

A Tmoela
By
ROEGR Mrototas eonito
Oubmitited to the Crachate soheol of the
 partisi fulfilimant of the requisemants fow the degret of
MAYYER 0\% 8ctisics
Hay, L869
Major tubjeet: Geology

A Thenis
By
ROHERT HIOHOLAS OORXKO

Apyroted an te thye and eantent br:

may. 1068
348278

FRONTISPIECE
The Llano basin. View to the south from road cut on top of escarpment north of Pontotoc. Lower Cap Mountain Limestone Member forms the sides of the road cut. The Hickory Sandstone Member crops out between the escarpment and Pontotoc. The hills in the background are formed by Precambrian gneiss and granite.
Page
Valley Spring onelas. 82
Paokeedale Sahist 83
Struoture of tho Preaambrian Metamorphio Rookn. 23
Onelas-Sohist Unit. 86
Igneous Rookw. 28
Fine-Grained Granite 28
Aplite Dikes. 29
Cambrian Syatem 29
Kiley Formation. 29
Hickory Sandatone Member. 50
Cap Mountiein Limostone Mamber 35
LHon Mountein Sandetone Member 35
Wilberne Formetion 37
Welge Sandatone 38
Horgan Creek Limanton Merber 40
Point Peak Shale Momber 48
Sen Saba Limestone Member 44
Cretaceoun System 46
Basal Conglomarate-Bandatone Unit. 47
siltatone Unit 48
Limestone Unit 50
Age. 51
Previcus Investigations 51
Diseunsion. 58
LIthology 58
Pege
Paleontolagy 55
Concluaion. 56
Quatornary Syetem 56
sTructural agology 57
Regional Struoture. 57
Looal Struoture 65
Folding. 64
Faulting 64
Age of Fausting. 67
aEOLOAIC HISTORY 69
precambrian 69
Cambrian. 70
ordoviaian and silurian 75
Devonian 75
Missisaippian and Pennsylvanian 76
Permian, Trisanic, and Jurasuio 76
Cretaceoun. 77
ECONOMIC RESOURCES 79
bIbLTOGRAPHY 80
APPENDIX 88
Deseription of the Section of Cretaceous Rocks tt Buch Windmill 89
Desoription of the Seotion of Creteocous Roace at the Miorowave Relay Station 91
Desoription of the Seotion of Cretaceous Roacs Southeast of the Calione Quarry 95

LIST OF ILLUSTRATIONS
PlateFollewingPage
1 The Liano Banin Frontispiees
I. Geologio Map of the Pontotroo Area, including Strueture Seotions pocket
II. Panoramic View of Fsearpment. 9
III. View of Round Mountain. 9
IV. Quartz Vein 26
V. Preaambrian Oneian. 87
VI. Fine-apained Oranite. 28
VII. Querts Pobbles in Baaral Hiokory 31
VIII. Orosa-bedding in the Hiokory. 51
IX. Middle Hickory Sandatone Mamber 31
X. Hisicory Sandatone Member Contacts 35
XI. Cap Mountain Limestone Menber 34
XII. Cap MountainwPrecambrian Contect. 35
XIII. LI on Mountain Sandstone Member 38
XIV. Hematite Nodules in Lion Nountain 56
XY. Welge Sandetone Member. 39
XVI. WeLgerMorgan Creok Contaot. 39
XVII. Morgan Creek Limestone Member 40
XVIII. Folding and Biaherya in Point PeakFig. 1. Kinor folding in thePoint Peak Mouser48
Fig. 2. The oabbage-head ${ }^{n}$
strueture of the blolaerms 48
Following
Plate Page
XIX. San Saba Lineaton Mambor 45
XX. Gretaceous Besal Conglomerate 47
XXI. Gretaceous Basal Sandstone. 47
XXII. Cretaceous Siltwtones 49
XXIII. Cretaceoun Limentones 50
XXIV. Weathered Cretaceous Boulders and Chert Fragreante
Fig. 1. Chert Iragmonts at Bush Windmill 50
Fig. 8. Weathered bouldere of Cretaceous IImestones 50
XXV. Cretaceous Outliera 51
XXVI. Exposure of Small Fault 64
XXVII. The Pontotoc Creek Fault. 64
XXVIII. Fxponuren of Small Faulta 64
XXIX. Exposure of Caliehe 78
XXX. Caliche Quarry. 79
Figure Page
2. Location Map of the Pontotoc Area 3
2. Prinoipal Streand of Contral Texas. 12

The Pontotog area is situgted on the northern Plank of the Liano uplift and inoludes portions of Maton, Llano and San Saba oounties. The area is charatorised by ateep, east-west trending escarpment north of Pontotoo, and by low to moderately high hills in the northeast and southeast partse

Preoambrian, Upper Cambrian, Lower Crataeeous, and Quaternary rooks are exponed in the Pontotoc area. The Preoambsian rooks conaist predominantiy of gneisg-sohist unit whioh has been intruded by masses of fine-grained granite and by aplite dikes. The Upper Cambrian Riley and Wilberns formations consist of sandstonc, limestone, and thale members. Cretaceous rooks are exposed in three outliors north of Poutotoo and conaist of three units, whioh are in ascending order: basel conglomeratemandstone unit, a ailtatone unit, and a limatone unit. Those unite were not mapped separately due to the gradational conteote between the units and to the thiok soil eover. The Cretaceous rooke unconformably overile the Cambrian rooke and are not involved in faulting. Lithow Logia and paleontologic evidenoes indicate that the Creteceous rooke are atratigraphioally equivalont to the Edwarda Limestone of the Frederiakeburg Group. Roake of Quaternary age are 1imited to a fow very small deposits of alluviun and conglomerates that oocur along the major atreasis.
The rellof of the area prior to deposition of Upper Cambrian rooks was moderately high and rugged an is indieated by the ooqurrence of Precambrian gneisa extending upward into the Cap Mountain Limeston : fember.
Cheney (1940, p. 105) uggeated that the Llano apIift is struoturally related to the Concho aroh which trends northwestward from tho Elano region. The main struatural features in the Liano uplift are northeast-trending horste and grabens. The Pontotoc area in situated on one of the horsts whioh has been named the Pontotoc axis by Cheney.
The Paleozoic atrate in the northern half of the Pontotoc area form northmard-dipping ouesta and are out by a merien of aouthesstotrending transvore faulta that are perpendiaular to the normal northeast trend of the fanlts in the Lano region. The amount of throw along the faults varies from f fow foet to about 200 feet. It is believed that dif* ferential uplift of the Pontotoo axis resulted in the strata being plaved under atressea strong onough to produoe faultinge The faulting in the Pontotoo area probably oocurred during the time of major deformation of the Liano region.
The Llano region wat extensively oroded during postCanyon and preararly Cretaceous time with little or no depoeition of Pormian, Triaselc, and Jurasaie rocks.
Plumaer (1950, p. 101) and Barnes (1941, p. 2994)
stated that the first Cretmoeous trata deposited over the
entire Liano region were either the upper portion of the

Comanohe Peak Limestone or the lower portion of the Edwards Limestone. Supporting this oonclusion by Plumer and Barnes is the fact that the cretaceous atrata in the Pontotoc area are oonsidered to be equivelent to the Edwards Limestone.

Land and ground water are the most important ree souraes in the Pontotoc ares. The land is used for ranohing and farming, and the wetor ia used for human and 11vestook connumption. A emall deposit of callohe north of Pontotoo has been quarried for use as road material. The quarry is ebendoned at the present time.

OEOLOGY OL THE PONTOTOC AREA, MASON, LLANO, AND SAN SABA COUNTIES, TEXAS

INTRODUCTIOH
STATEAENT OF PROBLER
The prinsipal objeotivea of this atudy were: (1) to map and describe the atratigraphic unite which orop out in the Pontotoo erea; (2) to detersaine the atruoture of the areas (3) to deteraine the age of the Cretaceous strata in the areas and (4) to resonstruot the eeologio hiatory of the area.

The first problen inciuded the megasoopio atudy of the exposed 11 thologies of the various formetions and mombere and the determination of the boundaries of these formationa and members. The second problem included the dietribution and magnitude of the faults and the areal extent and attitude of the various etratigraphie units. The third probiem involved the megasoopic study of the 21 thology and paleontology of the Cretaceous atrata exposed in the area. Analysen and intere pretations of the relatione of etratigraphy, structure, and physiography vithin the area were essential to the solution of the fourth problem.

The general objective of this etudy was to provide adiltional date that wight contribute towerd a bettor undergtanding of the geology and geologic hiatory of the Llano upisft.

Abstract

LOCATION The Pontotoc area is aituated on the northern Planic of the Llano uplift; has an area of approximately $\$ 2$ square miles, and inaludes portions of the northeastern oorner of Mason County, the northweatern corner of Llano County, and part of southwestern San Saba County (fig. 1).

The Pontotoc area is reotangular, having a northsouth length of 6.0 miles , and an east-west width of 5.3 miles. The northern boundary is a line 4.5 wiles north of and parsllel to the San Sabs-Mason county line, and the west boundary is a fence line 3.0 miles weat of and parallel to the Heson-Liano oounty 1ine. The southern boundary is a ine 1.5 miles south of and parallel to the San Saba-Mason oounty 11ne, and the eastern boundary is a line 2.3 mies east of and parallel to the MasonmLlano oounty line.

ACCESSIBILITY The Pontotoo area 1 a ensily reaohed from all nelghboring towns by Ranoh Roads 734 and 801. Aocessibility to most of the area 13 very good as the two major highwayb are intersected by number of unpaved but wellmaintained oounty Foada from whioh many private ranoh trails lead to windmille, stock tanks, and foeding areas. Most of these rench traila are pasiable by ear, but a fow require the use of a plokup or jeep.

METHODS OF FIELD WORX

The field work was oonducted betwoen June 13, 1961 and September 7, 1961. An additional weakend was apont in the field in the oompany of Mr. C. L. Seward and Dr. X. J. Koonig for the purpoae of oonfirming the geologio interpretations at a fow loaslities.

Mapping of the various stratigraphio units and faults was done on acetate overlays of U. S. Department of Agrioulture aerial photographs of soriea ERI-4W, numbers 114-120, 36-42, and 26-33 dated November 6, 1958. The acale of these photographs is $1,220,000$ or three inchea equal about one mile. Older aets of U. S. Dopartment of Agrioulture aerial photographs wore uned as alds in loosting geologio oontacts and alignments of posaible faulta. These older photographs are of aeries BRHa4E, numbers 206-210, 212, and 131-138 deted 0etober 10, 1948; of series BRH-6E, numbers 90-95, and of series BRH-8E, number: 53-38 and 40 datad November 29, 1948. The newer photographe mere more usoful because they showed the loastions of new roads and areas that have been oleared of vegetation since 1948. Geologic contacts and faulte were traced in the field and their locations were plotted on the aotate over. laye. Stereoscopio examination of the aerial photographa alded in looating some of the geologic oontacta and raula whioh ware partially obsoure and difficult to reoognize by field work alone.

A Brunton compase was uaed to determine the dipt and totiken of the beds of the various atratigraphio units. The topographic relief chown in the teructure section on Plate I was taken from the U. S. Geologieal Survey topograph10 map of the Pontotoe Quadrangle. Texas dated 1955.

FIELD COMDITIONS

Although the topographio relief of the Pontotoo area is sufficient to provide good expoaures in many places, there are eeveral low aress covered by soll and vegetation where she loostion of contacts and fault can only be inferped. The thicknesees of a fow oxposed and unfaulted stratigraphio units were meanured with arunton compass and 1 evel rod; whereas, the thioknessea of poorly exposed units were esthmated from widthe of exposures and dipa.

ACENOWLEDGMENTS

The author expresses sincere appreciation to Mr. C. L. Seward, and Dra. K. J. Koenlg and T. J. Parker for their holprul euggentiona and conatruative oritioian in the preparation of the report. The athor is sinoerely grateful to Nr. S. A. Lymoh for the assistanoe he extended to the writar.

Additional thanks are due Dre. H. R. Blank, Mr. Y. E. Saith, and Mra, G. Byere for their helpful auggestiont. The author expresses appreciation to his colleagues who shared expenses turing the time of rield vork.
The author expresses thanks to the Bureau of Eeonomic Geology at the Univeralty of Texas for permianion to roproduce the map in figure 2 from one of their publieations. Aolanowiedgrent is exprossed to Dr. K. P. Young, professor of Geology, at the University of Texas for his assiatanos.
sineere thanks are expreased to the ranohers and looal residents of Pontotoc whose friendiliness and oourteay were great help to the author. Appreoiation is also extended to Mr. Dallas Miller who furnished living quarters for the author and his oollagues.

OEOORAPHY

CLIMATE

The Pontotoo area is looated in a aemi-arid region. Preaipitation is sompwhat unevenly distributed throughout the year; the average mount of rainfall per month is 2.17 Inenes. During the fall and spring montha precipitation oosure in the form of heavy rains which produce fapt, forrential mum-offe.

The temperature of the aret ranges from bedow $15^{\circ} \%$ in the winter monthe to about $105^{\circ} \mathrm{P}$ in the sumaer monthe. The annual mean temperature of the Pontotoc area in about $66^{\circ} \mathrm{F}$.

venmytion

The Fegetation of the Pontotoc area is limited to those plants which oan survive in a semi-arid olimate. Such plante include priokly peas, barrel catus, Spanish daggar. Mexioan peraimmon, needie grass, mesquite, aorub oak, and juniper (oomoniy alled oedar).

The typen and distribution of the planta are affeoted by soil types whioh, in turn, are rolated to the stratigraphio units from whioh they are derived. In general, the vegetation is faifly dense on Preoambian rooks, on unoultivated Hiokory, Lion Kountain, and Felge sandstones, and on Cap Mountain, Morgan Creek, and San Saba Limestonen. The vegetation is sparse on the Point Peak ahales. The Cretroeous limestones normally support very dense growth of vegetation, but in
reoent fears ranohers have cleared the land of ceder an a measure of ground water conservation.

INDUSTRY

The main induetry of the Pontotoo area is the raise Ing of asttle, sheep, gosts, and hogs, Farming, with ootton, peanute, watermelons, and grain as the prinaipal crops, plays a secondary role in the ares. Moat of the oultivated riclda are smali and are located on soils derived from the inckory Sandstone Momber and the Preommrian gnoiss-sohist unit. A few fields loosted on Lion Mountain and Welge sandstones are not in oultivation at the present time.

PHYSIOGRAPHY

TOPOGRAPHY

RHOIONAL

Topographioally, the Llano uplift is an erosional basin in which Precambrian rocks oxpoaed in the center are surrounded by a higher area of Paleozoic and Grataceous rooks forming the rim of the besin. The basin area is the center of the uplift where the Precambrian rooks are structurally high, but less resistant to orosion than the surroundIng Paleozoio and Cretaceous rocks, thus aocounting for the basin. The total relief in the INano region is about 1,600 feet.

LOCAL

The Pontotoo ares is loeated in the northorn part of the Liano uplift eresional bain. A fairly steep southfacing esoarpment extends from west to oast aoross the entire width of the area (Plate II). The average relief of the eacarpment is about 260 feet. This esarpment, whioh is composed of nearly the entire Caubrian section and in part of the Cretacoous section, is out by a number of onnyons and -mall gullies.

On* notable physiographio feature in the area is Round Mountain, an erosional remant noar the astern end of the escarpment. This hill is olilptioal in aorial view and

PANORAMIC VIEW OF ESCARPMENT

Panoramic view of escarpment two miles north of Pontotoc. The escarpment is formed in part of Cambrian rocks, ranging from the upper portion of the Hickory Sandstone Member to the lower portion of the Morgan Creek Limestone Member, and in part of Cretaceous rocks. The average relief of the escarpment is about 260 feet. .

PLATE III
VIEW OF ROUND MOUNIAIN

View of Round Mountain on the W. H. Taylor property about four mileb northeast of Pontotoc. This view illustrates some of the typical weathering characteristics of the Cambrian members which form Round Mountain. The Iion Mountain Sandstone Member (Grl) weathers to a gentle slope; the Welge Sandstone Member(Bww) weathers to a ledge, and the Morgan Creek Limestone Member (6 wm) forms a protective cap for the underlying sandstone members.
 Lyca Mountralin and Welem andatonaa eappet by bacel Morgan óreax limentraip (FLate III).

The rellaf of the area north of the evearpment is Lew exeept lileng the morthern beundery of the pontetoc arou Whowe the sLohosu wast and the sas sabe Mamor form helle having a roline of nuarly 200 soet:

 area slopen to the south at a guntie, vincolating piain above Fhioh phice a tow low hille of Ehekory Bemationc, and aome

The higheat elovation ie 2,002 seet af Fhag Ridect, and the lowest oiovation 2 s eatimated to be about 2,850 foet
 co0 feet In the Pentoter aren.

yinger

gramorat

the Liano reyten ie cratined by the Colorado hive

 contral apoe, and the Pedormion River mach araine the somethera fiamk of the Liane mplift.
 Pedornalien rivera aref Ereaty oreek whioh tiew eant inte the

 the Linne Raver.
R. A. Tare (2890) pelinted out that the orelmace

tequr

Thave ase two primetpal directions of dralnage in the Pontotee mset. The nermern half tef the arou is erralaed by Wast Deap Orech and Ravt Doep Groek which flow mortimexd so the san sabil alviof. troe eouthosta hale of the aroa in derained by Pentotec, Earpott, Fiold, asd Fankme apeoks waich

Figure 2

Principal streans of central Texas showing drainage pattern. Contours are drawn on top of the Ellenburger Limestone showing the approximate size of the uplift. (After Plumer, 1950, p. 9)

The flyt prolithod repert deseribing the atrata and fauma of the Liamo region wan mede by Fepdinand Roempep (LBe). In thite zeport Romery beriofly doacribed eome the

 from reake of darbyian and ostovician egee.

Bappande (188s) cenolucod that hoomer had foumd the Frimoratial (Cambrien) tovin in Trecen, and thet the Frimondial farme wae equivalent in age to the limocmont Pareow sele fama in Wiacomin and Hev Yerk.
 ouova age in contral Fraces. In hile raport he maned and decerpibed the Oappina Limestere, the Comanche Freak Group, and the Gaprotinn Limentont, all of wich he comaldored to be of 縕te Cretaceme age.
 cesoribed the palcosele roek of Burnot Coventy in preat

In 1805 Waleots (1804) visited the Lhane area and comeribed the candriten strinte. Falsott proposed the neme Liane oraup for the pre-Potedna atrate. He correlated thit. H2aso Growg with the Grand Canyon aroup on the beais of IIthoiegie oharaetter and etretigraphie Felanleachip with the overiyting Potrame oroup, and refored the Liano groug to the Logay onghriait sarioc.
 of the hlanc area from ha obsorvations mate in 1008 and. 1864 while soecmpanying an expedition of aray engineor.f. B. I. Ammara's (2890) age cotomination of the Giroblecoom stration wat roviaed by R. T. Hill (1087). Hill pleoted the formatione newed by thumard in the Lower Oretacente sarles, and proponed the namo Frederiokaburs Grewp.

 the mene Wialmat Clay for the elay moderlytag the Comanobe

The impirtance of the work dowe by Welcett (20en)

 reet age of the Garwonlfepout reoke at Marble Falle.

 taveatigatien, I. A. Cometootit (2000) publianed a report on the minorale and opes or the Liano rechen. Comatook (2000)

 Romor Paleenele stratif, siape that time, the Xatomey gorion hat bewi droppet fram unage, and the othor aeries manes have bem medretion apa rederingt.
R. B. Taxp (1800) reported on the coal reacuroes

 poned on the oider Paleorgio rooke.
 of the orotaceove atretal la the Austin quadramele, and

 Comanehe Pontrang.

 the Elloaburger Ifmentone (1 meop oxdorlatan) and the ondimo

 the geelegy of the two quactranglee.

 Iogit map of the state of Imane. The Paleonele strate of the Lheino wilft were aivided into Pompyivanim, Faleonole

A mov epolayle wat of the carboalforout formethen

 related the Marnett with the Hoovemied amiele in Arkancal and

 the Bumott Bhale, and mealgach an age of Lurky munianipplen te the Limertrante sellardin (20s8) propened the some Ohappel for the orinuldal 14 mintone.
7. 8. Adicine (208B) prible abed a compromanivo is it
 vepe also given.

In his conerspitica of the otpatieraphic rando aleng

 ape not intructa intio the rookr of paleonele age.

 alte propesed a differvat interychtation from tine intore ppotatsion by Faige (1021) seganding the geo of the Valley
 the Valley spring Guelian to be youngur than the Faokendale
 to be ovder than the Praksadde behiat.
 roviey of thee itratigerapiny of Foxal and inolwaded the Liano
 tharise min in, 2058. A mevos coeslogit map or Toxan wan peom pared by Daston, ftophancon, and Garimor (2987) of the V. S. Geolodical surwor.

Sellavel (2034) reperted on the atructure of the
 thale (Miesioelyplan) ower the Llame upilft indieatod the fryst nglift of the arwa.

The paleosete tosesis of the contral yinopal region
 by yridge and atrity (1987).

Heldge (2037) eurcelated the Upper Cmimplam neetion

Mon Mountain fanditeng and cealganted is as amomer of the Oap Momintin Formathom.
 fiete from the masal Hiokery ganditome* they reported that the veatifacte comalumed to furm after copendtim of the
 etrme may mopeccat mind-blem toponite.

Chumey (2040) proppece a mow clacsiricatich of the

Bridep and Bernow (1041) proppeed . foub-fold. m. divielon of the milberna Fromatica ofingititici of a beonk. sandatome, a clamenitic 12 montone, e calopropus chale, ond

 suetion in the hien region.

Th a progroas raport by clevi, Barnes, and matay (1945); the Enicmburger Iffoetione wis elevated to eroup atatue and routriated to the Lever optovitian. They divided

 atruatural geolegr and cologia hiatory of the wime noilft.

 crapiz.

A sympelin on the thered Limpteme in centrel

 Ferth area by B. M, Greerreed. Their roperte are preannthy belag proparel.

The Ponteto area oontatins yocke of Preceumpian, Guntrian, ©rateceoun, and Gratermary aget. The stratigraphis colum for the fantotec area in giver bolow!

Comatorruary Byater

Oonglomerate and aliverive
Gpetaceoin Bytan.
Gomanolnan Serifee
Fredarlekabury Group
Ehwardy Limestone
Batal conglomarito and mandstone
Combelian syatem

Whabera Forman
San anba Limentome Hember
PoAnt Poek thale mader Morgan Creek IALedtonat Momber Fige gandetont Mmior

Lion Mountrain tasdetone Howher Onp Mountilin Limateren Momber IIChory gadetone tanionr

Preambition Recter
Zemeoras moakc
Fing-rakned gramite Aplite dizer

Metwamarphle peokn
Gandsemoki of wnit

Handraxy moozs

 unt.

Vatloy Aming Gmales

Paige (1918, p_{0} i) Foperted that the aldeat wooke reeognised in the Liant uplist eompice the Falloy 8peing
 of codimpati of pather uniform eomponition. Mocesting to Palge:

 achiate, quartmiten, rol2artenito bunde, pranular acide empleced and Fase ainghibelitif gertiens.

 11 pht-oblewed, fineograined, rearyotalificel equivaleate of

Patimenale sendet

The ethor mace Preecubrias matrmerpite unit 20

"orndea, amphbole, and eraphite abiste and crobity

 vith the epigimal bedatag or, the medimate from witen the sonints ware darived.

Atruatrepe of the Ifecenieptim notumppint Reole

 turn are folcod in broed and open folds with a nephemot-

 40 the axite of thend and opon foldin.

Palge (2019. Po 4) roperted that the Valloy 8ppine

 to Palge, awh a mtruetraval relaticrobify fadieated that the
 younger in age.
 pristichita regireting the agpe of the twe motruorphice unite.
 botweon the phelsien init sentate at yroponed by Paise dote

 of the tokntets, and to date the valioy speing Enele: as
 Luere in, however, one impertank ract that gust be ocnatiarei Fugarding the difforent Interppretations by patge and by stomel. Fatee preogniced that the Vilioy sprins Guelse mat dorived in part inm sedimantary poake and in part from igmeour peoks, and that it ia aiffionst to dif-

 imeluat only the vory malform orthogmian fanelin ampived
 all sohtetcese Freki ma ascoulated mintrosphic. pouk that are or entrmatery dorlvation.
caditiomal atradies of the Preonationan reake in mo
 were done by Remerys and Maxper (1940), Farace, Guhouk, and ompinghan (1950), Barsea (1058), and 01abaugh and Eojop (2002).

In the Iol Moumtain vietuity, gretase davived

 otated that "In the field is is orton difftemit to dermbution
 and which at obdimentraty in opigin.*

Fineot inventigations of the Prosembetan roeke in

 rooke to very emplicated. The coll eover aleo peevente. \cdot. louating and treoing the Doncadarion betmeen the varione unt tr in the field. It is for theoe reacorim that this anther belleven that mo dofinste comoluelione comeqratus tho aget of the two metramphic units (Valloy symiag factea and Packachale sahiet) san be made at the procent time.

Cnales-Sohist onl

The oxposed Prectmbrian metamorphic rookl in the Pontotoe area consist profominantly of greiva with minop unownte of sohist, and for thio reanon were mapped an a asugie unit.

The coolegic conteot betwoca the geles-arhist
 of the area la eovered by ootl axopt in a fow leoalitiot. Yoe thif reanow the contec was mapped an an inforped enntrent.
 asd granito maseos.

Ktygiant

In the Pantotec area the gnolseen are 21 ght pink to reddiab-geay and cominist yredominanily of quarts and folea

 cramiat and ayhanstie with powiy developed foliation, but a coavear texture and a better covelopment of folletion mere obeneved in a fow expesures of the erelus.

A large veln of millay quarit vae otogrved in the

mese exposed, the mahlate vere yollowith- to Fede
 and aeme yink reladepar.

PLATE IV

QUARTZ VEIN

Vein of milky quartz located in the southeast corner of the Foster Casner property about 1.3 miles east of Field Creek Community. The width of this vein is about four feet.

D1stribution and Topography

The gneissosahiet unit is exposed in the southern and southeatern parts of the Pontotoo area. As previousiy atated, the gneise predominates over the sohist in the area. The predoginantiy gneisaio unit is part of the large band of Valley Spring Oneiss mapped by Paige (1912) in his geologio follo of the LlanowBurnet quadrangles. Paige's map mowed a band of Valley Spring Oneiss extending from the town of Pontotoc southeastward to Sandy Creok, few miles south of the town of oxford, Llano County. This band of gneiss, acoording to Paige (1912, p. 3), represents an anticline which trends northwest-southerst and plunges to the southesst. Strike and dip readinga taken on the foliation in the gnoisa ahowed an serage etrike of $N 45^{\circ} W$ with dipa to the northeast whioh indieated that the gneisseschiat unit in the Pontotoo area is part of the northoastern rlank of this antioline. The dips of the foliation of the gneiss-schist unit range from 16 to 63 degreen.

The sohiste, boing less resistant to orosion than gneisa, are looated prinoipally in low areas and are oovered by soil derived from the achlat in many plaoes. The gnoisa ocoura both in low areas covered by soil and in the teep rugged hills in the southeastern part of the Pontotoc area (Plate V).

In the ares south of Pontotoo the maximum rellef 1s about 170 reat, but the ohange in elevation is gradual;

PRECAMBRIAN GNEISS

Fig. 1. Precambrian gneiss on Foster Casner's land directiy west of High Rock about 1.2 miles northeast of Field Greek Community. The rugged topography is characteristic of many of the hills formed by the gneiss.

Fig. 2. View of the southwest side of Panther Rock about 0.6 miles northeast of Field Creek Community. Panther Rock is formed by the gneiss unit. The tree on top of the hill is ten feet in height. (Fhotograph by B. M. Greenwood)
whoress, in the area northeast of the community of Field Creek the topography oonsiata of steep, rugged, and barron nilla of gneisa with a maximum relief of about 300 foet and an average rellef of about 100 feet. Panther Rook and kigh Rock are the two higheat hills of gneiss in this area having elevations of 1,664 feet and 1,715 feet respeotively. Another steep hill of the gnoiss-achist unit foras part of the oscarpnent in the properties owned by Nell Marris and M. L. Roberts about 2.4 miles northeat of Pontotoc. The - levation of the gneiss on this hili is about 2,780 feet.

IGNEOUS ROCES

Hine-Grained Granite
Granite ia exposed in several logalities in the Pontotoo area. The mafority of these granite outoropa are nearly airoular in plan view with diametere of 5 to 10 feet. In these outorops the granita is poorly exposed, and for this reamon, they vere not ahown on the geologio map (Plate I). These gmali granite intrusions were observed on properties owned by Foster Casner, Fon Simpson, John MoLeod, Jre, and M. L. Roberts.

Three exponures of granite loosted west and southweat of Pontotoo are shown on the geologio map (Plate I). Two of these exposures consisted of small granite boulders protruding from a granite-derived soll. The third and largest expoaure congiate of large boulders forming a amall hill with a relief of about 18 feet (Plate VI).

Fine-grained granite at the intersection of the New Pontotoc Cemetery road and Ranch Road 734 about one mile west of Pontotoc.

In all of the expoaurea the granite is fine-grained, equigranular, pink in oolor, and contains pink foldspar, quarts, blotite, and some mascovite. The relationship of the granite to the suryounding rooks could not be determined due to soll oover. The oonteots vere pleoed at the outermost oceurrenoes of the granite boulders.

Aplite Dike

The greise-sohiet unit is out in many places by vary manll aplite dikee whoh vary from $1 / 4$ to 1 inoh in width. The aplite dike conalst of fine-grained pink foldspar and quarts.

CAMBRIAN EYSTEM

The oldent known Paleosoio rooke found in the Lleno uplift are the filey and Wilborns formetions of the Upper Cambrian Sorien.

RILEY POREATIOR

The Riley Pormation vas defined by Cloud, Barnes, and Bridge (2945, p. 1.54) "....to Inolude all of the Cambrian strata in central Texas beneath the Wilberns Formation." The Riley Formation ie divided into three membera whioh are; In aseending ordor: the Hiokery Sandetone Member, the Cap Mountain Limestoze Member, and the Lhon Mountain Sandstone Momber.

The Riley Pormation takes its name from the Riley Mountaina in acutheastern Liano County whore the three members are well exponed. Bridge, Bernes, and Cloud (1947, p. 200) reported that the thioknoale of the Riley Formation averagen about 680 foet, and ranges from a 11 thle leas than 200 feet to about 800 feet. According to Cloud, Barnes, and Enidge (1945, p. 184), the Riley Formation is thiokent in southeaatern Liano County and thinnest in the northwestern portion of the Llano uplift.

Hickory Sandstone Mamber

Derinitsan

Cometock (1890, p. 285) usod the term Hiokory an a series name in his aubdivision of the Paleosoio rooke in the Llano region. Paige (1911, p. 28) retained the nave Hiokory, but revised the Hickory Sories to the Hiokory Sandstone. Cloud, Bernes, and Bridge (1945, p. 154) redefined the Hiokory Sandstone and dealgnated it an the basal mamber of the Riley Pomation. Ocolaby (2957, p. 53) stated that the Eliokory Sendstone could be divided into three membera and proposed that fommational rank be given to the Hiokory Sandetone.

Litholery

The sandatonet of the Hiokory are nonoaloareous, nonglauoonitic, and are yellow, brown, and red in color. Most of the Hiokory sandstone Meraber has weathered to a aendy soil in the Pontotoc area. The upper part of this member is
exposed in the escarpment north of Pontotoc, and the midale and basal portions of the member are exposed in a fow road outs along Ranch Road 501 north of Pontotoc and in stream banks in the southern helf of the Pontotoo area.

The basal part of the Hiakory Sandstone Menber consiats of medium- to coarse-grained, tan and brown, orosebedded, quartsose sandstones. A fow thin layers of ahale and siltatone were also observed in the lower portion. In mont placea whore the Precambrian-Cambrian oontact is expoaed, the Hiokory Sandstone contalna angular to subangular grains and pebbles of quartz derived from the Preoambrian roaka (Plate VII). These quarts grains and pebbles vary from about 4 men. to about 20 men, in diameter, Cross-bedding is alao quite comenon in the lowar part of the Hiokory (Plate VIII).

The midale Hiokory aendstones are thin- to mediumbedded, fine- to medium-grained, tan and yellowi ah-brown. Thin layers of siltstone are interbedded in this middle pore tion of the Elokory Sandatone Member. Plate IX shows an exposure of the midale portion of the Hiakory Member. The andatonea of the upper Hiokory are red to brownish-red, and fine- to ooarse-grained. The uppermost 15 to 20 feet of the member is dark red in color due to a homatitio matrix and costing of the sand grains. This uppor portion weathere to a dark red soll, and is olearly dofined on aerial photographa.

QUARTZ PEBBLES IN BASAL HICKORY

Conglomeratic basal Hickory Sandstone Nember with angular to subangular pebbles of quartz overlying the Precambrian gneiss. This exposure is located on the J, F: Barrett property just north of Ranch Road 734 and 0.5 miles east of Pontotoc.

CROSS-BEDDING IN THE HICKORY

Fig. 1. Cross-bedding in the Hickory Sandstone Member. This exposure is in Pontotoc Creek about 1,2 miles west-northwest of Pontotoc on the L. P. Pankey property.

Fig. 2. Outcrop of the lower Hickory Sandstone Member just east of the locality in figure one above. The beds in the background display cross-bedding.

MIDDIE HICKORY SANDSTONE MEMBER

The middle portion of the Hickory Sandstone Member on the Nell Harris property about two miles northeast of Pontotoc.

Thtoknens

Aooording to Bridge, Barnes, and Cloud (1947, p. 112), the Elakory Sandstone Member averages about 360 feet in thiakness and rangen from 0 to 415 feet in thickness. The variation in thiokness is attributad to the topography of the Preaembrian surfece, irregularities in doposition, and lateral gradation to limestone of the upper beds.

It appears that the thioknesa of the aickory Sandstone Member in the Pontotoo area fenges from 0 to about 100 foet or riore. This gatimate is based on the faot that the Hiokory does not oover all of the Precambrian rookes, and that about 100 feet of Hickory is exposed in the esoarpment. The exact thiokness of the Hlokory Sandstone Member in the Pontotoo area is difficult to estimate for the following reasons: (1) the relief of the Precambrian surface ia not known, and (2) the wide outorop wuggeats a repeated seotion caused by undetected feults.

Diatribution and Topography

The Hiokory Sandetone Member is exposed in a large area in the southern half of the Pontotoo area. The upper portion of the member forms the lower half of the esoarpmont while the rest of the member form a rather flat aurface broken by a fow low hills of maddle Hiokory Sendstone.

Stratigxaphio Relationghip

The Hiakory Sandatone Member unconformbly over. lies the Preoumbrian gneias-schiat unit. Lower to upper portions of the Hickory Sandatone are in conteot with the gneisa-sohist unit in the Pontotoc area. The upper portion of the Hickory Sandatone grades upward into the Cap Mountain Limestone Member. Plate X shows the upper and lewer contaots of the Hiakory sandstone Mombar.

Cap Mountain Limestone Menber

Dofinition
Cloud, Bames, and Bridge (1948, p, 184) redefined Paige's (1911) Cap Mountain Formation, and designated it a momber of the Riley Formation. The Cap Mountain-Hickory contact is placed tt the top of noncalcereous sandstone mone and benesth a sone of alternating impure, dark brom iimeo stonse and caloareous aandstones which grade upward into argillaceous, granular limestones. There is a distinct topographio and vegetational broak at the Hiokory-Gap Mountain contact. The Cap Mountain forme a Eteeper alope and supports a thioker growth of vegetation than does the Hiokory sandatone.

Sthologx

The Lower part of the Cap Mountain Limestone Member consists of alternating beds of medium-grained, brown to IIght brown, celaareous andstones and arenaceous limestones.

PLATE X
HICKORY SANDSTONE MBMBER CONTACTS

Fig. 1. The Hickory-Gap Mountain contact on the W. H. Taylor, Jr. property about 2.5 miles north of Field Creek Community.

Fig. 2. The Hickory-Precambrian contact in Panther Creek on the W. C. Davis property about 1.7 miles north of Field Creek Community.

The beds average about one foot in thimmean and nome beds display crosebedding. A fev thin layera of gray limestone ocew in the lower portion of this member. This sone of alternating 11 mes tonen and sandstones grades upward into brown and jellowimh-brown, thin- to modium-bedded, granular, argillaceow limeatones thet comprise most of the Cap Mountain Limeatone Menber (Plate XI).

The upper portion of the Cap Mountain contains lajers of brown, silty, fine-grained, glavonitie limestonea Interbedded with sone layers of brown, glauconitio, ealcaree out siltstonse. One layer of greeniahogray, fine-grained, slightiy caleareous sandstone bout bix inches thiok wat obeerved in the allty facies.

Thiclengas

The thifolness of the Cap Mountain, as reported by Bridge, Barnes, and Cloud (1047, p. 213), rangen from about 235 to 455 reet and averages about 280 feet.

A thiokness of mbout 280 feet wae etimated for the Cap Mountain in the Pontotoo aran. This eatimate is based on the dip and the width of the outorop of the Cap Mountain Limestone Member.

Dhatribution and Toporgaphy

The Gap Mountain Limestone forma part of the escarpment north of Pontotoc, and in the east-oentral part of the area the Cap Hountain forma lew hille which have a reliet of about 40 to 80 feet.

Cap Mountain Limestone Member in road cut where Ranch Road 501 cuts through the escarpment about two miles north of Pontotoc.

Stratigraphig Relationship

The Cap Mountain Limestone oonformable overliea the Hickory Sandstone exoept along the eaoaxpaent elope direatly eat of Simpson Hollow and about Z 4.4 mile northoast of Pontotoo. At this looality the Cap Mountaln unconformably overlies the Precambrian gneise along the escarp* ment slope (Plate XII).

The Cap Mountain Limestone is oonformaly overlain by the Lion Mountain Sandstone Meriber exaept in the vieinitien of the three Greteoeou outilers. At these loosilties the Cretaceous rosks unconformably overlie the midde to upper portions of the Cap Mountain Limeatone Menber.

Lion Mowntain Sandaton Member

Derinition

The Lion Mountain Sandatone Member wan firat named by Bridge (1937, p. 234) and wee defined as the top mombar of the Cap Momtain Formation. Lion Mountain in the northwestern part of the Branet quadrangle was degigneted as the type loeslity. Cloud, Barnes, and Bridge (1945, pe 164) redefined the Li on Mountein Sandatone Momber an the top member of the Riley Formation.

Lithology

In expomures observed along the esoarpment and in Round Mountain, the Lion Mountain Sendstone Mamber eonsists eseentially of green to brown, coaree-greined, glauconitio

Contact of Cap Mountain Limestone Member overlying Precambrian gneiss on the Nell Harris property about 2,4 miles northeast of Pontotoc. The notebook lies on the contact.
aandatones. Linses of limestone composed of trilobite frage mente, referred to as "trilobite hash", ooour in the lowar portion of the momber. Grosebedding is observed in some of the andstone layers.

The upper portion of this member oontains greenithgray, shaly ailtstones (Plate XIII) vith brachiopod fragaents. This ailty sone is exposed at the junotion of Ranch Road sol and the road leading to the abandoned olliche quarry about 2.2 niles north of Pontotoo.

The upper half of the Lion Hountain Member includes dark green, highly glauconitio, orose-bodded zandesonea. Elack, rounded to subrounded, hemetite nodules ooour in the sandy 3011 which weather: from the Lion Mountain Sandstone (Plate XIV) 。

Thiclanes

Aocording to Bridge, Barnes, and Cloud (1947, p. 214, the LIon Mountain Member 1e 20 feet thick in the type seotion, but ettains maximum mensured thickness of 60 feet 2 aewhere. In the Pontotoc area the Lion Mountain is 40 feet thick at Round Mountain.

Diatribution and Topogsaphy

The Liton Mountain is exposed at the top of the western and central portions of the escarpment and along the slope of the eastern portion of the esoarpment. Thia member weathern quite readily into a sandy soil.

PLATE XIII

LION MOUNTAIN SANDSTONE MEMBER

Lion Mountain Sandstone Member in road cut on Ranch Road 501 about 2.2 miles north of Pontotoc and just south of road leading to the abandoned caliche quarry.

HEMATITE NODULBS IN LION MOUNTAIN

Fig. 1. Hematite nodules of the Lion Mountain Sandstone Member on the southern slope of Round Mountain about four miles northeast of Pontotoc.

Fig. 2. Roadside exposure of hematite nodules in the Lion Mountain Sandstone Member on W. H. Taylor's land about 0.6 miles east of Round Mountain.

Stretigraphio Relationanip

The LIon Mountain Sandatone overiles the Cap Mountain Limestone and is the upper member of the Riley Formane tion. The apper boundary between the Lion Mountain and the overlying Felge Sandstone is sharp and represents aisconformity. The lowar partion of the Lion Mountain grades downward into the Cap Mountain Limestone. In mapping, the lower boundary was loonted at the lower edge of aparaly vegetated benoh. In some places where the rooke are poosly expesed, the lower boundary was piaced at the base of the firat eandstone Layer which contained a large mount of glauconite.

The Lion Mountain Sandstone is overlain by rock of Cretaceous age in the vieinities of the three Cretacecus outliars.

In the men north of the abendoned callohe quarry the Lion Mountain Sandstione hat been out by a number of faluta which repeat this mombor at well as bringing it into fault contaots with the We2ge Sanditone and Cap Mountain members.

WILBERMS FORMAMIOM

The Wilberns Formation was named by Paige (1911, p. 23) for the rooks exposed at Wilberna Olen in Llano County. Present usege retains the lower boundery of the Wilberme Porretion as defined by Paige (1918, p. 6) at the *...top of the glavoonitic asndstone which forms the upper member of the

Cap Mountain Formation." Paige loonted the upper boundary at the base of the ovorlying maseive ohert-bearing beda, but the upper boundary vas rodefined and placed at the top of the Cambrian Syatem by Cloud, Bamnes, and Bridge (1945, D. 151). The Wilberna Formetion it divided into fows membere and rangen in thioknote from 640 to 810 seet.

Welge Sandatone Mamber

Detinition

The Welge Sandstone Momber of the Miberns Format tion was maned by Barnos (1944, $p, 37$) from the Welge 1and surveye between Threadgill and Squav oreoka in OLIlemple County, and was deal gnated as the bottom member of the wilberna Formation. The nomber was later desoribed by Bridge, Earnes, and Cloud (2947, p. 114).

Hitholor

The Welg Sandetone consiate of brownsh-yellow, medium-grained, nonglaconitic and noncaloareous sandstone whioh conteins quarts grains with recomposed faces whioh are the result of secondary growth of quarts about a quarts grain. These recomposed graine gilttor in aunlight and are considered a characteristic feature of the Weige Sandstone.

In the Pontotoo area the fielge Sandetone han all of the propertien just mentionod, and is also very friable. The individual grains are well rounded.

Thickmen

According to Bridge, Barnes, and Cloud (1947, p. 114), the Welge Sendstone is 27 foet thiok in the type loasility. This momber rangea in thioknese from 9 to 35 feet and averages 18 feet. In the Pontotoc area 25 feet of Welge Sandatons was meaaured at Round Mountain.

Distribution and Toporpaphy

The Welge is axposed as a topographic bench in Round Mountain (Plate III) and along the slope of the eastern portion of the esoarpment. In the western and oentral parts of the Pontotoo area the Welge Sandstone weathors to a sandy soil (Plate XV).

Btratimpania Relationahin

The Welge-Lion Mountain oontaot is mbrupt and is easily traced along the esoarpment and in Round Mountain, while in the lov areas the contact is extromely diffioult to looste in the aandy soll whioh is oovered by tall grassen. The Welge-Norgan Creek contact is tranaitional and was plaoed at the base of the dark maroon, orencoeoua limestones of the Morgen Creek Member. Thia contact is easily detected in good exposures (Plate XVI). The welge Sendetone is unconformably overlain by cretaceous rock in the west-central and oentral portions of the Poatotoc ares. In the central portion of the Pontotoc area, faulting has repeated the Welge and has brought it into fault oontaots with the Morgan Creok, Lion Mountain, and Cap Mountain members.

WELGE SANDSTONE MEMBRR

The Welge Sandstone Member on the W. H. Taylor property about 100 yards east of Round Mountain.

WELGE-MORGAN CRWWK CONTACT

The Welge-Morgan Creek contact about 100 yards east of Round Mountain.

Yorgan Creek Limentone Member

Definition

The Morgan Creak Limestone Member of the Wilberns Formation was named by Barnea (Bridge, Barnea, and Cloud, 1947, D. 114) frow expoalures on both the north and south forles of Morgan Creek in Bupnet Countr.

Lithologx

The basal Morgan Creek limestones are mandy, dark maroon in color, and grade upward into well-bedded, gray and greonith-gray, medium-grained, glauconitic 11 moutones.

The upper half of the meraber containa several thinbedded, grey ailtatones interbedded with 11 ght grey, mediumgrained, glaueonitio limestones. Small aubapherical biohermes about a foot in diameter and composed of dense, gray, nonglauoonitic 21 mestone are also found in the upper half of the memor.

Plate XYII shows the upper limestones of the Morgan Creek Mumber. A sone of very thin-bedded to shaly, 11 ght gray ailtstones ocours as the topmont five feet of the member. Two layers of medium-bedded, light gray limestone ooour in the alltatones. The contact between the Morgan Creek LimeHone Member and the Point Peak Shale Merber is gradational and is difficult to loaste qourately. Several oriteria were used in looeting the contact; they are: (1) the Point Peak Shale forms a topographi 10 while the Morgan Greek IAmestone

PLATE XVII

MORGAN GRBEK LIMESTONE MEMBER

Upper portion of the Morgan Creek Limestone Member exposed in East Deep Creek just south of Ranch Road 501 on the W. H. Taylor property about one mile northwest of Round Mounțain. This exposure illustrates typical Morgan Creek weathering.
form a topographia bench, (2) vegetation is aparse on the Point Peak Shale while the Morgan Croak vegetation is fairly donse, and (3) the weathered shales of the Point Peak Momber are very thin to platy and display minor folding; whoreas, the siltatones at the top of the Morgan Creok Member are wellbedded, but are not as thin or platy as the Point Peak shalen nor do the siltetones dieplay any folding.

Thicionath

Aocording to Bridge, Barnea, and Cloud (1947, p. 114-115), the Morgan Creek Momber in the type loaality in Burnet County is about 110 feet thiok. This member ranges in thiokness from about 70 feet in the Point Peak and Carter ranch sections [Lleno County] to 260 feet in the selt Branch section [Ban saba County], and averagea about 120 feet. In the Pontotoc area the thiokness of this menber is estimated to be about 100 feet.

Dietribution end Topegraphr
The Morgan Croek strate dip northward and orop out In the low area north of the escorpment and extond the entire width of the Pontotoc area. In the eastern part of the area the Morgan Creek Member forman the upper alope and top of the acoarpment.

Stratigraphio Relationahip

The Morgan Creak Member ocours in the normal stratigraphic sequence with the other upper Cambrian marbers in most
places, but is overlain unoonformably by Cretaeeous rooks in aeveral arean morth of the escarpment. The lowar boundary 1a placed at the bese of the sone of maroon 1imestones and the upper boundary is pleoed at sopographio and vegetational break as proviousiy deseribed in the disoussion of the Morgan Creak 11 thology.

Point Peak Shule Momber

Desinition
The naw Point Peak Shale was applied by Bilage (Bridge, Bernes, and Cloud, pe 118) to the rooks exposed on the south slope of Point Peak, a onapioous, isolated hill about foum miles northeat of Lone Grove in Liano County.

Litholoss

The Point Peak Shale Momber consiats of tan to greenishegray, oaloareous, thin to platy shales interbedded with light gray ailtatones, gray, thin- to mediwm-bedded iimeatonew, and thin beds of intraformational oonglomerates. Minor folding of the shaien is observed in mome exponures (Plate XVIII). The IImestones are similar to those in the upper portion of the Morgan Creak Member, but are finorgreined. Thin beds of intraformational oonglcmerates ooowr In the upper half of the member. These beds very from 4 to 6 inches in thiokness and consiot of angular pebblea of varioua aisea, lithologies, and colors in matrix of fine-grained, silty limentone.

FOIDING AND BIOHERNS IN POINT PEAK

Fig.. l.. Minor folding due to compaction in the Point Peak Shale Member exposed in road cut on Ranch Road 501 about 1.3 miles northeast of Round Mountain.

Fig. 2. The "cabbage-head" structure of the Point Peak bioherms on the T. M. Myrick property about 4.8 miles north of Pontotoc.

A sone of strometolitio blohernst forms the upper portion of this member. The biahoras, whioh range from i to 20 feet or more in dianoter, are acmposed of dence, varigated, sublithographio limentone and usually diaplay a "onbbage-head" etrueture on the surface (Plate XVIII, fig. 2). Thic sone of blohertes is interbodied with coerse-grained, mediumbedded, gray to brownialh-gray 11 mentones whioh are folded around the bioherme. Some of the limestone beds below the bioherm sone diepling large ripple masias about three inohes in amplitude and bout one foot in wave length. Although this sone of bloherras wat mapped as aeparate unit, it is commonly cone sidered to be the upper part of the Polnt Poak Shale Momber.

Thickneas

Bridge, Barnes, and Cloud (2947, p. 116) reported that the Point Peak Merber ranges in thiokneas from 25 to 270 feet and averages about 160 foet, and that the momber thins from the northeastern to the authoastarn parts of the Llano uplift. They also reported that the bottom boundary of the Point Poak Member is not et constent atretigraphic horison. It ranges from 90 feet above the base of the Wilberne Formation in the Point Peak area [Llano County] to about 170 feet above the base of the Wilberas Formation in the Salt Branch area [San Saba County]. Acecraing to Bridge, Barnes, and Cloud (1047: p. 116), the difference in peeition of the boundary above the base of the Hilberna Formation ia believed to be
due ohiotly to faoies ohange from Point Poak shales to Morgan Creek 11mestones.

The thickness of the Point Peak in the Pontotoc area is antimated to be about 160 feet. The bioherm sone, with an average thiokness of about 80 feet, forms the upper portion of the Polnt Penk Member.

Dlatribution end Topogrephy

The Point Penk Shale orops out in the northern onefourth of the Pontotoc area. Because the lower portion of this aember erodes readily, it forma low, relatively flat areas except where it is oapped by the bioherma; thon it forme hille having a rellef of about 80 feet or more.

Stratigraphio Relationchip

The Point Peak 8hale grades into the underlying Morgen Creek Limestone and is conformably overlain by the San Saba Limeatone. The Point Penk Shale is also unconformably overlain by Cretaceous rooke in the area north of Buah Findaill and in the area direotly east of the Fay miller ranoh house about 5.7 miles north of Pontotoo.

San Saba Limettone Member

Dofinition

The name San Saba was first uaed by Comintook (1890, p. 566) as a sorien torm for the limentones exposed at camp Sen Saba in Macullooh County. Bridge, Barnes, and Cloud
(2947, p. 117) redefined the San Saba Limestone as the top membar of the Wilberns Yormation.

L1thology

The lower half of the San Saba Member consiata of light gray, thin-bedded, sublithographio to fine-grained limentonea that meather to medium gray and tan colors. Thase limestone: dieplay folding over the Point Peak bioherme. The contact between the San Saba limestones and the Point Poak bioherms is easily traced in the pield. In the midde to upper portion of the member the limeatones are more granulas, gray to brown, medium- to thiok-badded, slightly glauconitio, and ailty. The beda weather into large blooke with orinkly surfaces on the sides of the blooke (Plate XIX). It ia believed that the orinkly murfaces are oaused by differential weathering of 11 mestone and silt.

The preaence of jointa within the San Saba Momber is suggented by $:(1)$ the limestones weather to large blocke at the surface, and (2) aerial photographs of the San Saba Member ahow olosely-apaced tree allgnamenta which have a general northeast trend.

Theqknes:

Aosording to Bridge, Barnes, and Cloud (1947, p. 117), the average thioknesa of the Sen Saba Member is about 880 feet. About 100 feet of the Ban Saba Member is exposed in the Pontotoc area. The San Saba-Ellenburger aontaot oocurs ane distance north of the Pontotoc area.

PLATE XIX

SAN SABA LIMESTONE MEMBER

Weathered San Saba Limestone Nember blocks with the typical crinkly ridges on the surface. This exposure is on the T. M. Myrick property about 4.9 miles north of Pontotoc.

Dintripution and Topography

The San Sabn Limestone Member is exposed in the M1.ly terrain elong the northern border of the Pontotoo area. The mesiber capa some of the hills and dips gently to the north.

Stratiepephie Relationshin

The Ben Smbe-Point Peak contact is conformables the boundary being placed at the top of the Point Paak biohern sone。

CRETACEOUS SYSTEM
Three outliers of Cretaceous trata consiating of a oonglomerate-sandetone unit, elitatone unit, and aimes stone unit are found in the Pontotoe area. A Cretaceous age is given to the etrate in the three outilers on the basia of ifthology, atruoture, and paleontology. Because of thelr high chalk content and white to yellow colers, these rooks are dietinotiy different from any of the Paleosoio rocke. The ohaliky rooks dip very gently to the north, unoonfermably overile the Cambsian unite from the Cap Mountin Limestone Member to the Point Peak Shale Member inolueive, and are not involved in the faulting. The foselle thet were found in these bede aro oharacteristio Oretmoeous organisms and includes Lumatia sp. : Monoplouria maralda mite, Pecton sp., or. Capsinu-

The atrata comprising each outliar were mealured and desoribed in detail. The measured sections are found in the appendix of thia report. In measuring these seotions it was found that the Cretaceous rocks in the Pontotoc area consiat of three iithologic units, which are, in asconding order: a basel oon-glomerate-sandstone unit, a ailtstone unit, and a limestone unit. The bounderies between these unith are gradationel, and in most places, are oovered by soll and vegetation. Far these reasons, the Cretesosoul rocks wore mapped as one unit instesd of three separate units.

The general 21 thologs of each of the threa unite will be deaoribed in the following acetiona. Discuasion of the age of the Cretaosous rocks in the Pontotoc area -111 follow the deseription of the rooks.

Heasl Conglomerate-Sandstone Unit

Lithoiong

The conglomerate consista of vapious eises of subrounded to subanguiar pebbles and cobblea darived fram the Cambrian atrista in a matrix of light brown to redaish-brown, fine- to ooarse-grained, forpuginouely etained, onlaereoua sandstone (Piate XX).

The conglomerate grades vertically and laterally into fellow to white, fine- to medium-grained, celoareoua sandatones. The amount of coloareous oment appears to vary in places, because the sandatone is both friable and hard and weathers to rubble (Plate XXI).

PLATE XX

CRETACEOUS BASAL CONGIOMERATE

Fig. 1. Boulders of basal Cretaceous conglomerate exposed on the slope of the west branch of Simpson Hollow on the Nell Harris property about 2.2 miles north-northeast of Pontotoc. (Photograph by E. J. Graczyk)

Fig. 2. Weathered basal Cretaceous conglomerate on the slope directly east of the caliche quarry on the Nell Harris property about 2.2 miles north of Pontotoc.

PLATE XXI
CRETACEOUS BASAL SANDSTONE

Basal Cretaceous sandstone at the base of the "Bush Windmill" section on the W. H. Taylor property about 3.1 miles northeast of Pontotoc.

Thiclmosa
The upper contact of the oonglomerate-sandstione unit is diffloult to observe due to soll oover and to the transition from and to silt. In general the thicloness of this unit varises from lese than 10 foot to 20 seet. It is belioved that this variation in thiokness ia due to a slightly unevon Combrian depositional aurface and the gradae tion into the overiying siltatones.

Distribntion and Topopsapiny

The baal oanglomorate-anadatone unit erodes very readily and forma a gentle slope whion is partially to completely oovered by soil and thlua from the overlying unite. Frair exposure: of the oongloaserate mere found in Rettleanake and Simpson hollows and on the west side of Poker Hollow. The aandston unit is partially exposed along the escarpment face between Bush windmill and Flag Ridge. In the rest of the area the besal unit is covered by andy, sility, ohalisy soil and rook debrie.

Siltatone Unit

Litholosy

The contact between this unit and the underlying oonglomeratemanditone unit was ploked where ohalky, siltsized material becomes predominant over sand-aised material. The ailtatone unit consiate of white to yellow, thin- to
thiok-bedded, argillacoous, ehalky siltstones. The ahalk content inoreases toward the top of the unit while the sand oontent deoreases.

Thiclonens

Thioknenses ranging from 9 to 35 foet wore measured for the siltstone unit in the Pontotoc ares. The gradation of this unit into the under and overlying units acoounts for the variation in thiokness.

Distribution and Toposcephy
The alltatone unit oocure in all three cretaceous outliers. The ailtstones are fairly susceptible to orosion, forming moderate slopes covered by soil and rook debria (Plete XXII).

Paleontology

A foseil wone containing casta of Monopleura maraide White, of Thuritelis ag., and a fow unidentifiable pelecypode were found in a layer of siltatone at the bottom of the east side of the abandoned oaliohe quary about 2.2 miles north of Pontotoc. A few peleojpod molds and one eohinoid oast were found at other siltatone localities, but could not be identified.

PLATE XXII

CRETACEOUS SIIHSTONES

The siltstone unit (Nos. 2 to 4) in the "Bush Windmill" section on the W. H. Taylor property about 3.1 miles northeast of Pontotoc. - Unit 5 shows weathered beds of the overlying limestone unit.. The unit numbers 2 to 5 refer to the different lithologic units in the section measured at Bush Windmill. The measured section is given in the appendix of this report.

Limestone Unit

Litholory

The limestone undt consists of hard, light and J*ilowimegray, thiok-bedded to malaive, fine- to coargegrained, ohniky, argillaceous limestones whioh weathor to light gray, slat, vuggy, thisk-bedded blocke and to blaek soll on the top of the outliers (Plate XXIII, fig. 1). and to light gray, massive boulders and to gray soil along the ecoerpment (Plate XXIV, 11g. 2). The black noil is oharacteristio of Crotaceous linestones.

This unit also contains (fow thiok-beddad, yellowLahogray, granular, alightly arenuecous lisestones that orop out along the esoarpment siope.

The uppermost limestone beds at the Bush Winamill looality contain very thin meams of ohert and ahort nodules. Fragmenta of the ohert nodules are found on the surface at the top of the h111 (Plate XXIV, fig. 1). Thi was the only locality where ohert seams and nodules were found.

Thickonas

The thickness of the limestone unit ranges from 20 to 46 foet. This variation in thiolassa is due to gradation between the ailtstone and limestone units, and to the varying amounts of 11 mostone removed by erosion.

PLATE XXIII

CRETACEOUS LIMBSTONES

Fig. l. Cretaceous limestones south of the caliche quarry on the Nell Harris property about 2.1 miles north of Pontotoc.

Fig. 2. View showing the vuggy appearance of weathered Cretaceous limestones at the same locality as in figure one above.

PLATE XXIV

WEATHERRD CRETACEOUS BOULDERS AND CHERT FRAGMENTS

Fig. 1. Chert fragments covering the surface at Bush Windmill about 3.1 miles northeast of Pontotoc.

Fig. 2. Cretaceous limestone displaying large weathered boulders on hillside directly south of the microwave relay station about 1.8 miles north-northwest of Pontotoc.

Piatribution and Topogrephy
The limetone unit oaps about onemalf of each Crotaceous outiler in the fontotoc area. The aurface of the outilers is fairiy even (Plate XXV). The limestone unit is relatively resiatant to orosion thus forming a protective cap for the underiying siltstene unit.

Paloontologx

A massive layor of jollowish-gray, ooarse-grained limeatone, containing a large number of ailiaeous forsila that are similar to Tounain patagiats finite. Caprinuloidal ap., and Turritella apo, oocurs along the eacarpmont face west of Bush Windmill. Unidentifiable peleoypods were aleo found in the limestone beds oapping the hill just south of the abandoned oullohe quarry.

Age

Provious Investigations
In hif geologia map of the Llano-Burnet quadrangles, Palge (1912) mapped the three Cretaceoul outliers in the Pontotoc area as the Edwards Limestone, but did not apecificaly atate the ovidence used in identifying the atrata.

Sollarda, Adizins, and Plumaer (1988) mapped the outilere as the Froderiokeburg Group in their Geologio Map of Texas. No mantion of the outlier in the Pontotos area wan given in the nooompanying report, "Stratigraphy of Texas", by Sellarda (1932).

Fig. 1. The Cretaceous outlier in the vicinity of Bush Windmill about 3.2 miles northeast of Pontotoc.

Fig. 2. The Cretaceous outlier west of Ranch Road 501. The arrow points to the microwave relay station which is located about 1.8 miles north-northwast of Pontotoc.

Pluwarer (2940) published a geologio map of San Sabe County in whioh he mapped the outliors as Lower GretaDeous, but did not apeaify the exat formation or formation. Ae thore was no report acoompanging this geologio map, no ovidences were given by Plumer for his general olasalfiontion of the Cretaceous etrata in the Pontotoc area.

The Cretaceous outliors were remappad by Plumaser (1850). He mapped the rocks of the outlier at the microwave relay atation an the Travis Peak Formetion, and the rooka of the outller at the Bush windmill at the Comanche Peak Limeatone. The rooke ooourcing in the oentral outlier were not dosignated. Plumar did not refor to these three outliers In his report, but he did refer to a measured section at Shin Oak Mountain whioh is about four milen northeast of the Pontotoc erea. The meagured seotion given by Plumer (1050, p. 114) ia as followis:
Edwards
3. Limostone, ilght gray to white, Foet Inchos

1 It 1s belleved that the torm weinut, as ueed in the meatured aeotion above, is a printer's error, and that

Based on atudies by Taff (1892), Cuyler (1931), and Barnas (1941), Pluwaer (1950, p. 101) stated that the Cretacous atrate ware deposited in a trangeresing sea. The oldar Cretaecove unite are overlapped by the suceading younger Cretaceous unt te toward the oentor of the Lleno region until, in the Shin Oak Mountains in southroetern San Saba County, Comanohe Poak Limestone is found ovarlying Cambrian rooke. Acoording to Plumaer, thit Etratigraphic relationahip indioated that the Llano region wae an ialund during most of Rarly Cretaceous tins, and that the first Cretaosous rooks doposited over the ontire region were ther the upper portion of the Comanche Peak Limestone or the lower portion of the Edwards Limestonc.

Disoumaion

Exthology

The aimilarity in lithology batween the Cretaceous atrata in the Pontotoc area and the Cretaceous itrata in other parts of the Llano region is not very 01080 . Some of the Cretaceous limestones in the Pontotoc area display lithologio and weathering oharacteristios similar to those of the Kdwards Limestone in that they are coarse to granular, hard,

[^0]and conteln chort seame and nodules. The limestones in the Pontotoo arsa are resistant to oroaion and form a nearly level protective oap over the underiying siltstonc and basal conglomerate-sandatone unity. The limeatonee weather to vuggy and pitted auriaces and to black soil.

The aparesly foasiliferoua, chalky ailtstones erode roadily to moderate slopen whioh, in most places, are oovered by moil and rook debris. The presence of Monopleura marolde White in the ailtatome unit auggests that this unit is also equivalent to the Edwards Limestone. The basal conglomeratea and sandetones repreaent initial Cretaceous sedimente whioh were doposited on an orosional unrface.

The vertioal tranaition from aonglomerato to aandatone to siltatone to ilmastone in the Pontotoo area seera to indicate that the rook: were depoaited in a tranegressing see, which would be in egreament with Plummer's (1959, p. 101) conclueion that in the Llano region, the contact of the cretaopout strata with the Precambrian and Paloosole strata is that or a progresaive overlap toward the conter of the uplift.

Cartwright (193e, 1iga. 1, 2, and 3) proaented oontour mape of the pre-Cretaceous and pre-frederiacsburg depositional aurfaces which showed high areas to the south and southwest of the Pontotoo area. Cartwright's lisopeoh map of the Trinity diviaion (1952, fig. 2) showed the absence of the Trinity in the Pontotoc vieinity. These mape aleo showed that the Pontotoc area was a topographic high during the timo roaks
of the Trinity and the lower frederiokeburg groups were deposited. This evidenoe and the lithologic ahapacteristion of the 11 mestones, and posefibly the ailtstones, indicate that the Cretaoeous rocks in the Pontotoc area are equivalent to the Edwards Limeston which is the upper formation of the Frederiokeburg Group.

Paleontology

The fosells found in the Cretaceous atrata in the Pontotoc area were poorly preaerved, ocourwing mostiy as onste and fragrents of siliceous replacemente. Two forme whioh were identified, with the araistance of Drs. K. J. Koonig and K. P. Young, ore: Toucanin patagiatis whito and Monoploura maraida thite whioh are Upper Frederiakeburg in age and commonly ocour in the EAvarde Limentone. other forms which ware identified, with the acoigtance of Dr. K. J. Koonig and Mr. F. E. Smith, are sinilar to the generat Gaprinuloises mp., Turyitella ape, and Lunatia ap." Yragments of Peoten gnes fow peleoypode, and one oohinoid were also found, but could not be identified. Geresinulaiden ia oheracteristic fosail of the Edwards Limentone.

The fact that some of the Iimestones in the Pontoo too area contain faiviy large numbers of foraminifora augeente an age equivalent to that of the Edwards Limestrone which also has algh formaniferal content (F. B. Eaith, 1982, pereonal cormanioetion). The forminifera in the limestonea in the Pontotoe area could not be identified.

The general assomblage of the foasila found in the Pontotoo aren indiastea that the Gretaoeous srooks in the area represent the Edwards Eimestone of the Frederioksburg Oroup.

Congluaton

On the basis of 21 thology and fossil oontent, the author believes that the Cretaeeous rooke in the Pontotoe araa are a part of the Upper Frederiokeburg Oroup, and that the 1imestones and ailtatones represent the Edwards Limestone. The basel conglomerates and sandstoned in the Pontotoo area may reprosent either pre-Edvards (upper Comenche Peak Limee etrone) or Edwards Limestone depositise

QUATERNARY SYSTEM
Quaternary doposits include conglomerater and alluvium whioh consist of ait, sand, and rook debris derived from Mesosoio, Paleozoio, and Preoambrian rocks. These Copoaits are mall and ocour principally in the major atromens. The major portions of the Recont sedimente are oarried away from the Pontotoo area by the oceasional torrential raina and floods, thus keeping the amount of Reoent sediments in the area to minimwa.

STRUGTURALOEOLOGY

REGIONAL BTAUCTURE
The Llano uplift is a tructural dome whioh 1: expreased topographioally at beain expoaing Preaambrian and Paleosoio rocks. Relatively Plet-lying Oretaceous etrata fom the rim of the bayin. The baidn area is somewhat elliptionl in shape th the long axis being 80 ailes In length and extending in weat-northweat direotion. The length of the ninor axis is ebout 40 wiles. The aurface aren affeoted by the uplift is about 100 milen in diameter with an area of sbout 8,000 square milen (Plumer, 1980, p. 7). The Pontotoo aren is located on the northern flank of the Liano uplift.

Preandibian rooka, whioh ocour at depthe of 4,000 to 5,000 feet below see level in Sutton, Sahleioher, Tom Groen, Coke, Rastiand, and Erath oountiea adjacent to the Llano uplift, are found axposed at elovations over 1,000 feet above ana level in the ounter of the uplift indicating that the amount of uplift ia between 5,000 and 6,000 foet (Bellards, 198s, p. 30).

The thinging of the Chappel and Barnett formetions over the Liano uplift indionted that uplifting of the Liano region began in Misaisaippian time (sellarda, 1934, p. 84). Cloud and Barnes (1048, p. 121) inferred that the final atagen of deformation osemped prior to the deposition of

Canyon atrata. They reported that the Strawn Formetion is faulted wherees strata of Ganyon age overlap the faulted Blienburgar Group and are not involved in the faulting. Cloud and Barnes also stated that it is not known whethor the faulting was in progress during the deponition of strawn rooks or was a post-Strawn and pre-Canyon ovent.

The general trend of the faults in the Llano region is northeast-southwest and has been desigrated the "Llano eyotem of faults" by Sellards (1984, D. 85). Acoording to Cloud and Barnon (1948, p. 118), the faults are normal or vertioal and range in dip from about 60 to 90 degreen.

The Paleozols atrate are not atrongly folded in the Llano region. Some gentle anticlinal and synolinal folda have been reported by Paige (1918), Cloud and Barnes (2948), Grote (1954), Smeet (1957), Kounce (1957), and Miller (1957). Cloud and Barnes (1948, p. 121) reported that the axes of many of the folda within the paleosoio atreta are aligned in a northwest-southesst direction, but reoognized that other alignmenta are also present. In his peview of the ilterature pertaining to Paleozoio folding, Pool (1960, p. 71) reported that the fold axes trend between northwest and northeast, and that the folds generally plunge away from the upllft. Pool aleo reported that the faults antedeted the folde, and that the faulta are both parallel to and perpendioular to the fold exes. Minor folda caused by arag along faults, slunping inte 21meatone sinks, and oompaotion of beds around the biohorms are common to most of the Llano region.
several erohes extend outward from the Llano uplift. Two of these arohes, the Conohe aroh trending northwest, and the Sen Maroos aroh plunging southeat, soinoide in position and trend with the known Preaambrian Polds. The other arohes, the Larpanaa aroh trending northeast, the Edwarda aroh trending southwest, and the Band aroh tranding nowth-northeast, are neariy perpendicular to the Precambrian folds and are nearly parallel to the trends of poat-Bend faults (Sellards, 1984, p. 87 .

The Bend axoh was recognisod we northward-plungIng antioline by Cheney (1918, p. 109-110). 8ellards (1934, p. 91) reported that the Bend aroh 1: parallel to the postBend fault systom of the Llanc uplift and may have an actal relationship to that faulting. Such a reletionship would aocount for the aymetric form of the aroh and for 1 te relatively teep, probably faulted, oast slope. Both Levorsen (2927, p. 679) and Cheney (1929, D. 11) etated that the Bend arch was formed by two separate earth movements: the first movement occurred during or prior so Strawn time forming an eastward-dipping homooline; tho second movement ocourred during Late Ponnsylvanian and Permian tine ceuning the region to be tilted to the west, thul forming the aroh.

The Lampases arch is aroad aroh which begins in the northeastern part of the Liano uplift and trende northoastward through the westemn part of Lampasas County. This aroh ia reoogniged from relatively fow well redordin, and it

1a not poasible to deterning to what extent the arah is limited at elther alde by faulting (Sellerda, 1934, p. 89). Aocording to 8ollarda (1954, p. 44). the San Marcos arah was a broad positive eloment which resuited in the thinning of Upper Cretaceous formations. The aroh was subwarged during Early and most of Late Cretaonous time.

The Bdwarde aroh is a broad fold trending southwestward from the Liano uplift and is perpendioular to the San Maroos arch. Data obtained from the fem wells arilled in the area of the rawarda aroh indioate the poseible presence of faulte along the southeast boundary of this structure (Sellards, 1934, p. 87). Sellards atated that these probable faults do not out the aurface formations, and for this reason, he belleved that they nay be part of the Liano ayatem of faults.

The Conoho aroh wan firat recognised by Cheney (1929, p. 557). Thi aroh parellels the trend of the Preoambrian folda and the san Maroos aroh, and extende northwestward from the Lieno uplift. Cheney (1940, p. 29) stated that the Concho aroh had etarted to develop by Early Ordoviolan time as indicated by loss of beda of Eariy ordoviolan age toward the aroh. The aroh was re-olevated and sevorely oroded during post-Bend time.

Cheney (2940, p. 105) oonaidered the major strmotural featurea of the Liano region to be narrow, northeasttrending grabons between stable areas or horsts, and inferred
that the horats and grabens were tilted parta of the Concho areh. Cheney applied the name Rlohland Springs, Pontotoo, San Saba, and Lampasas axes to the horath. The Pontotoc area is situkted on the Pontotoc axis whioh is about 12 miles wide and is bordered on the west side by the Predonia fault, and on the eat aide by the Smoothingizon Mountain feult.

Several theories have been proposed to explain the origin of the faulting in the Llano uplift. Paige (1912, p. 10) stated that the nearly vertical paults whioh have the ame northeast trend az the folds aro indicative of oompressive stressen. Paige stated that if the folds were produced by tensional streases, as would be involved in doming by direot vertioal uplift, elongetion of the beds would have resulted and normal faulte with moderete dipa mould have been developad. Such evidencea were not found in the Llano region. Peige believed that vertical or nearly vertioal faults alone are not indioative of appreciable elongation of the aurface, but when combined with folds they are an expresation of reliof from compresaion by vertiaal movement.

The following paragraphe ditoussing the origin of the raulting in the Llano region aro taken from Paige (2912, p. 10).
"A consideration of the encient geography of North Ameriea suggesta that during the entire period or sucoesion of periods during which depoalition was taking place in this region there were land masaes both to the northwest and to the southeast, and it is believed thet such condition existed immediately prior to the poot-Permian uplift whiah again brought this region above see level. It is probable
that the seas in which these aediments were deposited ocoupied troughe trending in a northeast-southwest direction.

Subsidence in the floos of the Gulp of Mexioo would initiate deep-seated rook flowage, under the influence of whioh the oentral Texas region would be compressed between the two land masses mentioned above. Such compression might have produced the folding of the strata parallel to the ahore of the Gulf of Mexico in the Llano-Burnet region, ecompanied by vertioal faulting, the expression, it is believed, of relief from compressive stresses in this lightly loaded area whore vertian movemente might more easily take place."

Cloud and Barnes (1948, p. 118) proposed a theory involving tenalonal stresses. They oongidered the Liano uplift as having been a relatively atable mass with the Ouachita geosyncing on the eatern and outhorn ides. According to Cloud and Barnea, the faulting in the Liano region probably ecoompenied the Late Paleosoic folding thet involved the sediments of the geonynoline, and movement in the geosynclinal areas to the east and south placed the Llane region under a torque whioh resulted in faulting. Thone theoretical "tensional oouplea" developed by active compresaion from the ast and south remulted in fraoturea allgned dominantly in northeast-acuthweat direction (cloud and Barnes, 194B, D. 118).

The theory involving "tencional couples" wain not adequately explained by Cloud and Barnes to allow a omplete maderatanding of their proponal. Palge'm proponal coneernIng ocmpreasion oaused by deep-seated roek flowage wat also Inadequately explained. It is the author's opinion that additional evidenee ooncerning the etrueturel relationahty
between the various arohen and the Llano upllfts a more oomplete lenowledge of the typea of faulto present in the Llano region, that ia, the posaible presonoe of other typea of fault bealdea vertisal and normal faulte, and the loonting of the various failt trends are needed for abeter undortanding of the peasible atresses involved in the doformation of the Llmno rogion.

LOCAL STRUCTURE

The structure of the Pontotoc area resulted from two periods of deformation. The first period of deformation oocurred during Precambrian time and reanited in the metamorphism and atmong folding of a thiok acries of anoient sedimenta, and the later intrusion of ignooun roaks. The foliation of the gnoiss-schist unit in the Pontotoo area hal an average strike of $\mathrm{F} 45^{\circ} \mathrm{W}$ and moderate dips so the northeast, and repreaents the northeast flank of a northwesttronding antioline. The gneiss-achist unit is out by small masses of fine-grained granite and by aplite dires. Soll cover obwoures the metamorphio-1gneoun contaots.

The second period of deformation oocurred during the Paleosoic Era and resulted in uplify, faulting, and orosion of the Preoambrian and Paleozola rocks prior to the deposition of Cretaceous strata. Strikes of the Paleosoia beds in the Pontotoc area vary betweon $N 70^{\circ} \mathrm{W}$ and $\mathrm{K} 85^{\circ} \mathrm{E}$ with a fow neariy east-mest and north-south strikes. The bede dip mostly to the northwest and northeant exoept for a

Rew beds which dip to the north, west, and southwest. The dips of the beds range between 1 and 11 degrees. The Cretaceous atrata dip about one degree to the north and are not involved in the faulting. The present elevation above sea level of the Lleno region was cauaed by a broad uplift of the continent during Cenozoic time (Cheney, 1958, p. 2859).

ROLDING

As proviousiy etated, the Precamilian gnoiss-sohiat unit is folded and forsm the northeast flank of a northwenttrending anticline in the Pontotoc area. Folding of Paleosoic rooks is limited to amall folds within the shalea of the Point Peak Member (Plate XVIII, Sig. 1), and to the limeatonea interbedded with the Point Paak biohorms and the basal San Saba limestones which overile the bioherme.

FAULTIEMO

The faulte reoognised in the Pontotoc aras are vertical or nearly vertical an indicated by thoir relatively otralght traces (Platen I and XXVI) and by the dipa, which vary from 87 to 90 degrees (Plates XXVII and XXVIII). The faults out the paleosoio strata into a number of tilted blocke and a fow manll horsta and grabons.

The throwe along the faults range from a fow feet to about 800 feet. A throw of about 200 feat oacurs along the fault whore the Cap Mountain Limestone Member has been upthrown opposite the Welge Sandstone Member (see inset, Plate I). A throw of about 90 feet oooure at the fault

EXPOSURE OF A SMALL FAULT

A fault striking across the small hollow just west of Ranch Road 501 on the Nell Harris property about 2.2 miles north of Pontotoc. This photograph illustrates the straight trace that is characteristic of most of the faults in the area.

The Pontotoc Creek fault about 0.2 miles directly west of Pontotoc. This exposure occurs on Pontotoc Creek on the G. H. Willis property.

EXPOSURBS OF SMALL FAULTS

Fig. 1. Exposure of a fault occurring within the Welge Sandstone Member just west of Ranch Road 501 about 2.2 miles north of Pontotoc. The dip of this fault is 87 degrees.

Fig. 2. Small fault occurring within the Welge Sandstone Member at the head of Spring Hollow about 2.2 miles north of Pontotoc.
between the Morgan Creek and Point Peak members in the northwestern quadrant of the Pontotoc ares. At this looality nearig the entire shele portion of the Point Peak Member is downthrown bringing the base of the bloherm unit opposite the upper five feet of the Morgan Creek Limestone Member. The throw along this fault appeara to deorease to the southeast whore the Morgan Creek, Welge, and Lion Mountain members ocour on both sides of the fault with samiler horisontal displacments of the contacts. This fault is on eastward continuation of the fault mapped by Jennings (1960, Plate I) in the Pontotoo morthwent area. A throw of about 25 feet wan obsoryed in the mall horst just east of Buah hindmill about 3.1 milea northealt of Pontotoc, and about the ame amount of throw ooours along the fault southwest of Buah Winder 11. The fault in the northwet comer of the D. B. Davis property has a throw of five feet. Throwe along the othor faulta are very amall.

It is belioved that a number of the short faulte shown on the geologie map (Plate I) may be segments of longer raults, but the amall throwt, soll cover, and thick growths of vegetation have prevented tracing the faults oontinuously in the field or on the aerial photographe. The rather wide outerops of some of the Cambrian units aleo auggeat the possible presence of a number of undeoted feults whith repeat the section.

The one notable feature of the faults in the araa 1. ${ }^{\text {a }}$ that they trond nearly perpendioular to the nownal north-eant-southest trend of the Lelano fault systom. Ae previousiy atatea, the Pontotoo area lies on an upthrown block or horet referred to as the Pontotoc axia by Cheney. This horat brende northast and is bounded along the western bide by the frem donia Pault and long the eastern side by the Smoothingiron Mountain fault. The average width of the Pontotoc axis is about 12 miles.

In hia review of the iiterature pertaining to the Fredonia fault, whion was named by MoGreth (1952, p. 29), Jonninge (1960, pe 68) reported that the throw along the Fredonfa fault varies from 200 to 1,400 feet and appeare to Inerease northeastward from the James River in Heson County. Jembinge (1960, $p, 68$) reported a throw ranging from 450 feet to probable maximun of 1,800 to 1,300 feet along the FresConia fault in the Pontotoo Northwest area whioh borders the Pontotoc ares on the weat. Chauvin (1962, peraonal comanie oetion) entimated throw of 000 feet for the Predonia fault In the Pontotoc North-Rorthwest area which borders the Pontotoe ropthwest area on the north. Greenvood (1962, permal ocmmuniaation) estimated a maximum throw of about 1,000 feet for the Smoothingiron Mountain feult in the oentral pore Eion of the Smoothingiron Hountain Horth aren which borders the Pontotoc area on the east. Greenwood also atated that
the throw alang the Smoothingixon Mountain fault decreases southward to about 400 foet and deareases northward to ebout 300 reet.

The author regards the faulta in the Pontotoo area as transverse faults between two major northeast-trending fault sones. These transverse faults appear to be conneoted to the major fault mones in two ways: (1) by curving along atrike and asauming the trend of the major fault sone (aee Jenninge, 2960, Plate I, and (2) by interseeting the major northwest-trending faults (see Chauvin, 1988, Plate I). The relation of the traneverae Paule to the Smoothingiron Mountain fault could not be determined.

The athor believes that differential uplift of the Pontotoo axit reeulted in plaoing the strate, whioh form the horst, under atresses great enough to cause fauling. The incomplete fault pattern in the Pontotoc area and the lack of data regarding the number and the trends of poseible undeoted faulta and their throws prevent a detailed diaousaion of the atreases impolved at the tim of faulting in the Pontotoo area.

AGE OF PAULTIME

In the Pontotoc area the faults eut Preoambrian and Carabrian reoks, but do not out the Crataceens rocks. The faulte looated at the northern border of the area out Elienburger streta in the area north and northwest of the Pontotoe
area. The raults in the Pontotoo aroa rosulted from stresses produced by differential uplift of the Pontotoc axis. These faulte probably were formed during the thme that the Fredonia and Smoothingiron Mountain faulte were active. Chavin (1962, Plate I) mapped Karble Falls Limestone (Lower Ponnayivanian) on the cownthrown side or the Fredonie rault, thus giving an Early Ponnaylvanian age to the Frodonia rault. Both the Fredonia and the Smoothingiron Mountain faults have the same general northeat trend as the major faulte in the Llano region. It ia logical to asmame that faulting in the Pontotoc area oocurred an a part of and contemporanoous with the regional deformation whiah, according to Cloud and Eamea (1848, p. 121), oooursed elthor during or fitor the deposition of Strewn rocke and before the deposition of Cenyon rocks.

0 OOLOOICHISTORT

In order to determine the aomplete geologio history of the Pontotoc area, it is neoessary to examine the sequence of geologic evente in the ontire Llano region of whioh the Pontotoc area is a small portion.

The geologio history of the Llano region has been discusted by Paige (1918), Sollayds (2934), Cloud and Berne: (1948), and Bernea (1956). The following diacusaion is based primarily on theee worke and supplemented by ovidonee found in the Pontotoc area.

PRECAMBRIAK

A thiok sequence of sedimentary rooks was deposited In the Llano region during Precambrian time. Subsequent daformation reaulted in folding and metamorphiam of the aedimontary rooke. The area wee then intruded at three differant times by major granitio batholith (Sollarde, 1934, p. 74). Uplift of the area reaulted in the trunostion of the folded metamorphic rooks and perte of the grenitic masses. This truncated aurface was obeerved in the Pontotoc area where the orest of the northwest-trending anticline was removed by oronion prior to depeaition of the Riley Formation. The period of erosion probably lasted until Late Cambrian time aince Lower and Middle Cambrian rooks are mianing in the Llano region.

GAMERTAN

The Preoarixitan dapositional surface prior to invasion by Late Cambrian seas had a maximum reliof of about 800 feet (Barmen, 1986, p. 8). In his atudy of the Hiokery Sandstone, Goolsby (1957, p. 79) atated that thie relief of 800 foet was restricted to leal areas and ofted Pontoteo as one of these loosl areas. Suoh high relier is ovidont in the Pontotoo aren at the locality where the gnoian-mohist unit extenda upward into the Cap Mountain Limestone Member.

The presence of angular querte and foldapar graims and the poor worting in the basal Hiolcery Bandetone are Indieative of rapid deposition in an advancing mea. Tha heterogeneous composition of the basal conglomerates of the Fiakory Sandetone indicate derivation from the underiying Preambrien rooke. Barnes and Parlanaon (2939, D. 665-670) reported the presence of ventifacts in the baeal portion of the Hiekory Sandstone, and augested the possibility that the sandstones whion eovered the ventifaots were Ind-blown rather than water-1aid. Goelaby (2957, p. 59) stated that atudies of the arowebedding in the basal Hiakory sandstone indiented that deposition of the basel HIokory sandstone coourred at N the mouthe of fast, posaibly tomporary streans where they ontered a quict sea." mis anthor is not in oomplete agreement with the postulation proposed by Bawnes and Parkineon that "the and whion inoorporated then [the ventifacte] mant have been wind blown rathor than water borne, otherwise
many of the pebbles would have been turned over onto their faceted faces." The ventifnote have a wide, flat bottom and are faceted on the upper arrases. It would seem likely that the ventifacte would tend to tome to final reating position on their wide, flat vurfaoe regardiese of the mediun In whith they were deposited. No ventifacte were found in the Pontotoc ares. This author is in agremment with Goolaby'a coneluaione conceming the depositional emvironment of the basal Hi olcory Sandatoae.

The middle portion of the Hiokory Sandatone is oharaoterised by well-sorted, fine-gramed sand, arose-bedding, intraformational oonglouerates, and symmetrienl ripple ranke whioh indioated doposition in shallow weterne.

In the weatern part of the Ileno region the upper Hiakory Sandaton is oharmoterised by coarse quarts graing which are conted with hemetite. Goolsby (1987, p. 88) reported that hesatite is also found in the sandetone pore epaces, and that it appeare to have been introduoed along with the influx of coarser and from a nearby soupce area, Goolaby'm oonciunion is besed on observations made by Twenhofel (1950, D_{0} ef16) who thated that 1 ron oxidos and hydroxidea are highly insoluble and are likely to remain at or close to the souroe aren. The soureo area during Cambrian time in considered to have exinted northwest of the Llano region, and as the heavy concentration of homatite ooours predominantly in the western part of the uplift, the
proximity of a source area for the hematite seem reasonable. Hematite was observed in the pore spaces of the upper Hiokory Sandstone in the Pontotoc area. The fact that the hematite oocurs as very anall grains in the pore apaoen auggests the eltornative posaibility that the hemetite may have been dorived irom the alteration of glauconite.

The Hickory Sandstone grades upward into the Cap Mountain himestone due to a deerease in the aupply of ooarse clastion whioh may have reaulted from a lowered source areat however, the impurity of the Cap Mountain ilmeatones indicatea a ocotinous aupply of silt-aised material. The presence of glauccaite in the upper portion of the Cap Mountain Limentone indicates shallow water of alightly reducing nature. A posalble uplift of the source area le auggested by the oocurrence of alltatone lagers in the upper part of the Gap Mountain Limeatone Member.

Regresaing aeas resulted in the daposition of the Lion Mountain Sandatone Meaber. The abundance of glauconite indicates relatively quite waters; whareas, turbulent waters are indicated by the presence of the "trilobite hamh". Crosambedding within the highly glavoonitic layers in the upper part of the Lion Mountain Sandstone and the absence of silt- and olay-sised partioles also indioate turbulent waters. It would neom pousible that the Lion Mountain Sandstone was deposited in a neritio environment, and that ol ther ourrente tranaported the glauconite and trilobite remans into the area or that reworking of the glauconite and trilobito remaing by atorm waves aaused the oromebodding and "brilobite ham".

A short period of emergence is indieated by the minor disconformity between the Lion Mountain and the Welge Sandstone members. The Welge andatones are nonglawoonitic, nonargillecsous, and oonsist of well-rounded, pitted and frosted and graina which suggest wind-blown aand deposits thet were reworked by water.

The seas oontinued to transgrese resulting in a gradational conteot between the Welge Sandstone and the Morgan Creok Limeatone. The influx of olastios deereazed and maseive 1 mestone beds wore deposited. The presence of alltstone layers in the midale portion of the member auggests minor uplift in the source area. Quiet, shallow vaters are indioated by the presonce of glauoont te and small algal reefas

A elight withdrawal of the asas reaulted in the deposition of the Point Peak Shale. Paige (1912, p. 11) suggested that the intreformational conglomerates were formed by ahallow water roworking mud-aracked sedimenta oonsieting of silts and limey muds on tidel flets, The seas advenoed onoe more depositing limestones which display aymetrical ripple marks and large reefs. The reefs are oonsidered to have formed in woll-lighted, olear, warm, quiet, and challow wators (Cloud and Barnes, 1948, p. 118).

The bloherim sone is persiatent throughout the Llano region, but migration of the aepositional onyiromment of the bloherma has oaused the bioherm sone to tranagrese time boundaries. Barnes and Bell (1954, p. 25) raported that the
bloherne extend well upwerd into the Limestonea of the San Sabl Member. The biohorms ooour in the top of the Point Poak Shale at white's Crossing, Mason County. Bridge, Barnea, and C2oud (1947, p. 117) reported that the bioherat sono ocours within the San Sabe Limestone Morbor at Squaw Greok, Gillespie County.

The seas continued to advance dopositing San Saba 1imestones. In the western portion of the uplift, sandstones and ailtatones oeour in the San Baba Member Indieating a souroe ares to the nowthrest. The amount of clasties it muoh amaller in the eatern portion of the region where aublitho graphic limeatones and dolomitea are preaent. In the Pontotoo area a relatively mall percont of ailt was observed in the San Sabe 2imestones.

Cloud and Barnes (1940, p. 112) reported that the Cambion strate are truneated below the ordoviaian rocke in the southeastern portion of the uplift, but are not trunented In the northwestern portion. Cloud and Barnes tated thet while redimentation in the northeestern portion of the region eppears to have been continous merose the Gambrian-Ordovician boundary, erosion of the Upper Cambrian strate in the southeastorn portion resulted fron either a deprestion of sea level in that area or a tilting of the Llano region to the northwest.

ORDOVICIAN AMD SILORIAR

Acaording to Cloud and Barnea (1948, p. 112), the Llano region was relatively stable during Early Ordovician time. Land masaes to the east and south were either submerged or very olose to sea level. The fillenburger aroup was deposited in seas whioh were about 100 fathoms in dopth, vell-oxygenated, and intermittently turbulent. int limestones were probably derived from ohemieally precipitated 11me-muds.

The Llano region was later tilted to the southe east resulting in the truncetion of the Ellenburgar Group in the northwestorn part of the region.

Rooks of Middle Ordovielan age are not found in the Lleno region. A few deposits of Upper Ordovioian age oocur In collapse atructures. No ovidenev of silurian atrata han yet been found which suggesta that the region wae emorgent during this period.

DEVOHIAN

Bernes, Cloud, snd Warren (1047, p. 198) reported that rocke of Devonian age, with the axaeption of the 3tribling Formation, oocur as mall, isolated outoropa oonfined to collapae struotures within the Ellenburger Oronp. The ooourrence of older Devonian rooks in the eastern part of the Llano region and of younger Devonian roake in the western part indioated that the Devonian seas invaded the Llano
region from the east. Emergence of the region resulted in the removal of most of the Devonian atrata prior to the depoaition of Misaisalppian rocks.

HISSISSIPPIAM AMD PERNSYLVAKIAK

During Carboniforoul time the Llano region wat invaded several times by seas. The sedimenta doposited oonsiated of foasiliferous limestones and shalea with leaser arapunts of oonglomerates and andstones.

Thinning of the Chappel and Barnett formations toward the oenter of the region indioaten that the uplift of the region began in Late Misaiasippian time. The final etagen of deformation ooourped either during or after the depoaition of Stram roake and before the depoaition of cenyon rooks. This age for the deformation in based on the fact that strate of Strawn age are faulteds whereas, atrata of Canyon age are not faulted, and that in some places canyon rooks overlie partially eroded Ellenburger rooks (Cloud and Barnes, 1948, p. 121).

PERMIAN, TRIASSIC, AND JURASSIC
The Llano region underwent an oxtensive period of orosion following Penneyivanian time and prior to the deposition of Lowar Cretaceoul rooke. The faot that the Preaambrian rocke were exposed by eromion during this time is etrong ovidence againat eny great amount of deposition during the Permian, Triasaio, and Jureasio periode.

CREPACEOUS
By the beginning of Early Crataceous time, the Llano region was reduced to a peneplain by orosion. The Cretaceous seas invaded the region and continued to advance as is indicated by the progressive overlap of younger Cretaceous atrata over older Cretaceous abrata In the Triaity and Froderioksburg groups.

Plumar (1050, p. 103) roported that the distribution of the oonglomerates of the Syomore Sand Member, its orose-bedding, the shapes and mode of asaortment of the pebbles auggeated to Damon (1940) that the conglomorates were non-marine in origin, having beon doposited by streams as terraces or al alluvial fant that were lator reworked to some extent by the eneromohing Early Cretaceoua sen.

The 11 thology and fawn of the Cow Creek Limeatone Member of the Travis Poak formation suggent shaliow water during the time of deposition of this unit. The Hencell Sand marke a tranagresaion of the sea in whioh the olon Rose Limestone was later deposited. Beach and shallow-water facies are dieplayed in the basel portions of the Glen Rose Limestone.

The seas continued to transgress and aoposited the rooke of the Frederiakeburg Group. A shallow dopth of the transgressing sea 1s indioated by the fauns and the reef faciea as well an by lateral variations in the 11 thologio faoien.

Apoording to Plumaner (1950, D. 101) and Barnea (1941, p. 1944), the first Cretaceous streta to completely oover the entire Llano uplift wese either the upper portion of the Comanohe Peak Limestone or the Lower portion of the Edwarde Ifineatone. This conoept by Plumer and Barnes is supported by the fact that the Crotaooous rooks in the Pontotoe aree are equivalent to the Edwards Limestone.

The Lileno region remained emergent following the withdrawal of the Cretaceous seas. Subsequent uplift and erosion ramoved the cretaceous rook over the uplift expoing the truotwrally high, but less resistant Paleozoic and Prem cambrian rocks. Eromion of the less restetant Paleosoie and Precambrian rock progreaned faster than the erosion of the Cretaosous atrata, thus reaulting in the topographio basin. Deposition since Cretaceous time has beon confined to atream valleys.

BCOTOMIG RESOURCES

Land and ground water ser the most important rew souroea in the Pontotoc area. Guitivated fields are loented on abile derived from the Hickory Sandatone and from the Prem cambrian rookg in the besin area around the comananition of Pontotoo and Field Creek, but moat of the area is devoted to ranohing. A large number of water well have been drilled In the area and all the production is from the Hielcory Sandetone. Water is ueed for human and liventook oonaumption. The mall alishe dopeait leonted at the oentral Cretaceous onflier noxth of Pontotoc was quarried in 1959 for use as road material in the conatruotion of Renoh Road 501. This amall quarry was abandoned upon completion of the highows. Acoording to Barnes and Dimbon (2944, p. 229), call ohe 1s aecondary ealion oarbonate deposit varying in texture from a pulverant mase to hamd, dense material, and ocoure abundantly in aupface and neareturface deposits in the arid and semi-arid parta of Texan. The ohies ute of eeliohe in Texam is for road material (Sollarde and kyana, 1944, p. 96).

At the locality north of Pontotoc the ealiche is white, sort, and poorly-bedded (Plete XXIX). A massive layer of mediumgray, anblithographic lineatono and a fow thinbedded layeri of oreasmeolored, ublithographic limeatonea are Interbedded in the eallche material (P1ate XXIX and Plate XXX, 11g. 2).

PLATE XXIX

EXPOSURE OF CALICHE

Exposure of white, soft, poorly-bedded caliche and massive layer of medium-gray, sublithographic limestone in the south wall of the caliche quarry on the Nell Harris property about 2.2 miles north of Fontotoc.

PLATE XXX

CALICHE QUARRY

Fig. 1. The abandoned caliche quarry on the Nell Harris property about 2.2 miles north of Pontotoc. The view is to the south. (Photograph by E. J. Graczyk)

Fig. 2. Thin and massive layers of sublithographic limestone interbedded with caliche in the south wall of the caliche quarry.

BIBLIOORAPHE

Adring, W. S., 2988, Handbook of Tazas Cretece out Fonsilat Univ. Texas Buil. 88s0, 285 p.

2933, The Mesosoie Syateme in Texat Univ. Toxas Bull. 3232, pt. 2, p. 839-517.

Barnes, Y. Eo: 1941, Groteoeous Overlap on the Liano Uplift of Contral Texast (Absto). Gapol. Soc. Amerioa Bull. vo1. 52, p. 1994-1906.

1944, Gypsum in the Edwarda Ifmeatono of Central Taxas: Univ. Texan Pub. 4301, pu 35-46.

1948, Oumohita Fuoies in Central Texan: Univ. Texas Rept. Inv.: no. 8, D. B-12.

1982, Blowout Quadrangle, Gilleaple and Llano Comntien, Texas: Bur. Eeon. Geol. Geologio Guadrangle Map. Univ. Tazat.

1986, Lead Deposits in the Upper Cambrian of Texass Texes Unit., Bur. Eoon. Geol., Rept. Inv.. no. 26, 68 p. , and Beli, W. C., 1954, Cuidobook, Cembrian Field TripLleno Areat weat Texat Geol. Soce, 189 p.
, and Dawsona R. F. 2944, Mineral Structurel Materitie, chpt. 17 of Texal Looks Aheads vol. 1 of the Resourees of Texas: Univ. Texas, p. 229.
, and Parkinaon, G. A., 1939, Dreikantere from the Benal Hiakory Sandatone of Central Toxas: Univ. Taxas Pub. 5945, p. 665-870.
 Devomian Roake of Contral Toxas Univ. Texan Pub. 4801. p. 165-177.

* 1947, Devonian Rocics of Contral Texas: Geol. Soe. Amprian Bullo, Fol. 58, D. 188-140.
, Schook, $D_{0} A_{*}$ and Cwaninghas, W, A*: 1950, Utilisam tion of Texas Serpentinez Univ. Texas Pub. SOBO, P. 7. , Cloud, P. E*, Jr., Dixon, Le Pe, Folk, R, Leg Jones, E_{4} C. Palmer. A. R., and Tynan, E. J., 1969, Strate graphy of tho Pre-8ispson Faleoaple Subsurface Rocks of Texas and Southoast Fiow Mexioo: Univ. Texta Prb. 8984, 203 p.

Blank, H. R., 1961, Exfoliation and Woathoring on Granite Domes in Contral Texas: Toxas Jour. 801., vol. 3, p. 376-390.

1962, Personal Communication.
Bridge, J., 1957, The Correlation of the Opper Cambrian Seotiona of Misaouri and Texal with the section in the Upper Misaialippi Valley; U. S. Geolegieal Survey Pror. Paper 186-L, p. 833-237.
, and Barnes, V. E., 1041, Stratigraphy of the Upper Cambrian, Llano Upilft, Toxan: (Abit.). 0001. Soc. Amarion Eull., vol. 58 , p. 1996.
, and Girty, O. H., 1937, A Redeacription of Fordinand Roamer's Paleosois Types from Toxas! U. S. Geologioal Survey Prof, Paper 186m, p. 230-271.
—_ Barnea, Y. E., and Cloud, P. K., J.or 1947, Stratigraphy of the Upper Oambrian, Llano Upilft, Texas: Geol. Soo. Amarica Bull., voi. 88, p. 109-184.

Cartwright, L. D., Jr., 1038, Regional Struoturem of Cretaovoul on Edwards Plateau of Southwest Texas: Amer. Asace. Petrol. Geol. Bull., vol. 16, D. 691-700.

Chauvin, A. L., 1962, Porsonal Cominuication.
1962, Geology of the Pontotoc Xorth-Horthmest Area, San Sabe County, Texas: M. S. Thesis (In proparation), A. at M. College of Texas.

Choney, M. O., 1018, Booncuils Importance of the Bond Borios in Horthocentral Texen ae source of Potroleum Supply: 011 Trade Jour., vol. 9, p. 109-110.

1929, Stratigraphic and Structural Studies in HorthCentral Toxala: Dniv. Toxas Bull. 2913, 20 p.

1940, Geology of KorthmCentrel Texas: Amer. Assoo. Petrol. Geol. Bull., Vol. 24; D. 65-118.
, and Goss, L. E., 1952, Tootonios of Central Texas: Amer, Assoc. Petrol, Geol. Bull., vol. 36, p. 8287-2965.

Clabaugh, S. E., and Boyer, R. B., 1961, Origin and Strueture of the Red Mountain Gnelas, Llane County, Toxas: Toxas Jour. Sol., vol. 13, no. 1, p. 7-16.
 Formationi Amer. Absoc. Petrol. Oeol. Bull., vol. 39, p. 484-482.
, and Earnes, V. E., 1948, The Ellonburger Group of Centrel Texale Univ. Texal Pub. 4881, 475 p.

2, and Bridge, J., 1945, streatigyaphy of the Slionourger Group of Contral Texaemprogees Report: Univ. Taxan Pub. 4301, D. 233-161.

Comstook, T. B., 1889, A Preliminary Repert on the Geology of the Contral Mineral Regi on of Texan: Texas Geologieal Survay, 1at Ann. Rept., pe R88-891.

2890, Report on the Oeology and Mineral Reaourees of tho Central Mineral Region of Toxae: Tozat Oeologieal Surveys, 2nd Ann. Ropto: p. E55m659.

Coole, C. W. W 1946, Cemanche Eohinolda: Jour. Paleo., Vol. 20, no. S, D. 193-837.

Cumbingt, w. Fo, 2891, Feport on the Geology of Horthwettern Toxan: Toxas Geolegioal Burvey, 2nd Amn. Rept. (2890), D. 367-558.

Cuyler, R. He, 1951, The Travis Peak Formetion of Contral pexal Unpub. Ph, D. Disaertation, Univ. Fexas, 167 pe

Damon, H. G., 1040, Cretaceous Conglomerste on tha East Side of the Llano Uplift, Taxati Unptub. Ph. D. Ditaertition, State Univ. Iown, O2 p.

Darton, H. H., Stephenton, L. H., and Gaxtiner, J., 1937, Geologio May of Fexat: U. S. Geological Survey.

Drake, C. L., and Bridge, J., 19s2, Fannal Correlation of the Ellenburger Limestone of Toxens Geol. Soe. Ameriea Bulle, vol. 43, p. 725-741.

Fiaher, M. Eo, 1960, Gealegy of the Hilda-Northeret Aren, Mason County, Texas: Unpub, M. S. 2hesis, A. \& M. College of texat; 73 p .

Flawn, P. T., 1956, Banemont Rooks of Toxas and Scutheast Hew Hexico: Univ. Texat Pub. 8605, pe 3-35.

Friseoll, D. Le, 1954, Handbook of Cretaceous Foraminifera of Texalt Univ. Texan Ropt. Inv., no. 28, 280 p.

Olxard, R. M., 1959, Bibllography and Index of Texas Geology, 19S3-1950: Univ. Texas Pub. 8910, 238 p.

Oirty, G. H., and Moore, R. C.. 2919, Age of the Bend Serieat Amer. Assoc. Petrol. Geol. Buil., vol. 3, p. 410miso.

Goolsby, J. L., 1987, A 3tudy or the Hiokory Sandetone: Unpub. M. S. Thesis, A. \& M. College of Texas, 98 p.

Greonwood, B. M., 1962, Porsonal Cormunieation.
1062, Geology of the Smoothingiron Mountain North Area, Llano and San Saba Countiea, Toxas: K, S. Theale (In preparation), A. \& M. College of Texai.

Grote, P. Ris, 1954, Struatural oeology of the Contral Bluff Creok Area, Mason County, Texas: Dnpub. K. 8. Thesis, A. \& M. College of Texas, 44 D.

Hill, R. T., 1887, The Present Condition of Knowledge of the Geology of Toxas: U. S. Coologiall Survey Bull., vol. 45, 95 p.

2889, A Portion of the 000logio story of the Colorado River of Texans Amer. Geol., vol. 3, p. 287-299.

1891, The Comanohe Sories of the Toxas-Arkanear Regioni Geol. Soo. America Bull., vol. 2, p. 503-52B.

1894, The Paleontology of the Cretaceous Formationa of Texas; the Invertobrate Fossila of the Caprina Limentone Bede: Biol. Soo. Washington Proc., vol. 8, p. 97-108.

1901, Geography and Geology of the Blaok and Orand Prairiea, Taxal U. 3. Geological Survey, 2lat Ann. Rept., pt. 7, p. 171-367.
, and Vaughan, T. W., 1897, Geology of the Edwarde Plateau and Rio Grande Plain Adjacent to Austin and san Antonio, Taxas, with Reforences to the Deourrence of Underground Watera: U. S. Geological Survey, 18th Ann. Rept., pt. 2, p. 195-521.

Holmes, A., 1931, Radionotivity and Ooologioal Time: The Ago of the Earth, pt. 4 of Physios of the Earth: Nit. Researoh Counoil Buil. 80, D. 124-459.

Hubbert, M. K., 19B1, Mechanical Banis for Gertain Pamillar Goologio Struatures: Geol. Soo. America Bull., vol. 68., D. $355-378$.

Huriey, P. M., and Goodman, C.. 1048, Helium Age Measuremente: Geol. Soc. America Bull., vol. 54, p. 306-324.

Jemings, A. Ru, 1960, Geology of the Pontotoc Morthwest Aren, San Sabe and Mas on Counties, Texats Unpub. M. S. 2hosis, A. \& M. College of Texas, 87 p.

Jones, R_{o} A., 1829, The Paleosois of the Pedernales Valloy in aillespie and Blanoo Countien, Texab: Univ. Texas Buil. 2901, p. 1-80.

Levoraen, A. I., 1927, Convergonoe Studien in the Mid-Centinont Regions Amer. Ass00. Petrol. Ceol. Bail., vol. 11, p. 657-688.

Light, K. A., 1952, Evidenoe of Authi gonia and Detrital Olauconite: Solence, vol. 115, no. 2977, p. 73-75.

Loso, F. E., 2959, Stratigraphic Relationa of the Rdwarda Limestone and Associated Forsationa in Morthmentral Teran: Dniv. Texas Pub. 5005, D. 1-19.
, Holmon, H_{V} F., Young, K_{0}, Shelburne, C. B., and Sandidge, J. R., 1959, Symposium on Edwarde Lheestone in Central Texan: Univ. Toxas Pub. 5905, 235 p.

Mathews, W. H., III, 1956, The Paleontology and Paleon0010gy of the Blostrome Fauna of the Edwarde Pormation of Texas: Gulf Const Assoc. Geol. Soc. Trana., vol. 6, p. 100-116.

MeGrath, D. B., 1988, Geology of the Fredonia Area, MoCullooh, Mason, and San Sabe Count1es, Toxasi Onpub. M. S. Theais; A. \& M. Colloge or Toxas, 31 p.

Hillor, O. H., 1957, Geology of the Bee Branohwilill Creek Area, Mason County, Taxas: Unpub. K. S. Thesie, A. \& M. Cellege of rexas, 67 p.

Moore, C. H., 1961, Stratigraphy of the Walnut Formation, South-Central Texas: Texan Jour. Soi., vol. 13, no. 1, p. 17-40.

Mosteller, S. A., 1987, The Geology or Horth Fredionia Area, MoCuilooh and San Sabe Countioa, Texan: Unpub. M. S. Theals, A. \& M. College of Texas, 71 p.

Newnee, D. D., 2957, Geology of the Cump San Saba-West Area, Mason and MoCuilooh Countien, Toxast Unpub. M. S. Thesis, A. the College of Texat, 108 p .

Paige, S., 1911, Minaral Resoarees of the Lhano-Burnet Region, Teras, Eith an docount of the Precambrian Geologyi U_{E}. S. oeological Survey Bull. 450, 108 p.
1912. Deseription of the Llano and Burnet Quadranglea: U. S. Oeologicel Survey Geol. Atles, Follo no. 183. 16 p.

Plumar, P. Be, 1940, Geologia Map of San Saba County, Taxat: Bur. Boon. Geol., Univ. Texas.

1950, The Garboniferous Roaks of the Lleno Region of Central Texati Dniv. Texas Pub. $4329,117 \mathrm{p}$.
, and Hoore, R. Ce, 19R1, Stratigraphy of the Pennay2vanian Fomationa of North-Central Texes: Univ. Texat Pub. 2132, 237 D.

Pool. A. S., 1960, Geology of the Homar Martin Ranch Area, Mason County, Tezas: Unpub. M. S. Thesis, A. \& M. College of Texas, 82 p .

Roemer, F., 2848, Contribution to the owology of Toxast Amer. Jour. Soi., 2nd ser.. vol. 6, p. 21-88.

1852, Die Kreidobildumgen von Toxas und inre organisohon Eingohluate: Bonn, Adolph Marout, p. 1-100.

Rogere, L. F., Jr., 2955, Arkonie Conglemerate Beds in Mason, Monard, and Kimble Counties, Texas! Unpub. M. S. Meais, A. $2 \mathrm{M}_{\mathrm{c}}$ College of Texals, 66 p.

Romberg, Fo, and Barnea, V. Z., 1949, Correlation of Cravity Observationa with the Oeology of the Coal Oxeet Serpentine Mans, Blanco and Gillospie Counties, Texale Oeophyeios, vol. 14, p. 151-162.

Roundy, $P_{*} V_{*}$, Girty, $G_{6} H_{*}$, and Goldman, $M_{*} I_{*}, 1926$, Hiesiasippian Formation or San Saba County, Toxas U. S. Oeologiaal Survey Prof. Paper 146, 89 D.

Sellarda, E, Ho, 1988, The Pre-Paleosoic and Paleosoio SFratem in Texas, vol. 1, Stratigraphy: Univ. Texte Bull. 3238, p. 18-230.

1954, Struetural Geelogy of Toxan Eant of Peeos River: Univ. Texas Bull. 3401, p. 78-84.

Sollarda, $E_{0} H_{0}$, and Evans, O. Lo, 1944, An Index to Texas Minoral Resources, ohpt. 6, Texas Looke Ahead, vol. 1 of the Resourcen of Texas: Univ. Texas, p. 98 .
, Adicina, W. S., and Plumer, Y. B., 1932, The Geology of Toxar, vol. 1, Stretigraphy: Univ. Texas Buil. 5232, 1007 p.
——normer 1933, Goologio Map of Toxas, pt. 5 of vol. T, The Coology of Texan: Univ. Texas Bull. 3838.

Shimer, H. W., and Shroak, R. Ro, 1944, Indax Poselise of North Amerloa: Macs. Inatit. Teoh. Pub., Yow Yoric, John

Shumard, B. F., 1860, Observations Upon Cretaceous Strata of Toxas: St. Louls Aond. Soi. Trans., vol. 1, p. 882-590.
1861. The Primordial Zone of Texas, with Deacriptions of How Yonelis: Amer. Jour. Sci., ser. 2, vol. 32. no. 95, p. 213-221.

8humard, 0. $a_{1}, 2886$, A Partial Report on the Geology of Weatern Toxas: State Printing offioe, Austin, Toxas, 145 D.

Smith, F. E., 1968, Porsonal Comaniaetion.
Stensel, H_{0} B., 1932, Procambrian of the Llano Uplift, Texan: (ADst.). Qeol. Soc. Amerioa Buil., voi. 43, D. 145-144. 1934, Pregambitan 3 truetural Conditions in the Lhano Region, Texan: Univ. Texae Pub. 5401, p. 74-79.
1935, Preommorian Unoonformities in the Llano Region, Texen: Univ. Texas Pub. 3501, D. 115-116.
Sweet, W. K., Jr., 1957, Geology of the Katomey-Voca Araa, Mason and Mocullooh Counties, Texas: Unpub. M. S. Thesis, A. \& M. Colloge of Textel, 92 p.

Taff, J. A., 1898, Reporta on the Cretaceous Ares Xorth of the Colopado Rivor: Toxae Geological Survey, Srd Ann. Rept. (1891), p. 267-379.

Tarr, R. S., 1890, Suporimposition of the Drainage in Central Texasi Amer. Jour. Sol., ser. 3, no. 239, art. 40, p. 350-882.

Texas Almanac 1961-1968: Dallas, A. H. Bolo Corporation, p. 74.

Twenhofel, W. H., 1950, Pringiples of Sedimentations znd ed.e Hev York, KoOraw-Hill, p . 416.

Udden, J. A., Baker, C. Le, and Bone, E. : 1916, Reviaw of the Geology of Texal: Univ. Taxes Pub. 44, 178 p.

Welaett, C. De, 1884, Hoten on Paleosola Rooks of Central Texat: Amer. Jour. Soi., ser. 3, vol. 28, D. 431-433.

WImarth, M. O., 1038, Lexicon of Geologia Iames of the U. S.. A-Z: $\%$. S. Geologieal Survey Bull. 896, 2398 p.

APPEXDIX

DESORIPTIOX OF THE SBCTION OF CREPACEOUS ROCKS AT BUBH WINDMILL

The "Buah Iindilill section" oaeurg on the osoarpe mont direotly south of and below the Buah Windmill on the W. H. Taslor property about 3.1 Eiles northeast of Pontotoo. The section axtende upward from the Cambrian-Gretaceous contact to the top of the hill. At thif looality the Cxptaceous overlien the lower portion of the Morgen Creek Limentone.

The terym thin-bedded, medium-bedded, thick-bedded, and mansive have been assignod abpolut thicknesses whioh ares Enin-bedded: leas than 2 inghea; mpdifu-beddod: 2 to 6 inohes thick-bodded: 6 inches to 1 foos; and masive: greater than 1 foots.

Cretaceous Syatom

Comanohe Seriea
Upper Froderiokeburg Group
Unit Eimeatona Unit Feet Inohes
7 Siltatone: yellow patohes on white, thinto thiak-bedded, soft, argillaceous, ohalky weathorg light grey, Intexbudded with thin-bedied, yellowish-gray, aronaceoun IImestonem containing chort nodules In the upper five feet of the unit. This unit is partially covered by 0.11 and ohert fragmente on the top and lope of the nill. 88

6 Limeatone: light gray to yellowiahmgray. mediumobodded to masive, hard, argillecoous, ohalky weathors light gray, partially covered, forms ledge. Casta of of. Turxitolia sp. of. romeasia patasiata, and of. Gaprinuloiden gp. wexe found...... 16

5 ILmeatone: yellowishogray, maraive, dence, argillageous, ailty, ohalky, alightiy arenceous; weathera light gray, forma
1edge 8 6
S12tstone Unit
S Siltntone: yellowish-gray, thin-bedded,aoft, argillageone, ohalky, slightyyarenaceous; weather light gray............... 18
3 Siltatrone: yellowish-gray, masaiva, eoft,argilleaeous, arenaceoul, onloareoun;veathers light gray, partially oovered8 Siltatone: white to yellowith-gray, thinato medium-bedded, soft to friable, oul-careous, arenaceous toward the bsets;weathort light gray, partially covered... 50
Bane 1 Conslomerate-8andstone Unit
I Sandetonei jeliow to white, mediunograinod, friable, alcareous; weathora light gray,partially oovered by andy soll and rubble 19
Total manmured thickness...................... 76 2

DESCRIPTION OF THE SECTION OF CRETACEOUS ROCKS AT MHE MICROWAVE RELAY STATIOX
The "ulorowave section" ooourn on the enoarpment slope directly south of and below the Merowave Relay Station control house and tower on the Ned Harris property about 1.8欮len northonorthwest of Pontotoc. This eection extende upo ward from the Cambrian-Cretaocou contact to the top of the hili. At this lecality the Oretaceoue overliea the lower portion of the Cap Mountain Limestone Mermer.
The bbsolute thicicnesses asaigned to the teraad ohinbedded, madirm-bedied, thiolc-bedded, and massive axe the same as those liated in the "Bush Windmil2 seotion".
Cretreeoua syatem
Comanohe Series
Upper Froderiokaburg Group
Unit Limentiona Unit
Fent Inchea
8 Limestonez yellow atroaks in whitiah-gray matrix, fine- to mediumegralned, madiunto thiek-bedded, hard in upper part or this unit, manesive, hard in lower part, argillaoeous, shalky weather to light gray, mediumto thiok, flat blooks in upper portion and to large, bleeky bouldern in lower pertion. The limestones have very vugsy surface. Unit is partially covered................................ 20
Unit gintitone Unit Feet Inohes7 Siltatone: yellow, thick-bedded, hard,argillaceous, allghtly areneoeoust
weathers light gray, partially oovered... 9 6
6 Siltatonet yollowish-grey, thick-bedded,soft, argillaceous; weathore ilght gray.montly oovered by talun and soll........... 8θ
5 Siltstone: jellowish-gray, thiok-bedded,hard, argillaeoous, ohniky, fosilliforouscontaining fragment oast and impreseicnsof pelecypeds; weathera 21 ght gray, forma
ledge 4 0
t Siltetone: white to yellowith-gray, medium-bedded, soft, argillaceous, ohalky, slightiyarenaesous; weathers Light gray, partiallycovered by rubble.................................. 88
0
3 Sam an unit 5 16
8 Siltetone: whitish to jellowiah-graygthin- to mediumbedded, gort to friable.argillaceous, arenaceout, caloareous;weathors white, yellow, and gray, partially4
Banal Conglemorate-Bandetone Unit
1 Sandatones white to Fellow, mediumegrained,friable, oaloareoust weanthors to sandy moiland rubble, heavily oovered................. 160
Total monaured thioknosa 71 6

DEBCRIPTIOA OF THE SECTIOA OF CRETACEOUS ROCKS SOUTHRASE OF THE CALICHE QUARRY

The "Caliohe metion" osours on the escarpmont slope noutheast of the bandoned oaliche quarry on the Nell Harris property about 2.1 miles north of Pontotoc. This section extenda upward from the Cambrian-Cretaceous contact to the top of the hill. At this Loaality the Cretadeous overlies the iower half of the Cap Mowntain Limetone.

The absolute thickneses aseignod to the torme thin-bedded, medium-bedied, thick-bedded, and masive axe the same as those 11 ated in the "Bunh Winduall seotion".

Cretaeeoua Syaten

Comanche Serien
Upper Frodorickeburg Group
Unit Lismenten Init Feet Inohes
\& Limpstone: yellow to light gray, thickbedded, hard, coarsemgrained, arenaceous, asgillaceous, foseilifarous containing pelecypod fragmenta and abundant foraminifara; waethora light gray, very vuggy alabs on top of hill, partialiy covered.......... 80

3 Limestones medium to 11 ght gray with yollow and grey streaks, irregular in bedding, haxd, aublithographiot weathers
to a mooth, but pitted surfaes, IIght gray.
Thickness varies from 8 inches to
3 foet-6 inohes, averages about 2 0
siltatone Unit
2 Siltatone: whitime to yellowishogray,thin- to thiok-bedded, soft to friable,argillaceous, caleareoua, arenaceoustoward the base; weathers yellow tolight grey, heavily oovered by aolland talus... 280
Banal Congidonerate-Sendstone Unit
1 Sandetone: mhite to jellow, friable;weathers to eandy soil and rubble,hoavily oovered by moil and talue........ 110
Total measured thiolmesa 55 0

[^0]: It should have read Comanohe Peak. In his report Plumener reforred only to the Comanohe Peak at the Shin Oak Mountain locality, and on the geologio map, only Comanehe Peak and Edvarde are ahown at the shin Oak Mountain looality.

