser velocity value but the riser velocity is a result of the solved
equations of motion, it is not known beforehand. This creates an
iterative process for solving the equations of motion.

The wave kinematics are assumed as steady state harmonic motions.
For solution convenience complex notation is used. The wave velocity

is derived from linear wave theory as

_ int
u, = uge N (18)
where
Hkg cosh kh
Uy = (17)
2w cosh kd
and
e™t = cos wt + 1 sin wt . (18)

It is understood that the real part of the solution is to be used.

Borgman Linearization Procedure

The drag force per unit length is given as



farag = 1P0Cq (ruc-9) [uuc-yl (19)

The first assumption Borgman made in his linearization was that the
mean value of the velocity was equal to zero; thus, the current

effects would have to be handled separately from the wave effects.
The results are linearly superimposed, a dynamic part and a static

part,

farag = 1P0Cq (u,79) [y, 91 + §p0Cq u fu] (20)

Separating the two components introduces the major source of error.
with this method. Borgman's Tinearization method uses a least squares
Tinear estimate equating the variance with the root mean square value.

The result is
)
906y (0,750 1,51 = 190y [o,5] fe] wen o

Real notation becomes more convenient for the calculation of the root

mean square value of the relative velocity,

2 2n/w
1 2
[uw-y] = [ [uw-y] dt (22)
rms 2n/w
0
where iwt
u, = U,y coswt = real part of ue (23)

and



18

y = a coswt - b sinwt = real part of (a‘bi]eiWt (24)

with a+bi representing the assumed complex form of the riser

displacement. The result of the root mean square value is

1 }
[uw-y] = E [(uo*hw)’ + (aw)? ] . (25)
rms
The complete drag force becomes
}
8 H
fdrag = 1pDCy —2—“- [(u0+bw)‘+(aw)’] (U my) * 4p0C4 u fuc| (26)

Krolikowsky and Gay Linearization Procedure

This linearization method uses a Fourier series representation
which allows proper inclusion of the current effects. Recalling the

drag term, equation (19),

farag = HP0Cs (8, u-9) [y ou il (19)
The linearization method provides a drag term of final form

forag = $P0CBy (U9} » 1DCBouc (2n

where Bl and BZ are evaluated through the linearization method.
Again, real notation becomes more convenient. Equations (23) and (24)

are combined to obtain

U,V = (ugrbw) coswt + aw sinut , (28)



which can be rewritten as

uw-y = A sin{wt+@)

where
A= [[u°+bw)2 + [aw)’]%
and
tan 0 = Eﬂ_:_fz_
aw
Thus,

fdrag = §pDCd [A sin(wt+@) + uc] A sin{wt+d) + U

The Fourier series representation is written as

fdrag =C, ¢ I C, cos n(wt+@) + z D, sin n(wt+d)
n=l n=1
where
2n/w
W
¢, = f dt
0 or J drag
0
2n/w
W
¢, = ; ’ fdrag cos n(wt+d) dt ,
0
and
2n/w
W
0, = ; J fdrag sin n(wt+d) dt

(29)

(30)

(31)

" (32)

(33)

(34a)

(34b)

(34c)



for n21. Only the first order term is used since higher harmonics are

assumed to supply small contributions. The integrations give

constants of:

for uczA;
Co = P04 (AT +u?) (352)
for uC<A;
Az 1 3
Co = ngCd—; [I*Z(uc/A)’}sin (u /Ay + 3(uc/A)[1-(uc/A)’] , (35b)
for all Ues
=0, (36)
for uczA;
Dy = §pDCy 2Au, , (37a)
for uc<A;
8A2 i 3 -1 ]]
D, = }pDCd-g;— [1+§(uc/A)‘][l-(uc/A)‘] + E(uc/A}51" (u /A . (37b)
After the constants are reinserted into the Fourier series
representation the drag force term in final form becomes, from
equation (27),
fdrag = 1pDCyB (u-9) + 1pDCBouc (27)
where for uCZA;
B1 = ZuC s (38a)
B, = (A’/Zuc) U, (38b)

20
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and for uc<A;

8A

13 -
31=-3: [1~;(uC/A)2][1-(uC/A)=] + (uc/A)sin‘(uc/A) . (3%)

N ow

H
By = — [1+Z(uC/A)’]s7‘n'1(uC/A) + 3(uc/A)[1-(uc/A)‘] . (39b)

After the Tinearization of the drag force is performed the drag
term can be split into two contributions, a drag due to the water
velocity and a drag due to the structure velocity. The drag due to
the structure velocity is shifted to the left side of the equations as
a hydrodynamic damping contribution. The relative motion assumption
is the cause of the hydrodynamic damping contribution. For a riser
analysis the relative motion and hydrodynamic damping are important
assumptions. Without relative motion considerations the displacements

and stresses are usually overpredicted.
Directional Seas

Knowledge of wave kinematics is essential to the proper wave
force calculation upon a riser. Typical unidirectional waves tend to
overpredict flow kinematics. Using a higher-order wave theory to
better match the flow kinematics did not improve results much when
compared to actual measurements. But, Forristall et al.(1978) used a

linear wave theory combined with a directional spreading function to
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match measured velocities and accelerations very closely. The flow
kinematics matched better than when a high order unidirectional theory
was used.

The directional spectrum is assumed to be separable and can be
expressed as the product of a unidirectional wave energy spectrum and

a directional spreading function,
E(w,®) = E(w)D(<) . (40)

Fig. 3 provides a good picture for the concept. The directional
spreading function is designed to distribute but not alter the total
wave energy content. Since the total energy content is not altered
but only redistributed over direction then the following integral

results,

™
E(w) = [ E(w,*) do . (41)
-m
With this known an additional property of directional seas may be

derived,

"
] D(e) d* =1 . (42)
-T
Various directional spreading functions have been proposed over
time. The difficulty arises of describing an appropriate spreading

function since the true directional spread of ocean waters is random






and is based upon many different parameters. A cosine power spreading
function is a popular choice for several reasons. The cosine power
spreading function is rather straightforward and its few parameters
are easily handled. The degree of directional spreading is easily
accommodated with a specified concentration factor. The concentration
factor can easily be specified to approximate a unidirectional
spectrum as opposed to a directional spectrum. The cosine power
spreading function has been shown to provide a good fit when compared
to actual measurements. These reasons provide the impetus for
choosing the cosine power spreading function from Forristall et
al,(1978),

22571 pa(gan)

D(e) = ————— cos?S[3 (=TT, (43)
T I(25+1)

where D(e) exists for |--7| < m. Borgman(1969b) presented an

alternative spreading function,

2s

285 p2(sel)

D(e) = , (44)

m I(2s+1)
where D(e) exists only for |e-3| < im., Additionally,
ir
J D(e) de =1 . (45)
-im
An additional simplification results when the concentration factor is

an integer,

24




r(n) = (n-1)! (46)
where n is any integer. The resulting expression for an integer valued
concentration factor is
2% (s1) 2 -
D(e) = ——————— cos"7(e-*) . (47)
T (2s)!
The larger the concentration factor the more concentrated the
spreading function becomes. Theoretically, as the concentration
factor approaches infinity the directionally spread’sea approaches the
unidirectional sea.
The unidirectional energy spectrum chosen for this thesis is the

Pierson-Moskowitz spectrum from Comstock(1967) which is of the form

.0081g% -.74¢"
E(w) = exp|l——55—| - (48)
w5 V4w4

The Pierson-Moskowitz spectrum has been shown to adequately describe
the wave energy as a function of wind velocity and wave frequency.

The properties of the spectrum are available knowing the derivation of
the energy spectrum. For this spectrum the significant wave height is

related to the spectral area,

H, =4 [m 3t (49

25



26

where

m, = [ E(w) dw . (50)

0
Recall that the directional energy spectrum, E(w,®), contains an
equivalent amount of energy as the unidirectional energy spectrum,
E(w); thus, the spectral volume under the directional energy
spectrum(see Fig. 3) is equivalent to the spectral area under the
unidirectional energy spectrum. The resulting equivalent expression

for m, is

m =] E(w,®) d» dw . (51)

Responses and Numerical Procedures

Basic Procedure

The addition of the mass, damping, and stiffness element matrices
provides the global constraining matrix equations of motion. The
nodal forces and corresponding global force array are calculated
through integration of the wave and current forces per unit length.
Numerical integration is used due to the complexity of integrating the
force per unit length exactly. While the commonly used Simpson's rule

is an adequate method, more efficient methods of numerical integration



exist. Numerical quadrature techniques, as described in Bathe(1982),
are used. Ten-point Gaussian quadrature is the technique used and it
is capable of integrating up to a nineteenth order polynomial exactly;
thus, only ten points are required for integration of the force along

a specified element. The final matrix equations of motion are

[MI{y} + [CI{y} + K1y} = {F} (52)
where
(€] = [C]y * (€1 - (53)
The steady state harmonic displacements of the riser are assumed of

the complex form
y = oyt (54)

Using this complex notation along with the complex notation of the

t term on both sides of the

water particle velocity provides an eiw
equations of motion. The term can be cancelled from both sides thus
eliminating the time component. The complex nodal displacements are
solved for in this manner.

The time-invariant displacement can be solved for separately from
the time-dependent displacement. Superposition of both displacements
provides the total displacement.

The static displacement is the displacement due to the current
effects and the proposed static offset. It depends upon the stiffness
matrix only and does not include inertial or damping effects. The top

node of the riser is assumed to have a static offset equal to an input
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percentage of the water depth. The penalty method(Bathe, 1982) is
used to constrict the top node of the riser to the specified offset.
The current force effects are accounted for simultaneously. The
penalty method provides an error contribution since the current force
on the top node of the riser is essentially negated through the
penalty method formulation. The consequences of this error are minor
when one considers that vessel motion is the dominating contribution
for riser motion at its top end. The static displacement is
calculated through this method.

The time-dependent motion of the riser is solved while accounting
for the time-varying forces and inertial, damping, and stiffness
effects. Vessel motion at the riser's top end is accounted for
through the used of response amplitude operators with appropriate
phasing at a specified wave period. These input data are available
from ship motion programs and the methods for obtaining them are not
discussed here. As with the static case, the penalty method is used
to constrict the riser top end motion to the vessel motion; thus, the
wave force contribution at the top end of the riser is negated. The
inclusion of damping effects provides a complex matrix since a
component ninety degrees out of phase is included. Inverting this
complex matrix(which accounts for the mass, damping, and stiffness)
and multiplication with complex forces provides the complex
displacements. The process described here is an iterative process
since the hydrodynamic damping and the wave force are dependent upon

the riser velocity. Convergence within a specified Timit is usually



reached in three to ten 1térations.

The complex dynamic displacement is Tinearly superimposed to the
static displacement to find the total displacement. For each case
involving a static offset there will be a maximum displacement and a
minimum displacement. GOnce the displacements are known then bending
stresses can be calculated.

Bending stresses within a riser can be calculated through various
methods. The most common method uses the stress-strain matrix, a
result of finite element analysis, in order to calculate the stresses.
The stress-strain matrix requires the resulting deflections and
rotations. In the analysis used for this thesis, condensation is used
to reduce the total number of degrees of freedom. The problem results
in rotational degrees of freedom being condensed out; thus,
calculation of the stresses from the stress-strain matrix is not
possible. Another method, one which is used in this thesis, makes use
of geometrical considerations in order to obtain the stresses.

The method, presented by Morgan(1975), calculates the radius of
curvature along the riser from which the bending stress is calculated.
Once the radius of curvature is known then the mcmené is calculated

from

M=— . (55)

Finally, the stress is found from
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. (56)

The method assumes that no element stretching exists. Bending
stresses are calculated along the riser from this method. The maximum
bending stresses are recorded along the riser length giving rise to an
envelope. This is accomplished by passing the steady state wave by
the riser and continuously calculating the bending stresses as the

wave passes.

Directional Response Considerations

In order to calculate responses in irregular seas a few
assumptions must be made. The first is that an irregular sea can be
considered as being a summation of many small amplitude regular waves.
Secondly, the sum of the responses to these regular waves is equal to
the response due to the sum of the waves. A third assumption is that
the response at each wave period is linearly proportional to the wave
height. Model tests have confirmed these assumptions(Minkenberg and
Gie, 1974) for vessels in small amplitude waves and it is possible to
extend these assumptions to include a riser.

The first step in applying the foregoing assumptions into
calculating responses is to discretize the spectrum into a number of
regular waves. The basic procedure is well outlined(Comstock, 1967
for a vessel response calculation., The directional spectrum is

discretized into an adequate number of frequencies and directions.
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Using more discretizations will give better results although using too
many may become costly. The wave height for each discretized volume

is calculated by

H=e [ZE(wj,oj)swao ]’ (s7)

where &w and & are differential increments of frequency and
direction. Fig. 3 shows a discretized volume of the directional
spectrum. Knowledge of the wave height, wave period, and vessel
response amplitude operator for the specific period and direction
provides the needed information to obtain a unidirectional, planar
riser response. Once the riser response is calculated a transfer
function can be obtained for the vessel/riser system versus wave
height,
Zy0
LICRS Rl (58)

The transfer function is of the form of a riser peak-to-peak response
divided by the wave height. The assumption of linear response with
wave height must be maintained, though, and this presented a problem.

The drag force term in Morison's equation provides a squared wave
height term. The linearization methods incorporated in this thesis do
not provide a linear response with wave height but other linearization
methods are available which do. This problem had to be addressed.
Before changing linearization methods to account for a linear wave
height much thought was given to the effects of eliminating drag

altogether. As was mentioned earlier, riser response to directional



seas is considered to have a large impact for low energy seas, not for
high energy design waves. With small wave heights the wave force
becomes inertially dominated; thus, the drag can be neglected.
Marshal1(1976) observed for wave height-to-diameter ratios less than ¢
that neglecting the drag force term altogether will result in errors
Tess than 5%. This provides a firm basis for neglecting the drag for
the small waves typical in low energy seas. Should the wave heights
increase and drag forces begin to dominate then the drag force would
have to be linearized by other methods incorporating a linear wave
height term.

By neglecting the drag force the relative motion consideration is
Tost. This is an undesirable result since the hydrodynamic damping
contribution is very significant for waves near the riser natural
frequencies. Without the inclusion of some type of damping the
results could be useless. Thus, account had to be made of damping.

As was mentioned earlier, the ability to use an equivalent viscous
damping is available. This solves the problem of accounting for the
hydrodynamic damping which is unavailable without relative motion.

Now another problem arises as to what the percentage of critical
damping should be. By comparing computer runs with and without
hydrodynamic damping the equivalent percentage of critical damping was
evaluated. Typical values of 15% to 20% of critical damping were
observed. It was recognized that these values are sensitive to wave
height and period. The commonly used values of 3% - 5% were for fixed

installations where the effects of relative motion are usually small.

32




33

But, the riser is a dynamically oscillating structure with large
displacements and velocities so the high percentages of critical
damping are not unexpected.

Once the transfer function of the vessel/riser system is known
for each period and direction then the directional displacement
spectrum can be obtained. The volume under the directional
displacement spectrum is then used to provide statistical

displacements. The volume is

© %-n

2
TF(upeg)| Elwgoe;) do o (59)

0 ~in
where

TF(wj,oj) = the modulus of TF(wj,'j) .

The integration is performed by using Simpson's one-third rule. The
significant displacement is then available using the appropriate
Rayleigh constant for the Pierson-Moskowitz spectrum used. The

significant displacement represents the peak-to-peak displacement,
- H
Rogg =4 (507 (60)

Once the significant displacement for each node is known then the
stresses can be determined. A problem arises in the frequency domain
in that all phasing information is lost. Only the magnitudes of the
displacements are known. This thesis assumes that the significant

displacements occur at the same time. Although the assumption is not



necessarily correct it does represent a fairly good approximation.
The stresses are based upon the significant nodal displacements and
are calculated by the same method as for the unidirectional, planar

riser cases.
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III, NUMERICAL RESULTS

Comparison With API Codes

The riser model used for this study was based on a unidirectional
wave model described in an American Petroleum Institute(API from here
on) bulletin on marine risers(API, 1977). The bulletin's function was
to compare eight industrial riser programs. Results from the
submitted cases varied but an overall pattern was produced. The API
bulletin now provides a basis from which other marine riser programs
can be compared. Comparison with the API codes is used in order to
verify the riser computer program written for this thesis.

Two cases were used to verify the riser model, one at 500 feet of
water depth and one at 1500 feet of water depth. The API data for the
cases is presented in Table 2, The displacements and bending stresses
for each case are compared with the API results.

The displacements and bending stresses for the 500-foot water
depth are shown in Figs. 4 and 5. The displacement curves represent
the minimum and maximum excursions of the riser during its steady
state response. For example, for the riser top end, the static offset
is 15 feet with a dynamic displacement of *2 feet; thus, a 13-foot
minimum displacement and a 17-foot maximum displacement. The bending
stress curve represents the maximum bending stress at each node during

the riser steady state response. The maximum stresses don't




Table 2. Riser Properties

500 ft and 1500 ft Water Depths

Riser Qutside Diameter 16.00 in
Riser Inside Diameter 14.75 in
Riser Modulus of Elasticity 30 X 106 psi
Drilling Mud 89.8 1b/ft3
Weight in Air of 50' Pipe Joint 8621 1b
Sea Water Specific Weight 64 1b/ft3
SWL to Riser Support Ring 50.0 ft
Seafloor to Lower Ball Joint 30.0 ft
Drag Coefficient 0.7
Inertia Coefficient 1.5
Effective Diameter for Wave Force 26.0 in
Static Offset(% of Water Depth) 3.0%
Current: } knot at SWL, zero at lower ball joint
Wave Height 20.0 ft
Wave Period 9.0 secs
Vessel Surge Amplitude(Peak to Peak) 4.0 ft
Vessel Surge Phase Angle(Vessel Lags Wave Crest) 15°

500 ft Water Depth 1500 ft Water Depth
Riser tength 520 ft 1520 ft

Top Tension 120 kips 290 kips









necessarily occur at the same time, though. This provides an envelope
of expected maximum bending stresses. Results of the 500-foot water
depth compare well except for near the top of the riser. This is due
to the assumed boundary condition locations along the riser. For this
riser study it was assumed that the riser would be pinned at the
seafloor and would extend to the still water level only, a riser
length of 500 feet. The riser cases submitted for the API study
assumed the riser to be pinned at the lower balljoint, 30 feet above
the seafloor, with an extension to the slip ring, 50 feet above the
sti11 water Tevel, a length of 520 feet. The minor disparity in the
results near the riser top are accounted by this reason. The
assumption is not a poor one for a few reasons. The first is that the
results still agree well throughout the remaining riser Tength.
Secondly, the maximum bending stresses are the most important values
needed from a riser analysis and the maximums occur near the bottom
for the majority of dynamic riser analyses. Results compare very well
near the bottom so the maximum values are preserved. Thirdly, and
maybe the most important reason, the essence of the thesis involves
comparisons and as long as the riser model is consistent then the
comparisons won't be affected. Note that the disparity of bending
stress near the riser top end is not as great for the 1500-foot water
depth case, Figs. 6 and 7. This is as expected since a 30-foot
difference in the blow-out-preventer to seafloor clearance is a
smaller error for a 1500-foot water depth than for a 500-foot water

depth. Note that results compare very well for the 1500-foot case as
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with the 500-foot case. Based upon the two comparison cases it is
evident that an acceptable riser model has been developed.

It should be reiterated that in this study the stress
distribution along the riser is evaluated using only the nodal
displacements. The procedure used is accurate in regions where the
curvature is discernable. However, in situations where two
consecutive finite elements are nearly parallel the evaluation of the
radius of curvature is quite sensitive and very susceptible to error
This was observed in the stress calculation near the ball joint
connected to the lower marine riser package. Since this is a
localized numerical problem, it in no way affects the stress
evaluation in the critical regions. However, the numerical values in
the region where this occurred were adjusted to reflect the expected
values,

For the remainder of the results the 500-foot water depth case is
to be used. This is primarily because many existing vessel/riser
systems are currently being utilized in water depths of approximately

500 feet.

Vessel Phasing Comparison Cases

0f particular importance to many frequency domain riser analyses
is the topic of vessel phasing with respect to the wave. Some riser
analyses, especially stochastic analyses, ignore or are unable to

account for vessel phasing with respect to the wave. Three test cases



are examined in order to account for the effect of vessel phasing.

The three cases are for a vessel lagging the wave crest by 90°, a
vessel lagging the wave crest by 45°, and a vessel in phase with the
wave crest, 0°. The resulting displacements and stresses for the
three cases are compared in Figs. 8 and 9. It is evident that a wide
disparity is present between the three cases. The bending stresses
located 125 feet from the seafloor vary widely with the 0° vessel
phase value being more than twice the value of the 90° vessel lag
value. In this sense it is observed that phasing is important. But,
for the riser analyses which don't account for the phasing the maximum
values are preserved, Cases in which the vessel led the wave crest by
45° and 90" were examined but were not presented since they closely
resembled the 0° phasing case. Although slightly larger values were
observed, the differences in response over the 0° phasing case were
very small, not nearly as pronounced as the response differences
between the 0° phase and lagging cases. This is a result of the
increased hydrodynamic damping due to the larger wave forces for the
vessel lead cases. Thus, the assumption of using no phasing will not
necessarily provide the true results but will almost always provide
the worst cases to be encountered. When performing a fatigue analysis
vessel phasing would be of importance since low stress, high cycle
runs are performed. Accurate displacements and stresses are required
in those instances, not the expected maximum values. [f the desired
results are the maximum values then using 0° vessel phasing will

provide them.
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Linearization Method Compariseon Cases

As previously discussed, when using a solution in the frequency
domain the drag force requires linearization. The objective of the
Tinearization is to fit the actual non-Tinear form of the drag force
as closely as possible. Borgman's(1969a) method is compared against
the newer, more accurate, method proposed by Krolikowsky and
Gay(1980). The essential difference between the two methods is that
with Borgman's analysis the current must be accounted for separately
from the wave while Krolikowsky's analysis allows for direct
wave-current coupling interaction. Since the actual environment
exhibits wave-current interaction effects Krolikowsky's method seems
more reasonable. He demonstrated this to be true while comparing his
technique and Borgman's technique against the actual non-linear form
of the drag force. Krolikowsky made some sensitivity analyses
exploring critical regions where each method converged or diverged
around the actual non-Tinear drag force form. The sensitivity

parameter was uC/A. Recalling equation (30),

H
A= [(u0 v bw)? s (aw)z] , (30)

where a+bi is the structural displacement. A value of u:/A =1
provided the point at which the Krolikowsky method converged closely
to the actual non-Tinear form while the Borgman method diverged

heavily.
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Figs. 10 and 11 present the results of comparing the two
linearization methods. Three cases of uC/A were examined; = §, = 1,
and = 2. Borgman's method is seen to underpredict the displacements
and stresses when compared with Krolikowsky's method. This is an
expected result since the force from Borgman's method is generally
smaller, It is noticed that the stresses near the riser bottom are
almost identical for both cases. This may indicate that bottom
stresses may be mostly due to other factors besides wave and current
forces, such as the specified offset and vessel motion. Thus, bottom
stresses are similar for each method. Near the riser top end is whe{r‘e
wide disparities result. It is evident that stresses near the riser
top are controlled to a large part by wave and current forces since
the stresses differ significantly for each method. The linearization
method of Krolikowsky's provides the greater stresses; thus, if
stresses near the riser top are of importance then the Krolikowsky
linearization method is a must. Probably the most important
conclusion regarding the results lies with the ascertainment of the
maximum expected stress. For most riser analyses the maximum bending
stress occurs near the bottom of the riser. Using the linearization
method of Krolikowsky's tends to increase the top end stresses. The
top end stresses may increase enough to become the maximum stresses
occurring in the riser. This can be of great importance to the
overall design. With Borgman's method providing smaller top end
stresses the maximum stress may be unaccounted for. Thus, concern is

warranted when top end stresses begin to approach maximum stress
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values usually Jocated near the riser bottom. With the use of
Krolikowsky's linearization method the tap end stresses may exceed the

bottom stresses in the riser.

Directional Sea Responses

The directional sea responses are based upon essentially the same
riser data as presented in Table 2. However, a few differences exist
which warrant discussion.

When calculating directional riser responses some
three-dimensional aspects are included. The guestion arises as to the
form of the ocean currents. Three-dimensional currents exist but
difficulties arise when trying to quantify them. Also, resolving a
given three-dimensional current into various directional planes might
contribute significant errors since procedural uncertainties exist.
Better knowledge of three-dimensional currents is needed before
accurate planar configurations can be determined. Due to the
uncertainties regarding three-dimensional currents it was decided to
neglect all current effects. Once accurate data is available then
further research on the effects can be performed.

Similar arguments exist for the proposed static offset.

Inclusion of a static offset in a specified plane is difficult to
define from a three-dimensional viewpoint. No static offset was used
for the directional response cases.

For the steady state unidirectional waves a significant wave



height and period were specified as inputs. These quantities are now
a function of the Pierson-Moskowitz wave energy spectrum. The wind
speed measured 64 feet above the still water level is the input used
to describe the spectrum. The spectral shape is then used to
determine the significant wave height and period. Wind speeds of 20
knots and 40 knots are used for the sensitivity cases. The 20-knot
wind would supply a Tow energy sea while the 40-knot wind would supply
a storm sea. A 20-knot wind would have a significant wave height of
7.4 feet and a period of 5.3 seconds. A 40-knot wind would have a
significant wave height of 29.6 feet and a period of 10.7 seconds.
The most significant factor affecting the directional riser
response is the vessel motion. Two different types of vessels are
compared for the directional cases, a cylindrical platform and a
drillship. Response amplitude operators(RAO) for the vessels are
given in Fig. 12. The surge case represents the maximum response
direction and the vessels are symmetric around that direction. The
RAO values located *45° around the surge direction are supplied.
Information was unavailable regarding the #90° RAQ values. In
response to this the 90" RAO values were assumed to be identical to
the $45° RAO values. Vessel phasing information with respect to the
wave crest was also unavailable so values of 0° phase were used. The
surge direction was assumed to be the wave mean peak energy direction
since this represents the worst-case direction. RAO values between
the given 0° and *45° curves were obtained using Tinear interpolation.

In reponse to the neglected drag force the drag coefficient had
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to be set equal to zero. This nullifies all drag force and relative
motion considerations. As a consequence to this all cases with
significant drag force effects must be carefully scrutinized. Since
the relative motion aspect is also negated careful consideration must
be given to the percentage of critical damping which is an input.

This damping is intended to supply an equivalent viscous damping
accounting for the loss of hydrodynamic damping. The damping
contribution is important and it must be used to correctly account for
the loss of hydrodynamic damping ordinarily available through relative
motion. A value of 15% of critical is used for the test cases. In
actuality, the percentage of critical damping is dependent upon many
different parameters such as wave height and period.

The degree of wave spreading is determined by the specified
concentration factor. Three distinct wave spreading cases were
examined in these test cases. Concentration factors of 1, 3, and 25
were chosen based upon correlation with available gulf of Mexico data.
Factors equal to 1 and 3 represent directionally-spread seas while a
factor of 25 essentially represents a unidirectional wave., Fig. 13
shows the variation in angular spread of each.

The first sensitivity analysis involves a comparison between a
cylindrical platform and a drillship. The cylindrical platform has
similar RAO values in all directions while the drillship has varying
RAO values over direction. The cylindrical platform RAO values are
from the surge curve in Fig. 12 while the drillship uses the RAD

values interpolated around the surge curve. The wave mean peak




D(8)

-90 -70 -50 -30 -10 10 30 50 70 90

Fig. 13.

0-8 (DEGREES)

Comparison of Spreading Concentration Factors

54



55

direction was assumed to act in the surge direction, the worst-case
direction for each vessel. Figs. 14, 15, 16, and 17 show the
displacements and stresses for the 20-knot and 40-knot cases. The
directional sea displacement figures represent one-half of the
peak-to-peak displacement. The cylindrical platform displacements and
stresses are higher than those of the drillship. This is as expected
since the surge RAQ values represent the worst-case direction and the
cylindrical platform has these worst-case RAO values in all
directions. RAQ values for the drillship are smaller away from the
surge direction. Had the wave mean peak direction been chosen as
another direction, such as sway, then the trends would not have been
the same. But, design and fatigue analyses are tested on a worst-case
direction so justification exists for choosing the wave mean peak
direction equal to the worst-case direction. Note that the results
for the drillship depend upon the degree of spread of the waves. This
is not the case for the cylindrical platform, though. Since the
cylindrical platform has similar RAQ values in all directions then
altering the spread of the waves will not alter the significant
responses. Recall that the spreading function merely redistributes
energy over direction, it does not alter the total energy content
Thus, similar results would be obtained using any spreading
concentration factor for the cylindrical platform case. Conclusively,
the drillship has smaller displacements and stresses than the
cylindrical platform for the wave mean peak direction aligned with the

worst-case RAD values.
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The second sensitivity analysis involves a comparison between the
degree of wave spreading. Figs. 14, 15, 16, and 17 also show the
results of these cases. The results do vary for the effects of wave
spread on the driliship. The responses for a largely spread sea are
smaller than for a concentrated sea. This is as expected since the
drillship RAQ values decrease away from the surge direction, also the
wave mean peak direction. Integration of these smaller response
energies provides a smaller total response., For the case of a
concentrated sea the wave tends to act as a unidirectional sea. Since
the drillship RAQ values are larger towards the mean peak direction of
the unidirectional wave then the total responses will be larger. This
is reflected in the results. As the concentration factor increases
then the directional sea approaches the unidirectional sea. Should
the worst-case drillship RAO values exist along the mean peak
direction of the wave then the worst-case results are expected. Note
that all these results are dependent upon the largest drillship RAO
values being aligned along the mean peak direction of the sea.

The responses for the 40-knot wind case appear reasonable but
they deserve additional discussion. Recall that the drag force and
hydrodynamic damping effects are neglected. This could be a source of
significant error for the 40-knot wind case where drag effects may be
important. The loss of the drag force cantribution is important but
it is felt that the Toss of the hydrodynamic damping may be the key
consideration. For forcing frequencies near the vessel/riser natural

frequencies inadequate damping can be a detrimental factor. Without
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sufficient damping the results could be misleading and worthless. The
importance of choosing an appropriate equivalent viscous damping
percentage is stressed. For dynamic problems dealing with large
displacements and large velocities the equivalent viscous damping
percentage can be as high as 30% and even beyond.

Another interesting note to be discussed involves the 20-knot
wind case. The displacements near the top end decrease before
increasing, an extra inflection point. An extra inflection point also
occurs in the bending stress curve as a result of this. This may be
explained as a resulting vibration of the second mode. The deflected
shape of the displacement curve resembles the second mode eigenvector
shape. It was noted that the vessel/riser system's second natural
frequency approximated the significant period of the 20-knot energy
spectrum, thus, the excitation of the second mode. Since no
appreciable wave energy was located near the first natural frequency
of the system this mode of vibration was not excited. This is an
important consideration to keep in mind when low energy seas are being
considered as the primary type of wave excitation. An adequate number

of lower modes must be included.
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IV. SUMMARY AND CONCLUSIONS

This thesis investigated riser response to directional seas.
Unidirectional model verification was achieved through a comparison
with API codes. Effects of vessel phasing and drag force
linearization methods were studied. Results dealing with different
vessels and the effects of directional spreading were obtained.

The planar model was verified with the API codes for a
unidirectional wave. Displacements and stresses for two cases, water
depths of 500 ft and 1500 ft, were compared with published API
results. The results compared favorably with the exception of mingor
disparities due to the assumed boundary condition locations.

The effects of vessel phasing on riser responses were studied.
Displacements and stresses varied for the three cases. A 90° vessel
lag provided the smallest response while a 0° vessel lag provided the
largest response. Responses for the vessel leading the wave crest
approximated the 07 results. If accurate responses are desired then
the vessel phasing effects are important. If the maximum expected
values are desired then vessel phasing can be neglected since a 0°
phase provides the worst case results. Based on this investigation it
is apparent that vessel phasing characteristics are a significant
factor for design considerations.

Two drag force linearization methods were compared in order to

ascertain the effects of each. Borgman's{1969a) technique represents



the original method while the Krolikowsky and Gay(1980) technique
represents the updated method. Top end responses differ for the two
techniques with the larger responses provided by the Krolikowsky and
Gay(1980) method. Bottom responses in the riser are similar for both
techniques. This would lead to the conclusion that bottom responses
are affected more by offset and vessel motion as opposed to wave
forces. The wave forces are noticed to play an important role in the
top end responses, though. If the top end responses become
significant then the more reasonable technique from Krolikowsky and
Gay(1980) is recommended.

The directional responses were obtained using a Pierson-Moskowitz
wave energy spectrum in conjunction with a cosine power spreading
function. Responses were obtained for two cases, a 20-knot wind and a
40-knot wind. The wave mean peak direction was aligned with the
worst-case vessel response direction. Note that the results are based
upon this orientation and any other orientation would provide
different results.

Cylindrical platform responses were compared with drillship
responses. The drillship responses were smaller than the cylindrical
platform responses. The reason for this is that the cylindrical
platform had the worst-case RAO values in all directions while the RAD
values for the drillship decreased away from the wave mean peak
direction.

The effect of directional spreading showed that smaller responses

were obtained for larger amounts of directional spread. This is a
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result of the driliship RAD values decreasing away from the wave mean
peak direction.

An interesting result appeared for the 20-knot wind case. Double
inflection points occurred in the response curves indicating an
excitation of the second mode of vibration. This is logical since the
significant period of the 20-knot spectrum closely approximated the
second natural frequency of the vessel/riser system.

The drag effects for the directional responses were neglected in
order to satisfy the requirements of Tinear spectral techniques. The
drag force contribution was lost altogether and the hydrodynamic
damping contribution was accounted for through the use of an
equivalent viscous damping. Small wave height, inertially dominated
forces are able to satisfactorially circumvent this assumption as Tong
as an appropriate equivalent viscous damping percentage is used. This
is portrayed through the 20-knot wind case. Results from cases with
significant drag effects deserve careful judgement as to the validity
of the results. This is portrayed through the 40-knot wind case.
Difficulty arose when deciding on an appropriate equivalent percentage
of critical damping since the percentage of critical is dependent upon
many parameters such as wave height and period.

Uncertainties exist as to the directional configurations due to
three-dimensional currents and offsets. For these reasons both
current and offset effects were neglected in the directional response
calculations. With adequate knowledge of three-dimensional currents

and offets their inclusion in directional responses is possible



The area of fatigue has the most to benefit from directional sea
representations. Fatigue lives are traditionally based upon
unidirectional seas in a worst-case response direction. Accounting
for the large directional spread in the low energy seas could

substantially increase fatigue Tives.
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APPENDIX. NOMENCLATURE

real part of complex displacement Yo

modulus of the water/riser relative motion
(61 [C3yL0]

imaginary part of complex displacement Yo
drag force linearization coefficient

drag force linearization coefficient

Fourier series coefficient

drag coefficient for wave force

inertial coefficient for wave force

Fourier series coefficient

global damping matrix

hydrodynamic damping matrix of riser system
eguivalent viscous damping matrix of riser system
water depth

effective diameter for wave force calculation
Fourier series coefficient

directional spreading function

riser modulus of elasticity

unidirectional wave energy spectrum
directional wave energy spectrum

the wave energy at frequency wj and direction .j
total force per unit length on the riser

drag force per unit length on the riser



{F}

1
(kg
Kl
0
(k.

Cklror
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global force array on riser

acceleration due to gravity

distance above seabed

wave height

nth cubic Hermitian polynomial function
significant wave height

/=1

riser moment of inertia

wave number

ith row and jt“ column of [k].l.or
element bending stiffness matrix

element constant tension stiffness matrix
element varying tension stiffness matrix
total stiffness matrix of element

global stiffness matrix of riser system
kinetic energy

Tength of element

total mass matrix of element

steel mass plus mud mass per unit length
added mass per unit Tength

volume under the directional wave energy spectrum
or area under the unidirectional wave energy spectrum

moment along the riser
global mass matrix of riser system

number of modes



rms

Rsig

SE
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mass density of sea water

root mean square

radius of curvature along the riser

significant peak-to-peak riser displacement
concentration factor

strain energy

volume under the directional displacement spectrum
time

transfer function of riser system at frequency w,
and direction 'j J

effective tension a]png riser

initial constant effective tension at z=0 of element
varying tension per unit length along riser
current velocity

wave particle velocity

wave particle acceleration

amplitude of wave particle velocity

wind speed 64 feet above sea surface (ft/sec)
wave frequency in rads/sec

natural frequency of mode i in rads/sec

nodal displacements and rotations for an element
complex riser response of form a + bi

riser acceleration

riser velocity

riser displacement

distance from neutral axis to outer edge of riser



vertical coordinate along length of riser element

factorial

modal damping parameter(% of critical/l100) for mode i

or i equal to j

Kronecker delta function =1 f
=0 for i not equal to j

the normalized modal matrix obtained from
the eigen analysis

normalized eigenvector for mode i

phasing angle

pi

bending stress along the riser

gamma function

angle about the mean peak direction

angle of mean peak direction

d( )/dz
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