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ABSTRACT
RUNGE-KUTTA FORMULAS OF OPTIMUM STABILITY. (May 1969)
Hector G. Sierra, B.A., University of Texas;

Directed by: Dr. H. A. Luther

This study presents a derivation of a fourth-
order Runge-Kutta formula used in the numerical
method solution of a single ordinary differential
equation.

Three definitions of stability of the Runge-
Kutta single-step process are given. Also two
theorems showing that the single~step method is
stable are presented.

In this thesis, two of the stability definitions
were studied and it was found that for the first
stability definition (H-Stability), opbimum stability
will be obtained by fourth-order Runge-Kutta
formulas with pavameters, By 20, (i = 1, ... , 4).
Optimum stability for the second stability defini-
tion is given by Runge-Kutta formulas with parameters
RiioEmdth.-’o, (=2, wee 38 5 3=1, veu , 3.
In particular, a formula due to Runge is the only
formula satisfying this criteria when O < 25y

az < 1.
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CHAPTER I
INTRODUCTION

With the advent of the high-speed computer,
numerical methods for solving ordinary differential
equations have gained considerable importance in
applied mathematics.

A numerical procedure which approximates solutions
to a differential equation is that referred by
Henrici [1] as a discrete variable method. Simply
stated, this method consists of replacing a problem
involving continuous variables by one involving discrete
variables.

The discrete variable methods are normally classed
into one~step methods and multi-step methods. In a
one-step methed only the value of Ty, an approximate
solution to the differential equation, is required in

order to determine y while the multi-step method

n+l}
requires knowledge of more than just the previous
point.

Among the one-step methods, one of the most

widely used is the Runge-Kutta method.

The citations on the following pages follow the
style of the SIAM Journal On Numerical Analysis.




Development of the Method

The development of the Runge-Kutta method started
with the work of Runge [2] in 1895. Runge's method
was improved by Heun [3] in 1900 and in 1901 by
Kutta [4] who generalized the method, thus giving
the method the name Runge-Kutta.

Up until recent years most of the investigation
done on this method involved Runge-Kutta formulas of
order four or less. Some of the recent works of
higher processes are those of Butcher [5], Tuther
[6] and Cassity [8].

The introduction of the high-speed computer also
prompted investigations into this method. A fourth-
order process to minimize storage requirement was
developed by Gill [9] in 1951.

Within the last eighteen years much of the work
has dealt with the truncation error and error bounds
of this method. Studies concerning this type of
investigation have been presented by Lotkin [10],
and Ralston [11].

Another area of interest is that of stability
of the method. Carr [12] in 1958 presented a
paper which gave a bound on the propagated error to

indicate stability of the Runge~Kutta method, In



recent years Karim [13] and Lawson [14] have written
papers on the region of stability for the Runge-Kutta
method.

Although the stability of the Runge-Kutta
method is established, at least for certain regions,
the literature fails to give a Runge-Kutta formula
which will minimize the bound required in the
definition of stability.

It is thus the purpose of this study to determine
Runge~Kutta formulas which.will give optimum stability
of the Runge-Kutta method. The study will be

restricted to the fourth-~order Runge-Kutta process.



CHAPTER II
DERIVATION OF FOURTH ORDER RUNGE-XUTTA FORMULA

As previously mentioned, the fourth-order Runge-
Kutta method will be the basis for this study. Thus,
in this chapter a fourth-order formula will be
developed both for familiarization of the reader and
for the derivation of relationships which will be
used in subsequent chapters. It is noted that the
relationships developed also apply to a system of
differential equations when the fourth-order formula
is used. The formula will be developed in the same
manner as that of Ince [15].

We consider a first-order differential equation
of the form

2.1) oty

with the initial condition y(xo) = Yor
Now by a Taylor's expansion of (2,1) about x = x, we
have
n2
(2.2) y(x0+h) =¥, * hf(xo,yo) + o7 f‘(xo,yo)
+ n’ ' (x )+
3T N “ e ..
The derivatives may be expressed as partizl derivatives

of f by first defining the operator



43 3,
(2.3) L
such that
_ bu  du
Du = < * 5y £
where
£ = £(x,y).
Now
and
2
d% = 4f = £+ ff_ = Df.
p A S
Also,
Oy = &t = 1°f + £, Df
Ly=-47% ¥y
ax?  ax
where
2 2
2. _ (2 5 2,2
Df-(a-;2+2fex3y + £°3° )f
3y
Likewise,
a%y = &3¢ = DPr + £, DPr + 22 Df + 3(Df_)(DF)
&x = ba ¥ b4
dx
where
3 3
PP - P esr 2, 4328
3 ax” gy 3xX 3y

3
+ f3 3—5 , etc.



Now we rewrite (2.2) as
. 12
(2.4) y(x0+h) = y(xo) + {hf + st DI
3
h 2
+-3—!-(Df+fny)

+ h4

B (o3 £ °f + £2_ Dr

¥
+ 3(0) (pf) ]

t e e e

Yo -

Next we seek to replace (2.4) by an approximation of

the form

(2.5) y(x°+h) = y(xo) + Riky + Roky + R5k3
+ R4k4 + e e .

where

k1 =h f(xo,yo)
ky = hf (x0+a2h, y°+b21kl)

k. = hf (xo+a h

30, y0+b51kl+b32k2)

ky = hf (xg+ayh, yrbyqki+b nokptbyzls).
Here the constants Ri‘ 2, and b:LJ are to be determined
such that equation (2.5) will agree with equation (2.4)
up to and including the term of order h&. Hence, we
expand k., k§ and k4 by using Taylor's expansion for

two variables.



Now to expand k,, let

- 3 3
(2.8) Dy = (a2-§+b21 foss;).

Then
= -2 -2
hDy (a2 h %+ b21 ky 5 ).

Thus ,
@.7 k—h[f+th+h2 0.2 4+ B p 3 ]
. 2 = 1 2T 1 1 N R Pl
To expand k3’ let
- 3. 2
(2.8) D, = az & * (b51f0 + b52f0) 5y -
Then,
& R
hay & + [b31k1+b52k2] &
- 3
= hDy+bgy (kp-fyh) 5%
B 2 h 2 3
= BD, + byoh [Dyf + 57 D%+ . L . ]o'a‘y" .
Therefore,
n 2 n’ 3
(2.9) kg = h[f+hD,t+ o7 DTEHFr DIE . L
2 h 2
+ h baz(fy])li‘+ 37 fy D1°f + D fD,ry
LT I P
To expand k,, let
- 3 3
(2.10) D5 = Ay Tt (bll-l + Byp ok b45)f° =



And in the same manner as before,

(2.11)

2 3
- ) 20 h 3
ky = h[f+hD5fv—2T Dy 3T Dgf ¢ . L

P
+ 0%(byp Dyfabyy Dyf)ey
V3
+ h (b42D1f+ b43 D2f)D5fy
n’ (b,5D12f + b Da2f + 2b, b, .. D £)F
2T VP42t 4372 32743y 1ty

+

P

We now substitute equations (2.7), (2.9) and (2.11)

in (2.5).

Next we equate terms of like powers of h

of equations (2.4) and (2.5) obtaining the following:

(2.12)

where

(2.13)

Rl + Ry + R5 + Ry =1

1
a2R2 + aBR5 + ayRy = >

2 2
32232 + ag R5 +oa Ry =

o

3 3 3n -
a, R2 + 33 R5 + o8y R4 =
-1
agb32R5 + (a2b42 + a5b43)R =z
2y R, + (a,2b, 4 + a:7b, )R, = 1
22 3otz 2 Py * Bz Oyz)y =
- 1
aaazbaaR5 + (azqu + 35b43)a4R4 =3

= 1
2P52Pu3% = o

ap = by
35 = b51 + b52
By = byy * bys + Dyg



Since the eleven equations in (2.12) and (2.13) contain

thirteen unknowns, we assume two of the unknowns to be

arbitrary and solve for the remaining unknowns in

terms of them. We do this by the following procedure.
From the equations of (2.12) add the second

equation multiplied by asay, and the third multiplied

by —(32 + a4) and add them to the fourth, obtaining

_ ana, an+a, 1
(2.14)  Ryag(ay-ag)(ay-az) = 2% - 2_3_4 R -

From the fifth and seventh equations it follows

that

(2.15)  Rylagbsp)(ay-ag) = % - %

while from the fifth and sixth we have
(2.16) R, (azb,5)(az-a,) = 1 - %2 .
RN A A 2 &
By eliminating R, from (2.16) above and equation eight
of (2.12) we find that
(2.17)  agby, = 230%0733) e a4 L
32 ’ 2 2
2 i2a2—15
Now substitute (2.17) in (2.15) obtaining
- - (% - L -
(2.18) RBaE(a2 as)(a4 aa) (31 4)(232 1)
Comparison of (2.18) with (2.14) yields
(2.19)  spay _aprey, o= CarCe-h
2 3 )
S Pmm i ny sl
3 zZm 3



10

And hence,
(2.20) aya, = a5 .

But from the last equation of (2.12) it is clear
that a, # 0, thus,

(2.21) a, = 1.
Also from equation eight of (2.12) R, # O and therefore
R3 from equation (2.15) is not equal to zero.

Now Ry, Ry, RB’ and R, and be determined uniquely

in terms of as and az from the first four equations

of (2.12) if their determinant which has the value
(2.22) a3z (a2—33)(a5~1)(1—62)

is non-singular. The values for this non-singular case

ares
B = % " 1—2(a2+33)
lﬁaza3
2a3—l
12a2fa5—a2531—a27
- 1—2a2
3 I?aziaa—a25li—a3§
2(ay+ay) ~ 3

-1 273

By =3+ ldil~aZ5ZI-aa)

R, =

(2.23)

From the fifth, sixth, and seventh equations of

(2.12) we determine Dyos By, and by in terms of a,

and a3 provided thelr determinant whose value is
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2.2
(2.24) R3R4 35" a5 (aB'aZ)(aB_l)
is non-singular. The values are found to be:
o - aa(aa-az)
32 = Zay(1-2a,)
(2.25) by, - (l—aa) [32+a5—l—-(2a3-l)2 ]
2a2(a3—- 2) 16&2a3~4(a2+a5) + 3]

o (1-2a5) (1-ay) (1-a3)
33(a3—a2) L6a235 = 4(52+a5) + 37T

b45

Now any two conditions consistent with the
foregoing equations may be imposed. If we impose a

condition of symmetry such that
(2.26) Rl = R, and Ry = R5 ,
and a second condition requiring that the range from X4

to X) = Xy o+ h be divided into three equal parts so

that
-1 - 2
(2.27) a3 = 3 and ag 3
we find the values
1
Bh=-3
.3 21 1
Ba=g 223 5 -3
(2.28)
R, =2 a, =2 1 T U
378 373 731 3 32
1
SRy =5 ay =1 by =1 byp = -1
byy = 1 .
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Finally we arrive at the formula due to Kutta:

(2.29)  ypu -

where

—
#

Lastly we

hilx,, 7,0

¥

n

+ g Degesrgesigin, ],

= hf(xh + %h, Ty * % kl)

hf(x, + %h, Y - %kl + ky)

hf(xh +h, §, o+ kl—k2+k5) .

consider the possibilities when the

determinants of (2.22) and (2.24) are singular.

I% is found that the only cases possible are the

following:

(2.20) Case 1:

3.2=

with

(2.31) Case 2:

ay =

o= v ol W
W
il

—

|
el

and a, = 1

b42 =1 - BRB



(2.32) Case
a

with

"

Wi Gl o

=

[ RN VR

1
]
¥~

1
bz2 = 3§
b o 1
42 12'§4
S
PR
and ay = 1
b 1
32 121{3
oo - 3
byy = 6Ry -

13
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CHAPTER III

SOLUTION APPROXIMATION OF THE ORDINARY
DIFFERENTION EQUATION

As stated in the introduction, the solution of a
given ordinary differential equation subject to given
initial conditions can be found by numerical methods
or, more exactly by discrete variable methods.

Hence, we will find approximate solutions to the
ordinary differential equation by finding solutions

to certain equations called difference equations which
approximate the differential equation. Therefore,

it seems appropriate at this point to present a few
important aspects of difference equations before
proceding to discuss the solutions of differential

equations.
Difference Equations

The theory of difference equations is very
similar to the theory of differential equations. The
main difference between the two theories is that the
difference equation theory seeks as a solution a
sequence instead of a function. Normally the sequence

with the general element uy is denoted as{u, Uyy een}
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or more commonly as {uk} .
The general difference equation with constant

coefficients can be written in the form

(3.1) BgUstaIUS b wee B UL = Gy

J=0, 1, vee 3

are the non-homogeneous terms. The

where the Cj+n

difference equation in (3.1) is of order n and
generally, a solution (uj) is determined by
specifying n initial conditions.

If cjm = 0 in (3%.1), we can then have nt
order homogeneous difference equations expressed as

(3.2) aguyrayly ) + ...+ 8 =0, §=0,1, «vau

073 n-j+n
For the homogeneous difference equations the set of
r solutions, {ui(l)l , (ui(a)} [P (ui(r) }
&Y T oees @)

are lineraly independent iff ouy + Bui
=0,1=0,1, ...; implies @ = ... = B8 = O,

A set of n independent solutions of the homogeneous
difference equations of order n is called a fundamental
set of solutions.

Any solutions, say {vi} of the homogeneous
difference equations (3.2) can always be expressed
uniquely in terms of the fundamental set of solutionms.

A fundamental set of solutions for (3.2) can be

found by trying as a solution the powers of some scalar,
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say uy :axi, i=0,1, ... .
Then (3.2) becomes

1

(3.3) (™ + ap x4+ L.la) (ext) = o.

If « = 0, the solution is trivial. Thus we consider

only the roots of
(3.4) Po(x) = ax™ + an_lxn'l + e tag =0

The polynomial Pn(x.) is called the characteristic
polynomial of (3.2). If the roots of the characteris-—
tic polynomial are distinci:, then a fundamental set
of solutions is given by{uik} = {xki) , k=1, 2,
«es 5, N. If the roots are not distinct, we can still
obtain a fundamental set of solutions, Wik by using
derivatives of the powers of the root.

Lastly we introduce a linear difference equations
theorem which will later be wused.
Theorem 3.1l. Let (uj(\’) } be the fundamental set of
solutions of the nt order homogensous difference

equation which satisfy the initial conditions

(3.5) uy () =8

iv;i:o,l,...,nél;

v=0,1, «c. , n-1 .
Then the solution of the non-homogeneous equation

subject to initial conditions is



I RN R T N
v=0 k=0

We also define

(3.7) u&n*l) = 0, for all i <0

and

(3.8) ¢, =0, for all j <n.

The proof for the above theorem is given by Isaacson

and Keller [16]. TFor present purposes, n=1, ay=1,

Next, since we seek numerical methods solutions

17

to the differential equation, there are certain errors

which must be taken into consideration.
Numerical Methods Errors

When using a numerical method, one must take
into account the error of approximation. Actualiy
there are errors to consider. The first, called the
discretization error, is due to the fact that the
number Gk given by the theoretical method will not
agree with ik = §(xk), the true solution to the
differential equation. The discretization error is

denoted by
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(3.9) & = - F.

A second error is due to the limitations of any
computing machinery. Thus instead of the number dk,
the number actaully obtained by the computing
equipment is i*k. The difference between the number
we should have gotten by the method being used and the
number actually obtained is called the round-off
error and is written as
(3.10)  h3y,, = G, - 8% - 0F(x, b, W, D).

In this definition, f(x, h, J, f) can be of rather
general character. For the purpose of this thesis,

T is as defined by (3.21) and (3.22). This round-off
error is dependent on such things as the precision
used in the computer (single or double precision)

and the type of operation used (fixed or floating).

Then for the numerical method total error
denoted by d*, - ?k, we find that
(3.11) 4 - A S @ - B0+ | Gy - % | -

The local truncation error, denofed by Tj+k
measures the difference between the differential

equation and the difference equation and is normally

defined in terms of



(3.12)  h¥(x,h) = Fx+h)-F(x)~-nF(n,x,F(x),5).

Here ¥ is the functional in (3.10); once again for

our purpose use (3.21).
Approximate Solutions

Now we are ready to discuss the approximate
selutions of a system of ordinary differential

equations expressed in vector form as

CEONNE I
and having sn exact solution
(3.14) ¥ =3

in some interval

xSy

(3.15) a-x

and subject to the initial conditon
(3.16) ) = %, .

By use of a numerical procedure, in particular a
single-step method, we seek a value Jj which
approximates §(xj) = ?J. , the exact solution. Here
we have that

(3.17) Xy = a+jh, J=0, 1, ..., N

and

19
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(3.18) h o=

where N is a positive integer.

We will assume that £ belongs to a class F as
defined below.
Definition 3.1. F is defined as a class of real

vector-valued functions

£ = e, 200D, ee y PG )

>

where 7 = (1y,2y, e.v y Py) and such that T, fx,

51 ) 52 s eee o fP and all partial derivatives of

the first four orders are continuous and uniformly

bounded in Sy : ((x,:;) lalxX b, H; || <o 3}
Next, let U, be defined by

> -+

(3.19) 94, =7, + 3,

where 30 is the initial discretization error amnd is
a function of h only.

For 1 £ j S n we let ffj be uniquely defined
(assuming h is sufficlently small) by the difference

equation
N 3 L >
(3.20) B4 - ﬁj =h F f{h, *45 Uy £ )
where P {h, Xss \'IJ., £ }4 is a fourth order Runge-
Kutta process; that is,



.21

- -
(3.21) Fih, x, 4, £} = RE + RyE, + 33}5

>
+ R4k .
Here Rl, R2, R}’ R4 are constants and

B = ¥ (x, b, §) = f(x, ©

Y
n

> e + N -
5 = Ey(x, by @) = £(x + agh, W+ hdyyk,)

(3.22)

U

E}(xy h, ‘I)
= f(x + azh, U+ hbalfcl + hbyok,)
K, = (x5, by )

>

oz > > £.)
= f(x + ayh, u + hb, Ky + hbq,zkz + hb43k3

where the a;, and Ri are real and must satisfy the

im
relationships of (2.12).
We shall call the numerical method (3.20) the

theoretical numerical approximation to (3.13).

Next let —’;o be a function of h only and define

e 2 >
(3.23) ut o= Yot o, -
For the interval 1 < j < n and for h sufficiently

small, E*J. is uniquely determined by

(3.24) vy - @7 = WF (n, x5, S*j, £ +ho., .

J+i

Of course the function F is defined as in (3.21) with
>

uy = u*‘j and oj+l is the local rounding error. We

shall call method (%.24) the computed approximation

to (3.13).




CHAFTER IV
STABILITY OF SINGLE-STEP MBETHOD

In this chapter we will show that the Runge—
Kutta method is stable by presenting theorems
concerning three different types of stability. We
begin by stating some definitions which we will
utilize in proving stability. The following three
types of stability will be defined as by Luther [7].
Definition 4.1. Stability: ILet the sequences {ff*j }
and (ﬁ'*j) be solutions of method (3.24), both for
the same f, f: and h but perhaps with different
round-off errors.

Then method (3.24) is stable iff, for fbelonging
to F, there is an ho and M, such that for all
Oihihowehavellﬁ*i-ﬁ'* ]S Me,

i
<< ) ol < <<
0 - i - N, provided ||pi—p'i||—:, 0<ic=

i N.

Now let the sequences (ﬁ*-j} and {le) be
solutions of method (3.24) and method (3.20) respec-—
tively.

Then method (%.20) is stable iff, for ; belonging
to F, there is an ho and M such that for O - h = no
we have || Gj - ﬁ‘j[[ e , 02§ 2N, provided
llgo - go || Ie and||;j [1 e, § 21,

22
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Definition 4.2. L-Stability: ZLet the sequences
{le} and ﬁ"lj} be solutions of method (3.20). Then
method (3.20) is L-stable iff, for ¥ belonging to F,
there is an h, and M such that for all O Int h, we

Y

ha.ve]lﬁ:j - SMe, 0% 55N, provided

510
18y - 8'g11 < c.

Definition 4.%. H-Stability: Method (3.24) is said
to be H-stable iff, for 4 belonging to F, there is
an h, and M (e) such that for all 0 < h = h, we have
max |1 u*. |l M (e), provided Ha* 1] < ¢ and
ofg-N
e .

Weglh =5» b-d -t

Method (3.20) is said to be H-stable iff, for ¥
velonging to F, there is an ho and M (e) such that
for all 0 = h X h_ we have max ||3, 11 < MCe)

° osjsy 9

provided [|T10H e,

Now we state two Lemmas which follow from
the stability definitions.
Lemma A. For the given class F, stability of method
(3.24) implies stability of method (3.20) and stability
of method (3.20) implies L-stability of method (3.20).
Lemma B. For the given class 7, H~stability of
method (3.24) implies H-stability of method (3.20).

Proof for both lemmas: Note that method (3.20)

is a special case of method (3.24). Also note that
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for j 2 1, EJ. and ;lzj can be chosen.
Since it will later be required, it seems con-

venient at this time to introduce another definition

involving stability.

Definition 4.4. Root Condition: Let the process

have the character

>

b1 £)

n
I agu Jem cce 2 Ugype

: =n 8 (x,,hu
520 J+s (J,a

N
where G is determined uniquely when the function fis

-

>
known, as well as h, xJ., u cae uJ.+m; m a non-

J-m’
negative integer and 2., &, # 0.

n
Now let the polynomial P(tz) = ) ascs be
5=0

assocliated with the LHS of the process formula, Then
P(r) is said to satisfy the root condition iff all
zeros of P(t) are one or less than one in modulus
and any zero of modulus one is simple.

For our single step process, P(Z) = -1 is the
polynomial associated with the LHS of the difference
equation (3.24) or (3.20). Since the only root of
P(z) is one, P(;) satisfies the root condition.

To show stability of method (3.20) and method
(3.24) we will have to establish that ¥ satisfies

the following properties (see [7]):
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- > -> <
(#.1) IIF Chy =y, iy £ - K
g - - P >
(%#.2) I/F {n, xa.,uj,i‘) - F{ n, Xj,vj,f)ll

< S
g |
[1u V5

where K and C are constants independent of X5 ﬁj’

and v,, but may depend on the upper bounds of f and

J)
on a finite number of its partial derivatives.

We now introduce some properties of vector norms
which will be used to prove (4.1) and (4.2).
Vector norm. TFor every vector ;c in a linear space S,

R
there corresponds a unique real number |[x || . This

number is called the norm of % iff:

(#.3) %1120, for all % belonging to S.
(4ot) I} x|} = 0, iff % = O.
4.5) |lc§]|=|c['{|f{[|,fcr all scalars

¢ and ¥ belonging to S.

>

> ->
6 (XTI SE T (]
Although there are several examples of norms we

shall make use only of the maximum norm defined as

>

(&.7) Il x|l = max |xJ| .
J

Here X = (Xl’XZ’ ces xp).
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Establishing Property (4.1). Now we proceed to show

that (4.1) holds for the fourth-order Runge-Kutta
method. From (3.21) and the use of norms we have
(#.8) I| F (n, x,uj, 1

+ | Ryl HkgH + | Byl Hk5H+ [ Byl 1Ryl -

N
ESNIE [Ry | ik

Applying the definition of the maximum norm yields
> N > >
(*.9) [P ¢ h,xj,uj,f}Hwi | By |A)]“f(xj,uj)
+ Ry | |5r(x3+a2h,ﬁj+hb21kl)

Y R > >
+ IRgl | Gegragh, d thbyky vhbyks) |

d
+ [R, | lsf(x+ahf;+hb ¥, +hb, R, +hb Ic)]
4 JTOAT AL T a2 e
where o, 8, vy, § denote the component yielding the

maximum valued element of the vector functions E
of fcl, E2, }?3 and 124 respectively.
But by definition 3.1, each has an upper bound
say, Mj. Therefore we have
- L <
(4.10) 1P {n, x5 Uj Y] - K
where

(5.13) K= {[Ry| +IRy | +[Rg| +|Ry |} .

Hence property (4.1) is established.

Establishing Property (4.2). For ease of presenta-

tion we define
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> s o >
(4.12) ¥ {h,xj,u.,f)—lel(uj) + Rakg(uj>

+ R k3(u ) + Rq_kq(u )
where

(4.13) il(uj) = By,
Ez(u.) - fx, sraoh, G +hb21 1) b
Ky(g.y = F0xyrazh,dymb lkl(u )+hb Ekz(u y)
1?4(11 y = Bxy +a4h,ua+hb4lkl(u )+hb42k2(u 3

+ by gk 3(uy) )
Now by the properties of norms and employing the

definition of the maximum norm we have

(4.14) ||F{th,u f}—F{hx,v L
p Ryl | f(xd,uj) - f(xj,vj)l
+ | EXN lIsf(xj+a2h,-ﬁj+hb211—()l(uj) )
- sf(xj+32h"7,j+hbalgl(vj) !
+ ]R3] 'Y‘f(xj+th’ﬁj+hbﬁlil(uj)+hb52ﬁ2(uj) )
—Yf(xj+a3h,{r’j+hbal§1(vj)+hb52f€2(v.)) |
Ry |5f(x.+a4h,iij+hb41ﬁ1;u J+hD, ok, 2(u, )
+ hb43 5(11 )) -~ Sp(x. +aq_h R +hb4lkl(v ) )

+ hb42k2( ) + hb45k3(vj))]
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where a, B, v, § denote the components yielding the
maximum value element of the vecbtor differences of f{)l,
122, 125, and fl'_'_ respectively.

Now applying Taylor's formula for functions of
several variables to the second factor of the first
term of the RHS of (4.14) we find it is equal to

1 1 ) @ > >
4, = ys) e +0 =V
(4.15) I Cug="vy) - £(zgyvyr0y (iy=¥5)
2 2 3 o, > >
= f(x.:,v:+0 IR )
( uy Vb) pong (xa,vJ 1 (ua J))

+

where 0 < o < 1 and iua., ivj, (i=1, ..., P) are
> >

elements of the vectors uJ_ and Vj' But by definition

3.1, the partial derivatives have a common upper

bond, say I,; where M, > 0. Thus (4.15) is less

or equal to
1 1 2,2
(%#.16) le uy=" vy |+ 1, | w7 |+ eee
Replacing each term by the maximum term denoted by
L L .
M2( vy - VJ-) yields
l >

L _L a > _ o v
(4.17) P | Tuy Vs | S C IR Txy J)I

where P 1s the number of terms due to the number of
partial derivatives with respect to the wvector Gg’
of length P and where P - 1.

Next we apply Taylor's formula to the second

factor of the second term of the RHS of (4.14) and
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obtain
1 1 1 1 B
(4.18) | (€ uj+h’b21 kl(uj)) -1 vj+hb21 kl(vj) })Blf
a
2 2
+ (1 uj+hb21 kl(uj)}

2 2 atr
- {Svgrnbyy kl(vj) 1) ot

where 0 “h = 1 and

B _ 2 Py van,ebb, ¥
A RIS

> > >
+ op(Uythbyyky ) - ¥, - o,k
3 J 21 1(vj)

with 0 <« ey < 1.
But as before, the partial derivatives are
bounded by 1, and hence (4.18) is less or equal to
(19) eyt 1 PugFrs e ] by |
l 11(l(uj) - lkl(vj)l | 2k1(u3) - ekl(vj) |

+ eee .

Now consider the first bracket term of the above
equation and replace each of its terms by the
maximum term denoted by IL, (Ihj - de), thus

obtaining
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(4.20)  MP | Lujj’vj[ + Moh [ by [ € lkl(u‘)—lkl(v') [
3 3

2 2
+ | kl(uj) - kl(Vj)l E I S

Then recalling that k; (u,j) = f (xj, uJ.) and

ky (vj) = (X;j' VJ) and using (4.17) we finally

obtain
L L L
5 Vj |+ Moh [bpy [ {MP | uy- vj |

+ M2P ,Luj—ij] + ...}
252 L I
= (M2P+hM2 T b21| ) uJ.- J'l .

(4.21) M2P{ Ty

Following the same procedure we find that the second

factor of the third term is less or egual to

(5.22) (P + m2p? gyl +1bg5 1

2y 3p3 L L
* RTLTEY (oo [Dyy |) | Tuy=Tvy |

Likewise the second factor of the fourth term is less
or equal to
(4.23)  QLP + WLPPP ([byq| +| buo| + | b
. PP + TMLTFT ([byy] +| byp| *+ | byz 3
2y 3p3
R R T L PR R L RSP
L

By ol L
+ b7, P |b45[|b52|\b21|)| uy- va.l .

Now using (4.17), (4.21), (4.22), and (4.23) in (4.14)

and letting h = 1, we get
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(2m)  UF (et E 0 - Fongxg@ g, 6315 =4 1] «
IRy 1[G + Ry Cp + By Oy Bpq| + | Rz | Cy
*IRg] Cp (fos| +] P5p] ) + |Rg| C5Psp]|Dpy|
S IRy 1o+ IRy 10y oyl + 1 oyp |+ [ By5 ()
+ IRyl ©3 (Ibypllboy] +] byzlt Py |+ [Dga[1)
+ By | Gy | Byz [IPzn |1 Ppy | 3
wnere G = M,P, Cy = (I,P)Z, 05'= (1,2)° ana
C, = (,P)*. Letting G, be the largest valued Gy,
(i =1, ... , 4), we finally have
(#.25) IIf‘(h,xj,ﬁj,F} - F {h.xj,\?j,fmi c”ij-?rj I
where
(#.26) G =Cp [ CIRy| +[ Ry| + | Ry |+ |Ry] )
+ (R 1opy ] +1 By € [Bgy] +] Dyp] )
+ Ry el gy ]+ [ ohp | Oyz (3 )
+ (JRg||bgplibyy
+ 1Ry ] (Poyal] Doy [+ [Puz(ciP5] * |P52)y )

T PRy | Ioyz] B3 || P2y |1 -

Thus property (4.2) is established.



32

Runge-Kutta Process Stability

We now show stability of the Runge-Kutta single-
step method by stating and proving the following ‘
theorems.

Theorem 4.1. Method (3.24) is stable, methed (3.20) is
stable, and method (3.20) is L-stable if property

(4.2) and the root condition are satisfied.

Proof: The proof will be presented in a manner similar
to that of Luther [7] Also because of lemma A we
need only to prove stability of method (3.24). It

has been shown that property (4.2) is satisfied by the
Runge-Kutta method and also that the root condition

is satisfied by definition 4.4, Further by stability
definition 4.1 we have [I;k - ;'k” I , 02k im,

We now seek for T belonging to 7 an h  and IM,
independent of h, such that for 0 2 h 2 b,

[* - &% |1 Me, 02Xk <N,

Henceletfk=ff* - %%, 03k SN, and 0y =

k k*
—).~ < <
ggik HOES, 0= % = W,
Then,



Thus,
g = HEoH= [ EO - p
Thenforoika—l, we have
> > > . S —>}
(&.01) By = B = Opyq = B[F {hyx,ux,f
> - hd > -
- F hyx,u'* £ 1]+ hg - By b

Now by theorem 3.1, for 1 = k = N, we have
N n-1 () k-n o (n~1)
(4.42) = I E W 7oL, W
B =) ) joo dm k-j-1

But n = 1 in the single-step method, hence we have

> - k-1
R RN A N

Using in (4.43) C +1 as defined by (4.41) and

applying norms ylelds

) - RS WO 1151
(0) P ET e
+ kh ‘W l' Oﬁlgf(i{(_l Hl‘(h'xjau j,f)

- Fln,x, R P NIRRT SN TFI

- 5 I
g+l *

For the single-step method, | wl(co)[; 1. Thus,

33
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hd - -
(4.45) [1E. || = e+ kuC _max [l u*.—u'*.||+ khe
k 085-K-1 Tl
= € +khC v + Khe
Ed < :
But we note now that || Ej Il = w  for some j - k.

Also note that the C above is the constant in (4.2).

Hence (4.45) becomes

(4.46) @, = e+ kKhe+ knCu

k k *

Now limit values of k such that khC = % or

(#.47) xS [mg) = 8,
where [r] denotes largest integer not exceeding T.
Now we find from (4.46) and (4.47) that
<
(4.48)  Lw, 2 e+ ne s ety e
or
449 oy S 2(vvle=me , 0% T4
where ¢ = 55 -

0f course (4.49) implies that 0 = ty SN, I not,
then (4.49) holds for 0 = k = W,

By continuing to repeat this procedure, we will
eventually bound “p for 0 Sk 2 N.

Thus letting Mo = 1, we have,
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(#.50) w5 2M+ yle=Me L, 05k S

ey S 2Mryle = Mye 5 B Sk S 26

* <
wy o Q[qu Je = Mige s aty Sk 2 ES(grl)%y
and in general,
-
a5y N E N Tey S raler) o oayalatbgy Je - e

for 0 £ k £ N.
We now proceed to prove (4.51) by induction.

(a) We know (4.51) is true for q = O; that is,
Mye=[2e20] e= 2[1+v] e .

And this is identical to the first equabtion of (4.50).
(b) Next we assume (4.51) holds for q = s. Hence,

me = [2%0) 4 228Dy .
(¢) Now we let g = s+l. TFrom (4.50) we have

M, e = 2[MS+\1;] €.

s+1

Substituting the value M, from (b) we find

Moo = 120572 4 220y 10 L

Since (4.51) holds for s+l, the proof is complete.
What remains to be shown in (%4.51) is that M is

independent of h. This is done by showing that q is



independent of h and hence, M is independent of h,

Thus we define
(4.52)  p = [23(b-a)] = 2C(b-a)
Also let

(4.53) hy < m
Then

<
(4.54) B vaipd .
Note that from (4.53) and with h < b, we obtain

455 g 2 gg el
o

z
or
(4.56) 6y Z pel .
Now since &, = [t ] we have
1 2hC ’
< P < b-a < o+l
(4.57) Pty - [’2}@] -5 =N- [m] <(p+1)ty
+ (prl) = (p+2)%y .
Hence we get
(4.58) pty N S (pe2)ty .
But from the last eguation of (4.50) we have
<

(#.59) gy T W2 (qrldty .

And from (4.58) and (4.59) we see that

36
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(4.60) p$qsoptl .
Thus q is independent of h. 4s for ho we require only
that h, make method (3.24) unique.
Theorem 4.2, If property (4.2) and the rcoot condition
are satisfied, then method (3.24) is H-stable and
method (3.20) is H-stable.
Proof: It has been shown that property (4.2) is
satisfied and also that the root condition is
satisfied.

From the definition of H-stability we have
that || 0|l S camdllf]] S ¢ , 1 ik SW.

We now seek an h, and M(¢) such that for
0ns hO we obtain max I J*kll hl M(e).

O3K=N

Hence let

(4.61) @y = max I 1l ,0%x =N
05KS §

Then w ° e,
Also for 0 < k £ N-1, we have
(8.62)  f* 4% = hF (h,x,,0% ,f )+ ni
. W1 Wy = pXpa W b Ik oy .
Now in the same manner as in the previous theorem

we have

(4.63) ||*u*a. I = % S ocx (b-a) (e+k) = M(e).



Again we require an h, that makes method (3.24)

unique.
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CHAPTER V
STABILITY OPTIMIZATION

In this chapter we discuss the main purpose of
this study. Briefly restated, we seek to find
Runge-Kutta formulas which will yield optimum
stability when the Runge-~Kutta method is used. We
are interested in the two types of stability defined
by definition 4.1 and definition 4.3. From (4.51)
it is easily seen that optimum stability will be
achieved by finding the smallest possible q. By
(4.60) we see that if p is minimized q will be
minimized. And from (4.52) we have that p is
dependent on the Lipschitz constant C of property
(4.2). Hence our problem becomes one of minimizing
C. TFor optimum H-stability we have from equation
(4.63) that we need to minimize the constant K of

property (4.1)
Minimizing the K Constant

From equation (4.11) of Chapter IV we found that

for the fourth order Runge-~Kutta process we have

(5.1) K= My Ry [+ Ryl + [ Ry [+ R, |}
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where M is a constant.

In this study we will reguire O < 8s, a3 < 1.
Since we seek to minimize K, we see that our task is
to minimize % | Ri\ . Hence let us now define

i=1

(5.2) By., = min [mex |R; | ] .

In Chapter II it was stated that for the singular
case there are only three possibilities which give
finite solutions of Ri‘ From these singular cases,

we see that for ap=az= % , we have Hmin=R2=R3=i% and

Ry=Ry= % . These parameters yield the formula due

to Runge:

> > 17 > >
(5.3) Y441 =75t % (k1+2k2+2k5+k4)
where

> > >

1 = hf(xa-oyj)

+ N 1 N 12

k, = hf(x.+ 5 h, y.+ k. )
(5.4) 2 SIS -}

> > 1 N

ky = hf(xj+ 5 h, 3’3‘*‘ %‘kz)

EA = hf(xj+h, §3+i3) .

Next we recall the first equation of (2.12) which
is

(5.5) Ry + By + Ry + Ry = 1
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Since we are interested in Rmin for any set as
and azs it is easily seen that if one or more Ri‘s
are permitted to be negative, the sum of the remaining
R; will increase in order to satisfy (5.5). For

exanple, if we allow Rl to be negative we find
(5.6) Ry + Ry + Ry > 1.

Then Rm

in Will de greater then %- . Thus we conclude
0

that for Rmi we must have Ri z . Hence we have

n
(5.7 IRyl + 1Ry 1+ [ Byl + IRyl = 1.
Using (5.7) in (5.1) we find the minimum X to be
(5.8) K=n .

Therefore, for optimum H-stability we only require
that the fourth order formulas have positive Ri .
Well known formulas which meet this requirement is
the one due to Runge, (5.3) and the one due to Kutta,
(2.29). There are of course other formulas also
satisfying this criteria.

1

It is now interesting to note that Rmin =3 for

all O < 32,33 <1.

Minimum [max| Ril]

We know from above that Rpipn requires Ri Zo.

n



We also know that for the singular case Rmin = % B
For the non~singular case (a2;4’a3) in the region
1
where O < ag,az < 1, we now show that Rmin =3 .

Using (2.23) we have Ry = 0 iff
(5.9) 6ayas - Ea3 - 2a, +1=0.

This is the equation of a hyperbola for which

the asympotes are as = —% and a3 = %‘- . Its inter-
cepts occur at (a, = %— s 83 = 0) and (32 = 0, ag = %)
Also this hyperbola intercepts the region boundary
at (:12:1, a5=zl1¢)and(a3=l, 32=111) . Thus
Rl is zero for all points on the hyperbola and

found to be positive for all values of as and 33 in
the region designated by the plus sign in figure

5.1. That is, R, » O iff

1
(5.10) 6a2a3 - 233 -2, +1>0.

Fig. 5.1. Region for positive Rl

42



Next, from (2.23) we find Ry, = 0 iff 8z = 5 and

A s 1 > 1

R5701ffa2—§. AlsoRa,RB—OlffO fax < 3
fa3<lor0<a3<%<a2<l.

This is illustrated in figure 5.2 by the cross

hatched region.

N \\
N N

N

v

\
NN
\

N a.
1 1 2

2

Fig. 5.2. Region for positive R2 and positive R5

We next see that Rq_ = 0 iff
(5.11) 632a3 - 4a5 - 4o, + 3 =
This is the equation of a hyperbola for which

2 .2

the asympotes are ay = 3 and a5 =3 - Its
intercepts are found to be (32 = —2«, a5 = 0) and
(ay = 0, az = % ) . Turther, this hyperbola
intercepts the region boundary at (a, = 1, ag = % )
and (a5 =1, ay = %— ) . TFrom figure 5.3 we see that



Rq_ will be positive in the region denoted by the plus
sign. That is R, > O iff

(5.12) bagaz - 4az - 4ay + 3 > 0 .

— A,
1 2

Fig. 5.3. Region for positive R4

Now by considering figures 5.1, 5.2, and 5.3 we
obtain figure 5.4 whose cross hatched region -
(boundaries included) represents the region we seek

such that Ry 2 0 for O < ay, az < 1.
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=

T %

o

Fig. 5.4. Region for positive Ri

From the above discussion it is clear that

Rmin = 13.»' on the boundary of the region described

by figure 5.4.

Finally we examine the interior of the region
in figure 5.4. Consider first the part of the .
region where O < a, 5%— and % = az < 1, (ae;!aa).
Recall
(5.13) Ry = %+ [1-2(apray] / 12aga, «
Now when a, = % or az = %‘-, (5.1%) yields Ry = é‘— .

Suppose that Rl > % . Then we have

1 1

(5.14) 5+ [1—2(52+a5) 17/ 1232315 > 7
which gives az < % , a value of ag outside our region
1

of interest and hence it becomes obvious that Rl z z -

In the same manner we find R, < é‘ .
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Consider next the part of the region where

[

25 ay < 1 and O <az 2 % , (327435) . Using the
same procedure as above we again obtain Ry 2 % and

R4 z % . It then follows that for our entire region
(5.15) Ry + R, = % .
Whence

>

2
(5.16) Ry + R3 3 -

It is now easily seen that from (5.16) Rmin = % N
which is what we set out to show.

Next we proceed to show that for our region of
interest, (5.3) is the only formula for which
bij 20 as well as being the formula for which

Ry 2 0. From the above discussion it is clear (5.3)

satisfies R; 2 0 . We now show it satisfies bid 2 0.

Using (2.25), we find (see [7] )
(5.16") by = a5(3a, - 4ay” - ay) / [2ay(1-sy) ]
by = @/ [2apaz(6ayas - 4lagraz) - 3 ) ]
where
q = l2a22a32 - 12a,%a, - 12aya,”
+ 158535 + 4352 - 6ay - Saz + 2 - 42,2 .

Now using b31 20 and b.j2 z 0, we find
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a2<%— and5a2—4a22 > az > ay or a > % and
325 - 4a22 < 8z < ay or a. From 6a3a2 - 4(a2+a3)
+ 3 >0 andb4210we have 35> azanda2> 2 -~
5a5 + 4&52 or 33 < a5 and as < 2 - 5a5 + 4332 .
FrombABZOwehave ay < %au:\da3 > ay or ay > %‘-
and a5 < a5. Note that 85 = 532 - 4&22 and ay =

2 - Sa3 + 4a52 are tangent at (%‘- . % ). When we
include 6355.2 - 2(a2+a5) + 120, we £ind that
unless bul Zo changes the result, we must have
a, and az in the region bounded by the two
hyperbolas and the two parabolas (see fig. 5.4).

Turn now to b41 2 0. If we let ay = % + U,

az = % - v, (see (5.16') ) we tind
Q=l2u2v2+v2<uv—121-—%
where 0 = u, v :% . Using
v:[u+%—+(24u3+u2+5u+%)% 17/
[24u2 + 2 ]
we readily find Q <O for the region, except at
u = v = 0. The region found just above for the

other parameters to be nonzero is seen to be within



this last; so that u = v = O is the only choice for
all parameters to be non-negative. This of course

_ _ 1
means a, = az = 5 .
Minimizing the C Constant

While in the preceding section we found a
requirement for Runge-Kutta formulas which give
optimum H-stability, here we seek a formula which
will optimize the stability as given by definition
4.1. To accomplish this, it has been shown at the
beginning of this chapter that we desire to minimize
the Lipschitz constant C of property (4.2),
previously determined for the fourth order Runge-

Kutta to be
(5.17) €= Cpp [CIRy|+ IRyl + [By |+ [Ry | )
+ CIRy Il byl

+ IRy [Ubgy I+ 1 ogy e IR by |+ 105 |
1 oys )

+ URg [ oo ooy [+ IRy [Cby5 110, |
+|b43]{]b31|

1o 1) ) + TR byl bgol I by 1 ]

where C . is a constant. Using (2.12) and (2.13)

48



we get
(5.18) IRy |+ IRyl + |Rg] + [Ry| 2
[Bo (P21l * [R5 [([P31] +| P32] 3
>
o IRy oy |+ 1oy 1 4 IDy5 | = &
|R3”b32”b21| + Ry | (| byoll Boy |
. -1
+ |b45‘{|b31‘ +| b52 1) = I
_ 1
‘R1+Hb45‘|b32”b21 ] =
It seems clear that to minimize (5.17) we have to
minimize the relationships of (5.18). This will be
accomplished easily when Ri Z 0 and bij 2 0. One
formula which satisfies this requirement is Runge's
formula given in (5.3). Then the minimum C is
given as
41
1.1 1 LA
(5.19) C=Cmax[l+2'+€+21f/]“g+ Cpax *
It is important to note that for our region of
interest, 0 < ass a3 < 1, Runge's formula is the

only formula which meets the criteria. This was

shown in the previous section.
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CHAPTER VI
CONCLUSION

In many engineering and scientific problems it
is necessary to consider numerical procedures for
obtaining an approximate solution.to an ordinary
differential equation. One numerical method useful
for this purpose is the Runge-Kutta process.

However numerical methods raise questions of their
own.

One important question is that of stability of
the method. The Runge-Kutta method is indeed stable
as we have shown in this study. Karim and Lawson
have found regions of stability for the Runge-Kutta
method of order four and higher. However, neither
indicates that their choice of Runge-Kutta formulas is
the one which gives optimum stability in our sense
of having a minimum bound. It might prove worth-while
to investigate, for example, Karim's work to see if
indeed his fourth order Runge-Kutta formula is the
one for optimum stability according to his stability
definition.

In conclusion we again emphasize the main

purpose of this study. This is that when the fourth-
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order Runge-Kutta method is used to approximate a
solution we are interested in having optimum
stability. Hence that method which has the minimum
bound in our definition of stability is in this
sense best. Thus we conclude that any fourth-order
Runge-Kutta formula having R.l 20 will give optimum
H-stability. For optimum stability of our second
definition, we need fourth-order Runge-Kutta
formulas having Ri 2 0 and bij 20. In particular,
Runge's formula meets this criteria. Moreover,

this is the only formula meeting their criteria when

0 < ay, az < 1.
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