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ABSTRACT 

A Study of Non-Homogeneous Absorbing Markov Chains. (December 1975) 

John Kevin Bean, B. S. , Texas A&M University 

Chairman of Advisory Committee: Dr. U. J. Hartfiel 

The objective of this thesis is to investigate general conditions 

which guarantee the existence of limits in non-homogeneous absorbing 

Markov chains. The major emphasis of this thesis will be a collection 

of theorems analogous to the classical results of Markov chain theory 

concerning the limiting behavior of Markov chains. 

A first result generalizes the classical Markov chain result 
k 

concerning the existence of lim A , where A is the transition matrix 
k~ 

of the Narkov chain. This result is generalized into a non-homogeneous 

Markov chain setting by allowing the transition matrix A to change at 

each step of time. This leads to the study of lim A . . . A . Con- 1'' 

ditions necessary for the existence of this limit are determined. 

A second result generalizes the classical Markov chain result 

concerning the existence of 

k-1 
lim I + A + . . . + A 

k~ k 

where A is the transition matrix of the Markov chain. This result is 

also generalized to a non-homogeneous Narkov chain result by allowing 

the transition matrix to change at each step of time. This leads to 

the study of 



I+A + . . . +A 1 im 1 ' 1 ' k-1 
k~ k 

Conditions are provided guaranteeing the existence of this limit. 

The results obtained in this thesis are then applied to problems 

usually resolved by classical Narkov chain theory, but are actually 

more suited to a non-homogeneous Narkov chain solution. 
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CHAPTFR I 

INTRODUCTION 

Definitions and Notations. The definitions and notations found in 

this thesis are consistent with those used in Gantmacher [2] and Hohn 

[5]. Exceptions to the above are the following. 

All matrices considered herein are n x n and nonnegative where 

(k) th 
n & 2. For any matrix A, a. . will denote the ij entry of. A 

(k) , th Likewise x will denote the i entry in s. vector x . Further, i 

~A~ will denote the maximum absolute value of the entries of A and 

. th k r, (A, ) will denote the i row sum of A . Finally, e will 'be used to 
1 K 

th denote the vector with all entries zero except the k entry which is 

one. 

Back round and Statement of the Problem. Probability theory is 

one of the most important and most studied of the applied mathematical 

fields. Probability study originated in the mid 1600's, with principle 

works attributed to Fermat, Pascal and Huygens, with later significant 

discoveries by Bernoulli, Gauss, Laplace and others. The study of 

Markov chains was begun in 1907 when Andrei Andreevich Markov in- 

vestigated a sequence of dependent random variables [8]. The related 

sequences of probability matrices were called Markov chains. Further 

investigations established Markov chains as a great theoretical tool 

Th f r f eh' th ' f 11 rh seyl f th ~Pat ~ f 
the American Mathematical ~gociet 



in probability study. In the hands of physicists, this theory was 

transformed into an active means for the study of natural processes, 

among these Brownian motion, population growth and games of chance. 

Economic as well as other applications were also found. 

Markov's work dealt only with finite chains. The denumerable 

extension was developed by A. N. Kolmogorov in 1936. Further research, 

all dealing with the convergence of homogeneous Markov chains, was 

done hy bh Feller, J. Hadamard and A. Y. Khinchin, all of whom made 

significant contributions to the theory. 

Two classical results of Markov chain theory on the limiting 

behavior of Narkov chains concerns the existence of 

(1) lim A 
k 

k~ 

and 

I+A+A +. . . +A 
2 k-1 

(2) lim 
k k~ 

where A is the transition matrix of the Markov chain. These two 

results can be generalized into a non-homogeneous Markov chain setting 

by allowing the transition matrix to change at each step of time. 

This leads to the non-homogeneous Markov chain problems considered in 

this thesis. These concern the existence of 

(1) lim A . . . A 

k~ 

and 
I+Al+'. . +Al ~ 

. . A 

(2) lim 
k~ 

In particular, in this thesis conditions are given which guarantee 

that 



I 0 

lim A . . . A 

k~ 1 
N 0 

and conditions are given which guarantee that 

lim — (I+A +. . . +A . . . A ) 
1 
k 1 ''' 1''' k — 1 

I 0 

N 0 

whore N is some matrix. 

Finally the results of this thesis will be applied to problems 

usually arising in the theory of classical Markov chains, but which, 

fact, are more appropriate to the theory of non-homogeneous Markov 

chains. 



CHAPTER II 

RESULTS CONCFRNING LIMITS IN NON-HOMOGENEOUS ABSORBING 

MARKOV CHAINS 

This chapt:er, which constitutes the theoretical portion of the 

thesis, will deal with the theory of non-homogeneous absorbing Markov 

chains. The chapter is divided into two sections. The first section 

deals with the limiting behavior of a non-homogeneous absorbing Markov 

chain. In the second section, that work is applied to evaluate a 

limit concerning the arithmetic mean of a non-homogeneous absorbing 

Markov chain. 

R 1r ~C. ' L' ' ' 
N -H Ah:~P 

Chains. In this section, necessary conditions will be given that will 

guarantee that lim A . . . A exists, where A is a stochastic matrix in 
k~ 

an absorbing Markov chain for all k. A tool which will be employed 

in the development of these conditions is called the measure ot full 

indecomposability [4] and is defined as follows. 
max 

min Let JJ(A) = isR a. ij , where R and C denote non- 
R~+(C)=n jtC 

empty subsets of row and column indices, respectively, with ~N~ being 

the number of elements in set N. 

For example, 

if A= 
3 1 0 

6 0 3, then JJ(A) 1 

0 2 2 

while 



2 0 

if A = 3 3 7, then p(A) = 2. 

0 9 3 

The fundamental result given in this section is achieved through 

the following sequence of lemmas developing the properties of p as 

related to the product of matrices. 

Lemma 1. Suppose A , A , . . . , A is a sequence of matrices with n-1 

V(A ) & 0 for all k. Then, A . . . A A & 0. 
n — 1 

'' 
2 1 

Proof. Let A & 0 be a matrix such that p(A) & 0. For any column 

n vector x & 0 in R , define ~x~ as the number of nonzero entries in 

x. Choose any column vector x & 0 such that x has at least one zero 

and at least one nonzero entry. Set ~x~ = s i. e. x has s nonzero 'I 

entries. Then, there exists a permutation matrix P which permutes 1 

the nonzero entries of x to the first s positions, i. e. 

Px=y 
1 

1 

ysi 
0 

t Since P is a permutation matrix, P P = I. Thus, Ax = AIx = (AP )(P x) t 
1 1 

= AP y. Now, choose a second permutation matrix P such that 

P AP 
)s 

where B is r x s and B contains no zero rows. Thus, P Ax = (P AP )y, t 

Clearly, )y~ = ~x[ = s. Since B has at least one nonzero entry 



in each row, ~P AxI = ~Ax~ = r. Further, the zero-block of 
2 + + 

P AP is (n-r) x s. As we know by hypothesis that p(A) & 0, it t 
2 1 

follows that n — r + s & n. Therefore, r & s, i. e. ~x~ & ~AxI + + 

1 
Now, consider e for i c (1, 2, . . . , n). Clear. ly. 

I 
e 

i i 1 all i. Choose some arbitrary e . Then ~A e 
~ 

& ~e 
~ 

= 1. Hence 
1 + + 

by induction ~A . . . A e 
~ 

& k for all k & n so that ~A . . . A e i i 
1 + n-1 1 + 

i 
n — 1. Thus, A . . . A e & 0 and since e was arbitrarily c'hosen, n-1 1 

Lemma 2. Suppose A is a matrix with p(A) & 0. Then, there 

exists a matrix B such that 

(i) A & B and 

(ii) min b. , = p(B) = p(A). 
b &0 ij 
iJ 

Proof. Construct a matrix B as follows: Set 

a . if a. . & H(A) ij ij 
b, 

Clearly, A & B & 0 and hence p(A) & p(B) 

Now, consider an arbitrary submatrix L in B such that L is in 

rows with indices in R and in columns with indices in C, where 

~R( + ~C~ = n. Let L' be the submatrix in A with row indices in R 

and column indices in C. From the definition of p(A), we can find 

some E'. . such that E'. & p(A). Thus, L. . & p(A) and since L was 
iJ ij ij 

arbitrarily chosen, p(B) & g(A) . Therefore, p(B) = 1J(A) ~ 



Finally, consider min b. . . By the construction of B, 
b. . &0 3 
ij 

min b, , & H(A). As p(B) = p(A), there is a b, , & 0 so that b. . = p(A). 
b, &0 ij ij ij 

Hence min b, = p(B) = p(A) . 
b &0 ij 
i J 

Lemma 3. Suppose A , A , . . . , A is a sequence of matrices with 1' 2' ''' n-I 

P(A1) 0, . . . , W(A l)&0. Then, min(A A &A ) &;i(A ). . . P(A ). 
i, j 

Proof. Consider matrices A , A , . . . , A . Construct matrices 
11 1 

B B2, . . . , B 
1 

as follows: Set 1 2''''' n-1 

(k) 

b. , ij 
0 

if a, . &H(A) (k) 
ij — k 

otherwise 

so that by Lemma 2, H(B ) = P(A ) & 0 for all k & n — 1. Let k 

C = B B2. . . B 

Now, since 

(1) (2) 
min (B1B2). . = min E b. . b 1 2 ij . . . ii i i, j i, j i 1 1 

it follows by induction that 

min (1) (n-1) = min (B . . . B ) min Z b. . . . . b. ij . 1 n-1 ij . . ii i j i j il. . i 2 
1 n 2 

This fact, in conjunction with Lemma 1, implies 

c (B B ) T b(1) b(n-1) & ij 1 n-1 ij . . ii i j 
1 -2 1 n-2 



Thus, some b, . . . , b. , & 0. Now, b. & P(A ), . . . , b . & P(A ) ii ' ' i j ii — 1 ' ' i j — n — 1 n-2 1 n — 2 

so that c & p(A )p(A ). . . p(A ). Hence, min c. , & p(A ). . . 0(A ). ij 1 2 n-1 ij 1 ''' n-1 i, j 
Finally, as A & B, (A . . . A ). . & (B . . . B ). . for all i and j so 

that 

i (A ~ ~ ~ A 

i, j 

By applying these three lemmas, conditions will now be given that 

guarantee that a sequence of matrices A , . . . , A , . . . is such that 

lim A . . . A = 0. The conditions will only require certain conditions 
k~ 

imposed on the p(A ) and the row sums nf A , for each k. 

Theorem 1. Suppose A , . . . , A , . . . is a sequence of matrices 1' ' n 1' 

such that p(A ) & p, . . . , p(A ) & p, . . . where p & 0, 

(i) max r (A ) & 1 and i k 1 

(ii) there exists 6 0 & 6 & 1, such that for all k there 

exists i(k) such that r. (A, ) & 6. 

Then lim A . . . A = 0. 
k~ 

Proof. Consider Al. . . A . . . . Choose Bl (Ai A 1), 1' n-1 

(s+1)(n-1) 
B = (A . . . A ), . . . , B = H A . By Lemma 3, b. . 

s(n-1)+1 ij 

for each i, j and s. 

Consider the product B . . . B . Let B B = C. Then, s s+1 



(s) 
t=l 

min b, 6 + 1 — min b (s) (s) 
it it 

1 1 

n — 1 n — 1 
6 + 1 — H 

1 — p (1 6') & 1. 

n-1 n — 1 
Hence, r [B B ] & 1 — H (1-6) & 1 for all k. Set [1-H (1 — 6)] = R. 

k s s+1 

Thus, max r. [B B ] & R & l. s s+1 
1 

n n n 
Now, r (XY) = r ) X Y = ) ) X Y i i it tk it tk t=l k=1 t=l 

n 
X r (Y) & r, (X)max r. (Y) 

k 1 i ' i i 

Since X and Y were arbitrarily chosen, this holds for any X and Y. 

By applying these results, we have 

r. (B . . . B +2 ) & max r. (B B ). . . max r, (B B ) a+2m — . i s+1 s ' ' i a+2m-1 a+2m i 1 

R ''' R = R. for all i. 
Now, let m approach ~. As m -+ ~ , R s- 0. Hence, for all m 

i, r. (B1. . . B ) s- 0 and lim Bl. . . B = 0. Therefore, lim Al. . . A = 0. i 1 m k+ k+ 

This result finds its use in the following corollary which provides 

conditions guaranteeing the existence of a limit of a non-homogeneous 

absorbing Markov chain. 

Corollary 1. Suppose C , C . . . C , . . . is a sequence of stochastic 

matrices and 



for all k. 

Further suppose lim A . . . A = 0. 
k~ 

1''' Then, lim C . . . C exists. 
k~ 

Proof. Set the product 

I 0 

1 k 
Lk Al k 

As lim A . . . A = 0, to show lim C . . . C exists it is only necessary 
k~ k~ 

to prove L has a limit. Note that 
k 

L=B+AB 
2 

LS = Bl + A1B2 + AlA2B3 

L = B +A B + . . . + A . . . A B 

Hence, L. . & t . «. . . f-. for all i and j. Thus, the sequence (1) (2) (k) 
ij — ij — ' ' ' — ij 

L , . . . L , . . . is monotonically increasing componentwise. 

We know Ck is stochastic for each k. Further, C1C2 is stochastic 

and hence by induction C . . . C is stochastic. Thus, 1 is an upper 

bound for Ri 
(k) 

lim E exists (k) 

i. e. f. . & 1, for all i, j and k. Therefore, , (k) 
ij 

and hence lim Lk exists, which gives the result of 
k+ 



the corollary. 

From this corollary, it is seen that 

I 0 
lim C . . . C 

k~ N 0 

where N is some matrix. However, by reviewing the proof of the 

corollary, a recipe for the calculation of the matrix N is not 

achievable. In fact, for the general problem, it is doubtful that a 

recipe exists. Some relief for this problem, however, can be obtained 

by using the work in the proof of Theorem 1. From this work, it is 

seen that given s & 0 a k can be calculated so that 

I 
fc . . . c 

N 

0 
l&E 

0 

Further, this k depends on p so that p measures the rate of convergence 

of C . . . C to 

This then concludes this section. In the next section, the 

results of this section will. be applied to a study of the limit of 

the arithmetic mean of a non-homogeneous absorbing Markov chain. 

Results Concernin the Limit of the Arithmetic Mean of a Non- 

Homo eneous Absorbin Markov Chain. It is the intent of this section 

to provide necessary conditions for the existence of the limit of the 

arithmetic mean of a non-homogeneous absorbing Markov chain. The 

result is based on the following theorem. 

Theorem 2, Suppose C , . . . , C , . . . is a sequence of stochastic 1' ' k'''' 

matrices such that 



12 

I 
k 

k 

0 

for all k. Suppose further that lim A . . . A = 0. Then, 
k~ 

lim — (C +C C2+. . . +C . . . C ) = lim C . . . C 
1 

k~ k~ 

Proof. As in Corollary 1, set 

I 0 1 
Cl C1C2 

L A 1 
1' ' 

k 
L2 A) A2 

Lk Al k 

1 
We will examine the expression — (C +. . . +C . . . C ) blockwise. 

Consider first the identity blocks, which give 

1 — (1+ +1) = ( — )(k)(1) = 1 1 
k 1 k k 

Likewise, the zero blocks yield 

Now, consider the A blocks. By hypothesis, given e & 0 there exists 

R & 0 such that for R & k, (Al. . . A 
~ 

& e . Thus, 



13 

+' ' '+A-, ' ' 'A IAll Al. . . A 
3 

A . . . ARI A). . . A 

+. . . + 

R — 1 k — R+1 
k 

& — + e( — ) k 

Hence, for k sufficiently large 

'A +. . . +A 
1 

1 Since z was arbitrary, lim (A +. . . +A . . . A ) = 0 
k-+m 

Vina)ly, consider the L blocks. Me know from Corollary 1 that 

L ~ N for some matrix N. Let s & 0. Choose N such that for I & k, 'k 

we have 

and thus 

N — e P & L & N + s P 
k 

where p. = 3 for all i and j. Hence, 

L +. . . +L +(N-sP)+. . . +(N-sP) 
1 1+1 L +. . . +L 

k 

1 ''' N-1 L +. . . +L +(N+sP)+. . . +(N+sP) 

and 



14 

1 
''' 'M 1 k M+I 

+ (N-CP) 
1 k 1 M — 1 k — M+1 

L +. . . +L L +. . . +L -- + (N+cp) 
k k k k k 

Hence, for sufficiently large k, 

2 c P & — (L +. . . +L ) & N + 2 ' P. 1 
k 1 k 

1 
As s was arbitrary, lim — (L +. . . +L ) = N. Therefore, 

k-~ 

C +. . . +C . . . C I 0 
1 im 
k~ k 

N 0 

The existence of the arithmetic mean of a non-homogeneous 

absorbing Markov chain can now be established. 

Corollary 2. Suppose C , . . . , C , . . . is a sequence of stochastic 

matrices such that 

0 
C 

for all k. Suppose further that lim A = 0. Then, 
k-+ 

I+C + +C Ck 
1im 
k~ 

lim C C2. . . C 
k~ 

Proof. The proof follows by noting that 

1' ' k-1 . I . k-1 1 ' ~ ~ + 
1 ~ ~ ~ Ck 1 

lim = lim — + lim ( ) — lim C . . . C 

k~ k~ k~ 

This then concludes our theoretical work on non-homogeneous 

absorbing Markov chains. In the following chapter, the use of 

these results will be shown by applying this work in the solution of 

several practical problems. 
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CHAPTER III 

APPI, ICATIONS 

The main objective of this chapter is to provide several applica- 

tions of non-homogeneous absorbing Markov chain theory. It is thc 

intent to apply the results of Chapter II to problems which have in 

the past been resolved by classical Markov chain theory, but which 

in fact are more of the non-homogeneous Markov chain variety. 

The initial problem concerns actual problems incurred in space 

fiivht. To describe this problem simply, suppose three light bulbs 

are utilized in the lighting system of a lunar modu1c. As there is 

no room for excess baggage, no replacement h lbs are brought on the 

trip, even though the bulbs may burn out, thus leaving the module 

in darkness. Hence, there is a need for. computing the probability 

of the lights continuing to burn throughout the flight period. Time 

is o factor in this problem as the filament. , beL omc thinner as time 

passes, thus the probability of the lights burning out increases 

wiLts time. 

l, et the k transition matrix for this non-homogeneous absorbing 

Markov chain be 

4( — ) 
2k 
k+1 

. 3( — ) 
2k+1 
3k+3 

1( — ) 
2k+3 
k+1 

'6(k+5 ) 3k+3 

3(6k+1) 
3k+3 

. 2( — ) 
k+2 
k+1 

0 

~ 4 (k+4 
) 2k+2 

(4k+1) 
3k+3 

0 

k+2 
(2k+2) 



l6 

for all k, where 

(1%) 

11 
probability zero li. ghts are on, given zero lights 
were on the previous hour, 

(1%) 

12 
probability one light is on, given zero lights were 
on the previous hour, 

(1%) 
'13 

probability two lights are on, given zero lights were 
on the previous hour, 

(1%) 

14 
probability three lights are on, given zero lights were 
on the previous hour, 

(k) 
21 

probability zero lights are on, given one light was 
on the previous hour, 

(1%) 
'22 

probability one light is on, given one light was on 
the previous hour, 

(1%) 
'23 

probability two lights are on, given one light was on 
the previous hour, 

(1%) 

24 
probability that three 1ights are on, given one light 
was on the previous hour, 

probability zero lights are on, given two lights were 
on the previous hour, 

(k) 
'32 

probability one light is on, given two lights were 
on the previous hour, 

(k) 
'33 

probability two lights are on, given two lights were 
on the previous hour, 

(1%) 

34 
probability three lights are on, given two lights 
were on the previous hour, 

(1%) 

41 
probability zero lights are on, given three lights were 
on the previous hour, 

(1%) 

42 
probability one light is on, giventhree lights were on 
the previous hour, 

(1%) 

43 
probability two lights are on, given three lights were 
on the previous hour, 

(1%) 

44 
probability three lights are on, given three lights 
were on the previous hour. 

Using the results developed in Chapter II, we can predict the 



17 

lou, -run hehav 'or of these light bulbs . Clearly, the light bu '. bs 

wii1 eventually all burn out and 

1 0 0 n 

n 0 0 0 

k 
0 0 0 

0 0 0 

where n =- 1 i s the pt'obability that all lights are burned out in t' he 
3 

long run. However, space flight time is not infinite, and the time 

of flight is usually known. Suppose the flight time i. s 100 hours, 

Then, a computer can be used to compute C . . . C , which will contain 
1 100' 

(100) the probability that all of the lights will be burned out 1 

after the 100 hours in flight. 

A second nroblem concerns a physiological disturbance. For 

this, assume there is a small tar particle trapped in the lung:; of an 

individua'. For the particle to be removed from his body, it must 

pass through his throat into the atmosphere. Once it escapes ntn 

the atmosphere, wc will assume it cannot return int. o his body. We 

wi11 a]so assume that his lungs will grow weaker at each passing 

exhalation, the unit of time. utilized in these experiments, thus 

th 
making the problem time dependent. Let the k transition matrix 

for this non-homogeneous absorbing Markov chain be 

0 

k 
k+2 

(2k+2) &( — ) 
3k+1 
3k+3 

(k+55) 
k+1 

. 2( — ) 
k+2 
k+1 

22k+1 
22k+22 
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where 

(16) 
11 

probability tar is in air, given it was in air at 
previous exhalation, 

(16) 
12 

probabil. ity tar is in throat, given it was in air 
at previous exhalation, 

(16) 
13 

probability tar is in lungs, given it was in air 
at previous exhalation, 

(16) 
21 

probability tar is in air, given it was in throat 
at previous exhalation, 

(16) 
'22 

probability tar is in throat, given it was in throat 
at previous exhalation, 

(k) 
'23 

probability tar is in lungs, given it was in throat 
at previous exhalation, 

(k) 
31 

probability tar is in air, given it was in lungs 
at previous exhalation, 

(k) 
'32 

probability that tar is in throat, given it was 
in lungs at previous exhalation, 

(k) probability that tar is in lungs, given it was in c 
33 lungs at previous exhalation. 

In this example, Corollary 1 yields 

1 0 0 

lim C . . . C = n 0 0 1 '' 
k 1 

n Q Q 

where n is the probability of the particle going from the throat 1 

into the atmosphere and n is the probability of the particle going 

from the lungs into the atmosphere in the long run. Since C . . . C is 1 16 

stochastic, n =n2=1. Therefore, the tar particle will eventually be 

in the atmosphere, 



These are but two applications indicating the use of non- 

homogeneous absorbing Markov chain theory. Countless others also 

exist. For example, in games of chance, in mass transportation, as 

well as in economics. Hence, while non-homogeneous absorbing Markov 

chains hase great theoretical value, there is also a practical 

viewpoint which is of interest. 
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CNAPTER IV 

SUUMARY AND CONCRUSTON 

The work contained in this thesis provides conditions for the 

existence of limits in non — homogeneous absorbing Markov cha n The 

two primai y results yield conditions which insure the existcnci of 

the limits 

(1) lim A . . . A 

k. + 

I+A +. . . +A . . . A 

(2) 1im 
k~ 

where each A is stochastic. In addition, several practical 

applications of non-homogeneous absorbing Markov chains have been 

described. 

Further investigation of the theory of non-homogeneous ab. "orbing 

Markov chains will no doubt be undertaken. This work can atte apt to 

goneralix~ the results in this thesis. Further, as this thesi; has 

dealt only with finite Markov chains, the extension of the results 

of this thesis to infinite chains is also a goal. 

Finally, little work has been done in the area of providing 

applications for non-homogeneous Markov chain theory and practically 

none are given for the absorbing variety. This area can also be 

expanded. It seems that uses can be found in countless occurrences, 

as indicated in Chapter III. 
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