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ABSTRACT 

 

Reflective Cracking of Shear Keys  

in Multi-beam Bridges.  (August 2007) 

Graeme Peter Sharpe, B.S., Carnegie Mellon University 

Chair of Advisory Committee:  Dr. Harry Jones 

 

Multi-beam bridges made from precast concrete box girders are one of the most 

common bridge types used in the United States.  One problem that affects these bridges 

is the development of longitudinal or reflective cracks on the road surface because of 

failure of the shear keys.  Some states have attempted to correct this problem by 

redesigning the shear key or adding post-tensioning, but the problem persists in many 

new bridges.   

The purpose of this study is to investigate why these shear key failures are 

occurring.  This project studies two types of box girder designs, the common 

Precast/Prestressed Concrete Institute (PCI) box girder bridges and the Texas 

Department of Tranportation (TxDOT) box girder bridge.  In the past, reflective 

cracking has occurred in bridges of both types.   

The analysis procedure involves finite element analyses of bridge models with 

realistic support and loading conditions, and comparing the PCI and TxDOT bridges.  

The results indicate that both PCI and TxDOT box girder have sufficient strength to 

resist cracking from vehicular loads, but uneven temperature changes and shrinkage 
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strains cause high tensile stresses in the shear key regions and lead to reflective cracking.  

The analyses showed the highest stresses were often times near the supports, rather than 

at midspan.   

Past studies have proposed using larger composite deck slabs, transverse post-

tensioning, or full-depth shear keys to prevent shear key failure.  Composite slabs were 

the most effective way to reduce high stresses in shear keys, and were effective for all 

loading cases considered.  Post-tensioning and full-depth keys also showed a reduction 

in shear key stresses, but were less effective.   
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INTRODUCTION 

Transportation departments across the U.S. have been using concrete box girder 

bridges since the 1950’s.  This bridge style accounts for a significant percentage of new 

and existing bridges (FHWA  2005).  The section depth is one of the most important 

considerations for a new bridge, as the overhead clearance of a bridge affects many costs 

associated with bridge construction.  The concrete box girder bridge is well suited for 

highway structures that require a limited section depth, short to medium spans, and rapid 

construction.  The initial cost of the bridge is high when compared to other bridge types, 

but the advantages of box girder bridges often justify the higher cost.   

The construction process for a multi-beam bridge occurs in distinct phases.  The 

first phase is the construction of the box girders off-site, at a precast concrete 

manufacturing facility.  The benefit of the precast process is that the manufacturer can 

maintain a high level of quality control over the materials used in the construction of the 

box girder.  The next phase is the on-site construction of all the bridge sub-components, 

such as bent caps and approach slabs.  When the site is ready for the placement of the 

box girders, they are lifted into place with a crane.  Typically, the box girders rest on 

bearing pads that will accommodate the thermal elongation experienced by the box 

girders.  The final phase of the construction process is the creation of joints, called shear 

keys, that link the individual box girders together and transfer vehicle loads from one 

beam to the next so they share the loads produced by vehicular traffic.  In addition, a 

composite deck slab may be applied either as an integral part of the shear key casting 

operation or as a separate, later stage.   
This thesis follows the style of ASCE Journal of Bridge Engineering. 
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The shear key gets its name from the transfer of vertical shear forces between 

adjacent girders.  It has a geometry that causes the two girders to deflect as a single unit.  

When present, a composite deck slab also contributes to the transfer of forces between 

adjacent boxes.  The multi-beam bridge cross section shown in Figure 1 is a Texas 

Department of Transportaion (TxDOT) standard and utilizes a large shear key.   

 

 

Figure 1:  Schematic of Two Box Girders and a Shear Key 

 

Reflective cracking in a multi-beam bridge refers to longitudinal cracks that can 

form on the roadway surface over the shear key area.  TxDOT, as well as a number of 

other state DOT’s, have reported reflective cracking problems severe enough to require 

corrective maintenance or replacement of the entire bridge.  It is generally held that such 

cracking is associated with cracking which first occurs in the shear key below.  The 
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reflection of keyway cracks in roadway surfaces can lead to spalling in a concrete deck 

and debonding of the asphalt layer when an overlaid riding surface is used.  Field 

inspections of distressed multi-beam bridges by various transportation agencies suggests 

that shear key integrity deteriorates over time as a result of repetitive loads from passing 

traffic and causes more pronounced reflective cracking in the riding surface.  Other field 

reports indicate that some bridges develop reflective cracks very soon after the bridge is 

completed, and sometimes before it is open for traffic. 

Reflective cracks can be a major maintenance issue.  Cracks in the roadway 

surface allow water and de-icing salts to corrode the reinforcing steel in the beams and 

the composite deck slab.  Stains visible on the underside of the bridge and cracks on the 

road surface are considered unsightly.  Also, transverse post-tensioning and tie bars, if 

present on the bridge, will be exposed to corrosive chemicals and begin to degrade.  If 

the shear key damage is severe enough, it is possible for a girder to be overloaded 

because no load distribution to adjacent beams is occurring.  This means that a girder 

may support loads greater than anticipated, and this can result in faster deterioration or 

structural failure.  For example, a multi-beam box girder bridge experienced this type of 

failure in late 2005 (Grata and Saxton  2005), and the state of Pennsylvania had to close 

and inspect similar bridges. 

The geometry of shear keys in use today seems to have evolved from early 

experiences and lacks any mechanics based procedure for rational design.  In the last 

decade, however, growing awareness of common problems with shear keys led to new 
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efforts to design a better shear key.  Reports since that time indicate that the problem 

continues, and further information is needed on this subject.   

Some states have attempted to reduce reflective cracking through expensive 

alterations.  TxDOT, for example, has issued new standard designs which mandate the 

use of a minimum 5 inch thick reinforced deck slab, adding cost and construction time to 

projects.  Others have changed their designs to incorporate more extensive transverse 

post tensioning, which also increases cost significantly.   

The two box girder designs considered in this study are the PCI/AASHTO 

(Precast/Prestressed Concrete Institute and American Association of State Highway and 

Transportation Officials) and the TxDOT version.  The PCI – AASHTO design is used 

by more than half of the states in the U.S.  The Texas DOT uses its own version with a 

more massive shear key.  Figure 2 shows a PCI 33 inch deep box girder with associated 

shear keys as adopted by the Ohio DOT.  Figure 3 shows a TxDOT 34 inch deep box 

girder and shear keys.  The PCI girder has less concrete in the cross section and a much 

smaller shear key than the TxDOT girder.  The bridges have similar structural properties, 

however, and are used for similar span lengths in multi-beam bridges.  The primary 

reinforcement is prestressed steel strands at the bottom flange, and the amount of 

prestressing force along with section depth generally determines the span length and 

load capacity.   
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Figure 2:  PCI 33” Box Girder with Shear Keys 

 

 

Figure 3:  TxDOT 34” Box Girder with Shear Keys 
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The PCI and Texas shear keys share several other characteristics.  They are both 

set high up in the section and make up part of the roadway surface.  Also, the gap in the 

bottom is small so that a stop can be placed to contain the grout or concrete in the 

keyway.  The keyway inset into the soffit of the box beam is usually very shallow or 

slanted in order to prevent air pockets from forming and weakening the joint.   

The complex geometry of box girder bridges means that numerical methods or 

laboratory tests are necessary to determine stresses in the shear key.  The AASHTO 

lateral load distribution factors can be used to determine the shear forces transferred 

between adjacent box girders due to traffic loads, but experience shows that the 

reflective cracking will occur if the shear keys are designed only to resist vertical shear.    

This happens because transverse normal stresses in the shear key from shrinkage, 

thermal effects, and wheel loads are also acting on the shear key.  In this study, FEA was 

used to examine the stress state in the shear key.  This approach also allows for 

incorporating the effects of composite deck slabs and transverse post-tensioning on the 

stress field in the shear key.   

It is believed that both these elements work to reduce the tensile stresses in the 

shear key and prevent or reduce cracking.  Field experience, however, demonstrates that 

the addition of these elements doesn’t ensure the elimination of shear key cracking.  This 

study was undertaken in an attempt to correlate the state of stress in the shear key with 

observed deterioration reported in both TxDOT and PCI concrete box girder bridges.   
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RESEARCH OBJECTIVES 

The objectives of this study are:   

1) Determine the state of stress in the shear key resulting from different 

loading situations 

2) Determine what loads are likely to damage shear key connections in 

multi-beam box girder bridges 

3) Determine the effectiveness of post-tensioning and composite slabs in 

reducing shear key failure 

4) Compare the behavior of the PCI and TxDOT box girders which 

represent the two extremes of shear key design  
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LITERATURE REVIEW 

In this section previous work relating to the failure of shear keys is reviewed in 

order to fully describe the problem at hand, and to understand what solutions have 

already been proposed.  The research conducted on shear keys is divided into five 

categories; the first addresses materials selection, the second addresses the effect of 

transverse post-tensioning, the third reviews small-scale tests, and the fourth group 

investigates the performance of shear keys in full-scale constructed multi-beam bridges.  

The final section discusses the general design and construction, as well as the history of 

box girder bridges. 

 

Materials Selection 

The most common material choices for a shear key are unreinforced concrete or 

cementitious grout.  However, other materials have been used, and research into the 

effectiveness of alternative materials has been conducted previously.  Tensile and 

compressive strength are the most often cited properties of a shear key material.  Just as 

important are several other factors such as amount of shrinkage, bond strength, chloride 

permeability, and ease of application.  Higher performing materials will have higher 

cost, and a balance must be struck between the need for a reasonably priced material and 

the need for reliable performance.  

The materials used in shear keys and their ASTM specifications are described in 

"Evaluation of Keyway Grout Test Methods for Precast Concrete Bridges" (Gulyas et al. 

1995).  This article details the work that Master Builders Technologies researchers have 
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conducted on the benefits of using cementitious materials other than grout in shear keys.  

The authors discuss important information related to the shrinkage and bond strength of 

both non-shrink grout and “Set-45” or magnesium ammonium phosphate (Mg-NH4-

PO4) mortar.  The Set-45 mortar tested much better in both the bond strength test and 

shrinkage test.   

In a follow up commentary to the last article (Nottingham et al. 1995), an 

engineering firm discusses their experience with using Set-45 on a dock structure on the 

coast of Alaska.  The shear keys there have performed well in a precast panel deck.  

However, the authors state that inappropriate joint details can lead to poor performance 

and early failure in typical installations.   

Another alternative material discussed in the literature is epoxy based glue.  The 

article “Epoxy Glue Joints in Precast Concrete Segmental Bridge Construction” 

(Moreton 1981) focused on how an epoxy glue joint would behave if two beams were 

joined and subjected to bending.  The results published by the author indicate that the 

joints performed well if the mating surfaces were prepared carefully and the glue is 

allowed to cure under the appropriate conditions.  In this study, epoxy was applied by 

hand and the specimens had to be pressed together for several days to achieve the right 

bond, indicating the need for some type of transverse post-tensioning system.   

Further research into the use of alternative materials such discussed above is in 

the article "Performance of Transverse Joint Grout Materials in Full-Depth Precast 

Concrete Bridge Deck Systems" (Issa et al. 2003).  The article details the authors’ efforts 

to compare different materials, including grout, Set-45 (Mg-NH4-PO4), Set-45 HW (for 
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hot weather), and polymer concrete.  The authors concluded that conventional grout is 

the best material choice because it provides high strength and ease of use.  Further, the 

authors state that they recommend polymer concrete over the Set-45 mortar where 

extreme conditions warrant a more expensive solution.  

 

Transverse Post-Tensioning 

An important factor cited in some earlier work is transverse post-tensioning.  

Some previous studies have suggested that reflective cracking can be remedied with 

large amounts of post-tensioning.  Post tensioning has the ability to reduce debonding 

and tension failures by applying transverse compression across the shear keys.  

However, the amount of force and spacing of the post-tensioning strands needed to 

obtain satisfactory behavior in a general case is unclear.  In addition, TxDOT as well as 

some other state DOT’s, are cautious about using transverse post-tensioning because it 

can add significant cost and make the multi-beam bridges more troublesome than other 

types of bridge construction.     

In Japan, where shear keys seldom fail, a large amount of transverse post-

tensioning is used.  In the article “Transverse Design of Adjacent Precast Prestressed 

Concrete Box Girder Bridges” (El Remaily et al. 1996), the authors detail Japan’s efforts 

and adapt them to conventional bridges in the U.S.  Some details of this design are full-

depth shear keys with cast in place concrete filled diaphragms at the quarter-point 

locations of the bridge where post-tensioning strands can be used, and a relatively high 

post-tensioning force. 
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The article “Shear Strength of Post-Tensioned Grouted Keyed Connections” 

relates the strength of a shear key joint to the amount of transverse post-tensioning 

(Annamalai and Brown 1990).  Their experiments show that increased post-tensioning 

improves both the strength and the monolithic behavior of a shear key.  They state that 

the successful performance of grouted shear keys depend primarily on the amount of 

compressive stress present.   

Two articles that present in-depth analyses of shear keys and their failure are 

"Fracture Mechanics Approach for Failure of Concrete Shear Key I:  Theory" (Kaneko 

et al. 1993a) and "Fracture Mechanics Approach for Failure of Concrete Shear Key II:  

Verification" (Kaneko et al. 1993b).  In these papers, the authors use the principles of 

fracture mechanics to derive the failure conditions for a concrete shear key.  The results 

from the first paper were based on certain fracture mechanics assumptions, but may not 

be applicable for every shear key geometry or loading scenario.  A closed form solution 

that gives the shear strength or peak load of a shear key is presented.  However, this 

equation assumes that post-tensioning will be present and that vertical shear controls the 

failure, but if these assumptions are not met then the equation will not give meaningful 

results.   

 

Small Scale Tests 

Several of the articles in the literature include results from small-scale tests 

performed on shear key specimens.  These tests are intended to characterize the strength 

per unit width of a shear key design for a given material and address the capacity of a 
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shear key in shear, moment, or tension.  The testing configuration for tension is shown in 

Figure 4, moment testing is shown in Figure 5, and shear testing is shown in Figure 6.   

 

 

Figure 4:  Test Specimen Under Tension 

 

 

Figure 5:  Test Specimen in Bending 
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Figure 6:  Test Specimen in Shear 

The above referenced article about material selection (Issa et al. 2003) presents 

the results for the specimens that were tested in several failure modes.  The specimens 

represented a typical transverse joint for a full-depth concrete bridge deck and the shear 

keys were 6 to 8 inches deep and 5 to 6 inches wide.  The test results for conventional 

grout material yielded shear key strengths of 358 psi in direct shear, 223 psi in direct 

tension, and 620 psi in flexural tests.  

Gulyas et al. include information about failures of small-scale specimens in the 

article mentioned earlier.  In their tests, grouted shear key specimens 8 to 12 inches deep 

and 3.25 inches wide were subjected to various loading conditions.  Their results 
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indicated that the specimens with grout failed at 75 psi in direct tension, 61 psi in 

longitudinal shear, and failed in vertical shear at about 223 psi.   

The article concerning fracture mechanics as applied to shear keys (Kaneko et al. 

1993b) references a test where a specimen composed of concrete that had a shear key 6 

inches deep and 3 inches wide failed when the average stress in the shear key was 1520 

psi.  This test was done for vertical shear loading where a large amount of transverse 

prestressing was used; the value of prestress force given in the article is 6000 pounds of 

compression.   

Detailed information about all of the small-scale tests can be found in Table 1.  

This data was recorded by researchers and published in their research reports.  The type 

of loading, ultimate load, and failure mode as well as the stress is included in the table.  

The stress data was calculated for this study and uses simple formulas for average axial 

and shear stress (P/A, V/A), or maximum bending stress (M*y/I), depending upon the 

loading and the specimen geometry.  This data represents the ultimate strength of shear 

keys.  It can be seen from looking at failure modes that samples using grout or other 

cementitious materials are weakest in direct tension, and will fail at loads lower than 

their material strengths would indicate.  This means the bond between the keyway face 

and the shear key itself is very important.  If the key debonds from the box girder, there 

is no steel reinforcement to keep the joint intact.  

The data from the table also notes the failure mode of the samples, indicating if a 

joint line failure (debonding), material failure (cracking), or a mixed failure 

(combination of debonding and cracking) was the result of the test.  As can be seen in 
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the table, debonding or mixed failures are the result for every case except the prestressed 

sample that failed by crushing.  This means that debonding is the most likely cause of 

failure regardless of loading, and therefore a cementitious material is unlikely to achieve 

full strength in a shear key design since the shear key will separate from the face of the 

box girder prematurely. 
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Table 1:  Small-scale specimen tests 

Authors Material
fc' 

(psi)
ft (psi)

Depth 
(in)

Length 
(in)

Width 
(in)

Type of Test
Failure 
(lbs)

Stress 
(psi)

Notes

Issa, et al. Grout 7700 658 6 5 9 Vertical Shear 10749 358 Mixed failure

" " " 8 5 20 Tension 8948 224 Mixed failure

" " " 6 6 18 (2Pt) Flexural 22331 620 Mixed failure

Set-45 5820 572 6 5 9 Vertical Shear 9756 325 Joint failure

" " " 8 5 20 Tension 8036 201 Joint failure

" " " 6 6 18 (2Pt) Flexural 9817 273 Joint failure

Kaneko, et al. Concrete 7105 632 6 3 10 Vertical Shear 20880 1160 6000 lbs prestress

Gulyas, et al. Grout 5870 390 12 3.25 6.5 Longitudinal Shear 2400 62 Bond line failure

" " " 12 3.25 6.5 Vertical Shear 5850 150 Bond line failure

" " " 8 3.25 6.5 Vertical Shear 7850 302 Bond line failure

" " " 8 3.25 6.5 Tension 1940 75 Bond line failure

Set-45 7260 557 12 3.25 6.5 Longitudinal Shear 14300 367 Mixed failue

" " " 12 3.25 6.5 Vertical Shear 16500 423 Mixed failue

" " " 8 3.25 6.5 Vertical Shear 20250 779 Mixed failue

" " " 8 3.25 6.5 Tension 5730 220 Mixed failue

Failure InformationGeometryMaterial Information
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Large Scale Tests 

Full-scale tests were discussed in some of the articles reviewed.  The benefit of 

these studies is that the shear keys can be tested in a manner similar to how they will be 

used in the field.  However, there are some problems with large-scale tests.  First, 

determining the existence and extent of cracking or failure in the shear key is difficult.  

Second, construction of full-scale bridges is costly and so only a limited number of 

studies can be carried out.   

Cusens and Pama (1965) investigated the design of shear keys and the transverse 

loads experienced in multi-beam bridges.  The authors discuss the appropriate way to 

analyze a bridge, including those with shear keys and composite slabs.  They 

recommend the use of modified orthotropic plate equations derived from mechanics of 

materials.  The authors discuss how to account for the stiffness of the bridge in the 

transverse direction, even if the shear key is not full-depth or cracked. 

More recently, the Ohio Department of Transportation sponsored several projects 

to improve the behavior and strength of concrete multi-beam box girder bridges with 

grouted shear keys.  In the first article by Huckelbridge et al. (1995), the authors 

instrumented an existing box girder bridge and measured displacements between 

adjacent girders to determine how much shear transfer took place.  They found that the 

shear keys in some regions of the bridge had failed almost entirely and the beam 

prestressing strands were corroded from leaking water.  The authors concluded that 

design changes to the bridge were necessary, as the current design had insufficient 

strength.   
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In a later study sponsored by the Ohio DOT (Huckelbridge and El-Esnawi 1997), 

the authors attempted to correct the design flaws of the shear key.  This project involved 

a thorough investigation of the design forces in the bridge using a 3D finite element 

analysis of a multi-beam box girder bridge subjected to a vehicular wheel load.  The 

authors concluded that the stresses in the shear key were large enough to cause failure 

after repeated loadings, and so changes needed to be made to the shear key design.  The 

transverse post-tensioning alternative was investigated and found to be uneconomical, as 

strands would need to be located every 2.5 feet in order to apply an effective 

compressive stress across the entire length of the bridge.  An improved design with the 

shear key relocated at mid-depth of the girder was investigated and it failed at a load 2.3 

times higher than the original design.  Therefore, the authors recommended moving the 

shear key to mid-depth and using conventional grouting procedures.   

The latest Ohio DOT study (Miller et al. 1998) details the results of a full-scale 

bridge with the improved shear key designs as compared to the original detailing.  Three 

tests were performed, one with the conventional shear key design with grout, the same 

design with epoxy, and a new design with a grouted key at mid-depth.  Surprisingly, the 

shear keys with grouted keys began to crack before any load was applied.  The 

specimens were dismantled, cleaned and new shear keys were installed, but the same 

failures occurred.  A combination of thermal cycling and off-axis beam orientation was 

cracking the shear keys within a few days.  In fact, it was found that throughout testing, 

vehicle loading did not initiate any cracking but only propagated existing cracks.  The 

mid-depth shear key design had a higher resistance to both crack formation and crack 
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propagation.  The epoxy joints did not crack at any point during loading.  The authors 

noted that the worst crack locations still transferred a significant amount of load to 

adjacent girders, but longer fatigue testing may continue to degrade a shear key.     

The article “Full Depth Shear-Key Performance in Adjacent Prestressed-Beam 

Bridges” (Lall et al. 1997), sponsored by the New York DOT discusses the performance 

of box girder bridges in New York.  The New York State DOT had recently switched to 

a full-depth design with a transverse tie system and was reporting on the effectiveness of 

the new bridge design.  From the questionnaires sent to different state officials, it was 

clear that the design changes had reduced the cracking problems but had not eliminated 

them.  Further design recommendations were introduced, including more transverse 

post-tensioning.  Other recommendations included a tighter control of construction 

practices, full-width bearing pads to prevent off-axis tilting, and a higher amount of steel 

reinforcement in the concrete deck overlay.   

One report was written specifically about Texas bridges and their reflective 

cracking problems (Jones 1999).  This report includes a survey of existing bridges with 

problems as well as data from a bridge instrumented with strain gages in order to 

determine loading effects and strains in the bridge.  The paper also addresses the failure 

of bridges that had a composite deck slab and were built without a shear key.  A three-

dimensional beam analysis program developed by the author identified high transverse 

moments in the deck slab as a potential problem in the bridges analyzed.  The report 

shows design forces for a wide range of Texas bridges and gives live load distribution 

factors for a number of box girder geometries used in Texas bridges.   
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Other Box Girder Bridge Literature 

The design and construction process for TxDOT box girder bridges is detailed in 

documents from their website (TxDOT 2001).  The documents include information on 

the standardized bridge designs, dimensions of all box girders, construction drawings for 

slabs, and details about elastomeric bearing pads.  This information was consulted for 

material specifications and bridge geometry of the models used in this study.   

Similar to the Texas standards, the Ohio bridge design manual and box beam 

standards (ODOT 2005) were consulted to obtain the specifications for a PCI type box 

girder.  These documents were posted on the Ohio DOT website.  The Ohio standards 

were chosen because these are PCI sections that have been studied in the past and many 

results are available in the literature regarding the design and construction of these 

bridge types.  Also, Ohio uses a minimal amount of transverse post-tensioning so the 

comparison with TxDOT examples is more meaningful than a bridge with extensive 

post-tensioning.   

The AASHTO LRFD Bridge Design Specifications (AASHTO 2004) and 

Standard Specifications for Highway Bridges (AASHTO 1992) books were consulted to 

find the current practices of construction and design, as well as how to correctly model 

design loads for the bridges.   
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Elastomeric Bearing Pad Literature 

One article about the support conditions of bridge girders on elastomeric bearing 

pads was consulted (Yazdani et al. 2000).  This article details the role that the stiffness 

of the bearing pads play in the behavior of precast concrete bridges.  The article 

concludes that the bearing pad stiffness must be taken into account if the actual bending 

behavior of a girder is to be accurately modeled.  The recommended stiffnesses for 

bearing pads are found in the AASHTO documents, but the researchers found that 

bearing pads grew stiffer as they aged, and that this can significantly alter the bending 

behavior.  Also, the stiffnesses of the bearing pads can affect the lateral distribution of 

loads between girders.   
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BRIDGES STUDIED 

For this study, 39 different multi-beam box girder bridges were analyzed with 

ANSYS, a general finite element computer program.  The focus of the study was the 

behavior of each bridge under realistic loading conditions.  The lengths and widths of the 

bridges were based on current bridge design standards used by TxDOT.  The selected 

bridges have no slope in the transverse direction, no curvature along their length, a 

constant cross section, and no skew.   

Of the 39 different bridges, 28 use TxDOT boxes and 11 incorporate the PCI box 

girder.  These bridge types were chosen because they represent the two extremes of 

shear key design.  The overall width of each bridge depends upon the number and type 

of box girder used in construction.  A typical way to represent this for a 26 ft wide 

TxDOT box girder bridge would be 5Bxx + 4[4Bxx] + 5Bxx, where the bridge is made 

up of a 5 ft wide box girder at one edge then (4) – 4 ft wide interior box girders, then 

another 5 ft wide box girder at the other edge.  The Bxx indicates a Box Girder section 

with “xx” as the depth of the girder.   

 

TxDOT Box Girders 

When the Texas bridge design engineers originally considered the box girder 

issue, they felt that the PCI sections used shear keys that were too small to resist the 

vehicular loads, so a new design was created (TxDOT 2001).  The Texas box girder uses 

the soffit form developed in the 1950’s for prestressed concrete I-beams.  The result, as 

seen in Figure 7, is an abnormally large shear key.  The benefit of using this detail was 
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that the concrete beam fabricators had the ability to make either an I-beam or a box 

girder with the same form.  One disadvantage is that the shear key and box girder uses 

more concrete or grout than the PCI design.  Thus, there is an extra material cost as well 

as the additional dead load that must be supported by the bridge superstructure, possibly 

resulting in the use of deeper sections or more prestressing than other designs.   

 

 

Figure 7:  Typical TxDOT Box Girder Geometry 

 

Texas bridge designers can specify four standard depths, and two standard width 

boxes, for a possible eight cross sections.  Box girder dimensions in Figure 7 are 

available in the state Bridge Design Guide (TxDOT 2001).  Typical span lengths for 

each cross section are listed in Table 2 (Jones 1999).  The B40 section is rarely used and 

so was not included in this study.   
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Table 2:  TxDOT Box Beam Typical Spans 

Section Name Depth (in) Shortest Medium Longest
B20 20 39 49 59
B28 28 39 59 79
B34 34 65 79 92
B40 40 79 92 105

Span Length (ft)

 

 

The shear key is constructed after the bridge box girders have seated on the bent 

caps and a backer rod is used to seal the bottom of the keyway.  Grout or concrete is then 

poured into the keyway, and as soon as it has reached design strength the bridge is 

complete.  In its latest design standard, TxDOT encourages the use of a concrete 

composite topping slab in an attempt to reduce longitudinal cracking in the riding 

surface.  A nominal depth of 5 inches is required, but the slab can be thicker.  If an 

asphalt topping is chosen instead of the composite slab, the minimum thickness is 2 

inches and the bridge must have transverse post-tensioning according to TxDOT 

specifications.   

Texas has built multi-beam box girder bridges in many different configurations, 

reflecting the combinations available.  Table 3 shows the TxDOT box girder bridges that 

were used in this study, including the most important characteristics of each one.   The 

purpose of including the large number of bridges is to investigate what role each 

component plays on the stresses present in the shear key.   
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Table 3:  Table of TxDOT Box Girder Bridges 

Bridge Name Span (ft)
Section 

Depth (in)
Overall 

Width (ft)
Shear 
Key

Composite 
Slab

Post-
Tensioning

Full-Depth 
Key

2 Lane TB20 - 30 30 20 26 Yes Yes -- --
2 Lane TB20 - 39 39 20 26 Yes Yes -- --
2 Lane TB20 - 59 59 20 26 Yes Yes -- --

2 Lane TB20 - S 59 59 20 26 -- Yes -- --
2 Lane TB20 - SK 59 59 20 26 Yes -- -- --

3 Lane TB20 - 30 30 20 40 Yes Yes -- --
3 Lane TB20 - 39 39 20 40 Yes Yes -- --
3 Lane TB20 - 59 59 20 40 Yes Yes -- --
2 Lane TB28 - 39 39 28 26 Yes Yes -- --
2 Lane TB28 - 59 59 28 26 Yes Yes -- --

2 Lane TB28 - S 59 59 28 26 -- Yes -- --
2 Lane TB28 - SK 59 59 28 26 Yes -- -- --
2 Lane TB28 - FD 59 59 28 26 -- -- -- Yes
2 Lane TB28 - PT 59 59 28 26 Yes -- Yes --

2 Lane TB28 - 79 79 28 26 Yes Yes -- --
3 Lane TB28 - 39 39 28 40 Yes Yes -- --
3 Lane TB28 - 59 59 28 40 Yes Yes -- --
3 Lane TB28 - 79 79 28 40 Yes Yes -- --
2 Lane TB34 - 59 59 34 26 Yes Yes -- --

2 Lane TB34 - S 59 59 34 26 -- Yes -- --
2 Lane TB34 - SK 59 59 34 26 Yes -- -- --

2 Lane TB34 - 79 79 34 26 Yes Yes -- --
2 Lane TB34 - 92 92 34 26 Yes Yes -- --

2 Lane TB34 - 104 104 34 26 Yes Yes -- --
3 Lane TB34 - 59 59 34 40 Yes Yes -- --
3 Lane TB34 - 79 79 34 40 Yes Yes -- --
3 Lane TB34 - 92 92 34 40 Yes Yes -- --

3 Lane TB34 - 104 104 34 40 Yes Yes -- --
NOTES:
1) 26 ft roadway composed of (4) - 4ft-0in wide box girders with (2) - 5ft-0in wide girders, (1) on each end
2) 40 ft roadway composed of (8) - 5ft-0in wide box girders

 

 

PCI Box Girders 

The more common PCI box girder has a smaller shear key, but is made of similar 

sizes as the Texas box girders and has similar section properties.  The PCI box girder 

also comes in two standard widths, but these are 3 ft and 4 ft rather than the Texas 4 ft 

and 5 ft.  See Figure 8 for a typical PCI box girder.   
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Figure 8:  PCI Box Girder Typical Geometry 

 

The applications for the PCI sections are similar to the Texas sections, but only 

the 27” and 33” sections are used.  The 39” box girder section will not be included in 

this study due to infrequent use, but some of the relevant information is shown here for 

completeness.  Table 4 shows the typical span lengths for a PCI box beam bridge 

(ODOT 2005).   

 

Table 4:  PCI Box Beams and Typical Spans 

Section Name Depth Short Medium Long
BI 27 40 60 70
BII 33 50 65 85
BIII 39 60 65 100  
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Since both Texas and the PCI box girder are used for similar bridges, Table 5 

was created to compare properties for three different examples.  These box girders have 

similar cross sectional properties, and therefore if a shear key fails in one bridge type but 

not the other, then it indicates that the shear key itself is the difference. 

 

Table 5:  Comparison of PCI and TxDOT Box Beams 

OH BI-48 27 692.6 65,835
TX 4B28 28 678.8 68,745
OH BII-48 33 752.6 110,333
TX 4B34 34 797.7 115,540
OH BIII-48 39 812.6 168,377
TX 4B40 40 917.7 176,556

State of 
Use

Box Girder 
Type

Depth 
(in)

Area 
(in^2)

Moment of 
Inertia (in^4)

 

 

The PCI bridges in this study are similar to the TxDOT bridges in most respects, 

but are composed of 4 ft wide sections since no 5 ft wide section is available.  For the 

smaller bridges used in this study, the difference between the PCI and TxDOT designs is 

small, about 2 feet, so the overall response to vehicular loads should be similar.  

However, for a wider 3 lane bridge the PCI design would use 10 girders rather than the 

TxDOT design of 8 girders, and the results would be difficult to compare.  Therefore 

only the 2 lane bridge design is modeled using the PCI box girders.    

Each state has a different specification for the composite deck slab.  Also, there 

are differences in the type and extent of transverse post-tensioning.  In order to keep the 

analyses consistent, the effects of transverse reinforcing are ignored unless otherwise 
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noted.  Also, the bridges chosen assume a 5 inch composite top slab is used.  Thus, the 

only difference between the PCI and TxDOT bridge models are the box sections 

themselves and the size of the shear key.  Table 6 shows the PCI bridges analyzed for 

this study. 

 

Table 6:  Table of PCI Box Girder Bridges 

Bridge Name Span (ft)
Section 

Depth (in)
Overall 

Width (ft)
Shear 
Key

Composite 
Slab

Post-
Tensioning

Full-Depth 
Key

2 Lane PB27 - 39 39 27 24 Yes Yes -- --
2 Lane PB27 - 59 59 27 24 Yes Yes -- --

2 Lane PB27 - S 59 59 27 24 -- Yes -- --
2 Lane PB27 - SK 59 59 27 24 Yes -- -- --
2 Lane PB27 - FD 59 59 27 24 -- -- -- Yes
2 Lane PB27 - PT 59 59 27 24 Yes -- Yes --

2 Lane PB27 - 79 79 27 24 Yes Yes -- --
2 Lane PB33 - 59 59 33 24 Yes Yes -- --
2 Lane PB33 - 79 79 33 24 Yes Yes -- --
2 Lane PB33 - 92 92 33 24 Yes Yes -- --
2 Lane PB33 - 104 104 33 24 Yes Yes -- --

NOTES:
1)  24 ft roadway composed of (6) - 4ft-0in wide box girders
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SOLID MODEL DESCRIPTION 

Introduction 

The multibeam bridges in this study were analyzed using the commercial finite 

element program ANSYS (ANSYS 2005).  The finite element method is used to get a 

detailed prediction of shear key stresses.  These stresses are used as a predictor of shear 

key cracking.  An earlier study (Huckelbridge 1997) also used finite element analyses to 

predict stresses in the shear key.  The bridge models contained in the current work 

presented here are similar, but seek to build upon the earlier work. 

The finite element method uses an idealized mathematical model that 

incorporates all of the important features of an actual structure.  There are certain 

modeling concerns that must be addressed with the finite element method.  First, the 

correct elements must be chosen.  Second, the element sizes must be sufficiently small 

so that the high stresses are not averaged out.  Third, material properties must reflect 

actual values.  Fourth, the support conditions and loads must reflect reality.  The focus of 

this section is on how the idealized bridge models meet these requirements.   
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Box Girder Description 

The box section, shear key, and slab were modeled using three dimensional solid 

brick elements.  There was a limit on the number of elements and nodes available for a 

single model for the software license, so this forced the use of a relatively coarse mesh in 

beams to allow enough detail to study the shear keys.  A box girder cross section with its 

mesh is shown in Figure 9.  The elements are about 6 inches in the longitudinal 

dimension, because if a smaller spacing is used then the bridge models exceeded the 

software license restrictions. 

   

Figure 9:  5B34 Box Girder with Mesh 

 

Shear Key and Slab Description 

A composite deck slab used in some of the bridges studied.  The slab was 5 

inches thick and based on current TxDOT construction practice.  The effect of adding an 
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asphalt riding surface was not considered.  All parts of the bridge use solid 3D elements, 

and the nodes were rigidly connected to each other.  The beams are all at the same 

elevation, and no cases with skewed supports are analyzed.  A cross section of a PCI box 

girder shear key with mesh is shown in Figure 10.  This figure also shows the nearby 

elements making up the rest of the box girder and the composite slab near the top.   

  

 

Figure 10:  Shear Key Detail with Element Mesh 

 

Material Properties 

There were three material models used in the finite element analysis.  All three 

were considered linear elastic isotropic materials.  The modulus of elasticity for each 

material is based on the current ACI specifications (ACI 2002) for normal weight 

concrete, which is given by the relationship 57,000 'cE f c= , and Poisson’s ratio was 
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taken as 0.20.  Thus, only the concrete compressive strength (psi) is needed to 

completely describe the material properties.  The box girder concrete was assumed to 

have a compressive strength of 5500 psi.  The composite deck slab, if present, was given 

a 4000 psi compressive strength, and the shear key was given a strength of 5000 psi. 

 

Internal Diaphragms 

As specified in the TxDOT standards, internal diaphragms are provided at the 

ends of each beam.  These extend 1 ft into each end and serve to anchor reinforcing bars 

and limit deformations near the supports.  These diaphragms are also included in the 

PCI/AASHTO box girders for consistency.  If post-tensioning is used, then diaphragms 

are added at approximately 10 ft on center spacing in the exterior box girders, but none 

are added for interior box girders.   
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IDEALIZATION OF BEAM SUPPORTS 

Introduction   

The bridges examined in this study rest on elastomeric bearing pads.  Earlier 

work (Jones 1999, and Yazdani 2000) suggests that appropriate representation of bearing 

pads is important and erroneous results can occur if box girder supports are treated as 

simple supports.  This section explains how the beam supports were modeled and how 

the structural element properties were obtained.   

 

Elastomeric Bearing Pads   

Box Beam bridges usually rest on solid supports or bent caps with an elastomeric 

bearing pad to accommodate movement.  The elastomeric bearing pad is typically very 

stiff in the vertical direction, but allows movement in the other two dimensions.  This is 

done to accommodate the constant expansion and contraction of the box girders, while 

providing resistance against vertical deflection.  A schematic of this behavior is shown 

in Figure 11. 
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Figure 11:  Bearing Pad Deformation and Behavior 

 

In Texas, the box girder design specification states that a three point bearing 

setup must be used for new bridge construction.  This is where a single large pad is 

placed under one end of the bridge and two smaller pads are located under the opposite 

edge.  This is done to eliminate rocking if the pads have slightly different support 

elevations.  In the models, all of the larger pads are on one side of the bridge and all the 

smaller double pads are on the other side of the bridge. 

 

Linear Spring Models 

In the model, these bearings are represented by linear spring elements connected 

to the bridge model at one node and are restrained at the other node.  Because the 

bearing pads resist movement in three dimensions, each side of the bridge has two spring 
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sets with three spring elements each restrained in only one direction.  A schematic 

showing the cross section view of the end of a beam with two pads is shown in Figure 

12.  In this view, the two horizontal springs are not shown for clarity.  

  

 

Figure 12:  Bearing Pad Vertical Spring Supports 

 

The springs are simple linear elements, known as LINK11 in the ANSYS 

element library (ANSYS 2005).  This element will resist both compression and tension, 

but a real bearing pad can only resist compression.  This means that a girder could 

potentially “lift-off” the bearing pad.  In actuality, the pads are compressed under the 

dead load, so lift-off does not occur.   
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Linear Spring Stiffness  

A value for stiffness, K (measured in lb/in), must be specified for each spring 

element.  The stiffness values were based on Mechanics of Materials equations 

combined with recommendations from AASHTO (AASHTO 2004).  The stiffness 

values were taken to be those of a new bearing pad, but it is known that the values may 

change as time and movement affect the pad, as previously discussed in the literature 

review (Yazdani et al. 2000). 

The stiffness of an elastomeric bearing pad is based on the overall size and 

laminations used.  A schematic of the bearing pad is shown in Figure 13, illustrating the 

parameters used for the stiffness equations. 

 

 

Figure 13:  Bearing Pad Schematic 

 

The first step in relating the spring stiffness to the bearing pad properties is to 

find a parameter ‘S’, which is the shape factor.  This parameter takes into account the 
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steel laminations and elastomer to give an indication of how much each material 

contributes to the overall stiffness.  The laminated steel sheets resist compression as well 

as bulging of the elastomer, while the elastomer permits movement in the two horizontal 

dimensions without much resistance.  Once the shape factor is found, it is used in an 

equation along with the shear modulus, G, which gives an approximation of the 

compressive modulus of elasticity.  The variable hri is the height of an individual 

lamination within the bearing pad. 

The shape factor equation given in AASHTO is: 

  S = (L*W)/(2*hri*(L+W)) 

The compressive modulus of elasticity is: 

  Ec = 6*G*S2 

These equations are used to calculate the design compressive modulus for a 

given pad.  After the bearing pad specifications have been found, the spring stiffness can 

be calculated using mechanics of materials.  The following equations are used to find the 

spring constants: 

 Hookes law: 

  σx = E * εx 

  τxy = G * γxy 

 average stress: 

  σx = Px/A 

  τxy = Vy/A 
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 displacement: 

  δx = εx * H 

  δy = tan (γxy) * H 

 spring constants: 

  kx = Px/δx 

  ky = Py/δy 

An assumption is made that ky and kz are similar and that the orientation of the 

pad will not affect the horizontal stiffness greatly.  To make the calculation of spring 

stiffnesses easier these equations can be condensed down to a single expression for each 

spring component (Yazdani, et al 2000), such that: 

  kx = (Ec*A)/H 

  ky = (G*A)/H 

The shear modulus recommended by TxDOT is 100psi when taken at a standard 

73 deg F.  The size of the bearing pad used for a bridge is dependent upon the depth of 

the section used, but does not depend on the span length or other factors (assuming some 

standard conditions are met).  In this study, similar pads are used for standard PCI 

sections for consistency.  In reality, however, the use of four bearing pads rather than 

three is typical in many states.  The state of New York even uses full-width bearing pads 

to prevent rotation at the ends of the beams (Lall 1997).  A summary of the values used 

in this study is shown in Table 7 below. 
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Table 7:  Bearing Pad Stiffnesses 

W L T Long. Vert. W L T Long. Vert.

14 3.83E+052 3/4 1527

B20

B28

B34

6

2 3/4 3055 1.29E+06 6

3491

7

6 12 2 3/4 2618 1.01E+06 6

2 3/4

One-Pad Size (in) Two-Pad Size (in)Stiffness (lb/in) Stiffness (lb/in)

2 3/4 1309 2.83E+05

6

Beam 
Type

1745 4.92E+05

Elastomeric Bearing Pad Information

1.60E+06 6 8 2 3/46 16
 

 

The table shows the sizes of the pads and the corresponding computed spring 

stiffnesses for the linear elements.  The stiffness for the single-pad side of the beam is 

more than twice as stiff as the double-pad side stiffness, even though the gross area of 

the pads is the same for both sides.  This is a consequence of the shape factor equation, 

which is non-linear.  For the bearing pads used in this study, the stiffness of the vertical 

springs will be about twenty times greater than the stiffness of the two horizontal 

springs.   

Elastomeric bearing supports have important consequences for box girder 

bridges.  The horizontal springs alter the bending stiffness of the box girders, and can act 

as a partial restraint for end rotations.  The vertical springs allow the box girders to 

deflect at the supports, spreading out the load to adjacent box girders.  These effects are 

necessary to incorporate into the bridge models or else the stresses will not represent 

actual conditions.   
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LOADS APPLIED 

In the actual bridges, dead load is carried by the box girders because the shear 

keys and composite slab are cast after erection.  Live loads are resisted by the entire 

composite section including the shear keys and composite slabs.  The live loads 

considered include HS-25 truck loading (AASHTO 2004), initial shrinkage loads, and 

thermal gradient loads.  Previous work (Huckelbridge et al. 1995, and Miller et al. 1998) 

has indicated shrinkage and temperature effects can produce larger stresses than 

vehicular loads, and so they must be included in the analysis. 

 

HS-25 Truck Loading 

The vehicular loads applied to the bridge model are those recommended by the 

AASHTO HS-25 design loading.  This loading pattern represents a heavy tractor-trailer 

and has three axles, each with two wheels acting on the top surface of the structure.  The 

bridge is divided into a number of lanes depending on the width of the bridge, and there 

can only be a single truck in one lane at a time.  In this study, multiple presence factors 

have not been considered, nor have live load factors.   

The AASHTO specification states that the truck loads should be placed where 

they cause the largest stresses to the section of bridge under consideration.  This location 

was found by varying the position of the truck along the span and across the width of 

each lane and checking the stress of the shear key and composite slab.  The worst 

locations for most bridges were either at the very end of the bridge near the supports or 

at midspan.  All locations had higher stresses when short wheelbases with 14’ spacing 
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were used for each axle.  Schematics of sample truck locations on a two lane bridge are 

shown in Figure 14 and Figure 15. 

 

 

 

Figure 14:  Truck at Midspan Location 

 

 

Figure 15: Truck at End of Span Location 

 

The wheel locations for a two lane bridge are shown in Figure 16.  The locations 

available for a three lane bridge are shown in Figure 17 and Figure 18.  The wheel loads 

were applied as vertical concentrated forces at nodes.  These loads are applied on the top 
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surface of the bridge and located at the nearest nodal location corresponding to a truck 

wheel.   

 

 

Figure 16:  Truck Axle Location on 2-Lane Bridge 

 

 

Figure 17:  Truck Axle Location on 3-Lane Bridge, Lane 1 
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Figure 18:  Truck Axle Location for 3-Lane Bridge, Lane 2 

 

The location of the wheel loads was based upon the AASHTO guide concerning 

the application of truck loads inside a lane.  The truck axles were moved from side to 

side and along the length of the bridge, in order to find the location where they caused 

the highest stresses.  The highest tensile stresses were found when the axle was near a 

shear key, but not directly on top of it.  Thus, the trucks axles were placed in their proper 

lane with at least one of the axles near the edge of a shear key.   

As noted above, the wheel loads are applied as a single concentrated load rather 

than a pressure over a given area as AASHTO recommends.  This is justified by using 

St. Venant’s principle of statically equivalent systems.  This principle states that the 

differences in stress between a load applied over a small area and a concentrated load 

will only be significant within a small distance from this area.  This will be dealt with in 

more detail in the Solid Model Verification section.   
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Initial Shrinkage Loads 

The second loading type was the stress induced by shrinkage.  This load is 

applied to the elements that might be expected to experience any type of shrinkage after 

casting.  Shrinkage is due to a number of factors including temperature changes during 

curing, loss of water, and general chemistry reactions within the slab.  Grouted keyways 

are often created with non-shrink grout material.  Non-shrink grout must conform to the 

specifications set by ASTM (ASTM 1993).  This requires that the grout not lose any 

volume over a certain time period.  This is usually achieved with the use of proprietary 

grout mixes with special additives.   

Concrete members can be subjected to residual stresses if shrinkage effects are 

not addressed.  This is particularly damaging in unreinforced concrete because there is 

no steel to prevent failure or redistribute stresses.  Restrained shrinkage can impose large 

tensile stresses, and a schematic of this effect in a uniaxial specimen is shown in Figure 

19.  The effect in a shear key would be similar, but shrinkage would take place in all 

three dimensions. 
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Figure 19:  Schematic of Shrinkage Effects 

 

In one of the studies referenced in the literature review (Issa et al.  2003), 

shrinkage measurements were taken for a variety of materials commonly used in 

keyways, including non-shrink grout.  The total shrinkage measured at 28 days after 

casting was close to 900 microstrain, which is much higher than allowed by ASTM for 

this material.  The authors pointed out that they used a greater amount of water than they 

expected in order to get the material to flow at the right consistency.  The specimens 

followed the ASTM C 157 specifications, and were prisms of 1 in. x 1 in. x 11 ¼ in.  

The specimens were demolded six hours after casting and placed in lime-saturated water 

for 15 minutes.   

The simple shrinkage specimens are placed in very specific laboratory 

conditions, and so the overall shrinkage measured will probably be different than the 

shrinkage experienced by a shear key in-situ.  It is believed that shrinkage strains of 900 

microstrain, as seen in the simple shrinkage specimens, are unrealistic in actual shear 
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keys because of the high volume to surface ratio present.  In comparison to non-shrink 

grout, typical shrinkage strains of unreinforced concrete members is between 400-700 

microstrain, and so the shrinkage reported in the study referenced above seems high.  

Therefore, 500 microstrain is the value of shrinkage strain used for the shear keys in this 

study, as this is between the reported shrinkage values of 900 microstrain and zero 

microstrain as reported in the literature review section.   

A composite slab will also experience shrinkage, but the reinforcing steel will 

limit the ultimate shrinkage values.  A typical slab is reinforced with steel in two 

directions, and the reinforcement is usually designed to limit the amount of shrinkage 

that can take place.  For reinforced members, a shrinkage strain of 200 microstrain will 

be used for the composite slab based on previous research (Leet and Bernal 1995).   

The box girders will not impose any shrinkage load on the shear keys because it 

is assumed that the girders will have reached ultimate shrinkage before the bridge is 

constructed.  Therefore, the shrinkage load is only applied to the shear keys and top slab.   

Although no method is provided in ANSYS to apply shrinkage directly on the 

model, the effect can be represented with a body force temperature applied that 

corresponds to the correct strain value.  Using the value of the coefficient of thermal 

expansion, the shrinkage strain to temperature conversion is found using the equation: 

 Temp * Cthermal expansion = εsh 

So, using a thermal expansion coefficient of 5.5E-6 in/in/deg F and 500 microstrain 

shrinkage value, a temperature of –91 deg F is applied to the shear key elements.  When 

a composite slab is present on the top of the bridge deck, the shrinkage strain of 200 
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microstrain is applied as temperature loads to the slab elements.  The temperature 

applied is –36 deg F.  The values of shrinkage and their converted temperatures are 

reported in Table 8 below.   

 

Table 8:  Shrinkage loads applied to bridge 

Category Shrinkage (in/in) α (in/in/deg F) Temp (deg F)
Prestressed Box Beam 0 5.5E-06 0
Unreinforced Shear Key -0.0005 5.5E-06 -91

Reinforced Concrete Slab -0.0002 5.5E-06 -36  

 

In reality, shrinkage will vary within the structural members.  The top surface 

will dry faster than the interior surfaces and each part of the shear key will experience 

shrinkage at a different rate.  However, it is assumed in this study that the shrinkage will 

be uniform through the depth of the concrete member and that the shrinkage values will 

reach the ultimate value at the same time.   

 

Thermal Gradient Load 

A thermal gradient load was applied based on that recommended by AASHTO 

specifications (AASHTO 2004).  There are two cases, a positive thermal profile and a 

negative thermal profile.  For the positive loading case, the nodes on the top surface have 

the highest temperature, and the temperature profile decreases through the depth of the 

bridge cross section. The temperatures are relative to ambient temperature, so a value of 

zero deg Fahrenheit indicates no difference from ambient temperature.  A graph showing 

this temperature profile is shown in Figure 20. 
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Figure 20:  Positive Temperature Profile for Thermal Gradient Load 

 

The temperature loads change according to the depth of the node below the top 

surface, representing the effect that solar radiation has on the bridge during a sunny day.  

The AASHTO provisions are based on a bridge where the bottom surface is cool, 

whereas the top surface is being heated by the sun.  This creates a thermal expansion and 

can result in significant stresses built up in the bridge.   

The reverse of this loading scenario is also considered where the interior and 

bottom of the bridge have warmed to the high daytime temperatures, but the top surface 

is now losing heat to the cooler atmosphere at night.  This is specified by AASHTO to 



 

 

49

have the similar profile as the positive case, but with negative temperatures applied to 

the bridge models, as shown in Figure 21.   

 

 

Figure 21:  Negative Temperature Profile for Thermal Gradient Load 

 

In the bridge models, the thermal loads are applied as nodal temperatures relative 

to ambient levels.  The thermal gradients will produce bending in the box girders, but the 

transverse effects of thermal loads are not well known.  As mentioned above and in the 

literature review, the reports from studies in Ohio (Hucklebridge et al. 1995, and Miller 

et al. 1998) suggested that thermal loads were the prime reason that shear keys were 

failing in the field. 
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ANALYSIS PROCEDURE 

The program chosen for the structural analysis of the bridges was ANSYS 

Version 9.0 running on the UNIX based supercomputers hosted by Texas A&M.  This 

program is a general finite element package, specializing in engineering simulations and 

stress analysis.  The license held by the Texas A&M University computing center is one 

for research applications and is limited to 128,000 nodes, which imposed some 

constraints on modeling efforts.   

Input files were written using the native ANSYS language, APDL, to facilitate 

generation of bridge models with similar geometry and loading conditions.  Program 

output consisted of stresses, strains, and displacements at each nodal point.  The ANSYS 

graphical user interface was used to produce many of the plots in this thesis.   

 

Description of Program Output 

The results of interest in this study are the normal and shear stresses in the shear 

key and composite slab.  It is known that cracking of the shear key occurs along a 

vertical plane, so the stresses that are responsible for this are likely to act perpendicular 

to this plane.  So to find this information, a computer routine was written to report the 

stresses though the depth of each shear key, from the top of the composite slab to the 

bottom of the keyway.  A profile was then built along a vertical line at the center of the 

shear key as shown in Figure 22.   
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Figure 22:  Girder and Shear Key Cross Section 
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Figure 23:  Transverse Normal Stress Profile 
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The resulting stress profile, showing transverse normal stress from the top 

surface to the bottom of the keyway is shown in Figure 23.  This represents the stress at 

a single location on the bridge, and was taken from a bridge model with a concentrated 

load.  The stresses represent the transverse normal stress at different depths along the 

vertical line of the cross section.  The centerline of the shear key was chosen to represent 

data for the entire shear key.  Transverse normal stresses in the middle of the shear key 

and those existing on the either side at the beam-shear key interfaces were essentially the 

same in every case.   

The most important quantity in the stress profile is the maximum tensile stress as 

this will govern initiation of a crack.  Consequently, this value was tabulated for each 

stress profile given by ANSYS and compared amongst all the bridges.   

 

Failure Criteria 

Shear keys typically fail in two different ways.  The first is a fracture or cracking 

in the shear key.  The second is debonding of the key material from the precast box 

girder.  Both problems can be considered as cracks, and both allow water and chlorides 

to leak into the joint.  This study considers both debonding and cracking as a shear key 

failure, as both are detrimental to the performance of the shear key and may result in 

reflective cracking. 
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Failure by Debonding 

Debonding failure is a result of a poor bond between the shear key and precast 

box girder.  The theoretical strength of the bond is that of the base material itself, but the 

bond strengths reported in the previous research usually did not achieve a bond that was 

this strong.  In fact, the range of stresses in tensile failures for non-shrink grout reported 

in the literature varied between 75 – 224 psi.  When other loading situations were 

considered (other than pure tension), the bond strengths reported were between 62 – 620 

psi.  The criterion for failure by debonding will be defined as a tensile stress exceeding 

300 psi at the bond surface, as this is typical of the values reported in the literature.   

 

Failure by Cracking 

A cracking failure occurs when the concrete material separates due to tensile 

stresses.  The ACI recommends that tension in unreinforced concrete is limited to a 

value of 6 'f c⋅  for normal weight concrete.  At the assumed compressive strength of 

' 5000f c =  psi used in this study, the failure stress is 424 psi.   

Cracking failures have more serious consequences than debonding failures 

because the crack can happen on a vertical plane allow slip, reducing load transfer 

between girders.  The loss of load transfer in the shear key depends on the location and 

extent of fracture, but previous studies (detailed in the literature review) show that the 

shear key can experience severe damage and cease performing its function in certain 

cases.   
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Shear keys usually will lose their bond with the adjacent girders before an 

internal fracture occurs, but some tests have indicated that fractures do occur if bond 

strength is sufficiently high.  When the shear keys are cast from epoxy or polymer 

concrete debonding is unlikely and cracking would occur in the box girder if large 

transverse stresses are present. 
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SOLID MODEL VERIFICATION 

Three different tests were performed in order to verify the finite element model.  

The goal of the verification tests was to confirm the element types and mesh used for the 

analysis were accurate.  The first test measured beam bending behavior of bridge models 

and compared them to the results given by ordinary 2D beam theory.  The second test 

compared transverse stresses for box girder bridge models built with different element 

types.  The last test used a model with a very refined mesh to check convergence of the 

results.     

 

Beam Bending 

In this test, a single simply supported beam is subjected to a load at midspan.  

Two finite element models are created, one using BEAM189 elements and the other 

using SOLID45 elements.  The results are also compared with a simple beam bending 

solution.   

The purpose of modeling the beam in different ways is to find out if the finite 

element model agrees with expected results.  Since the solution for a simply supported 

beam is well known, it is a good test of model behavior.  Typically, 3-D solid elements 

are stiffer and require a fine mesh to correctly model bending behavior, so it is important 

to confirm that the model has an adequate mesh density.   
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Figure 24:  Beam Bending Test Bridge 

 

The results discussed here are for a single 59 ft long Texas 4B34 box girder that 

has no composite slab, simple supports at both ends, and is made of material that has an 

elastic modulus of 4 million psi and a Poisson Ratio of 0.20.  A view of the beam 

geometry used for this test is shown in Figure 24.  Two load cases were considered, a 

distributed load and a concentrated load.  The distributed load is from the concrete self-

weight of 150 lb/ft3 and the concentrated load is a 20,000 lbs load at midspan 

(distributed evenly across the width).   
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Table 9:  Beam Verification Results 

Load Case Results Beam Eqns Beam189 Solid45
Dead Load Top Stress (psi) -678 -673 -672

Bottom Stress (psi) 603 603 603
Deflection (in) 0.492 0.498 0.502

Point Load Top Stress (psi) -551 -543 -550
Bottom Stress (psi) 490 487 490

Deflection (in) 0.32 0.326 0.327

1 x 4B34 Beam Simply Supported

 

 

The results shown in Table 9 indicate that stresses and deflections were virtually 

the same for all cases.  Overall, the results indicate that the beam is correctly modeled, 

because the stresses agree very closely with analytical solutions for both distributed 

loads and concentrated loads.  The model built with solid 3D (SOLID45) elements used 

the same mesh density as the other bridges in this study.  When the mesh was varied for 

the solid element models the results were similar to those shown in the table above.   

 

Transverse Bending 

A total of 6 finite element models were built to confirm transverse behavior.  The 

purpose of using several different element types was to confirm that the elements chosen 

for the study gave reliable and accurate results.  All the models were simply supported, 

with two Texas 4B34 box girders connected with a 5 inch composite slab, similar to that 

discussed for the beam bending section.  The loading chosen for this bridge is a 20,000 
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lbs point load at the midspan location directly above the centroid of the left beam.  A 

cross section of the test bridge is shown in Figure 25. 

 

 

Figure 25:  Transverse Bending Test Bridge 

 

The first model used exclusively shell elements (ANSYS SHELL181) for the 

slab, girder webs, and girder top and bottom flanges.  A screenshot of this bridge is 

shown in Figure 26 with offset nodal locations to best match the girder geometry.  A 

review of the figure below shows the limitations of this element type for modeling 

complex geometries.  The large gaps and overlapping elements resulted from trying to 

match the geometry of the box girders with the modeling requirements of the shell 

elements.  The shell elements were not appropriate element types for use in this study, 

but they were included in this verification test for the sake of comparison.   
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Figure 26:  Transverse Bending Shell Model 

 

Solid element types were used to create the remainder of the test models.  Solid 

elements can be used to build finite element models of any geometry, but they use a 

larger amount of computing resources.  The other problems with solid elements are that 

they are too stiff in bending situations and the shape of each element needs to be similar 

to a cube for best results (ANSYS 2005).  The second bridge model used solid (ANSYS 

SOLID45) elements for the bridge throughout the model.  The third model used Solid45 

elements but with a mesh twice as dense in every dimension as the previous bridge 

model.  Figure 27 shows a cross section of a bridge model with solid elements. 
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Figure 27:  Transverse Bending Solid Model 

 

The fourth model used an element supported by ANSYS called SOLSH190, 

which features shell behavior but uses 3-D solid topology (SOLid-SHell).  The user must 

specify an out-of-plane orientation in addition to the nodal coordinates.  This element 

was chosen because it is useful for structures that are governed by bending but need to 

interface with regular solid elements.   

The last two bridge models used a combination of elements already described.  

The fifth model had SOLSH elements for the composite slab, but used Solid45 elements 

for the box girder.  The sixth model used Solid45 element for the box girder but shell 

elements for the composite slab.  Once again, the purpose of these tests was to find out 

whether Solid45 elements yield accurate results for transverse stresses. 

Transverse moments were compared for the sake of convenience.  For bridge 

models with solid elements in the slab, the transverse moment was calculated using the 
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stress values given at each nodal location and a moment of inertia based on slab 

thickness.   

Figure 28 shows the transverse moments in the shear key from one end of the 

bridge model to the other.  This is the transverse moment resulting from the application 

of the 20,000 lb point load applied above the centroid of one of the beams as discussed 

earlier.  This data does not show the results for the bridge model built entirely from shell 

elements, which will be discussed later. 
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Figure 28:  Results for Transverse Bending Bridge Models 
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The graph indicates that all bridge models behave similarly, regardless of 

element type or mesh fineness.  This means that the bridge can be modeled using 

Solid45 elements with the proposed mesh without losing accuracy in the results.   

One item to note is the moment near the ends for the Solid Model with Coarse 

Mesh versus all the other bridges.  This was the only model without end diaphragms in 

the box girder.  When end diaphragms were present, the transverse moment was lower 

because the girder did not experience as much deformation near the support locations 

and so less rotation was imposed on the slab.  Thus, the presence of internal diaphragms 

was an important factor in the behavior of the bridges and was included in every model 

as discussed in the section regarding Solid Model Description.   

Figure 29 shows the differences in transverse moment between the bridge model 

built only with shell elements and the model built only with solid elements.  In this case, 

the shell model showed much higher moments than the solid model.  As noted in the 

discussion on the shell element model, that element type was not appropriate for use in a 

box girder bridge with shear keys.  The results shown in the graph indicate that the box 

girder bridge models with shell elements are more flexible than those with solid 

elements, even the SOLSH elements that use shell behavior.  Therefore, a box girder 

bridge should be modeled with solid elements for accurate results.   
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Figure 29:  Shell Model vs. Solid Model Results 

 

Submodel Analysis 

The last verification test used a process called submodelling.  In this technique, a 

small portion of the model is recreated with a higher mesh density in the areas of 

importance.  A submodel can give more detailed results and is useful when a limit on the 

number of nodes prevents a small mesh size from being used.  In this test, a submodel 

was built to verify that the mesh size chosen would give accurate answers.  
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The theory of submodeling is that a coarse mesh will give accurate results with 

regard to displacements, but the stresses (which are based on derivatives of 

displacement) may be inaccurate.  If the stress varies greatly within a small region of the 

model, the solid elements will only be able to capture an approximation of that stress.  

Therefore, a fine mesh is desired in regions where stress varies greatly.  However, a fine 

mesh was not an option due to limited computer resources.  Submodeling allows a model 

to have a coarse mesh in a global model and a very fine mesh in regions where the stress 

results are important. 

The process of submodeling superimposes the displacements from a large 

“global” model upon a smaller “submodel.”  In ANSYS, the user can specify the “cut 

boundaries,” or the locations where the submodel will be sliced out of the larger model.  

The smaller submodel is then recreated in the same three dimensional space as the 

original model and the global model displacement field is applied to the submodel 

boundary.  Because the submodel incorporates the effects of the global structure but has 

a significantly higher number of elements in the shear key, the profile of stresses through 

the depth of the joint should be more accurate.   

A submodel with elastic springs used to simulate the effects of the global 

structure was used in the article “Evaluation of Improved Shear Key Designs for Multi-

Beam Box Girder Bridges” (Hucklebridge and El-Esnawi 1997).  The type of submodel 

used for the present study is somewhat different than that approach.  The results for each 

individual loading situation are applied as constraints on a smaller model.  The submodel 
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with imposed displacements on the boundaries is the most accurate type of submodel 

and is the best way to model the effects of temperature and shrinkage.   

The bridge under consideration is a PCI box girder bridge with (6) – 4 ft wide, 

27” deep girders, and a span of 59 feet.  A standard PCI shear key and a 5” composite 

top slab is used, and no internal diaphragms or transverse post-tensioning is present.  A 

10 ft slice of the larger bridge near midspan is taken from one side of the bridge to 

investigate.  A screenshot from the global model is shown in Figure 30.  This model 

shows the general configuration of the bridge, and the region chosen for the submodel is 

highlighted.   

 

 

Figure 30:  Global Model and Highlighted Submodel Region 
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The mesh size used for the global model is shown in a closer view of the model 

in Figure 31.  The element size shown is similar to that used for all the other bridge 

models in this study.  The mesh size is generally about 4” - 6” per side, but some 

elements have sides up to 10” when they are away from the shear key region.   

 

 

Figure 31:  Global Model Mesh 

 

The submodel is shown in Figure 32, where the elements are about 2 inches on 

each side.  A close-up of the shear key region is shown in Figure 33.  The results from 

the global model analysis are superimposed on the boundary of the submodel and the 

loads are applied to the submodel in the same manner as on the global model.   
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Figure 32:  Submodel Mesh 

 

 

Figure 33:  Closer View of Submodel Shear Key 
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The screenshot in Figure 34 shows the displacement field from the global model 

applied as constraints to the “cut boundary”.  The cut boundary is any part of the 

submodel that is not a free surface in the global model.  Also visible in the screenshot 

are two wheel patch loads, each of which covers a 20” x 10” surface with 20,000 lb 

applied over the nodes.   

 

 

Figure 34:  Submodel with Applied Constraints 

 

The transverse stress results for the worst location in any shear key and the stress 

profile through the depth of the second shear key from the edge (listed as J2 in the 

graphs following) are compared between the full bridge model and the submodel.  The 

results indicate that the full model generally gives equivalent results as the submodel, 
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but some loading situations show discrepancies.  The results for each loading are 

discussed below in more detail. 

 

Shrinkage in the Slab 

The maximum transverse normal stress in the shear key or composite slab due to 

slab shrinkage is shown in Figure 35.  In this case, the full model shows a fairly 

consistent value around 750 psi near midspan.  The submodel shows a value near 900 

psi.  The results indicate that the full bridge model underestimates maximum transverse 

normal stresses by about 20%. 
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Figure 35:  Maximum Transverse Stress in Submodel due to Slab Shrinkage 

 

There are also peaks in stress near the edges of the submodel.  These are a result 

of applied constraints which are interpolated from the global model and cause the stress 
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to spike in this area as a result.  These spikes in stress near the submodel cut boundaries 

are typical of the data presented in this section.  Since they are fictitious and only a result 

of the modeling technique, they will be disregarded.   

The stresses through the depth of the shear key and composite slab are shown in 

Figure 36.  The results here indicate that the stresses follow the same pattern, but that the 

submodel shows a wider variation in stresses in the upper portion of the shear key and 

lower portion of the composite slab.  The full bridge model does not include this 

interaction between the slab and shear key because the elements are larger and the 

effects get averaged out.   
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Figure 36:  Stress Profile for Slab Shrinkage 
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Overall, the stress profile and maximum stresses compare favorably between 

each model when slab shrinkage is considered.  The results provided by the full model 

should provide enough accuracy to use in the analysis of the shear key.   

 

Shrinkage in the Shear Key 

The maximum transverse normal stress in the shear key or composite slab due to 

shrinkage in the shear key is shown in Figure 37.  The full bridge model shows a 

maximum normal stress near 700 psi whereas the submodel gives a result of about 450 

psi.  The full bridge model appears to overestimate maximum tensile stresses by about 

50%.   
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Figure 37:  Maximum Transverse Stress in Submodel due to Shear Key Shrinkage 
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The stresses through the depth of the section are shown in Figure 38.  In this 

case, the submodel shows that the stresses vary near the top of the section between 

compression and tension, and the area of the shear key near the top is under a significant 

amount of tensile stress.  The full bridge model does not show tension in this region, so 

there is some concern that the full model does not include this effect.  The stresses near 

the bottom of the shear key have the same pattern, but the submodel shows more 

compression and a less tension than the full bridge model.   
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Figure 38:  Stress Profile for Shear Key Shrinkage 

 

The differences between the two models under shear key shrinkage loads are 

quite large.  The full bridge model does a poor job of representing the worst tensile loads 

and shows the reverse stress conditions from the submodel at the top of the section.  The 
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reason that this occurs is probably due to the size of the elements used in the shear key.  

The elements making up the shear key are the locations where loads are applied and they 

are also the locations where stresses are being measured, and this can introduce errors.   

 

Positive Temperature Gradient 

The maximum transverse normal stresses in the shear key due to a positive 

temperature gradient are shown in Figure 39.  Both models show a stress near 170 psi, so 

there is little difference between the two models.   
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Figure 39:  Maximum Transverse Stress in Submodel due to Positive Temperature Gradient 

The stresses through the depth of the section are shown in Figure 40.  Once 

again, the stresses are nearly identical for the entire cross section, showing only slight 
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variations.  The top and bottom of the joint section are both in compression, while the 

stresses near the mid-depth region are all in tension.   
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Figure 40:  Stress Profile for Positive Temperature Gradient 

 

From the data shown comparing the two models, it can be seen that the 

differences are small for this loading case.  The results of the full bridge model agree 

closely with the submodel, so there is no adjustment needed.   

 

Negative Solar Radiation Temperature Differential 

The maximum transverse normal stresses in the shear key due to a positive 

temperature gradient are shown in Figure 41.  This loading case is similar to the positive 

thermal gradient, but the temperature loads are reversed in sign and have a lower value.  
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The stresses for the submodel are near 200 psi, while the full bridge model stresses are 

near 160 psi, which means that the full model underestimates the stresses by about 20%.   
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Figure 41:  Maximum Transverse Stress in Submodel due to Negative Temperature Gradient 

 

The stresses through the depth of the section are shown in Figure 42.  The 

stresses shown for each model agree very closely except for the area near the bottom of 

the shear key.  The stress profile here is opposite in sign from the one shown in the 

positive thermal gradient loading case, and so in this case the tension occurs at the very 

top and bottom of the section.   
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Transverse Normal Stress Profile at Midspan 
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Figure 42:  Stress Profile for Negative Temperature Gradient 

 

In this loading case, the differences are noticeable, but not very large.  The 

results from the full bridge model are accurate enough to use in the analysis with only a 

small amount of adjustment necessary.   

 

HS-25 Truck Loading 

The maximum transverse normal stresses due to HS-25 truck loading are shown 

in Figure 43.  For this case, the results of full bridge model are compared with the results 

from two loading patterns of the submodel.  The first loading case considered is similar 

to the full bridge model, where the HS-25 wheel loads are applied at a single node.  The 

second loading case is where the HS-25 wheel loads are applied over an area that is the 

correct AASHTO specification.  This “patch” loading means that the load pressure is 
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100 psi and distributed over an area according to the formula listed in the AASHTO 

documents (AASHTO 2004).   

The maximum transverse stress results show that there is little difference 

between the submodel with a point load and the submodel with a patch load.  However, 

the full bridge model underestimates the maximum stresses by about 20%. 
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Figure 43:  Maximum Transverse Stress in Submodel due to Truck Loading 

 

The stresses through the depth of the section are shown in Figure 44.  The graph 

shows the results for both submodel loading conditions and the full bridge model with 

point loads.  At this location, both the submodel with patch loads and with point loads 
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agree closely with each other, but the full bridge model is a bit off from the submodel 

results.  All models show a region of compression near the top of the section and a large 

tensile stress at the extreme bottom of the shear key.  Using a point load instead of a 

patch load was found to have little consequence on the overall results, as both styles of 

loading showed similar patterns of stresses through the depth of the section.   
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Figure 44:  Stress Profile for Truck Loading 

 

Summary of Submodel Verification Test 

In general, the results from the submodel verification test show that the 

maximum transverse tensile and stress profile match well, but some adjustments need to 

be made in order to match the results from the submodel.  First, the load case involving 

shear key shrinkage overestimates maximum transverse stresses by about 50%.  Next, 
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the load cases involving slab shrinkage, negative temperature gradient, and truck loading 

all underestimate the maximum transverse stresses by about 20%.  The results from the 

positive temperature gradient load case was found to agree closely with the maximum 

transverse stress found in the submodel, and so no adjustment is needed.   

Also of important interest was the truck loading submodel results.  AASHTO 

states that HS-25 truck loads should be applied as a pressure over a certain area 

(AASHTO 2004).  The truck loads were applied as point loads in all tests, so it was 

important to find out if this would cause a difference when compared to an applied 

pressure.  
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RESULTS 

Introduction 

The results shown in this section compare the stresses from the bridge models to 

the failure criteria.  The results are given independently for each load case.  These results 

are shown in graphs that plot the highest tensile stress in a bridge joint as a function of 

span length.  Additional graphs show the variation of stresses through the depth of each 

bridge joint at midspan for typical TxDOT and PCI bridges.  The notation used to 

identify the various bridges analyzed in this study is shown in Table 10. 

 

Table 10:  Bridge Suffix Identification Code 

Prefix
P
T

Section
Bxx

Suffix
None
- S

- SK
- PT
- FD NO slab present, full depth shear key used

Bridge Identification Code

Assumes 5" slab and shear key present
Assumes 5" slab, NO shear key present
NO slab present, shear key is present

NO slab present, post-tensioning and shear key used

Explanation
PCI style box girder and shear key

Texas style box girder and shear key

Box girder section "xx", depth of girder section only

 

 

As an example, a TB20 – S (59) indicates a Texas B20 section with no shear key 

and a 5 inch composite slab on a bridge span of 59 feet.  A PB33 (92) indicates a PCI 

B33 (IIB) section with both a shear key and a 5 inch composite slab on a 92 ft. span.  

The span length is often used as one of the axes on each graph, so that information may 
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be unlisted if it would be redundant.  Also, the results are separated by the number of 

design lanes, so each chart will be noted as 2-lane bridges or 3-lane bridges. 

It should be noted the results show only the worst case transverse tensile stresses 

for a bridge joint.  The transverse tensile stress is the most important stress component 

because it is the best predictor of failure in a shear key, and likely to be the cause of 

reflective cracking on the roadway surface.   

In addition to the maximum transverse tensile stresses, graphs showing 

transverse stress through the depth of the joint section are given.  The “joint section” is 

the part of the bridge that transfers forces from one box girder to the adjacent girders.  

For a bridge that has shear keys and a composite slab, the joint would be composed of 

both the shear key and the part of the slab directly above the shear key.  The results for 

each joint are graphed versus section depth and begin at the top of the shear key or 

composite slab and extend to the bottom of the shear key, similar to that described in the 

previous section on the submodel.  A sample joint numbering pattern is shown in Figure 

45.   

 

 

Figure 45:  Joint Numbering Scheme 
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Only a selection of bridges for each load case will include stresses through the 

depth of the joint section because the other bridges will have a similar pattern for the 

same load case.  Listing the full results for every bridge under every load case would be 

redundant and consume too much space for a worthwhile discussion.   

Each load case also discusses the scaling factor required for the global model 

results to match the submodel results.  This factor represents the difference between the 

coarse mesh “global model” and the fine mesh “submodel”.  In some cases, this 

difference accounted for a factor of 50% difference in the maximum tensile stress, but 

typically the difference was about 20%.  This factor is mentioned in the description of 

each load case, but the factor has not been applied to any results.  The values shown in 

the graphs are the actual stresses obtained from the analysis, and contain no scaling 

factors.   

 

Results for Shrinkage Loading 

Slab Shrinkage 

As discussed in the section on loading values, the slab has a shrinkage strain 

equivalent to 200 microstrain.  Because the analysis is linear, the stresses can be scaled 

up or down to obtain the results for an analysis performed with a shrinkage strain 

different from the 200 microstrain used.   

The results shown in Figure 46 and Figure 47 show that the tensile stresses due to 

slab shrinkage in all bridges are higher than both the rupture strength and debonding 
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failure criteria.  The highest tensile stresses occur in bridges without a shear key.  Span 

length appears to be a factor for the PCI style bridges, but the Texas bridges do not show 

a dependence on span length.   

The submodel analysis indicated that the global models would underestimate 

tensile stresses by 20%, so the stresses should be scaled up to reflect these conditions. 
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Figure 46:  Maximum Transverse Stress due to Slab Shrinkage in 2-Lane Bridges 
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Maximum Tensile Transverse Stress 
Shrinkage in Slab Loading, 3-lane bridge
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Figure 47:  Maximum Transverse Stress due to Slab Shrinkage in 3-Lane Bridges 

 

The transverse stresses at midspan in Figure 48 and Figure 49 indicate that the 

stresses caused by slab shrinkage are similar for all joint locations.  The stress profiles 

through the depth of the section also show that tension stresses are highest at the top and 

bottom surfaces, and some compression exists in the middle region.  Cracking at the top 

surface is possible due to this load case, and cracking could occur at every joint location.   
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 48:  Stresses in Joints for TxDOT Bridge due to Slab Shrinkage (2-Lane TB28 - 59) 
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Figure 49:  Stresses in Joints for PCI Bridge due to Slab Shrinkage (2-Lane PB27 - 59) 

 



 

 

86

Shear Key Shrinkage 

The shear key shrinkage load case is similar to that for shrinkage in the slab.  The 

shrinkage loads are confined to the shear keys, and all other elements do not have any 

loads applied.  The value used for shrinkage is 400 microstrain.  The stress levels for 

shear key shrinkage should be reduced by approximately 50% to reflect the differences 

between the global model and the submodel.  The bridge models that do not have a shear 

key have been removed from this data set as no loads can be applied to them.   

The results for shrinkage in the shear key are shown in Figure 50 and Figure 51.  

For this load case, most TxDOT bridges and some of the PCI bridges without a 

composite slab are above the failure criteria, after considering the scaling factor needed 

to match the submodel results.  In this load case, the span length is not a factor 

contributing to maximum tensile stress.  However, the size of the shear key is a factor.  

The use of full depth shear keys and post-tensioning improve the results for the bridges 

with those features.  The presence of a composite slab does not have a large effect on the 

stress levels under this load, because the loads and stress effects are concentrated in the 

shear key area. 
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Maximum Tensile Transverse Stress 
Shrinkage in Shear Key Loading, 2-lane bridge
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Figure 50:  Maximum Transverse Stress due to Shear Key Shrinkage in 2-Lane Bridges 
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Maximum Tensile Transverse Stress 
Shrinkage in Shear Key Loading, 3-lane bridge

0

200

400

600

800

1000

1200

0 20 40 60 80 100

Span Length (ft)

S
tr

es
s 

(p
si

)

TB20 TB28 TB34 Bond Strength Rupture Modulus  

Figure 51:  Maximum Transverse Stress due to Shear Key Shrinkage in 3-Lane Bridges 

 

The stress profiles for a typical TxDOT and PCI bridge are shown in Figure 52 

and Figure 53.  The TxDOT bridges have the highest tensile stress just below mid-depth.  

The PCI bridges have the highest tensile stresses at the top of the slab and near the 

bottom of the keyway.  When stresses are reduced to match the submodel results, the 

values are still above the failure criteria.   
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 52:  Stresses in Joint for TxDOT Bridge Under Shear Key Shrinkage (2-Lane TB28 - 59) 
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Figure 53:  Stresses in Joint for PCI Bridge under Shear Key Shrinkage (2-Lane PB27 - 59) 
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Results for Temperature Loading 

(+) Positive Thermal Gradient 

The thermal gradient load considers the effect of solar heating on the top surface 

of the bridge, while the bottom regions of the bridge remain at lower temperatures.  The 

transverse stresses due to thermal expansion are applied using the recommended 

temperature profiles from AASHTO.  The submodel analysis showed very little 

difference with respect to the global model maximum tensile stresses, so no adjustment 

factor is needed for this load case.   

The results from Figure 54 and Figure 55 show that the Texas box girders much 

lower tensile stresses versus the PCI sections with regard to thermal differential loads.  

None of the standard Texas bridges has stresses above the failure criteria, but similar 

bridges using a PCI shear key will have much higher stresses.  Bridges without a 

composite slab or without a shear key also have much higher transverse stresses in the 

joint.  Post-tensioning  (bridges listed with – PT) reduces the tensile stresse, but a full-

depth shear key reduces the tensiles stress even further in PCI bridges.   
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Maximum Tensile Transverse Stress 
(+) Thermal Gradient Loading, 2-lane bridge
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Figure 54:  Maximum Transverse Stress due to Positive Thermal Gradient in 2-Lane Bridges 
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Maximum Tensile Transverse Stress 
(+) Thermal Gradient Loading, 3-lane bridge
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Figure 55:  Maximum Transverse Stress due to Positive Thermal Gradient in 3-Lane Bridges 

 

The stress profiles of typical TxDOT and PCI bridge joints are shown in Figure 

56 and Figure 57.  All joint locations show similar stress levels, and the highest tensile 

stresses occur about mid-depth of the joint.  The results shown in these figures are for 

stress at mid-span, but the higher stresses shown in Figure 54 are near the end of the 

span.  
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 56:  Stresses in Joint for TxDOT Bridge due to Positive Temperature Gradient  

(2-Lane TB28 - 59) 
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Figure 57:  Stresses in Joint for PCI Bridge due to Positive Temperature Gradient  

(2-Lane PB27 - 59) 
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(-) Negative Thermal Gradient 

The counterpart to the solar induced thermal effects is the loss of thermal energy 

to the night sky.  The temperature differential is less, but the top surface of the bridge 

can experience large tensile stresses.  The temperature profiles are applied using the 

AASHTO negative thermal gradient specifications similar to the other thermal gradient 

load case.  The submodel analysis indicated that this load case would underestimate the 

stresses, so the stresses shown in the results should be scaled up by about 20%.    

The results in Figure 58 and Figure 59 show that most bridges have stress values 

below the failure criteria.  Only bridges built without a shear key are close to the 

cracking stress, but these bridges would not experience problems with debonding 

because the slab is typically a monolithic pour.   

The stress profiles for a typical TxDOT and PCI bridge for this load case are 

shown in Figure 60 and Figure 61.  The results indicate that high tensile stresses exist 

near the top surface for both TxDOT and PCI bridge, but the stresses are below the 

failure criteria even after scaling up to match the submodel results.   
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Maximum Tensile Transverse Stress 
(-) Thermal Gradient Loading, 2-lane bridge
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Figure 58:  Maximum Transverse Stress due to Negative Thermal Gradient in 2-Lane Bridges 
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Maximum Tensile Transverse Stress 
(-) Thermal Gradient Loading, 3-lane bridge
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Figure 59:  Maximum Transverse Stress due to Negative Thermal Gradient in 3-Lane Bridges 
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 60:  Stresses in Joint for TxDOT Bridge due to Negative Thermal Gradient  

(2-Lane TB28 - 59) 
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Figure 61:  Stresses in Joint for PCI Bridge due to Negative Thermal Gradient  

(2-Lane PB27 -59) 
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Results for Vehicular Loading 

HS-25 Design Truck 

The HS-25 truck load results produced by a single truck are shown in Figure 62 

and Figure 63.  The submodel analysis indicated that the results from the global models 

would underestimate stresses, so the results presented here should be scaled up by 20% 

to take this into consideration.   

One problem with the data shown in the figures is that actual truck loadings are 

generally more complicated than the simple static loads presented here.  There can be 

several lanes loaded at one time and dynamic interactions between the truck and the 

bridge, so the effects of truck loads can result in higher stresses than what is shown by a 

single static truck load.   

There is not an increase in transverse stresses when multiple trucks are placed on 

the bridge, because the additional trucks effectively reduce bending in the transverse 

direction.  Placing a truck in every lane causes all box girders to deflect similarly, so 

shear across the shear key is reduced.  Therefore trucks in multiple lanes were not 

considered.  Likewise, multiple trucks in the same lane were not considered, but the 

stresses from this situation could be much higher than for a single truck.   

The issue of “impact loading” or higher stresses due to dynamic effects of the 

moving wheel loads is discussed in the AASHTO bridge manual, but no impact factor 

was incorporated in this study.   

As shown in the results, all of the bridges have stresses below the rupture 

modulus, and only the PCI Bridge without a composite slab is significantly above the 
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stress level that would cause debonding.  The increase of tensile stresses by 20% to 

match the submodel results means that more bridges would be above the failure criteria 

for debonding, but still none would be above the failure criteria for cracking.  The 

TxDOT three lane bridges are also below the stress levels for cracking and debonding.   
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Figure 62:  Maximum Transverse Stress due to HS-25 Loading in 2-Lane Bridges 
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Maximum Tensile Transverse Stress 
HS-25 Truck Loading, 3-lane bridge
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Figure 63:  Maximum Transverse Stress due to HS-25 Loading in 3-Lane Bridges 

 

The stress profiles for a typical TxDOT and PCI bridge are shown in Figure 64 

and Figure 65.  The maximum tensile stress for a joint at midspan exists below the wheel 

loads, and the stresses decrease as one moves further away from the wheel loads.  The 

TxDOT bridges have small stresses at each joint at midspan, but the tensile stresses near 

the ends of the bridge are much higher.  The PCI bridges have high tensile stresses in 

their joints at the midspan location as well as near the ends.   
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 64:  Stresses in Joint for TxDOT Bridge due to Truck Loading (2-Lane TB28 - 59) 
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Figure 65:  Stresses in Joint for PCI Bridge due to Truck Loading (2-Lane PB27 - 59) 
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Discussion of Bridge Features 

The role of composite slabs, shear keys, transverse post-tensioning, full depth 

shear keys, and bridge width are discussed here to highlight the differences between the 

various bridge features.   

 

Effect of Composite Slab 

The effect of adding a composite slab serves to increase the load transfer 

mechanism and protect the shear keys from large tensile stresses.  The bridges without 

composite slabs show higher stresses for most loading conditions.  The major benefit of 

a composite slab is that it contains reinforcing steel and so would not be expected to lose 

the ability of load transfer once cracking occurs.  However, the large shrinkage strains in 

a composite slab are a concern.     

 

Effect of Shear Keys 

The construction of a bridge with a composite slab but without a shear key 

produces stresses that are above the failure criteria when shrinkage and thermal loads are 

considered.  The stresses due to the HS-25 load case are comparable to other bridge 

designs, as shown in Figure 66.  The stresses due to thermal loads are very high, as 

shown in Figure 67.  The experience of TxDOT with using these box girder bridges 

confirms these predictions (Jones 1999).  The slabs developed large reflective cracks 

over shear keys and sometimes over the center of a girder.  This is most likely related to 

shrinkage, but even without shrinkage the thermal stresses are high enough to cause 
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failure.  It is unknown whether any PCI box girders have been built without shear keys, 

but the results would be similar to the TxDOT designs discussed here. 
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Figure 66:  TxDOT Bridge with no shear key under HS-25 loads (2-Lane TB28 – S 59) 
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 67:  TxDOT Bridge with no shear key and (+) Thermal Gradient Loads (2-Lane TB28 - S 59) 

 

Effect of Full Depth Shear Key 

The use of a full depth shear key means that the shear key material extended to 

the bottom of the section.  This is accomplished by including additional small elements 

below the gap of the typical shear key, but otherwise the models are similar to other 

bridges.  The effect of the full-depth key is somewhat dependent on the original shear 

key configuration, as the PCI key is typically much smaller than the TxDOT key.  This 

means that there will be a greater difference in the PCI bridges than for the TxDOT 

bridges.  For example, a TxDOT B28 section will have a shear key extending 23” below 

the top (Figure 68).  A PCI B27 (IB) will have a shear key that is only 13” below the top 

surface, so the key extends only about halfway down the section (Figure 69).   
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Figure 68:  Texas Box Girder (TB28) with Full Depth Shear Key 

 

 

Figure 69:  PCI Box Girder (PB27) with Full Depth Shear Key 

 

The full depth shear key allows the bridge to transfer transverse normal stresses 

more effectively across joints, and there is less of a stress concentration at the bottom of 

the shear key.  This might be difficult to accomplish with current designs, but would 
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result in lower tensile stresses in the shear key region under the same loads as a partial 

depth shear key.  Another aspect of full depth shear keys is that they are less likely to act 

like a hinge, and more likely to transfer moment to adjacent girders.   

Adding a full depth key to a bridge without a composite slab does lower the 

maximum tensile stresses as shown in the results.  In addition, the use of a full depth key 

decreases the effect of the stress concentration at the bottom of the current shear key 

design.  This area has an abrupt geometry change and could potentially be a crack 

initiator.  This effect was not explored in this study, but the use of a full depth key 

decreased tensile stress levels for most bridges and load cases.   

The improvements associated with using full depth keys were not evident in the 

Texas bridges that already have large shear keys.  The use of a full depth key in the 

bridges was effective in lowering the tensile stresses for most load cases, and the results 

for the HS-25 load case is shown in Figure 70.  The full-depth key did not lower the 

stresses for the negative solar radiation load, as shown in Figure 71.   
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Figure 70: TxDOT Bridge with Full-Depth Key under HS-25 Loads (2-Lane TB28 - FD 59) 
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Figure 71: TxDOT Bridge with Full-Depth Key under (-) Thermal Gradient Loads  

(2-Lane TB28 - FD 59) 
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Effect of Transverse Post-Tensioning 

The models with post-tensioning are similar to the other models with three main 

differences.  The first is that point loads are applied at the post-tensioning reaction 

locations simulating the effect of unbonded post-tensioned strands.  The second 

difference is that internal diaphragms are included according to TxDOT or Ohio DOT 

standards.  The last major difference is that no composite slab is used.  The Texas bridge 

standard requires that when post-tensioning is used, diaphragms must be included in the 

exterior girders spaced every 10 feet with tendons at the same spacing tensioned to 

45,000 lbs each.  The PCI bridge has diaphragms (at the exterior girders) and tendons 

only at the ends and midspan locations, and each tendon is tensioned to 30,000 lbs.  The 

effectiveness of post-tensioning had been dismissed by earlier studies, but in the models 

used for this study it was found to limit the maximum tensile transverse stresses in some 

cases.  The overall improvements were small, and some load cases showed no apparent 

improvement in reducing transverse tensile stresses.  Thus, the use of a small amount of 

post-tensioning does not appear to justify the additional expense. 

One of the problems discussed with post-tensioning is that a close spacing and 

high tensile forces must be used if a compressive stress is needed for the entire shear key 

along the entire length of the bridge.  The joints at the interior of the bridge have the 

most consistent compression, whereas the exterior joints have higher compression near 

the tendon reactions and lower compression halfway between reaction locations.   

In the bridges discussed here, the strand is located at the mid-depth of the shear 

key.  However, higher compressive stresses develop at the top and bottom of the shear 
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key due to the relative flexibility of the box girder walls.  The average normal stress in a 

typical TxDOT bridge is shown in Figure 72. 
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Figure 72:  Average Stress in TxDOT bridge from Post-Tensioning Force (2-Lane TB28 – PT 59) 

 

The stress profile through the depth of the shear keys in a typical TxDOT post-

tensioned bridge with no composite slab is shown in Figure 73.  The profile shown in 

Figure 74 is similar but taken at the L/4 (the quarter-point of the span) location, which is 

halfway between tendon locations.  The joints in this model show a similar level of 

stress for all the interior joints, but the exterior joints show a 50% decrease from the 

level shown in the results from the midspan location.  So, the interior joints will have a 

net compressive force that is consistent along the entire length of the bridge, but the 
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exterior joints can only be assured of half of that compressive force at locations away 

from strand reactions. 

 

Transverse Normal Stress Profile at 
Midspan Location

0

5

10

15

20

25
-80 -60 -40 -20 0 20

Stress (psi)

D
ep

th
 (i

n)

J1

J2

J3

J4

J5

 

Figure 73:  Post-Tensioned TxDOT Bridge without Loads Applied (2-Lane TB28 – PT 59) 
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Transverse Normal Stress Profile at 
L/4 Location
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Figure 74:  Post-Tensioned TxDOT Bridge without Loads Applied (2-Lane TB28 – PT 59) 

 

The PCI bridge with post-tensioning according to OHIO DOT specifications uses 

three strand locations and 30,000 lbs of force at each location.  The average compressive 

stress as a function of location along the span length is shown in Figure 75.  From these 

results, it can be seen that the compressive stress decreases quite rapidly when one 

moves away from the post-tensioning strands.  
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Average Transverse Normal Stress in Bridge 
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Figure 75:  Post-Tensioned PCI Bridge without Loads Applied (2-Lane PB27 – PT 59) 

 

The stresses through the depth of the joint section at midspan are shown in 

Figure 76.  The highest compressive stresses are at the bottom of the joint, but this effect 

could be a reflection of the post-tensioning strand location.  The post-tensioned strands 

were assumed to be at mid-depth of the shear key since no location was specified.   
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Transverse Normal Stress Profile at 
Midspan Location
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Figure 76:  Post-Tensioned PCI Bridge without Loads Applied (2-Lane PB27 – PT 59) 

 

The TxDOT bridges with post-tensioning have a measurable level of 

compression for each joint along the length of the bridge.  However the compressive 

stress was about 15 psi on average and only half this value away from strand locations.  

This is not high enough to prevent cracks from forming, but may help control the 

opening of cracks and limit their width.  If crack prevention is desired, much higher 

post-tensioning force is needed to ensure compressive stresses high enough to counteract 

the tensile stresses along the entire bridge.   

Alternatively, if the maximum tensile stresses occur only in certain areas of the 

bridge, then the location of the post-tensioning can be optimized as an effective way to 

reduce cracking.  For example, if cracking is a problem only at the end of span and 

midspan locations, then the current specifications may prevent shear key failure to a 
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certain extent.  However, it should be noted that other techniques were much more 

reliable and effective at reducing tensile stresses such as using a composite slab or a full 

depth key.   

The post-tensioned PCI bridges have two main problems.  The first is that the 

compressive forces are too small to resist cracking.  The second problem is that there is 

no consistency in compressive stresses at the joints along the length of the bridge.  

Between the post-tensioning locations, the average compressive stress drops to zero.  If 

post-tensioning is needed to resist the large tensile stresses experienced by the shear 

keys, then a closer spacing of strands is necessary to ensure a consistent compressive 

stress along the length of the bridge.   

 

Effects of Bridge Width 

The differences between bridges of different widths were not significant when 

considering the maximum transverse normal stresses.  The results for a 2 lane bridge 

were similar to the results for a 3 lane bridge under each loading case.  This is because 

the highest stresses due to vehicular loads do not extend very far beyond the girders 

supporting the loads, and the secondary loads (shrinkage and temperature) remain 

consistent across every joint.   
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SUMMARY AND CONCLUSIONS 

Summary of Project 

The purpose of this study is to determine why shear keys are failing in multi-

beam box girder bridges.  Texas box girder bridges as well as PCI/AASHTO box girder 

bridges are investigated, because both of these have developed reflective cracks in the 

past.  Other research has been carried out on this topic and several important discoveries 

have been made, including what loads are likely to cause reflective cracking and the 

strength of different materials currently used as shear keys.  This study aims to build on 

previous work to create realistic computer models that will provide more information on 

the topic of reflective cracking. 

Previous laboratory and computer analyses, as discussed in the literature review, 

indicate that shear keys should withstand normal vehicular loads.  The shear key designs 

of most box girder bridges are theoretically strong enough to perform their intended 

function.  In service, however, many box girder bridges utilizing shear keys have 

experienced problems, and reflective cracking is present on many bridge decks.   

This study suggests that secondary loading effects are the principal cause of 

reflective cracking, or that they act in conjunction with vehicular loads to cause 

reflective cracking.  Secondary loads reflect local conditions, such as the final shrinkage 

of the concrete used in a specific bridge or the temperature differential of a particular 

bridge shortly after construction.  It is possible that secondary loads can be high in some 

bridges (those with reflective cracking), while remaining small in most bridges (those 

with no evidence of reflective cracking).   
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In addition, secondary loads are proposed as a contributor of reflective cracking 

because when bridges are closely evaluated under normal environmental conditions they 

show some kind of reflective cracking above the shear keys, whereas in a controlled 

laboratory setting most test specimens achieve adequate failure loads.  In both Texas and 

PCI box girder designs, some bridges appeared to develop cracking before the bridge 

was open for traffic (Jones 1999, Hucklebridge 1995).  This clearly indicates the 

importance of secondary loading effects such as thermal expansion or shrinkage.   

Finite element models are a central part of this study, and much work has been 

carried out to understand how a box girder bridge can be modeled using finite elements 

as well as how different loads can be applied correctly to these models.  Many individual 

experiments involving convergence tests, comparisons of finite element models, 

previous published results, and experience from other finite element projects have been 

used in this particular study. 

The finite element models in this study are similar to those used in previous 

research efforts, but some refinements have been made.  First, the specific geometry of 

the shear key and box girders have been modeled, along with interior diaphragms and 

composite slabs.  A second improvement is the addition of elastic support conditions, 

reflecting the common use of elastomeric bearing pads.  The stiffness, size, and location 

of these bearing pads have an effect on the transverse loads near the supports, and so 

these are included within the finite element models.   

Solid elastic elements were chosen to represent all of the bridges because many 

of the bridge components did not meet the requirements for beam or shell element 
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assumptions.  The use of solid elastic elements allows the true geometry of the bridge to 

be used in the model, avoiding the assumptions required to transform the problem into 

one involving beam or shell elements.   

Another benefit of using solid elastic elements is that loads can be applied 

directly to nodes in a simple manner.  This is important when secondary loads are 

considered.  Thermal differentials and shrinkage effects can be input as loads directly at 

the locations that they act upon, so complicated strain profiles such as temperatures can 

be applied as intended.  Another benefit of having many nodes available is that stress 

profiles reflect what is truly happening in a given section, rather than back-calculating 

stresses based on an assumed strain profile as when classical beam theory is used.     

 

Summary of Results 

The results show that most multi-beam box girder bridges considered in this 

study have shear keys that can safely and effectively transfer vehicular loads.  An HS-25 

design truck loading will not cause stresses high enough to create cracking problems in 

the center of the bridge.  This is in agreement with most previous studies, and the data 

shows that the static loading of a truck is not sufficient to cause reflective cracking of 

multi-beam bridges.  However, truck loading does create high stresses near the ends of 

the bridge, and as a truck passes over the end of the bridge the stresses can be quite 

large.   

Also, secondary loading effects including shrinkage and temperatures result in 

much higher stresses than vehicular loading.  This was true for all of the bridges studied.  
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The effect of a design temperature gradient as specified by AASHTO causes tensile 

stresses high enough to cause cracking in some shear keys.  The Texas shear keys, by 

virtue of their larger section, developed lower stresses than the PCI shear keys and 

would not be expected to have problems with temperature gradients.  The other 

secondary loading situation considered was shrinkage of the shear key and composite 

slab.  If shrinkage values approached the levels used in this study, then all bridges would 

develop problems with cracking in the shear key and the composite slab.   

The results show that section depth and shear key size are the most important 

factors.  Also important are the number and locations of the bearing pad supports, and 

the presence of a composite slab. Span length does not appear to be an important factor 

for maximum transverse stress. The presence of post-tensioning does appear to limit the 

tensile stresses in the shear key, but the improvement is not evident for every load case 

considered.  Another proposed solution, the use of a full depth shear key, resulted in 

lower tensile stresses, but once again the improvement was not seen for every load case.   

 

Conclusions 

Based on the results, several conclusions can be drawn from this study.  First, the 

stresses caused by secondary loadings cannot be ignored when designing and analyzing 

a multi-beam bridge that will use shear keys.  The ACI 318 specifications require that 

unreinforced concrete elements be analyzed for these effects, but this does not seem to 

have been addressed in current designs.   
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Another finding from the computer models is that the largest stresses often occur 

at the ends of the bridge.  The regions near the supports have been found to crack often 

in previous research, and so the boundary conditions and elastomeric bearing pads must 

be carefully designed to protect the bridge joints from high stresses.   

Another conclusion that can be drawn from the data is that HS-25 truck loads are 

not large enough to cause shear key failure independently of other loads.  If problems 

with reflective cracking exist along the entire length of the bridge, then shrinkage of the 

slab and shear key is the most probable candidate.  Temperature loads can be large 

enough to cause cracking and daily temperature fluctuations can cause large stress 

reversals.   

The solutions proposed for shear key failures in past research include transverse 

post-tensioning and design changes such as the use of a full depth key.  These solutions 

did show improvements compared to a bridge without these features, but the use of a 

composite slab was the most effective way to decrease tensile stresses.  The full depth 

key was more effective than transverse post-tensioning, but neither reduced tensile 

stresses for every load considered.   

 

Recommendations for Further Research 

The finite element models used in this study were not able to model what would 

happen after initial cracking.  This behavior would be an important step to understanding 

the consequences of shear key failure.  Specifically, the difference in behavior between a 

fractured shear key and a debonded shear key is essential to determining whether this 
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has an effect on the composite deck slab.  If a debonded shear key is able to transfer load 

between girders and does not cause cracking in the slab above, then this system would 

be a good candidate for creating a waterproof joint.  However, if a slab is affected by a 

debonded shear key then the problem with the shear key itself must be corrected.   

Another recommendation is to study the impact that the elastic bearing 

conditions have on transverse stresses near the supports.  These locations consistently 

experienced the highest stresses in the bridge models, and so altering the location or size 

of the bearing pads could have benefits for the shear keys.   

A final recommendation for further work is to measure transverse shrinkage in a 

composite deck slab as it is installed on a bridge.  The shrinkage loadings produced the 

highest tensile stresses in the bridge models, but the values used for ultimate shrinkage 

strain were based on limited information.  Better knowledge about this effect could lead 

to slab designs that are able to withstand reflective cracking better than previous bridges.   
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