4a M COLBRARY
 LEGE OF TEXAS

```
GEOGRAPHIC VARIATION AND DIETRIBUTION OF-
THE GENUS TOMODACTYLES
IM NEXICO
A Tlueala
    By
    JAMES RAY DIXON
    Submitted to the Oraduate Sahool ol the
    Agricultural and Mechanieal College of Texan in
partial fulfillment oit the requirements fer the degree of
```


HASTER OF ©CIBMCE

May 1857

Major subject: Wildiife Management

GEOGRAPHIC VARIATION AND DISTRIBUTION OF

THE GENUS TOMODACTYLUS

If MEXICO

A Then 1:

By
JAMES RAY DIXON

Approved as to style and content by:

Head of Department

ACEMOW LEDGMENTA

I wifh to expreter my appreciatien for the fuidaneo -f Dr. Willian B. Davis throughout the coure of this study昷nd for his asistance in seouring funds for field work; also to thank Ralph w. Axtall and Pani W, Lukenif for their companionship in the field and tor their assintance in collecting a very olusive animal.

To the peraons in charge of herpetelogienl collection
in the Jniversity of 安ichican Musean of Zeology, the University of Ilifeois Museun of Naturai Histery, the Chicaso Natural Híctory Museun, the Ageriean Museun of Natural Histery, the United staten National menerg, and the Britioh Museum (Natural History), I extend my aincere appreciation for the privilege of examining opecimens of Tonodaety1us in their care.

Dectori Frodriek A. Shannon and Willian E. Duediman Fere most helpiul in making availeble opeoimeng from their permonal coliections. My wife, Mary, wat an ablefield asisisant and her meral anport threughout the atudy was a great ource of strenth.

TABLE OF CONTENTS
Introduction 1
Geographic diatribution of the genus 4
Mothode and treatmente 4
Gazetteer 9
Environmental considerations 21
Physiography 21
Vegetational zones 28
synopisis of the genu: 32
The Tomodactylus nitidue peterni complex 35
Accounts of subspecies and species 40
Tomodactylus nitidus nitidue 40
Tomodactylus nitidus petergi 80
Tomodactylus orarius 66
Tomodactylus dilatug 72
Tomodactylus albolabris 77
Tomodactylus angustidimitorum 83
Tomodactylus fugcus 89
Tomodactylus grandis 94
Diagnostic key to the apecien and ubbecies of
Tomodactylus 100
Discussion of the pecies relationshipa 103
Suminary 118
Literature Cited 120

LIST OF TABLES

1. Individual variation in the Taxoo population of
To nitidua nitiduw 46
2. Individual variation of menaural charactera andcolor pattern of the Taxco population of T.
nitidug nitidug 47
3. Population size, olevation and vegetative typeof leven populations of T. nitidus nitidug54
4. Color gradiente within eleven populations of
I. nitidus nitidus 55
5. Variation of mensural characters of Th nitidus $^{\text {n }}$
peterel 65
6. Analysis of individual variation of T_{B} orariug 71
7. Analysis of individual variation of T dilatug 76
8. Analysis of individual variation of T albolabrig 82
9. Analyais of individual variation of T.
angugtidigitorun 88
10. Analysia of individual variation of Tofuscus 93
11. Analysif of individual variation of $T_{\text {g grandis }}$ 99
12. Proportional measurements of adult males of the
species and subspecies of Tomodactylus 114

LIBT OF FIGURES

1. Variation in size and proportion of T. nitidus
and T patersi 38
2. Variation in the mean length of the foot and
tibia of the subapecies T. nitidus nitidus 56
3. Variation in the mean size and in proportions
of T. nitidus nitidus 57
4. Variation in the length of the snout-vent, foot,and tibia of the eleven populations of T gitidugnitidus58
5. Variation of proportions of the foot length andof the tibia length in the eleven populations of
T. nitidus nitidus 59
6. Variation in gnout-vent length and length of foet
of the pecies and subspecies of Tomodactylus 108
7. Variation in length of tibia and in width of eye
and tympanum of the forms of Tonodactylus 109
8. Variation in proportiona of the length of the foot and tibia of the forms of Tomodaotylus 112
9. Variation in the proportions of the tympanicwidth in the forms of Tomodactylus113
10. Dormal and ventral viewa of T nitidug nitidug,
T. nitidus petersig and To orarius 115
11. Doxal and ventral vieve of Te grandia.
T. fugouse and T angugtidigitorum 116
12. Dorsal and ventral view of T. albolabrig and
T. dilatu量 117
13. Geographic range of the genus Tomodactylus 7
14. Sites at which Tomodactylug has been taken
15. Geographic range of T. nitidus nitidug, T. nitidue poterai. and T orariug
16. Geographic range of T. angustidigitorum, T. fuscus,

INTRODUCTI ON

Mexico is of increasing importance and interest to herpetologistef recent improvemente in road conditiona have made available many regions that vere once inaceearible. The opening of the $\begin{gathered}\text { e } \\ \text { itt }\end{gathered}$ in many biological fields to close distributional saps and to record new ecological data on many groups of animala Many new pecies of animals have been described and fanal relationships have become clearer.

Mexico was relatively unerplored by herpetologists prior to the turn of the century. Peters (1869) was one of the earliest workers. He was eon followed by guch men as Gunther (1900), Gadow (1910), and Ruthven, all of whom pioneered in herpetological investigations of Mexico and stimulated the interests of later herpetologista.

Many recent biological investigationg in Mexico have been conducted by or supported by universities, colleges. and museums of the United states. The vegetation zones were described by Leopold (1950). The biotic communities Were deacribed by Goldman and Moore (1945) and by E. A. Goldzan (1951). The herpetogeny of Mexico was studied by Smith (1949) (In recent fears there has been an ever inereasing number of publications on herpetological material
from Mexico whioh is an indieation of the broadened intereat In that area.
A comprehencive knowledse of some of the leseer known forme of amphibian and reptiles of kexico mould ultinately clarify oune of the problens ooncerning their diftribution and relationships. The atatus of Tonodactylum a a conue and its relationship to other cenera of the family Leptodactylidae have been uncertain for a number of yare. Both Parker (1927) and Firschein (1954) questioned the validity of TonodactyIug as genum; however. it has generally been accepted as valid by herpetologibte who are faniliar with the eroup. Recent woxkers. such as Tayler (1940) (1043)。 Duellman (1954), and Davia and Dixon (1935), have expanded the number of known pecien in the genue from two to eeven. There haf been available littie life hiftory information for this cenus, due in all probability to the oecretive habits of the aninala. Martin del Campo (1940) published note on the incubation and hatohing of the egge of Tomodactylua nitidue The breedine habite of T. anguatidicitorun vere briefly reported on by sohnidt and Shannon (1047) and other workers have publimed short notes on their habitat preferences. As indicated above many tacts were lacking regardins the dietribution and taxonomio statue of Tomodactylus.

Georraphic Distribution of the Genus

Beginning at the north and proceeding southeastward, the known range includes all, or parts of, the states of Sinaloa, Nayarit, Jalisco, Colima, Michoacan, Guanajato, Mexico, Distrito Federal, Guerrero, Morelos, Puebla, Veracruz and Oaxaca (see Map 1). It includea many physiographio provinces (discusaed below under the heading Environmental Considerationg). Elevationg Fithin this range vary from aea level along the Pacific coast to 8, 800 feet in the Ajuseo Mountaing of south-central Mexico.

Methods and Treatments

The tudy is based primarily on specinens in the Texas
 Additionally, apecimens were borrowed fron univermities, museums, and private collections. Abbreviationg of these collectiona are as followis AMNH, American Muern of Natural History; BMNH, British Museum (Natural History); CNHM, Chicago Natural History Museum; FAS, Fredrick A. Shannon; RWA, Ralph W. Axteli; TCWC, Texas Cooperative Wildiffe Collection; UIMNH, University of Iliinois Museum of Natural History; UKMNH, University of Kansas Museum of Natural History; UMMZ, Univerisity of Michigan Maseun of Zoology; USNM, United States National Museum。

Notes on color, breeding habit, and habitat were
recorded by me in the field. The following measuremente,
in millimeters, were made in the laboratory with a vernier
caliper to the nearest 0.1 millineter:
Snout-vent length: Length fron tip of snout to anus.
Foot length: Length from tip of longest toe to proxinal
edge of inner metatarsal tubercle. The foot is usualiy
measured from the tip of the longest toe to the heel, but
specineng are often so poorly preserved that this meaare-
ment is mot constant.
Tibial length: Length from distal end to the proxinal end
of tibia.
Head length: Length from tip of snout to end of frontal-
parietal bone.
Head width: Width across pead at posterior angle of jaw.
Eye width: Greatest diameter of eye, meagured from anterior
to posterior corners.
Tympanic width: Measured from lower rin to upper rin of
tympanum. This measurement is not always vertical but may
be diagonal, depending upon the ghape of the tympanum.
Intarorbital width: Distance between orbits. Measured from
outer edges of paired frontal-parietal bones.
Internarial width: Distance between medial borders of nos-
trils.
Length of igguigal gland: Leagth from anterior to posterior

```
outlines of inguinal gland.
    In allo 848 specimens of Tomodactylue were measured lor
this study, Six meazurements, mout-vent length, foot length,
tibial length, eye width, tympanie width, and internarial
width, were used in the tamstical mnalysis of enoh mpeciem,
Standard formulae were used to determine the variance, mean,
#tandard error, standard deviation, and significance. The
other measurementa listed gbove were found to be too vari-
able for statistical treatment. However, theacemeasurements
are discussed in the final analysis of the species. The
most wide ranging species was selected and treated atatisti=
cally to ascertain the extent of variation, Graphs and
tables were prepared to simplify and clarify the resulte.
An analysis of interspecific differences then follovs, The
resulta vere again illugtrated by tablea to emphasize the
similarities and differencen of the various specief. A
general discussion follow: the subspecies and gpeoiem ac-
counts in which taxomomic relationships and enviromeental
considerations are laborated upon.
```


GAZETTEER

Specimens are available from 141 collecting looalitiea throughout the range of Tomodectylug. Because of the large number of localities, the following list of towns is used as reference points for aites at which Tomodactylus ham been taken.

In the list below, the tates are arranged generally from north to south; the town withim each state, alphabetically. The name of each town is followed by (1) co-ordinates to the nearest minute of west longitude and north latitude; (2) an approximate elevation determined from maps or by aneroid barometer; (3) location number, which corresponde to the position of the town on the acoompanying map (Map 2); (4) a statement of the vegetation type that occurs there. SINALOA

Concordia, $100^{\circ} 04^{\prime} ; 23^{\circ} 17^{\prime} ; 99 \mathrm{ft}$, Location 1. Trepical Deciduoue Forest. A anall village in the foothills of the Sierra Madre Oceidental.

NAYARIT

Ahuacetian. $104^{\circ} 25^{\circ} ; 21^{\circ} 03^{\prime} ; 3,300 \mathrm{ft}$; Location S . Scrub oak in the Pine-oak Forent.

E1 Qcotille. $104^{\circ} 38^{\circ} ; 21^{\circ} 10^{\circ} ; 2,300 \mathrm{ft}$; Location 4. Tropical Deciduous Forest. A small village in a
deep ralley with the arrounding vegetation amen what thorny.
 Thorn Forest. An indian village on the outhern edge of the National Marahland: of Mexico.

Tepic. $104^{\circ} 54^{\circ} ; 21^{\circ} 30^{\circ} ; 3,000$ t. ; Location 3. Pine-oak Foret. Orifinaily a pinemoak association mutextensive agriculture has reduced the vegetation to a disclimax of thorny shrubs and short srasses.

Amatitian. $103^{\circ} 17^{\circ} ; 20^{\circ} 49^{\circ} ; 4,000 \mathrm{ft}$; Location 7. Pine-oak Forest. An extenaive agricultural center for the production of magueg.

Autlan。 $104^{\circ} 18^{\circ} ; 19^{\circ} 50^{\circ} 3,000$ ft. Location 10. Pineoak Forest. A large railroad shipping eentor in southwestern Jalisco.

Guadalafara. $103^{\circ} 20^{\circ} ; 20^{\circ} 40^{\circ} ; 5,100 \mathrm{ft}$. Location 8. Pine-oak Foreat. The state capitol and pottery center of Jaliaco.

Magdalona. $103^{\circ} 57^{\circ}: 20^{\circ} 54^{\circ}$; 4,500 ft.; Location 6. Pine-oak Forest. A smali railroad atation in northwestern Jalisco.

Santa Cruz de lap Flores. $103^{\circ} 28^{\circ} ; 20^{\circ} 30^{\circ} ; 5,200$ ft. :

Location 9. Pine-oak Forest. A manil village
in the Valle de Cocula.

GUANAJUATO (no apecific locality)

COLIMA

Collma. $103^{\circ} 43^{\circ}: 19^{\circ} 15^{\prime} ; 1,500 \mathrm{ft}$; Location 80.

Tropical Deciduous Forest. The capitol of the
state of Colima.

Hacienda Paso del Bio. $104^{\circ} 20^{\circ} ; 10^{\circ} 03^{\circ} ; 50 \mathrm{ft}$. Location
12. Thorn Forest. A siall railroad station on the Rio de Armeria.

Manzanillo. $103^{\circ} 58^{\circ} ; 18^{\circ} 58^{\circ} ; 15 \mathrm{ft}$. Location 11. Thorn

Forest. Main eaport in the state of Colima.

Tecolapas. $103^{\circ} 49^{\circ} ; 10^{\circ} 02$; 450 ft . Location 81. Thorn Forest, A small village in southern Colima.

MICHOACÁN

Angahuan. $102^{\circ} 10^{\circ} ; 19^{\circ} 38^{\circ} ; 7,000 \mathrm{ft}$; Location 19. Pinemoak Fereat. A sall town on the north alope of Cerro de Tancitaro.

Apatzingan. $102^{\circ} 21^{\prime} ; 19^{\circ} 05^{\prime} ; 1,100$ ft. 1 Location 79.

Tropical Deciduous Forest. A sall village in
the lower Balsas Valley.

Apo. $102^{\circ} 20^{\circ} ; 19^{\circ} 24^{\circ} ; 6,800 \mathrm{ft}$; Location 22. Pine-
oak Forest. A small village on the west olope
of Cerro de Tancitaro.

Cerapan. $102^{\circ} 02^{\circ} ; 19^{\circ} 52^{\circ} ; 6,700$ ft. Location 17.

Pine-oak Forest. The mountains just south of

Carapan contain one of the few virgin pine-oak forests atili in existence in Mexico.

Charependo. $102^{\circ} 11^{\circ}: 19^{\circ} 13^{\circ} ; 3,000$ tt. \quad Location 78.

Tropical Deciduous Forest. A small town in the
lower Balsas Valley.
Conlcoman. $103^{\circ} 10^{\circ}: 18^{\circ} 46^{\circ} ; 3,500 \mathrm{ft}$. Loeation 14.

Tropical Deciduous Forent. A railroad center in western Michoacen.

Copullo. $100^{\circ} 55^{\circ} ; 19^{\circ} 35^{\circ} ; 6,000$ ft.; Location 31. Tropio cal Deciduous Forest. A mall village on the road from Morelia to fuetamo.

Corupu. $102^{\circ} 12^{\circ} ; 19^{\circ} 37^{\circ} ; 6,800$ ft. Location 20. Pine*
oak Forest. A smali village on the northwestern slope of Cerro de Tancitaro.

Jiquilpan. $102^{\circ} 42^{\circ} 819^{\circ} 59^{\circ} \% 3.800 \mathrm{ft}$. Location 15.
Pinemoak Forest. A large village in a broad
fertile plain which is farmed extensively for the production of sugar cane and wheat.

Morelia. $101^{\circ} 07^{\circ} 819^{\circ} 42^{\circ}$; 200 ft. Location 30.

Pinemoak Forest. The state capitol of Mchoacan.

The surrounding valleys are used primarily for the
growing of garden and truck crops.
Parioutin. $102^{\circ} 13^{\circ}: 19^{\circ} 25^{\circ} ; 6,500 \mathrm{ft}$. Looation 21.

Pinemonk Forest. The village of Paricutin lien only fov miles to the north of Volcan Paricutin; the most recent active volcano in Mexico.

Patzeuaro. $101^{\circ} 31^{\circ} 19^{\circ} 31^{\prime} ; 9,900$ ft. Location 28. Pinemoak Forest. A large town surrounded by low hills on the southern edge of Lago Patzeuaro. Large areas of lava deposits lie to the south. Pomaro. $103^{\circ} 13^{\circ} ; 18^{\circ} 20^{*} ; 3,200 \mathrm{ft}$, Location 13. Thorn Forest. A smali vilimge near the Rio Cachan in western Michoacan.

Quiroga. $101^{\circ} 30^{\circ} ; 19^{\circ} 42^{\circ} ; 6,800 \mathrm{ft} ;$ Location 27. Pine-
oak Forest. A small town near Lago Patzcuaro and the type looality for T. angustidicitorun.

San Juan Parangarioutiro. $102^{\circ} 14^{\circ} ; 19^{\circ} 30^{\prime}$, 6,500 ft.i

Location 24. Pinemok Forest. A mall village on the southeastern slope of Cerro de Tancitaro.
 Pine-oak Forest. A small town on the southern Glope of a mountain of the same name.

Tuxpane $100^{\circ} 28^{\circ}, 19^{\circ} 34^{\circ} ; 6,100$ ft.; Location 77. Pineonk Forest, A small resort village 100 miles west of Mexico city.

Tzinzuntzan. $101^{\circ} 30^{\circ} ; 19^{\circ} 37^{\circ} ; 6,800$ ft.; Location 29 . Pinemoak Forest. The anoient capitol of the

Pagan Tarascan Empire.
 oak Foreat. A large town in a narrow valley which is farmed extensively for the production of bananaig, coffen, and maguey.

Volcan de Jorullo, $101^{\circ} 42^{\circ} ; 18^{\circ}{ }^{\circ} 9^{\prime \prime} ; 4,200 \mathrm{ft}$.; Location 26. Tropical Deciduous Forest. A volcanic cone at the base of the southern edge of the mexican Plateau. The sumpit vegetation is predominantly pine-oak.

Zacapu. $101^{\circ} 45^{\circ} ; 19^{\circ} 49^{\prime} ; 60800 \mathrm{ft} \cdot$ (Location 18 . Pineoak Forest. Zacapu is large town situated in the oenter of a rich agricultural region. Corn and maguey are the important cultivated crops.

Zamora. $102^{\circ} 18^{\circ} ; 19^{\circ} 59^{\circ} ; 5,200$ ft. Location 16. Pineoak Forest. Zamora lies in the lap of a large fertile valley. The surrounding hillsides are predominantly oak.

MEXICO

Ixtapan de lat Sal. $99^{\circ} 34^{\prime} ; 18^{\circ} 50^{\prime} ; 5,200 \mathrm{ft}$; Location
34. Pine-oak Forest. A small village on the gouthern slope of Volcan Zinantecatl (Volcan de Toluca).

San Martin. $98^{\circ} 50^{\prime} ; 19^{\circ} 42^{\circ} ; 8,000 \mathrm{ft} . \ddagger$ Loqation 35.

```
    Pine-oak Forest. Thit arme im farmed extensively
    for the production of maguey.
    Tenancingo. }9\mp@subsup{9}{}{\circ}3\mp@subsup{3}{}{\circ};1\mp@subsup{8}{}{\circ
    Pine-oak Forest. Thi: region 1: predominantly
    pine with open stands of oaks.
```


DISTRITO FEDERAL

San Pedro． $99^{\circ} 10^{\circ} ; 10^{\circ} 10^{\circ} ; 7,800$ f．；Location 38． Pine－oak Forest．A sall town on the northeastern slope of Cerro de Ajusco．

Tlalpan． $99^{\circ} 17^{\circ} ; 19^{\circ} 10^{\circ} \% 7,600 \mathrm{ft}$ ．Location 37．Pine－ oak Forest．A muburb of Mexico City at the south－ ern end of the Valle de Mexico．

Yilla Alvaro obregon $99^{\circ} 06^{\circ} 19^{\circ} 25^{\circ} ; 7,800$ ft．；Location

36．Pine－oak Foreat．A large suburb of Mexico City．

MORELOS

Alpuyecan． $99^{\circ} 15^{\circ} ; 18^{\circ} 44^{\circ}: 3,500$ ft。；Location 50．Arid
Tropical scrub．A smali town surrounded by roil－ ing hills and irrifated valleys．The mejor erops are rice，corn，and bananas．

Axochiapan． $98^{\circ} 45^{\circ} ; 18^{\circ} 30^{\circ} ; 3,800$ tt。；Location 52.

Arid Tropical Scrub。 A small village in the center of an open plain where the main crop is corn．

Cuautia． $98^{\circ} 58^{\circ} ; 18^{\circ} 48^{\circ} ; 4,200 \mathrm{ft}$ ；Location 44.
Tropical Deciduous Forest. The major vegetation has been reduced to ahort grasses, seattered oake, and hardwoods.
Cuernataca. $99^{\circ} 14^{\prime} ; 18^{\circ} 5^{\prime} ; 8,200 \mathrm{ft}$, Loeation 42. Tropical Deciduons Forest. The etate capitol of Morelos and now under a pronounced disclimax towards arid tropical scrub.
E1 Rodeo. $99^{\circ} 20^{\circ}: 18^{\circ} 43^{\circ} ; 3.800 \mathrm{ft}$. Location 49. Arid Tropical serub. A small lake about 6 wiles west of Alpuyeca.
Huitzilac. $99^{\circ} 15^{\prime} ; 19^{\circ} 01$; 8,200 ft.; Location 39. Pine-oak Forest. A farming community in an open pine-oak association.
Huyantlan. $99^{\circ} 25^{\circ}, 18^{\circ} 36^{*}, 3,100$ ft。t Location 54. Arid Tropical gerub. A smali commuity surrounded by shallow rocky soils and low rolling hills.
Jonacatepec. $98^{\circ} 49^{\circ}: 18^{\circ} 40^{\circ} ; 4,000 \mathrm{ft}$. Location 81.
Arid Tropioal Serub. The main agricultural erop
in the area is corn.
Progreaco $99^{\circ} 10^{\circ}: 18^{\circ} 3^{\circ} ; 5,000 \mathrm{ft}^{\circ} ;$ Locetion 43. Trop-
ical Deciduous Forest. Rice is tho main crop grown in this area.
Puente de Ixtle. $99^{\circ} 19^{\prime} ; 18^{\circ} 37^{\circ} ; 2,800$ ft.; Location 33.
Arid Tropical Scrub, This area ia compoed of
low rolling hills and thin rocky toils.
Topotztlan. $99^{\circ} 06^{\circ} ; 18^{\circ} 59^{\circ} ; 5,700 \mathrm{ft}$. ; Location 41.

Tropical Deoiduous Forest. A heavily farmed
area just below the pine-oak association.
Tres Marias. ["Tres Cumbres]。 $99^{\circ} 13^{\circ} ; 19^{\circ} 03^{\circ} ; 7,200$ ft.i Location 40. Pine-oak Foreat. A small village a few miles north of Cuernavaca.

Yautepec. $99^{\circ} 04^{\circ} ; 18^{\circ} 53^{\circ} ; 3,900 \mathrm{ft}$; Location 45. Trop= ical Deoiduous Forest, The main erops of this area are rice and sugar cane.

PUEBLA

Acgtlan. $98^{\circ} 03^{\circ} ; 18^{\circ} 12^{*} ; 4,100 \mathrm{ft}$; Location 71. Trop-
ical Deciduous Forest. This area has a distinct tendency towneds the arid tropical sorub asociation.

Cholulu. $98^{\circ} 18^{\circ} ; 18^{\circ} 04^{\circ} ; 7,000 \mathrm{ft} ;$ Location 46 . Pineoak Forest. A large town about 10 miles west of Puebla, state capitol.

Matamoros de Izucar. $98^{\circ} 27^{\prime} ; 18^{\circ} 36^{\prime} ; 4,600 \mathrm{ft}$. Location 69. Arid Tropical Scrub. Thia area is the type locality for T nitidus.

Tehuacaz. $\quad 97^{\circ} 22^{\circ} ; 18^{\circ} 27^{\circ} ; 5,400$ ft. $^{\circ}$ Location 70. Arid Tropical Scrub. This locality is in a large flat valley with a solid lizestone floor.

VERACRUZ
Aonitgiago. $97^{\circ} 19^{\prime}, 18^{\circ} 4^{\prime \prime}$: $7,000 \mathrm{ft}$; Location 48. Pine-oak Forest. A sall town at the lower edge of the pine-oak ascociation.

El Chico. $96^{\circ} 50^{\prime} ; 29^{\circ} 28^{\prime} ; 3,500$ ft.: Location 47. Tropical Evergreen Foreat. A mall town on the western alope of the Siorra Madre Oriental.

GUERRERO
Acahuizotien $99^{\circ} 27^{\prime} ; 17^{\circ} 2^{\circ}$; 2,800 ft. : Location 66.
Tropical Deciduous Forest. A amall village at
the upper level of the mixed forest association.
Acual del Obispog. $99^{\circ} 28^{\prime \prime} ; 17^{\circ} 19^{\prime} ; 3,300 \mathrm{ft}$; Location 67.
Pine-oak Forest. Open pine forest near the lower
level of Pine-oak Forent association.
Almolonga. $99^{\circ} 18^{\prime} ; 17^{\circ} 38^{\prime} ; 5,600 \mathrm{ft}$; Location 63. Pineoak Forest. A serub oak community in the pinemoak forest association.

Chilpapcince. $99^{\circ} 30^{\circ} ; 17^{\circ} 33^{\prime}: 4,600 \mathrm{ft}$. (Location 60. Arid Tropical Deciduous Forest. The etate capitol of Guerrero and agricultural center of the region,

Colotlipa. $99^{\circ} 00^{\prime} ; 17^{\circ} 25^{\prime} ; 2,700 \mathrm{ft}$: Locrtion 68. Tropical Deciduous Forest. This area has a distinct tendency towards the thorn forest asoociation.

Arid Tropical Deciduous Forest. A small village on the western slope of the Sierra Madre del Sur. E1 Naranio. $99^{\circ} 32^{\circ} ; 18^{\circ} 24^{\circ} ; 4,000 \mathrm{ft}$; Location 56.

Arid Tropical Serub. A railroad atation in northeastern Guerrero.

Iguala. $99^{\circ} 32^{\circ} ; 18^{\circ} 20^{\circ} ; 2,400 \mathrm{ft}$; Location 57. Arid Tropical Scrub. An area of steep hills and broad valleya. The main crops are rice and crop.

Mazatlán. $99^{\circ} 27^{\circ} ; 17^{\circ} 27^{\circ} ; 4,000 \mathrm{ft}$. ${ }^{\circ}$ Location 84. Tropical Deciduous Forest. A mall village approximate1y 24 illes southweat of Chilpancingo.

Mexcala. $99^{\circ} 37^{\circ} ; 7^{\circ} 56^{\circ} ; 1,350$ ft.; Locality 69. Arid Tropical Scrub, A mall village on the south bank of the Rio Balsas.

Onilemi. $99^{\circ} 39^{\circ} ; 17^{\circ} 33^{\circ} ; 7,800 \mathrm{ft}$. ; Location 61. Pineoak Forest. A logging village juat below a cloud forest association.

Palo Blanco. $99^{\circ} 29^{\circ} ; 17^{\circ} 26^{\circ} ; 3,800 \mathrm{ft}$; Location 65. Tropical Deciduous Foreat. A amall village just below the pine-oak forest association.

Taxco. $99^{\circ} 36^{\circ} ; 18^{\circ} 33^{\circ} ; 5,500 \mathrm{ft}$. F Location 55. Pineoak Forest. Taxco is the famous silver center of Mexico.

Tixtla, $99^{\circ} 24^{\circ} ; 17^{\circ} 34^{\circ} ; 4,400 \mathrm{ft}$. Location 62.

Tropical Deciduous Forest. Tixtla wain onee the capitol of Guerrero but is now reduced to a mall town.

Tonalapan. $99^{\circ} 33^{\circ} \% 18^{\circ} 08^{\circ} ; 2.700$ ft.; Location 58. ATid Tropical Scrub. A very amall village about 10 milea enst of the Rio Balsas.

OAXACA

Cuicutlán. $96^{\circ} 57^{\circ} ; 17^{\circ} 48^{\circ} ; 1.800 \mathrm{ft}$. Location 72. Arid Tropical Scrub. The town in situated in the midde of a narrow valley surrounded by stefe limestone and sandetone hills.

E1 Coyul. $95^{\circ} 58^{\circ} ; 16^{\circ} 35^{\circ} ; 2,800$ ft。 $^{\circ}$ Location 76. Tropical Deciduous Forest. The southernmost collecting site of the senua Tomodactylus.

Nochixtlán。 $97^{\circ} 13^{\circ} ; 17^{\circ} 27 ; 6,900$ ft.; Location 74. Pineoak Forest. A town of conniderable size located in the center of the 8 ierra Madre del $8 u r$.

Oqxaca de Juarez. $98^{\circ} 4^{4} 4^{\circ} ; 17^{\circ} 04^{\circ} ; 5_{9} 100 \mathrm{ft}$; Location 75. Pine-oak Forest. The city lies in valley of the same name Due to extenaive agriculture, the vegetation is in aisclimax of arid tropical acrub.

Yanhuitlán. $97^{\circ} 23^{\circ} ; 17^{\circ} 33^{\prime} ; 7,000$ ft. Location 73. Pineoak Forest. This area is in a atate of extenaive erosion caused by clearing the gurrounding foreste.

ENVIRONMENTAL CONS IDERATIONSPhysionraphy. The geographio range of Tonodactylus in-cludes many of the outstanding topographic features ofMexico. Aocording to Ordonez (1936), the physiography of
Mexico comprises twelve provinces and nine sub-provincet.
Thayer (1916) states that Mexico is divided into seven
natural provinces on the basis of a common feature that was
in existence in the tertiary era. Hill (1908) aggested the
name "Cordilleran Peneplain" for this feature. Generally,
Ordonez follows Thayer ${ }^{\text {a }}$ descriptiong of the physiographie
provinces but eeparates some of the provinces into sub-
divisions. Additionally, Ordonez described several provincea
that were not recognized by Thayer. I prefer to follow the
features presented by Ordonez because of the more detailed
account of the physiographic regions and the addition of
new provinces that aid in clarifying the distribution of
the genus Tomodactylus.
Seven physiographic provinces (Ordonez, 1936:1279) are
found within the range of the genus Tomodactylus, as follow:
Coagtal Strip of Sinalaa and Nayarit Province: This
province is a continuation of the sonora Desert for ome 500
miles toward the south. The province is bordered on the
east by the sierra Madre Occidental and on the west by the

Pacific Ocean. The region receives more rainfall, maintaina a higher humidity and subsequentiy has more vegetation than that of the sonoran Desert. I solated mountain rangea are common in the southern portion of the province, which includes parts of the states of Nayarit and Jalisco. Prior to the last uplift and present erosion, these isolated mierras were probably part of the Sierra Madre Oceidental that extended to the coast. The final development of the coastal strip was due to local volcanic flows which rejuvenated much of the older degraded topography and introduced many changes (Ordonez op.eit. il284). This region is presently under intensive agricultural ume and is mined for silver and lead.

Western sierra Madre Provinco: This province comprises a vagt mountain range extending from the sonoran Desert in the northwest to the Baisas Basin in the southwest. Its width varies but reaches 200 miles in some places. The average elevation is about 7,000 feet; a few of the sumita exceed 10,000 feet. The province has no direct physiographic continuation in the United states because it is cut of by the sonoran Desert and the north-central plateau provincee which form the Mexican Highlands (Ordonez, op. cit. il285).

It has been supposed that the physiographic aspecte of the Western Sierra Madre Province were formed by a large and almost uniform uplift. Later uplifts shifted portiona of

Ea日tern Sierra Madre Province: The province extends
from the Big Bend region of Western Texas to the Isthmas of Tehuantepec in southern Mexico. This range of mountains faces the Gulf of Mexico and is quite narrow throughout its
length. The sierras in the extreme northern parts of the province are aparated to some extent but merge fradually into one massive range of mountains to the outh. The geology of the region is primarily limestone of Mesozoic age with some shales and sandstones (Ordonezp op. eit. 1289). Erosion of the thick limestone beds is relatively slow which leaves the impression that the erosive cyole is young, but more advanced erosion may be seen in mountains made of volcanic or other sedimentary deposits. The average elevation of the region is 7,000 feet with sumits often reaching 10,000 feet. The $h i g h e s t$ summit in Mexico is found in this province. Pice de Orizaba in the wouthern portion of the region reaches an elevation of 18,400 feet above eat level (Ordonez ope cit. 11288)。

The rainfall of this region exceeds that of the Western Sierra Madre Province. The rainy season starts two weeks to a month eariier in the eastern aierrat, usualy in May, and lasts until september. The central portion of the province, including some of the steep siopes of the mountains, is under intensive agrioulture. The valleys are farmed for the production of corn, papaya, bananas, and citrus fruite. The mining of copper, gold, silver, and lead ore deposita is important.

Central Platean Province, South-central Sub-proyince:
The outh-aentral aub-province is separated from the northcentral eub-province by itm higher levations, broader and more extensive valley and volcanio orgin. Thayer (1016:84) ealle this area the "volcanic province" because of the extent of volcanic action in the region. Ordonez (1936:1291) indicates that the preaent elevation of the region was due to the large quantities of volcanic materials that poured out of eraters and fissures of massive volcanos. An indication of the vast lava flowis is atill evideneed by the large volcanos bordering the southern edge of the province. The largest of these is Popocatepetly which risea to 17,830 feet, followed by Ixtaccihuatile, 1600 feet, Toluca 13,000 feet, and Colima 12,664 feet.
The preaent topography is one of large flat fertile valleys eparated by short mountain barriers. Mining districts are dotted throughout the province. silver-lead. lead, and copperagold orem are the primary sources of wealth in the mining areas. The large valleys are culti= vated for the production of corn, maguey, and garden vegetables. The average elevation is approximately 8,000 feet and the average temperature ia about 78° F. The rainy season is from May to September; the reat of the year is very dry.

Balgas Bagin Province: According to Thayer, (1918:91)
the Rio Balsas forme the northern odge of the sierra del Sur Province. This area is divided by Ordonez. (1936:1294) into three provinces; the Balsas Basin, southern sierra Madre, and Valley of Oaxaca. Ordonez (op. cit. 11294) states the Rio Balsas has played an important part in forming what is now considered the Balsas Basin. The Basin is bordered on the north by the volcanic escarpment of the gouth-central plateau, on the south by the Sierra Madre del Sur and on the east by the Eastern Sierra Madre. The Rio Balsas receives the waters of the three mountain ranges surrounding it and carries the water to the Pacific Ocean. The topography is a rough broken mountainous terrain with mumerous short rivers emptying into the Rio Balsas. The rainy season is short, but rains are often intense. The interior of the basin is hot and dry during most of the yeare The prevailing winds seem to vary fron time to time, lose most of the moigture in the mountaing, and leave much of the province dry.
The valley官 of this region are cultivated for the production of corn, as in most areas of central Mexico. Large quantities of various fruits are also produced near the coast where rain is more abundant.
Southern Sierra Madre Province: The mountains of this province parallel the Pacific coast in a northwest-southeast
direction. Generally, they rise cloesto the ocean and leave no room for the devalopment of a coastal plain. Elevations range from eea level to over 8,000 feet but average about 6, 500 feet. Rainfall is heavy from May to October, and the southwestern and southern lopes of the sierras maintain a dense growth of vegetation. The northern and northeastern slopes have much less rainfail, higher temperatures, and subsequently less vegetation. There are many areas of this province yet to be explored. The roads in this region are poor, probably because of a garse human population and the imposing mountain barriers.

The valieys are farmed but the primary wealth is in the form of mineral deposits. At the mouth of the Rio Balasay in the northwestern end of the province liea the largest depoait of iron ore in Mexico. It has been estimated that fifteen million tons of iron ore are exposed at the surface (Ordonez, op. e1t. (1296).

Valley of Oaxaca Province: The Valley of Oaxaca lies at the junction of the Sierra Madre del $S u r$ and the S ierra Madre Oriental. The valley is approximately 60 miles long and 10 to 15 miles wide. The average elevation is 5,000 feet and rainfall is heavy from June to September. The cilmate is mild due to the location, elevation and latitude of the valley.

Abstract

Mining and africulture are the principal ocoupations of the inhabitants in this region. Gold and ilver ores are abundant in several areat. Corn is the main agricultural crop. The geological aspects of the valley are important because the province containg features of all the adjoining provinces. According to Ordonez (opoeit. : 1306) the valley was once the seat of the ancient Mixtecan and Zapotecan civilizations。

Vegetational Zones

The most recent and reliable information on the vegetation of Mexico was compiled by A. S. Leopold (1950), who attempted to map the original major vegetative types as they existed before they were influenced by nan. He considers the southern regions of the Mexican Plateau as a Pinemak Foreat. but, due to the inroads of mang the major portions are come pletely denuded of any type of forest. This ia true of other regions in Mexico where man has introduced agriculture.

My field observations agree with those of Leopold where relic areas were observed, but in other instances the original vegetation could only be assumed. For the purpose of this study Have followed Leopold. He (op. oft. : 807) separates the vegetation of Mexico into two series, temperate and tropical. with twelve types. Tosodactylus occure in one of the temperate and four of the tropical typer, as follow:
Tomperate, Pine-oak Forest; Tropical, Thorn Forest, Tropical Deoiduout Foreat, Arid Tropical Berub, and Tropical Evergreen Forest. Following is an account of each of the vegetation zones oocupied by the genus Tonodactylue.
Pinemok Forest. The pine-oak zone is the largest vegetation type in Mexico. Leopold (op. eit. 510-511) 1ists four distinct communities in this zone, as follow: Pine forest, Pine-oak Woodlandg Pinon-juniper Woodland, and Oak Scrab. The Pinon-juniper Woodland does not occur within the range of Tomodactylus. The pine forest community is variable in elevation and in its dominant vegetation. The elevation and presence or absence of certain pecies of pines are controled by prevailing windg, blope expoanre, moisture, and tenperature. This community is most commoniy encountered between elevationa of 7,000 and 8,000 feet. The most comin pine according to Leopold is Pinus montezumae. Under eertain cilmatic and physiographic conditions other pines such as P. horrerai, P. pgeudostrobus, and P. ayacahuite are dominant. The pine-oak woodland commanity occurs frequently at elevations of 5,000 to 7,000 feet between the pine forest and the oak serub commuities. Open scattered stands may be dominated by oak in some areas and by pine in others. The common pine in the southern district of thig community is Pinus montezumas. Various species of oaks, such as Quercis
acutifolia, Q. langeria, Q. candicane, Q. mexicana, and Q. greggil, are scattered throughout the community.

The oak acrub community is commonly found along the lower elevationa between the pine-oak community and the semiarid foothills at elevations between 3,000 and 5,000 feet. The most common oaks are Q. glaucophylla and Q. glaucoides.

Tropical Deciduous Forest. The portions of the range of Tomodactylus within the tropical deciduous forest are along the western coastal plain, in the semi-humid foothills of the Balsas Basin, and in south-central Mexico. Among the principal tree genera of thia forest in southwestern puebla listed by Leopold (op. oit.:515) are Hauya, Coccoloba, Psoudosmodingiun, Bursera, Conzattia, Fouquieria, and Ruprechtia along the hillsides; Pithecolobiug and Prosopis in the alluvial bottoma; and Ficus, Salix, and Taxodium along the stream banks.

Arid Tropical Scrub. The arid tropical scrub zone is found in the western and south-central basins of southern Mexico. The Balsas Basing southern Puebla, and northern Oaxaca are included within this zone: Leopold (op. cit.: 516) lista the following genera as being dominant in the Canon de Zopilote, Guerrero: Cephalocerene, Acacia, Minosa, and Caesalpinia; along the more humid uplands, Bauhinia. Zizyphus, and Desmanthug. In southern Puebla and northern

Oaxaca, Coreus, Pilocereng, Fouquieria, Prosopig, and Opuntia are the dominant plants on the hillaides while Taxodiun and Figus are more prevalent along the streams.

Thorn Forest. Along the west coast from Simaloa wouth to central Guerrero, a portion of the geographic range of Tomodactylug occurs within the thorn forest zone. In northern sinaloa the dominant plant genera are Acacia, Cassia, Coutarea, Celba, and Prosopig. The dominant vegetation along the coastal areas of Guerrero consigta of Acacia, Mimosa, Caesalpinia, and Cassia. The tropical regions along the western coastifine of Mexico are quite arid in many sectors. This is due not only to the absence of rain but also to the saline conditions found along the coast.

Tropical Evergreen Forest. The tropical evergreen forest zone does not occur within the range of Tomodactylug. In west central veracruz much of the tropical evergreen forest has been removed for agricultural purposes and a secondary growth of arid tropical scrub has invaded these regions. One species of Tomodactylus has been collected there.

SYMOPS IS OF THE GENUS

The genus Tomodactylug is a member of the faisily Leptodactylidae and like that family it containa many conplex features. The earlieat generic and specific name for this toad appears to be Liuperus (sic) nitidug described by Peters in 1860. In 1900 Gunther described the genus Tomodactylus and subequently one species which he called To amulae. He also meparated Tomodactylus frot other related genera, uch as paludicola and Leiuperug on the basis of the presence of digital disks. He further ascribed to the genus the following characteristics (1) no vomerine teeth, (2) tongue indistinctiy notched behind or entire, (3) tympanum distinct, (4) outer metatargala united, (5) fingers and toen free with small truncate dilations, (6) sternum with a boney style, (7) presence of a lumbar (inguinal) gland.

Parker (1927) questioned the validity of Tomodactylus as a genus and, while revising the genus paludicola under which the generic name Leiuperus had been submerged, he disqevered that a secimen of Leiuperus nitidug in the British Museur of Natural History was scarcely distinguishable from the type peoimen of I. amplae deacribed by Gunther. Neverthelese he referred the apecimen of nitidug to the genus Tonodactylus until the position of the genus could be
satisfactorily determined. Firschein (1954) also questioned the validity of Tomodactylug as a genus. In recent yeare the inguinal gland haw been relied on hoavily as a criterion for the identification of Tomodactylug, but Firschein (op. cit. : 50) questioned this criterion as an index character at the generic level because of the presence of an inguinal gland in the genus syriophus. He used a combination of character: in delimiting Syrrhophus from Tomodactylug and other closely related genera. I have examined approximately 1,000 apecimens of Tomodactylus and I find that many of the character used by firschein do not separate the two genera. I have found, however, additional characters that do separate them readily, as follows: (1) presence or absence of granulation on venter, (2) relative length of hind ligba, (3) relative width of head to body, (4) distinctiveness of inguinal gland.

With the exception of one species, all Tomodactylus share the following characteristics: (1) venter wholly or partiy granular, (2) hind limba relatively short, (3) head narrower than body, (4) inguinal or lumbar gland distinct. There is a misleading factor involved in the mbjectivity of distinct or indistinct inguinal gland that should be clarified. If specimens of Tomodactylus are properly preserved, the inguinal gland is distinct. Occasionally,
however, poor preservation distonde the body and eradicatef
the outline of the gland. In no case has ubsequent atudy
of laboratory material failed to confirm my identification
of Tonodactylus in the field on the basis of the inguinal
gland.
T. macrotympanum Taylor, does not agree with any of the
above characters of Tomodactylue but, inatead, with those
found in gyrrhophug, which are as follows: (l) venter
smooth, the sides often granular, (2) hind ifmbs relatively
long, (3) indiatinot inguinal sland, (4) head wider than
body. On the balis of the above characters i propose the
transfer of macrotyppanum to the genus syrrhophus.

THE TOMODACTYLUS NITIDUS-PETERSI COMPLEX

differences found in the condition of the skin and inguinal gland. These characters often become indistinct or disappear in preserving lluid. The mall series with which he had to work explaing the differences in leg length, color of femur and groin, and expansion of digite that ifind in analysis of a larger series (87 pecimena).

There appeare to be a continuous color gradient in the dorsal and ventral patterna between potersi and nitidug. Contrary to Gloger' rule for warm-blooded vertebrates (Mayr, 1942:90) there seems to be an increase in the melaning towards the northern end of the range of each species. The climatic conditions at the northern limit of petergi are arid, even in the coastal region. This condition also prevails in the northern inits of the range of nitidug, primarily, in the lower Balsas Basin, but browish pigments are more frequent in specimens from there and in the mountaina of southern Oaxaca. Specimens of petergi from the foothilla of eastern Sinaloa at an elevation of 4,800 feet are melanistic.

In contrast to the dorsal coloration, the immaculate apot of color that occurs on the anterior face of the femur and in the groin shows a parallelism to Gloger's rule. In the arid regions of the Balsas Basin and mouthern Oaxaca, nitidus has a light yellow or yellowish white spot on the
fomur and groin. In the humid foothills toward the mouth of the Rio Balas petergi have yellowish orange or orante potis, but as one continues northward into a more arid habitat, the color becomes lighter.

Specimens of nitidus from localities progressively closer to the range of peteral show an increase in the ize of the tympanum and in the width of the tipa of the two outer fingers. At the same time, petersi shows a decrease in the size of these structurea as one progresses from north to south. Nevertheless, a harp distinction in tympanic width between the two 1 s evident when they are compared in a total analysis. The length of the leg in the two species is approximately the same and absolute sizes and proportions of the foot and tibia are almost identical. $\underline{\text {. nitidus ia }}$ alightly larger in all respecta with the exception of the tympanic width (see Figure 1.).
T. petersi differs from nitidus in having the proportionally larger tympanum, a sightly different voice and generally darker dorsal and ventral patterns. It has not been establimhed that the ranges of these two overlap or even meet, but this may be due primarily to the inaccesability of critical areas to collectors. I presume that the ranges meet in the lower Balsas Basin and its upper slopes in northern Guerrero and southern Michoacan

where the two have been collected at localities only 48
wilen apart.
The above information indicates that there are closerrelationshipg between these two than was formerly believed,and that petersi no longer warranta mecific rank. I findit advisable to allocate peterai to a subspecific rank under
T. nitidug and recognize this group as one polytypic apecies
with two geographic races.

ACCOUNTS OF SPECIES AND SUBEPECIES

Tonodactylus nitidug nitidul (Poters)

Liuperus (eic) nitidut Peters (1869:878) original deseription Tomodactylug amiage Gunther (1900:218)

Paludicola (Liuperus) nitidug, Parker (1927:451)

Tomodactylug nitidug, Ke11ogg (1932:120-123)
Tomodactylus nitidue, Taylor and Snith (1948:48-49)

Tomodactylus nitidus, Davis and Dixon (1955:154-153)

Type. One pecimen, number 6669, Museum Nat. Berifn, Germany, Type locality: gtate of Puebla, probabiy near Matamoros, Puebla, Mexico.
piggnosis. A grayish toad with the tips of the two outer fingers slightiy to moderately expanded; siout-vent length 22.0 to 30.0 mm. (mean 25.5 min.); tympanum relatively large (1.0 to 1.7 mm., mean 1.35 mil.), separated froneye by a distance less than or equal to tympanic widthf yellowish or Whitish spot on anterior and posterior faces of femur; venter immaculate or with a few dark spots.

Description. Maximum snout-vent length among 312 adult males, 30.0 mm., but average adult size only 25.5 mm, general aspect somewhat toad-like with slender arme and lege (the small pugtulation that roughen the skin enhance this
appearance); canthua rounded with no diacernable ridge; tym-
panum relatively large, mightly lest than one half the
Width of eye; tarsal fold absent or indiatinct; large ab-
articular tubercles; sole and palmar supernumerary tuber-
cles minute; inner metatarsal tubercle somewhat larger than
outer; first finger shorter than gecond; fourth toe consider-
ably longer than third or fifth; fore and hind limbs rela-
tively slender; tibiotarsal articulation reaches to anterior
arm insertion or tympanum when leg in brought forward along
side of body. When legs are folded at right angles to main
axis the heels overlap; tips of two outer fingers alightiy
to moderately expanded; no vomerine teeth; tongue pear-shaped,
notched behind and widest posteriorly; inner nares round or
silghtly oval and aituated laterally; openings into the
vocal sacs paired slits on inner edge of posterier halt of
jaw; inguinal gland low in groin, often inconspiouous by ita
coloration but always discernable, often subcircular in
appearance and milghtly to moderately elevated above ur-
rounding skin.
In iffe the dorsal coloration is highly variable but the color pattern rarely so. The dorsal ground color variea from gray or cream to a dirty brown. On this is anextensive mottifng of tan that may vary to olive green or dark brown. An interorbital bar of variable color, but alwayg
lighter than eurrounding color, is usually probent, A dark
eanthal etripe pasien from the nostril posterioriy through
the eye and often to the tympanum. The fore and hind $11 m b s$
have diatinct bands unally the color of the dark dorsal
coloration but sometimes tinted with yellow. These bands
are elightiy wider or of equal width to the iight inter-
spaces. The anterior and poaterior faces of the femur and
occasionally the groin have an imaculate spot of color that
varies fron yellowish white to deep yellow. The venter is
usualiy grayish white with occasional brownish spots.
Individual Variation: Tomodactylus nitidus nitidus
was elected for a study of individual variation because its
wide range includea three major vegetation types and diverge
topography. Eleven populations of thís subspecien were sub-
jected individually to statiatical analysis to deternine
the extent of individual variation and subsequentiy of
group variation. Of the 11 populations analyzed, one desig-
nated as the Taxco population, was selected for intenaive
study because of locality, habitat, range of elevation, and
the number of individuals available.
The Taxco population occurs at elevations between
4,500 to 5,500 feet in a pine-oak community in which there
are many areas cleared for agricultural purposes and exposed
rocky hillaides. This is the typical habitat of I_{s} nitidyg

```
gitiduh. A erien of 52 adult malea and 3 adult fomales was Etudied in the analyais. The fenalen were not included in the mensural analysie because of the few specimens availablo. Characters and oxternal meagurements used in the analygia are as follow: Doraal pattern; ventral pattern; inguinal gland; width of digita; tibiotargal articulation; tympanic width; snout-vent length; foot length; tibia length; Fatio of snout-vent to foot and to tibia; ratio of diameter of eye to tympanum; width of eye and of tympanum (see Table 1 and 2).
Age variation can be deleted in part from the analyia due to the fact that no juveniles were observed in this population. There were a few smaller individuale that appear to be subadults. It is possible in Torodactglus, as in other cold-blooded vertebrates, that mexual maturity may be reached after individuals have attained only one-half or leas of their potential size. If this be the case, ratios (proportions) rather than absolute sizes are of more value becauge some menaural characterg are not increased after the struetures are conpletely formed in the embryos or new born young, However, in this population the analyses of absolute \(\operatorname{cix} \boldsymbol{c}\) and ratios (Table 1) indicate that only a small amount of variation occura in the absoluto measurements of the snout-vent length, foot length, and tibia
```

length as compared to the ame meaburements expreseed in proportiong, Absolute meanurenents of the ge and the tympamum vary considerably (Table 1) but this may be due to the difficulty of measuring small objects (1-3 min. which oould be termed "human error", or to the condition of the preserved specimens or both. Of the nine oxternal measurements, only those of the eye and the tympanum are relatively variable. The others vary approximately five percent. The three females exhibit only slight mensural character differences from the malea and these appear to be sexinked. The ty panum is relatively larger in females, as are the general body proportions. There appear to be no differences in color or color pattern between the sexes. Martin del Campo (1940) observed the incubation and hatching of eggs of x nitidus nitidus and noted that the color pattern developed just prior to the hatehing of the egga. He found no differences between the color pattern of the young and that of the adults. There is, however, sone degree of variance in the dorsal and ventral color pattern (Table 2) that may possibly be correlated with season. Seamonal variation is difficult to determine in Tomodactylus because of their secretive habits. They are geldom heard caliint prior to the rainy season. Onoe the rainy season starts, breeding occura for about two weeke and after that

```
only occasional breeding paire are found. Tomodaetylue call
infrequently after the two weeks of breeding which makes
the collecting of the animala very difficult during most of
the year. The observed variation may alao be due to glight
genetic differences that eximt between individuals of a
population。
```

The amoant of time involved in field and laboratory work did not afford me the opportunity to form any concrete opiniona as to the oceurrence of denaityodependent and neurem genic variations. It is a well known fact that the latter type of variation occurs frequentiy among cold-blooded vertebrates but in if doubtiul that neurogenic variation would occur in the mall localized population reported on here. These seeme to be no indication of genetic polymora phismor individual variants in the Taxco population。

Group Variation Preaerved specimens of 312 adult malea and 18 adult fenales representing li populations were exanined for group variation The gmall number of females was not used in the statistical analyses. The ll populatione herewith designated by associated towng, represent the theoretical range of distribution of I . nitidun nitidus. Extending generaliy from northwest to a outheast the populations are as followis Copullo; Tuxpan; Cuautla; Progreso; Chilpancingo; Taxco; Alpuyeca; Acatlan; Acultzingof Nochixtlans

Table 1. Individual variation in the Taxco sample of T. n. gitidut, based on 52 adult malea Foot and tibia lengths are proportional (in percentage) to the mout-vent length. Tympanic width proportiona are percentacen of the oye diameter.

STAPISTIC	$\begin{aligned} & \text { S-7 } \\ & \text { min. } \end{aligned}$	FOOT		TIBIA		TYPPAMM		EME $m \mathrm{~mm}$ 。
		min.	8	mim.	8	mim.	\$	
Maximum	28.5	11.9	43.7	12.0	45.6	1.7	57.0	3.3
Mindinum	23.0	8.6	36.3	9.1	34.7	1.0	33.3	2.6
Range	5.5	3.3	7.4	2.9	10.9	0.7	23.7	0.7
Nean	25.4	10.0	39.5	10.3	39.3	1.3	43.9	2.9
Standard Deviation	1.4	0.662	2.1	0.663	2.1	0.191	5.9	0.147
Stenderel Eryor of the Mean	0.191	0.092	0.3	0.090	0.3	0.026	0.8	0.024
S.E. of Standard Deviation	0.135	0.065	0.2	0.064	0.2	0.018	0.5	0.014
Variability 8	5.3	6.6	5.3	6.4	5.3	14.0	13.0	5.0

Table 2. Individual variation of menatal characters and color pattern of the Taxco population of T. m_{B} aitidun, based on 52 adult males. The variation ia expresed in the number of individuals.
TIBIOTARSAE ARTICULATION
To Tympanum 21
Slight 12
To Arm Insertion 31
Moderate 40
To By 0
Great0
TYMPANUM
INGUINAL GLAND
Distinct 43
Indistinct 0
WIDTH OF BARS ON LIMBS
Herrow Interspaces 28
inde Interspaces 7
Equal Width 17
DORSAL MOTTLING
Bold 14
Mediun 21
Light 17Many3
F. $\boldsymbol{*}$ 8
Absent 41
and Oaxaca de Juarez.

Three major vegetational typer are represented within the geographic range of these populations, as follow: Pine-oak Forast; Tropical Deciduous Forest; and Arid Tropical scrub. In some instancep the vegetation type inhabitated by the various populations is in disclimax because of agricultural practices. For the number of individuale observed in each population, elevationg and vegetation type refer to Table 3.

The differences between the 11 populationa appear to be a combination of genetic and ecologic variations. There is considerable variance in absolute size and in proportions. The local onvironment of one population does not appear to integrade with neighboring oneg to form a continuous gradient. This is perhaps due to the diverge topography and rapid replacement of vegetation types with changea in altitude. Each population is believed to be more or lema adapted to the environment in which it lives. If the population is genetically variable there may be a alective factor advantageous to its existance in that particular habitat. The pacingebetween trees, rocks, and other cover within the habitat of one population may vary considerable throughout the range of the total population to increase the posaibility of variation in length of leg, width of digita,
of oye ${ }^{\circ}$, and of tympanum, There are no indications of clines (see Fis. 3) between the eleven populatione on the basis of the measureabie characters. Thia is perhapa an indication of active epecien formation. Mayr (1942:97) atateathat the seneral rule for the presence of clines between populationa is that the more clines found in a region the leas active the species formation.
There appears to be a definite color gradient anong the populations from the outheast to the northwest. The southeastern populations have light coloration while thoge of the northwest are much darker. This color gradient may be caused by neurogenic variation which Mayr, Lingley, and Usinger (1983:90) define as the color ohange in individual animala in response to the environment. The color pattern aeemato to be lest variable than external measurements or color alone. The primary color gradiente are found on the femur and doran (see Table 4).
The foregoing data have shown that in one population maple there is as much variation among individuale of the sample as there iamong samples of the total population (refer to Tables 1 through 4 and Figures 2 through 5). The Chilpancingo and Tuxpan populations merit special consideration because they deviate omewhat from the General variational pattern. The Chilpancingo population
differs from the otheri in having a much smaller tympanum. This population along with othera that inhabit the arid Balsas Bafin (Alpuyeca, Progreso, Taxco, and Acatlan) has a relatively longer tibia than those that inhabit the are rounding wountain lopes (Fig. 3). The Balsas Basin and its drainage fystem has primarily an arid tropical scrub vegetation type in the lowlands and a tropical deciduous forest along the upper slopes. There seems to be less plant cover for these populations which, in turf, requires that they travel greater diatances for breeding, for feeding, and for hiding. A longer leg may be correlated with these activitien. The Tuxpan population seeme to be developing rapidiy towarda ceographic and reproductive isolation. It differ: fron other populations in the following characters: (1) proportionally shorter foot and tibia; (2) greater snoutvent length; (3) larger tympanum, both actualiy and in proportion to eye; (4) larger abarticular tubercles which are nore conical in shapef (S) greater expansion of tips of two outer fingere; (6) darker ventral coloration (Fige, 3-6). This population occupies geographic range of limited extent. It is closely bordered on the east, west, and south by other population and for this reason 1 do not deem it adviable to name this population.

Rance: Tomodactylus nitidus nitidug is confined
largely to the Balame Bagin, the Oaxacan Highlande, and the durrounding mountains fron 1,500 feet to an elevation \boldsymbol{f} 8,000 feet. The range includes all or parts of Veracruzp Puebla, Oaxaca, Morelos, Guerrero, Mexico, and Michoacan.

Habites The habitat of this subspecies includes three najor vesetation types. The animal if frequentiy found under stones during the daylight hours and at night seeng to prefer to call from rock fences, low plant growth, or canyon wale. Its call is a single "peep" or "pee-ee-eep". At the height of breeding activities individuals frequentiy call from the ground, rocks, bushes, or even froif trees as high as eight feet above the ground. It seema to show no preference to vegetation types and may be found cilabing on cacti, thorny broadleaf, and narrowleaf planta or even the trunks of treas.

Egg laying usually occurs under rocks where a little moisture is available. The incubation period is not known but inexpected to be approximately 35 to 50 days. The Beveral speciea of Tonodactylug, like other members of the family Leptodactylidae, have direct development. The females have no vocal sacs but are capable of eniting a ehrill "peep" that is diatinguishable fron that of the males. The 1ife expectancy is not known.

Locality Records: GUERRERO: 2.5mi. B. Almolonga, S, 600 ft., (TCWC 15); 3 mi.W. Chilpancingo, 5,000 ft.
(TCWC 1); 4. W. Chilpancingo, $6,800 \mathrm{ft} .,(T C W C$ 3); 2 mi. s. Chilpancinge, 3,700 ft.. (UMMZ 22); 2-5 mi. B. Chilpancingo, 3,500 ft.. (UIMNH 4); 12 wi. S. Chilpancingo, 4,000 ft., (UIMNH 2): 1 mi. sw. Colotlipa, 2,700 ft.. (TCWC 2): El Naranjo, 4,000 ft., (VIMNH 2); 12 II. S. Iguala, 2,200 ft.. (TCWC 6); Lake Tixtla, $4,400 \mathrm{ft} . \mathrm{C}$ (UIMNH 1); Road to Omiltemi, 4,500 ft., (UIMNH 1); Palo Blanco, 3, 800 ft.. (UIMNH 1); Rio Balaan, near Mexcala, 1,500 ft., (TCWC 3, UIMNH 1); Taxco, 5,500 ft., (UMMZ 19); 2 mi. E. Taxco, $5,500 \mathrm{ft} .,(\mathrm{TCWC}$ 6); S. of Taxco, 4,500 ft., (UIMNH 1); $8 \mathrm{~km} . \mathrm{N} . \mathrm{Taxco}^{\mathrm{f}} 5,500 \mathrm{ft}$. (TCWC 27); 17 km .8 . Taxco, 4, 000 ft., (TCWC 3); 0.5 mi . 8. Tonalapan, 2,700 ft., (UIMNH 1).

MEXICO: Ixtapan de la sal, 5.200 ft . (AMNH 7, CNHM 5);
 Tenancingo, $7,600 \mathrm{ft}$, (TCWC 14): $5 \mathrm{~m}, \mathrm{~N}$, Tenanoingo, 7,800 ft., (TCWC 1).

MICHOACAN: 1 mi. N. Copullo, 6, $100 \mathrm{ft} . .(T C W C$ 1); 2.5 mi. N. Copullo, 6,300 ft., (TCWC 4); 5mi. N. Copullo, 6,800 ft., (TCWC 10); $1.4 \mathrm{mi} . \mathrm{SW}$. Tuxpan, $6,100 \mathrm{ft} .$, (UMMZ 3); 2.7 -1. SW. Tuxpan, 6, 400 ft., (UMMZ 5).

MORELOS: Alpuyeca, $3,500 \mathrm{ft} .,(\mathrm{TCWC} 2) ; 3 \mathrm{mi} . \mathrm{s}$. Alpuyeca, $3,500 \mathrm{ft} .,(\operatorname{TCWC} 7) ; 12 \mathrm{~km}$. NW. Axochiapan, 3,500 ft., (TCWC 17); 10-12 mi. NE. Cuautla, 6,500 ft., (TCWC 36); 2 mi. N. Cuernacava, 6,000 ft., (UIMNH 11);

8 mi . E. Cuernavaca, $4,800 \mathrm{ft}$, (UIMNH 3); Cuernavaca, 5,000 ft. (TCWC 1, USNM 5, UIMNH 4) ; EI Rodeo, 3, 500 ft.. (TCWC 1); Huajintian, 3.500 ft., (UIMNH 1); 2.4 mi. E. Huajintlan, 3,500 tt., (UMMZ 3): 2 km. 8. Jonacatepec, e, 500 ft.g (TCWC 1); Progresson 5,000 ft., (TCWC 2l); Puente de Ixtla, 2, 800 ft. (UIMNH 2); Tepoztlan, 6, 100 ft, (TCWC 1 , CNHM 1); 12 ni. W. Yautepec, 5,000 ft., (TCWC 1). OAXACA: CuIcutlan, 1,800 ft., (UIMNH 2); 4 Ei. NW. El Coyul, (67 wi. NW, Tehuantepec), 3,800 ft., (TCWC 6); 14 mi. N. Nochixtlan, 7,000 ft., (UKMNH 4); 7 mi. SE. Nochixtlan, 7, 300 ft., (TCWC 1); Oaxaca de Juarez, 5,200 ft., (UMMZ 30); 8 mi. 8E. Oaxaca de Juarez, 5; 100 ft., (UMMZ 2); 6i. NW. Yanhuitlan, 7,700 ft., (TCWC 1); 3 wi. NW, Yanhuitian, 7,500 ft., (TCWC 3); 1 wi. BE. Yanhuitlan, 7,000 ft.e (TCWC 13). PUEBLA: 3.3 mi . SE . Acatlanp 4,900 ft_{o}. (TCWC 8); 1.5 mi. NW. Cholulug 6,700 ft. (UKMNH 2); Near Cacoloapan,
 (CNHM 2); 8.5 mi. SW. Matamorosp 4,600 ft., (TCWC 9); Santa Catarina, 4,800 ft. (UINNH 1); Tehuacan, 5,500 ft., (UIMNH 2).

VERACRUZ: Acultzingo, 7,000 ft., (UIMNH 1 , USNM $\boldsymbol{1}_{\mathrm{g}}$

UMMZ 4); Near Acultzingo, 7,000 ft. (UIMNH 2); El Chico (7 mi. SSE. Jalapa, 3,500 ft. (CNHM 5).

Table 4. Color gradients in oleven eamplef of

Tomodactylas nitidus nitidus.

SAMPLE	FEMUR SPOT	DORS AL COLOR	VENTRAL SPOTS
Copul10	Deep Yellow	Dark Brown	Many
Tuxpan	Deep Yellow	Dark Brown	Many
Cuautla	Bright Yellow	Brown or Green	Moderate
Progreso	Ye 110 w	Brown or Green	Few
Chilpancingo	Yellow	Brown or Green	Few
Taxco	Yellow	Brown or Green	Few
Alpuyeca	Yellow	Light Brown	Few
Acatlan	Yellow	Light Brown	Very Few
Acultzingo	Yellow	Tan to Brown	Very Few
Nochixtlan	Du11 Ye110\%	Tan to Brown	Very Pew
Oaxaca de Juarez	Yellowmwhite	Gray to Tan	None

Fig. 2. Variations in mean length of the foot and tibia in the subspecies T. n. nitidug. The wolid iine connecte the mean foot length; the dotted line, mean tibia length. The following populations are arrangedin a line from northweat to southeast: A - Copullo; B =Tuxpan; C - Cuautla; D Progreso; E Chilpancingo; F - Taxco; G - Alpuyeca; H Acatlan; I Acultzingo; J Nochixtlan; K Oaxaca de Juarez.

Fig. 3. Variations in the mean aize and in proportions of T. n. nitidus. The solid ine connects the mean sout-vent length and foot proportions; the dotted line connecta the tibia proportions, Figures for proportions are percentages of the snout-vent length. The populations are as follow: A - Copullo; B - Tuxpan; C - Cuatuta; D - Progreso; E Chilpancinto; F - Taxco; G - Alpuyeca; - - Acatian; I Acultzingo; J = Nochixtlan; K = Oaxaca de Juarez.

Tuxpan $\quad \square-8$

Gaantla

Progress

20

Chilpancingo

Taxce

Apuyece

29

Acatlen

Hochixtlan

Oaxaca city

Fig. 4. Variations in size of samples of T n. nitidug. The vertical line represents the mean g open xetangle twice the gtandarderror; horizontal line the range in variation. The number at the right of horizontal line is the number of specigens used in the analysis.

Fig. 5. Variations in proportions of T. I. nitidug, Vertical line represents the mean; open rectangle twice the atandard error; horizontal line the range in variation. The number to the right of the horizontal line is the number of specinens used in the analysis. Figures for proportiong are percentages of the snout-vent length.

Tomodactylue mitidus petergi Dueliman

Tomodactylug petergi Dueliman (1954;5-7) orisinal deteription。
Type. Number 109238. University of Michigan Museum of Zoology. Type locality: One fourth mile east of Coalcoman 3,500 ieet, Michoacano Mexico。

Diaynosis: A brownish toad with tips of two outer fingers moderately expanded; tympanum distinct and equal to onehalf diameter of eye; patch on thighs and groin yellowioh orange or orange; venter white with heavy spoting on chest that frequently continues onto belly; throat dark gray or frequently black.

Demoription: A moderately large Tonodactylua with an average siout-vent length of 25.0 min . (range $22.0-28.0$ mi.) ; tympanum relatively large equal to onemalf diameter of eye; canthus rounded but distinct; dorsum moderately puatular in 1ife (not often isable in preservative); tipe of two outer fingers moderately truncate third finger longer than second or fourth; tibiotarsal articulation reaches to anterior arm ingertion or to tympanum rarely to eye; tarsal fold absent; no webs connecting digits of hands or feet; sub-articular tubercles large $h i g h$, and roundedg with legs folded at right angles to main axis of body the heelesightiy overlap; head slightly narrower than body; tongue pearashaped,
frequentiy notehed behind and free for half its length; vocal sacs open by paired slits along inner odge of jaw. The fe-
 vocal sacs. They have a larger tympanum and body.

In life the dorsal ground color varies from grayiah tan or greenish gray to dark brown. The darker mottling varien from olive green or brown to black. The bands on the fore and hind limbs are walualy the color of the mottled pattern and wider than the light interspacea. Dccasionally the light interspaces are very náriow especially in specimens from the northern parte of the range. The lips are spoted with silvery white which occasionally forms wavy line to posterior corner of jaw. The interorbital bar if frequently obscured by the dorsal coloration. The imaaculate patch of color on the faces of the femur and in the groin varies from orange yellow to bright orange. The ventral color varies from white to bluish white with heavy potting of brown or black. The throat in most is bluish gray but infrequently varies to black.

Discussion: The mame measurements and morphological characters used in the analysis of T. nitidus pitidus were also used in the study of this subspecies. In all, 83 males and 4 adult females were examined but only the adult males were used in the analyses. The analyses indicate
that approximately five per cent variation occura in the length of head and body, foot, and tibia, width of eye and of tympanum proportions of foot and tibia and of tympanum (Table 5), Qualitative characters such as color pattern color, tibiotarmal articulation, and expansion of digits, indicated the same trend exhibited in T. nitidug nitidug. Ten juveniles vere not included in the analysis of mensural characters.

Habitg: The habitat of x nitidus petersi is much like that of T. $\underline{f i t i d u s ~ n i t i d u s . ~ I t ~ o c c u r a ~ i n ~ t h r e e ~ m a j o r ~ v e g e-~}$ tation types; Pine-oak Forest, Tropical Deciduous Forest, and Arid Tropical Scrub. Much of the Sierra Madre Occidental highlands occupied by this subspecies is now in disclimax because of extensive cutting of timber and intensive agricultural use. There are many seni-bare hillsides with only a scant growth of thoray plants or scrub oak that were once covered by dense forests of pine. what effects this change may have had on Tonodactylug are unknown. Tomodactylug n. peteref aema to show no preference for a particular type of vegetation in which to cilmb, to hide, or to call. In this respect it is similar to nitidug nitidus. During the breeding season the animal may be found daling from the ground, rocks, shrubs, and trees. The breeding season varies with the tine of the rainy season but ie usually a wook or two

Locality Records．GUANAJUATO：No gecific locality． （BMNH 1）。

GUERRERO：E1 LImong 2,500 ft．（USNM 1）。
JALISCO： 11 ai．NW Amatitlang 40000 ftoo（TCWCi）
8－1．S．Autiang 2．800 ft．（UIMNH 1）：40．2 mi．S．Guadalajara，
5,000 ft．g（FAS 1）； 5 mi．S．Guadalajara， 5,100 ft．（TCWC 5）；

18 mi．NW Guadalajara， $4,500 \mathrm{ft}$ ．（UIMNH 6）；Magdalena，4， 500
ft．（UIMNH 2）：8 wi．S．Santa Cruz。 5,200 ft．（TCWC 3）：

```
Zapotiltic(Magdalena), 4,500 ft., (UIMNH 3).
    MICHOACAN: 4.7 mi. E. Apatzingan, 1,100 ft.g(UMMZ 3);
3.4 m1.W. Apatzingan, lol00 ft.g (UMMZ 5); Cerro Guzman,
near Coalcoman, 3,500 ft.0 (UMMZ 2); 1.2 mi. S. Charapendo,
3.000 ft.g(UMMZ 5): 0.4 mi. E.Coalcomang 3.300 ft.g(UMMZ 3g
TCWC 1); EL Sabino, 5,000 ft.o(UIMNH 1); Hacienda la Playa
(Jorullo Volcano): 2,800 ft.o(UMMZ 2); 20mi. E. Jiquilpang
6,200 ft., (TCWC 1); 12 mi.S. Tzitzic, 5,000 ft.o(UIMNH 1);
Uruapan, 5,200 fto, (UIMNH 3); North slope Volcan Jorullo,
3,000 ft.,(UMMZ 1): Zamora, 5, 200 ft., (UIMNH 1).
    NAYARIT: 2 mi. NW Ahuacatlang 2,900 ft.g (TCWC 1);
E1 Ocotillo, 2,300 ft., (AMNH 1); 15.2 mi.W. Ixtlan del Rio.
30400 ft.g (FAS 1): 30 mi. SE Tepic, 3,000 ft.o(TCWC 3): 1
mi.NW Tepic, 3,100 ft., (TCWC 2); 3 mi.NW Tepic, 2,900 ft.0
(UMMZ 9): 6.7 mi.N. Tepic, 2,700 ft.0(FAS 3).
    SINALOA: 49 mi. NE Concordia, 4.800 ft.o(RWA 2).
```

Table 5. Variation of mensural characters of T_{A}. petergi. based on 73 adult males. Foot and tibia length proportions are percentages of the snout-vent length. Tympanic propor= tions are percentages of the eye diameter.

STATISTIC	$\mathrm{S}=\mathrm{V}$ man.	FOOT		TIBIA		TYMP ABEM		$\begin{aligned} & \text { EYE } \\ & \mathrm{mmo} \\ & \hline \end{aligned}$
		mim。	\%	mm 。	\%	min.	\%	
Maximum	28.0	11.0	44.2	11.1	44.2	1.8	60.0	3.3
Minimum	22.0	8.0	35.2	8.4	36.1	1.2	40.0	2.7
Range	6.0	3.0	9.1	2.7	8.1	0.6	20.0	0.6
Mean	25.0	9.7	38.9	9.8	39.3	1.5	50.6	2.95
Standard Deviation	1.4	0.598	1.8	0.594	1.8	0.110	3.1	0.115
Standard error of the Mean	0.163	0.070	0.2	0.070	0.2	0.013	0.4	0.013
S.E. of Standard Deviation	0.115	0.050	0.15	0.050	0.12	0.009	0.3	0,009
Variability \%	5.5	6.2	4.5	6.1	4.6	7.0	6.0	3.7

Tomodactylug orarius ${ }^{1}$ sp. nov.

Holotype. Adult male, number 11154, University of Michigan Museum of Zoology, collected August 9, 1956, 4.5 mi. southwest of Tecolapa, 450 feet, Colima, Mexico, by Willian E. Duellman and Richard E. Etheridge.

Paratypes. Twelve specimens: UMMZ 104394 (2), 104397, 0.5 miles SW La Placita, 75 feet, Michoacan; UMMZ 104396. 1 mile N. Ponaro, 700 feet, Michoacan; UMMZ 11152-53, from the type locality; UMMZ 11165-66, 2 miles SW Colima; 1,500 feet, Colima. UIMNH 16019, Hacienda del Rio, 50 feet, Colima; UIMNH 16020-21, Manzanillo, 10 feet, Colima, AMNH 12552 , before reaching Las Chivas 300 feet, Nayarit.

Diagnosig. A member of the nitidus group of the genus Tomodactylug but differs from all other known members of that group in having significantiy shorter hind legs. Differences in voice, tympanic width, and color pattern wil serve as additional characters to distinguiah it. Degcription of Holotype. Snout-vent length, 25.0 mim. tibia length, 9.5 min. (38.0 per cent of snout-vent length $)_{i}$ foot length, 9.2 mm . (36.8 per cent of snout-vent length) ;

[^0] range.
interorbital width, 3.0 mof diameter of eye, 3.0 man.idiar meter of tympanum, 1.4 man. (46.6 per cent of eye diameter) ; internarial diatance, 2.2 mim, snout short and rounded; diameter of eye alightiy longer than its diatance from nostril; canthus rounded and distinct; tympanum distinct. higher than long, and saparated from the eye by a distance less than its diameter; choanae large, situated laterally; vocal sacs present, the openings elongate and located along inner edge of lower jaw f tongue pear shaped, free for half its length; digits of hands and feet without webs arms slender; tips of outer two fingers with distinct truncate disks, wider than remainder of digit; median palmar tubercie large, outer one less than onemourth ag large. Length of fingers from the shortest to longest 1-2-4-3, toes 1-2-5-3-4. No tareal fold; legs short; tibiotarial articulation when brought forward reaches posterior arm ingertion; with legan folded at right angle to body the heels barely touch; tips of toen sifghtiy widened and truncate; sole with very mall but distinct tubercles, inner metataralal tubercle twice size of outar one.

Skin of head with few scattered tuberclesp qack relatively smooth in alcohol although pustules can easily be discerned. A large $\begin{gathered}\text { (ubcircular inguinal gland present. low }\end{gathered}$ in waist, and slightly elevated above arrounding aking
sides with large flat granules; skin of throat and breast smooth but abdomen granular.
In preservative the dorsal ground color if light gray= ish tan. On this is a mottling of grayish brown. An irregular grayish stripe extends from head to anus along the middorsal line. The amount of motting decreases on the sides, fading into the grayiah ventral color. The lips are grayish with scattered white spots. There are two indistinct bands of grayish tan on the forearm, narrower than the light interspaces. There are six indistinct bands of grayish tan on lege, considerably narrower than the light interspaces. The groin and anterior face of femur are yellowish white. The ventral surfaces are dirty gray and without spots. The throat is silghtly darker than rest of venter.
Variation. An analysis of individual variation of the males in the type series shows approximately five per cent variability among the measurable character: (Table 6). Of the type series, two are females and eleven are males. The females have longer legs and a larger tympanum than the males but are sialler in snoutovent length. The vocal ace (throat) of the nales varies from dirty gray to dark gray. The dorsal color pattern varies fron a mottled to a sotty appearance. The bands of the fors and hind limbs are much narrower than the light interipaces in most of the type series. Only one
individual exhibits any ventral mpoting；in all othera the venter is immaculate。

Remarks．The following notes Fere taken by William E。 Duellman in the field and are based on living animals：
 Gray above with brown mottifig．Venter dirty white，Thighe， anteriorly and posteriorly，bright deep yellow．Iris pale golden，Call，a soft Braaaa，sonetimes followed by three high note日，Braaacep－ee－epp．Calling fron bushel．＂

Comparison．Tomodactylun orarius differs fron T． nitidus in lighter dorsal coloration；proportionaily maller tympanumi shorter legs：voice a bleat rather than a peep． Differs from \boldsymbol{T} ．nitidum petersi in lighter dorial colorationg smaller tympanume shorter legs，maller hands，no ventral spots voice a bleat rather than a trill or peep，yellow rather than yellow－orange or orange inguinal and femoral spots．Differs from T．angustidigitorung T．grandis，and T，fugcus chiefly in femeral and groin color which is yellow rather than uniforn brown mottled or spotty dorsal color pattern，rather than unicolor；expanded tipa of digitiog rather than narrowed tips of digits（onig in ansustidicitopun and grandial（ Differs frot T dilatus in yellow rather than ochraceous femoral and groin spots；ventral surface dirty gray，rather than pigmented and dotted with white flecks
tipa of two outer fingera alightly expanded, rather than twice the width of narrowest part of digit. Differa from albolabris in having shorter lese; white spots on upper lip rather than white line; a yellow rather than orange inguinal and femoral spoti doralal color pattern mottled or spoty rather than unicolor.

Habits. I have not observed this toad other than as preserved material. I presune the habits of the animal to be much like that of other members of the T. nitidug group.

Range. This species is confined to the lower olevations along the Pacific Coast from the state of Nayarit southward to central Michoacan.

Locality Records. COLIMA: $2 \mathrm{mi} . \mathrm{SW}$ Colima, $1,500 \mathrm{ft} .$,
(UMMZ 2): Hacienda del Rio, 50 ft., (UIMNH 1); Manzanillo。 $15 \mathrm{ft}_{\mathrm{A}}$ (UIMNH 2): 4.5 mi . SW Tecolapag 450 ft ., (UMMZ $3 \mathrm{in-}$ cluding holotype).

MICHOACAN: 0.5 mi. 8 W La Placita, 75 ft.. (UMMZ 3);

1. mi. N. Pomaro, 700 ft ., (UMMZ 1).

NAYARIT: Before reaching Las Chivas, 300 ft., (AMNH 1).

Table 6. Individual Fariation analysis of Tomodactylug orariug based on 11 adult males. Foot and tibia proportions are percentages of the noutevent length. Tympanic proportions are percentages of the eye diameter.

STATISTIC	$\mathbf{S}=\mathbf{V}$min。	FOOT		TIBIA		TYMP ANTM		$\begin{aligned} & \text { EIE } \\ & \text { nm. } \end{aligned}$
		mm.	8	mmo	\%	mind	\$	
Maximum	26.3	9.8	39.6	10.0	40.9	1.6	53.3	3.0
Minimam	22.0	8.4	34.6	8.0	34.8	1.1	40.0	2.7
Range	4.3	1.4	5.0	2.0	6.1	0.5	13.3	0.3
Mean	24.7	9.2	37.3	9.3	37.8	1.4	46.9	2.97
Standard Deviation	0.974	0.374	1.4	0.506	1.7	0.16	4.3	0.09
Stendard lryor of the Kean	0.310	0.118	0.4	0.160	0.5	0.05	1.4	0.003
S. B of $^{\text {of }}$ Standard Deviation	0.220	0.084	0.3	0.113	0.4	0.04	0.9	0.002
Variability \%	5.6	4.1	3.7	6.1	4.5	11.0	9.0	3.0

Tomodactylus dilatus Davis and Dixon

Abstract

Tomodactylue dilatus Davis and Dixon (1955:155-157) original description.

Type. Number 1i245, Texam Cooperative Wildilie Collection. Type locality: 4 milez west Mazatlan, 7,400 feet, Guerrero, Mexico.

Diagnogis: A relatively large grayish to browniah toad (23 mmoto 30 mo in snout-vent length) which differs from all other known members of the genus in having a ignificant ly smaller tympanuin (37.6 per cent of eye diameter); tipm of two outer fingers congpicuously truncateg twice the width of narrowest part of digit; relatively long legs; ochraceous spot in groin and on anterior and posterior faces of femur. Description. A large member of the genus with a relatively amall tympanum (mean 1.06 mm g range 1.0 mm to 1.5 mm。); mean snout-vent length 25.4 mm.g range 23.2 mm . to 28.8 monoin males (29.3mmoin singlefemale); legelong; tibiotarsal articulation reaches beyond tympanum when leg brought forward along side of body; heels overlap when legs are folded at right angles to body; tips of toes expanded, innermost one barely sof hands largeg tips of two outer fingers conspiouously widened and truncate; three palmar tubercles, median one largest; no tarsal fold; mout rounded;
canthus harp-angled; tongue pear shaped, rounded behind and free for half ite length; inner nares large, stuated laterally; vocal sac openings large; akin of back heavily pustular, head uadally with five longitudinal rows of tubercles; median dorsal dermal fold usually present; venter moderately granular; inguinal gland large, conspicuous, low in groin, and long as humeral region of aris color pattern mottled; number of bande on fore and hind limbs variable; distinct loreal stripe present, from snout through nostril and eye to arm insertion; interorbital bar present.

The dormal ground color grayish or grayish green; darker motting brownish or greenish; loreal atripe dark brown; interorbital bar ground color; arn and leg bands brown to dark browng lighter interspaces ground color; femur and groin with ochraceous spot; venter pigmented grayish brown with acattered white ilecks; chin with few white spota on outer edge and along lower jaw; throat usually darker than ventral coloration.

Variation。 The ventral pigmentation varies fromgrayish to grayish brown; dorsal mottling color varies from grayish green to dark brown; arm and leg bands uavally eight in number but varies to five; dorsal dermal fold persent in nostif five row of tubercles on head varies considerably, often becoming invisible in preserving fluid. The mensural
characters of 28 adult males vary about $=1 x$ per cent (Table 7). The single adult female is larger in snoutvent length and ham a greater tympanic width.

Comparison. Tomodaetylus dilatue differs from all other related pecies in having a small tympanumand an ochracreous spot in groin and on femur. Differs from all other known species (except T fugcus and T glbolabrim) in having the tips of the two outer fingers conapiouously truncate and dilated laterally. Differs from most membera of the genus (except T, grandig) in having proportionally longer legs. Differs fron T fugcun and T grandig chiefly in mottled color pattern and ochraceous femur and groin spots rather than a uniforn color pattern.

Habitg. This species seems to prefer wooded areas rather than a semicopen rocky habitat. I have not observed T. dilatus caliing or hiding in a rocky habitat, but I have collected it in the mountains west of Mazatian, Guerrero, among shrubs and pine trees from two to seven feet above the ground, There appears to be no preference of plant growth in which to call. In one night of collecting, several individuals were taken from variout types of leaves. None was found calling from the ground. The call of the male 1s a high pitched peep or trili that varies from three to five notes.
The breeding seasion beging in early June（varies with the rainy seasom）and continues for about three weeks．On June 7，a female was found to contain 68 egge in various stages of development．
Range．Tomodactylug dilatus is largely confined to the mountains of west－central and northwestern Guerrero．Al－ though the animal has been taken only from two areas near Chilpancingo，I presume the range covers most of the north－ weteter spurs of the Sierra Madre del Sur at elevations between 7,000 and 8,500 feet．
Locality Records．GUERRERO： 4 （wi．W，Mazatlan，7，800 ft．o（UMMZ 2，TCWC 14）；2 mi。W．Oniltemi，7，900 ft．（TCWC 1， UMMZ 1）： 2 mi。 SW Omilteri， 7,900 ft。（TCWC 4）；Omiltemig 7.900 fto（USNM 1。UIMNH 4，TCFC 9 ）．

Table 7. Analysis of individual variation of Tomodactylug dilatus based on 28 adult males. Foot and tibia proportions are percentages of the snoutovent length. Tympanic proportions are percentages of diameter of eye.

STATISTIC	$\mathbf{S}-\mathbf{V}$ EIIAO	P00T		TIBIA		TYMP ANTM		EYE min.
		min.	\%	mis.	\%	mmo	\%	
Maximam	28.8	11.2	47.0	11.6	47.4	1.5	50.0	3.6
Minimum	23.2	9.2	36.4	9.6	36.9	1.0	30.0	2.7
Range	5.6	2.0	10.6	2.0	10.5	0.5	20.0	0.9
Mean	25.4	10.3	40.5	10.7	41.9	1.06	37.6	2.84
Standard Deviation	1.24	0.556	3.1	0.494	2.87	0.072	4.9	0.085
Standard Brror of the Mean	0.234	0 O 105	0.58	0.093	0.54	0,014	0.92	0.016
S. Bo of Standard Deviation	0.116	0.074	0.40	0.066	0.38	0.009	0.65	0.011
Variability \%	4.8	409	7.6	4.6	6.8	6.5	13.0	3.0

Tomodactylue albolabri昷 Taylor

Tomodactylus albolgbris Taylor（1943：351－353），original description．

Type．Number 29588，Edward H．Taylor＝Hobart M。 Smith Collection．Type locality：Agua del Obilapo king 351 ， 3． 300 feet，Guerrero，Mexico．

Diagnosis．A small member of the genus that differs from all other known members in having a slender body and proportionally long legs．Tips of two outer fingers dis－ tinctly widened and truncate，neariy twice the width of narrowest part of digit；red or reddiah orange spot on anter－ for and posterior faces of femur and in groin；white line on upper lipg tibiotarsal articulation reaches tympanum or eye。

Description．A small slender species with the tips of the two outer fingers distinctly truncate and conspiouounly dilated laterally；armesender，hands small；three palmar tubercles present，median tubercle four timea larger than outer two；subarticular tubercies large，conical in shape； numerous small granules on palm；lege long，slender；foot and tibia 79 per cent of snout－vent length；tibiotarsal articulation reaches tympanum or eye；sole of foot with minute granules；toes truncate but not distinctiy widenedi first toe smallo contained in fourth toe over four times；

Abstract

subarticular tubercles of inner toe larger than those of outer toes; inner metatarsal tubercle twice the $\begin{gathered}\text { ige of outer }\end{gathered}$ one。


```
Mean snout-vent length of malea 22.8 mm . (range 21 mo to 26 min。) ; mean snout-vent length of females 25.4 mim. (range \(24 \mathrm{~mm}_{\mathrm{m}}\) to 27 mm ); snout pointed, tip alightly rounded; canthus rounded but not distincts eye sallo tympanum amall (46 per cent of eye diameter); voeal sacs largeg their openinga located on floor of mouth near inner edge of jaw ramif inner nares large; tongue pearaghaped, tip rounded, and free for half its length; dorsal surface pustular; belly granular; inguinal gland distinct and elongate; color pattern of back usually concolor; ventral pattern variable with or without spots.
```

The dorgal color is olive, olive brown or reddieh; venter is usually white or creany yellow with cattered dark brown or black spots; limbs with spots of dark brown contrastigg with dorsal colorationg upper lip with white or silvery 1ine; dark brown loreal stripe from nostril to eye; few scattered brown spots on sides; chin of males with occasional brownish pigient; inguinal gland mostiy black with infrequent spots of doraal coloration.

Variation The mensural oharacters of 42 adult males vary about six per cent (Table 8). Females are larger than

```
males in most measurable characters. The dorsal color patteri
varies from concolor to an indiatinct mottiing; vemtral pat-
tern varies from immaculate to scattered dark spots that may
be diffuge or distinct. The dorgal color variem from olive
to reddish brown; the venter from white to creamy yellow with
brown or black spots diffuse, distinct, or absent.
    A specimen of Tomodzctylus collected by Ralph W. Axtell
at the type locality of T. albolabrif does not agree with the
characters mentioned above. Davig and Dixon (1955:156-157)
reported on this specimen and referred the animal to T.
peterai until further evidence became available. After
reviewing the characters exhibited by this toad I believe
Davis and Dixon to be in errorg even though additional in=
formation has not become avallable. The overall proportiona
of the body and its extremities are distinctly related to
albolabris. The dormal and ventral color and the color
pattern tends to support this association even though they
are digtinct fron the typical albolabrig color and color
pattern. The dorsum is almost black rather than olive or
reddish brown and the venter it heavily epotted with dark
brown rather than immaculate or with meattered dark spots.
The upper lip is spotted with white rather than with a white
line. The tips of the two outer fingers are truncate and
slightly dilated laterally but not to the extent found in
```

albolabire The voice consifte of a "buzz" rather than a "peep or whistle"。

On the basia of the animal's relationship to
glbolabris, the distinct voice unlike any other Tomodactylueg and the fact that the toad was collected in the ame habitat with T albolabrig I think it is best to allocate this animal to albolabris as an aberrant individual.

Comparison Tomodactylu童 albolabris difiers fron mest of the other known members of the genus in having proportion= ally longer hind limbs and a more elender body Differs from To orarius T nitidut and its subspecies in having a concolor dorsal color pattern rather than a distinct mottled pattern. Differs from T angustidigitorum (. fucus, and T grandis in having a red or orange spot ingroin and on femur rather than groin and femur concolore tips of two outer fingerg conspicuously expanded rather than tapering and narroweat at tips (except T fuscus) Differg from T dilatus in having a much slenderer body and red or orange spot in groin and on femur rather than a robust body and ochraceous femur and groin spot.

Habits. To albolabris. like T. dilatuat does not inhabit rocky areas or similar cover. The animals seem to prefer trunks, branches, or leaves of trees, or tall ahrubs. Taylor (1943:353) Etates that all of the type series, which
way collected in August, was taken from trees at various heights above the ground. He also indicated that 电ost of the calls that were heard came from high trees. The fact that the animals vere in high trees at this time of year indicates that the pattern of dispersal followithe general trend of all Tomodactylug by seeking inacceasible places to cail from during the latter part of the rainy seagon. During the height of the breeding season (early June) I collected albolabris fron trees and shrubs two to 10 feet in height. None was collected on the ground. Dr. W. B. Davis. howeqerg has collected this species on rocks at Acahuizotla, Guerrero, of the 52 individuals exanined four were femaleforil of which weregravid, Breeding pairg in amplexus were not obaerved but I presume the egge are deposited on the ground beneath leaf debris or logg.
Range. The known range of T albolabris is restricted to the pine-oak and tropical deciduous forests between the villagef of Mazatlan Agua del Obispo, and Acahuizotia, Guerrero. These villages are found along the weatern slope of the Sierra Madre del Sur at elevationa between 2,700 and 4.000 leet.
Locality Records. GUERRERO: Acahuizotla, 2,800 ft.g

Table 8. Analysis of individual variation of Tonodactylus albolabrig based on 42 adult males. Foot and tibia preportions are percentages of the sout-vent length. Tympanie proportiona are percentages of dianeter of eyo.

STATISTIC	S-7 mino	FOOT		TIBIA		TYMPAMOM		EYE min.
		酸。	\$	mmo	\%	mim.	\$	
Maximum	25.7	10.2	42.5	10.9	44.8	1.7	56.6	3.1
Minimum	21.4	7.4	34.0	8.3	36.2	1.1	36.6	2.6
Range	4.3	2.8	8.5	2.6	8.6	0.6	20.0	0.5
Mean	22.8	8.7	37.9	9.5	41.1	1.25	45.8	2.83
Stantard Deviation	1.04	0.644	2.1	0.578	2.1	0.121	2.2	0.138
Standard Rrior of the Mean	0.161	0.100	0.32	0.089	0.32	0.018	0.34	0.020
$S_{0} \mathbf{E}_{\alpha}$ of Standard Deviation	0.114	0.071	0.22	0.063	0.23	0.013	0.24	0.015
Variability \%	4.5	7.4	5.6	6.0	5.1	9.6	4.8	4.8

Tomodactylua angustidigitorum Taylor

Tomodactylu angustidigitorun Taylor (1940:494-496) 。 original deacription.

Type. Number 18640, Edward Ho Taylor-Hobart M. 8uith Collection Type locality: Quiroga (northeastern end of lake Patzcuaro), 6,880 feet. Michoacan, Mexico.

Diagnogis. A mall member of the genus that differs from all other related species (except T. grandig) in having terminations of fingers narrower than digits. Maximum known snout-vent length of males 27.2 mm 。(range 21.0 mm . to 29.0 me, including females). Inguinal gland distinct and removed from groin; limbs relatively short; femur and groin usually concolor.

Degcription. Head narrower than body, extremitiea somewhat stout; foot and tibia 78.6 per cent of snout-vent length; tibiotarsal articulation reaches arm insertion at most, the tympanum; sole of foot with several large and numerous small tubercles; two metatarsal tubercles of equal size; subarticular tubercles conical; no tarsal fold; arm short and sonewhat stout; tips of fingers tapering and narrow subarticular tubercles largen not conical but rounded; median palmar tubercle larges snout blunt, sometimes rounded or pointeds tongue narrow, widened posteriorly,
and frequentiy notched at tip. free for half its length; vocal sac openinge large; dorsum usuallyg roughly puatular; paratoid gland lasge, indiatinct, oxtendine fron upper odge of tympanum to arm insertion; inguinal giand elongate, dis= tinct and moderately raised above wrounding gking belly roughly granular; chin and breast usualiy smooth. color pattern usually concolor with occasional barring of fomerg tibia, and forearms; venter dusky with scattered white-tipped granules.

The doralal color varies from pinkish tan to nearly black; ventral color varies from white with purplish brown spots to buff with white tipped granules; color of occasional bars on extremities varies from reddish brown to black; loreal stripe dark brown; inguinal gland varies fron yellowish white marbled with black to reddish brown marbled with black.

Variation Analysis of individual variation of 80 adult males shows a variation of six per cent anong measurable characters (Table 9) Females are larger than males (mean snoutvent length 25.1 mmog range 22 mm oto 29 mm) and have a larger tympanum, 47 per cent of eye diameter. The general body shape varies considerably but this may be due to the methods of preserving the animals. The bars of the extreme ities may be present or absent. Color is quite variable as indicated abowe.

Comparison. T. anguntidigitorum differs from all other known related pecies except $\underset{\text { g grandin in having }}{ }$
, tapering digits that are narrowest at the tip. Differs from I fusqus in having subequal metatarsal tubercies rather than inner metataralal tubercle conspicuously larger than outerf tapering digits rather than digite conspicuousiy widened and truncate at tip; tibiotarsal articulation reaching arm insertion rather than tympanump venter uaualiy light in color rather than brown or dark brown. Differa from T. grandis in having small rather than large robust bodyg amall tympanum, 44.3 per cent rather than 56.8 per cent of ye diameter; narrow internarial width, 74 per cent rather than 86 per cent of eye diameter.

Habitis. Schmidt and Shannon (1947:68-69) reported that several secinens were collected on the slopes of Mount Tancitaro at an elevation of 7,800 feet in woodland and fields. They found the majority of the toads on rocks alo though a few were collected from bughes, up to a height of five feet. Taylor (1940:496) stated that all apecinens of the type series were found under stones or hopping about on the ground. Ralph Axtell and 1 collected 57 individuals near Quiroga, Michoacang in a variety of habitats, They were found caling from the ground, rocks, grass, and ahrubs up to a height of four feet.

```
    Of these 57 Epecimens, 11 were females that contained
eggm in various stages of development. Two pairs were found
in amplexu弯 beneath clumpit of grasis. The following obser=
vation was made by me on the breeding behavior of the speciea:
"Voice-Actions. Both sexes call; the call being a fhort
"peep." The female has a much higher pitch and can easily
be distinguished from the male while both are calling. While
observing a calling male and female about lo feet apart, the
following action took place -- The male sat upon a siall rige
in the soil and voiced a peep; the female answered; the male
rotated in a 360 degree turn on the rimeg voicing a peep
about every 00 degresen until he was sure of the direction
of the anawering female. Having hig bearing, he hopped off
In the direction of the female, voicing his peep about every
two feet. As the two became in close proximity, the peeps
of the male became a short trill of about five notes which
was repeated three to five times in rapid suceesision, Fur-
ther observations were not made begond this point."
    Mr. Axtell and i took advantage of this behavior by
placing several calling females in a gack and placing it on
the ground. The females continued to call and as the un-
suspecting males answered they were easily located by
flamhlight and captured.
Ranges This species seens to be largely reatricted
```

to the pine－oak forest along the southwesternedge of the Mexican Plateau in south central Michoacan between elevations of 5，000 and 8，000 leet．
Locality Records．MICHOACAN：Angahuan，7，000 ft．o （UMMZ 4）； 3 mi．E．Angahuang 6，900 ft．g（UMMZ 1）； 9 ni．E．

 6，000 fto（UIMNH 13）；4．5 mi．WNW Cherang 7，700 ft．，（UMMZ 1）；
 ft．o（UMMZ 14）；E1 Soledad（Tancitaro），7， 300 ft．（CNHM 3）： Mount Tancitaro，6，000－7，500 ft．（CNHM 12）；2．4 mi．S． Paracho，7，800 ftog（UNMZ B） 4 mi。 S．Paracho，7， 600 ft． （UMMZ 2）：2．1 mi．NE Paricuting 6．600 ftog（UMMZ 1）；Patz－ cuaro， 6,800 ft．，（UMNZ 2）；Pedregal（Tancitaro）， 5,00 ft．o （CNHM 2）Quirogag 6，880 fto（UIMNH 2）3．5 mi．E．Quiroga， 7。600 ft．（TCWC 13）；5．5 mi．E．Quiroga，7．800 ft．g（TCWC 44）s San Juan Parangaricutiro，6，600 ft．（UMMZ 15）；San Juan Parigaricutiro， 6,500 ft．（UMMZ 1）；between Tzinzuntxan and Patzouarop 6， 800 ft．（UMMZ i）f Uruapang 5.200 ftop （UIMNH 4）； 4 mi．E．Uruapan Roadi 5,400 ft．（UIMNH 4）：
 （UIMNH 2）： 9 mi．W．Zacapu。 6，800 fte（UIMNH 9）；Zuitzingo （Tancitaro），7，500 fto（CNHM 18，USNM 1）。

Table 9. Aamiyais of individual variation in Tomodactylue angustidigitorum based on 80 adult males. Foot and tibia proportiong are percentages of the anout-vent length. Tympanum proportions are percentages of the oye diameter.

STATISTIC	S-V mina.	FOOT		TIBIA		TYMPAMUM		$\begin{gathered} \text { EYE } \\ \\ \hline 0 \end{gathered}$
		Himo	8	min.	\%		\%	
Maximam	27.2	10.9	46.5	10.2	43.1	1.8	56.0	3.2
Minimum	21.0	7.6	33.3	8.0	34.2	1.0	36.6	2.5
Range	6.2	3.3	13.2	2.2	8.9	0.8	19.4	0.7
Mean	23.0	9.04	39.4	8.94	39.2	1.23	44.3	2.95
Standard Deviation	1.3	0.460	2.1	0.518	1.4	0.150	4.5	0.167
Stanciard Frror of the Mean	0.148	0.050	0.240	0.060	0.16	0.017	0.38	0.018
$\mathbf{S}_{0} \mathbf{E}_{0}$ of Standard Deviation	0.105	0.036	0.160	0.041	0.10	0.012	0.20	0.013
Variability \%	5.6	4.5	5.3	5.8	3.5	12.0	10.0	5.6

Tomodactylun tupern Davis and Dixon

Tomodicety1ug fugcus Davis and Dixon（1955：157－158），oricinal description．

Type．Number 11252，Texas Cooperative Wildiffecoi－ leotion。 Type Lecality： 1.5 miles southeast Huitzilac． 7， 800 fete Moreles．Mexico．

Diagnosiag Smallest member of the $\underset{\text { m angustidigitorum }}{ }$ group，with tips of ingeris conspicuousiy expanded and trun－ catof oye small；venter usually brown．Doreut roughly pustular；inguinal gland elongate distinct；anterior and posterior faces of femur uniformly brown occasiomal barg on extremities obscure。

Desoription。Smallest member of genus（average sinout－ vent length of males 22.2 mino range 20.5 rimoto 25.0 mo： of temales，average 24.0 mo range 23.0 min．to 27.0 ming legs relatively long tibiotarsal articulation reaches tym－ panun or eye；foot 39 per cent of anout－vent length；tibia 42 per cent of smout ovent length；sole of foot with mumerous small tubercles and everal large ones；outer metataraal tubercle onehalf as large as inner；subarticular tuberclea large conical；mo tarsal fold．Hands mallo tips of two outer fingers conspicuously expanded truncate；median palmar tubercle four times larger than ones at bases of
first and fourth fingers; subarticular tubercles somewhat
rounded; no trace of a tarsal fold.
Snout rounded or blunt; tympanum smallo often in-
distinct, 45.5 per cent of eye diameterg tongue pear-mhaped,
often notohed behind; vocal acopeninge large; interorbital
bar obscure; loreal stripe indiatinct; parotoid glamd large.
subcircular, at upper posterior edge of tympanum; inguinal
gland elongate or oval, removed somewhat from groinf skin
of back pustular; venter roughly granular. Dorsal color
pattern concolor or indistinctly nottled; ventral color pat-
tern usually concolor or faintly spotted; bars of extremities
obscure Dorsal color brown to dark brown; venter light
browng sometimes stippled with black; loreal stripe, when
discernable, dark brown。
Variation．Of the 31 adult males examined for an analysis of individual variationg only a sall degree of variance was found among the measurable characters（Table 10）． Examination of seven adult females revealed that they possess－ ed a larger body（mean snout－vent length 24.0 mon．）and larger tympanum（mean tympanic width 1.46 man．）。 The expansion of the tips of the two outer fingers varies fron one and a half to nearly twice the width of the narrowest part of the inger． The coloration of this species is variable but is always brownish。

Compriton．Tomodaotylug fugcus differm from all

other member of the angugtidigitoran complex in having the tips of the two outer fingera distinctiy expanded and trun－ cate；eye emallifinternarial width 80 per cent of oye diameter：lega longer in animals of comparable body mize； and ventral surface browno Differif fron all other known species of Tonodactylus in having femur and groin concolor rather than with yellow，ochraceous orange，or red spotisi venter brownish rather immaculate with or without sots．or grayish with whitish gubcircular spots；leg and armbars obscure rather than distinct．

Habite．This species inhabits the pine－oak forest． The animals may be found calling from rocks，graga，shrubs， or trees and seem to show a preference for open woodland． The majority of the specimens that I have collected were found in abandoned corn fields that had become overgrowh With weeds and shrubs．Most of the animals were found callo ing irom shrubs rather than from rocke In August of 1949， Dro Wo B．Davis。 R．W．Axtellg and I spent three hours col－ lecting two caliing males．However at this time of year the calls are infrequent，deceptive，and consists of a single peep or whistle。 During the height of the breeding season they are heard more frequentiy and are easier to capture。 All of the feales examined contained egge in
various etages of development．
Range．The known range of To fuscus appeare to be confined to the pine－oak forest between elevatious of 7500 and 8800 feet on the southern slopes of the mountains that form the southern edge of the Mexican Plateau．This range includes the states of Morelos．Mexico，and Michoacan．

Locality Records．MEXICO： 4 mi．No Tenancingo， 7,600 fto．（TCWC 4）；6．5 mi．No Tenancingo 7,800 ftop（TCWC 2）． MICHOACAN： 9 mi．N．COpullog 21 mi E．Morelia。 7， 500 ft．（TCWC 1）； 15 mi。E．Moreliaf 7， 300 ft．（UMMZ 1）． MORELOS： 1.5 mi ．SE Huitzilac．7。800－8． 000 ft． （TCWC 8）； 5 km 。N．Tepotztlang 7.500 ft 。（AMNH 8）；Tres Marias。 7，500 ft．g（UIMNH 6）。

Table 10．Analyisis of individual variation of Tomodactyluat fugcus based on 31 adult males．Foot and tibia proportions are percentages of the snout－vent length．Tympanic propor－ tions are percentages of diameter of eye。

STATISTIC	$S \propto \nabla$ mam。	FOOT		TIBIA		TYMPANOM		$\begin{aligned} & \text { EYE } \\ & \text { ym. } \end{aligned}$
		mmo	\％	mm 。	4	man．	\％	
Maximun	25.0	9.8	43.8	11.0	45.7	1.6	53.3	3.1
Minimum	20.5	8.2	34.3	8，8	36.0	1.0	36.0	2.6
Range	4.5	1.6	9.5	2.2	9.7	0.6	17.3	0.5
Mean	22.2	8.78	39.3	9.13	41.9	1.27	45.5	2.8
Standard Deviation	1.26	0.447	2.2	0.482	2.0	0.126	3.8	0.146
Standerd heror of the Mean	0.226	0.080	0.40	0.086	0.36	0.023	0.69	0.026
S．E．of Standard Deviation	0.160	0.057	0.28	0.060	0.26	0.016	0.49	0.018
Variability \＄	5.6	5.1	5.6	5.2	4.7	9.0	8.3	5.2

Tomodactylus grandin ${ }^{1}$ sp. nov.

Holotype. Adult male, number 12628, Texas Cooperative Wildife Collection, collected May 31, 1956, at San Pedro (2 miles auth Tlalpan), 7,800 feet, Distrito Federal, Mexico, by James R. Dixon and Mary Dixon.

Paratypes. Thirteen males: TCWC 12629, from the type locality; UMMZ $99533(11)$ (miles south Villa Alvaro Obregon, 7, 600 feet, Distrito Federal; UIMNH 15987, Tlalpang 7, 600 feet, Distrito Federal.

Diagnosif. A member of the angustidigitorure complex that differs from all other known members of the group in having a large tympanum (56 per cent of eye diameter) olarge internarial width (86 per cent of eye diameter), and large aize (average anoutovent length 28 mm) . Femur and groin concolor with scattered whitigh flecks near knee; dorsal surface brown, pustular; ventral surface buff, granular; tips of two outer fingers taperingg narrowest at tip. Description of Holotype. Snout-vent length 30.5 min. foot, 12.3 mmof tibiag 11.6 mm ; length of inguinal gland. 7.5 mm . fidth of head, 11.7 mm . width of eye. 3.6 moi

[^1]tympanic width, 2.0 mm . internarial width, 2.8 mm .9
distance fromey to nostril. $3.0 \mathrm{~mm} ;$ dorsum pustular;
venter heavily granular; head slightly narrower than body;
snout blunt; canthus rounded; tympanic width greater than
distance from eye to tympanump parotoid gland large, in-distinct, just above and posterior to tymanum; tongue pear-shaped, notched at $t i p, ~ a n d$ free for half its length; innernarea large, situated laterally (width between inner nares3.5 mm) ; vocal sac openings large, half the length of jawrami; inguinal gland large elongate, raised above level offemur when leg is brought forward along aide of body.Relative length of fingers and toes, ghortest to long-est respectively, fingers $2-1-4-3$, toes $1-2-5-3-4 ;$ legs rela-tively short; tibiotarsal articulation reaches posteriorcorner of tympanump with legs folded at right angles to bodythe heels overlap 3 mm ; inner metatarsal tubercle aboutthree times as large as outer; subarticular tubercles large,pointed; no targal fold; tipg of two outer fingers tapering.narrowest at tip; large flat, median palmar tubercle sevenor eight times larger than ones at bases of first andfourth fingers.Dorame color uniformly dark brown; obscure blackishbars on tibia, femur, and forearm; lips brownish; whitishspot on tip of snout; anterior face of femur light browng

```
posterior face brown; scattered whitish subcircular mpota
on anterior face of knee, tibia, and tarsum; venter brown-
ish with minute black stipulations and whitish subcircular
spots.
Variation. In the typeseries thirteen individuala exhibit roughly granulated venters with tips of granules whitiah. One specimen has a relatively mooth venter but granules can easily be discerned under the lens. The doraal coloration is uniform brown in most but varies to an indistinct mottiing of brown and dark brown the head is sometimes grayish. Bars on the extremities are usually brown or dark brown and obscure. The inguinal gland is dark brown marbled with white but sonetimes concolor. The whitish subcircular spots on the legs are sometimes obscure. Females are not available for study. For mensural variation of adult males see Table 11.
Comparisons. Tomodactylus grandiz differs from T. \(_{\text {g }}\) angustidigitorum in having a larger tympanum (56.8 per cent rather than 44 per cent of eye diameter) ; broad internarial width (8B per cent rather than 74 per cent of eye diameter) ; proportionally shorter tibia (37.7 per cent rather than 39.3 per cent of snout-vent length); larger snoutovent length (mean 27.9 mm 。 rather than 23.0 mm 。) Differ from . fuscus in all of the above characters and in addition tips
```

of digita tapering, narrowest at tip rather than conapicuounly expanded and trancate. Differa from all other known membera of the genus in having temur and groin concoler rather than with yellew, ochraceous, orange, or red apotei tipe of fingera tapering and naryowest at tip rather than as wide as or wider than narrowest part of digit; internarial width threemourthe rather than lean than one-half of eye diameter; tympanic width greater than one-half of eye diameter (56 percent rather than 50 percent or less)。
Habits. The habitat of this toad seems to be the "malpais" or lava beds near Mexico City and the mountains to the south (north side of the Ajusco Mountains) to an elevation ef 8800 feet. The spoimens that were captured at the type locality were found calling from lava rocks. Pertions of the lava flowis in this area were under agricultural use and the fields were marked off with rock fences. Numerous Tomodactylus were heard oalling from these fences but I was able to capture only two of thes because the porous volcanic rock made their capture difficult. On one cccasion several were heard calling from inside a large volcanic rock but I did not have the necessary equipment to expose them. The voice of this species is much like that of T fuscus, a peep or whistle, but repented more often。
Ranse. The known range of this pecies is confined to the lava bede surrounding Mexice city, up to an elevation of 8.800 feet, in the Federal Diftrict and the atate of Mexico. Taylor (1940:494) collected a meoimen of Tomedactylun near san Martin in the state of Mexico which he referred to angumtidigitorung I have not seen it but on the basie of geographic probability it is likely referable to T. grandit.
Locality Recorda. DISTRITO FEDERAL: San Pedro, 2 mi. S. Tlalpang 7,800 ft.p(TCWC 2); Tlalpang 7,600 ft., (UIMNH 1); 4 mi. S. Villa Alvaro Obregong 7,800 ft.g (UMMZ 11)。

Table 11. Analyals of individual variation of Tomodactylus grandis based on 14 adult males. Foot and tibia proportions are percentages of the snout-vent length. Tympanic proportions are percentages of the diameter of eye.

STATISTIC	S-V $\mathrm{m}_{\mathrm{m}}^{\mathrm{m}}$ 。	FOOT		TIBIA		TMMPANUM		$\begin{aligned} & \text { EYE } \\ & \text { nmmo } \end{aligned}$
		mmo	\%	mm。	\%	mim.	\%	
Maximum	30.5	12.4	42.3	11.6	39.5	2.0	61.3	3.6
Minimum	25.0	10.2	38.4	9.2	33.7	1.6	53.2	2.8
Range	5.5	2.2	3.9	2.4	5.8	0.4	8.1	0.8
Mean	27.9	11.1	39.8	10.6	37.7	1.79	56.8	3.15
Stendard Deviation	1.67	0.642	1.0	0.756	1.5	0.122	2.6	0.120
Standard Error of the Mean	0.447	0.181	0.26	0.202	0.40	0.033	0.69	0.028
S.E. of Standard Deviation	0.316	0.121	0.19	0.142	0.28	0.023	0.49	0.020
Variability \%	6.0	5.7	2.5	7.0	4.1	6.2	4.5	3.8

1. Tipa of two outer fingers censpicuousiy expended
and truncateg one and one half to twice the width
of narrowet part of digit. 2
Tips ef two outer fingers not notioeably expanded
and not more than one and one-fourth times width
of narrowest part of digit. 4
2. Anterior and posterior faces of femtr with yellow-

Anterior and posterior faces of femur concolori
size small (snout-vent length of males to 25 mmo);
upper parta brown te dark brown; inner metatarsal
tubercle nearly twice the aize of outer one; femur
mere or less uniformly brown
Tonodactylus fuscus
3. Size large (snout-vent length to 30 ming) : upperparts
mottled dark gray or dark brown; large immaculate
ochraceous spots on femur; underparts usually pig-
mented and with whitish subeircular spote; upper
lip pigmented 。 Tomodactyluf dilatus
Size small (snout-vent length to 26 mm) ; upperparteolive to olive brown; red or orange spots on fenurand sometimes in groin; venter whitish with diffusedark spotting; upper lip with whitish line.
Tomodactylus albolabris
4. Tips of fingers tapering and narrowest at tip 5
Tips of fingerm an wide or wider than narrowest*
part of digit but not greatly expanded 6
5. Hand smalis size small (snoutovent length to 29
mmo ; upperparts pustular, concolor or mottledbrownish; venter usually buff; tympanum 45 per centof eye diameter; femur usually concoler
Torodactylug angustidigitorumHand large; size large (snout-vent length to 31mm。): upperparts pustular, indistinctiy mottiedbrownish or grayish brown; venter grayifh withdiffuse dark stipulations of brown; tympanum 56per cent of eye diameter; internarial width morethan three-fourtha eye diameter
Tomodactylua grandis
6. Lega long tibiotarsal articulation reachot beyondarm insertion when brought forward along side ofbody . 7
Leg: short, tibiotaralarticulation doea not reach
arn ingertion when leg brought forward along sideof bedy; when folded at right ancle: to main aximof body heels do not overlap; derisum srayish, mot-tled or spotty; venter grayish. usually withoutspots; voice a "bleat" rather than a peep or whistle
Tomodacty1us orgrius
7. Femeral spots yellew; tips of ifigerisexpanded;
upperparts pustular, mottled greenish or brownish;venter whitiahg occasionally with scattered brownspots. Tympanic width lest than one-half of oyediameter (45 per cent) . Tomodactylus no nitidusFenoral spots yellewish orange or orange; upperpartasomewhat pustular, mottled greenish browin or chocolatebrown venter whitish with frequent dark brewn orblack apotting tips of fingers expanded and truncate;tympanic width onehalf eye diameter (50 per cent). .-Temodactylus R petersi

DISCUSSION OF SPECIFIC RELATIONSHIPS

The aeven apecies and two subspecies of Tomodactylus egregate into four distinct groups on the basis of (1) color patterng (2) color; (3) general body shape; (4) geo= graphic range. There is a varying anount of overlap in the distribution of two of these groups but there is no indication of intergradation。
The first group is comprised of three apeciesp io
 tinctiy similar with respect to color pattern, color body shape e_{p} geographic range. Their genaral dorame color is uniform brown。 Occasionally an indistinct mottiing of brown and dark brown may be present. A distinct or obscure loreal stripe is always present and the barring of the armand lega is obacure. The ventral pattern varies coneiderably in the amount of pigrentation and the number of spots but it generally is the same color in all three species. The general body shape is robust with somewhat slender armand legs. The snout is round or blunt. The tips of the fingers are tapering and narrowest at the tips in angustidigitorup and grandis but conspicuously expandod and truncate in fugaug. All three species are found along the southern odge of the Mexican plateau in the Pinemak Forest between elevations
of 5.000 to 8,800 feet. T. grandis and T. fugcus inhabit oppesite sides of the same mountain rangep separated fron each other by the higher elevations along the crestis. This altitudinal barrier is probably due to the temperature tolerances of both species. Neither species has been observed above 8, 800 feet nor below 7, 500 feet. The range of . fuscus extends farther to the west than that of T erandigo but it probably does not meet the range of T_{g} anguatidigitorum (see Map 4) 。

The second group is comprised of two species, T. orarius
and $T_{\text {a }}$ nidus. The latter has two geographic races. T. nitidus nitidus and T nitidus petersi. This group has the largest geographic range of the genus. The group inhabits several vegetation types: Pinemoak Forest, Tropical Deciduous Forest, Thorim Forest and Arid Tropical Scrub. Its range includes all of south=central Mexico and portions of the Pacific lopes and coastline as far north as the states of Sinaloa and Durango. These toads range altitudinally from sea level to 8,000 feet in the mountains. Intergradation between the geographic races of nitidua is to be expected in the weatern part of the Balsas Basin T. orariug is known only from the pacific coastal regions of Nayarit. Colimá, and Michoacan below 1,500 feet. and its range is not known to overlap with that of nitidus.

The dersal color pattern of both mecies is mottled with the ground color varying fron light gray to chocolate brown. The darker coloration overiying the ground color varien from tan or grayish sreen to black. The ventral patterne are imilaro varyint from dirty gray to white but
 ventral spoting. The bars of the arms and legs are distinct in the two species but occasionally they are obscure in orarius. Nevertheless, the barring of the limbs of the nitidus group is much more dimtinct than that found in the angustidigitorut group. A distinct interorbital bar and loreal stripe are present in both species. The femoral and groin spets vary from yellowish white to orange.

The body shape is robust with relatively strong ares and legs. The tips of the two outer fingers are as wide or wider than the narrowest part of the finger. There is a considerable amount of individual variation of the digital expansion but, generally, the tip does not exceed one and a fourth times that of the narrowe虏t part of the disit. The third and fourth groups are conprised of aingle species each. Beth are distantly related to the nitidus group. To dilatus, the third group, and T glbolabris, the fourth group, are restricted in their geographic range. Both occur in the northwestern end of the Sierra Madre

```
del sur. To dilatue is found in the pine-oak forest between
elevations of 7, B00 to 8,000 foet, and is known fremenly
two localities in Guerrero - Omiltemig and the mountaine
weat of Mazatlan. These localities are about 20 milea apart
In the same mountain range.
```

Tolbolabrig is found in the pine-oak and tropical deciduens ferests between elevations of 2,700 and 4,000 feet. Its known range in restricted to three localities all of which are within seven er oight miles of eaph other and in the same valley.

Beth groups show an affinity to the nitidus group in the presence of femoral and grein spots. The only other mimilarity is the distinct dorsal color pattern ef motting in dilatus and the pattern of indistinct motting in albo1abris. To dilatus has a large robust body with the tips of the two outer fingers conspicuously expanded and truacatef the canthus is sharply angled and the tympanum very small; the dorsum is roughly pustular, brownisho and mottied with black, The femoral and groin spots are ochraceous in color。 The venter is heavily granular, whitish to grayish brown with white subcircular apots.
T. 量lbolabrig has a small slender body with relatively leng lege and slender armo The anbut is pointed and the tympanum \quad mall, but larger than that of dilatug. The tips
of the two outer fingerm are conspicuously expanded and
truncate。 The dorial color pattern may be uniform olive
to reddish brown in colorg or indistinctly mottied with
olive and brown。 The ventral surface is white with dif-
fuse dark brown spotting.
There seems to be no correlation between vegetation
or any other aspect of the habitat and digital expansion in
any of the groups. T angustidigitorum with its tapering
digits, cilmbs shrubs and trees with ease. T. fuscus, with
its expanded digits, may be found aitting on rocks. I assume
that those pecien in which digital expansion occurs, are
better climbers and can climb to greater heights than those
that lack the expansions.
A tetal comparison of mensural relationships between
the various forms of Tomodactylus is found in Figures 6
through 9; see also Table l2.

Fig. 6. Variation in the length of the snout-vent and foot of the species and subspecies of Tomodactylus. Dotted ilnes connect the means; vertical line represents the mean. open rectangle twice the gtandard error horizontal line the range in variation. The number to the right of the horizontal line is the number of secimens used in the analysis.

Fig. 7. Variation in the length of the tibia and in the width of the oye and tympanum of the formof Torodactylus. Dotted lines connect the means; vertical line represents the meang open rectangle twice the standerderror, horizontal line the range in variation. The number to the right of the horizontal line is the number of specimens uaed in the analysis.

Fig. 8. Variation in the proportions of the length of the foot and tibia of the species and subspecies of Tomodactylus. Figures for proportions are percentages of the siout-vent length. Dotted iines connect the means; vertical ine reprem ents the meang open rectangle twice the standarderror horizontal line the range in variation. The number to the right of the horizontal line is the number of secimens used in the analysis.

| 30 | 35 | 40 | 45 | 50 | 55 | 60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

n. petersi (73)

gremide (14)

[^2]Table 12. Preportienal mensurements of the adult males of the species and ubspecies of Tonodactylue. The foot and tibia lengths are percentages of the sout-vent length. The tympanic widtha are percentages of the oye diameter.

STATISTIC							3 3 0 3 3 4	
No. in Sample	312	73	11	28	42	80	31	14
$\begin{aligned} & \text { FOOT }\left(\frac{8}{2}\right) \\ & \text { Maximum } \end{aligned}$	45.4	44.2	39.6	47.0	42.5	46.5	43.8	52.3
Minimum	32.7	35.2	34.6	36.4	34.0	33.3	34.3	38.4
Meas	38.5	38.9	37.3	40.5	37.9	39.4	39.3	39.8
S. $\mathbf{D}_{\text {。 }}$	0.8	1.8	1.4	3.1	2.1	2.1	2.2	1.0
TIBIA (\%) Naximan	45.6	44.2	40.9	47.4	44.8	43.1	45.7	39.5
Minimum	32.7	36.1	34.8	36.9	36.2	34.2	36.0	33.7
Mean	39.6	39.3	37.8	41.9	41.1	39.2	41.9	37.7
$\mathbf{S o}_{\text {。 }}{ }_{\text {o }}$.	0.9	1.8	1.7	2.9	2.1	1.4	2.0	1.5
TYMphine (x) Maxirum	58.0	60.0	53.3	50.0	56.0	56.0	53.3	61.3
Minimum	33.3	40.0	40.0	30.0	36.6	36.6	36.0	53.2
Meam	45.	50.6	46.9	37.6	45.8	44.3	45.5	56.8
S. $\mathrm{D}_{\text {o }}$	1.4	3.1	4.3	4.9	2.2	4.5	3.8	2.6

Tomodactylus grandis (male)

T. angustidigitorum (male)

T. fuscus (male)

Figure 11.

T. albolabris (male)

GUMMARY

Toads of the genus Tomedactylus occupy ifve major vegetative types and seven physiographic provinces along the edges of the Mexican Plateau, in the Balasa Basing and in the Sierra Madre del Sur in southern Mexice. Theknown range extends fron eaztern sinaloa on the weat and central Veracruz on the east southward nearly to the Isthmus of Tehuantepec and altitudinally fron mear sea levelo as in Nayarit, to well over 8,000 feet in the Ajusco Mountains south ef Mexico city. Apparentiy the animals de not occur below 3,000 feet on the eastern slopes of the Sierra Madre del Oriental.

Correlated with diversified topography, climate, and vegetationg members of the genus exhibit considerable geographic variation. Tomodactylus pitidus is the most wide ranging species and occupies the main mountain masses beo tween elevations of 1,500 and 7,800 feet. The species is comprised of two well marked subspecies, T. nitidug and $^{\text {nitid }}$ T. n. petergi. Two species. T. angustidigitorum and T. tuscus occupy the higher parts of the transverse velcanic regiong mainly the upper slopes of the Ajusco Mountains. Two others. I dilatus and T albolabris oceur in the isolated sierra Madre del sur, the former at high elevations in the
Pine－fir Ferest，the latter at low elevations in the Pine－ oak and Tropical Deciduous foresta．The coastal lowlands of Sinalea，Nayarit，Celime，Jalisco，and Michoasu are inhabit－ ed by a distinct species，Torariug as are the lava beda along the southern edre of Mexico Cityo Togrendis both of which are herein described fer the first time。
The analyses of the secific relationships of the genus indicated that on the baser of color。color patterno body shape and geographic range the species form four natural groups－the angustidigitorum group，which includes T，fugcus， T．grandis，and T gngustidigitoruig the gitidus groupo which includes T ．H．旦itidug，T ． dilatug group and the albolabris group each of which it comprised of a single species．
The large apecies described by Taylor as T ． gacyotympanum trom the Pine－aak Forests of northern Hidalgo，is transferred to the genus syrrhophus．

LITERATURE CITED

Davis. W. B., and J. R. Dixon. 195B. Notes on the Mexican toads of the genu: Tonodactylug with the deacription of two new mecies. Herpetologica, 11:154-160.

Duellmang W. E. 1954. The amphibiana and reptile: of Jorullo Volcano, Miohoacan, Mexico. Occas. Papers Mus. Zool. Univ. Michigan, no. 560:1-24.

Firmchein. I. L. 1954. Definition of ome littleo understood members of the leptodactylid genus Byrihophug, with a description of a new speciez。 Copeia; (1):48-58.

Gadew, He 1910. The effect of altitude upon the distribution of Mexican mphibians and reptiles. Zool. Jahrb. Jena. Abt.F. Syst。29:689-714.

Goldman, E. A. 1951. Biological investigations in Mexico. Smithsonian Misc. Coli., 115(4017):1-476. 70 plsop 1 map.

Goldman ${ }_{0}$ E. A. and R. T. Moore. 1945. The biotic provincea of Mexico. Jour. Mam. 26(4):348-360. Gunthers A. C. L. G. 1goo, Biologia Centrali-Anericanag Reptilia and Batrachia. pp. 210-220.

Hi11. R, T. 1908. Growth and decay of the Mexican Plateau. Eng, and Mig. Jour. 85(14):681-888.

Leopold, A. S. 1950. Vegetation zonea in Mexico. Ecology, 31(4):507m518.

Martin del Campo, R. 1940. Una observacion del dearirollo
de Tomodactylus nitidug. An. Inst. Biol. 11(2):

745-746.
Mayro E. 1942. Systematics and origin of apecies. vii-334。

New Yorkg Colunbia Univeraity Prega.
Mayro E. E. G. Linsley, and R. L. Usinger 1953. Methods
and principles of systematic zoology. v+328, New York,

McGraw-Hil1 Book Coog Inc.
Ordonez, E. 1936. Principal physiographical provincea of
Mexico. Buli, Amer, Assoc, Petro Geole 20(10):
$1277-1307$.

Parker, H. W. 1927, A revision of the frogs of the genera

Pseudopaludicola, physelagmus, and pleuroderma. Ann.
and Mag. Nat, Hist. $20(118): 450-478$.
Peters, W. 1869. Eine Mittheilung uber mexicaniache

Amphibien, welche Hro Berkenbusch in Puebla auf
Veranlassung des Hrne Legationsrathe von Schlozer def zoologischen Museum zugesandt hat. Monatab. Akad.

Wises. Berifng pp. 874-881.

Gehmidt，K，P．，and F．A．Shannon 1947．Notea on amphibiana and reptiles of Michoacan，Mexico．Fieldianazzooi． （Chicago Nat．Hist．Mus．）31（9）：88－69．

Smith，H．M．1949．Herpetogeny in Mexico and Guatemala． Ann．Assoc，Amer．Geol．，39（3）：219－238。

Taylor，E ．$H_{\text {，}}$ 1940．Herpetological miscellany．Univ． Kan．Sci．Bull．，26（15）：489－560． －1943．Herpetological novelties from Mexico．Univ． Kan．Sci。Bul1。，29（2）：343－361。

Thayer，W．N．1916．The physiography of Mexico．Jour． Geol．，24：61－94．
8830

[^0]: ${ }^{1}$ In allusion to the coastal position of ita geographic

[^1]: $I_{\text {In allusion to the large size。 }}$

[^2]: Fig. 9. Variation in the proportion of the tympanic width of the formis of Tomadactylus. Figures for the propertions are percentages of the eye diameter. Dotted line connects the mean; vertical line represents the mean, open rectangle twice the atandard error, herizental line the range in variation. The number to the right of the species name is the number of spectmens used in the analysis.

