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ABSTRACT 

RAGE-KUTTA PORKJLAS OP OPTIKJN STAl3ILI1Y. (Nay I'369) 

Hector G. Sierra, B. A. , University of Texas; 

Directed by: Dr. H. A. Luther 

This study presents a derivation of a fourth- 

order Runge-Kutta formula used in the numerical 

method solution of a single ordinary di. fferential 
equation. 

Three definitions of stability of the Runge- 

Kutta single-step process are given. Also two 

theorems showing that the single-step method is 
stable are presented. 

In this thesis, two of the stability definitions 
were studied. and it was found that for the first 
stability definition (H-Stability), optimum stability 
will be obtained by fourth-order Runge-Kutta 

formuj as with parameters, R — 0, (i = 1, . . . , 4-). 1 
Optimum stab i. lity for the second stability defini- 
tion is given by Runge-Kutta formulas with oarameters 

R. — 0 andb~. -0, (k= 2 . . . 4 

In par ticular, a formula due to Runge 

f ormula satisfying this criteri a wnen 0 & a&, 

a)( 1 
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CHAPTER I 

INTRODUCTION 

Vith the advent of the high-speed computer, 

numerical methods for solving ordinary differential 
equations have gained considerable importance in 

applied mathematics. 

A numerical procedure which approximates solutions 

to a differential equation is t hat referred. by 

Henrici [I] a- a discrete variable method. Simply 

stated, this method consists of replacing a problem 

involving continuous variables by one involving discrete 
variable s. 

The discrete variable methods are normally classed 

into one-step methods and multi-step methods. In a 

one-step method only the value of y , an approximate 

solution to the differential equation, is required in 

order to determine y I, while the multi-step method n+1' 
requires knowledge of more than just the previous 

point. 

Among the onc-step methods, one of' the most 

widely used is the Runge — I&utta method. 

The citations on the following pages follow the 
style of the SIAiI Journal On Numerical Analysis. 



Development of the Method 

The development of the Runge-Kutta method started 

with the work of Runge [2] in 1895. Runge's method 

was improved by Heun [$] in 1/00 and in 1901 by 

Kutta [4. ] who generalized the method, thus giving 

the method the name Runge-Kutta. 

Up until recent years most of the investigation 

done on this method involved Runge-Kutta formulas of 

order I'our or less. Some of the recent works of 

higher processes are those of Butcher [5], Luther 

[6] and. Cassity [8]. 
The introduction of the high-speed computer also 

prompted investigations into this method. A fourth- 

order process to minimize storage requirement was 

developed by Gill [3] in I')51. 
'within the last eighteen years much of the work 

has dealt with the truncation error and error bounds 

of this method. Studies concerning this type of 

investigation have been presented by Lotkin [10], 
and Ralston [11]. 

Another area of interest is that of stability 
of the method. Carr [12] in 19)8 presented a 

paper which gave a bound on the propagated error to 

indicate stability of the Rungc-Kutta method. In 



recent years Karim [I)] and Lawson [14] have written 

papers on the region of stability for the Hunge-Kut ta 

method. 

Although the stability of the Runge-Kutta 

method is established, at least for certain regions, 
the literature fails to give a Runge-Kutta formula 

which will minimize the bound required in the 

definition of stability. 
It is thus the purpose of this study to determine 

Runge-Kutta formulas which will give optimum stability 
of the Hunge-Kutta method. The study will be 

restricted to the fourth-order Runge-Kutta process. 



CHAP TER II 

DERIVATION OF FOURTH ORDER RUNGE-KUTTA FORPIULA 

As previously mentioned, the f ourth-order Runge- 

Kutta method will be the basis for this study. Thus, 

in this chapter a fourth-order formula will be 

developed both. for familiarization of the reader and 

for the derivation of relationships which will be 

used in subsequent chapters. It is noted that the 

relationships developed. also apply to a system of 

differential equations when the fourth-order formula 

is used. The formula will be developed in the same 

manner as that of Ince [15]. 
We consider a first — order differential equation 

of the form 

(2. 1) P = f(x, y) 

with the initial condition y(x ) = y 

Now by a Taylor's expansion of (2. 1) about x = x we 0 
have 

(2. 2) h y(x +h) = y + hi(x , y ) + ~ f'(x , y ) 

+ —, f''(x, y ) + 

The derivatives may be expressed as partial derivatives 

of f by fir t defining the operator 



(2. y) D = — + f — ' 
ax ay 

such that 

where 

au au Du = — + — f ax By 

f = f(x, y). 

Now 

and 

Also, 

where 

d. = df = f + ff = L'f. 2 

dx 

~d=df =Df+f Df 2 2 

d& ~d 

D f =( — — +2f a + f B )f 2 2 2 
2 axay 2 ay 

Likewise, 

d=df =Df+ f Df+ f Df+)(Df )(Df) 2 2 
y y y 

dx dx 

where 
a~ 

+ &f — 
2 

Bx ax By ax By 

+ f — —, etc. 
ay~ 



Now we rewrite (2. 2) as 

(2. 4) y(x +h) = y(x ) + (hf I ~j Df 

+ —, (D f + f Df) 

4 
41 ID5f + f D f + f Df 

+ 5(Df ) (Df) ] y 

+, , } 0 

Next we seek to replace (2. 4) by an approximation of 

the f orm 

(2. 5) y(x+4) = y(x ) + Rk + Rk +Rk 

+ R4k4 + 

where 

k = h f(x , y ) 

2 o 2 ' yo 21 1 

k5 = hf (x +ash, y' +b51 1+b52k2) 

kz = hf (x +a4h, y tb41kl+b42k2+b4„k5) 

Here the constants R. , a. , and b. . are to be determined 1 i 1 j 
such that equation (2. 5) will agcee with equation (2. 4) 

up to and including tho term of order h . Hence, we 

expand k2, k and k4 by using Taylor ' s expansion for 
two variables. 



Now to expand k2, let 

= (a — '+b2 f — ) 1 2 3x 21 o 3y 

Then 

hD = (a2 h — + b2 k ~ ). 1 2 3x 21 1 3y 

ThUS, 

(27) k2 + lf + ~I 1 f + ' 1 + 

To expand k~, 1 

(2. 8) 

Then, 

3 3 
D2 = a~ — + (b f + b 

ha~ + [b k +b~2k2]— $1 1 $2 2 ay 

hD2+b 2 (k2-f h) o ay 

hD2+ b 2h [D f +P-D f + ~ ~ 
2 h 2 3 

)2 1 ! 1 o 3y 

Therefore, 
h 2 (2. 9) k) — — h[f+hD2 + W 2 

2 + h b~2(f Dlf+ 
y 

) 1, . 
To expand k4, let 

h~ 
+ — D2 f + 

Q 
I 

Dl f + hDlfD2f 
2 

(2. 10) D~ 
--- a4 3 (bcpl + 42 + 4 



And in the same manner as before, 

(2 11) k4 == hI f+hD fr~& D f+ =~ D f + 
5 I 

2 + h (b42 Dlf+b45 D2f)f 
v 

+ h (b42Dlf+ b45 D2f)D5f 

h5 2 2 + ~; (b42D1 f + b45D2 f + 2b$2b45f Dlf)f +, ] 
We now substitute equations (2. 7), (2. 9) and (2. 11) 
in (2. 5). Next we equate terms of like powers of h 

of equations (2. 4) and. (2. 5) obtaining the following: 

(2. 12) 

Rl + R2 + R5 + H4 = 1 

1 
a2R2 + a5H5 + a4H4 

2 2 = 1 a2 H 2 + a5 R- + a4 R4 
5 

B. 2 H2 + a5 R5 + a4 H4 

a2b52R5 + (a&b42 

2 2 
2 52Hy + ( 2 42 

a5b45)R4 1 

2 1 + a5 b45)H4 

where 

a2ayb52H5 a2b42 + a5b45)a4R4 1 

2 52 4g 4 $1j. 

2 
= b21 

(2. 1$) a5 = 
baal 

+ b~2 

a4 =. b41 + b42 + b45 



Since the eleven equations in (2. 12) and (2. 1$) contain 

thirteen unknowns, we assume two of. the unknowns to be 

arbitrary and solve for the remaining unknowns in 

terms of them. We do this by the following procedure. 

From the equations of (2. 12) add the second 

equation multiplied by a2a4 and the third multiplied 

by -(a + a4) and add them to the fourth, obtaining 

(2. 14) R a (a2-a~)(a4-a ) = 2 4 — 2 4 + 

From the fifth and seventh equations it follows 

that 

(2. 15) R~(a2b~2)(a4-a~) = 4 a 1 
6 

while from the fifth and sixth we ha~e 

(2. 16) R4(a b4, )(a~ a2) = 1 — '2- 
12 6 

By eliminating R4 i'rom (2. 16) above and equation eight 
of (2. 12) we find that 

(2. 17) a2b$2 g 2 $ ' xf a2 
a (a -a ) 1 

a2 1 
Now substitute (2. 17) in (2. 15) obtaining 

(2. 18) R&a&(a2 — a&)(az -a&) =- ( & — 
& 

)(2a2-1) 

Comparison of (2. 18) with (2. 14) yields 

(2. 1q) a& a4 a2+ a4 1 + (2a2-1) (a4 — &) 

Ra2a4 a2 
2 

a 1 4++ 
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And. hen. ce, 

(2. 20) a2a4 a2 

But from the last equation of (2. 12) it is clear 
that a2 j 0, thus, 

(2. 21) a4 = 1 

Also from equation eight of (2. 12) R4 g 0 and therefore 

R from equation (2. 15) is not equal to zero. 
Now Rl R2& R~ and R4 and be determined uniquely 

in terms of a2 and a from the first four equations 

of (2. 12) if' their determinant which has the value 

(2. 22) a2 2 a$ (a -1)(1 a2 

is non-singular. The values for this non-singular case 

(2. 25) 

R 1 „ 1-2(a2+a5) 
1 2 

12a2a5 

R 2a5-1 
2 

2 

R 1-2a2 

2(a2+a, ) — 5 
4 2 12111~ 1- 

~ j 

1'rom the fifth, sixth, and seventh equations of 

(2. 12) «e determine b52, b42, end b»~ in terms of a2 

and a5 provided their determinant whose value is 



(2. 24) R~R4 a2 a~ (a~-a2)(a -1) 

is non-singular 

'52— 

(2. 25) b42— 

The values are found to be: 
a~(a -a2) 

— . ~j 
(1-a2) [a2+a -1-(2a- -1) j 2 

2 5 2 2 5 2 

b4~ = 2 2 
a~ a~-a2 6a2a~ — a2+a~ + 

Now any two conditions consistent with the 

foregoing equations may be imposed. If we impose a 

condition of symmetry such that 

(2. 26) Rl — — Rz and H2 = 
H~ 

and a second condition requiring that the range from x 0 

to xl = x + h be divided into three equal parts so 0 

that 

1 '2 

we find the values 

1 
Rl 

R 2 8 
(2. 28) 

1 
R4 = 

8 

and a~ 

1 '2 
2 a 

a4 = 1 

21 

41 

1 
'~2 — " 



Finally we arrive at the formula due to Kutta: 

(2 23) y 1 
= y 8 [kl+$ 2 )k z~] 

1 

where 

kl — hf(x 

k2 = hf(x + -h, y + — k ) 

k~ = hf(x + — h, y — — k + k ) 

k& = hf(x + h, y + kl-k2+k~) 

Lastly we consider the possibilities when the 

determinants of (2. 22) and. (2. 24) are singular. 

It is found that the only cases possible are the 

following: 

(2. $0) Case 1: 

a2 
1 
2 and a~ —— 1 

with 

Rl 

RJ 

1 
6 

2 R 
5 
1 
6 

1 
$2 6R 

b42 = 1 — $R~ 

b~~ = $R~ 

(2. $1) Case 2 

a2 
1 

'~7 
and a& = 1 

~l- 



with 

1 
R2 = — — R 6 4 

(2. 32) Case 

1 
32 8 

1 
42 ~1R4 

1 
43 3R4 

a2 2 a3 = 0 and a4 = 1 

with 

Rl 

R4 

R3 
1 

2 
3 

1 
6 

b 1 
32 1172~ 

b43 = 6R3 



CHAPTER III 

SOLUTION APPROXIMATION OF THE ORDINARY 

DIFFERENTION EQUATION 

As stated in the introduction, the solution of a 

given ordinary differential equation subject to given 

initial conditions can be found by numerical methods 

or, more exactly by discrete variable methods. 

Hence, we will find approximate solutions to the 

ordinary differential equation by finding solutions 

to certain equations called difference equations which 

approximate the differential equation. Therefore, 

it seems appropriate at this point to present a few 

important aspects of difference equations before 

proceding to discuss the solutions of differential 
equations. 

Difference Equations 

The theory of difference equations is very 

similar to the theory of differential equations. The 

main difference between the two theories is that the 

difference equation theory seeks as a olution a 

sequence instead of a function. Normally the sequence 

with the general element uk is denoted. as(u , ul, . . . ) o 1 
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or more commonly as (u&) 

The general difference equation with constant 

coefficients can be written in the form 

() 1) au+alu 1+ + au. = C, o j 1 j+I ' n j+n j+n' 

j=-0, 1, 

where the 0 . are the non-homogeneous terms. The J+n 
difference equation in (). I) is of order n and 

generally a solution (u. ) is determined by 

specifying n initial conditions. 

If C. = 0 in ($. 1), we can then have nm j+n 
order homogeneous difference equations expressed as 

($. 2) a u. +a. u. 1+ . . . + au. = 0, j = 0, 1, o j 1 j+I ' n j+n 

For the homogeneous difference equations the set of 

r solutions, (u. & , (u , , (u, . 

are lineraly independent iff ~u. + . . . + B u. i 
0, i = 0, 1, implies ~ = . . . = B = 0. 

A set of n independent solutions of the homogeneous 

difference equations of order n is called a fundamental 

set of solutions. 

Any solutions, say (v. ) of the homogeneous 

difference equations (). 2) can always be expressed 

uniquely in terms of the fundamental set of solutions. 

A fundamental set of solutions tor ($. 2) can be 

found by trying as a solution the powers of some "calm, 
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say u. =ax, i = 0, i 
Then '($. 2) becomes 

1) ~ 

(&. &) (a x + a x + . . . a ) (~x ) = 0. 

If n = 0, the solution is trivial. Thus we consider 

only the roots of 

(5. 4-) P (x) = a xn + a x + . . . + a = 0 

The polynomial P (x) is called the characteristic n 
polynomial of ($. 2). If the roots of the characteris- 

tic polynomial are distinct, then a fundamental set 
of solutions is given by(u. ) = (xk ), k = 1, 2, k i 

i 
n. If the roots are not distinct, we can still 

obtain a fundamental se t of solutions, W. by using k 
i 

derivatives of the powers of the root. 
Lastly we introduce a linear difference equations 

theorem which will later be used. 

Theorem $. 1. Let (u. i be the fundamental set of 

solutions of the n@ order homogeneous difference 

equation which satisfy the initi. al conditions 

($. 5) u. ( ) = 5i ; i = 0, 1, . . . 
& 

n-1 

Then the solution of the non-homogeneous equation 

subject to initial conditions is 
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n-1 ( ) 1 d-n (n-1) ($. 6) u. = 
~ 

u u. + — 
~ Gk u. 

n +n 
v=0 k=o 

'de also define 

(5. 7) u. — : 0, for all i & 0 

($. 8) ~. e ~, for all j &n. J 

The proof for the above theorem is given by Isaacson 

and Keller [16]. For present purposes, n=l, a =1, 

a =-l. 0 

Next, since we seek numerical methods solutions 

to the differential equation, there are certain errors 

which must be taken into consideration. 

Numerical Methods Errors 

When using a numerical method, one must take 

into account the error of approximation. Actually 

there are errors to consider. The first, called the 

discretization error, is due to the fact that the 

number uk given bv the theoretical method wi ll not 

agree with yk = y(xk), the true solution to the 

differential equation. The discretization error is 
denoted by 



A second error is due to the limitations of any 

computing machinery. Thus instead of the number u&, 

the number actaully obtained by the computing 

equipment is u*&. The difference between the number 

we should have gotten by the method being used and the 

number actually obtained is called the round-off 

error and is written as 

(). 10) hp&+I = u &+I 
— u & 

— hF(x~ h~ u && f ) 
In this deiinition, F(x, h, u, f) can be of rather 

general character. For the purpose of this thesis, 
0 is as defined by ($. 21) and (). 22). This round-off 

error is dependent on such things as the precision 

used in the computer (single or double precision) 
and the type of operation used (fixed or floating). 

Then for the numerical method total error 

denoted by d*& — y&, we find. that 

+ 
I (uZ — yZ) I 

~ 

The local truncation error, denoted. by j+k 
measures the difference between the differential 
equation and the difference equation and is normally 

defined in terms of. 



($. 12) h T (x, h) = y(x+h)-y(x)-hP(h, x. , y(x), f ) . 
Here P is the functional in ($. 10); once again for 
our purpose use ($. 21). 

Approximate Solutions 

Now we are ready to discuss the approximate 

solutions of a system of ordinary differential 
equations expressed in vector form as 

(&. 16) ~d f( ) 

and having an exact solution 

(~-1~) y = y(x) 

i. n some interval 

(&. 15) a — x — b 

and subject to the initial conditon 

(&. 16) y(a) 

By use of a numerical procedure, in particular a 

single-step method, we seek a value u . which j 
approximates y(x. ) = y. , the exact solution. j 
we have that 

Here 

(v. iv) x. = a+jh, j 0, 1, 
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where N is a positive integer. 
We will assume that f belongs to a class F as 

definecL below. 

vector-valued functions 

f = ( f(x, y), f(x, y), . . . , f(x, y) ) 

where y = ( y, y, . . . , y) and. such that f, f -+ 1 2 p 

f2 ~, f and all partial derivatives of 

the first four orders are continuous and uniformly 

boundecL in S& . L (x, y) I a — x — b, I I y II ' " 
Next, let u be defined by 0 

(B. lg) u = y + eo 

where e is the initial discretization error and is 0 

a f unc ti on of h only. 

For 1— 
(assuming h is 
equation 

n we let u. be uniquely defined 

sufficiently small) by the difference 

(), 20) u. 1 — 8. = h F Lh& x s u. , f ) 2+1 J J' 
where F Lh x. d. f ) i. . a fourth order Runge- 7 j7 j& 

Kutta proce s; that is, 
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() 21) F ( h) x) U~ f } = Rlkl + R2k2 + Rp~ 

+ R~k~ 

Here Rl, R2, R~, R+ are constants and 

Rl(x h, u) = f(x, u) 

k2 k2 x, h, u) = f x + a2h, u + hb21kl 

(&. 22) k~ = k~(x, h, u) 

f(x + a~h, u + hb~lkl + hb~2k2) 

k~ = k~(x, h, u) 

+ f(x + a~h, u + hb41kl + hb42k2 + hb~~k~) 

where the a , b. and R. are real and must satisfy the i' im i 
relationships of (2. 12). 

lie shall call the numerical method (5. 20) the 

theoretical numerical a roxima*ion to (). 1)). 
Next let p be a function of h only and. define 0 

(5. 25) u~o = yo + ~o 

For the interval 1 -- j — n and for h sufficiently 

small, u* . is uniquely determined by 
+ -+ (). 24) u*' 1 u*. = hP (hi x ~ 

u* i f ) +he' 1 i+1 )+1 

Of course the function F is defined as in ($. 21) with 

u. =- u*. and a . 1 is the local rounding error. Me j+1 
"h 11 . 11 th. d. (5. '1) th n«L L "v~t, ' n 

« (~~. 1)) ~ 
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CHAPTFN IV 

STABILITY OF SINGLE-STEP I'IETHOD 

In this chapter we will show that the Runge- 

Kutta method is stable by presenting theorems 

concerning three different types of stability. We 

begin by stating some definitions which we will 

utilize in proving stabilit~. The following three 

types of stability will be defined as by Luther [7]. 
Definition 4. 1. Stability: Let the sequences ( u* . 
and ( u'* . ) be solutions of method ($. 24), both for 

the same P, f, and h but perhaps with different 
round-off errors 

Then method (). 24) is stable iff, for f belonging 

to &, 

0 — h 

0 — i 

there is an h and FI 0 
— h we have 

f f 
u*. 0 i 

— N, provided 

IIow let the sequences 

solutions of method ($. 24) 

such that ior all 
u'* 

f f 

— Nc 

~ 'i f I 
— c, 0 '- i '- N. 

(u* . ) and ( u . ) be J J 
and method ($. 20) respec- 

tively. 
Then method (q~. 20) is stable iff, for f' belonging 

to E, there is an h 0 
we have 

f f u. 

ffp — e ff — c and 
f 0 o 

snd II such that for 0 — h — h 0 
IIc y 0 — ' j -' N, provided 



Definition 4. 2. L-Stabilitv: Let the sequences 

(u. ) and (u' . ) be solutions of method ($. 20). Then 

method ($. 20) is L-stable iff, for f belonging to F, 
there is an h and M such that for all 0 — h — h we 0 0 
have ) ) 

u. — u' . 
( ( 

— Me, 0 — j — N, prov' ded 

Definition 4. $. H-Stability: Method ($. 24) is said 

to be H-stable iff, for f belonging to F, there is 
an h and. M (e) such that for all 0 — h — h we have 0 0 

max 
) / 

u*. ][ — M (e), provided 
f 
/u* 

/ f 

— e and 
o-j-N 0 

Method (). 20) is said to be H-stable iff', for f 
belonging to E, 

C for all 0 — h- 
provided 

/ [ 
u 

there is an h and M (e) such that 0 

h we have max )( u. 
~ ) 

— M(e) 
0~ j~N 

Now we state two Lemmas which follow from 

the . . tability definitions. 
Lemma A. For. the given class E, stability of method 

($. 24) implies stability of method (). 20) and. stability 
of method (~j. 20) implies L-stability of method (). 20). 
Lemma B. For the given class &, H-stability of. 

method (). 24) implies H — stability of method ($. 20). 
Proof for 'ooth lemmas: Note that method ($. 20) 

is a special case of method ($. 24). Also note that 



-+ for j — 1, v. and p 
' . can be chosen. 

Since it will later be required, it seems con- 

venient at this time to introduce another definition 

involving stability. 
Definition 4. 4. Hoot Condition: Let the process 

have the character 

n -+ 
a u. + 

= h 5 (x. , h u, , u +m~ s=o j-m' ' ' j+m' 

where G is determined uniquely when the function f is 
known, as well as h, x. , u. 
negative integer and a, a g 0. n' o 

j+m) u. ~ m a non- 

n s 
Now let the polynomial P(C) = $ a & be 

s=0 s 

a" sociated with the LHS of the process formula. Then 

P(q) is said to satisfy the root condition iff all 
zeros of P(g) are one or less than, one in modulus 

and any zero oi' modulus one is simple. 

For our single step process, P( 6) = q-I is the 

polynomial associated with the LHS of the difference 

equation (g. 24) or ($. 20). Since the only root of 

P(q) is one, P(q) satisfies the root condition. 

To show stability of method ($. 20) and method 

(g. 24) we will have to establish that I satisfies 
the followIng properties (see (7]): 



(4 1) 

(4. 2) 

IIF E h, x. , 

'- C I(u. J 

u. , f)(f -' K 

u. , f ) - F E h, x. , v. , f ) II 

— v. If . 
where K and C are constants independent of x. 

& 
u. , 0' 

and. v. , but may depend on the upper bounds of i' and. 

on a finite number of its partial derivatives. 

Ve now introduce some properties of vector norms 

which will be used to prove (4. 1) and (4. 2). 
Vector norm. For every vector x in a linear space S, 
there corresponds a unicEue real number I( x (I . This 

number is called the norm of 4 iff: 
(4. $) (( x (( — 0 , f' or all x belonging to S. 

II x II = o, iff x = O. 

(4 ~ 5) (I cx ((= (cf - (f x ff, for all scalars 

c and x belonging to S. 

y II — Ilx((+ I(y II. 
Although there are several examples of norms we 

shall make use only of the maximum norm defined as 

(4. 7) II x II„ = 

Eiere x = (xl, x2, 

max 
j j 

x ). 
p 
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that (4. 1) holds for the fourth — order Hun-e--Kutta 

method. 

(u-. s) 
From ($. 21) and the use of norms we have 

IIF (h, x. , u. , f ) II- IH 

+ 
I H2I llk2 II + 

I 
R 

I Ilk' II+ Ill ilail ~ 

Applying the definition of the maximum norm yields 

(49) 
I 
IF ( hx. , u. , f&l 

I 

-' 
I Rl I 

I' ( . u ) 
+ 

I R2 I I 
f(x. +a2h. , u. +hb21kl) 

-+ 
+ I R~ I I f(x. +a~h, u. +hb~lkl+hb~2k2) 

+ IH~ I I 
f(x +a&h u. +»&lk +»q2k2+hbgyky) 

where ~, 8, v, & denote the component yielcLin(, the 

maximum valued element of the vector functions f 
of kl k2 k and kL( re pectively. 

But by definition $. 1, each has an upper bound 

say, Nl- Therefore we have 

(4. 10) 

where 

(4. 11) K = Fl ( 
I 

R 
I 

+ IH I +IH 
I 

+ IR 

Hence property (4. 1) is established. 

Zstablishin Pro ert (4-. 2 . For ease of presenta- 

tion we define 
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(4. 12) 

where 

-+ 

P ( h, x . , u . , f) =Rlkl( ) 
+ R2k2( ) J 

+ R~k~( ) + R~k~( ) J J 

(4-. 1y) kl( ) 
= i(x. , u. ) 

k2( ) 
= f(x. +a2h, u. +hb21kl( ) ) 

U~ g ij u~ 

k~( ) 
= f(x&+a~h, u&+hbglkl(u )+hbg2k2(u ) ) 

kg(u ) 
= f'(x~+a4h, u~+hb~lkl(u )+hb42k2(u ) 

+ hb~)k)( ) ). 
Now by the properties of norms and employing the 

definition of the maximum norm we have 

(4. 1~) i i 
F ( h, x. , u, f )-F ( h, x, v 

— 
I R]l I" f(x, u ) — "f(x, v ) I 

+ I R2 j ( f(x, +a2h, u, +hb21kl( ) ) 

p -+ 
xJ+ 2h, v . +hb21kl(v . 

+ 
I Rgl I' f(xq+agh u . +hb~lkl(u )+hb~2k2(u ) ) 

j+ $ ' j+ b51~1(v )+hb$2 2(v ) ) 

+ ~RJ ~ 
f(x . +a+h, u . +»+lkl( )+hb&2k2( ) ) J J 

+ hb+~k~( )) — f(x. +a&h, v. +hbz lkl( ) ) 
-L 

+»c, 2k2(v. ) + " 4Py(v 



where ~, 8, r, & denote the components yielding the 

maximum value element of the vector differences of kl, 
k2, k~, and k4 respectively. 

Now applying Taylor's formula for functions of 
several variables to the second factor of the first 
term of the RHS of (4. 14) we find it is equal to 

(4. 15) I ( u — v ) — "f(x ~ v +o (u -v ) ) 

+ ( u. — v. ) ~ f(x. , v. +e] ( u. -v. ) )+ 2 2 3 8 

pu 

where 0 & el & 1 and u. , v. , (i=1, . . . , P) are 

elements of the vectors u. and v. . But by definition J 
$. 1, the par. tial derivative= have a common upper 

bond, say M2, where M2 & 0. Thus (4. 15) is less 
or equal to 

(4. 16) M2 I 
u. — v. 

I 
+ M2 I 

u. — v. I + 

Replacing each term by the maximum term denoted by 

M ( u. — v. ) yields L L 
2 J J 

(4. 1'7) M2P I u . — v. 
I 

— 
I f(x . , ll. ) — (x . . ) 

where P is the number of terms due to the number of 

partial derivatives with respect to the vector u . 

of length P and where P — 1. 
Next we apply Taylor's formula to the -econd 

factor of the second term of the RRS of (4. 14) and. 
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obtain 

(4. 18) 
I (( u +hb21 kl( ) ) — ( v. +hbpl kl( v ) 

1 1 1 1 B 

J 

+ (( u. +hb21 kl( ) 
2 2 

J 
2 2 v. +hb21 kl( 

aBf 
v ) ~ ) ~ + ~ ~ ~ 

3 

where 0 h — 1 and 

B 

pi 
f (x . +a h, v. +hb k . 

U ~ U 
2 ' j 21 1(v. j 

2 j 21 1(u. ) — v. — hb k 21 1(v. ) 
with 0 & o2 & 1 

Hut as before, the partial derivatives are 

bounded by FI2 and hence 

(41$) K ( ] u. — v. 
~ 

(4. 18) is less or equal to 

+ I u - v I+ . . . & + Ii2hl b2] 

1(u. ) kl(v. ) + l(u. ) — kl( ) 

+ . . . } 

PPow consider the first bracket term of the above 

equation and replace each of its terms by the 

maximum term denoted by PL ( 4 . — v ), thus L 

obtaining 



(4. 20) M2P I 
u. — v 

I 
+ M2h I b2il ( kl(u )- kl(v ) 

L 1 1 
J 

2 2 + 
I kl( ) 

— kl(v) I 
+ ~ ~ ~ & ~ 

Then recalling that kl, , = f (x. , u. ) and 1 (u. ) 
kl , , = f (~ . , v . ) and using (4. 17) we finally (v. ) j' j 
obtain 

(4. 21) M2P I u — v. 
I ™2h fb21 I M2P 

f 

u— L L L L 
J J 21 2 

+ M21' 
I 

u. — v. 
l 

+ . . . ) L L 

(M2P+hM2 P 
I b21 I 

) 
I 

u. — v. 
I 

. 2 2 L L 

Following the same procedure we find that the second 

factor of the third term is less or equal to 

(4. "2) (M2P + hM, 'P' 
& lb~, l 

+ 
I b~2 I 

& 

) 
I 

u. v. L L 

Likewise the second factor oi' the fourth term is less 
or equal to 

(4. ») «2 + hM2 P 
& 

I b41l + 
I 42 I 

+ 
I "4y I ) 

2 2 

+ h M2 P (Ib42 Il bo] I+ Ib4~ I (lb ll+ Ib~2I ) ) 

+hM2P I b4 I I b)2lf b21 I ) 4~y )2 21 

Now using (4. 17)) (4. 21), (4. 22), and (4. 2g) in (4. 14) 
and letting h = 1, we get 



(4. 24) II F (h x. , u. f ) — F{h, x. v. , f)ll'flu. -v' 

I Rl I cl + 
I R2 I cl + IR2 I c2 

I 21 I 

+ 
I 

R& I 
cl 

52l ) ' 
I 

+ 
I R4 I Cl + 

I R4 I C2 C lb41 I 
+ 

I b42 f 
+ 

f b45 I ) 

+ 
I R41 C5 (lb42llb21l + 

I b45I& baal I+ lb)21&) 

+ IR41 C4 I b45 llb52 II b21 I 
) 

where Cl M2P, C2 (M2P), C5 = CM2P) and 2 

C4 = (M2P) . Letting C be the largest valued C. , 
4 

max j 7 

(i = 1, . . . , 4), we finally have 

(4. 25) I IF ( h, x, , u. , f ) — F ( h, x. , v. , f & 
I I 

'- C 
I 
lu&-v. 

I I 

where 

(4 26) C = C L C IRll +I R2I + 
I R5 I+ 

+ (IR2llb21I + 
I R5 I& lb51I + 

I b52I & 

+ 
I 4lil 411 + 

I 42I+ I 45 IJ 

+ C I R5 I lb52 I I b21 I 

+ IR4I CI 42ll 21 I+ 
I 45f(f ~ll + 

+ 
I 41 I 45l I $2 II 21 I 

~ ~ 

Thus property (4. 2) is established. 



Runge-Kutta Process Stability 

Me now show stability of' the Runge-Kutta single- 

step method by stating and proving the following 

theorems. 

Theorem 4. 1. EEethod ($. 24) is stable, method ($. 20) is 
stable, and method ($. 20) is L-stable if property 

(4. 2) and the root condition are satisfied. 
Proof: The proof will be presented in a manner similar 

to that of Luther I 7]. Also because of lemma A we 

need only to prove stability of method (). 24). It 
has been shown that property (4. 2) is satisfied by the 

Runge-Kutta method and also that the root condition 

is satisfied by definition 4. 4. Z~urther by stability 
. + I C 

definition 4. 1 we have IIp k 
— p g I 

— e, 0 — k — N. 

EEe now seek for f. belonging to F an h and. EE, 

independent of h, such that for 0 — h — h 

I Iu k 
— u'*. 

I I 

— EEz, 0 — k — N. 

Nence let Pk = u*k — u'*k, 0 — k -' N, s. nd 

R. 
I I, o -' k -' N. 

0-j — k 

Then, 

0 = u*o o "'*0 o Po P 0 



Thus, 

Then for 0 — k — N — 1, we have 

(4. 41) hk+1 — Fk = Ok+1 —— hI. F h, x»u*k, f 
F j. hqxkqu kqf ] +" Pk+1 k+1 

Now by theorem 
n-1 

(4. 42) Z„ = 
v=p 

). 1, for 1 — k — N, we have 
k-n ~ (n-1) 

Wk + $ C. W 
V j=p 

But n = 1 in the single-step method. , hence we have 

k o k ~ '+1 k- '-1 

Using in (4. 4$) C. 1 as defined by (4. 41) and j+1 
applying norms yields 

(4. 44) II FkII 
' 

I w( )I 

+ kh I wk 1I max 
I 
I&'(h, x, u*, f) k-J — 1 0 &j &k-1 

— F(h, x. , u'*. , 0) I I 
+ kh 

I Wk- '-lI I Io '+1 

j+1 

For the single-step method. , I Wk I= 1. Thus, (0) 



(4-45) 
I I 

B 
I I 

-' e+ khC msx [) u* u'* 
[ I 

+ kh e k 0-j — k-1 
e +khC wk + kh c 

But we note now that ~~ B . ~~ 
= w for some j — k. k 

Also note that the C above is the constant in (4. 2). 
Hence (4. 45) becomes 

(4. 46) wk — e + kh e + khCwk 

Now limit values of k such that khC — + or 1 

(4. 47) k — [~hC] = t, 
where Lr] denotes largest integer not exceeding 

Now we find from (4. . 46) and (4. 47) that 

(4. 48) w — e ~ khe & c + ~ 1 1 
2 k FG 

or 

4 " k 2 [I+ 0 ] e = Ml ' 0 — k — tl 
where 1 

Of course (4. 49) implies that 0 — tl — N. If not, 
then (4. 49) holds for 0 — k — N. 

By continuing to repeat this procedure, we will 

eventually bound wk f' or 0 — k — N. 

Thus letting M = 1, we have, 



(4. 50) wk -. - [M+ vl]E= Mls y 0 k tl 
[ 1+ y ], = M, , tl — ' k — 2tl 

2[M +0 ] e = M e qt — k — N-(q+1) t k q q+1 ' 1 1 

and in general, 

(4. 51) I I Z„ II — — [2 + 20(2 q -1) ] 

for 0-'k — 'N. 

We now proceed to prove (4. 51) by induction. 

(a) We know (4. 51) is true for q = 0; that is, 

Ml ~ = [2+2&] e = 2[1+&] e 

And this is identical to the first equation of (4. 50). 
(b) Newt we assume (4. 51) holds for q = s. EIence, 

[2s+1) 2„(2(s+1) 1) s 

(c) Now we let q = s+1. From (4. 50) we have 

M = 2[M +y] 

Substituting the value M from (b) we f ind s 

~ = [2"') ~ 2~(2'-"-1) ], s+1 

Since (4. 51) holds for s+1, the proof is complete. 

What remains to be shown in (4. 51) is that M is 
independent of h. This is done by showing that q is 



independent of h and hence, M is independent of h. 
Thus we define 

(~. 52) 

Also let 

('~-5&) 

Then 

(o. 5~) 

p = [20(b-a)] — 2G(b-a) 

h & 1 
o TGCpl 

Note that from (4. 5$) and with h — h , we obtain 

(&. 55) 1 
2hG 2h 0 0 

or 

(e. 5e) 

Now since tl = [2hG] we have, 1 

~rG h =" 8~C ' + 

+ (p+1) (p+2)tl 

Hence we get 

(~-58) pt — N — (p+2)t 1 1 

But from the last equation of (4-. 50) we have 

(&-59) qt — N — (q+1) tl 1 

And from (Jl-. 58) and (4-. 5g) we see that 



(4. 60) p '- q — ' p+1 

Thus q is independent of h. As for h we require only 0 
that h make method ($. 24) unique. 0 

Theorem 4. 2. If property (4. 2) and the root condition 

are satisfied, then method (). 24) is H — stable and 

method (). 20) is H — stable. 
Proof: It has been shown that property (4. 2) is 
satisfied and also that the root condition is 
satisfied. 

From the definition of H-stability we have 

that 
I I 

u* 

'Je now seek an h and M(e) such that for 0 
0 — h — h we obtain max (( u* 

( ~ 

— M(e). 0 0 (k-N 

Hence let 

(4. 61) max /fu //, 0-k — 'N. 
0&ka j 

Then w 0 E 

Also for 0 — k — N-l, we have 

(4. 62) 
-+ 
u k~1-u*k —— hF (h&xkiu'k)f )+ hok+1 

Now in the same manner as in the previous theorem 

we have 

~~ u*, ~( 
-' ~. -' e + (b-a) (c+K) = M(e) 

rJ J 



Again we require an h that makes method ($. 24) 0 

un i que . 



CHAPTER U 

STABILITY OPTIMIZATION 

In this chapter we discuss the main purpose of 

this study. Briefly restated, we seek to find 

Runge-Kutta formulas which will yield optimum 

stability when. the Runge-Kutta method is used. We 

are interested in the two types of stability defined 

by definition 4. 1 and definition 4. 5. From (4. 51) 
it is easily seen that optimum stability will be 

achieved by finding the smallest possible q. By 

(4. 60) we see that if p is minimized q will be 

minimized. And from (4. 52) we have that p is 
dependent on the Lipschitz constant C of property 

(4. 2). Hence our problem becomes one of minimizing 

C. For optimum H-stability we have from equation 

(4. 65) that we need to minimize the constant K of 

property (4. 1) 

Minimizing the K Constant 

From equation (4. 11) of Chapter IV we found that 

for the fourth order Runge-Kutta process we have 

(5 I) K = MIMIR„ I +I R2I + I R 



where M is a constant 

In this study we will require 0 ' a2 a ( 1. 2' 
Since we seek to minimize K, we see that our task is 
to minimize 

~ 
~ 

H. 
~ 

. Hence let us now define 4 
i 

i=1 

(5. 2) H . = min [msx i R1 i ] 

In Chapter II it was stated that for the singular 

case there are only three possibilities which give 

finite solutions of R. . From i 
we see that for a2=a~= ~ , we 

1 

HI=R4- 6 . These parameters 1 

to Hunge: 

these singular cases, 
have H . =R2-R$- . 1 

yield the formula due 

(5. &) y , = y . + 6 (ki+2k2+2k +k4) j+I 
wher 

kl 

k2 

hf(x. , y . ) 

hf(x. + 2 h, y. + ~ kl) 1 ~ 1 
2 
1 ~ 1 hf(x + ~ h, y. + ~ k2) 

hP(x. +h, y. +k ) J 

Next we recall the first equation of (2. 12) which 

is 

(5 5) 1 R2 + R- + R4 = 1 
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Since we are interested in R . for any set a2 min 

and a , it is easily seen that if one or more H 's i 
are permitted to be negative, the sum of the remaining 

R. will increase in order to satisfy (5. 5). For i 
example, if we allow Rl to be negative we find 

(5. 6) R2 + H5 + H4 ~ 1 

Then R will be greater than — . Thus we conclude 1 
min 

that for R . we must have R. — 0 . Hence we have min i 

(5-7) IRI I + 
I H2 I 

+ 
I R51 + lR41 

Using (5. 7) in (5. 1) we find the minimum K to be 

Therefore, for optimum H-stability we only require 

that the fourth order formulas have positive R. 1 
Well known formulas which meet this requirement is 
the one due to Runge, (5. g) and. the one due to Kutta, 

(2. 29). There are of course other formulas also 

satisfying this criteria. 
It is now interesting to note that R . = — for 1 

min 

all 0 & a2, a5 & 1 

m nimum fmaxl Hil] 

We know from above that R . requires H. — 0 min i 



We also know that for the singular case R 1 
min 

For tne non-singular case (a2ga5) in the region 

where 0 & a2, a5 & 1, we now show that R 1 
min 

Using (2. 25) we have Rl = 0 iff 

(5. 9) 6a2a5 — 2a5 — 2a2 + 1 = 0. 

This is the equation of a hyperbola for which 

the asympotes are a2 = — and a = — . Its inter- = 1 1 

cept" occur at (a2 = +, a5 = 0) and (a2 = 0, a5 = p) 
Also this hyperbola intercepts the region boundary 

at (a2= 1, a5=~) and(a&= 1, a2 — -+) . Thus 1 = 1 

Rl is zero for all points on the hyperbola and 

found to be positive for all values of a2 and a5 in 

the region designated by the plus sign in figure 

51. That is, Rl & 0 iff 

(5. 10) 6a2a5 — 2a5 — 2a2 + 1 & 0 

+ 
f 

+ 

+, '+ 
2 1 

Pig. 5. 1. Region for positive R 1 



Next, from 

R~ = 0 iff a2 

a- & 1 or 0 

(2. 2$) we find R2 = 0 iff 
1 Also R2, R — 0 ifi 

1 

= 1 
a~ = p and 

0 1 
2 

This is illustrated in figure 5. 2 by the cross 

hatched region. 

1 1 
2' 

a2 

Fig. 5. 2. Region for positive R2 and positive R~ 

Ve next see that R4 = 0 iff 

(5 11) ga2a) — 4a) — 4-a2 + 5 = 0 . 
Thi . is the equation of a hyperbola for which 

2 2 the asympotes are a2 — — 
~ 

and a~ — — 
~ 

. Its 
intercepts are found to be (a2 = 4, a~ —— 0) and 

(a2 = 0, a = 4 ) . Further, this hyperbola 

intercepts the region boundary at (a2 = 1, a = p ) 1 

and (a = 1, a2 = p ) . I'rom figure 5. $ we see that 1 



R4 will be positive in the region denoted by the plus 

sign. That i s R4 & 0 iff 

(5. 12) 6a2a — 4a5 — 4a2 + 5 ~ 0 2 5 

+ r + 

+ & + 

a2 
1 

Fig. 5. $. Region for positive R4 

Now by considering figures 5. 1, 5. 2, and 5. $ we 

obtain figure 5. 4 whose cross hatched region 

(boundaries included) represents the region we seek 

such that R. -' 0 for 0 & a2, a & 1 



a2 

Fig. 5. 4-. Region for positive R. i 
From the above discussion it is clear that 

R . = — on the boundary of the region described 1 
min 

by figure 5. 4. 
Finally we examine the interior oi' the region 

in figure 5. 4. Consider first the part of the 
1 1 region. where 0 & a2 — 
2 and + — a~, 1, (a2/a~). 

Recall 

(5. 1)) Rl = + + [I-2(a2+a~] / 12a2a~ 

1 1 1 Now when a2 = ~ or a~ — — ~, (5. 1$) yields Rl 

Suppose that Rl & 6 . Then we have 1 

($. 14-) p + [I-2(a2+a&) ] / 12a2a& & 
1 1 

which gives 

of interest 
In the same 

a~ & ~ , a value of a~ outside our region 1 

1 and hence it becomes obvious that Rl- 
manner we find R&— 1 
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Consider next the part of the region where 

1 
a2 & 1 and 0 ~ a& — p , (a2pa&) . Using the 1 

1 same procedure as above we again obtain Rl — ~ and 
1 

R4 — ~ . It then follows that for our entire region 

(5 15) Rl + R4 

Whence 

(5-16) R2 + R 2 

It is now easily seen that from (5. 16) R 1 

which is what we set out to show. 

Next we proceed to show that for our region of 

interest, (5. )) is the only formula for which 

b. . — 0 as well as being the formula for which iJ 
R. — 0. From the above discussion it is clear (5. $) 
satisfies R. — 0 . We now show it satisfies b. . & 0. i iJ 

Using (2. 25), we find (see [7] ) 

(5. 16') 
baal g ~ 2 2 a~) / [2a2(1-a2 

b41 ~ / [2a2 ~(6a2 $ 
4 a2 

where 

2 2 12a2 a~ 

+ 15a2a 

2 2 12a2 a — 12a2a~ 

+ 4a — 6a2 — ga + 2 — 4a2 

Now using b~l — 0 and b-2 — 0, we find 
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1 2 1 2' p and ga2 a2 $ 
' 2 2' 

2 
ya2 — 4a2 a$ & a2 or a2. From 6aya2 — 4(a2+a$) 

+ $ '0 and b42 — 0 we have a~ & a2 and a2 & 2 

2 
5a~ + 4a~ or a~ ' a2 and a2 ' 2 — 5a~ + 4a~ 

1 1 From b4~ — 0 we have a2 & ~ and a~ & a2 or a2 

and a a2. Note that a~ = ga2 — 4a2 and a2 
2 

2 — 5a& + 4a& are tangent at (p , p ). When we 
2 1 1 

include 6a~a2 — 2(a2+a~) + 1 '- 0, we find that 

unless b41 — 0 changes the result, we must have 

a2 and a~ in the region bounded by the two 

hyperbolas and the two parabolas (see fig. 5. 4). 
Turn now to b41 — 0. lf we let a2 = ~ + u, 1 

a =- p — v, (see (5. 16') ) we find 1 

12u v + v — uv — + — ~ 
2 2 2 u v 

& 1 where 0 — u, v — ~ . Using 

v = [u + p + (24u + u + )u + g ) 7 ] / 1 $ 2 1 

[24u + 2 ] 

we readily fi nd Q 
' 0 for the region, except at 

u = v = 0. The region found just above for the 

other parameters to be nonzero is seen to be wi. thin 



this last; so that u = v = 0 is the only choice for 
all parameters to be non-negative. This of course 

1 means a2 = a5 

Flinimizing the 0 Constant 

awhile in the preceding section we found. a 

requirement for Runge-Kutta formulas which give 

optimum H-stability, here we seek a formula which 

will optimize the stability as given by definition 
4. 1. To accomplish this, it has been shown at the 

beginning of this chapter that we desire to minimize 

the Lipschitz constant C of property (4. 2), 
previously determined for the fourth order Runge- 

Kut. ta to be 

(5. 17) 0 = Cmm I. ( IRll + 
I R2 I 

+ I"& I 
+ 

+ ( IR2 II 

+ 
I 5 I'I 51I + I 52 I'+ I 4I I 41I + 

I 42 

+ 
I b45 I &) 

+ (IR 
I I b52 I lb21 I 

+ 

+ 
I b45 I&lb)„ I 

+ 
I 

b 2I&) ) + IR„IIb4-Ilb 2ll b21I 7 

where 0 is a constant. Using (2. 12) and (2. 1$) 
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we get 

(5'I@) IRI I 
+ 

I RR I 

+ IR5 I 
+ 

fRZffbgl[ + fR5 t(lb51f + 
f b5 

+ IR4 I &!b411 + 
I be I 

+ 
I b45 I 

I R5 I I b5@ I I baal I + 
I R41 ( I b4P I I 

baal 

I 

1 + lb451& Ib511 + 
I bing I & ) — g 

It seems clear that to minimize (5. 17) we have to 

minimize the relationships'of (5. 18). This will be 

accomplished easily wb. en R — 0 and b. , — 0. One i lg 
formula which satisfies this requirement is Runge's 

formula given in (5. )). Then the minimum C is 
given as 

1 1 1 (5. 19) G = G [I + p + p + ~ ] = W C 

It is important to note that for our region of 

interest, 0 & a&, a5 & 1, Runge's formula is the 

only formula which meets the criteria. This was 

shown in the previous section. 
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CHAPTER Vl 

CONCLUSION 

In many engineering and scientific problems it 
is necessary to consider numerical procedures f' or 

obtaining an approximate solution to an ordinary 

differential equation. One numerical method useful 
f' or this purpose is the Runge-Kutta process. 
However numerical methods raise questions of their 
own ~ 

One important question is that of stability of 

the method. The Runge-Kutta method is indeed stable 
as we have shown in this study. Karim and Lawson 

have found regions of stability for the Runge-Kutta 

method of order four and higher. However, neither 

indicates that their choice of Runge-Kutta formulas is 
the one which gives optimum stability in our sense 

of having a minimum bound. It might prove worth-while 

to investigate, for example, Karim's work to see if 
indeed his fourth order Runge-Kutta formula is the 

one for optimum stability according to his stability 
definition. 

In conclusi. on we again emphasize the main 

purpose of this study. This is that when the fourth- 
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order Runge-Kutta method is used to approximate a 

solution we are interested in having optimum 

stability. Hence that method which has the minimum 

bound in our definition of stability is in this 
sense best. Thus we conclude that, any fourth-order 

Runge-Kutta formula having R. — 0 will give optimum i 
H-stability. For optimum stability of our second 

definition, we need fourth-order Runge-Kutta 

formulas having R. — 0 and b. . — 0. In particular, i lg 
Runge ' s formula meets this criteria. Moreover, 

this is the only formula meeting their criteria when 

0 a, a & 1. 
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